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Abstract
We estimate annual runoff by using a Bayesian geostatistical 
model for interpolation of hydrological data of different spa-
tial support: streamflow observations from catchments (areal 
data), and precipitation and evaporation data (point data). The 
model contains one climatic spatial effect that is common for 
all years under study, and 1 year specific spatial effect. Hence, 
the framework enables a quantification of the spatial variability 
caused by long-term weather patterns and processes. This can 
contribute to a better understanding of biases and uncertainties 
in environmental modelling. The suggested model is evalu-
ated by predicting annual runoff for catchments around Voss 
in Norway and through a simulation study. We find that on 
average we benefit from combining point and areal data com-
pared to using only one of the data types, and that the interac-
tion between nested areal data and point data gives a spatial 
model that takes us beyond smoothing. Another finding is that 
when climatic effects dominate over annual effects, systematic 
under- and overestimation of runoff can be expected over time. 
However, a dominating climatic spatial effect also implies that 
short records of runoff from an otherwise ungauged catchment 
can lead to large improvements in the predictive performance.
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1  |   INTRODUCTION

Data related to meteorology, geology and hydrology are often connected to geographical locations. 
The data are typically linked to point locations, but there can also be data that are observed over an 
areal unit, for example over a crop field, a forest, a grid from a satellite observation or an adminis-
trative unit like a country. While point referenced data give information about the process of interest 
at one specific location, the areal referenced data impose a constraint on the process and/or contain 
information about aggregated or mean values in a larger area.

For some processes, there exist point data and areal data that give information about the same 
underlying process, and studies show that both observation types should be taken into account when 
making statistical inference and predictions (Moraga et al., 2017; Wang et al., 2018). There are sev-
eral challenges connected to simultaneously use data of different spatial support. The data types must 
be connected to the process of interest in a meaningful way, and expert opinions about the involved 
measurement uncertainties should be taken into account. In addition, information about how the point 
and areal data are related to each other is important, such that the observation types can be combined 
in a mathematically consistent way that preserves basic physical laws (i.e. the conservation of mass 
and energy).

In this article, we estimate runoff, which is an example of a process that can be observed through 
point and areal data. Runoff is defined as the part of the precipitation that flows towards a river on 
the ground surface (surface runoff) or within the soil (subsurface runoff or interflow) (WMO, 1992). 
Every point in the landscape contributes to runoff generation, and on an annual scale runoff can be 
approximated by the estimated point precipitation minus the point evaporation at a location of inter-
est (Sauquet et al., 2000). With this interpretation, runoff is a continuous point referenced process. 
However, runoff accumulated over an area is typically observed by measuring the amount of water 
that flows through the outlet of a stream. The observed value does not primarily provide information 
about the runoff at the location of the stream outlet: it primarily provides information about the runoff 
generating process in the whole drainage area which is called a catchment. Such observations of run-
off are therefore areal referenced.

Since most catchments in the world are ungauged (i.e. without runoff observations), a common 
task for hydrologists is to predict runoff in these catchments. In this article, we consider predictions 
of annual runoff which is a key hydrological signature. The annual runoff gives information about 
the total amount of water available in an area of interest and is fundamental for water resources man-
agement, for example in the planning of domestic, agricultural and industrial water supply, and for 
allocation of water between stakeholders. Annual runoff is also commonly used as a key variable 
when predicting other runoff properties in ungauged catchments that is low flows and floods (Blöschl 
et al., 2013). Furthermore, the variability in annual runoff is interesting as it is a key quantity for un-
derstanding runoff's sensitivity to driving climatic factors in today's climate, and can be used to make 
inference about the runoff variability also for future climates.

There are several approaches to predict runoff in ungauged catchments. These can in general be 
categorized into two main approaches: process-based methods (Beldring et al., 2003; Widén-Nilsson 
et al., 2007) and statistical methods (Gottschalk, 1993; Sauquet et al., 2000; Skøien et al., 2006). In this 
article, we choose a geostatistical approach. Within the geostatistical framework, runoff predictions in 
ungauged catchments have typically been done by interpolation of areal referenced runoff data by using 
Kriging methods (see, e.g. Skøien et al. (2006) or Sauquet et al. (2000)). In these methods, precipitation 
data have often been avoided as an information source because these data are known to be uncertain 
and/or biased (see, e.g. Groisman & Legates, 1994; Neff, 1977, or Wolff et al., 2015). Evaporation data 
are even more uncertain. It is seldom observed directly, but derived from meteorological observations 
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936  |      ROKSVÅG et al.

and process-based models like in, for example Mu et al., 2007. or Zhang et al. (2009). In spite of the 
large uncertainties linked to precipitation and evaporation measurements, precipitation and evaporation 
are the main drivers behind runoff, and it is reasonable to believe that these data sources can contribute 
to an increased understanding of the runoff generating process if used cleverly. Particularly in areas 
with few streamflow observations, precipitation and evaporation data should be useful.

Motivated by this, we present a Bayesian geostatistical model for annual runoff where we in ad-
dition to runoff data, use precipitation and evaporation data for spatial interpolation. The suggested 
model is a Bayesian hierarchical model with an observation likelihood consisting of areal referenced 
runoff observations from catchments and/or point observations of runoff. The point observations 
are modelled as the observed annual evaporation subtracted from the observed annual precipitation. 
Informative priors based on expert knowledge are used on the measurement uncertainties to express 
our doubt on the precipitation and evaporation data, and to put more weight on the runoff observations 
that are considered more reliable.

The catchments we study in this article are located around Voss in western Norway. Voss is a moun-
tainous area, and the areas west for Voss are among the wettest in Europe with annual precipitation 
around 3 m/year. This makes Voss flood exposed, and accurate runoff models are of high importance. 
Voss is also a challenging area when it comes to runoff estimation due to large spatial variability 
and low stream gauge density. However, there are several precipitation gauges in the area that can be 
exploited to increase the hydrological understanding. This makes the Voss area a good candidate for 
performing spatial interpolation of runoff by also including precipitation and evaporation data.

The large annual precipitation in western Norway is mainly caused by the orographic enhance-
ment of frontal precipitation formed around extratropical cyclones. The orographic enhancement is 
explained by steep mountains that create a topographic barrier for the western wind belt, which trans-
ports moist air across the North Atlantic (Stohl et al., 2008). The topography and the elevation differ-
ences result in prominent patterns in precipitation and runoff.

Motivated by the strong orographic effect, we include a spatial component in the model that is 
constant over the years for which we have runoff observations. This models the spatial variability of 
runoff caused by climatic conditions in the study area. Furthermore, it is reasonable to assume that not 
all of the spatial variability can be explained by the climate, and we include an additional spatial effect 
to describe the spatial variability due to annual discrepancy from the climate.

The climatic part of the model is interesting because it let us quantify how much of the spatial 
variability that can be explained by long-term effects. Separating long-term spatial variability from 
year-dependent effects can lead to a better understanding of systematic biases and uncertainties that 
occur in the prediction of environmental variables due to weather patterns and processes that are more 
or less apparent each year. A consequence of including the climatic component is also that we obtain 
a model for which it is possible to exploit short records of data. The climatic component captures how 
short records of runoff vary relatively to longer data series from nearby catchments. This is a valuable 
property because sparse data sets are common in hydrology. There are several studies on how short 
records of runoff can be used to estimate different hydrological signatures (Fiering, 1963; Laaha & 
Blöschl, 2005), but our framework represents a new approach by incorporating the short records into 
a geostatistical framework where several years of runoff are modelled simultaneously through a cli-
matic spatial field.

Making inference and predictions with geostatistical models often lead to computational chal-
lenges due to matrix operations on (dense) covariance matrices, and in our suggested model we have 
not only one, but two spatial fields. Our solution to the computation challenges is to use the spde-
approach to spatial modelling from Rue et al. (2009). Rue et al. (2009) utilize that a Gaussian random 
field (grf) with a Matérn covariance function can be expressed as the solution of a stochastic partial 
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differential equation (spde). When solving the spde by using the finite element method (Brenner & 
Scott, 2008), the result is a Gaussian Markov random field (gmrf) that works as an approximation of 
the GRF solution. The gmrf approximation enable fast simulation and inference (Rue & Held, 2005), 
and integrated nested Laplace approximations (inla) can be applied (Rue et al., 2009).

