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In this work we apply a recently developed machine learning routine for automatic well planning to simplify
well parameterization in reservoir simulation models. This reduced-order parameterization is shown to be
beneficial for well placement optimization, both in terms of convergence and final well configuration. The
proposed machine learning routine maps trajectories that honor predefined engineering requirements by
exploiting spatial information about the reservoir and prior domain-knowledge about the problem. In this
paper, the well planner creates wells that traverse high-permeable parts of the reservoir, thereby increasing
well productivity. Previous work found that small changes to the start- and end-points of the well had limited
impact on most of the resulting well trajectories, since development of trajectories is chiefly determined by
local information around the digital drill bit. In particular, changes in the depth component of the start- and
end-points had limited impact on the trajectory away from the end-points. Based on these observations, this
work reduces well parameterization to only include horizontal coordinates. The main assumption is that the
perforated part of the well always enters the reservoir at the upper reservoir boundary, while the stopping
criteria in the machine learning routine is a perforation length only. This formulation reduces the number of
decision variables from six to four coordinates for each well. The resulting reduced search space enables a
more efficient exploration effort at the cost of less freedom over the start and end points of the well path.
However, we show that the highly-refined well trajectory developed by the well planning routine is robust
and compensates for fewer degrees of freedom at the overarching parameterization. This robustness is tested
by investigating the effect of different start locations on the automatic well planning routines. Moreover, the
effect of the reduced well parameterization for well placement optimization is explored. Two optimization
scenarios using four different optimizations algorithms are presented. Results show the implementation of the
reduced well parameterization for optimization purposes consistently produces high quality solutions.

1. Introduction in numerical reservoir models, e.g., based on heuristics and/or expe-

rience. Such manual exploration in multidimensional space is labor

Development of subsurface reservoirs typically involves decisions on
where and when to drill wells, and how to control existing wells. These
decisions are commonly supported by numerical models to predict how
new well configurations and different production strategies influence
subsurface flow. Decision-making usually targets maximizing profit,
however, other goals are also increasingly relevant, e.g., reducing car-

intensive, and tends to concentrate the search in the vicinity of one
local optimum (Bittencourt et al., 1997). These challenges spur the
need for methodologies and workflows to automate search processes for
optimal well placement and production strategies. However, such push
for automation is severely limited by the computational cost associated

bon emissions by minimizing power consumption on surface facilities.
Maximizing profit for petroleum field development typically implies
increasing hydrocarbon production and limiting water production and
injection, while at the same time minimizing operational and capital
costs.

The search for optimal well trajectories and control settings is
often conducted through manual modification of relevant parameters
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with reservoir simulation. More efficient optimization techniques, in-
creasingly practical simulation proxies (Mgyner et al., 2014), and the
continuing increase in computational power, enable the use of iterative
procedures to complement manual field development decision-making.

In this work we focus on the problem of well placement optimiza-
tion. Due to its practical relevance and scientific interest, the literature
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contains a wide range of algorithms and methodologies to address
this problem. The problem is considered multimodal and non-smooth,
mainly attributed to geological heterogeneity (Onwunalu and Durlof-
sky, 2010). Derivative-free procedures for well placement optimization
include Particle Swarm Optimization (Onwunalu and Durlofsky, 2010;
Isebor et al., 2014; Afshari et al., 2014; Jesmani et al., 2016), Genetic
Algorithm (Bukhamsin et al., 2010; Giiyagiiler et al.,, 2001; Badru
et al., 2003; Awotunde, 2016), Simulated Annealing (Beckner et al.,
1995), and hybrid methodologies (Khademi and Karimaghaee, 2015).
Though the well placement optimization problem favors derivative-free
procedures, gradient-based algorithms have also been applied. Ap-
proximation of derivative information with respect to well placement
variables, e.g., directly through perturbation methods (Bangerth et al.,
2006; Li and Jafarpour, 2012), or indirectly through procedures relying
on (adjoint-based) gradients associated with control variables (Zand-
vliet et al., 2008; Sarma et al., 2008) may neither be reliable due to
non-smoothness, nor practical for optimizing for complex well configu-
rations. Still, efficient adjoint-based approximations of well placement
gradients have been proposed (Volkov and Bellout, 2018) and re-
cently applied to problems of realistic complexity (Krogstad and Nilsen,
2020). However, these adjoint-based optimization techniques require
extensive access to the code base of the reservoir simulator.

Due to the high computational cost associated with each solution
candidate, finding a global optimal well configuration is practically
infeasible for even modestly-realistic cases. The heavy computational
cost and the high number of free variables require the implementa-
tion of reasonable and effective well parameterizations in addition to
the development of optimization techniques with efficient sampling
strategies. The issue of efficient well parameterization was addressed in
the work introducing the automatic well planner (Kristoffersen et al.,
2021). Input for the well planner are heel and toe coordinates only,
while the well trajectory is developed through a process resembling
a geosteering procedure. Geosteering relies on data obtained from
measure-while-drilling tools. With sufficient logging accuracy and real-
time model-updating capability, pre-drill plans for trajectory and com-
pletion might be reconsidered based on updated information about the
subsurface.

