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Bayesian Inversion of Time-Lapse Seismic AVO
Data for Multimodal Reservoir Properties

Ole Bernhard Forberg , Dario Grana , and Henning Omre

Abstract— We consider time-lapse seismic amplitude versus
offset (AVO) inversion for the reservoir properties porosity and
water saturation, with a focus on monitoring the evolution of
water saturation in a dynamic setting of ongoing production.
We operate in a Bayesian framework based on the integration
of seismic AVO modeling and rock physics relations. One major
challenge in the inversion of seismic data for reservoir properties
is the multimodality of these properties. Fluid saturation is
generally bimodal due to the gravity effect, and often distinctly so,
with abrupt spatial mode transitions. The novelty of the proposed
approach is the assumption of a selection Gaussian random
field (S-GRF) for the prior spatial model of porosity and water
saturation, which can represent the multimodal characteristics of
these reservoir properties. The likelihood model is Gauss-linear
and based on linearized seismic and rock physics models, which
entails that the associated posterior model is also an S-GRF, with
analytically assessable parameters. Hence, the posterior model
is capable of representing multimodality and abrupt spatial
mode transitions. Two realistic case studies are considered; the
production of an oil reservoir in the North Sea, and the injection
of CO2 into a subsurface potential CO2 storage unit. Focus is on
the movement of the oil–water-contacts along a vertical profile
in the first case, and on the expansion of the CO2 region in a
cross section in the other, both of which can be inferred from
the changes in the water saturations. The results are considered
to be very encouraging and the proposed statistical formulation
appears to be particularly well suited for fluid monitoring
problems of the described type.

Index Terms— Geophysics, geophysical measurements, inverse
problems, seismic measurements, statistics.

I. INTRODUCTION

DYNAMIC changes in subsurface reservoirs, such as
variations in fluid saturations in porous rocks, are often

monitored using time-lapse seismic data. If the saturations in
the pore spaces change, the velocity of the seismic waves
also changes, causing a different seismic response. Time-lapse
seismic data can be used to monitor changes in hydrocarbon
reservoirs, when water replaces hydrocarbon during produc-
tion [1], or in carbon dioxide sequestration in deep saline
aquifers where CO2 replaces water [2]. If water replaces
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hydrocarbon, the velocity of the seismic waves generally
increases, whereas if CO2 replaces water, the velocity gener-
ally decreases. According to rock physics studies, the change
in seismic velocities and responses increase with increasing
pore volume [3].

Geophysics theory, based on wave propagation [4] and rock
physics models [3], allow predicting the seismic response of
a porous rock with a given porosity and saturation. However,
in practice, the rock properties are unknown and the seismic
responses are the observable data. Therefore, the prediction of
reservoir properties from time-lapse seismic data can be for-
mulated as an inverse problem [5]. Seismic amplitude versus
offset (AVO) inversion for static reservoir characterization and
time-lapse monitoring is one of the most popular techniques
in reservoir geophysics [6]. The forward seismic model can be
approximated using linearized approximations or can be based
on the full waveform approach. Similarly, the rock physics
model can be approximated using multilinear regressions or
can be based on poroelasticity theory. Different rock properties
and data types can be adopted: data can contain pre-stack or
post-stack seismic data and rock properties can include petro-
physical properties, such as porosity and saturations, or elastic
properties, such as velocities and impedances. Deterministic
and probabilistic approaches can be proposed for the solution
of the inverse problem [6].

When repeated seismic surveys are available, the inverse
problem can be solved simultaneously or as a set of multiple
inversions at different time steps. Several methods have been
proposed to solve the time-lapse inverse problem, as in [1]
and [7]. Here, we focus on the methods incorporating rock
physics models for the prediction of rock and fluid properties,
as in [8] and [9]. The rock physics model proposed in
[8] is based on the approximation of the changes in the
reflectivity coefficients as a linear and quadratic function
of the changes in saturation and pressure. This model has
been used in different applications including hydrocarbon
reservoir and CO2 monitoring studies, as in [10]–[12] and
has later been improved using more accurate approximations
in [13]–[15]. Alternatively, approximated rock physics models
can be combined with the linearized seismic AVO formulation
in Bayesian approaches as in [16]–[18]. Bayesian methods
have also been combined with optimization approaches for
seismic inversion, as in [19]–[21].

Generally, in geophysical inverse problems, the forward
model is assumed to be known. We approximate the seismic
forward model as a convolution of a wavelet and a linearized
approximation [4] of the Zoeppritz equations [22]. This model
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predicts the seismic response based on the values of the
elastic properties: P-wave velocity, S-wave velocity, and den-
sity or P-impedance, S-impedance, and density, as in [23].
The proposed relation is a first-order representation of the
wave propagation model [4]. Furthermore, the rock physics
model is a multilinear regression in the logarithmic domain of
the elastic properties. This model predicts the elastic response,
in the logarithmic domain, based on the values of the reservoir
properties porosity and fluid saturations [24]. The resulting
equation is a first-order of the full rock physics model [3].