In geostatistical methods used for runoff interpolation, it is common to link the involved catch-
ments to point locations in space, not to areas (see e.g. Merz & Blöschl, 2005 or Skøien et al., 2003). 
However, interpreting catchment runoff as point referenced can lead to a violation of basic conserva-
tion laws. A significant property of catchments is that they are organized into subcatchments, and for 
annual runoff, the water balance must be conserved for all subcatchments. That is, the total amount of 
annual runoff in a subcatchment cannot be larger than the total annual runoff in the main catchment. In 
the Top-kriging (TK) approach developed by Skøien et al. (2006), the nested structure of catchments 
is taken into account by computing the covariance between two catchments based on the pairwise 
distance between all the grid nodes in a discretization of the target catchments. This way, information 
from a subcatchment is weighted more than information from a nearby non-overlapping catchment. 
The TK approach is currently one of the leading interpolation methods for runoff and has outper-
formed other methods in predicting several hydrological signatures in Austria (Viglione et al., 2013).

Similarly as the TK method, our suggested model considers streamflow observations as areal refer-
enced and computes the covariance between two catchments accordingly. However, our methodology 
differs from TK and other hydrological interpolation methods by using precipitation (point) data in 
the interpolation framework in addition to nested streamflow (areal) data. As this is an important 
difference, one of the main objectives of this paper is to explore how the runoff predictions in Voss 
are influenced by the two different observation types (point and areal observations) and assess if the 
combination of point and areal data can contribute to an increased predictive performance.

Furthermore, the model we suggest ensures that the water balance is preserved for any point in 
the landscape by defining annual runoff in a catchment as the integral of the point runoff over the 
catchment's area. TK and other geostatistical models do not necessarily provide a full preservation of 
the water balance for the predicted runoff. A second objective is therefore to show by example how 
the interaction between point observations and nested areal observations can contribute to improved 
predictions of annual runoff because the water balance is taken into account.

A geostatistical model that combines point and areal data in the same way as we do already exists 
in the literature in Moraga et al. (2017). What is new in our model in terms of statistical modelling is 
the climatic spatial component. A final objective of the paper is thus to present a model for which the 
spatial variability due to long-term spatial patterns can be quantified, and show how this can be used 
as a tool for understanding the uncertainty and biases in the modelling of environmental variables, and 
for exploiting short records of data.

In the section that follows, we present the study area and the available data. Next, we introduce 
the theoretical background needed to develop the suggested runoff model that is presented in Section 
4. In Section 5, the suggested model is fitted to the Voss data. Based on some observation schemes 
described in Section 5.1, the predictability of annual runoff in Voss is evaluated and discussed. To 
further demonstrate the value of including a climatic spatial field in the model, a simulation study was 
conducted. This is presented in Section 6. Finally, our key findings are discussed in Section 7.

2  |   STUDY AREA AND DATA

When modelling hydrological processes on an annual scale, it is common to use the hydrologi-
cal definition of a year. The basic water balance equation is given as P = Q + E + S, where P is 
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938  |      ROKSVÅG et al.

precipitation, Q is runoff, E is evapotranspiration and S is the change in stored water (i.e. snow, or 
groundwater). A hydrological year is defined such that the storage component in the water balance 
equation can be neglected that is S is much smaller than P and Q. In Norway, a hydrological year 
starts September 1 and ends August 31, for example for the year 1988, the hydrological year begins 
1 September 1987 and ends 31 August 1988.

In this analysis, we have runoff data from the hydrological years 1988–2014. The data set was pro-
vided by the Norwegian Water Resources and Energy directorate (nve) and consists of annual runoff 
observations from five catchments where three of them are nested (see Figure 1). The unit of the data 
is m/year and gives the spatial average of the runoff within a catchment. The observations from 1988 
to 1997 are used to make statistical inference, while the observations from 1998 to 2014 are used as a 
test set for assessing the model's ability to predict runoff for future years.

The annual runoff data were created by aggregating daily streamflow measurements. The stream 
gauges that gather the daily observations, do not measure runoff directly, but the river's stage. Runoff 
observations are then obtained from a rating curve that gives the relationship between the stage of the 
water and the discharge (or runoff) at a specific point in the stream. The stage–discharge relationship 
is developed empirically by measuring the discharge across a cross-section of the specific river for a 
range of stream stages.

Errors in the observed runoff are composed of errors related to the river stage measurement process 
and errors in the rating curve model. However, on an annual time scale, the river stage measurement 
errors tend to average out, and the main contribution to errors comes from uncertainties in the rating 
curve. The data set provided by nve includes an estimate of the standard deviation of the observa-
tion uncertainty for each (annual) runoff observation, and the standard deviations are relatively small 
ranging from 0.65% to 3.2% of the corresponding observed value. This information is used to make 
informative priors for the measurement uncertainties in Section 4.3. We refer to Reitan and Petersen-
Øverleir (2009) for details on how the observation (rating curve model) uncertainty is obtained.

F I G U R E  1   Mean annual runoff from 5 catchments and mean annual precipitation minus evaporation (m/year) 
at 15 precipitation gauges for 1988–1997. Catchment 3 is a subcatchment of Catchment 4 and 5, and Catchment 4 is 
a subcatchment of Catchment 5. Catchment 1 and Catchment 2 do not overlap with any of the other catchments. The 
coordinate system in Figure 1b is utm33N [Colour figure can be viewed at wileyonlinelibrary.com]
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In addition to runoff data, we have precipitation data from 15 precipitation gauges. Daily pre-
cipitation data were downloaded from www.eKlima.no which is a web portal maintained by the 
Norwegian Meteorological Institute. The observations were aggregated to annual values for the hydro-
logical years 1988–1997. The observed precipitation ranges from 0.55 to 4.6 m/year.

The evaporation data used, come from the satellite remote sensing-based evapotranspiration 
algorithm presented in Zhang et  al. (2010). The data set consists of global monthly land surface 
evapotranspiration with spatial resolution of 1 degree (longitude, latitude). Evaporation data for the 
locations of the precipitation gauges around Voss were extracted, and monthly values were aggregated 
to hydrological years (1988–1997). As the spatial resolution of the gridded evaporation data set is 1 
degree and the study area is rather small, the observed annual evaporation within a specific year is the 
same for almost all of the precipitation gauges. The observed evaporation ranges from 0.23 to 0.32 m/
year with mean 0.25 m/year and standard deviation 0.02 m/year. This means that approximately 12% 
of the annual precipitation evaporates around Voss, which is a small amount in a global perspective. 
The observations of evaporation must be considered as approximative estimates of the actual evapo-
ration in the area of interest, with large uncertainties.

Figure 1 shows the five catchments where we have measurements of runoff and the locations of the 
15 precipitation gauges. Mean annual values for areal referenced runoff and point referenced runoff 
(precipitation-evaporation) for 1988–1997 are included. We see a spatial pattern with high values of 
annual runoff in the western part of the study area and low values in the eastern part. This pattern is 
prominent for all years for which we have data and indicates that climatic spatial effects dominate over 
annual spatial effects around Voss.

3  |   BACKGROUND

We propose a latent Gaussian model (lgm) for annual runoff that is computational feasible due to 
a stochastic partial differential equation (spde) approximation of Gaussian random fields (grfs). 
In this section, we give a brief introduction of these concepts and other relevant background 
theory and notation for developing and evaluating the model for annual runoff that is presented 
in Section 4.

3.1  |  Latent Gaussian models

In this article, we suggest a latent Gaussian model (lgm) for combining point and areal observa-
tions of annual runoff. An lgm can be represented in a hierarchical structure consisting of three 
levels (see, e.g. Gelman et al. 2004). The first level is the observation likelihood, in this case 
consisting of two data types (y1, …, yn) and (z1, …, zm). The data are observed with conditional 
independent likelihood Πn

i=1
�(yi |qi, �

y

1
)Πm
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3.2  |  Gaussian random fields

We use Gaussian random fields (grfs) to model the spatial variability of annual runoff. A continu-
ous field {x(u); u ∈} defined on a spatial domain  ∈2 is a grf if for any collection of locations 
u1, …, un ∈ the vector (x(u1), …, x(un)) follows a multivariate normal distribution (Cressie, 1993), 
that is (x(u1), …, x(un)) ∼ (�, �). The covariance matrix Σ models the dependency structure in the 
spatial domain and is often constructed from a covariance function C(ui, uj), where ui and uj are two 
target locations. Furthermore, many covariance functions C(ui), x(uj) are given as a function of a 
marginal variance parameter σ2 and a spatial range ρ. The marginal variance gives information about 
the spatial variability of the process of interest, while the range gives information about how the cor-
relation between two locations decays with distance. If the range and marginal variance are constant 
over the spatial domain, the grf is stationary.