The automatic well planner uses a machine learning approach to
mimic the geosteering process. In this approach, a neural network is
trained to react to reservoir properties in the vicinity of a virtual drill
bit. Though the training of the network is computational costly, with
training times ranging from minutes to hours on a single workstation,
this computation is only performed once. Within the optimization loop,
employing the methodology to create a well trajectory has negligible
computational cost compared to the cost of running a reservoir sim-
ulation. In Kristoffersen et al. (2021), this virtual drilling procedure
was shown to be capable of producing wells that better adhere to
surrounding reservoir properties and their geometrical distribution.
In Kristoffersen et al. (2020) this procedure was applied to an ensemble
of reservoir models within an optimization framework to showcase the
capabilities of this methodology for robust optimization.

The proposed automatic well planner methodology has already been
proven to construct complex well paths using only a limited number of
free parameters, e.g., the heel and toe coordinates only (Kristoffersen
et al.,, 2021). This is a critical contribution to deal with the heavy
computational cost associated with using derivative-free algorithms for
well placement search, since the sampling effort required by these
algorithms commonly increases with problem dimension and the total
number of functional evaluations is therefore typically high. The main
goal of this work is to reduce the number of decision variables further,
by reducing the well parameterization from three-dimensional heel and
toe coordinates in order to enable the use of two-dimensional lateral
(horizontal) coordinates of the heel and toe.

The motivation for this parameter reduction is the reduced sensi-
tivity of our automatic well planner to the start and end-point of the
well. This limited sensitivity is illustrated in Fig. 1, were we plot the
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Fig. 1. This figure shows a set of well paths (red lines) obtained from the virtual
drilling methodology introduced in Kristoffersen et al. (2021). The wells starts from
equal lateral coordinates but different depths, where the wells with different starting
depths are indicated by the numbers in the figure. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

well trajectory from the automatic well planner using start coordinates
with different depths only. We observe that all the wells converge
onto a similar trajectory a short distance from the start location. After
converging, the neural network is fed similar input data, and therefore
yields similar well trajectories for the remainder of the well path.

Finally, by altering the automatic well planner methodology to
only depend on heel and toe lateral coordinates we are transferring
a larger portion of the well trajectory construction to the well plan-
ner procedure. In this article, we show that this parameter reduction
increases the search efficiency and improves the handling of reservoir
discontinuities for optimization.

2. Methodology

This section introduces the methodology for well trajectory design.
Well trajectory refers specifically to the continuous path traversed by
the well from the heel to the toe. Similar to previous work on this
topic (Kristoffersen et al., 2021, 2020), well trajectory development is
performed using an artificial neural network as the decision-maker with
the main goal of honoring pre-specified design targets. The training
data for the neural network is a combination of random well loca-
tions with the use of initial reservoir data (corresponding to different
well trajectories), and fitness function values associated with these
trajectories.

This section focuses on new developments compared to earlier
work. The reader is referred to Kristoffersen et al. (2021) and Kristof-
fersen et al. (2020) for a full description of the methodology and
training of the automatic well planner. As presented in Kristoffersen
et al. (2021), the automatic well trajectory procedure has two main
aims, one is to reach the vicinity of the endpoint, the other is to
adapt the well path according to a predefined property field. Trajectory
development is conducted in a sequential manner, analog to drilling
operations, where the neural network determines the direction of the
next well segment based on information obtained near the current
location.

This paper proposes increasing the freedom of the well planner
methodology, and thereby reducing the parameterization used for op-
timization. Previously the heel and toe were defined by their three-
dimensional coordinates as X, = (xj, y;, z,) and X, = (x,, y;, z,), respec-
tively, defining the start- and end-points of the perforated parts of the
well. In contrast, the current work relies solely on the horizontal (lat-
eral) coordinates. Thus a well is now defined by the two-dimensional
projection of the heel and toe coordinates X} = (x,y,) and X! = (x,, ).
The lateral position of the heel, ;‘2’ will define the starting location as
the upper reservoir boundary at this point, while the lateral position
of the toe, X!, provides an approximation for the lateral position of the
toe.

2.1. Mapping the lateral variables to spatial coordinates
The lateral heel 562 and toe Sc'i locations are the decision variables

in our procedure. As we need a three-dimensional description for the
start and approximate end-point of the well, we need to map the lateral
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positions to three-dimensional coordinates. Let 2 c R? be the subspace
defined by our reservoir model, and let A c R? be the projection of Q
to the horizontal plane. We will define functions for the top and bottom
of the reservoir as

Sy(x,y) = sup{z | (x,y,2) € 2}
Sy(x,y) =inf{z | (x,y,2) € 2} , (@]

where sup denotes the supremum, and inf denotes the infimum. Note
that these functions only use the highest and lowest point in the
reservoir for each lateral point, thus they might not equal the surfaces
delimiting the reservoir at the top and bottom of the reservoir, for
example if these delimiting surfaces curves inward.