In this study, we focus on the inversion of time-lapse seismic
AVO data for porosity and saturation using a probabilistic
approach. We operate in a Bayesian framework, see [5], to
assess the posterior probability distribution of porosity and
saturation conditioned on the measured seismic data. This
entails that the solution to the inverse problem is in the
form of a probability distribution, termed the posterior model,
which is proportional to the product of the prior model and
the likelihood model. The likelihood model is a probabilistic
representation of the geophysical model including seismic and
rock physics relations. In Bayesian approaches for geophysical
inverse problems, the likelihood model is generally assumed
to be linear with Gaussian errors that are independent of
the model ([25] and [5]). The prior model of the reservoir
properties represents the prior knowledge about them. If the
prior model of the reservoir properties is Gaussian, under
the above-mentioned assumptions of the likelihood model,
the posterior model is also Gaussian, and the solution can
be analytically evaluated. Due to the large dimensionality
of the gridded geophysical data, an analytical solution is
desirable [26].

However, the reservoir properties are generally not well
represented by a Gaussian prior model because porosity and
fluid saturations represent volumetric fractions, hence bounded
properties, and their spatial histograms are often multimodal
within the domain of physically admissible values. For a
general prior model, the posterior model is not necessarily
Gaussian and iterative simulation-based methods have to be
adopted, such as Markov chain Monte Carlo (McMC) methods
[27]. These methods enable the assessment of the posterior
distribution by proposing from the prior model and accepting
or rejecting the proposal based on the likelihood. However,
the convergence can be relatively slow for a large dimen-
sional geophysical data set, if a spatial correlation model is
included [28].

The multimodal appearance of reservoir properties is usually
caused by the presence of underlying litho-fluid classes in
the subsurface. Sandstone generally have larger porosity than
shale. Hence, in a sequence of sand and shale, porosity
is generally bimodal. Similarly, within the reservoir, porous
rocks can be saturated with different fluids; for example,
water and hydrocarbon or water and CO2, leading to bimodal
histograms for fluid saturations. These multimodalities can be
modeled using Gaussian mixture models ([24], [29], [30] and
[31]). The solution of the inverse problem based on spatial
Gaussian mixture models usually relies on computationally
demanding McMC algorithms. Inversion methods including
hidden Markov models have also been proposed to integrate

a spatial model in the solution for the classification of facies
from geophysical data ([32], [33] and [34]).

We propose an alternative prior model for multimodal
reservoir properties based on selection Gaussian random fields
(S-GRFs), based on results in [35] and [31]. The selec-
tion Gaussian model can represent multimodal and skewed
variables while preserving the analytical advantages of the
Gaussian case; namely if the prior model is selection Gaussian
and the likelihood model is linear and Gaussian, then the pos-
terior model is also selection Gaussian [31] with analytically
assessable parameters.

The methodology is validated using two different applica-
tions based on real data sets. The first application is based
on the well logs data from a vertical well in a hydrocarbon
reservoir in the North Sea. Synthetic seismic data are generated
before and after 10 years of production assuming depletion and
water flooding. The second application is based on a 2-D cross
section of a reservoir model of a deep saline aquifer used for
CO2 sequestration. A fluid flow model is applied to simulate
the injection of CO2 for 110 years. Synthetic seismic data
are generated after 10 and 100 years of production. In both
applications, we compute the posterior distribution of porosity
and water saturation.

II. DEFINITIONS AND NOTATION

The reservoir volume of interest is discretized into a reg-
ular grid Gr , consisting of nr points. At a given time the
nr -dimensional vectors φ and sw contain the porosities and
water saturations on all of Gr . In the time-lapse setting,
we consider the reservoir volume at two different points in
time. We assume the porosities to be temporally constant and
the water saturations to be dynamic; hence, a superscript t
is introduced for the water saturations to indicate the time
of evaluation, st

w, t = 0, 1. The porosities and water sat-
urations jointly constitute the reservoir properties r on the
entire reservoir grid, i.e., r = [φ, s0

w, s1
w], with [·, . . . , ·]

the concatenation of its arguments. The seismic AVO data
associated with the reservoir properties on Gr is collected
on the grid Gd , consisting of nd points, and is acquired at
nθ different offset angles and at the two time points t =
0, 1. The 2nθ nd -dimensional vector d contains the time-lapse
seismic AVO data on Gd . The three nr -dimensional vectors zp,
zs , and ρ represent the elastic rock properties P-impedance,
S-impedance, and density on all of Gr , respectively. These
properties are represented in the logarithmic form at both time
points in the 6nr -dimensional vector m. All vectors defined
above are defined to be column vectors, and unless otherwise
stated, so are subsequently defined vectors.

The function p(·) is a probability density function (pdf)
of its argument. An nx -dimensional random vector x with
expected value μx and covariance matrix �x is Gaussian if
its pdf is of the form

p(x) = (2π)−
nx
2 |�x |− 1

2 exp

{
−1

2

(
x − μx

)T
�−1

x

(
x − μx

)}
(1)

where the superscript T indicates the transpose. We denote
this pdf by ϕnx (x; μx,�x). The probability that x belongs to
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a subset Q of the nx -dimensional space of real numbers is
specified by

Prob(x ∈ Q) =
∫

Rnx

I (x ∈ Q)ϕnx

(
x; μx ,�x

)
dx (2)

and we denote this Gaussian subset probability by
Φnx (Q; μx ,�x). The function I (·) is the indicator function,
being equal to 1 when the argument is true and equal to 0
otherwise.