One popular choice of covariance function is the stationary Matérn covariance function which is 
given by

where ‖uj − ui‖ is the Euclidean distance between two locations ui, uj ∈d, σ2 is the marginal variance 
and Kν is the modified Bessel function of the second kind and order ν > 0 (Guttorp & Gneiting, 2006). The 
parameter κ is a scale parameter which can be connected to the spatial range empirically by � =

√
8�∕�, 

where ρ is defined as the distance where the spatial correlation between two locations has dropped to 0.1 
(Lindgren et al., 2011). It is convenient to use a Matérn covariance function for the grf because it makes it 
possible to apply the spde approach to spatial modelling, which is briefly described in the next subsection.

3.3  |  The spde approach to spatial modelling

Making statistical inference and predictions on models including grfs involve matrix operations 
on the covariance matrix Σ. This can lead to computational challenges if the covariance matrix is 
dense. In this paper, we suggest a model for annual runoff that includes not only one, but two grfs. 
Consequently, some simplifications have to be done to make the model computationally feasible. To 
achieve this, we use that the exact solution of the spde

is a Gaussian random field with Matérn covariance function. Here, ( ⋅ ) is spatial Gaussian white noise, 
Δ is the Laplacian, α is a smoothness parameter, κ is the scale parameter in Equation (1), d is the dimen-
sion of the spatial domain and τ is a parameter controlling the variance. The parameters of the Matérn 
covariance function in Equation (1) is linked to the spde through

where we will use that d = 2 and set α = 2, such that ν is fixed to ν = 1. The parameter ν is fixed because 
it is difficult to identify from data, and α = 2, ν = 1 are commonly used values for these parameters 
(Blangiardo & Cameletti, 2015; Ingebrigtsen et al., 2014).

(1)C(x(ui), x(uj)) =
�2

2�−1Γ(�)
(� ‖uj − ui‖)�K�(� ‖uj − ui‖ ),

(2)(𝜅2 −Δ)
𝛼

2 𝜏x(u) =(u), u ∈d, 𝜅 > 0, 𝜈 > 0,

�2 =
Γ(�)

Γ(�)(4�)d∕2�2��2
; � = � − d∕2,
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The link between the above spde and the Matérn grf, that was developed by Whittle (1954, 1963), 
is used by Lindgren et al. (2011) to show that a grf can be approximated by a Gaussian Markov ran-
dom field (gmrf). This is done by solving the spde in Equation (2) by the finite element method (fem) 
(see, e.g. Brenner and Scott 2008). A gmrf is simply a multivariate Gaussian vector that is parameter-
ized by the precision matrix Q, which is the inverse �−1 of the covariance matrix. The term gmrf is 
mostly used for Gaussian processes with sparse precision matrices that contain many zero elements. 
The zero elements correspond to Markov properties, in this case conditional independence between 
locations in the spatial domain. It is convenient to work with gmrfs because there exist computation-
ally efficient algorithms for matrix operations on them (Rue & Held, 2005). Hence, through the spde 
approach from Lindgren et al. (2011) a grf with a dense precision matrix can be replaced by a gmrf 
with a sparser precision matrix, giving computational benefits.

3.4  |  pc priors

As we use a Bayesian approach, the hyperparameters θ from Section 3.1 must be given prior distribu-
tions. For the majority of the hyperparameters, we use penalized complexity (pc) priors. pc priors are 
proper prior distributions developed by Simpson et al. (2017). The main idea behind pc priors is to 
penalize the increased complexity induced by deviating from a simple base model. One of the goals 
is to avoid overfitting.

The pc prior for the precision τ of a Gaussian effect  (0, � −1) has density

where λ is a parameter that determines the penalty of deviating from the base model. The parameter λ can 
be specified through a quantile u and probability α by Prob(1∕

√
𝜏 > u) = 𝛼, where u > 0, 0 < α < 1 and 

λ = −ln(α)/u. Here, 1∕
√
� is the standard deviation of the Gaussian distribution.

As the range and the marginal variance are easier to interpret than the Matérn covariance function 
parameters κ and τ in Equation (1), we parameterize our model through ρ and σ. For ρ and σ, we use 
the prior suggested in Fuglstad et al. (2019). This is a joint prior for the spatial range ρ and the mar-
ginal variance σ constructed from pc priors. The joint prior can be specified through

where uρ, uσ, αρ and ασ are quantiles and probabilities that must be determined.

3.5  |  Evaluating the predictive performance

To evaluate the predictive performance of the suggested runoff model, we use two criteria. The first 
criterion is the root mean squared error (RMSE). The RMSE measures the difference between a point 
prediction ŷi and the observed value yi by

(3)𝜋(𝜏) =
𝜆

2
𝜏 −3∕2exp( − 𝜆𝜏 −1∕2), 𝜏 > 0, 𝜆 > 0,

Prob(𝜌 < u𝜌) = 𝛼𝜌; Prob(𝜎 > u𝜎) = 𝛼𝜎 ,

RMSE =

√√√√1

n

n∑

i= 1

(yi − ŷi)
2,
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942  |      ROKSVÅG et al.

where n is the total number of pairs of predictions and observations. We use the posterior mean as a point 
prediction when computing the RMSE. The second criterion is the continuous ranked probability score 
(CRPS). The CRPS is defined as

where F is the predictive cumulative distribution and y is the observed value (Gneiting & Raftery, 2007). 
The CRPS takes the whole posterior predictive distribution into account, not only the posterior mean or 
median, and is penalized if the observed value falls outside the posterior predictive distribution. Both the 
RMSE and the CRPS are negatively oriented, such that a smaller value indicates a better prediction.

3.6  |  Interpolation by using Top-Kriging

The focus of this article is mainly on highlighting properties of the suggested point and areal runoff 
model. However, we also compare some of our results to the predictive performance of TK. TK (Skøien 
et al., 2006) is one of the leading methods for runoff interpolation. It is a Kriging approach (Cressie, 
1993) where it is assumed that the variable of interest can be modelled as a random field. A prediction 
of the target variable at an unobserved location is given by a weighted sum of the available observations, 
and the interpolation weights are estimated by finding the so-called best linear unbiased estimator (blue).

In the computation of the interpolation weights, the TK approach calculates the covariance be-
tween two catchments based on the distance between all the grid nodes in a discretization of the 
involved catchments. As a consequence, a subcatchment gets a higher Kriging weight than a nearby, 
non-overlapping catchment. This is different from other Kriging approaches traditionally used in hy-
drology, for which streamflow observations have been treated as point referenced (see e.g. Adamowski 
& Bocci, 2001; Merz & Blöschl, 2005; Skøien et al., 2003).

While the suggested Bayesian approach for runoff interpolation supports both areal and point ob-
servations, TK only considers runoff (areal) data. Furthermore, TK estimates the covariance (or vario-
gram) empirically, while we take a fully Bayesian approach where the latent field and the parameters 
are estimated jointly. Another main difference is that TK treats each year of runoff data separately, 
while we can model several years of runoff simultaneously through our two field model.

4  |   STATISTICAL MODEL FOR ANNUAL RUNOFF

In this section, we present the proposed lgm for annual runoff which is suitable for combining obser-
vations of different spatial support and that has a climatic spatial field that let us quantify long-term 
spatial variability.

4.1  |  Spatial model for runoff

Let the spatial process {qj(u): u ∈} denote the runoff generating process at a point location u in the 
spatial domain  ∈2 in year j. The true runoff generation at point location u is modelled as

CRPS(F, y) = �
∞

−∞

(F(u) − 1{y ≤ u})2du,

(4)qj(u) = �c + c(u) + � j + xj(u), j = 1, …, r.
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      |  943ROKSVÅG et al.