We will map the lateral heel position ?cﬁ1 = (xp,y,) to a three-
dimensional starting position of the perforated part of the well by the
function

h:(xp) > &xp.85((xy) . (2

In words, this function gives a point on the top surface from a set of
lateral coordinates.

The algorithm for generating the well path is given flexibility in the
vertical height of the end-point. Despite this flexibility, the algorithm
still needs a single point for the toe to derive the overall direction of the
well. We define the three-dimensional toe position mid-way between
the top and bottom of the reservoir, as given by the map
Sp(x, ) + Si(x, ) >

> 3

Using these heel and toe functions, we can define the well length
equal to the Euclidean distance between the corresponding three di-
mensional heel and toe coordinates

t:(x,y) > <x,y,

L(%), %) = 11z - &I “4)

The azimuth of the well can be calculated directly from the lateral heel
and toe locations as

- Xy — Xp
¢(x),, X,) = arctan N 5)
Vi = Vn
where Sc'; = (xp,y,) and ¥ = (x,,y,) are the lateral heel and toe

coordinates, respectively. We also define an initial elevation by

Xt = Xp

(6)

0, = arctan
! S,,(x,,y,);S,(xt,y,) _ St(xh’yh)
We observe that the denominator contains the z components of #(x!)
and h(¥).

Through these equations we have a starting point, (X)), a length L,
an initial azimuth, ¢;, and an initial elevation, 6;, for the virtual drilling
procedure.

2.2. The virtual drilling procedure

Given a spatial distribution of a property, we let f represent a
mapping from reservoir coordinates Q2 to the corresponding property
values, f: 2 — R. An example of a reservoir property is the perme-
ability field k(X). The virtual drilling procedure can be viewed as a
mapping N : (%},%) — {h(X}), %1, X5, ..., X,_1» %, }, where the set of well
segments between these coordinates should maximize the objective

function
1 _ Z [ i+1 7 (}1) . @

- = Xy — X i
ZN(xh.x,) ” i+1 1” N(X;,‘XI)

If the property is the permeability, / = k, then Eq. (7) gives the average
permeability along the well path, and the virtual drilling procedure will
try to maximize the average permeability. Note that the property f
could be any function of reservoir properties, including the logarithm
of the permeability field.
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In contrast to Kristoffersen et al. (2021) and Kristoffersen et al.
(2020), the current methodology removes the requirement to end up
at a specified end location. Currently, the end location is only used to
determine the well length as given by Eq. (4) and the overall direction
as given by Eq. (5).

Fig. 2 shows a flow chart describing the operation of our virtual
drilling procedure. The following provides brief explanations of the
individual operations.

Initialize: Using the lateral heel and toe information as given by the
two-dimensional vectors ?clh and ?cﬁ, we calculate the three-dimensional
position coordinates X, = h(i;) and X, = t(?ci). From the coordinates X,
and X, we then calculate the azimuth, initial elevation and maximum
length, from Egs. (4)—(6).

Information acquisition: Our goal is to navigate the well path based
on the property map f through an information acquisition and pro-
cessing scheme. Information about the surroundings is collected as the
property f at a set of points {X,+5}, where all these points are within a
pre-defined distance d,,, i.e., ||5]| < d,,. Also information about previous
decisions, distance from assumed water—oil contact and distance drilled
are collected.

Decide: The information collected in the previous step are then
passed through the artificial neural network, which outputs the direc-
tion of the next well section. While the methodology is general, in this
paper, the azimuth of the trajectories being developed is kept constant.
This means that the sole decision being considered is the elevation
angle 6., given as percentage of the maximum allowed dog-leg severity.
Thus the lateral positioning of the well is a straight line determined by
the heel and toe coordinates only. The main reason for keeping the
azimuth constant is the horizontal to vertical aspect ratio of the grid
cells in typical reservoir models, which horizontally leaves few grid
cells inside the distance d,,, and therefore little information for deciding
the azimuth.

Locate: We determine the next location by moving a constant step
length / in the direction given by the elevation angle 6, obtained in the
decision step.

Move: The current location is added to the set {X;}. Then the drilling
procedure moves the current location / meters in the direction provided
by the preceding steps.

Termination check: The Euclidean distance between the heel X, and
the current location X, is compared with the maximum allowed length
L(x!,X). If the current distance is less than the length L(x},%!), then
the iterative process continues. If not, the set of locations {X;} is
returned as the output from the automatic well planner.