An ny-dimensional random vector y is selection Gaussian
with associated Gaussian ny-dimensional basis variable ỹ and
nνy -dimensional auxiliary variable ν y , and selection set A, see
[36] for details, if its pdf is of the form demonstrated in [35]

p(y) = p
(
ỹ|ν y ∈ A) = Prob(ν y ∈ A|ỹ)p(ỹ)

Prob(ν y ∈ A)

=
Φnν

(
A; μνy | ỹ,�νy | ỹ

)
ϕny

(
ỹ; μỹ,� ỹ

)
Φnν

(
A; μνy

,�νy

) . (3)

This pdf is fully specified by the parameters �SG =
(μỹ,μνy

,� ỹ,�νy ,� ỹνy ,A), where � ỹνy contains the covari-
ances between ỹ and ν y . From the listed parameters the
conditional parameters can be computed by standard Gaussian
conditioning formulas

μνy | ỹ = μνy
+ � ỹνy �

−1
ỹ

(
y − μỹ

)
�νy | ỹ = �νy − � ỹνy �

−1
ỹ �T

ỹνy
. (4)

A random vector is said to be a discretized random field
(RF) if each of its elements is associated with a grid location in
a spatial domain. The Gaussian random vector x is a Gaussian
random field (GRF) if x is an RF. Similarly, the selection
Gaussian random vector y is an S-GRF if y is an RF.

Lastly, in denotes the n-dimensional vector of ones, and the
(n × n) matrix In is the identity matrix with n rows and n
columns. The (n1 × n2) matrix of zeroes is denoted 0n1×n2 .

III. METHODOLOGY

The aim of the study is to predict the reservoir properties
r from the time-lapse seismic AVO data d. In a Bayesian
framework the solution is given by the posterior pdf p(r|d),
and this conditional pdf is defined by Bayes’ rule

p(r|d) = p(d|r)p(r)
p(d)

∝ p(d|r)p(r) (5)

with p(d|r) being the likelihood model and p(r) the prior
model, which both have to be specified. The normalizing
constant [p(d)]−1 is usually very challenging to compute, but
for certain combinations of likelihood and prior models it can
be analytically assessed. The current study relies on models
of the latter type.

A. Likelihood Model

The likelihood model describes the origin of the seismic
responses from the reservoir properties and is decomposed into

p(d|r) =
∫

p(d|m, r)p(m|r) dm =
∫

p(d|m)p(m|r) dm

(6)

with the last equality a result of the elastic properties m being
canonical variables of the wave equation. Hence, the likelihood
model consists of two parts; the seismic likelihood model
p(d|m) and the rock physics model p(m|r).

The seismic likelihood model relates the elastic properties
to the seismic responses and is based on a convolution of the
linear Aki and Richards [4] approximation to the Zoeppritz
equations. The model is linear and Gaussian (Gauss-linear)
and takes the form [d|m] = WADm+ed|m , see [23]. Here, the
(2nθnd × 2nθnr ) matrix W is a convolution operator contain-
ing discretizations of the seismic wavelet at both time points

W =
[

W0 0nθnd×nθ nr

0nθnd×nθ nr W1

]
(7)

with (nθ nd × nθ nr ) matrices W0 and W1 containing the
discretized seismic wavelet at times t = 0, 1, respectively.

The (2nθ nr × 6nr ) matrix A and (6nr × 6nr ) matrix D
emerge from the Aki and Richards approximation. Here, A
contains the impedance adapted angle dependent reflection
coefficients, see [37], at both time points

A =
[

A0 0nθnr ×3nr

0nθ nr ×3nr A1

]
(8)

with (nθ nr × 3nr ) matrices A0 and A1 corresponding to times
t = 0, 1, respectively. The matrix D is a contrast operator.
Error associated with the seismic likelihood model is contained
in the 2nθnd -dimensional vector ed|m , which encompasses
both model error and observation error. We assume ed|m
to be Gaussian with expectation zero and (2nθ nd × 2nθ nd)
covariance matrix �d|m = Wσ 2

c|mI2nθ nr WT + σ 2
d|cI2nθ nd , where

σ 2
c|m is the variance associated with model error resulting from

the Aki and Richards approximation and σ 2
d|c is the variance

associated with observation error. Note that the model error
is wavelet convolved in this expression, hence ed|m contains
colored noise. The seismic likelihood model will then be

p(d|m) = ϕ2nθ nd

(
d; WADm,�d|m

)
. (9)

Inspired by the study [8], we formulate a linear rock physics
model that in line with previous studies [36] is in the form
of a multiple linear regression. The model is Gauss-linear
and relates the reservoir properties to the elastic properties,
[m|r] = Br + em|r . Here, the (6nr × 3nr ) matrix B contains
the regression coefficients from a multiple linear regression of
the logarithmic elastic properties on the porosities and water
saturations, B = [B0, B1], with (3nr × 3nr ) matrices B0 and
B1 containing the regression coefficients at times t = 0, 1,
respectively. The 6nr -dimensional vector em|r contains the
error resulting from the linear rock physics model. We assume
it to be Gaussian with expectation zero and (6nr × 6nr )
covariance matrix �m|r containing the variances associated
with the regressions of the logarithmic elastic properties on
the porosities and water saturations on the diagonal, while
the off-diagonal elements are the covariances between them.
Hence, the rock physics model is

p(m|r) = ϕ6nr

(
m; Br,�m|r

)
. (10)

The likelihood model, which relates d to r, is the sequen-
tial application of the rock physics model and the seismic
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likelihood model, and takes the form [d|r] = Gr + ed|r ,
where the (2nθ nd × 3nr ) matrix G = WADB is the forward
operator. Furthermore, the 2nθ nd-dimensional vector ed|r =
WADem|r + ed|m is an error vector assumed to be Gaussian
with expectation zero and (2nθ nd × 2nθ nd) covariance matrix
�d|r = WAD�m|r (WAD)T + �d|m . Hence, the likelihood
model is Gauss-linear

p(d|r) = ϕ2nθ nd

(
d; WADBr,�d|r

)
. (11)

In a Bayesian framework, Gauss-linearity of the likelihood
model is advantageous for several parametric prior models
that are conjugate with respect to this type of likelihood
model. The posterior model is then on the same form as the
prior model, but with different model parameters. Since the
likelihood model is jointly defined for the seismic data at both
time points, time-lapse inversion can be done simultaneously.

