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Abstract. We prove Burns-Krantz type boundary rigidity theorems for holo-

morphic self-maps of some fibered domains, including polydisks and eggs.

1. Introduction

The classical Schwarz lemma states that if a holomorphic self-map f of the unit
disk ∆ fixes the origin, then |f ′(0)| ≤ 1 and the equality holds if and only if f is a
rotation. In particular, if f ′(0) = 1 then f(z) ≡ z, which is often referred to as the
“rigidity” part of the Schwarz lemma.

The rigidity part of the Schwarz lemma was extended to a boundary fixed point
by Burns and Krantz [1] as follows:

Theorem 1. [1, Theorem 4.5] Let Ω be a bounded strongly pseudoconvex domain
with C∞-smooth boundary and F a holomorphic self-map of Ω. Suppose that

F (z) = z +O(‖z − p‖4), z → p ∈ ∂Ω.

Then F (z) ≡ z.

In [1, p. 663], Burns and Krantz remarked that O(‖z−p‖4) in the above theorem
can be replaced by o(‖z − p‖3). Later in [6], Huang gave a “localized” version of
the boundary rigidity as follows:

Theorem 2. [6, Theorem 2.5] Let Ω be a bounded domain with a C∞-smooth
strongly pseudoconvex boundary point p and F a holomorphic self-map of Ω. Sup-
pose that

F (z) = z + o(‖z − p‖3), z → p ∈ ∂Ω.

Then F (z) ≡ z.

In this paper, we prove Burns-Krantz type boundary rigidity theorems for holo-
morphic self-maps of some fibered domains, without assuming pseudoconvexity or
boundary smoothness.

Consider bounded domains in Cn+1 of the form

(1) Ω =
⋃
z∈∆

Ωz,

where Ωz’s are bounded complete Reinhardt domains in Cn.
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Denote by ∆r the disk of radius r in C. Let δ : ∆→ R+ be a function such that
∆n
δ(z) ⊂ Ωz for any z ∈ ∆. For any (z, w) ∈ Ω, denote by Dz,w the image of the

linear mapping:

Lz,w : ∆→ Cn+1; τ 7→
(
τ,

w

z − 1
(τ − 1)

)
,

which is a graph of ∆ through (z, w) and (1, 0). We define a cone with end (1, 0)
(of size δ) as

(2) Cδ :=
⋃
{Dz,w; z ∈ ∆, w ∈ ∆n

δ(z)}.

We say that Ω is a fibered domain satisfying the cone condition if it is of the
form (1) and contains a cone with end (1, 0). Note that polydisks are such special
domains.

Theorem 3. Let Ω be a fibered domain satisfying the cone condition and F a
holomorphic self-map of Ω. For (z, w) ∈ Ω, suppose that

F (z, w) = (z, w) + o(‖(1− z, w)‖3), (z, w)→ (1, 0).

Then F (z, w) ≡ (z, w).

Next, consider Ω of the form (1), but with Ωz’s being just bounded and contain-
ing the origin. Let ρ : ∆ → R+ be a function such that Ωz ⊂ ∆n

ρ(z) for any z ∈ ∆

and ρ ∈ C0(∆̄). We say that Ω is a fibered domain with boundary size zero if there
exists a ρ(z) with

(3)

∫ π

−π
log ρ(eiθ)dθ = −∞.

Note that balls and eggs are such special domains (with ρ(eiθ) ≡ 0). More interest-
ingly, polydisks with the “diagonal” disk as its base are also such special domains.

Theorem 4. Let Ω be a fibered domain with boundary size zero and F a holomor-
phic self-map of Ω. Suppose that

F (z, w) = (z, w) + o(‖(1− z, w)‖3), (z, w)→ (1, 0).

Then F (z, w) ≡ (z, w).

In section 2, we prove Theorem 3 for the bidisk. In section 3, we prove Theorem
3 for general Ω. The proof of Theorem 4 is given in section 4. More general versions
of Theorem 3 are given in section 5.

