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Abstract

The biopsy is one of the most commonly used modality to identify breast can-

cer in women, where tissue is removed and studied by the pathologist under

the microscope to look for abnormalities in tissue. This technique can be time-

consuming, error-prone, and provides variable results depending on the expertise

level of the pathologist. An automated and efficient approach not only aids in

the diagnosis of breast cancer but also reduces human effort. In this paper,

we develop an automated approach for the diagnosis of breast cancer tumors

using histopathological images. In the proposed approach, we design a resid-

ual learning-based 152-layered convolutional Neural Network, named as ResHist

for breast cancer histopathological image classification. ResHist model learns

rich and discriminative features from the histopathological images and classifies

histopathological images into benign and malignant classes. In addition, to en-

hance the performance of the developed model, we design a data augmentation

technique, which is based on stain normalization, image patches generation,

and affine transformation. The performance of the proposed approach is eval-

uated on publicly available BreaKHis dataset. The proposed ResHist model

achieves an accuracy of 84.34% and an F1-score of 90.49% for the classification

of histopathological images, and also, this approach achieves an accuracy of

92.52% and F1-score of 93.45% when data augmentation is employed. The pro-

posed approach outperforms the existing methodologies in the classification of

benign and malignant histopathological images. Furthermore, our experimental
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results demonstrate the superiority of our approach over the pre-trained net-

works, namely AlexNet, VGG16, VGG19, GoogleNet, InceptionV3, ResNet50,

and ResNet152, for the classification of histopathological images.

Keywords: Breast Cancer, Histopathological Image, Data Augmentation,

Residual Learning, Convolutional Neural Network, Deep Features.

1. INTRODUCTION

Breast cancer is the second leading cause of cancer-related death in the

women, across the globe [1]. International agency for research on cancer (IARC),

reported that approximately 8.2 million deaths were caused by cancer in the year

2012, and about 27 million new cases of cancer are expected by 2030 [2]. In

general, breast cancer is diagnosed by testing of medical images (e.g., breast

mammograms, ultrasound, and MRI images) and biopsy. In biopsy examina-

tion, tissues are studied under the microscope by the pathologists. Generally,

cancerous cells are examined visually, based on shape and size, malignancy de-

gree, tissue distribution, etc. [3]. If cancerous cells are present, then the biopsy

is the only guaranteed way for diagnosis. The visual examination of the cancer-

ous cell is time consuming and requires an expert pathologist.

Recent advancements in machine learning and image processing have enabled

the development of computer-aided diagnosis (CAD) systems for detecting and

diagnosing breast cancer from the histopathological images faster with very high

accuracy. The CAD system analyzes the histopathological images of the sample

tissue, and finds the histopathological patterns corresponding to the cancerous

and non-cancerous condition and classifies the histopathological images respec-

tively into benign and malignant class. The major challenges associated with

the classification of breast cancer histopathological images include the inherent

complexity in histopathological images such as cell overlapping, subtle differ-

ences between images and uneven color distribution.

The objective of this study is to develop an accurate and reliable solution

for breast cancer classification. In this study, we have systematically investigate
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the deep learning based approaches for automatic diagnosis of breast cancer.

Key highlights of this work are as following:

• We develop a deep residual convolutional neural network (ResHist) for

breast cancer diagnosis from the histopathological images.

• We propose a data augmentation technique based on stain normalization,

image patches generation and affine transformation.

• We also investigate the performances of deep features (extracted from

ResHist) with various classifiers.

This paper is organized as follows: Section 2 presents the literature review.

Section 3 describes the proposed ResHist based approach for classification of

benign and malignant histopathological images. Section 4 describes the dataset

and proposed data augmentation method. Section 5 presents the evaluation

metrics and also details the experimental results. Finally, the conclusion is

drawn in Section 6.

2. LITERATURE REVIEW

The computer-aided diagnosis of cancer has been a topic of research since

the last 40 years, but it is still challenging owing to the inherent complexities

of histopathological images [4]. Several methodologies have been proposed in

the literature for the classification of histopathological images into benign and

malignant classes. This section briefly reviews prominent research works related

to the classification of histopathological images.