The signal-to-noise ratio (SNR) is a commonly used noise
measure for seismic data and is defined as the average variance
of the signal divided by the average variance of the noise

SNR = trace(Var(Gr))
trace(Var(d|r)) = trace

(
G�r GT

)
trace

(
�d|r

) (12)

where trace(·) returns the sum of the diagonal elements of the
argument. Note that the covariance matrix �r is defined by
the prior model p(r).

B. Prior Model

The prior model p(r) should reflect our prior knowledge
and understanding of the reservoir properties we want to
predict. We choose a selection Gaussian prior model due to
its flexibility and support for nonsymmetric and multimodal
characteristics, see [36]. We construct the model by using the
decomposition

p(r̃, ν) = p(ν|r̃)p(r̃) (13)

where the 3nr -dimensional vector r̃ = [r̃1, r̃2, r̃3] =
[φ̃, s̃0

w, s̃1
w] is the basis variable for r, and the 3nr -dimensional

vector ν = [ν1, ν2, ν3] is the auxiliary variable.
The basis variable is assumed to be a stationary GRF on Gr

p(r̃) = ϕ3nr (r̃; μr̃ ,� r̃ ) (14)

with

μr̃ =
⎡
⎣μφ̃ inr

μs̃0
w
inr

μs̃1
w
inr

⎤
⎦

�r̃ =
⎡
⎢⎣

σ 2
φ̃
� λ1σφ̃σs̃0

w
� λ2σφ̃σs̃1

w
�

λ1σφ̃σs̃0
w
� σ 2

s̃0
w
� λ3σs̃0

w
σs̃1

w
�

λ2σφ̃σs̃1
w
� λ3σs̃0

w
σs̃1

w
� σ 2

s̃1
w
�

⎤
⎥⎦. (15)

Here, μφ̃ , μs̃0
w
, and μs̃1

w
are the expectation levels and σ 2

φ̃
,

σ 2
s̃0
w
, and σ 2

s̃1
w

the variance levels of φ̃, s̃0
w , and s̃1

w , respectively.
Furthermore, the (nr × nr ) correlation matrix � contains the
spatial correlations, and is defined through the exponential
correlation function ρr (τ ; αr ) = exp{−τ/αr }. Here, τ > 0
is the distance between grid locations and αr > 0 is the range
parameter. The correlations between φ̃i and s̃0

w,i , between φ̃i

and s̃1
w,i , and between s̃0

w,i and s̃1
w,i are λ1, λ2, and λ3 for all

grid points i = 1, . . . , nr due to stationarity, respectively.
The auxiliary variable ν is Gauss-linearly and conditionally

independently related to the basis variable

p(ν|r̃) = p(ν1|r̃1)p(ν2|r̃2)p(ν3|r̃3)

=
3∏

k=1

ϕnr

(
νk; μνk |r̃k

,
(
1 − γ 2

k

)
Inr

)

=
3∏

k=1

(
nr∏

i=1

ϕ1
(
νk,i ; μνk,i |r̃k ,

(
1 − γ 2

k

)))
. (16)

The conditional means are μνk |r̃k
=0inr +�νk r̃k �

−1
r̃k

(r̃k −μr̃k inr ),
with �νk r̃k = γkσr̃k � being the cross-covariance matrix
between r̃k and νk , for k = 1, 2, 3. Moreover, γk is the cor-
relation between r̃k,i and νk,i . Associated with each auxiliary
variable is the nr -dimensional selection set Ak = Anr

k , with Ak

a subset of the real numbers. These selection sets are contained
in A.

Since p(r̃) is Gaussian and p(ν|r̃) is Gauss-linear, the joint
pdf p(r̃, ν) is Gaussian

p(r̃, ν) = ϕ6nr

([
r̃
ν

]
;
[

μr̃

0i3nr

]
,

[
� r̃ �r̃ν

�νr̃ �ν

])
. (17)

The (3nr × 3nr ) matrix �r̃ν = �T
νr̃ contains the cross-

covariance between r̃ and ν

�r̃ν =
⎡
⎣ γ1σφ̃� λ1γ2σφ̃� λ2γ3σφ̃�

λ1γ1σs̃0
w
� γ2σs̃0

w
� λ3γ3σs̃0

w
�

λ2γ1σs̃1
w
� λ3γ2σs̃1

w
� γ3σs̃1

w
�

⎤
⎦. (18)

Furthermore, the (3nr ×3nr ) covariance matrix �ν associated
with ν, is defined as

�ν =
⎡
⎣ �ν1 λ1γ1γ2� λ2γ1γ3�

λ1γ1γ2� �ν2 λ3γ2γ3�

λ2γ1γ3� λ3γ2γ3� �ν3

⎤
⎦ (19)

with

�νk = γ 2
k � + (

1 − γ 2
k

)
Inr , k = 1, 2, 3. (20)

The prior model is a discretized stationary S-GRF with pdf

p(r) = p(r̃|ν ∈ A)

=
∏3

k=1

∏nr
i=1 Φ1

(
Ak; μνk,i |r̃k ,

(
1 − γ 2

k

))
Φ3nr

(
A; 0i3nr ,�ν

) ϕ3nr (r̃; μr̃ ,� r̃ ).