2. Proof of Theorem 3 for the bidisk

To illustrate the key ideas, we first prove Theorem 3 for the bidisk.
For any z ∈ ∆ and small ε > 0, set

∆z,ε = {(z, w) ∈ ∆2 : |w| < ε(1− |z|)}.
For any (z, w) ∈ ∆z,ε, denote by Dz,w the intersection of ∆2 with the complex line
through (z, w) and (1, 0). Denote by π the vertical projection from ∆2 to Dz,w.
Write F (z, w) = (F0(z, w), F1(z, w)).

Parametrize Dz,w as

Dz,w =

{
τ ∈ ∆ :

(
τ,

w

z − 1
(τ − 1)

)}
.
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Consider the map f(τ) = π ◦ F |Dz,w .
Then, one readily checks using the assumptions that f is a holomorphic self-map

of Dz,w with

(4) f(τ) = τ + o(|1− τ |3), τ → 1.

Thus, by Burns-Krantz rigidity, we have f(τ) ≡ τ . In particular, for τ = z, we
have

F0(z, w) = z.

Since this holds for every (z, w) ∈ ∆z,ε, it follows from the identity theorem that
F0(z, w) ≡ z.

Now, write F1(z, w) as

F1(z, w) = a0(z) + a1(z)w + a2(z)w2 + a3(z)w3 + · · · .

Denote gz(w) = F1(z, w). Then gz is a holomorphic self-map of ∆ and g′z(0) =
a1(z). By Schwarz-Pick lemma, it follows that

|a1(z)| ≤ 1− |a0(z)|2 ≤ 1.

Thus a1 is a holomorphic self-map of ∆.
At the point (z, w) = (z, 1− z), we have

F (z, w)− (z, w)

=(0, a0(z) + (1− z)(a1(z)− 1) + (1− z)2a2(z) + (1− z)3a3(z) + o(|1− z|3)).

At the point (z, w) = (z, z − 1), we have

F (z, w)− (z, w)

=(0, a0(z)− (1− z)(a1(z)− 1) + (1− z)2a2(z)− (1− z)3a3(z) + o(|1− z|3)).

At the point (z, w) = (z, 1
2 (1− z)), we have

F (z, w)− (z, w)

=(0, a0(z) +
1

2
(1− z)(a1(z)− 1) +

1

4
(1− z)2a2(z) +

1

8
(1− z)3a3(z) + o(|1− z|3)).

At the point (z, w) = (z, 1
2 (z − 1)), we have

F (z, w)− (z, w)

=(0, a0(z)− 1

2
(1− z)(a1(z)− 1) +

1

4
(1− z)2a2(z)− 1

8
(1− z)3a3(z) + o(|1− z|3)).

From the above four expressions and the assumption of Theorem 3, we get

|a1(z)− 1| = o(|1− z|2), z → 1.

Consider h(z) = za1(z) as a holomorphic self-map of ∆ with h(0) = 0 and

(5) |h(z)− z| = o(|1− z|2), z → 1.

Then, it follows from [6, Corollary 1.5] that h(z) ≡ z, i.e. a1(z) ≡ 1. Again, using
Schwarz-Pick lemma, we get F1(z, w) ≡ w.
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3. Proof of Theorem 3

For any z ∈ ∆ and 0 < ε < δ(z), set

∆n
z,ε = {(z, w) ∈ Ω : w ∈ ∆n

ε }.

For any (z, w) ∈ ∆n
z,ε, denote by Dz,w the intersection of Ω with the complex line

through (z, w) and (1, 0). Denote by π the vertical projection from Ω to Dz,w.
Write F (z, w) = (F0(z, w), F1(z, w), · · · , Fn(z, w)).

A similar argument as in the previous section shows that F0(z, w) ≡ z.
Now, for 1 ≤ j ≤ n, write Fj(z, w) as

Fj(z, w) =
∑
α

aj,α(z)wα,

where α = (α1, · · · , αn) ∈ Nn and wα = wα1
1 · · ·wαn

n .
For each 1 ≤ j ≤ n, consider gj,z(wj) = Fj(z, 0, · · · , 0, wj , 0, · · · , 0). Then a

similar argument as in the previous section shows that

aj,ej (z) ≡ 1, aj,lej (z) ≡ 0, l 6= 1,

where ej denotes the j-th unit vector.
Therefore, we can write Fj(z, w) as

Fj(z, w) = wj +
∑

1≤k 6=j≤n

aj,ek(z)wk +
∑
|α|≥2

aj,α(z)wα,

where |α| = α1 + · · ·+ αn.
For any fixed z ∈ ∆, consider the holomorphic self-map Gz(w) of Ωz,

Gz(w) = (F1(z, w), · · · , Fn(z, w)).

