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Abstract—We consider decentralized detection (DD) of an un-
cooperative moving target via wireless sensor networks (WSNs),
measured in zero-mean unimodal noise. To address energy and
bandwidth limitations, the sensors use multi-level quantizers.
The encoded bits are then reported to a fusion center (FC) via
binary symmetric channels. Herein, we propose a generalized
Rao (G-Rao) test as a simpler alternative to the generalized
likelihood ratio test (GLRT). Then, at the FC, a truncated
one-sided sequential (TOS) test rule is considered in addition
to the fixed-sample-size (FSS) manner. Further, the asymptotic
performance of a trajectory-clairvoyant (multi-bit) Rao test is
leveraged to develop an offline and per-sensor quantizer design.
Detection gain measures are also introduced to assess resolution
improvements. Simulations show the appeal of G-Rao test with
respect to the GLRT, and the gain in detection by using multiple
bits for quantization, as well as the advantage of the sequential
detection approach.

Index Terms—Decentralized detection, Generalized Rao test,
multibit quantizer, sequential detection, wireless sensor networks.

I. INTRODUCTION

A. Motivation and Related Works

THE study on Decentralized Detection (DD) started from
1980s [1], [2] and has received significant attention in

Wireless Sensor Networks (WSNs) area by the scientific
community over the last two decades [3]–[11]. Nowadays, DD
is the object of renewed interest with the advent of the Internet
of Things (IoT) paradigm. Indeed, billions of tiny devices
with sensing, computation, and communicating capabilities are
expected to be used in numerous areas of everyday life, such as
surveillance, environmental monitoring, smart cities and grids,
connected cars, precision-agriculture and healthcare.

A WSN with a centralized architecture typically consists of
a large number of spatially-distributed sensors and a Fusion
Center (FC). The sensors collect measurements of a given
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physical process (temperature, humidity, etc.) or, in case
of DD, are in charge of detecting (together) some specific
events in a region of interest [12]. These may correspond
to target/signal presence or anomalies, e.g. deviations from
normal behavior attributed to unforeseen changes in the sys-
tem/environment. Last but not least, sensor nodes are usually
subject to energy and/or bandwidth limitations. Therefore, they
may be compelled to quantize their measurements (into one
or more bits), before reporting them to the FC [13].

In DD case, the optimal per-sensor digital compression
(under Bayesian/Neyman-Pearson frameworks) corresponds to
a quantization of the local Likelihood-Ratio (LR) [14], [15].
Unfortunately, incomplete knowledge of the parameters of the
event to be detected precludes the sensors from computing
local LRs. Additionally, the search for quantization thresholds
is exponentially complex [16]. Thus the bit sent is either the
result of a “dumb” quantization [17] or embodies the estimated
binary event, based on a sub-optimal rule [18].

In both cases sensors’ bits are sent to the FC, where they
are fused via an intelligently-designed rule meant to overcome
sensors’ limited detection capabilities. Therein a system-wide
decision (based on a so-called fusion rule) is taken [18], [19],
which is object of design efforts. Sadly, the target (or event)
to be detected depends on some unknown parameters. This
precludes (global) LR implementation at FC [16], which is
then faced to test a composite hypothesis.

A commonly-adopted fusion rule in such cases corresponds
to the Generalized LR Test (GLRT) [20]–[22]. Due to its wide
applicability, GLRT-based fusion rules have been also devised
in a number of different scenarios, such as arbitrarily-permuted
quantized data [23] and sparse signals [24]. On the other
hand, one appealing alternative (suited to two-sided tests1) is
represented by the adoption of Rao-based fusion rules [17],
[26], [27], which usually incurs lower computational costs.
For instance, in [17], a one-bit Rao fusion rule is proposed
as a simpler (from a computational viewpoint) alternative to
the one-bit GLRT for detection of an unknown signal. More
recently, a Rao test is applied to fusion rule design in the case
of collision-aware reporting channels [26] and vector-valued
measurements [27], respectively. We remark that an alternative
(appealing) path for designing effective distributed detectors is
also represented by the exploitation of invariance properties,

1Instead, for one-sided tests, (generalized) locally most-powerful detectors
are usually preferred [11], [25].
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see e.g. [28], [29].
Referring to an unknown two-sided signal and both ratio-

nales, quantizer threshold(s) design can be performed via their
common (weak-signal) asymptotic performance [30]. In the
one-bit case, it has been shown that the optimal threshold value
corresponds to zero in many practical cases, except for some
heavy-tailed distributions, such as the Generalized Gaussian
Distribution (GGD) [17], [20], [31]. In the latter case, the
study in [32] provided a threshold optimization algorithm for
GGD noise with polynomial-time guarantees.

Yet, in the case of an unknown static (resp. moving) target
with unknown location (resp. trajectory), the GLRT requires
a grid search on both the target location (trajectory) and
emitted signal domains. Hence, the search for simpler fusion
rules is even exacerbated. Accordingly, recent works have
devised a generalized Rao test for one-bit DD of uncooper-
ative targets in finite-sample [33] and sequential [34] setups.
The aforementioned generalized forms overcome the technical
issue of unidentifiable nuisance parameters under H0, and
corresponding to the location (resp. trajectory) of the target
to be detected. Also, the corresponding quantizer design can
be obtained via the optimization of location- (resp. trajectory-)
clairvoyant performance which, remarkably, does not depend
on the aforementioned (unknown) parameters [33], [34].

There is however a tangible loss of useful information
when only one-bit quantizers are adopted and a notable
performance gap can be observed with respect to unquantized
observations [35]. Accordingly, multi-level quantization can
be adopted to achieve performance gains at the expenses of
a mild complexity increase. Based on this idea, multi-bit DD
has been recently considered for the simpler scenario of an
unknown (two-sided) signal in Gaussian [36] and zero-mean
unimodal symmetric noise [37], respectively. Therein multi-
bit GLR (not in closed-form) and Rao tests (in closed-form),
respectively, have been devised and an asymptotically-optimal
thresholds’ design obtained, via a Particle Swarm Optimization
(PSO) [38]. Numerical results therein have demonstrated that
2/3-bit quantization suffices for both fusion rules to approach
the performance of their unquantized counterparts. Accord-
ingly, it is of interest investigating (a) multi-bit quantiz-
ers, (b) their corresponding design and (c) the derivation of
computationally-efficient fusion rules for the challenging case
of a non-coooperative (moving) target. This is the objective of
the present work.

B. Contributions and Paper Organization

The main contributions of this paper are summarized as
follows:
• We study the problem of DD of a non-cooperative

moving target buried in noise via WSNs [11], [33],
[39]. To cope with WSNs stringent energy & bandwidth
budgets, we consider multi-level quantized sensors. Also,
we assume the quantized data to be transmitted through
(error-prone) Binary Symmetric Channels (BSC) to the
FC, similarly as in [36], [37]. However, as opposed
to [36], [37], we tackle the (challenging) task of detecting
a target with unknown location. Additionally, similarly

to [37], we only constrain the noise to be zero-mean
unimodal-symmetric. The resulting test is two-sided with
nuisance parameters present only under hypothesis H1,
thus making inapplicable the standard Rao test [37].