Constraint handling: As there are fewer objectives we need to honor,
we can eliminate most of the constraints found in earlier work. The only
constraint that remains is the dog-leg severity constraint as it directly
relates to the physical feasibility of the well. In general, this constraint
is given by

160; = O,y Il + llp; — iyl < ¥l ®

where y is a constant determining the dog-leg severity. As we keep the
azimuth constant, this constraint is reduced to ||6;, — 6,_,|| < yI.

The aforementioned methodology is illustrated in Fig. 3. The trajec-
tory starts out at the top of the reservoir, as given by #(X)). The iterative
procedure outlined in Fig. 2 leads the well from left to right, while
it attempts to penetrate the areas with the highest observable streaks
of permeability. The iterative procedure continues until the well runs
out of length. The set of coordinates {X;} defining the well are then
returned from the virtual drilling procedure. In the following we will
indicate how the obtained well path can be used in an optimization
routine.
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Initialize: Set current
location X, = h(¥}) and i =0
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Information acquisition:
Gather f(5 + X,) for
points within d,, of X, and

Decide: Pass information
to neural network and
collect a decision on 6,

Locate: Based on decision
determine next location X,

other specified parameters

Termination
check: Full

Move: Save X, as X,

length
drilled?

| Return path {X;}

update i = i + 1, and
move location X, = X,

Fig. 2. Flow chart outlining the series of operations performed by the automatic well planning procedure to obtain the well path trajectory.

Starting location

/

End location

Fig. 3. This figure shows an example of the automated well design methodology. The
well is indicated in red, with the heel at the left and the toe at the right. The procedure
stops when the maximum length is reached. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

2.3. Optimization

In the optimization case study, which is discussed later, we use
several derivative-free algorithms to test the capabilities of the virtual
drilling procedure. We will compare optimization using automatic well
paths from the reduced well parameterization (?clh, X!y to optimization
with straight-line wells. The straight-line wells are generated by find-
ing all active grid-cells intersecting the straight line connecting the
three-dimensional heel and toe coordinates (X, X,) and computing the
corresponding well connection factors.

The algorithms we use for this comparison are Asynchronous Paral-
lel Pattern Search (APPS), Particle Swarm Optimization (PSO), Genetic
Algorithm (GA) and Covariance Matrix Adaptive Evolutionary Strategy
(CMA-ES).

APPS (Hough et al., 2001; Kolda, 2005) is a deterministic pattern
search algorithm. The core operation of the algorithm is based on
sampling the search space in the vicinity of an initial state using a
predefined pattern of a given initial step-length. Based on the value
from these samples the algorithm sets a new candidate best solution.
If an improvement is found the algorithm repeats the pattern search
from this location. Otherwise, the step-length is reduced and the pattern
search is repeated. APPS converges when the step-length is below a
pre-defined threshold.

PSO is a bio-inspired optimization algorithm representing the move-
ment of a collection of organisms, e.g., a flock of birds (Onwunalu and
Durlofsky, 2010; Nwankwor et al., 2013). Each potential solution is
represented as a particle in a swarm. Every particle has a long-term
memory and tools to communicate with the rest of the swarm. For each

generation all particles travel around the search space in a direction
determined stochastically by a combination of the best solution found
by the entire swarm and the best solution stored in the long-term
memory. The tuning parameters of the algorithm are the swarm size
and the velocity of the particles, which are limited by a pre-specified
maximum velocity.

GA is an evolutionary optimization algorithm (Whitley, 1994; Ku-
mar et al., 2010; Holland, 1992) inspired by natural evolution. In this
algorithm variables are encoded into different genetic strains called
chromosomes. In this scheme each chromosome represents one solution
candidate. Initially, a set of randomly generated chromosomes are eval-
uated and ranked. A subset of these chromosomes are then selected to
be parents. New chromosomes can be created either by a combination
of chromosomes selected to be parents or via mutation of an existing
chromosome.

CMA-ES is a population-based algorithm that, similar to GA, en-
codes each solution as an individual in the population (Bouzarkouna
et al., 2012; Gregory et al., 2011). The algorithm moves the population
based on a multivariate normal distribution within the search space.
The shape of this distribution is changed by evaluating past and present
samples.

As both APPS and CMA-ES are provided starting locations, these
two algorithms were given the same lateral coordinates for the starting
locations to ensure a fair comparison of the two well parameterization
methods. Additionally, the depth of both the heel and toe of the
straight-line parameterization were given by Eq. (3).

The only constraint applied to all of the optimization procedures
are bound constraints for the lateral and vertical coordinates envelop-
ing the interesting area of the reservoir. All optimization procedures
except APPS rely on stochastic operations to improve their solution.
All optimization procedures were run five times. The population-based
algorithms were run either for 50 generations or 500 successfully
evaluated cases, whichever comes first. Similarly, APPS was run to
either convergence or 500 successful evaluations.