Here, the parameter �c is an intercept common for all years j = 1, …, r, while c(u) is a spatial effect com-
mon for all years. These two model components represent the runoff generation caused by the climate 
in the study area. Mark that the term climate here covers all long-term effects: both long-term weather 
patterns and patterns that are repeated due to catchment characteristics. Furthermore, we include a year-
specific intercept � j and a year-specific spatial effect xj(u) for j = 1, .. r to model the runoff generation 
due to the annual discrepancy from the climate. Both spatial effects c(u) and xj(u) are modelled as grfs 
with zero mean and Matérn covariance functions given the model parameters: c(u) with range parameter 
ρc and marginal variance �2

c
, and xj(u) with range ρx and marginal variance �2

x
. The spatial fields, xj(s)

, j = 1, …, r, are assumed to be independent realizations, or replicates of the underlying grf. The same 
applies for the year specific intercepts � j which are assumed to be independent and identically distributed 
as  (0, � −1

�
) given the parameter ��, with �1, …, �r being independent realizations of this Gaussian 

distribution.
The true mean runoff generated inside a catchment  in year j can be expressed as

where | | is the area of catchment . By interpreting catchment runoff as an integral of point referenced 
runoff qj(u), we obtain a mathematically consistent model where the water balance is conserved for any 
point in the landscape for the posterior mean runoff.

4.2  |  Observation model

Annual precipitation and evaporation are observed at n locations ui ∈ for i = 1, .. n and for r years 
j = 1, .. r . The observed annual runoff generation at point location ui, year j, is modelled as the differ-
ence between the observed annual precipitation pij and annual evaporation eij,

where qj(ui) is the true annual point runoff from Equation (4). The error terms �y

ij
 are independent 

and identically distributed as  (0, s
y

ij
⋅ � −1

y
) and independent of the other model components. The 

measurement uncertainties for precipitation and evaporation are assumed to increase with the mag-
nitude of the observed value, and we want to include this assumption in the model. This is done by 
scaling the precision parameter of the error terms τy with a fixed factor sy

ij
, that is further described 

in Section 4.3.
Runoff at catchment level is observed through streamflow data from K catchments denoted 

1, …, K for r years denoted j = 1, .., r. We use the following model for the annual runoff observed 
in catchment k in year j

where Qj(k) is the true annual areal runoff from Equation (5). The measurement errors �z

kj
 are indepen-

dent and identically distributed as  (0, sz

kj
⋅ � −1

z
) and independent of the other model components. As 

for the point referenced observations, the precision parameter of the error terms τz is scaled with a fixed 
factor sz

kj
 that is further described in the next subsection. This way the uncertainty estimates that the data 

provider nve has for each annual observation can be included in the modelling.

(5)Qj() =
1

| | �u∈
qj(u)du, j = 1, …, r,

(6)yij = pij − eij = qj(ui) + �
y

ij
i = 1, …, n; j = 1, …, r,

(7)zkj = Qj(k) + �z

kj
k = 1, …, K; j = 1, …, r,
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944  |      ROKSVÅG et al.

So far we have defined the observation likelihoods for the point and areal observations separately. 
To construct a joint model for point and areal runoff, we multiply the likelihoods defined in Equations 
(6) and (7) together as described in Section 3.1. This is done for all n precipitation gauge locations 
i = 1, .. n, for all catchments k = 1, .. K and for all years j = 1, .. r such that we obtain a model that 
simultaneously models several years of runoff. Different years are linked together through the climatic 
part of the model c(u) + �c from Equation (4).

4.3  |  Prior distributions

In the suggested model for annual runoff, there are eight parameters (τy, τz, ρc, ρx, σc, σx, �c and ��) 
that must be given prior distributions. We start by formulating priors for the measurement errors for 
the point and areal observations.

The variance of the measurement error of the point referenced observations from precipitation 
gauge i, year j, is given by sy

ij
� −1

y
 where τy is a hyperparameter and sy

ij
 is a deterministic value that 

scales the variance based on expert opinions from nve about the measurement errors for precipitation 
and evaporation.

The precipitation observations are obtained by observing the amount of water or snow that falls 
into a bucket, but the buckets often fail to catch a large proportion of the actual precipitation, partic-
ularly for windy snow events (Groisman & Legates, 1994; Neff, 1977; Wolff et al., 2015). Based on 
this and recommendations from nve, the standard deviation of the observation uncertainty for precipi-
tation is assumed to be 10% of the observed value pij. The evaporation data are obtained from satellite 
observations and process models, and are more uncertain than the precipitation data. We assume that 
the standard deviation for evaporation is 20% of the observed value eij. The prior knowledge about the 
point data is used to specify the scale sy

ij
 for the point observation yij at location i and year j as follows

Here, the covariance between the observed precipitation and evaporation is estimated by

where Cor{·, ·} is the Pearson correlation between all available observations of precipitation and evapo-
ration at precipitation gauge i. Furthermore, we give the precision τy the pc prior from Equation (3) with 
α = 0.1 and u = 1.5. With this prior, a prior 95% credible interval for the standard deviation 

√
s

y

ij
� −1

y
 of the 

measurement error for point runoff becomes around (0.002–30)% of the corresponding observed value 
yij. This interval corresponds well to what nve knows about the measurement uncertainty of precipitation 
and evaporation.

The same approach is used to make a prior for the variance of the measurement error for the areal 
referenced observations zkj. The precision τz is given a pc prior with α = 0.1 and u = 1.5, while the 
scale sz

kj
 for catchment k, year j is given by

For the streamflow data, information about the variance of the observations is directly available through 
the data set provided by nve. These data are inserted into Equation (8). With the suggested prior, a prior 
95% credible interval for the standard deviation 

√
sz

kj
� −1

z
 of an areal observation, is approximately (0.002, 

s
y

ij
=Var(yij)=Var(pij−eij)=Var(pij)+ Var(eij)−2 ⋅Cov(pij, eij) = (0.1pij)

2+ (0.2eij)
2−2 ⋅Cov(pij, eij) .

Cov(pij, eij) =
√

Var(pij) ⋅
√

Var(eij) ⋅ Cor{(pi1, …, pir), (ei1,…, eir)},

(8)sz

kj
= Var(zkj).
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      |  945ROKSVÅG et al.

4.0)% of the corresponding observed value zkj. This is an informative prior that just covers the range of 
values suggested by nve. We have chosen a low prior standard deviation in order to try to put more weight 
on the runoff observations than to the point observations. There are only 5 areal observations available for 
each year in the data set, but 15 point observations, and the aim is to avoid that the more unreliable point 
data dominate over the areal data.

For the spatial ranges and the marginal variances of the spatial fields xj(u) and c(u), the joint pc 
prior from Fuglstad et al. (2019) is used. The pc priors for σx, ρx, σc and ρc are specified through the 
following probabilities and quantiles:

The percentages and quantiles are chosen based on expert knowledge about the spatial variability 
in the area. The study area is approximately 80 km × 80 km, and it is reasonable to assume that there 
is a correlation larger than 0.1 between two locations that are less than 10 km apart. Furthermore, the 
spatial variability in the study area is large, and we can observe runoff values from 0.8 to 3.2 m/year 
within the same year. However, it is reasonable to assume that the marginal standard deviation of the 
runoff generating process does not exceed 2 m/year. The parameters of the climatic grfc(u) and the 
annual grfxj(u) are given the same prior as it is difficult to identify if the spatial variability mainly 
comes from climatic processes or from annual variations. We also want the data to determine which 
of the two effects that dominates in the study area.

As described in Section 4.1, the year specific intercept � j has prior  (0, � −1
�

) for all years 
j  =  1, .. r. Its precision �� is given the pc prior from Equation (3) with u  =  10 and α  =  0.2. This is 
a weakly informative prior giving the prior 95% credible interval (0.002, 40.5) m/year for the standard 
deviation 

√
� −1
� . Finally, the climatic intercept �c is given a normal prior, �c ∼ (2, 0. 52). This gives 

a prior 95% credible interval of (1.0,3.0) m/year for �c, which covers all reasonable mean values of 
annual runoff around Voss.

4.4  |  Inference

In order to make the model computationally feasible, some simplifications of the suggested model are 
necessary. In Section 4.1, the annual runoff for a catchment k was modelled as the integral of point 
referenced runoff over the catchment area. In practice, the integral in Equation (5) is calculated by a 
finite sum over a discretization of the target catchment. More specifically, let k denote the discretiza-
tion of catchment k. The total annual runoff in catchment k in year j is approximated by

where Nk is the total number of grid nodes in k and qj(u) is the point runoff at grid node u ∈ k. It is 
important that a subcatchment shares grid nodes with the main catchment in order to preserve the water 
balance for the posterior mean runoff. The discretization used in this analysis has 1 km spacing and is 
shown in Figure 2a.