• To circumvent this issue, we devise a multi-bit form
of the generalized Rao test (G-Rao), representing (i) a
(computationally-) simpler alternative fusion rule to the
GLRT and (ii) comprising the one-bit G-Rao devised
in [33] as a special case, although it does not represent a
trivial extension of the above simplified scenario. Indeed,
the main advantage is that it requires a reduced estimation
procedure [30] even in the considered general model.
At the FC, we consider both Fixed-Sample-Size (FSS)
and sequential test rules, to exhibit their properties and
highlight the advantage of the latter (thus generalizing the
findings of [34] for the one-bit case).

• We provide the asymptotic (weak-signal) performance
of the trajectory-clairvoyant (TC) Rao test. Leveraging
its explicit expression, we adopt a quantizer design ap-
proach for the sensors which aims at maximizing the
corresponding non-centrality parameter. Such design is
per-sensor, accounts for sensor-FC channel status, and
requires neither the target signal nor its trajectory. Hence,
the proposed design is feasible and can be computed
offline via PSO (following [36], [37]). Then, in the
FSS setup, the TC asymptotic performance is capital-
ized to define asymptotic detection gains (ADGs), which
concisely allow to quantify the gain on WSN system
performance achieved by increasing the bit resolution of
sensors within the network.

• Finally, the G-Rao test is compared to the GLRT through
simulations (pertaining to relevant Gaussian and Gen-
eralized Gaussian noise cases) showing that it achieves
practically the same performance for a finite number of
sensors in the considered scenarios.2

We highlight that the present work extends our earlier
conference paper [40], which provided (i) only a preliminary
analysis of PSO-based quantizer optimization, (ii) considered
only the FSS setup and (iii) did not introduce ADGs of TC
Rao test (as well as TC GLRT) versus resolution. Besides, we
also clarify that our previous work [37] focuses on the DD of
an unknown signal with known observation coefficients (able
to accommodate only targets with known position/trajectory)
with a multi-bit Rao test.

The rest of the manuscript is organized as follows. Sec. II
introduces the model; in Sec. III the multi-bit G-Rao (resp.
GLR) test is derived (resp. recalled), and the fusion rule is
formulated under both FSS and sequential setups; in Sec. IV,
an asymptotic analysis of the multi-bit TC Rao (GLR) detector
is presented, and PSO-based multi-level quantizers are devel-
oped; performance analysis versus resolution of quantization
is investigated in Sec. V, while numerical results are provided
in Sec. VI. Finally, concluding remarks and further avenues of

2Actually, in most of the cases, the G-Rao test slightly outperforms the
GLRT (see Sec. VI). This is not counterintuitive, as the finite-sample relative
performance of GLR and Rao tests varies from case to case, even in the
simpler two-sided testing (i.e. without nuisance parameters underH1). Indeed,
in the latter case, their performance is only asymptotically equivalent, see [30].
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research are given in Sec. VII. Additional proofs are deferred
to dedicated appendices.

Notation - vectors are denoted with lower-case bold letters,
with an being the nth element of a; finite sets are denoted
with upper-case calligraphic letters, e.g. A; transpose and
expectation are denoted with (·)T and E{·}, respectively; prob-
ability mass functions (pmfs) and probability density functions
(pdfs) are denoted with P (·) and p(·), respectively, while
P (·|·) and p(·|·) their corresponding conditional counterparts;
the complementary cumulative distribution function (ccdf) is
denoted with F (·); the symbols ∼ and a∼ mean “distributed
as” and “asymptotically distributed as”; N (µ, σ2) denotes a
Gaussian pdf with mean µ and variance σ2; GN (µ, α, ε)
denotes a generalized normal pdf with mean µ, scale α and
shape ε; χ2

k (resp. χ
′2
k (ξ)) denotes a chi-square (resp. a non-

central chi-square) pdf with k degrees of freedom (resp. and
non-centrality parameter ξ).

II. PROBLEM STATEMENT

The system model is illustrated in Fig. 1 and described in
what follows. We consider a binary hypothesis test where
a collection of sensors k ∈ K , {1, . . . ,K} are de-
ployed in a surveillance area to monitor the absence (H0)
or presence (H1) of a target of interest having a partially-
specified spatial signature. In the latter case (i.e. H1), the
target moves along a fixed direction with constant velocity
and continuously radiates an unknown deterministic isotropic
signal θ. Such model potentially describes scenarios including
the detection of movements of troop, vehicle, equipment in
battlefield surveillance, movements of birds, small animals,
and insects in environmental monitoring, and car thefts in
community security protection [41]. The emitted signal experi-
ences distance-dependent path-loss and additive noise, before
reaching individual sensors. The problem can be summarized
as follows:{

H0 : mt
k = wtk,

H1 : mt
k = θ g(xt, sk) + wtk

;
k ∈ K,

t = 1, 2 . . . , T
(1)

In Eq. (1), mt
k ∈ R denotes the kth sensor measurement at

instant t and wtk ∈ R indicates the corresponding noise Ran-
dom Variable (RV). The RVs wtk are assumed (a) statistically
independent over space (sensors) and (b) i.i.d. over time. In
detail we assume each noise RV has E{wtk} = 0 and unimodal
symmetric pdf3 pwk(·). We underline that reliable estimation
of the sensor noise pdf(s) can be achieved based on training
data.

By denoting with x0 ∈ Rd and v ∈ Rd the initial target
location and the corresponding velocity, respectively, the target
location at time t is given by the parametric expression xt =
x0 + vt. Accordingly, the functional model does not consider
potential fluctuations in the velocity of the target, i.e. our
model assumes a constant-velocity target to be detected. Still,
we highlight that the present model could easily accommodate
any other kind of deterministic trajectories (e.g. constant turn
or two-leg trajectory models). On the contrary, the presence

3Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and
generalized Gaussian distributions with zero mean [30].

of a non-negligible process noise in v would require the more
flexible nearly-constant velocity model [42]. In the latter case,
we expect a detection performance degradation for both G-
Rao and GLR tests based on a constant-velocity assumption
(due to model mismatch).

In this paper, we make the reasonable assumption that both
x0 and v are unknown. On the other hand, sk ∈ Rd denotes
the known kth sensor position, as a result of a sensor self-
localization procedure [43], [44]. The pair (xt, sk) uniquely
determines the value of g(xt, sk), here denoting the amplitude
attenuation function (AAF)4, which models how the signal
emitted from the target at t decays as it reaches kth sensor.
For instance, one relevant AAF is given by the power-law
decay, namely g (xt, sk) , 1/

√
1 + (‖xt − sk‖/ a)b, where

a and b control the (approximate) spatial signature extent and
the rapidity of signal decay, respectively.