Kowal et al. [5] have employed various nuclei segmentation algorithms such

as K-means, competitive neural networks, Gaussian mixture model (GMM) and

fuzzy C-means (FCM) to extract the region of interest (ROI) in order to clas-

sify benign and malignant images. Authors reported accuracy rates from 96%

to 100%. George et al. [6] proposed nuclei segmentation based breast can-

cer diagnosis system using machine learning techniques. They have detected

nuclei using Hough transform with Ostu’s thresholding and FCM clustering.
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They have applied four classifiers such as multilayer perceptron, learning vector

quantization, support vector machine (SVM) and probabilistic neural network

(PNN) on the extracted features. Authors have reported classification accura-

cies ranging between 76% and 94% on the dataset consisting of 92 cytological

images.

Spanhol et al. [7] have investigated the performances of image descriptors

such as local binary pattern (LBP), completed local binary pattern (CLBP),

gray-level co-occurrence matrices (GLCM), parameter-free threshold adjacency

statistics (PFTAS), local phase quantization (LPQ) and oriented fast and ro-

tated brief (ORB) for diagnosis of breast cancer. They have investigated the

performance of local descriptors with four classifiers, namely 1-nearest neighbor

(1-NN), random forest (RF), quadratic discriminant analysis (QDA) and SVM.

Authors have employed the approach as mentioned above on a dataset con-

taining 7909 histopathological images of 82 patients (BreaKHis dataset). The

classification accuracies of this approach are ranging between 80% and 85%.

Spanhol et al. [8] have proposed deep learning based methodology using

fine-tuned pre-trained LeNet architecture for breast cancer tumor classification.

This methodology has archived a classification accuracy of 72%. Further, they

used a more sophisticated variant of AlexNet architecture, which consists of

five learnable layers (three convolutional and two fully connected). In addition,

the authors reported classification accuracy rates ranging from 80.8% to 85.6%

using AlexNet architecture.

Bayramoglu et al.[9] have proposed a magnification independent approach

in which they have developed two convolutional neural network (CNN) models

named as single task CNN and multi-task CNN. Single task CNN is used to

estimate malignancy, and multi-task CNN is used to estimate malignancy as well

as magnification level of the image. Single task CNN-based strategy achieved

accuracies ranging from 82.1% to 83.0% and multi-task CNN-based strategy

achieved accuracies ranging from 80.6% to 83.3%.

Spanhol et al. [10] used a pre-trained CaffeNet model for extracting deep

features from the histopathological images. Features are extracted at the fully
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Table 1: Summary of literature review.

Author(s) Methodology Dataset
Accuracy

(in %)

Kowal et al. [5] • Nuclei segmentation: using K-means,

FCM, competitive-NN and GMM.

• Classification: K-NN, Näıve bayes and

decision tree

Cytological images 96-100%

George et

al. [6]

• Nuclei segmentation: using Hough

transform, Ostu’s thresolding and FCM

clustering

• Classification: multilayer perceptron,

PNN, learning vector quantization and

SVM

Cytological images. 76-94%

Spanhol et al. [7] • Feature Extraction: using LBP, CLBP,

LPQ, GLCM, PFTAS and ORB

• Classification: 1-NN, QDA, SVM, and

RF

BreaKHis 80-85%

Spanhol et al.

[8]

• Pre-trained CNN Models: LeNet and

AlexNet CNN

BreaKHis 80.8-85.6%.

Bayramoglu et

al. [9]

• Proposed two CNN models:

- Single task CNN: for predicting the ma-

lignancy.

-Multi-task CNN: for predicting malig-

nancy and image magnification levels.

BreaKHis 80.6-83.3%.

Spanhol et al.

[10]

•Extracted deep features (DeCAF): us-

ing pre-trained CaffeNet.

BreaKHis 83.6-84.8%.

Sudharshan et

al. [11]

• Proposed MIL based approach: APR,

KNN, DD, SVM, non-parametric algo-

rithm and MIL-CNN

BreaKHis 83.4-92.1%.

connected (fc) layers fc6, fc7, and fc8 of CaffeNet. They achieved accuracies

between 83.6% and 84.8%.

Recently, Sudharshan et al. [11] used multiple instance learning (MIL)

for histopathological image analysis. In which they have studied the perfor-

mances of various MIL techniques such as seminal Axis Parallel Rectangle algo-

rithm (APR), K-nearest neighbor (KNN), algorithms based on diversity density
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(DD), SVM, non-parametric algorithm and convolutional neural network for

MIL. They reported binary classification accuracies between 83.4% and 92.1%.