2.4. The reservoir model

The reservoir model used for benchmarking is the Olympus en-
semble (Fonseca et al., 2018; Sayyafzadeh and Alrashdi, 2020). The
upper formation of this model is highly channelized and contains
large contrasts in permeability and porosity. Due to computational
limitations we removed the lower formation to make the model run
faster, as described in Kristoffersen et al. (2021).
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Table 1
Simulation parameters for cases Alpha and Bravo.
Parameter Alpha Bravo
Number of Producers 1 3
Number of Injectors 5 5
Maximum Oil Rate [s m*/day] 2500 -
Maximum Water Injection Rate [s m?/day] 1500 -
Minimum Production Pressure [bar] 150 180
Maximum Injection Pressure [bar] 235 210
Table 2
Optimization algorithm parameters. » is the number of decision variables.
Algorithm Parameter Value
PSO Cognitive Coefficient 2
PSO Social Coefficient 2
PSO Swarm Size 20
GA Crossover probability 0.1
GA Mutation strength 0.25
GA Population Size 20
APPS Initial Step Length 0.25
APPS Contraction Factor 0.5
APPS Expansion Factor 1
APPS Min Step Length 0.025
CMA-ES Sigma 0.3
CMA-ES Population Size 4+ 3log(n)

Two optimization scenarios, Alpha and Bravo, are presented. Sim-
ulation parameters for these scenarios are found in Table 1. In Alpha
the goal is to find the optimal well trajectory for a single producer.
The optimization algorithm will thus maximize the net-present-value
(see next subsection) by adjusting the heel and toe coordinates (?c’h, )
or (X, X,) for the automatic well planner or straight line wells, respec-
tively. In the simulations, the producer under consideration is limited
by a maximum oil production rate and minimum production pressure,
while the injectors are limited by maximum water injection rates and
pressures. This scenario is intended to showcase that a reduction in the
number of decision variables, i.e., delegating more responsibility for
trajectory development to the parameterization procedure, can reduce
the number of local maximums.

Scenario Bravo optimizes the well placement configuration of three
producers. In the simulations for this scenario, the producers are limited
only by a minimum bottom hole pressure, while the injectors are lim-
ited by a maximum injection pressure only. Bravo reduces the influence
of simulation-based control constraints and highlights the ability of the
parameterization procedure to adhere to predefined engineering goals,
in our case high permeability (see Table 1).

2.5. Metrics

Our metric for evaluating the output of a numerical reservoir sim-
ulation is the NPV (Net-Present-Value) given as

ZT R

1

NPV = lm_wy . (9)
t=

In this equation w;, is the total well cost, d is the discount factor and ¢
is the time interval, while R, represents the cash flow given by

Rt = Cocop,r - prcwp,t - cwicwi,t . (10)

Here ¢,, ¢,, and c,; are the cost associated with the production
of oil, and production of water and injection of water, respectively.
Associated variables C,,,, C,,,,, and C,, , correspond to the amount of
oil produced, water produced, and water injected during time interval

t, respectively.
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Fig. 4. This figure illustrates a virtual drilling operation (red) started from different
initial entry points in the same cross-section (the numbers indicate the starting location
of each well). Light regions correspond to areas with high fitness while darker regions
represent less desirable areas. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. This figure illustrates the setup used for creating the response surface. The
figure is a plot of the reservoir, where the colors represent the top height of the
reservoir at different lateral locations. The relative heights are given by the color bar.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3. Results

This section presents results for two cases studies. The first case
tests the robustness of the methodology, both with respect to slight
movement of the wells and how the well development reacts to discon-
tinuities in the reservoir. The second case studies the effect of reduced
trajectory parameterization on well placement optimization.

3.1. Case study 1: Robustness

This case explores how trajectories develop under slightly different
starting locations and studies their output for small end-point perturba-
tions. In the first test we develop a set of wells in the same cross-section
to visually inspect their differences. In the second test we plot the
different response surfaces when perturbing the toe of a well inside a
limited area in the reservoir model. This area contains a fault, high-
lighting how the different parameterizations react to abrupt changes in
the underlying geology, and thereby how they handle discontinuities
in the optimization problem.

3.1.1. Cross-section

In this part of the study we want to investigate how the virtual
drilling procedure reacts to slight modifications to the lateral coordi-
nates. The aim is to show the robustness of the trajectory development
procedure. Fig. 4 illustrates a situation in which the well entry point is
moved closer to the toe. The different starting locations are indicated by
numbers 1 through 7. Clearly, in the beginning, the well planner yields
different trajectories for the different entry points since its decisions
are based on the proximity to high permeable zones. However, after
having traversed the initial channel, the different trajectories converge
and subsequent decisions produce similar well paths. The similarities
indicate a robustness in the decision-making process in which signifi-
cant changes to the starting location lead to relatively small differences
between resulting well trajectories. This apparent regularizing effect
on the cost function can potentially benefit search properties during
optimization by making the objective function smoother. This feature
is explored in closer detail in the next test study.
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Fig. 6. This figure illustrates the response surface in terms of the normalized objective function value. Lighter colors indicate higher values while darker colors indicate lower
values. The red dot for each subplot indicates the highest value for each plot. The four plots to the left are straight line solutions at different depths, while the rightmost figure is
using the well planner, with only lateral coordinates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Analog to the plots in Fig. 6, this figure illustrates the response surface in terms of normalized liquid production. Lighter colors indicate higher values while darker colors
indicate lower values. The red dots indicate the highest value for each plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