When the noise is modelled as wtk ∼ N (0, σ2
w,k), the

measurement mt
k is distributed under H0 as mt

k |H0 ∼
N (0, σ2

w,k). Correspondingly, under H1, it holds mt
k |H1 ∼

N (θ g(xt, sk), σ2
w,k).

By looking at Eq. (1) we observe that the test is two-sided,
namely {H0,H1} corresponds to {θ = θ0, θ 6= θ0} (θ0 = 0).
More important, the unknown time-varying target position
xt (equivalently the nuisance parameters {x0,v}) can be
estimated at the FC only when θ 6= θ0, i.e. when the signal is
present (H1). This corresponds to a set of nuisance parameters
which are present only under the alternative hypothesis [45].

Then, to address bandwidth- and energy-limited budget in
WSNs, we assume that the kth sensor employs a (multi-level)
q(k)-bit quantizer5, in which the observation mt

k is compared
with a set of quantization thresholds {τk(i)}2q(k)

i=0 , determining
2q(k) non-intersecting intervals covering the whole R. We
stress that τk(0) = −∞ and τk(2q(k)) = +∞ are two dummy
thresholds used in what follows to keep the notation compact.
Precisely, the corresponding quantizer outcome is mapped into
a binary codeword btk ∈ {0, 1}q(k), where k = 1, 2, . . . ,K.
The non-overlapping quantization intervals are associated to
q(k)-bit binary codewords c(i) =

[
c1(i) · · · cq(k)(i)

]T
,

where ct(i) ∈ {0, 1}.
Hence, the q(k)-bit quantizer of kth sensor at instant t

outputs a codeword defined as:

btk ,


c(1) −∞ < mt

k < τk(1)

c(2) τk(1) ≤ mt
k < τk(2)

...
...

c(2q(k)) τk(2q(k) − 1) ≤ mt
k < +∞

(2)

We observe that herein raw measurement quantization (as
opposed to other local sensor processing, e.g. quantization
of energy statistic [11]) is pursued to keep the signal po-
larity in case an estimate of θ is required after detection.
Still, we stress that analogous design issues would arise (i.e.
nuisance parameters observable only under H1) in case of

4We underline that our results apply to any suitably-defined AAF describing
the spatial signature of the target to be detected.

5Herein, for simplicity, we focus on deterministic quantizers, leaving the
more general case of probabilistic quantizers [10] to future studies.



4 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. *, NO. *, MONTH YYYY

Figure 1: WSN system model with multi-bit and error-prone sensors detecting a non-cooperative moving target.

sensor energy quantization, with corresponding non-feasibility
of the common locally most-powerful tests and the need for
generalized statistics, based on Davies’ approach [45]. The
codeword of kth sensor is then reported to the FC via an error-
prone reporting link. The communication process of each bit
is represented by an independent BSC with (known) Bit-Error
Probability (BEP) Pe,k.

A distorted codeword ytk will be then received by the FC
from kth sensor at time t, whose conditional probability obeys
P (ytk = ck(i)|btk = ck(j)) = Gq(k) (Pe,k, di,j), where

Gq(k) (Pe,k, di,j) , P
di,j
e,k (1− Pe,k)(q(k)−di,j), (3)

and di,j , d(ck(i), ck(j)) denotes the Hamming distance
between codewords ck(i) and ck(j).

For notational compactness, we collect the noisy codewords
(viz. soft-quantized measurements) received from the sensors
at time t in the set Yt , { yt1 · · · ytK} (recall that
ytk ∈ {0, 1}q(k) and thus codewords from sensors may
differ in length). Similarly, the accumulated noisy codewords
received from the sensors up to time t̄ are denoted as Y1:t̄ ,
{Y1, · · · ,Y t̄}.

Accordingly the pmf of all the observations as a function of
the set of unknown parameters ξ , {θ,x0,v}, up to a generic
time t̄ (i.e. Y1:t̄), is then given by

P (Y1:t̄; θ,x0,v︸ ︷︷ ︸
ξ

) =

t̄∏
t=1

K∏
k=1

P (ytk; θ,x0,v). (4)

Clearly, P (Y1:t̄; θ0,x
0,v) = P (Y1:t̄; θ0) denotes the pmf

under H0.
The corresponding pmf of the contribution from kth sensor

at generic time t can be expanded as

P (ytk; ξ) =

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); ξ). (5)

The quantizer law reported in Eq. (2) implies the following
pmf expression for P (btk = c(i); ξ)

P (btk = c(i); ξ) = Pr{τk(i− 1) ≤ mt
k < τk(i)} = (6)

Fwk(τk(i− 1)− θ g(xt, sk))− Fwk(τk(i)− θ g(xt, sk)),

where Fwk(·) denotes the ccdf of wtk.
The problem of interest in this work is (a) to formulate a

computationally-efficient test rule based on a corresponding
fusion statistic (indicated with δ and Λ, respectively) to detect
the uncooperative target (as quick as possible) under con-
straints on error probabilities and (b) the design of quantizers

for the whole WSN. Indeed, upon receiving Y1,Y2 . . ., the
FC can make a global decision in either (i) a FSS (waiting
up to time Tf , based on a fusion statistic which capitalizes
the whole batch Y1:Tf ) or in a (ii) sequential manner (at
each time instant t, based on Y1:t, until some exit condition
is met). The aim of this paper is to investigate both setups, as
detailed in what follows.

We highlight that the fusion rules and the (multi-bit) quan-
tizer design obtained in this paper rely on the knowledge of the
noise (through P (btk = c(j); ξ)) and channel models (through
Gq(k)(Pe,k, di,j)), with optimization benefits reduced in the
case of mismatch.

III. FUSION RULES DESIGN

The aim of this paper is the derivation of a (computationally)
simple test deciding for H1 (resp. H0) when the statistic
is above (resp. below) the threshold γ, and the design of
quantizers for the whole WSN.

Accordingly, Sec. III-A details the formulation of test rules
based on FSS and sequential setups (with corresponding
relevant performance metrics). Then, in Sec. III-B, we delve
into fusion statistic design, whereas in Sec. III-C we focus
on their corresponding computational costs. Conversely, the
quantizer design is tackled in later Sec. IV.

A. Test Rule Design

1) FSS Approach: Given a test statistic, the FC can make
its decision either in a FSS or sequential fashion. In the former
case, the FC first collects a specific (fixed) number of samples
and then makes a final decision by the following decision rule:

δTf
,

{
1 if ΛTf ≥ γf ,

0 otherwise .
(7)

where Tf denotes the number of samples, ΛTf represents the
generic fusion statistic evaluated at t̄ = Tf , and γf denotes
the decision threshold. Accordingly, the performance will be
evaluated in terms of the well-known system false-alarm P f

F

and detection P f
D probabilities, defined as:

P f
F , Pr{δTf

= 1|H0} = Pr{ΛTf ≥ γf |H0}, (8)

P f
D , Pr{δTf

= 1|H1} = Pr{ΛTf ≥ γf |H1}, (9)

where γf represents the usual system (decision) threshold,
needed to ensure a desired false-alarm rate.6

6Alternatively, the threshold γf can be also set to minimize the fusion
error-probability [9].
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2) Sequential Approach: Though a multi-bit quantization
has the potential advantage of better detection performance, it
increases the computational burden as well. It is well known
that, in many cases, the sequential test procedure can reduce
the required data sample size compared to its FSS counterpart
while ensuring the same detection performance. Unfortunately,
both the GLR and (generalized) Rao statistics are always
nonnegative in two-sided hypothesis testing. As a result, tests
including both lower and upper stopping thresholds (such as
the generalized sequential probability ratio test in [46]) are
not applicable here. Furthermore, typical sequential tests with
no upper bound on stopping time may require an excessively
large number of samples in certain unfavorable realizations.
To overcome these two drawbacks, following the idea in [34],
herein we employ a Truncated One-sided Sequential (TOS)
multi-bit test to deal with the described detection problem.