(21)

The stationarity of the RF implies that all model parameters,
except the correlations, can be inferred from spatial histograms
of the reservoir properties. The parameters associated with
the marginal prior models p(rk) are inferred from spatial
histograms of the observed or true rk , while the intervariable
correlations λk are inferred from scatterplots. The spatial
locations associated with the reservoir properties are used to
assess the spatial correlation.

The reservoir properties are physically limited to the range
[0, 1]. Defining a continuous prior model honoring these limits
is challenging, with every solution having its drawbacks. One
possibility is transforming the reservoir properties from [0, 1]
to the real numbers, e.g., by the logit transformation. However,
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this approach may introduce increased multimodality due to
steep gradients near the borders of the range [0, 1]. One could
also use a truncated prior model, but this may depending on
the definition of the predictor, yield erroneous predictions that
are difficult to correct. Another possibility is to allow the prior
model to support nonphysical values slightly outside [0, 1] and
correct for this in the predictor. Since the focus is on the results
of the methodology, we choose the latter approach due to its
simplicity and effectiveness.

C. Posterior Model

The Gauss-linearity of the likelihood model p(d|r) induce
conjugacy in the prior model defined above; hence, the poste-
rior model is an S-GRF, see [31]. The posterior pdf is

p(r|d) = p(r̃|ν ∈ A, d)

=
∏3

k=1 Φnr

(
Ak; μνk |r̃k ,d,�νk |r̃k ,d

)
Φ3nr

(
A; μν|d ,�ν|d

) ϕ3nr

(
r̃; μr̃ |d,� r̃ |d

)
(22)

and the conditional parameters involved in the model and the
McMC algorithm used for assessment can be found in [36].

D. Predictor

We identify the locationwise most probable values
of the reservoir properties from the posterior distribution. This,
the marginal maximum posterior (MMAP), is defined to be the
predictor

r̂MMAP =
{

argmax
rk,i

{
p
(
rk,i |d

)}
, k =1, 2, 3, i =1, . . . , nr

}
.

(23)

Furthermore, we use (1−α)×100% highest posterior density
(HPD) prediction intervals to accompany the predictions. A
HPD prediction interval attains the desired (1 − α) × 100%
coverage by encompassing only the most probable regions
that cumulatively integrate to (1 − α) × 100%. These regions
need not be connected; hence, a HPD prediction interval may
consist of a collection of disjoint regions, thereby reflecting
multimodality in the posterior distribution. HPD prediction
intervals are therefore natural to use in the S-GRF framework.
The coverage level (1−α)×100% is arbitrary and determined
by the user. The choice is usually influenced by the application
and the form of the posterior distribution. Commonly used
coverage levels are 80%, 90%, 95%, and 99%. In a setting
of HPD prediction intervals, it is natural to select a coverage
level resulting in prediction intervals that reflect the shape of
the distribution.

Since the prior model can support nonphysical values, so
can the MMAP and HPD prediction interval. Should they
exceed [0, 1], they are truncated to the appropriate limits of
this range.

IV. 1-D APPLICATION: OIL PRODUCTION

We first validate the seismic inversion methodology using
a well log data set from a vertical well in the North Sea,

see [37]. The data were measured in a clastic reservoir partially
filled by oil and include sonic logs, petrophysical logs, and
estimated volumetric curves. The depth interval considered in
this study, hereafter referred to as the study interval, contains
a sequence of sand and shale interpreted using the gamma
ray log. The sand layers have mid-to-high effective porosity
computed from the density and neutron porosity log. Two
main oil reservoir zones can be identified; one in the middle
part and the other in the lower part of the study interval. Oil
saturation is calculated from the resistivity log in the clean
sand layers using Archie’s law. The well logs were measured
one year prior to oil production. The production mechanism
is water injection through a nearby well and oil extraction
from the two layers. Based on fluid flow simulations 10 years
ahead, saturation profiles are predicted at the well location,
resulting in partial saturations in the two reservoir layers.
The measured pre-production well logs and the in-production
predicted saturation profile, shown in Fig. 1, are used to
generate synthetic time-lapse seismic AVO data at the well
location. Note that the in-production water saturation has
an increase in highly saturated locations from the bottom-
up within both oil reservoirs compared to the pre-production
water saturation, which reflects the production mechanism.
Uncorrelated Gaussian noise is added to the synthetic data
assuming an SNR of 5. The pre-production elastic properties
are available from the well logs, while the in-production
velocities and density are computed from the porosity and pre-
dicted saturation profile by Gassmann’s equation. We assume
that only the pre-production well logs are known; hence,
the likelihood and prior models must be assigned based on
these. However, the predicted saturation profile will be used to
validate the inversion result. The porosity and water saturation
profiles used to generate the synthetic time-lapse seismic data
are referred to as the truth.

The study interval has a reservoir grid Gr consisting of
nr = 105 regularly spaced locations, while the seismic grid
Gd consists of nd = 104 locations being a subset of Gr .

The time-lapse seismic AVO data associated with the prob-
lem is presented in Fig. 2 and consists of nθ = 3 angle stacks.
The stacking angles are adopted from a seismic processing
study in a nearby field. The estimated critical angle is approx-
imately 45◦, hence the linearized Zoeppritz equations provide
an accurate approximation of the reflection coefficients for all
angle stacks used in this study. There is a visible difference
in the pre-production and in-production seismic data in the
middle part and lower part of the study interval, coinciding
with the locations of the two oil reservoir zones.