The model suggested for annual runoff, is a latent Gaussian model with the structure described 
in Section 3.1. Modelling annual runoff as a lgm is convenient because it allows us to use integrated 
nested Laplace approximations (inla) to make inference and predictions. inla can be used for making 

Prob(𝜌x < 10 km)=0.1, Prob(𝜎x > 2 m/year)=0.1,

Prob(𝜌c < 10 km)=0.1, Prob(𝜎c > 2 m/year)=0.1.

(9)Qj(k) =
1

Nk

∑

u∈k

qj(u),
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946  |      ROKSVÅG et al.

Bayesian inference on lgms and is a faster alternative to mcmc algorithms (Gamerman & Lopes, 
2006). The approach is based on approximating the marginal distributions by using Laplace or other 
analytic approximations, and on numerical integration schemes. The main computational tool is the 
sparse matrix calculations described in Rue and Held (2005), such that in order to work fast, the latent 
field of the lgm should be a gmrf with a sparse precision matrix. In our case, sparsity is obtained by 
using the spde approach from Section 3.3 to approximate the grfs xj(u) and c(u) by gmrfs. This is 
done through the finite element method (fem), and the triangulation used for fem is shown in Figure 
2b. In order to obtain accurate approximations of the underlying two grfs, the triangular mesh must 
be dense enough to capture the rapid spatial variability of annual runoff around Voss. If the mesh 
is too coarse, unrealistic results such as negative runoff can occur, or we can get into numerical 
problems.

The R-package r-inla was used to make inference and predictions for the suggested model. 
This package provides a user-friendly interface for applying inla and the spde approach to spatial 
modelling without requiring that the user has deep knowledge about spdes. See r-inla.org or 
Blangiardo and Cameletti (2015) and Krainski et al. (2018) for tutorials and examples. In particular, 
Moraga et al. (2017) is recommended for a description of how a model with point and areal data can 
be implemented in r-inla.

5  |   CASE STUDY OF ANNUAL RUNOFF IN VOSS

The model presented in Section 4 is used to explore the predictability of annual runoff in the 
Voss area. Recall that the main goals are to investigate how the predictions are affected by the 
two different observation types (point and areal data), to demonstrate how the water balance 
considerations can be beneficial, and to explore the properties of the climatic part of the model. 
To address this, we perform four tests that are inspired by common applications in hydrology. 
These are presented in the next subsection. In Section 5.2 the results from the tests are presented 
and discussed.

F I G U R E  2   Discretization and triangular mesh used to make the model computationally feasible [Colour figure 
can be viewed at wileyonlinelibrary.com]

(a) (b)
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5.1  |  Model evaluation

To explore how the two different observation types influence the predictions of annual runoff around 
Voss, we compare three observation designs: An observation design where only point referenced 
observations are included in the likelihood (P), an observation design where only areal referenced 
observations are included in the likelihood (A) and an observation design where all available observa-
tions are included in the likelihood (P + A). Recall that using only areal observations (A) corresponds 
to what typically has been done in hydrological applications, and we want to investigate if we can 
improve the predictability of runoff by also including point observations in the likelihood (P + A). 
Including P as an observation design gives information about what influence the point data have on 
the predictions. The three observation designs are evaluated according to four tests that are described 
as follows:

T1—Inference: The model from Section 4 is fitted to all available observations between 1988 
and 1997 from Figure 1. This is done for P, A and P + A, such that we get information about how the 
different observation types affect the posterior estimates of the parameters.

T2—Spatial predictions in ungauged catchments: In hydrological applications, the main inter-
est is on estimating runoff at catchment level. Motivated by this, we perform spatial predictions of 
annual runoff for each of the five catchments 1, …, 5 by leave-one-out-cross-validation for P, A 
and P + A. Hence, data from the target catchment are left out and the catchment of interest is treated 
as ungauged. Runoff predictions are done for the target catchment for 1988–1997 and are based on 
observations from the remaining 4 catchments and/or point data from 1988 to 1997. The predictive 
performance is assessed by computing the RMSE and CRPS for each catchment based on the 10 years 
of predictions.

In T2, we also compare our results to the TK approach described in Section 3.6. For TK, we fit 
the default covariance function (or variogram) from the R package rtop. This is a multiplication of a 
modified exponential and fractal variogram model (Skøien et al., 2006). Recall that TK only supports 
areal referenced (runoff) observations.

T3u—Future predictions in ungauged catchments: In T2, we estimate the runoff that was gen-
erated in ungauged catchments in the past. However, quantifying the annual runoff we can expect in 
the future is more interesting for most hydrological applications. In T3u, we therefore estimate annual 
runoff for a future year that is for a year for which there are no observations of runoff, precipitation 
or evaporation. For an unobserved year (j > 10), the posterior means of the year specific effects � j 
and xj(u) are zero. Thus, the posterior predicted future runoff is given by the posterior means of the 
climatic components �c and c(u). However, all four model components as well as the observation un-
certainty contribute to the predictive uncertainty.

In T3u, the catchment of interest is treated as ungauged and left out of the data set, and we use the 
remaining observations from 1988 to 1997 to predict annual runoff for 1998–2014. This is done for 
catchment 1,…,5 in turn. The predictive performance is evaluated by computing the RMSE and 
CRPS for predictions of runoff for each of the five catchments for 17 future years. The average RMSE 
and CRPS over the five catchments are used as summary scores. As the posterior mean for an unob-
served year is given by the posterior mean of the climatic effects �c and c(u), this test lets us quantify 
the climatology in the study area.

T3g—Future predictions in partially gauged catchments: We predict annual runoff in catch-
ment 1, …, 5 for a future year as in T3u. However, we allow the observation likelihood to contain 
1 to 10 annual runoff observations from the catchment in which we want to predict runoff. This way, 
we assess the model's ability to exploit short records of runoff, which is a property enabled by the cli-
matic component of the model. We denote this test T3g, for gauged, as opposed to T3u for ungauged.

 14679876, 2021, 4, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssc.12492 by N

T
N

U
 N

orw
egian U

niversity O
f Science &

 T
echnology/L

ibrary, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



948  |      ROKSVÅG et al.

The test is carried out by drawing i observations between 1988 and 1997 randomly from the target 
catchment. Next, these observations are used together with the other point and/or areal observations 
of P, A and P + A from 1988 to 1997 to predict the annual runoff in 1998–2014 for this particular 
catchment. As the experimental results might depend on which runoff observations we pick from the 
target catchment, the experiment is repeated 10 times such that different observations are included for 
each experiment.

The above procedure is carried out with an increasing number of years included in the short record, 
that is for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The predictive performance is then evaluated for each i by 
computing the RMSE and CRPS for each catchment 1, …, 5 based on 17 years of future predic-
tions. The average RMSE and CRPS over 5 catchments and 10 experiments are reported as summary 
scores.

For our experiments, we use the posterior mean as the predicted value when computing the RMSE. 
Furthermore, when evaluating the CRPS and when computing the coverage of the predictions, we 
assume that the posterior distributions are Gaussian with mean given by the posterior mean and stan-
dard deviation given by the posterior standard deviation. In the posterior standard deviation, we take 
the measurement uncertainty given by sz

kj
� −1

z
 into account, in addition to the uncertainty of the model 

components of the linear predictor in Equation (4). The Gaussian distribution should be a good ap-
proximation for the resulting posterior distributions as they typically are symmetric with neither par-
ticularly short nor long tails.