In the TOS test setup, the FC sequentially updates its test
statistic based on the newly received information, until either
the test statistic exceeds a prescribed threshold γs or the time
horizon passes a deadline Ts. Specifically, the stopping rule
for the TOS test based on the G-Rao (GLR) test statistic can
be represented as

T , min
{

inf
{
t > 0 : Λt ≥ γs

}
, Ts

}
, (10)

and the decision function at the stopping time is

δT ,

{
1 if ΛT ≥ γs,

0 otherwise.
(11)

Clearly, the decision of the TOS test rule is delayed and
equal to Ts when the target is absent (i.e. the case H0). In
such a case, other than the system false-alarm and detection
probabilities, also the expected detection delay under H1 is of
interest, and their expressions are respectively given by [34]

P s
F , Pr{δT = 1|H0}

= Pr{∃ 1 ≤ t ≤ Ts, s.t. Λt ≥ γs|H0}, (12)

P s
D , 1− Pr{δT = 0|H1}

= 1− Pr{∀ 1 ≤ t ≤ Ts, Λt < γs|H1}, (13)

and

T̄1 , E[T |H1]

= 1 +

Ts−1∑
t=1

Pr{Λ1 < γs, . . . ,Λ
t < γs|H1}

(14)

To this point, we provide some quantative insights into the
proposed TOS test rule. First, the expected decision delay
under H1 is smaller than the deadline Ts, which is a generic
feature of sequential test rules. Then considering the FSS
test rule as a benchmark and let Ts = Tf , the TOS scheme
may require a larger threshold to achieve an equivalent false-
alarm probability, thus resulting in a larger miss-detection
probability. In light of this, we prefer to set Ts to be slightly
larger than Tf to avoid performance loss in miss detection.
However, a larger Ts may bring about a longer decision delay
when the decision is H0.

Compared with its FSS counterpart, the TOS test rule
accelerates the detection speed when the target is present while

always deferring the decision of H0, since when the decision
is H0, the sampling time reaches Ts that is usually larger
than the sample size of the FSS scheme. The TOS test rule
appears attractive for surveillance applications, such as the
noncooperative moving target detection problem considered
in this work, which seeks to make a quick decision under
H1 (which usually corresponds to the existence of an illegal
object), but makes little of the importance to stop rapidly under
hypothesis H0 (i.e., normal condition). Finally, some non-
asymptotic behavior of the error probabilities and the expected
decision delay of the sequential G-Rao-statistic based detector
will be evaluated via simulations in Sec. VI.

B. Test Statistic Derivation

A common approach to handle detection in the presence
of unknown parameters (viz. composite hypothesis testing)
resorts to the GLR [30]. For the DD problem at hand,
the corresponding decision statistic is obtained by replacing
the unknown parameters {θ,x0,v} with their ML estimates
{θ̂, x̂0, v̂} (under H1) in the LR, i.e.

p(Y1:t̄; θ̂, x̂0, v̂)

p(Y1:t̄; θ0)
, (15)

where θ0 = 0, and the ML estimates {θ̂, x̂0, v̂} are respec-
tively the relevant solution of the following equation, i.e.

{θ̂, x̂0, v̂} , arg max
θ,x0,v

p(Y1:t̄; θ,x0,v). (16)

Clearly, leveraging the explicit expression of the likelihood in
Eq. (4), the test statistic in Eq. (15) can be equivalently recast
into its logarithmic form as

Λt̄G ,
t̄∑
t=1

K∑
k=1

ln
P (ytk; θ̂, x̂0, v̂)

P (ytk; θ0)
. (17)

Note that the MLEs of unknown parameters in Eq. (17) do
not ensure a closed-form solution. In other words, searching
for the solution of {θ̂, x̂0, v̂} in Eq. (16) may require a
huge amount of computations and consequently increases the
computational burden of its implementation.

Conversely, inspired by the approach employed in [33],
[34], the G-Rao test statistic is considered here. The reason
for our choice is that the typical Rao test is known to be
asymptotically equivalent to the GLRT under the condition
of weak signal7 , but with a lower computational complexity
than the latter one. As to the problem in Eq. (1), if xt (or
{x0,v}) was known, the original Rao test statistic could
be readily computed [30]. Unfortunately, the target trajectory
xt (or {x0,v}) is unknown. However, based on the G-Rao
test proposed in [33], a family of Rao test statistics can be
calculated for different values of xt (or {x0,v}). Then by

7That is |θ1 − θ0| = c/
√
K for some constant c > 0, where θ1 denotes

the actual parameter value under H1.
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maximizing such family of statistics (i.e. following a “GLRT-
like” approach), the G-Rao test statistic can be obtained as

Λt̄R , max
x0,v


(
∂ ln[p(Y1:t̄;θ,x0,v)]

∂θ

∣∣∣
θ=θ0

)2

It̄ (θ0,x0,v)

 , (18)

where It̄
(
θ0,x

0,v
)

denotes the Fisher Information (FI), i.e.

It̄
(
θ,x0,v

)
, E

{(
∂ ln[p(Y1:t̄;θ,x0,v)]

∂θ

)2 }
evaluated at θ0.

We remark that the FI obtained satisfies the regularity condi-

tion8 E
{(

∂ ln[p(Y1:t̄;θ,x0,v)]
∂θ

)}
= 0. Hereinafter, we briefly

describe the key steps needed to obtain the explicit form of
the G-Rao test.

First, the numerator term in Eq. (18) (before evaluation at
θ = θ0) can be expressed as shown in Eq. (19) at the top
of next page (the proof is given in Appendix A), where the
auxiliary definition

ρ(btk = c(i); θ,x0,v) , pwk
(
τk(i− 1)− θg

(
xt, sk

))
− pwk

(
τk(i)− θg

(
xt, sk

))
,

(20)

has been employed.
Secondly, exploiting the result for multi-bit quantized mea-

surements in [37], the explicit form of the FI is obtained
by replacing hk with g (xt,xk), which provides It̄(θ,x

0,v)
in closed form at the top of next page as Eq. (21), where
the definition in Eq. (20) has been again exploited. Thus,
combining Eqs. (19) and (21), we obtain Λt̄R in closed form
at the top of next page as Eq. (22). Despite the seemingly
difficulty in its evaluation, Λt̄R can be easily evaluated as all the
involved terms can be pre-computed off-line. Then, comparing
Eq. (22) to Eq. (17), we notice that the G-Rao test statistic
is more computationally efficient than the GLRT, since the
former does not need to estimate θ and only requires a grid
search on the domains of the target initial location (x0) and
velocity (v).