A. Likelihood Model

Since the seismic data are synthetically generated from
the elastic properties, we have full knowledge of the seismic
likelihood model [d|m] = WADm + ed|m . Hence, only the
rock physics model [m|r] = Br + em|r requires parameter
estimation, which entails estimation of the parameters involved
in the multiple linear regression model, consisting of the
coefficients contained in B and the entries in the covariance
matrix �m|r . We apply the same rock physics model in the
entire study interval; however, for more complex data sets with
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Fig. 1. Well logs. P-velocity, S-velocity, density, porosity, and water saturation displayed column-wise left to right. The two main oil reservoir zones are
highlighted by transparent black rectangles. The display of water saturation contains both pre-production (solid line) and in-production (dashed line) water
saturations, and the saturations coincide at depths where only a solid line is present.

Fig. 2. Time-lapse seismic AVO data. The seismic AVO data pre-production (solid lines) and in-production (dashed lines). The left, middle, and right displays
correspond to the 8◦ stack, 24◦ stack, and 40◦ stack, respectively.

multiple facies, we recommend to adopt a lithology-dependent
rock physics model. The effect of water saturation is assumed
to be constant in time; hence, the coefficients contained in
both B0 and B1 can be estimated at the pre-production stage.

In Table I, the numerical values of the estimated coefficients
and standard deviations associated with the Gauss-linear rock
physics likelihood model are displayed. The estimated cross-
covariance between the elastic properties are ξ̂z p zs , ξ̂z pρ , and
ξ̂zsρ , with corresponding correlations 0.737, 0.156, and 0.400.

From Table I, we note that porosity is assigned more
explanatory power than water saturation. In Fig. 3, the
regression models are displayed. Each display in the figure
represents a projection into a bivariate domain. Any remaining
variability in the elastic properties is probably due to variations
in mineral fractions and rock texture. The dominant explana-
tory power of porosity is notably reflected in the distance
between the lines, which is relatively small in the left column
when s0

w is fixed. This is particularly evident in the model for
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TABLE I

ESTIMATED PARAMETERS IN THE ROCK PHYSICS LIKELIHOOD MODEL.
THE ESTIMATED INTERCEPT α̂ , SLOPE OF POROSITY β̂φ , AND SLOPE OF

WATER SATURATION β̂s0
w

, ARE DISPLAYED TOGETHER WITH THE

ESTIMATED STANDARD DEVIATION σ̂ FOR EACH REGRESSION

MODEL IN THE TOP TABLE. EACH ROW OF THE TABLE

CONTAINS THE PARAMETERS ASSOCIATED WITH THE
MODEL FOR THE ELASTIC PROPERTY SPECIFIED

IN THE LEFTMOST COLUMN. THE ESTIMATED

CROSS-COVARIANCE BETWEEN THE ELASTIC
PROPERTIES, ξ̂z p zs , ξ̂z pρ , AND ξ̂zs ρ , ARE

SHOWN IN THE LOWER TABLE

Fig. 3. (Left Column) Estimated relationship between the elastic properties
and porosity, with water saturation fixed to a value in [0, 1] with step size
0.1. (Right Column) Estimated relationship between the elastic properties
and water saturation, with porosity fixed to a value in [0.1, 0.25] with step
size 0.05. The color of the lines gradually transitions from black to white,
corresponding to minimum and maximum values, respectively. The true elastic
properties are indicated by points.

log-S-impedance. Indeed, the shear modulus is not affected
by the fluid, therefore the fluid effect on S-impedance only
depends on the density.

B. Prior Model

The parameters used in the prior model are listed in Table II.
The prior model p(s1

w) is assumed to be the same as p(s0
w),

Fig. 4. Histograms of the true reservoir properties pre-production together
with marginal prior models (solid lines). (Top) Porosity. (Bottom) Water
saturation pre-production.

TABLE II

PARAMETER VALUES USED IN THE PRIOR S-GRF. THE PARAMETERS

ASSOCIATED WITH THE BASIS GRF MODEL ARE SHOWN IN THE

TOP; THE EXPECTATION LEVELS (μφ̃, μs̃0
w
, μs̃1

w
) IN THE LEFTMOST BLOCK,

THE VARIANCE LEVELS (σ 2
φ̃
, σ 2

s̃0
w
, σ 2

s̃1
w
) IN THE MIDDLE BLOCK,

AND THE CORRELATIONS λk , k = 1, 2, 3 BETWEEN THE
VARIABLES IN THE RIGHTMOST BLOCK. THE PARAMETERS

ASSOCIATED WITH THE AUXILIARY GRF ARE SHOWN

IN THE MIDDLE; THE MARGINAL SELECTION SETS Ak
IN THE LEFT BLOCK, AND THE CORRELATIONS WITH
THE BASIS GRF γk , k = 1, 2, 3 IN THE RIGHT BLOCK.
THE RANGE PARAMETER αr ASSOCIATED WITH THE

SPATIAL CORRELATION STRUCTURE
IS LISTED IN THE BOTTOM

coinciding with the conservative assumption of time stationary
water saturation. The intervariable correlations between the
basis GRF s̃1

w and the basis GRFs φ̃ and s̃0
w are assigned to

be −0.4 and 0.4, respectively.
The marginal prior models, together with spatial histograms

of the pre-production truth, are displayed in Fig. 4. The two
modes in the marginal prior for porosity are not as clearly
separated as the modes in the marginal prior for the water
saturations. The prior model should cover the truth, but also
be conservative in the sense of having larger variability. Note
that the prior model supports values outside the physical
range [0, 1].