5.2  |  Results from the case study

We now present the results from the case study for our four tests T1, T2, T3u and T3g.
Table 1 shows the posterior medians and the 0.025 and 0.975 quantiles for the hyperparameters 

for P (point observations), A (areal observations) and P + A (point and areal observations) when all 
respective available observations from 1988 to 1997 are used to make inference (T1). In general, P 
gives lower runoff values with a posterior median of the climatic intercept �c equal to 1.87 m/year 
compared to A giving �c equal to 2.21 m/year. Furthermore, the posterior median of the marginal 

T A B L E  1   Posterior median (0.025 quantile, 0.975 quantile) when all available point (P), areal (A) and both point 
and areal (P+A) referenced observations from 1988–1997 are used for making inference (test T1). The precision 
parameters are transformed to standard deviations to make them more interpretable. Recall that the posterior estimates 
of the standard deviations 1∕√�

y
 and 1∕

√
�

z
 of the measurement uncertainties are multiplied with the root of the 

unitless scales from Section 4.3 in order to obtain the final posterior observation uncertainty with unit [m/year]

Parameter [unit] Posterior median (0.025 quantile, 0.975 quantile)

P A P+A

ρx [km] 236 (148, 379) 104 (32, 262) 102 (41, 249)

σx [m/year] 0.27 (0.20, 0.38) 0.34 (0.18, 0.56) 0.29 (0.19, 0.44)

ρc [km] 70 (30, 180) 25 (9, 74) 20 (9, 46)

σc [m/year] 0.97 (0.56, 1.79) 0.63 (0.34, 1.34) 0.76 (0.53, 1.1)

�
c
 [m/year] 1.87 (1.13, 2.68) 2.21 (1.57, 2.82) 1.96 (1.40, 2.50)

1∕
√
�

y
 [m/year] 0.48 (0.40, 0.57) × 0.37 (0.22, 0.54)

1∕
√
�

z
 [m/year] × 3.6 (2.3, 5.1) 5.3 (3.8,6.8)

1∕
√
��  [m/year] 0.26 (0.01, 0.78) 0.61 (0.31,1.0) 0.48 (0.24, 0.75)
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standard deviation of the climatic grfσc is considerably larger for P with σc = 0.97 m/year compared 
to A and P + A which give posterior medians 0.63 and 0.76 m/year, respectively. The posterior median 
of the range of the climatic grfρc is also larger for P with 70 km compared to values around 20 km 
for A and P + A.

The spatial runoff patterns corresponding to these parameter values are shown in Figure 3. These 
figures show the posterior mean and standard deviation for runoff for an unobserved, future year. We 
see that larger values for ρc and σc lead to a more prominent spatial pattern for P with large runoff val-
ues in the western part of the study area and lower values in the eastern part. A high climatic range ρc 
also leads to a reduction of the posterior predictive uncertainty in a larger part of the study area for P, 
as can be seen in Figure 3. The maps show that the choice of observation scheme (P, A or P + A) has 
a large impact on the resulting predictions of annual runoff in terms of posterior mean and posterior 
standard deviation.

In T2, we perform spatial predictions of annual runoff in 1988–1997 for a catchment that is left out 
of the data set. The predictive performance of the models are summarized in Figure 4. For four out of 
five catchments, P + A gives the lowest RMSE and CRPS, or a RMSE and CRPS that is approximately 
as for A, P or TK. We see that the TK approach performs similar to A, which is reasonable as TK only 
uses areal observations and has a similar interpretation of covariance as our suggested model.

In Figure 4, we particularly highlight Catchment 3 because it provides an example of how the 
water balance properties of the model can be beneficial. Figure 4 shows that for Catchment 3, P gives 
a RMSE around 0.9, while A gives a RMSE around 0.4. Considering the posterior prediction intervals 

F I G U R E  3   Posterior mean and standard deviation for annual runoff for a future unobserved year when all 
available observations of point observations (P, left), areal (A, middle) and both point and areal observations (P + A, 
right) from 1988–1997 are used, i.e. all catchments are treated as gauged for A and P + A, but ungauged for P (test 
T1) [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)
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950  |      ROKSVÅG et al.

for Catchment 3 in Figure 5, we see that P leads to an underestimation of the annual runoff. This can 
be explained by looking at the observations in Figure 1: The point observations close to Catchment 
3 all have mean values lower than the true mean annual runoff in this catchment. Next, considering 
the results for the areal observations (A), Figure 5 shows that also these lead to an underestimation 
of Catchment 3's runoff. Intuitively, we would thus expect that combining P and A would result in 
underestimation. Instead, we get a large improvement in the predictions in Figure 5 when P and A are 
combined, with a RMSE around 0.1 (Figure 4). The predictions for Catchment 3 also turn out to be 
larger than any of the nearby observed values.

The result can be understood by looking at the nested structure of the catchments in the data set. 
Catchments 4 and 5 cover Catchment 3, and through our model formulation the observations from 
Catchments 4 and 5 put constraints on the total runoff in this area. As shown in Figure 1, there are 
two precipitation gauges inside Catchment 5 for which the point runoff generated is lower than the 
mean annual runoff in the surrounding two catchments. To preserve the water balance, the predicted 

F I G U R E  4   Predictive performance for spatial predictions of runoff in 1988–1997 when the target catchment is 
treated as ungauged (test T2) for P, A and P + A. Here, we have also included results from the reference method Top-
kriging (TK) that only considers areal observations. Dashed lines mark the average performance over all catchments 
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  5   The posterior mean for spatial predictions in Catchment 3 (test T2) with corresponding 95% posterior 
prediction intervals for observation design P (left), A (middle) and P + A (right) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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annual runoff in the remaining parts of Catchments 4 and 5 has to be larger than any of the values that 
are observed in the surrounding area. This interaction between nested areal observations and point 
observations makes the model able to correctly identify Catchment 3 as a wetter catchment than any 
of the nearby catchments, and we have demonstrated that we have a geostatistical model that does 
more than smoothing.

This does not mean that the interaction between point and areal observations always lead to im-
proved predictions (see, e.g. Catchment 5 in Figure 4). However, overall the results in Figure 4 show 
that on average we benefit from including all available data (P + A) in the analysis when making 
spatial predictions, and that using only point observations gives poor predictions. P performs consid-
erably worse than A, P + A and TK for three of the catchments (Catchment 3, 4 and 5)

The scatterplots in Figure 6 compare the spatial predictions from 1988 to 1997 (T2) to the actual 
observations for each catchment for P, A and P + A. Overall, observation designs A and P + A provide 
predictions that are symmetric around the corresponding observed runoff. However, if we look more 
closely at the predictions for each catchment, we see that A and P + A tend to either overestimate or 
underestimate the annual runoff within a catchment. This is seen most clearly for Catchment 1 where 
the annual runoff is overestimated for A and P + A, and for Catchment 2 where the runoff is underesti-
mated for A. TK is not visualized here, but this reference approach gives similar results as observation 
scheme A.

The results in Figure 6 show that the same systematic prediction error typically is done each year 
for a specific catchment. The biases are however small enough that the actual observations are covered 
by the corresponding 95% posterior prediction intervals for A and P + A for most catchments. This 
can be seen in Table 2.

F I G U R E  6   The posterior mean for spatial predictions in ungauged catchments for P (left), A (middle) and P + A 
(right) compared to the corresponding observed value (T2) [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E  2   The proportion of the observations that falls into the corresponding 95% posterior prediction interval 
for spatial predictions of runoff (T2) in catchment 1, . . , 5 for 1988–1997 when the target catchment is treated as 
ungauged


1


2


3


4


5

All

P 1 0.5 0.5 0.1 0 0.42

A 1 0.7 1 0.9 1 0.92

P + A 1 1 1 1 0.60 0.92
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For P the situation is different. Figure 6 shows that the annual runoff is underestimated for 
all catchments. In addition, the posterior standard deviation for runoff is typically unrealistically 
small for P contributing to narrow posterior prediction intervals. Large biases combined with 
small posterior standard deviations lead to a low empirical coverage for the spatial predictions 
for P, and on average the coverage of a 95% posterior prediction interval is as low as 42%. For 
P, neither the posterior mean nor the posterior variance reflects the properties of the underlying 
process.

In tests T3g and T3u, annual runoff was predicted for unobserved future years (1998-2014) when 
0–10 observations from the target catchment between 1988 and 1997 were included in the likelihood, 
together with observations of P and/or A from other locations and catchments. The resulting predictive 
performance is visualized in Figure 7. As for the spatial predictions, P + A gives the lowest RMSE and 
CRPS on average. For ungauged catchments (when 0 years of observations from the target catchment 
are included), P and A perform considerably worse than P + A. However, when we include some years 
of observations from the target catchment, we see a large drop in the RMSE and CRPS for P and A. 
The posterior mean for a future year is given by the posterior mean of �

u∈(�c + c(u))du, that is, the 
plots show that we get a large change in the climatic part of the model when we include information 
from a new location or catchment.