Remarks: the target model considered in this paper contains
as a special case the scenario of a static target with known
position. In such a case, capitalizing the target location knowl-
edge (i.e. no nuisance parameters in the corresponding two-
sided test) and its time-invariance, the AAF can be simplified
of its dependence on sensor-target distance. As a consequence,
replacing g (xt, sk) with a generic coefficient hk in Eq. (22)
(and simplifying the maximization over (x0,v)) leads to
exactly the same result as (13) of [37], i.e. a multi-bit Rao
fusion rule for detecting a real-valued unknown signal θ.

C. Computational Complexity

Despite the seemingly evaluation difficulty, ΛR can be more
easily evaluated than its counterpart ΛG, since G-Rao only

8Indeed, the regularity condition can be rewritten∑K
k=1

∑t̄
t=1 E

{(
∂ ln[p(ytk;θ,x0,v)]

∂θ

)}
due to time and space statistical

independence. After some manipulations, each of these terms can be
rewritten as g(xt, sk)

∑2q(k)

i=1 ρ(btk = c(i); θ,x0,v). Accordingly,
each term can be shown to be zero as a consequence of the result∑2q(i)

i=0 ρ(btk = c(i); θ,x0,v) = pwk (τk(0))− pwk (τk(2q(k))) = 0.

requires a grid search on the initial location and velocity (no
need for estimating θ, cf. Eqs. (17) and (18)).

This is confirmed by the big-O notation complexity expres-
sions reported in Tab. I, where t̄ denotes the generic number
of samples used in the evaluation of the fusion statistic at
the FC. Specifically, in a FSS test rule t̄ = Tf (a single
test evaluation is carried out only after all the samples in the
batch have been collected) whereas in a TOS setup it holds
t̄ = 1, . . . T (i.e. the statistic is re-evaluated at each time step
till the exit time). As a result, the involved complexity of G-
Rao in FSS setup is O(Nx0Nv Tf

∑K
k=1 2q(k)) based on a 2-D

grid, where Nx0 (resp. Nv) is the number of initial position
(resp. velocity) bins used. Conversely, the GLR requires a 3-
D grid-based implementation, which leads in the same setup
to O(NθNx0Nv Tf

∑K
k=1 2q(k)), with a consequent Nθ-fold

saving for G-Rao. Indeed, a complexity O(t̄
∑K
k=1 2q(k)) is

associated to a single evaluation of both fusion statistics within
the maximization (i.e. fixing (x0,v) and (x0,v, θ) for Rao
and GLR, respectively) when t̄ samples have been collected
by each sensor, and q(k)-bit quantization is employed by kth
sensor. Indeed, the latter assumption implies 2q(k) different
codeword values for kth sensor at the FC.

The same complexity savings hold in the
TOS case, since the complexity of GLR is
O(NθNx0Nv

1
2T (T + 1)

∑K
k=1 2q(k)), whereas for G-

Rao it holds O(Nx0Nv
1
2T (T + 1)

∑K
k=1 2q(k)). Indeed,

recall that
∑T
t=1 t = (1/2) T (T + 1). Accordingly, the

computational complexity of both rules scales linearly in
both the number of sensors (K) and exponentially in the
bit resolution. Conversely, the complexity scales linearly
(resp. quadratically) with number of samples in the FSS
(resp. TOS) setup. Finally, we remark that the complexity
associated to the quantizer design in the following section is
not included in the aforementioned analysis. Indeed, as shown
in later Sec. IV, the proposed quantizer design can be carried
out offline and thus does not contribute to the aforementioned
(per-sample) cost.

IV. QUANTIZER DESIGN

It is worth noticing that (asymptotically-)optimal determin-
istic quantizers cannot be obtained for the proposed G-Rao
test statistic, because no performance expressions are known
in the literature for tests based on the Davies approach [45]. To
this end, as done in [33], we adopt a modified version of the
rationale in [17] and [20]. Specifically, it is known that the TC
(i.e. knowing xt for t = 1, . . . , t̄) Rao statistic Λ̃t̄R (together
with the corresponding TC GLR statistic), is asymptotically
(and assuming a weak signal) distributed as [30]

Λ̃t̄R
a∼

{
χ2

1 under H0

χ
′2
1 (λQ

(
x1:t̄

)
) under H1

(23)

where the non-centrality parameter is defined as λQ
(
x1:t̄

)
,

(θ1 − θ0)
2

It̄(θ0,x
0,v) (underlining dependence on x1:t̄ via

the pair (x0,v)). Herein θ1 denotes the true value under H1,
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(
∂ ln

[
p(Y1:t̄; θ,x0,v)

]
∂θ

)2

=


t̄∑
t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (ytk|btk = c(i)) ρ(btk = c(i); θ,x0,v)

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); θ,x0,v)


2

. (19)

It̄(θ,x
0,v) =

t̄∑
t=1

K∑
k=1

g2
(
xt, sk

) 2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ
(
btk = c (j) ; θ,x0,v

)}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = c (j) ; θ,x0,v)

. (21)

Λt̄R = max
(x0,v)

1

It̄ (θ0,x0,v)


t̄∑
t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (ytk|btk = c(i)) ρ(btk = c(i); θ0)

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); θ0)


2

. (22)

Table I: The computational complexity of G-Rao and GLR rules in FSS and TOS setups.

Setup FSS (t̄ = Tf ) TOS (t̄ = 1, . . . , T )
Test Rule G-Rao GLR G-Rao GLR

Complexity O
(
Nx0Nv Tf

∑K
k=1

2q(k)
)

O
(
Nθ Nx0Nv Tf

∑K
k=1

2q(k)
)

O
(
Nx0Nv

1
2T (T + 1)

∑K
k=1

2q(k)
)

O
(
Nθ Nx0Nv

1
2T (T + 1)

∑K
k=1

2q(k)
)

whereas θ0 = 0. In detail, the above parameter is explicitly
given as

λQ

(
x1:t̄

)
= θ2

1

t̄∑
t=1

K∑
k=1

{
g2
(
xt, sk

)
×

2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (btk = c (j) ; θ0)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = c (j) ; θ0)

 , (24)

where we have omitted both x0 and v in the terms
ρ (btk = c (j) ; θ0) and P (btk = c (j) ; θ0), since θ0 = 0 im-
plies θ0 g (xt,v) = 0 (cf. Eqs. (6) and (20)).