One realization from the prior model, together with 90%
HPrD (highest prior density) intervals, are displayed in Fig. 5.
The HPrD intervals reflect the marginal prior distributions,
and since they are constant along the study interval, also the
stationarity of the RF. As expected, the HPrD intervals indicate
bimodality in the marginal prior for the water saturations, but
not in the marginal prior for porosity. From the figure, we see
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Fig. 5. One realization from the prior model. The realization (solid lines) is displayed with 90% HPrD intervals (dot-dashed lines). (Left) Porosity. (Middle)
Water saturation pre-production. (Right) Water saturation in-production.

that the realization of each reservoir property is marginally
informed by the prior model, and that they contain abrupt
mode transitions along the entire study interval. The prior
model is marginally informative, but noninformative with
respect to the location of mode transitions. The abrupt mode
transitions are more evident in the realization of the water
saturations than in porosity. The realization of porosity is
below zero at some locations, while the realization of the water
saturations frequently exceed one, but is rarely below zero.

C. Results

The predicted reservoir properties with associated prediction
intervals are shown in Fig. 6. The true reservoir properties are
displayed for validation. The predicted reservoir properties and
their 90% HPD prediction intervals are [0, 1]-truncated. Note
that the truncation of the predictions almost only occurs for
predictions of water saturations exceeding 1, and rarely for
predictions of porosity below 0. The results for porosity appear
to be very reliable; the MMAP prediction greatly coincides
with the truth, and the HPD prediction interval appears to
be reasonable. Note that the prediction interval does not
reflect bimodality in the marginal posterior distributions, but
appears as relatively wide at some locations since the posterior
modes are not sufficiently distinct. The results for the water
saturations also appear to be very reliable. The abrupt mode
transitions seen in the true water saturations are reproduced
in the predictions, and the prediction intervals appear to be
reasonable. The pre-production prediction appears to be very
accurate, except for slightly overpredicting between 1270 and
1280 ms. The in-production prediction also appears highly
reliable, but the first mode transition from the top seen in
the pre-production result is not reproduced. Bimodality in
the marginal posteriors is reflected in the prediction intervals
at several locations, especially near the locations of mode

TABLE III

EMPIRICAL CORRELATION BETWEEN THE MMAP PREDICTIONS

AND THE TRUTH, AND EMPIRICAL COVERAGE OF THE
90% HPD PREDICTION INTERVALS

transitions. The prediction intervals reflect bimodality at the
pre-production stage less often than at the in-production stage,
indicating more uncertainty in the latter. This is as expected
since the prior model is assigned based on the pre-production
truth.

Note the marked difference in the marginal posterior dis-
tributions reflected in the HPD prediction intervals in Fig. 6
compared to the marginal prior distributions seen in Fig. 5.
This difference clearly illustrates the effect of conditioning
the model on the time-lapse seismic AVO data.

The correlation between the predictions and the truth and
the empirical coverage of the 90% HPD prediction intervals
are listed in Table III. By construction, the expected empirical
correlation between a realization from the prior model and the
truth is zero. The empirical correlation between the MMAP
predictions and the truth are notably higher, reflecting the
influence of the seismic data on the model. As expected, the
correlation associated with porosity and pre-production water
saturation is higher than the correlation associated with the in-
production water saturation. Moreover, the empirical coverage
greatly coincides with the specified coverage, indicating that
the prior model reflects the variability in the truth.

V. 2-D APPLICATION: CO2 SEQUESTRATION

We apply the proposed seismic inversion methodology to
a time-lapse geophysical monitoring study for a project in
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Fig. 6. Inversion result. The MMAP predictions (solid lines) are displayed with 90% HPD prediction intervals (dot-dashed lines) and the truth (dots). (Left)
Porosity. (Middle) Water saturation pre-production. (Right) Water saturation in-production.

the Johansen formation, a potential CO2 storage unit, located
offshore Norway, underneath the Troll field ([38] and [39]). An
overview of the geology for the Johansen formation and the
overlying sealing layers is given in [38]. The rock formation
is a sandstone unit with relatively high average porosity and
permeability. Porosity and permeability are assumed to be
constant in time. Simulations of CO2 injection and migration
using two-phase fluid flow modeling are presented in [39]. The
initial porosity and the fluid saturation predicted by fluid flow
simulations to years 10 and 100 are referred to as the truth.
This truth is used to generate synthetic time-lapse seismic
AVO data. Density is computed as a linear combination of
the density of the solid and fluid phases weighted by the pore
volume. Velocities are computed using the soft sand model
that integrates the Hertz-Mindlin equations, Hashin-Shtrikman
lower bounds, and Gassmann’s equations [40]. Uncorrelated
Gaussian noise is added to the synthetic data assuming an SNR
of 5. We assume to be in a setting where the true reservoir
and elastic properties are only known in year 10; hence, a
model fitting must be based on these. However, the simulated
saturation profile in year 100 will be used to validate the
inversion result.