Summary of literature review has been presented in Table 1.

3. METHODOLOGY

Deep learning is a data-driven learning approach that learns the features,

semantic rules and meaningful information directly from the data itself and has

found to be very effective for various task including object detection [12], voice

recognition [13], signal recognition [14], visual tracking [15] and image classifi-

cation [16, 17, 18]. The CNN is a part of a deep learning family, and it is widely

used in medical image analysis such as MRI image segmentation [19], brain tu-

mor detection in MRI images [20], retinal lesion detection in fundus images [21]

and nuclei segmentation in histopathological images [22]. The effectiveness of

CNN has motivated us to explore CNN based methodology for breast cancer

image classification. Figure 1 depicts the schematic diagram of the proposed

methodology. In this work, we have developed an improved residual learning-

based convolutional neural network named as ResHist (Residual convolutional

neural network for the Histopathological image) for breast cancer histopatho-

logical image classification. A detailed description of the proposed approach is

given in the following section:

3.1. Proposed Approach

ResHist is a non-linear feature representation learning model, in which fea-

tures extraction process is replaced by the features learning. This model has a

strong ability to learn the discriminative features, semantics, features space dis-

tance constraint of inter-class from the complex breast cancer histopathological

image at multiple levels of abstraction. The description of proposed ResHist

architecture is shown in Table 2. The proposed ResHist model is inspired by

ResNet152 [17]. The proposed network consists of 152 layers, with 13 residual

blocks, in which 46 layers are learnable (45 Convolutional layers and 1 Fully con-

nected). The residual block which has skip connections to jump over the layer
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Figure 1: Block diagram of proposed method.

and it prevents the network from the vanishing gradient problem. We added

residual blocks repetitively in the network because it increases representation

power, leads to faster convergence and minimizes training errors as compared

to stacked CNN [17].

In ResHist model, we have used the Input layer, which holds raw pixel

values of input histopathological image. Followed by Convolutional layer have
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Table 2: Layers of ResHist Model and parameters of the layers.

Layer Name Type Parameter/ filter Size

Input Layer Input layer [224 224 3]

Conv Layer Convolutional Layer
[1 1], [3 3], [7 7], stride=[1 1],

padding same

Batch Norm
Batch Normalization

Layer

64, 128, 256, 512,

1024 channels

ReLU Layer ReLU Layer max(0, x)

Max Pooling Max Pooling Layer [3 3], stride = [2 2]

Avg Pooling Average Pooling Layer [7 7], stride = [7 7]

FC Fully Connected Layer 2

Softmax Layer Softmax Layer
Softmax function,

Cross-entropy loss

applied, which is responsible for detecting and learning local features from the

input image. Convolutional layer produces neurons output by computing the

dot product between the filters of the Convolutional layer and connected local

region of the Input layer.

We have used Batch normalization layer to increase the stability of the net-

work and speed up the learning process. Batch normalization layer reduces the

internal covariate shift and it also prevents the network from the overfitting by

introducing the regularization effect in the network [23]. Following steps have

been used in Batch normalization:

• Computes mini batch mean (µbn) and variance (σbn) of the activation

layer using Eqn. (1) and Eqn. (2) respectively.

µbn =
1

m

m∑
i=1

xj (1)

σbn =

√√√√ 1

m

m∑
j=1

(xj − µbn)
2

(2)
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• Performs normalization on the input (xj) of activation layer (in Eqn. (3)).

Xj =
(xj − µbn)√
σ2
bn + ε

(3)

• Scale and shift the normalized data (Xj) using Eqn. (4), in order to

produce the output of the Batch normalization layer.

Yj = γXj + β (4)

Where m represents the size of the mini batch, ε is a constant, γ and β are

learnable parameters which are initialized randomly and learned during training.

After Batch normalization layer, we have employed ReLU activation function,

as given in Eqn. (5), which provides a mapping between output to the set of

inputs and introduces non-linearity in the network structure [24].

f(x) =

 x if x > 0

0 otherwise
(5)

We have used Max pooling layer as 5th layer and Average pooling layer as

143th layered, to reduce the spatial dimension of feature maps. Pooling layer

independently operates on each feature map and minimizes computation and

amount of parameters in the network. We have employed a Softmax layer,

which is responsible for generating the desired outputs. Hence layer 151 uses

softmax function to predict the probability of class (benign or malignant), in

which the input image belongs to. Softmax function is a logistic regression for

binary classification that takes classes score S = (s1, s2) as input and produces

probability distributions P = (p1, p2) corresponding to each class. Softmax

function f(S, θ) is defined mathematically as in Eqn. (6).