Clearly, the larger λQ
(
x1:t̄

)
, the better the x1:t̄-clairvoyant

GLR and Rao tests will perform when the target to be detected
depicts a trajectory x1:t̄. Since this property holds for each
accumulated time t̄, this observation applies to both FSS
and sequential variants. Also, from inspection of Eq. (24),
we observe that the non-centrality parameter λQ

(
x1:t̄

)
is a

function of the set of thresholds vectors τ tk, k ∈ {1, . . . ,K},
t ∈ {1, . . . , t̄}. We highlight that the generic vector is defined
as τ tk , {τ tk(i)}2

q(k)−1
i=1 , where the two boundary thresholds

are obviously fixed as τ tk(0) = −∞ and τ tk(2q(k)) = +∞.
As a consequence, the asymptotic detection performance of

the G-Rao test (as well as the GLRT) can be optimized by
solving the following optimization problem

max{
{τ tk}

K
k=1

}t̄
t=1

λQ

(
x1:t̄,

{
{τ tk}Kk=1

}t̄
t=1

)
. (25)

For this reason, with a slight abuse of notation, we will

use λQ

(
x1:t̄,

{
{τ tk}

K

k=1

}t̄
t=1

)
and choose the thresholds{

{τ tk}Kk=1

}T
t=1

to maximize the aforementioned objective. In
other words, by optimally choosing the quantizer thresholds
τ tk for the set of sensors, we can optimize the detection perfor-
mance of both TC Rao and TC GLR tests. Indeed, their asymp-
totic performance coincides and solely depends on the non-
centrality parameter (i.e. λQ

(
x1:t̄

)
) reported in Eq. (24). Ac-

cordingly, the optimized thresholds
{
{(τ tk)?}Kk=1

}T
t=1

based
on the considered rationale will be the same for both G-Rao
and GLR tests.

In general, such choice would lead to optimized thresholds
that will be dependent on x1:t̄ (and thus not practical), and also
imply a design coupled over space (viz. sensors) and time.
However, the objective in Eq. (24) can be rewritten in the
following form

λQ

(
x1:t̄,

{{
τ tk
}K
k=1

}t̄
t=1

)
= θ2

1

t̄∑
t=1

K∑
k=1

g2
(
xt, sk

)
Ak(τ tk)

(26)

where the explicit expression of Ak(τ tk) is given as follows:

Ak(τ tk) ,
2q(k)∑
i=1

{ 2q(k)∑
j=1

Gq(k) (Pe,k, di,j) ρ (btk = v(j); θ0)
}2

2q(k)∑
j=1

Gq(k) (Pe,k, di,j)P (btk = v(j); θ0)

.

(27)
Accordingly, by observing that both θ2

1 and g2 (xt,xk) are
positive terms and are independent on the thresholds, the
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considered optimization can be decoupled into the following
set of t̄ × K independent threshold design problems, which
are independent of x1:t̄(
τ tk
)?

, arg max
τ tk

Ak(τ tk), k = 1, . . . ,K; t = 1, . . . , t̄;

(28)
We remark that each problem is subject to the ordered con-
straints τ tk(i) < τ tk(i+1), for i = 1, . . . 2q(k)−1. Remarkably,
given the independence of the objective Ak(·) w.r.t. the time
index t, the optimized quantizer design for kth sensor arises
from a static solution and does not need to be changed
online (i.e. (τ tk)

?
= τ ?k ). Accordingly, only K (decoupled)

quantization problems need to be solved.
Finally, since the optimization problem described via

Eq. (28) has the same form as [37, Eq. (17)], we can capitalize
the same method used therein, i.e. the PSO, to search the
optimal quantization thresholds in Eq. (28).

V. ASYMPTOTIC DETECTION GAINS VERSUS RESOLUTION

We now establish the TC asymptotic detection gain provided
by multi-bit quantization in the FSS case. To this end, by
relying on Eq. (23), we express the asymptotic detection
probability P f

D as a function of the asymptotic probability of
false-alarm P f

F :

P f
D(λ(q→s)(x

1:Tf ), P f
F ) = Q

(
Q−1(P f

F /2)−
√
λ(q→s)(x1:Tf )

)
+Q

(
Q−1(P f

F /2) +
√
λ(q→s)(x1:Tf )

)
, (29)

where the subscript “(q → s)” indicates the adoption of
sensors with s-bit resolution for quantizer. To be specific,
q → 1 denotes one-bit quantizer and q → n with n > 1
represents the multi-level one. Also, we recall that the above
asymptotic P f

D expression relies on the same assumptions
required for the quantizer design in Sec. IV, i.e. knowledge of
both (sensing) noise and (communication) channel statistics.

Based on these explicit quantities, we introduce the Asymp-
totic Detection Gain (ADG) defined in [37] to quantify the
gain between a WSN employing s-bit resolution and one
employing t-bit resolution (t > s) as

Gd(P
f
F ,x

1:Tf ) , (30)

P f
D(λ(q→t)(x

1:Tf ), P f
F )− P f

D(λ(q→s)(x
1:Tf ), P f

F ) ,

to measure the increase in detection rate arising from the
use of finer quantizers. Additionally, we also introduce the
Asymptotic Normalized Detection Gain (ANDG) [37] as

Ḡd(P
f
F ,x

1:Tf ) , (31)

P f
D(λ(q→t)(x

1:Tf ), P f
F )− P f

D(λ(q→s)(x
1:Tf ), P f

F )

P f
D(λ(q→t)(x1:Tf ), P f

F )
,

to assess the corresponding relative increment. Obviously, both
these measures can be employed to quantify the (normalized)
detection gain when increasing the bit resolution from s > 0
to t bits. Qualitative profiles of ADG and ANDG in the above
relevant cases will be analyzed and commented later in Sec. VI
for a given trajectory.

VI. NUMERICAL RESULTS

In this stage, we will resort to simulations to assess the
performance of the proposed multi-bit G-Rao test, and also
show some non-asymptotic properties of the multi-bit TOS
approach. Specifically, we consider a 2-D space (xT ∈ R2)
where a WSN of size K = 9 is deployed to reveal the
presence of an unknown moving target with its initial position
located in the (square) surveillance area L , [0, 1]2 and
moving with velocity within V , [−0.1, 0.1]2. Without loss
of generality, sensors are displaced in a regular grid covering
L. Concerning the sensing model, we consider a power-law
AAF: g (xt, sk) , 1/

√
1 + (‖xt − sk‖/ 0.2)4. The latter

AAF model well-suits to a number of relevant WSN-based
DD cases, such as electromagnetic or acoustic signatures [47].

To deeply investigate the detectors’ performance under
different noise pdfs, we investigate two relevant scenarios.
Specifically, we consider the cases of (i) Gaussian noise, that is
pw(ω) = 1

(2πσ2
w)

1
2

exp(− ω2

2σ2
w

) and (ii) Generalized Gaussian

noise, that is pw(ω) = ε
2αΓ(1/ε) exp

[
−( |ω|α )ε

]
, respectively.