This result can be understood from the results from the parameter estimation in T1. The posterior 
median of the standard deviation of the climatic grfσc is approximately twice as large as the median 
of the marginal standard deviation for the annual grfσx for all observation designs (Table 1). Hence, 
the potential value of new data from an unobserved location is large, as the new observation affects 
the climatic part of the model that has a substantial impact on the predictions for all years under study. 
Furthermore, the large spatial climatic effect can also be a possible explanation for the systematic 
errors we saw for the spatial predictions in Figures 5 and 6 (T2). A strong climatic field c(u) indicates 
that the same spatial runoff pattern is repeated each year, and if we fail to characterize it, systematic 
errors are a reasonable consequence.

F I G U R E  7   Predictive performance for future runoff (1998–2014) in catchment 1, …, 5 when 0–10 years of 
observations from the target catchment between 1988 and 1997 are included in the observation likelihood together 
with other observations of P and/or A (tests T3u and T3g) [Colour figure can be viewed at wileyonlinelibrary.com]
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6  |   SIMULATION STUDY

One of the objectives of this paper was to show how quantifying long-term spatial variability can be 
used as a tool for understanding the uncertainty and biases in the modelling of environmental vari-
ables. In the case study, we suggested that a strong climatic field c(u) can be an explanation for the 
systematic over- and underestimation we saw for some of the catchments. In the simulation study we 
present here, we aim to investigate this further. We explore if the over- and underestimation actually 
is a model property, and that it is not only caused by, for example mismatch between the model and 
the runoff data around Voss. More specifically, if the true underlying process is driven by two differ-
ent spatial processes, one climatic (common for all years) and one annual (different each year), can 
these systematic predictive biases be expected for a given catchment and set of observation locations?

In the simulation study, we explore the model properties for different values of the spatial param-
eters ρc, ρx, σc and σx. The parameters could represent different environmental variables or different 
study areas. By this, we aim to show what insight one can obtain about a spatiotemporal environmen-
tal variable of interest and the corresponding study area by separating climatic spatial variability from 
year dependent effects.

6.1  |  Experimental set-up

In the simulation study, we simulate from the model described in Section 4 for nine different configu-
rations of the range parameters ρc, ρx and the marginal standard deviations σc and σx. These are shown 
in Table 3. We here refer to the proportion �2

c
∕(�2

c
+ �2

x
) as the climatic spatial dominance as it repre-

sents a quantification of how large the climatic spatial effect c(u) is relative to the year specific spatial 
effects xj(u). Note that Parameter set 1 with σc = 0.8, σx = 0.3, ρc = 20 and ρx = 100 corresponds to the 
posterior medians obtained for the real case study for P + A (Table 1). The other parameter sets could 
represent the dependency structure of another climatic variable, e.g. temperature or monthly runoff, or 
the annual runoff in another part of the world.

The remaining two parameters are set to �c = 2 and �� = 5 for all experiments, that is similar to the 
posterior medians for P + A in Table 1. Furthermore, we assume that the measurement errors of the 
point observations are normally distributed with standard deviation set to 15% of the corresponding 
simulated value, while the measurement errors of the areal observations are normally distributed with 

T A B L E  3   Parameters used for the simulation study. Parameter set 1 corresponds to the parameters obtained for 
the case study for P + A in Table 1. We refer to the proportion �2

c
∕(�2

c
+ �2

x
) as the climatic spatial dominance

Parameter set σc [m/year] σx [m/year] ρc [km] ρx [km] �2

c
∕(�2

c
+ �2

x
)

1 0.8 0.3 20 100 0.88

2 0.5 0.5 20 100 0.50

3 0.3 0.8 20 100 0.12

4 0.8 0.3 50 100 0.88

5 0.5 0.5 50 100 0.50

6 0.3 0.8 50 100 0.12

7 0.8 0.3 100 100 0.88

8 0.3 0.5 100 100 0.50

9 0.5 0.8 100 100 0.12
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954  |      ROKSVÅG et al.

standard deviation set to 3% of the corresponding simulated value. These estimates are set based on 
recommendations from the data provider nve regarding the measurement errors we typically see for 
precipitation and runoff.

For all nine parameter configurations, annual runoff is simulated for the point and areas in Figure 
1. This way we obtain a realistic distribution of observations. In total, 50 data sets were generated for 
each parameter set. Hence, there are 50 simulated climates c(u) + �c, and for each climate there are 10 
replicates of the year specific component xj(u) + � j.

In our experiments, we predict runoff for two of the catchments in Figure 1: Catchment 1 that is 
not nested and located relatively far from most point observations, and Catchment 4 that is nested and 
located in the middle of the study area with many surrounding observations. In turn, Catchment 1 or 
Catchment 4 is left out of the data set, and 10 years of annual runoff (1988–1997) are predicted for 
the target catchment based on all point observations and the remaining areal observations from the 
same time period (1988–1997). We use the setting P + A for all simulated experiments. Furthermore, 
the predictions are done both when the target catchment is treated as ungauged with 0 annual runoff 
observation included in the likelihood, and when the target catchment is treated as partially gauged 
with 1 randomly drawn annual runoff observation (out of 10 years) included in the likelihood.

In order to investigate the relationship between the model parameters and prediction bias over 
time, we quantify bias as follows: For each of the 50 climates, we predict runoff for Catchment 1 and 
Catchment 4 for 10 years. Then, we compute the empirical probability that all of the 10 true (simu-
lated) values of annual runoff are either below or above the 10 corresponding posterior medians for a 
specific catchment. We refer to this as the probability of systematic bias, which is given by:

Systematic biases were common in the case study, and can be seen for example for Catchment 5 in Figure 
6 for P + A. We report the probability of systematic bias as one value per parameter set, estimated based 
on 100 events (50 climates and 2 target catchments).

6.2  |  Results from the simulation study

We first present the overall 95% coverage for the simulation study, based on predictions of 10 years 
of runoff for 2 catchments and 50 climates. These are shown in Table 4, and we find that the empirical 
coverages are close to 95% for all the parameter sets in Table 3. If we next consider a scatter plot of 
the 1000 true and predicted values (not included here), the predictions are also unbiased with respect 
to the true runoff values. The 95% coverages and the scatter plots confirm that the model behaves as 
expected asymptotically for all parameter sets.

Next, Figure 8 shows a visualization of the systematic bias obtained for the simulation study when 
the target catchments (Catchment 1 and Catchment 4) are treated as ungauged. Recall that systematic 

Prob(Systematic bias) = Prob(All 10 simulated values are either below or above the 10 posterior medians).

T A B L E  4   Overall 95 % coverage for the simulation study over 50 climates, 2 catchments and 10 years of 
predictions for P + A. For ungauged catchments, there are 0 observations from the target catchment in the likelihood 
while for partially gauged catchments there is 1 annual observation available from the target catchment

Parameter set. 1 2 3 4 5 6 7 8 9

Ungauged catchments 0.96 0.96 0.94 0.94 0.98 0.96 0.96 0.96 0.96

Partially gauged catchments 0.93 0.93 0.94 0.95 0.95 0.96 0.96 0.96 0.95
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bias here is measured as the probability that all 10 true annual runoff values are either below or above 
the corresponding predicted value for a specific climate and catchment. We see a clear relationship 
between this bias and the climatic spatial dominance given by the proportion �2

c
∕(�2

c
+ �2

x
). When 

annual spatial effects dominate over climatic spatial effects and σc ≪ σx, the probability of systematic 
bias is close to zero (around 0.2 %). However, when most of the spatial variability is due to the climate 
(σc ≫ σx), this probability increases to 30–65% depending on the values of the range parameters ρc 
and ρx. For the parameters corresponding to the Norwegian case study, the probability of systematic 
bias was 65%. Hence, systematic errors like we saw for e.g. Catchment 5 (P + A) in Figure 6, can be 
expected quite often for these parameter values. Figure 8 also shows that the probability of systematic 
bias is largest when the climatic range ρc is low, that is when the information gain from the neighbour-
ing catchments is low.

From a statistical point of view, the above results are intuitive. If most of the spatial variability 
can be explained by climatic conditions, there are large dependencies between years. Either we typ-
ically perform accurate predictions all years, or poor predictions all years. Considering all ungauged 
catchments in Norway, we can expect that 95% of the true runoff values are inside the corresponding 
95% posterior prediction intervals on average (Table 4), but if we consider predictions for individual 
catchments over time, a large proportion of the predictions will be biased in one direction or the other 
(Figure 8). The simulation study shows that the systematic bias we obtained for the case study are not 
necessarily a result of mismatch between the data and the fitted model, but can indeed be a result of 
the strong climate around Voss (σc ≫ σx).