P = f(S, θ) =
1∑2

j=1 e
θT sj

 eθ
T s1

eθ
T s2

 (6)

Where θ is the softmax classifier parameter. At the output layer, cross-entropy

loss function as in Eqn. (7) have been applied to measure the performance of

the network and to compute the classification error. During the training of
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network, the classification error is minimized by using the ADAM optimization

algorithm [25]. Let T ∈ {0, 1} is target output and P is predicted probability.

For N training sample of histopathological images, the loss function is defined

as:

J(T, P ) = −
N∑
i=1

J (ti, pi) = −
N∑
i=1

2∑
c=1

tic log (pic) (7)

Where tic is 1, if and only if sample image i belongs to class c and pic is a

predicted probability of sample i belonging to class c. L2 regularization term is

also added to loss function as shown in Eqn. (8), which prevents network from

the overfitting problem by penalizing network weight matrix of the nodes.

J(T, P ) = −
N∑
i=1

2∑
c=1

tic log (pic) +
λ

2N

∑
‖w‖2 (8)

Where λ is a regularization parameter and it is initialized to λ=0.0005.

The weights of the first 40 convolutional layers of the ResHist are initialized

using transfer learning from the pre-trained ResNet50 network and remaining

layer’s weights are initialized by the Gaussian distribution with a standard de-

viation of 0.01. The learning rate is set to 0.0001, and mini-batch size is set

to 128. We experimentally found out that these hyperparameter values are the

best suitable for our problem.

In the proposed approach, histopathological images are first augmented then

ResHist model is trained end-to-end on the augmented dataset in a supervised

learning manner. During training, ResHist model learns the discriminative fea-

tures and mapping rule that maps the input histopathological images to out-

put labels. In the test phase, for a given unlabelled test image, the trained

ResHist model produces the probability of the presence of cancerous tumor in

the histopathological image and classifies the image into benign or malignant

class.

4. DATASET

In this section, we briefly explain the BreaKHis dataset. Further, this section

details the proposed data augmentation technique.
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4.1. BreaKHis Dataset

In order to evaluate the performance of the ResHist model, publicly avail-

able BreaKHis dataset [7] has been employed. This dataset includes 7909 breast

cancer histopathological images of 82 patients. Out of 7909 images, 2480 im-

ages belong to a benign class and 5429 images belong to a malignant class.

These images are acquired from the biopsy slides of breast tissue in four mag-

nification factors. Figure 2 shows the sample images of benign and malignant

classes in 40X, 100X, 200X and 400X magnification factors from the BreaKHis

dataset. The images in dataset are the colored (RGB) images of size 700× 460

pixels. Table 3 gives the details of the distribution of images in the benign and

malignant classes corresponding to each magnification factor.

4.2. Data Augmentation

It is well known that the performance of deep learning models heavily de-

pends on the size of the training dataset available. Therefore data augmentation

Figure 2: Samples of histopathological images of breast cancer from the BreaKHis database;

the top row shows the benign tumor, and the bottom row shows the malignant tumor. From

left to right (a, e), (b, f), (c, g) and (d, h) are images in 40X, 100X, 200X, and 400X magni-

fications factors, respectively.
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Table 3: Images distribution in benign and malignant classes corresponding to magnification

factor.

Class
Magnification Factors Number of

Patient40X 100X 200X 400X

Benign 625 644 623 588 24

Malignant 1,370 1,437 1,390 1,232 58

Total 1,995 2,081 2,013 1,820 82

techniques play an important role in increasing dataset cardinality [26, 27]. Data

augmentation techniques improve the performance of the network by overcom-

ing the problem of the network overfitting. In this work, we have proposed a

data augmentation method, in which we use affine transformation, stain nor-

malization [28] and image patches generation algorithm for data augmentation.

This data augmentation approach increases the dataset size ten times. The data

augmentation algorithm is given as follows:

Algorithm : Data augmentation of histopathological images.