We observe that scenario (i) corresponds to a widely-employed
noise pdf arising due to many independent contributions (as
a result of the central limit theorem), while scenario (ii)
represents a flexible class of pdfs allowing to model long-
tail behaviour, e.g. possibly due to outliers. It is known from
[17] that one-bit quantization (q = 1) τ∗ = 0 holds in cases
of Gaussian and Generalized Gaussian (only when 0 < ε ≤ 2)
distributions. On the other hand, when ε > 2, g(τ) becomes
bimodal and τ∗ 6= 0. For the mentioned reasons, to stress PSO
capabilities and diversify our analysis, we will consider ε = 3
in the GGD case. For simplicity, in what follows we assume
pwk(·) = pw(·) and Pe,k = Pe for all sensors, and we set
E{w2

k} = 1 for both noise pdf cases. The target signal-to-
noise ratio (SNR) is defined as SNR , θ2 /E{w2

k}. Unless
otherwise stated, we set the true target values as θ = 0.7079
(thus SNR = −3 dB), x0 = [0, 0.5]T , v = [0.02, 0.013]T

in the simulations to gain insight into detectors’ performance.
Finally, all experiments were carried out on a Windows laptop
with a 2.4 GHz i9-10885H CPU and 32 GB RAM.

A. G-Rao Test versus GLRT:
Benefits of Multi-bit Quantization

Considering the FSS test rule with a sample size Tf = 20,
we compare multi-bit G-Rao test and GLRT performance in
terms of system false alarm (P f

F ) and detection probabilities
(P f
D). Following Sec. III, ΛR and ΛG are evaluated by means

of grids for x0, v and θ. Precisely, x0 and v are searched
with Nx0 = Nv = 100 grid points uniformly sampling L
and V , respectively. Differently, the search space of θ (the
target signal) is assumed to be Sθ , [−θ̄, θ̄] (θ̄ > 0). The grid
points9 are then chosen as

[
−gTθ 0 gTθ

]T
, where gθ collects

target strengths corresponding to SNR = −10 : 1 : 10 dB.
Then, in Figs. 2 and 3 we illustrate P f

D vs. P f
F (viz.

Receiver Operating Characteristic, ROC) in a WSN under
Gaussian noise (i.e. wk ∼ N

(
0, σ2

w

)
), with SNR = −3 dB

9This grid implies Nθ = 43, hence a 43× complexity saving is achieved
by G-Rao w.r.t. GLR.
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and 0 dB (i.e. θ = 1), respectively,. Then in Figs. 4 and 5
we illustrate analogous results pertaining to a WSN under
GGD noise (i.e. wk ∼ GN (0, α, 3)) with SNR = −3 dB
and 0 dB, respectively. In all figures, we report the results
for the two BEP levels Pe ∈ {0, 0.1}. All the results are
based on 105 Monte Carlo (MC) runs. Also, for each case, we
report the performance with q(k) = q ∈ {1, 2, 3} quantization
bits, where thresholds are selected following the rationale
elaborated in Sec. IV. We remark that q = 1 leads to the (FSS)
one-bit G-Rao test proposed in [33] (originally referring to a
stationary target though). Specifically, we use PSO with pa-
rameters M = 100, τmax = 5 and νtol = 10−6, corresponding
to the number of particles employed, the maximum position
limitation and the stop tolerance velocity, respectively [37].

It is apparent that the ROC performance of the GLR and G-
Rao tests are practically the same for Gaussian noise scenario,
with either SNR = −3 dB or 0 dB. On the other hand, in
GGD case, the performance of GLRT and G-Rao test slightly
differs. This is reasonable since, in general, the performance
of GLRT and G-Rao test may differ in the finite sensor case.
Nonetheless, the G-Rao test has the advantage of a lower
computational burden with respect to the GLRT. Secondly,
both fusion rules enjoy a higher detection probability (than
the one-bit case) when using multi-bit quantizers. Still, the
presence of channel errors (in our example Pe = 0.1) leads to
a significant performance loss of both detectors, highlighting
the need for either a higher number of sensors (K) or a longer
observation interval (Tf ).

We remark here that, other than the considered SNR values,
we have also obtained the results with SNR = −6 dB (i.e. θ =
0.5), 3 dB (i.e. θ = 1.4125) and 6 dB (i.e. θ = 2). Specifically,
the behavior of ROC curves for SNR = −6 dB matches with
the conclusions reported above. This is expected, as this case
also falls within a low-SNR assumption. Conversely, in both
cases SNR = 3 dB and 6 dB, the P f

D of all curves is close to
unity even when P f

F is set to a very low value (close to zero),
showing that both GLR and G-Rao tests perform well when
the SNR is high. Because such results are consistent with the
conclusions in [30], they are omitted for brevity.

B. Asymptotic Detection Gains in FSS setup

Secondly, we investigate the asymptotic trends of WSN
detection capabilities (in a FSS setup) from increasing the bit
resolution by means of the ADG and the ANDG defined in
Sec. V (Eqs. (30) and (31), respectively).

To this end, in Figs. 6(a) and 6(b) we draw the afore-
mentioned ADG (viz. Gd(P f

F )) and ANDG (viz. Ḡd(P f
F )),

respectively, in a WSN with K = 9 and Gaussian noise, e.g.
wk ∼ N

(
0, σ2

w

)
. Similarly, in Figs. 7(a) and 7(b) we illustrate

the same metrics in a WSN with Generalized Gaussian noise,
e.g. wk ∼ GN (0, α, 3). The two noise scenarios are consid-
ered in conjunction with the channel cases Pe ∈ {0, 0.1}.

First, it is apparent a different behavior for Gd(P f
F ) (uni-

modal) and Ḡd(P
f
F ) (decreasing), respectively. This is ex-

plained as any gain from resolution increase has its effect
decreased (resp. increased) on Gd(P

f
F ) as P f

F tends to one
(resp. to zero), since accordingly, also P f

D will tend to unity
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Figure 2: P f
D vs. P f

F for GLRT and G-Rao with a batch size
Tf = 20; WSN with K = 9 sensors, wk ∼ N (0, 1), SNR =
−3 dB , and (a): Pe = 0; (b): Pe = 0.1.

(resp. to zero), independently on the WSN considered. On
the other hand, in Ḡd(P f

F ), the trend for P f
F in proximity of

zero is suppressed by the normalization in Eq. (31). Secondly,
compared to one-bit quantization, the implementation of multi-
bit quantization can further improve detection performance.
Finally, we observe that a degraded channel reasonably affects
in a negative fashion because of the less informative bits
received from sensors.

C. TOS Detection vs. its FSS Counterpart

Finally, we evaluate the non-asymptotic behavior of the
system probabilities (P s

F and P s
D) and the expected detection

delay (T̄1) of the proposed multi-bit G-Rao statistic in its TOS
variant (cf. Sec. III-A).

The following simulations are set up to guarantee that the
performance of the TOS-based test rule is at least as good as
the benchmarked FSS test rule in terms of system probabilities,
thus assuring a relative fair comparison. Accordingly, for
a FSS test rule with given sample size Tf and false-alarm
probability P f

F , we first obtain the system detection probability
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Figure 3: P f
D vs. P f

F for GLRT and G-Rao with a batch size
Tf = 20; WSN with K = 9 sensors, wk ∼ N (0, 1), SNR =
0 dB , and (a): Pe = 0; (b): Pe = 0.1.