3.1.2. Response surface

To further study how the search behavior might be influenced by
the proposed change in parameterization, we compute two-dimensional
response surfaces for a producer in the Olympus reservoir. This vi-
sualization is created by keeping the heel coordinates constant and
only moving the well toe, visualized in Fig. 5. For the straight-line
parameterization, response surfaces corresponding to z-coordinates at
four different depths are presented.

Thus, we are comparing the response surface resulting from perturb-
ing the toe of the trajectory obtained with the virtual drilling procedure
against the response surfaces produced when perturbing the toes of
straight-line parameterization at four different depths. Both objective
function values and total liquid production values are visualized in
Fig. 6 and Fig. 7, respectively.

Fig. 6 illustrates objective function value response surfaces created
by perturbing a well toe that traverses a fault. The plot labeled Lateral
represents the response surface produced when varying laterally the
toe of the trajectory obtained using the well planner. The four leftmost
figures show the response surfaces obtained when moving laterally the

end-point of straight-line wells with toes positioned at four different
constant z-components of X,, as indicated by the depth-labels above
the figures. For each of the four straight-line examples, the response
surface difference due to the presence of a fault is clearly visible. The
greatest difference in NPV response occurs between depths 2040 and
2050. This abrupt shift might reduce the capability of optimization
procedures to find improved solution candidates, as abrupt changes
heighten the chance for the optimization algorithm to be stuck in a local
optima. In the response surface obtained with our new methodology
the situation is different; the location of the fault is barely visible and
the surface seems to be smoother. Interestingly, the location of the
maximum value for our method versus the location of the maximum
value for the straight-line wells are separated by only 20 meters in the
y-direction.

Fig. 7 shows the total liquid production for different toe locations.
The red dots display the lateral coordinates for the toe location that
yields the highest total liquid production. The resulting production
from the virtual drilling procedure is plotted in the rightmost figure,
the straight-line results are indicated by the respective depth of the
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Fig. 8. A height map of Olympus in which the injectors are illustrates in black. These
injectors are used both in scenario Alpha and Bravo. The reservoir bound constraints
are indicated by the blue box. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

APPS
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0.50 050 AWP

500

Fig. 9. This figure tracks the best case for each optimization run versus the number of
successful objective function evaluations (reservoir simulations) for the Alpha scenario.
The AWP is illustrated in blue, while orange represents the SL parameterization. Each
optimization algorithm is run 5 times with each parameterization. For the APPS and
CMA-ES the initial positions are changed for each run. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

toe. The location for the highest production is the same, however,
the virtual drilling procedure presents a smoother transition from low
production values to higher values. As commented above, smoother
response surfaces are expected to be an advantage during optimization.
In the next section, we investigate two well placement optimization
scenarios.

3.2. Case study 2: Optimization

In this case study we present two different optimization scenarios.
As listed in Table 1, Alpha consists of a single producer within a reser-
voir that contains five injectors. In Bravo we increase the complexity by
adding two additional producers. The parameters for the optimization
algorithms are given in Table 2. We maintain the same position for the
injectors in both scenarios (see Fig. 8).

The results from scenario Alpha are illustrated in Fig. 9, with
average values listed in Table 3. The figure illustrates the current
best solution versus the number of successful function evaluations for
the four optimization algorithms. From these results we observe that
optimization runs using the automatic well planner (AWP, blue) tend
to improve faster than those using the straight line parameterization
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Table 3

Final results for scenario Alpha. ObFnV is the average objective function value (in $)
for the five optimization runs. Std is the standard deviation of the final values from the
five optimization runs. Imp. is the relative improvement given as the average objective

function value of AWP divided by SL.

Algorithm ObFnV (SL) Std (SL) ObFnV (AWP) Std (AWP) Imp.