So far we have considered the probability of systematic bias when there are no data from the target 
catchments available. Next, in Figure 8, we present the probability of systematic bias when there is one 
annual observation included in the likelihood. For σc ≪ σx, when �2

c
∕(�2

c
+ �2

x
) is close to zero, we see 

that the probability of systematic bias in general is low for both ungauged catchments (Figure 8) and 
partially gauged catchments (Figure 8). For this scenario, a new data point from the target catchment 
does not have a considerable impact on the probability of systematic bias. However, if σc ≫ σx as in 

F I G U R E  8   The empirical probability that all of the 10 true annual values are either above or below the posterior 
median value for Catchment 1 and Catchment 4 over 50 climates for ungauged catchments (Figure 8) and partially 
gauged catchments (Figure 8). The black circle corresponds to the parameter values we have for the case study from 
Voss. The black dashed line is the theoretical probability that all the observed values are above or below the posterior 
median when studying a process that actually is independent over years (2·0.510 = 0.2% ). This is included as a 
reference [Colour figure can be viewed at wileyonlinelibrary.com]
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Voss, we find that the extra data point on average leads to a large reduction in the systematic bias 
probability compared to the systematic bias probability we saw for the ungauged catchments in Figure 
8. This is found for all combinations of ρc and ρx, but the tendency is strongest if ρc ≪ ρx as in Voss. 
The results in Figure 8 are thus comparable to the results in Figure 7 for the case study, and illustrate 
the potential value of data from a new location for different parameter values.

7  |   DISCUSSION AND CONCLUSIONS

In this paper, we have presented a model for annual runoff that consistently combines data of differ-
ent spatial support. The suggested model is a geostatistical model with two spatial effects: A climatic 
long-term effect and a year dependent effect that describes the annual discrepancy from the climate. 
The model was used to estimate mean annual runoff in the Voss area in Norway.

The main focus of the study was on exploring how the combination of point and nested areal obser-
vation affects runoff predictions, to demonstrate that our model has mass-conserving properties and 
to show how quantifying long-term spatial variability can be used as a tool for understanding biases 
in environmental modelling and for exploiting short records of data. There are three key findings: 
(1) On average, we benefit from including all available observations in the likelihood, both point and 
areal data. P + A performed better than P and A in terms of RMSE, CRPS and the coverage of the 
95 % posterior prediction intervals in our case study. P + A also performed better than the reference 
method TK that only supports areal observations. (2) The suggested model that combines point and 
areal observations is particularly suitable for modelling the nested structure of catchments. The case 
study showed that the model was able to identify Catchment 3 as a wetter catchment than any of the 
surrounding catchments and precipitation stations. This was a consequence of using information from 
two overlapping catchments to constrain and distribute the annual runoff correctly over the study area. 
The interaction between the point and nested areal observations gives a geostatistical model that does 
more than smoothing. The linear constraints also represent a main difference to TK that does not en-
sure mass preserved predictions. (3) How dominating climatic spatial effects are compared to annual 
spatial effects has a large influence on the predictability of runoff. If most of the spatial variability can 
be explained by long-term (climatic) weather patterns and processes, systematic biases for a location 
over time can be expected as long as the same observation design is used.

The fact that P + A performed better than A for most catchments around Voss, indicates that the 
point and areal observations of runoff were sufficiently compatible for most catchments, i.e. that evap-
oration subtracted from precipitation was a valid approximation of point runoff. This interpretation 
of point runoff is reasonable in areas like Voss where the annual precipitation is considerably larger 
than the annual evaporation. The evaporation data are uncertain and should not make a large impact 
on the resulting predictions. In many areas of the world, the observed annual evaporation is more than 
50% of the annual observed precipitation. In such areas, our framework could provide negative point 
observations and results that are hard to interpret. Negative runoff can in general be a problem in our 
Gaussian model. Log transforming the data is a solution if considering only point data (P), but is not 
an option when modelling areal data (A and P + A) because the log transformation does not work well 
with the linear aggregation in Equation (9). For areas with observed values close to zero, extra caution 
should therefore be taken regarding negative, non-physical results. To avoid negative predictions it 
is also important to make sure that the mesh used in the spde approach (Figure 2b) is fine enough to 
capture the rapid spatial variability in the study area.

Precipitation observations are often avoided as an information source when performing inter-
polation of runoff in hydrological applications, but the results presented here show that the point 
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observations can contain valuable information when used together with areal observations, at least in 
data sparse areas with few streamflow observations. However, there is still room for improvement in 
the compatibility between the two observation types. The observation designs including only point ob-
servations P provided a clear underestimation of annual runoff for most catchments in the case study. 
It was also seen that the spatial field provided by the precipitation observations (P) was smoother than 
the spatial field provided by the runoff observations (A) in Figure 3a, which is a typical result. The in-
crease in spatial variability from precipitation to runoff is mainly explained by small scale variability 
introduced by soil and vegetation (Skøien et al., 2003). Consequently, if the point data are allowed to 
dominate over the areal data, the point data can cause a runoff field that is too smooth, which affects 
both the posterior mean and the posterior standard deviation disadvantageously.

Furthermore, it is worth mentioning that all of the available precipitation gauges are located at a 
lower elevation than the mean elevation of the five catchments in the data set. This is a common prob-
lem. Precipitation gauges are often located at low elevations, close to settlements where the gauges are 
easy to maintain. It is known that the amount of precipitation typically increases with elevation. There 
is therefore a lack of information about precipitation at high elevations in the data. Adding the fact that 
the precipitation gauges often fail to catch a large proportion of the precipitation, in particular when 
it comes as snow and it is windy (Kochendorfer et al., 2017), essential information about the precipi-
tation and runoff field could be lost. To solve the compatibility issues, elevation was considered as a 
covariate in a preliminary study (Ødegård, 2017), but this did not lead to significant improvements, 
and the results are not included here.

Elevation is also known to be a factor that affects the spatial dependency structure of precipitation, 
and Voss is a mountainous area. The spatial range is typically larger in lowlands and decreases with 
elevation. A non-stationary model similar to the one presented in Ingebrigtsen et al. (2014) with a 
range and a marginal variance that changes with elevation could be considered. This can easily be 
implemented within the inla-spde framework. However, in this case, the data set is small and the com-
plexity of the spatial variability large. We also have a model with only one replication of the climatic 
spatial effect which was the dominating spatial component. A non-stationary model would probably 
be too complicated and lead to identifiability issues (Ingebrigtsen et al., 2015).

Regardless of the increased complexity in an extended model, it is reasonable to believe that an 
accurate representation of the climatic conditions at a target location is crucial when predicting annual 
runoff and other climate related variables. In the simulation study, we demonstrated how systematic 
under- and overestimation of a target variable can be expected over time when we fail to characterize 
the underlying climate in areas where the climatic spatial field's marginal standard deviation σc is 
large relatively to the other model standard deviations. We also found a clear relationship between the 
model parameters of the suggested model and systematic prediction bias over time. This shows that 
the two field model (and its parameters) can contribute with useful insight about the properties of a 
study area and/or an environmental variable of interest.

In spite of the large biases documented for annual runoff predictions in this article, a dominating 
climate also gives opportunities. In this article, a model with a climatic spatial effect common for all 
years of observations was suggested. The climatic component made it relatively simple to exploit short 
records of data, and the runoff predictions could easily be improved by including a few observations 
from the target catchments. Time series from several years are not needed because one or two observa-
tions from a new catchment updates the climatic component that has a large impact to the final model 
if σc dominates over the other model variances. Here, we again note how the model parameters can 
contribute with useful information about the study area and/or the environmental variable of interest. 
The potential gain of collecting a new data point from a new location, i.e. a short record, can be indi-
cated from the spatial parameters, in particular from the proportion �2

c
∕(�2

c
+ �2

x
).
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The ability to exploit short records is another main benefit of the suggested model over existing 
spatial models used for runoff interpolation, like TK. For practitioners, a model with the described 
properties can be useful in situations where there exist one or few observations from a catchment of 
interest. Short-duration runoff observations are quite common in hydrological data sets, for example 
from planned short duration missions for water resources assessments, or from gauging stations that are 
closed after a revision of the gauging network. Large infrastructure projects measuring a few years of 
annual runoff for a relevant catchment before starting the construction work could also b​e a possibility.
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