Input: H&E stain breast cancer histopathological image Ik.

Output: Augmented images (Ik1....Ik10) of the image Ik.

Step 1: Take histopathological image Ik from the training set.

Step 2: Apply affine transformations on image Ik:

(i) perform image rotation operation

Ik1 = Rotation(Ik, 900)

Ik2 = Rotation(Ik, 1800)

(ii) perform flip operation

Ik3 = Flip(Ik)

Step 3: Perform stain normalization operations on histopathological image Ik

using target image It .

Ik4 = StainNorm(Ik, It)
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Step 4: Apply patch generation technique on image Ik.

[Ik5, ...., Ik10] = PatchGen(Ik)

*Where Rotation(), PatchGen(), StainNorm() are represents the methods of im-

age rotation, patch generation and stain normalization respectively.

Figure 3: Histopathological image data augmentation. Where images represent in: (A) is

original image; (B,C) are the rotated images at 900 and 1800 respectively; (D) is the flipped

image; (E) is the stain normalized image; and (F, G, H, I, J, K) are the image pages.

Figure 3 shows augmented images produced while applying the proposed

data augmentation method. The proposed data augmentation approach can

be divided into three steps. In the first step, affine transformations have been

applied on the histopathological image (Ik), where the image has been rotated

at the angle of 900 and 1800 and the image pixels have been flipped vertically.

This step produces three images (Ik1, Ik2, Ik3). In the second step, stain nor-

malization has been applied to the image (Ik) to obtain stain normalized image

(Ik4). In the stain normalization process, the color of an input image is mapped
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to the target image using linear transformation in a perceptual colorspace. In

the final step, a sliding window strategy has been applied on the image (Ik) to

generate six image patches (Ik5, Ik6, Ik7, Ik8, Ik9, Ik10).

5. EXPERIMENTS AND DISCUSSION

The experimental setup used for the evaluation of the proposed method is

the same as in that of [7]. Where the dataset has been randomly divided into

the training set and test set in the ratio of 0.7 and 0.3 at the patient level

(patients used to build the test set have not been used for training set) for each

magnification factor. We have further divided the training set into a train set

and validation set in the ratio of 0.8 and 0.2 and applied data augmentation

approach on a train set. The augmented train set is used for network training

and validation set is used for selecting the best hyperparameter for the model.

The test set is used for performance evaluation of the proposed method. The

results reported in this paper are the average of 5 trials. All the experiments are

performed on an NVIDIA Quadro K5200 GPU with CUDA 10.0 using cuDNN.

5.1. Evaluation Metrics

To assess the performance of proposed method we have used precision, recall,

F1-score, accuracy and confusion matrix as evaluation metrics. There are two

types of recognition accuracies as in [7, 8, 9, 10]. (i) Accuracy at patient level:

let Nntp be total number of images of the patient P, Npc be number of images of

the patient P that are the correctly classified and Np be the number of patient.

It is defined as (in Eq. (9) and Eqn. (10)):

Patient Score =
Npc
Nntp

(9)

Patient Recognition Accuracy =

∑
Patient Score

Np
(10)

(ii) Accuracy at image level: let Nall be total number of the histopathological

images of the test set and Nr number of images that are correctly classified.
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Image level accuracy is defined in the Eqn. (11).

Image Recognition Accuracy =
Nr
Nall

(11)

Precision, recall and F1-score are defined as (in Eqn. (12), Eqn. (13) and

Eqn. (14) respectively) :

Precision =
TP

(TP + FP )
(12)

Recall =
TP

(TP + FN)
(13)

Where TP represents true positive, which refers the correctly classified malig-

nant class images. FN represents false negative, which refers to the incorrectly

classified benign class images. Similarly, FP represents false positive, which

refers to the incorrectly classified malignant class images. F1-score is mainly

used for measuring test accuracy and it is computed by calculating the har-

monic mean of the precision and recall.

F1− Score =
2TP

(2TP + FP + FN)
(14)

5.2. Experimental Results

This section presents the experimental results of the proposed approach eval-

uated on original BreaKHis dataset and dataset with augmentation. Section

5.2.1 presents the performance of ResHist model, where Section 5.2.2, shows the

performance of deep features with different classifiers. Additionally, we evalu-

ate the performance of the pre-trained networks on histopathological images in

Section 5.2.3.