By a linear change of coordinates, we can suppose that the Jacobian JGz(0) is in
upper triangular form with all diagonal entries equal to 1. Consider the iterations
Gkz and apply Cauchy’s estimates, we get that all the off-diagonal entries must
be identically zero, i.e. JGz(0) = id. Then, it follows from Cartan’s uniqueness
theorem that Gz(w) ≡ w. This proves Theorem 3.

Similar to [6, Corollary 1.5, Corollary 2.7] (see also [5, Corollary 3]), we have the
following

Theorem 5. Let Ω be as in Theorem 3 and F a holomorphic self-map of Ω. Suppose
that

F (z, w) = (z, w) + o(‖(1− z, w)‖2), (z, w)→ (1, 0).

Assume further that the fixed point set Γ of F satisfies

Γ ∩Dz,w 6= ∅, ∀Dz,w ⊂ Cδ.

Then F (z, w) ≡ (z, w).

Proof. The difference here is that in (4) we have o(|1−τ |2) instead of o(|1−τ |3), and
in (5) we have o(|1− z|) instead of o(|1− z|2). But with the additional assumption
on the fixed point set Γ, [6, Corollary 1.5] still applies. The rest of the proof is
exactly the same. �
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4. Proof of Theorem 4

Consider the z-disk

∆z = {(z, w) ∈ Ω : w = 0}.
Arguing as in section 2, we get π◦F |∆z (τ) ≡ τ , i.e. F |∆z is a graph over ∆z. Thus,
there exists a holomorphic mapping f : ∆z → Cn such that F |∆z = (τ, f(τ)).

Write f = (f1, · · · , fn). Then for any 1 ≤ j ≤ n and τ ∈ ∆z, |fj(τ)| < ρ(τ).
Since log |fj(τ)| is subharmonic, we get from (3) that

log |fj(τ)| ≤ 1

2π

∫ π

−π
Pr(ϕ− θ) log ρ(eiθ)dθ = −∞, τ = reiϕ.

Here Pr is the Poisson kernel. Thus we must have fj(τ) ≡ 0, i.e. F fixes the z-disk
∆z.

Theorem 4 then follows from [6, Theorem 2.2] (with ε = 1 and µ = 1).

Remark 1. Theorem 4 is a generalization of [6, Theorem 0.3], in which the domains
are fibered domains with ρ(eiθ) ≡ 0.

Similar to Theorem 5, we also have the following

Theorem 6. Let Ω be as in Theorem 4 and F a holomorphic self-map of Ω. Suppose
that F (z0, 0) = (z0, 0) for some z0 ∈ ∆ and

F (z, w) = (z, w) + o(‖(1− z, w)‖2), (z, w)→ (1, 0).

Then F (z, w) ≡ (z, w).

Proof. The difference here is that in (4) we have o(|1− τ |2) instead of o(|1− τ |3),
but with f(z0) = z0. Thus, [6, Corollary 1.5] applies, as does [6, Theorem 2.2]. �

5. More general domains

In Theorem 3, we can allow the base of the domain Ω to be any bounded domain
with a strongly pseudoconvex boundary point p.

More precisely, let Ω be a bounded domain of the form

(6) Ω =
⋃
z∈D

Ωz,

where D is a bounded domain in Cm with a C∞-smooth strongly pseudoconvex
boundary point p, and Ωz’s are bounded complete Reinhardt domains in Cn.

Let δ : ∆ → R+ be a function such that ∆n
δ(z) ⊂ Ωz for any z ∈ ∆. For any

(z, w) ∈ Ω, denote by Dz,w the linear graph over D through (z, w) and (p, 0). We
then define a cone with end (p, 0) (of size δ) as in (2).

We again call Ω a fibered domain satisfying the cone condition if it is of the form
(6) and contains a cone with end (p, 0).