PSO 1.47E9 1.44E8 1.85E9 9.77E6 1.26

APPS 1.18E9 2.77E8 1.67E9 2.88E8 1.41

GA 1.43E9 2.73E8 1.85E9 3.71E6 1.29

CMA-ES 1.56E9 8.86E7 1.73E9 9.59E7 1.11
PSO APPS
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Fig. 10. This figure tracks the best case for each optimization run versus the number
of successful evaluations for the Bravo scenario. The AWP is illustrated in blue, while
orange represents the SL parameterization. Each optimization algorithm is run five
times for each parameterization. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

(SL, orange). Moreover, PSO and GA runs using AWP converge to solu-
tions with similar high-value objectives, while PSO and GA runs using
the SL parameterization generally provide less profitable trajectories.
Specifically, the standard deviations of PSO and GA solutions with SL
parameterizations are higher than the deviations for PSO and GA runs
using AWP, as shown in Table 3. These results may be an indication of
a lower number of local maximums following the smaller search space
caused by the reduced parameterization. Subsequently, the reduction in
number of local maximums and the cost function smoothening increase
the likelihood of finding better maximums.

As mentioned, the CMA-ES and APPS optimization runs started
from the same lateral coordinates. The objective function for each
optimization run improves at different rates, and the solutions vary
with the start location. This, in conjunction with the more localized
search behavior of these two optimization algorithms, could explain
why there is no reduction in standard deviation when using AWP with
these two algorithms. Despite the spread in results observed for both
these methods, the inclusion of the virtual drilling procedure provides
a clear increase in the average value of the solutions. This may indicate
that the smoother response surfaces obtained when using AWP may
have improved performance for these algorithms by facilitating a more
robust search against discontinuities and difficult topography.

Results for scenario Bravo are plotted in Fig. 10 and summarized in
Table 4. The results show that the average end-value of the objective
function for the runs with AWP are higher for all algorithms. As this
scenario contains three producers, we expect an increase in the number
of local maximums compared to scenario Alpha. This expectation is
corroborated by the increase in standard deviations. The general in-
crease in standard deviation of the objective function value compared
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Fig. 11. This figure shows a comparison between the response surface of objective function value provided with AWP (right) and SL (left). For the SL plot the highest value from

all computed depths has been selected. A red dot indicates the best position. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 4

Final results from scenario Bravo. ObFnV is the average objective function value (in $)
for the five optimization runs. Std is the standard deviation of the final values from the
five optimization runs. Imp. is the relative improvement given as the average objective
function value of AWP divided by SL.

Parameter ObFnV (SL) Std (SL) ObFnV (AWP) Std (AWP) Imp.
PSO 1.07E9 6.76E7 1.18E9 8.23E7 1.11
APPS 1.14E9 8.40E7 1.24E9 5.32E7 1.08
GA 1.00E9 5.99E7 1.20E9 3.89E7 1.19
CMA-ES 9.27E8 1.13E8 1.06E9 9.15E7 1.14

to the first scenario seems to indicate that some algorithms are more
susceptible to getting stuck in local optima than others. For instance,
the global algorithms (PSO and GA) benefit the most from the reduction
in dimensionality provided by the virtual drilling procedure. In these
cases, the likelihood of ending up with a high quality solution is clearly
increased by replacing SL parameterization with AWP.

With APPS the rate of improvement is different when using AWP
and SL. While AWP increases fastest in the first phase, in the later stages
some cases with the SL parameterization catch up with those run with
AWP. This indicates that both parameterization are able to produce
final well locations with similar results. The greater degrees of freedom
of the SL parameterization may improve the search in the later stages
where control over the z-axis is of greater importance. As observed with
APPS, the increased standard deviation of the final values obtained by
CMA-ES indicates that the procedure is also dependent on the initial
state of the optimization. On average for all algorithms, the solutions
provided with AWP are higher in value than those using SL.

4. Discussion

If we run the virtual drilling procedure from different starting
locations, we end up with similar well trajectories, as seen in Case
study 1 in Section 3.1. This behavior indicates that the virtual drilling
procedure provides similar well trajectories for different locations in
the same vicinity.

This argumentation is reinforced by Case study 2, as seen in Fig. 6,
where we depict the response surface when moving the toe location
over a fault. For the straight-line well paths the fault acts as a dis-
continuity, with a sharp contrast in the objective function value. When
applying the virtual drilling process this discontinuity is barely visible.
This is an indication that in this specific case an optimization algorithm
would likely find it easier to traverse over the fault in its search for
the highest objective function value. Notice that within this 1000 by
1000 meter squared area the highest objective function value found
for both parameterizations have almost the same lateral coordinates.

Further, if we process the response surfaces found in Fig. 6 and
collect the best value from all depths to one lateral position, we end up
with the left plot in Fig. 11. For convenience we have plotted again the
objective function value response surface from the AWP in Fig. 11. The
two response surfaces from the AWP and SL have clear similarities. The
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Fig. 12. This figure illustrates the final trajectories for scenario Alpha (using PSO and
GA). Green indicates SL and red indicates the use of AWP. Heel locations are indicated
by triangles and the toe locations are illustrated with circles. The solid lines indicates
the best trajectory found with each parameterization. The background colors are the
height map of the Olympus model. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

combined response surface seems to be smoother and the discontinuity
is almost invisible. This indicates that the AWP is able to capture the
important features of the objective function based solely on lateral
coordinates.