5.2.1. ResHist Model Results

ResHist model is a task-specific network for breast cancer images classifica-

tion. Two sets of experiments have been performed for network training. In the

first set of experiments, we have trained ResHist model on the original BreaKHis

dataset. In the second set of experiments, we have performed data augmenta-

tion on the training set of BreaKHis dataset. Thus obtained augmented data
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Table 4: Mean recognition accuracy of the proposed ResHist model at the image level and

patient level, with respective standard deviation.

Accuracy

@ in %
Method (s)

Magnification Factors

40X 100X 200X 400X

Image Level
ResHist 82.12±4.38 82.98±6.15 80.85±8.03 81.83±5.17

ResHist-Aug 87.40±3.00 87.26±3.54 91.15±2.30 86.27±2.18

Patient Level
ResHist 83.24±4.18 84.34±5.72 81.65±10.88 83.00±4.20

ResHist-Aug 87.47±3.22 88.15±2.97 92.52±2.84 87.78±2.46

“ResHist-Aug”: ResHist model is trained on augmented BreaKHis dataset

have been used to train ResHist model. The results obtained in these sets of the

experiments are provided in Table 4. From the experimental results, it can be

noticed that there is a significant improvement in the performance of ResHist

when data augmentation is employed. The best accuracy of 92.52% has been ob-

tained at the patient level for 200X magnification factor. On the other hand, in

Table 5, we have presented the assessment of ResHist model based on evaluation

metrics like specificity, precision, recall, and F1-score. Thus, we have observed

that the overall ResHist-Aug (with Data augmentation) model performed better

for all magnification factors. We further analyze ResHist-Aug performance by

drawing receiver operating characteristic (ROC) curves for various experimental

Table 5: Specificity, recall, precision and F1-score computed from the ResHist models.

Magnification

Factors
Method (s)

Specificity

(in %)

Sensitivity /

Recall (in %)

Precision

(in %)

F1-Score

(in %)

40X
ResHist 87.30±0.05 86.39±0.03 95.07±0.02 90.49±0.02

ResHist-Aug 85.97±0.08 87.99±0.03 94.16±0.03 90.94±0.02

100X
ResHist 80.89±0.09 86.98±0.03 91.59±0.04 89.20±0.03

ResHist-Aug 83.31±0.10 89.54±0.03 91.87±0.06 90.58±0.03

200X
ResHist 75.02±0.14 90.80±0.03 85.25±0.13 87.57±0.08

ResHist-Aug 85.62±0.05 93.69±0.02 93.23±0.02 93.45±0.02

400X
ResHist 78.86±0.10 88.53±0.03 88.59±0.07 88.38±0.03

ResHist- Aug 81.62±0.07 88.91±0.03 90.83±0.05 89.75±0.02
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Figure 4: ROC curves of ResHist for various trials on BreaKHis dataset with data augmenta-

tion.

trial corresponding to their respective magnification factors (see Figure 4).

Based on the ROC curves, the developed model is observed to be stable

for varied experimental trials and magnification factors. Confusion matrices for

the same have been shown in Table 6. In confusion matrices, we can see that

the proposed model produces very less false positive, which confirms that the

ResHist is reliable for clinical uses.

5.2.2. ResHist Features and Classifiers Results

ResHist model learned low-level to high-level deep features from the pathol-

ogy images at the multiple levels of abstraction. To investigate the discrimina-

tive ability of deep features, we have used ResHist model as feature descriptor
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Table 6: Confusion Matrices produced by ResHist Model.

40X 100X 200X 400X

B M B M B M B M

B
203

(26.2%)

67

(8.6%)

206

(25.1%)

70

(8.5%)

241

(31.3%)

32

(4.2%)

126

(21.3%)

53

(9.0%)

M
8

(1.0%)

497

(64.1%)

13

(1.6%)

531

(64.8%)

20

(2.6%)

477

(61.9%)

18

(3.0%)

395

(66.7%)

“B”: Benign, “M”: Malignant

(a) Input Image

(b) At Layer 2

(c) At Layer 60 (d) At Layer 132

Figure 5: Features maps of breast cancer histopathological image at different layers: b) Layer

2 output; c) Layer 60 output; d) Layer 132 output and a) input image.

for the histopathological image. Therefore, deep features are extracted from the

input breast cancer histopathological images, and the extracted feature vectors
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are used as input to the different classifiers. In this approach, four classifiers

such as KNN [29], RF [30], QDA and SVM [31] have applied on the deep fea-

tures. The pictorial representation of the features map at the different layers of

ResHist model is shown in figure 5.