Theorem 7. Let Ω be a fibered domain satisfying the cone condition and F a
holomorphic self-map of Ω. For (z, w) ∈ Cm × Cn, suppose that

F (z, w) = (z, w) + o(‖(p− z, w)‖3), (z, w)→ (p, 0).

Then F (z, w) ≡ (z, w).
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Proof. For simplicity, assume n = 1. Write F (z, w) = (F0(z, w), F1(z, w)). Then,
arguing as in section 2 using Huang’s rigidity theorem on bounded domains with a
C∞-smooth strongly pseudoconvex boundary point, we get that F0(z, w) ≡ z.

Write F1(z, w) = a0(z) + a1(z)w + a2(z)w2 + a3(z)w3 + · · · . Then, by Schwarz-
Pick lemma, we get that |a1(z)| ≤ 1. And a similar argument as in section 2 (using
‖p− z‖ instead of |1− z|) shows that

|a1(z)− 1| = o(‖p− z‖2), z → p.

Let ψ be a change of coordinates in a neighborhood U of p such that V := ψ(U ∩
D) is strongly convex near q := ψ(p). Then, there exists a small cone C with end
q contained in V , which is the union of one-dimensional simply-connected domains
with q on the boundary. For each such a one-dimensional simply-connected domain
W , let φ be a Riemann mapping from W to the unit disk with limk→∞ φ(ζk) = 1
for some ζk → q.

Set ã1 := a1 ◦ ψ−1|W ◦ φ−1. Since W has C2-smooth boundary, it follows from
Lemma 8 below that

|1− τ | ∼ |q − φ−1(τ)|, τ → 1.

Thus, ã1 is a holomorphic self-map of the unit disk satisfying

|ã1(τ)− 1| = o(|1− τ |2), τ → 1.

Then, arguing exactly as in section 2, we get that a1 ≡ 1 and F1(z, w) ≡ w. �

The following lemma is probably known. We give a proof for completeness.

Lemma 8. Let W be a simply-connected domain in C with C2-smooth boundary
near q ∈ ∂W . Let φ be a Riemann mapping from W to ∆ with limk→∞ φ(ζk) = 1
for some ζk → q. Then φ extends to be bi-Lipschitz near q ∈W .

Proof. First of all, by [3, Theorem 1.1], φ extends to be homeomorphic near q ∈W .
Set τ = φ(ζ). Denote by d(ζ, ∂W ) the distance between ζ ∈W and the boundary

∂W . Since W has C2-smooth boundary near q, it follows from the Hopf lemma
(see e.g. [2]) that

d(τ, ∂∆) ∼ d(ζ, ∂W ), τ → ∂∆ near 1.

Denote by KW (ζ; ξ) the Kobayashi metric at ζ ∈ W with unit vector ξ. Set
ξ′ = φ′(ζ)ξ/|φ′(ζ)|. Then from the definition of the Kobayashi metric, it follows
that

K∆(τ ; ξ′) ≤ KW (ζ; ξ)/|φ′(ζ)|.
Thus,

|φ′(ζ)| ≤ KW (ζ; ξ)

K∆(τ ; ξ′)
.

d(τ, ∂∆)

d(ζ, ∂W )
∼ 1, ζ → q.

Here, for the second inequality (with a constant factor), we used the fact that
KW (ζ; ξ) ∼ d(ζ, ∂W )−1 (see e.g. [4]).

Since the same argument applies to φ−1, we actually get that |φ′(ζ)| ∼ 1 as
ζ → q, which proves the lemma. �

Remark 2. It is clear from the above proof that the base D of the fibered domain
Ω can be even more general domains, which satisfies the following conditions:
i) The Burns-Krantz rigidity theorem holds on D at a boundary fixed point p;
ii) D is C2-smooth near p and (after a change of coordinates centered at p if
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necessary) there exists a small cone C with end p contained in D, which is the
union of one-dimensional simply-connected domains with p on the boundary.

Remark 3. Theorem 5 can also be generalized to fibered domains with more general
base D, which satisfies condition ii) above and the following condition:
i’) The Burns-Krantz rigidity theorem with interior fixed point holds on D (i.e.
F (z0) = z0 for some z0 ∈ D and F (z) = z + o(‖z − p‖2) implying F (z) ≡ z).
For instance, D can be chosen to be those in [5, Corollary 3].
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