P f
D by MC simulation. Next, we perform a sequence of MC

simulations when the TOS test rule is employed, where we
initialize Ts = Tf and then we gradually increase Ts until
P s
D ≥ P f

D, with the threshold adjusted to guarantee the same
false-alarm probability as the FSS test rule (i.e P s

F = P f
F ).

Both FSS and TOS variants are compared in the cases of
q(k) = q ∈ {1, 2, 3} quantization bits, arising from quantizers
designed as proposed in Sec. IV. We remark that q = 1 leads
to one-bit G-Rao tests in [33] and [34], referring to FSS and
sequential setups, respectively. For brevity, in this analysis we
focus on the noise case wk ∼ N

(
0, σ2

w

)
. To ensure a practical

false-alarm rate, we let P f
F = 10−3.

First, in Fig. 8(a) we compare the sample size of the
FSS counterpart and the minimum deadline of TOS test rule
required to achieve the detection probabilities no worse than
the FSS test rule. We observe that the deadline of the TOS
test rule is slightly larger than the sample size of the FSS
test rule. This is because the TOS test rule requires a larger
threshold to achieve the same false-alarm probability as the
FSS test rule; thus, more samples are needed to attain the
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Figure 4: P f
D vs. P f

F for GLRT and G-Rao with a batch size
Tf = 20; WSN with K = 9 sensors, wk ∼ GN (0, α, 3),
SNR = −3 dB , and (a): Pe = 0; (b): Pe = 0.1.

equivalent detection probability. Conversely, Fig. 8(b) depicts
the relationship between the expected detection delay under
H1 when the TOS test rule is employed and the corresponding
sample size of the FSS test rule achieving the same detection
probability. It is found that the expected decision delay of
TOS grows slowly with Tf , significantly accelerating the
detection process when the target is present. Figs. 8(a)-(b)
also show a lower sample size is required by both test rules
with the increase of q, highlighting the advantage of multi-
bit quantization. Then, Fig. 8(c) compares the TOS test rule
based on the G-Rao statistic with that based on the GLR in
terms of the detection probability P s

D. The result illustrates the
detection performance of G-Rao-based TOS test rule is very
close to that of its GLR counterpart (also for different values
of q considered), verifying that the G-Rao test statistic is an
attractive alternative to the GLR because of less computational
complexity required by the former one.

Finally, while Fig. 8(a)-(c) is executed, we record the CPU
runtime spent for each test. Accordingly, Fig. 9 provides the
average CPU time of running the G-Rao and GLR tests,
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Figure 5: P f
D vs. P f

F for GLRT and G-Rao with a batch size
Tf = 20; WSN with K = 9 sensors, wk ∼ GN (0, α, 3),
SNR = 0 dB , and (a): Pe = 0; (b): Pe = 0.1.

respectively, under either FSS or TOS rules, with different
quantization bits. It can be seen that the results qualitatively
coincide with the computational complexity expressions re-
ported in Tab. I.

VII. CONCLUSIONS AND FURTHER DIRECTIONS

We devised a G-Rao test for multi-bit DD of a non-
cooperative moving target in WSNs. The considered model
encompasses unimodal zero-mean symmetric noise, and non-
identical BSCs. Our proposal constitutes a simpler alternative
to the GLRT, while providing the same performance gains
achieved via multi-bit quantization (over a one-bit counter-
part). WSN performance was further optimized via the design
of PSO-based quantizers, maximizing the asymptotic detection
rate of TC Rao statistic. We also compared the performance
of the TOS test rule with FSS setup. Numerical results
highlighted the multi-bit quantization design, and also showed
that the TOS test rule is able to achieve the same false-alarm
and miss-detection performance as its FSS counterpart with
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Figure 6: (a): ADG (viz. Gd vs. P f
F ) and (b): ANDG (viz. Ḡd

vs. P f
F ) for a WSN with wk ∼ N

(
0, σ2

w

)
, Pe ∈ {0, 0.1} and

different configurations (s, t).

much shorter time for declaring the presence of a target, at
the cost of a slightly longer time when declaring H0.

Future avenues of research include the (further) reduction
of the computational burden for G-Rao test, by means of more
efficient strategies for searching the optimal x0 and v. Also,
the design of G-Rao test for alternative, more general (viz.
realistic) measurement and channel models is of clear interest,
namely: (a) unknown random signal parameters [36], (b) vec-
tor measurement models [48], (c) incompletely specified noise
PDFs (e.g. unknown variance), (d) models enjoying sparsity
[24], [49], (e) energy-efficient censoring sensors [50] and (f )
time-correlated reporting channels [51]. Finally, generalizing
the present work to detecting (and tracking) a target with time-
varying velocity is also foreseen as an interesting future topic,
e.g. including the process noise in the trajectory evolution or
considering more complicated deterministic models (e.g. two-
leg trajectories).
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Figure 7: (a): ADG (viz. Gd vs. P f
F ) and (b): ANDG (viz. Ḡd

vs. P f
F ) for a WSN with wk ∼ GN (0, α, 3), Pe ∈ {0, 0.1}

and different configurations (s, t).

APPENDIX A
PROOF OF EQ. (19) (SCORE FUNCTION)

Based on the factorization form in (4), the log-likelihood
function p

(
Y1:t̄; θ,x0,v

)
is given by

ln[p
(
Y1:t̄; θ,x0,v

)
] =

t̄∑
t=1

K∑
k=1

lnP (ytk; θ,x0,v) (32)

Accordingly, the derivative with respect to θ can be written as

∂ ln
[
p
(
Y1:t̄; θ,x0,v

)]
∂θ

=

t̄∑
t=1

K∑
k=1

P ′
(
ytk; θ,x0,v

)
P (ytk; θ,x0,v)

=

t̄∑
t=1

K∑
k=1

g (xt, sk)
2q(k)∑
i=1

P (ytk|btk = c(i)) ρ(btk = c(i); θ,x0,v)

2q(k)∑
i=1

P (ytk|btk = c(i))P (btk = c(i); θ,x0,v)

,

(33)
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Figure 8: (a): The required deadline of TOS compared with
the sample size of FSS, when achieving similar detection
probabilities, (b): The expected decision delay under H1 in
TOS versus the sample size of FSS and (c): The detection
probability versus the deadline for TOS rules either based on
G-Rao or GLR test statistics.
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Figure 9: The comparison of (average) CPU runtime between
different test statistics.

where P ′ (ytk; ·) denotes the derivative of P (yk; ·) with re-
spect to θ and, also, we have exploited the definition:

ρ(btk = c(i); θ,x0,v) , pwk
(
τk(i− 1)− θg

(
xt, sk

))
− pwk

(
τk(i)− θg

(
xt, sk

)) (34)

As a consequence, based on Eq. (33), the desired result in (19)
is obtained by simple squaring operation. This ends the proof.
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