The performance of deep features with various classifiers are shown in Table

7. The performance of our model thus remains unaffected across diverse classi-

fiers. The classifier’s performance being quite similar and SVM giving the little

better results among the classifiers (see underlined in Table 7).

Table 7: Performance of ResHist features with different classifiers.

Magnification

Factors
Method (s)

Image Level

Accuracy (in %)

Patient Level

Accuracy (in %)

40X

ResHist+ KNN 86.37±5.34 85.59±4.82

ResHist+QDA 86.86±4.49 86.61±3.72

ResHist+RF 86.25±5.48 86.23±5.30

ResHist+SVM 86.38±5.34 86.28±5.10

100X

ResHist+KNN 87.05±3.39 87.72±2.95

ResHist+QDA 86.55±3.52 87.34±2.92

ResHist+RF 87.03±3.17 87.72±2.89

ResHist+SVM 87.28±3.49 87.91±3.05

200X

ResHist+KNN 90.40±2.65 91.29±3.32

ResHist+QDA 90.98±1.80 92.12±2.66

ResHist+RF 90.26±2.41 91.58±3.11

ResHist+SVM 91.35 ±2.19 92.46±3.10

400X

ResHist+KNN 85.73±2.48 87.42±3.18

ResHist+QDA 85.84±2.47 87.55±2.74

ResHist+RF 86.23±2.27 87.88±2.61

ResHist+SVM 86.29±2.26 87.90±2.76

Best results over the magnification factors are shown in bold. For each

magnification factor, best results over classifiers is shown in underline.

19



5.2.3. Pre-trained Networks Results

The pre-trained networks that are trained on the massive labeled dataset of

different applications that can be used for the new application using the transfer

learning. In the transfer learning, weights of the pre-trained network are used

and fine-tuned according to the new application.

In this paper, we have tested the performance of pre-trained CNN(s) namely

AlexNet[16], GoogleNet [32] and VGG16 [33] on original BreaKHis dataset as

well as augmented BreaKHis dataset. To fine-tuned these networks, last three

layers (fully-connected layer, softmax layer, and output layer) of the network

have been replaced with the new fully-connected layer (with two neurons), soft-

max layer and output layer. During fine-tuning, we have used 0.001 learning

rate for newly added layers and 0.00001 learning rate for the remaining lay-

ers. Pre-trained networks require that input size should be the same as the

Table 8: Performance of pre-trained networks on BreaKHis (with and without data augmen-

tation.

Accuracy

@ in %
Method (s)

Magnification Factors

40X 100X 200X 400X

Image

Level

AlexNet 80.58±2.50 80.59±2.98 84.095.29 79.26±7.13

AlexNet-Aug 81.57±3.53 83.64±2.97 86.30±3.85 81.04±4.74

GoogleNet 80.32±2.60 79.93±3.11 83.05±3.19 78.39±4.50

GoogleNet-Aug 82.87±1.86 81.98±5.44 87.03±1.59 79.68±1.44

VGG16 79.15±4.03 77.70±1.98 83.53±6.44 75.92±9.78

VGG16-Aug 86.03±2.85 81.36±5.74 86.88±2.82 81.25±4.17

Patient

Level

AlexNet 80.59±3.61 81.80±2.64 86.62±4.34 81.10±6.43

AlexNet-Aug 83.07±4.93 85.47±2.32 88.40±3.77 81.83±3.74

GoogleNet 80.95±3.43 80.40±3.16 83.38±4.23 79.77±5.62

GoogleNet-Aug 83.68±2.29 82.34±4.00 86.71±2.54 80.14±2.54

VGG16 81.33±3.57 78.43±3.81 83.43±6.88 79.01±9.30

VGG16-Aug 86.62±3.67 81.27±5.31 88.18±2.94 82.87±3.94

Best results over the magnification factors are shown in underline. For each magnification

factor, best results over the pre-trained networks are shown in the bold.
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dimension of the input layer. Hence histopathological images have been re-sized

to 227 × 227 × 3 for AlexNet and 224 × 224 × 3 for GoogleNet and VGG16

before applying them as input to the network. The experimental results are

presented in Table 8. From the experimental results, it is observed that the all

pre-trained networks achieved the best performance at the 200X magnification

factor (best results are underlined) and worst at the 400X magnification factor.