Scenario Alpha of Section 3.2, involving four different optimization
algorithms, clearly demonstrates an improved optimization by reducing
the dimensionality of the search space. From the first case study we
found that the AWP could smooth out geometric difficulties. This
adaptive behavior might play a significant role in why the solutions
provided by the use of AWP converge faster than those provided by
the SL.

In Fig. 12 we have plotted all the heel and toe locations from
the optimization results of the Alpha scenario for the PSO and GA
algorithms. The best cases out of the five optimization runs (illustrated
as a solid line) show that in terms of lateral coordinates the best
solution for both AWP and SL are similar. In the case of AWP, all cases
have ended up in the same location. The SL parameterization on the
other hand has a larger spread of solutions, indicating that they either
have not converged yet, or that they are trapped within different local
maximums, and are not able to successfully find the global maximum.

Moving on to the more complex Bravo scenario with three produc-
ers, there is also a significant improvement in most cases. The use of
AWP enhances both objective function values and the consistency of
high quality solutions. While the SL parameterization is sometimes able
to find solutions similar to those found by AWP, this parameterization
is much less consistent and often gets stuck in what seems to be local
maximums. This demonstrates that the AWP parameterization scales
well with an increasing number of producers. We expect the AWP to
outperform SL also in even more complex cases with a greater number
of wells.

The optimization results can also be analyzed in terms of global vs.
local algorithms. APPS results from the Bravo scenario show that the
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local refinements allowed by the use of the depth-component might
outweigh the more global perspective that the AWP enables. It is
especially the global population-based algorithms that seem to improve
when substituting one parameterization with the other. This may be
due to the ability of the virtual drilling procedure to create attractive
trajectories even when the coordinates for the toe and heel are less
ideal.

Overall the virtual drilling procedure seems to greatly simplify
the optimization procedure for Olympus. However, it is important to
note that the lack of control of the depth component might introduce
some additional challenges with reservoirs of greater depth or multiple
compartments. This lack of control might be counter-acted by providing
a better mathematical formulation for how a well should be generated.

In this work we have only applied the permeability as the navigating
property, but an unrealized potential lies in that the property map
can be manipulated to create designated zones of interest or zones
to avoid based on pre-defined engineering goals. Improvements are
also expected by a two-stage hybrid optimization approach, were the
procedure would start off by optimizing on lateral coordinates only,
and then switch to a more refined local search where the z-component
is added. The z-component could be added to the heel only, with the
toe still parameterized by the lateral coordinates only. Potentially, one
could also use the parameterization found in Barros et al. (2020) to
further refine the curvature of the well trajectory.

An optimization loop is usually treated as a black-box. The goal
of this project was to demonstrate that by exploiting the aggregated
information in the numerical model it is possible to improve on current
procedures. Potential future developments of AWP could include a
reexamination of the performance in a robust optimization paradigm
with a methodology that has the freedom to alter the trajectory while
still honoring engineering restrictions. The ability of the AWP to de-
velop trajectories based on the continuous incorporation of information
while still maintaining a low-order well description could significantly
improve the performance of realistic applications of well placement
optimization procedures.

5. Conclusion

The methodology proposed in this work represents a fundamental
change in the relationship between well placement optimization algo-
rithms and the parameterization of well trajectories. Through several
case studies and scenarios we have demonstrated that by leaving a
greater portion of the decisions regarding the trajectory of a well to
a fast machine learning algorithm, the overall optimization can be
simplified and enhanced. The virtual drilling procedure is a novel way
of using machine learning to reduce the number of decision variables
while consistently providing better well configurations by exploiting
local model information.

Of particular interest is the robustness of the virtual drilling pro-
cedure, which appears to help smoothen the effect of discontinuities.
Moreover, the procedure improves the individual candidate solutions
by adapting to the geometry and properties of the reservoir.

The virtual drilling procedure accelerated the optimization for all
tested optimization algorithms. The reduction in complexity seems
to indicate that the likelihood of getting stuck in a local maximum
is reduced. In scenario Alpha, the final objective function standard
deviation for population-based optimization runs showed a significant
decrease when using the AWP procedure. For all algorithms, the pro-
cedure resulted in solutions with higher objectives than those found
with the traditional straight line parameterization. In scenario Bravo,
average solutions values were higher than those found using straight
line wells, indicating that the virtual drilling procedure scales well with
increasing number of wells.

We expect that the presented reduced parameterization could lead
to sub-optimal solutions for thicker reservoirs and shorter wells, as
the vertical placement of the well will be more important under such
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conditions. To alleviate such problems, future developments could be
to include the AWP methodology into a hybrid optimization scheme,
where it could be replaced, when appropriate, by a refined local
search with more control over the z-component of the well path. The
methodology can also be used for robust well placement optimization
to determine fitting trajectories for an ensemble of simulation models.
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