While comparing performances of the pre-trained networks, it is observed that

GoogleNet-Aug achieved the overall best accuracy of 87.03% at image level and

AlexNet-Aug achieved overall best accuracy of 88.40% at the patient level.

5.3. Comparison with Existing Methods

The performance comparison of ResHist model with the existing methods is

shown in Table 9. Our approach has clearly outperformed the methodologies in

[7], [8] and [9]. The proposed approach shows the superiority over the methods

in [10] and [11]; however, the methodology in [10] has achieved better accuracy

at image level for 40X magnification factor. Similarly, methodology in [11] has

achieved better accuracy at the patient level for 40X and 100X magnification

factors. Also, it can be observed from Table 9 that the proposed approach

has yielded less standard deviation as compared to the existing methods. This

suggests that the proposed approach is stable as compared to existing works.

Some of the salient features of the proposed model could be summarized as:

• ResHist classifies the whole slide images, thereby preserves the global in-

formation of histopathological images.

• Proposed method is fully automatic, with no image pre-processing require-

ment.

• Proposed data augmentation technique improves the performance of ResHist

model significantly from 84.34% to 92.52% (8.18% margin).

Although the proposed approach has many advances over the hand-crafted

local feature descriptors, it required immense computational power and time

while training ResHist model as compare to feature descriptors.
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Table 9: Performance comparison with existing methods in terms of accuracy (in%).

Author(s)

Magnification Factors

40X 100X 200X 400X

Accuracy

@ IL

Accuracy

@ PL

Accuracy

@ IL

Accuracy

@ PL

Accuracy

@ IL

Accuracy

@ PL

Accuracy

@ IL

Accuracy

@ PL

Spanhol

et al. [7]
- 83.8±4.1 - 82.1±4.9 - 85.1±3.1 - 82.3±3.8

Spanhol

et al. [8]
85.6±4.8 90.0±6.7 83.5±3.9 88.4±4.8 83.1±1.9 84.6±4.2 80.8±3.0 86.1±6.2

Bayramoglu

et al. [9]
- 83.0±3.0 - 83.1±3.5 - 84.6±2.7 - 82.1±4.4

Spanhol

et al. [10]
89.6±6.5 90.0±6.7 85.0±4.8 88.4±4.8 84.2±1.7 86.3±3.5 81.6±3.7 86.1±6.2

Sudharshan

et al. [11]
87.8±5.6 92.1±5.9 85.6±4.3 89.1±5.2 80.8±2.8 87.2±4.3 82.9±4.1 82.7±3.0

Proposed 87.4±3.0 87.4±3.3 87.2±3.5 88.1±2.9 91.1±2.3 92.5±2.8 86.2±2.1 87.7±2.4

“Accuracy @ PL”: Accuracy at Patient Level, “Accuracy @ IL”: Accuracy at Image Level, “-”: Unknown

*Bold shows the best results for the respective magnification factors

6. CONCLUSION

In this paper, we have developed the ResHist model for automated diagnosis

of breast cancer using histopathological images. The ResHist model achieves a

classification accuracy of 92.52% and F1-score of 93.45% on the publicly avail-

able histopathological image (BreaKHis) dataset. Our approach outperforms

the existing approaches for the classification of histopathological images. In ad-

dition, we have also investigated the performance of different classifiers on the

deep features extracted from ResHist model. Specifically, we achieve a classi-

fication accuracy of 92.46% when deep features are fed to the SVM classifier.

The results of our approach show the effectiveness of the ResHist model for clas-

sification of benign and malignant histopathological images. More importantly,

the ResHist model outperforms the pre-trained networks, including AlexNet,

GoogleNet, and VGG16 for classification of histopathological images.

Although the ResHist is very effective for breast cancer diagnosis, this ap-

proach needs to be validated on the larger dataset before being used for clinical
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purpose. We intend to take up this exercise as a part of our future work. Fur-

ther, we also like to explore the ResHist for diagnosis of lung cancer, colon

cancer, and prostate cancer.
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