The 2-D section is gridded by 41 vertical traces, each of
which consists of 10 and 11 trace-unique locations for the
seismic grid and reservoir grid, respectively. The reservoir grid
Gr therefore consists of nr = 451 locations, regularly spaced
horizontally, and with trace-unique vertical gridding. The

seismic grid Gd consists of nd = 410 locations with similar
structure. Visualizing the data and results on the reservoir
and seismic grids is challenging because of the irregularity
caused by the trace-unique vertical gridding. The calculations
are therefore performed on the uneven grid, but we linearly
interpolate to a regular grid to enable visualization. Note that
this may smooth the appearance of the presented data and
results to some degree.

The time-lapse seismic AVO data used in the study is
presented in Figs. 7 and 8, representing seismic AVO data
from the CO2 reservoir after 10 and 100 years of production,
respectively. The seismic data consist of nθ = 3 angle stacks,
which are displayed row-wise in the figures. In Fig. 7, the
signal stands out as relatively strong in the middle traces,
which coincides with the location of the CO2. The signal
appears weaker to the right of the CO2 region than to the
left of it, which is a consequence of the geometry of the high
porosity region. The seismic signal shown in Fig. 8 is similar
to the signal from year 10, but the middle region of relatively
high seismic response is now bigger. This is expected because
the CO2 region has expanded.

A. Likelihood Model

Since the seismic data are synthetically generated from the
elastic properties, we have full knowledge of the seismic model
[d|m] = WADm + ed|m ; hence, only the parameters of the
rock physics model [m|r] = Br + em|r must be estimated.
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Fig. 7. Seismic AVO data from year 10. The top, middle, and bottom displays correspond to the 8◦ stack, 24◦ stack, and 40◦ stack, respectively.

Fig. 8. Seismic AVO data from year 100. The top, middle, and bottom displays correspond to the 8◦ stack, 24◦ stack, and 40◦ stack, respectively.

This entails estimating the coefficients contained in B and the
entries in the covariance matrix �m|r . We assume the effect of
water saturation to be constant in time, and therefore estimate
the coefficients contained in B0 and B1 from the true reservoir
and elastic properties in year 10.

In Table IV, the numerical values of the estimated
coefficients and standard deviations associated with the
Gauss-linear rock physics likelihood model are displayed. The
estimated cross-covariance between the elastic properties are
ξ̂z p zs , ξ̂z pρ , and ξ̂zs ρ , with corresponding correlations 0.806,
0.061, and −0.116. Since the two latter correlations are low,
we assume them to be zero; hence, independence between the
involved elastic properties. Note that porosity is assigned more

explanatory power than water saturation, and this is reflected
in Fig. 9, which displays the regression models.

B. Prior Model

The parameter values used in the prior model are listed in
Table V. The prior model p(s1

w) is assumed to be the same
as p(s0

w), coinciding with the conservative assumption of time
stationary water saturation. We also assume that the pdf of the
basis GRF p(r̃) can be expressed

p(r̃) = p
(
φ̃
)

p
(
s̃0
w

)
p
(
s̃1
w

)
. (24)

This assumption of independence between the reservoir prop-
erties, particularly between the water saturations, may not
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TABLE IV

ESTIMATED PARAMETERS IN THE ROCK PHYSICS LIKELIHOOD
MODEL. THE ESTIMATED INTERCEPT α̂, SLOPE OF POROSITY

β̂φ , AND SLOPE OF WATER SATURATION β̂s0
w

, ARE DISPLAYED

TOGETHER WITH THE ESTIMATED STANDARD DEVIATION σ̂
FOR EACH REGRESSION MODEL IN THE TOP TABLE. EACH

ROW OF THE TABLE CONTAINS THE PARAMETERS ASSOCIATED

WITH THE MODEL FOR THE ELASTIC PROPERTY SPECIFIED

IN THE LEFTMOST COLUMN. THE ESTIMATED
CROSS-COVARIANCE BETWEEN THE ELASTIC

PROPERTIES, ξ̂z p zs , ξ̂z pρ , AND ξ̂zs ρ , ARE SHOWN

IN THE LOWER TABLE

Fig. 9. (Left Column) Estimated relationship between the elastic properties
and porosity, with water saturation fixed to a value in [0, 1] with step size
0.1. (Right Column) Estimated relationship between the elastic properties
and water saturation, with porosity fixed to a value in [0.1, 0.25] with step
size 0.05. The color of the lines gradually transition from black to white,
corresponding to minimum and maximum values, respectively. The true elastic
properties are indicated by points.

be realistic. However, specifying a correlation is problematic
since it does not capture the causal relationship between the
water saturations, and it appears to be highly trace dependent.
With no correlations specified, the methodology relies more
heavily on the seismic data than it otherwise would.

The marginal prior models, together with spatial histograms
of the truth in year 10, are displayed in Fig. 10. The two

Fig. 10. Histograms of the true reservoir properties in year 10 together with
marginal prior models. (Top) Porosity. (Bottom) Water saturation.

TABLE V

PARAMETER VALUES USED IN THE PRIOR S-GRF. THE PARAMETERS

ASSOCIATED WITH THE BASIS GRF MODEL ARE SHOWN IN
THE TOP; THE EXPECTATION LEVELS (μφ̃, μs̃0

w
, μs̃1

w
) IN THE LEFTMOST

BLOCK, THE VARIANCE LEVELS (σ 2
φ̃
, σ 2

s̃0
w
, σ 2

s̃1
w
) IN THE MIDDLE

BLOCK, AND THE CORRELATIONS λk , k = 1, 2, 3 BETWEEN

THE VARIABLES IN THE RIGHTMOST BLOCK. THE PARAMETERS

ASSOCIATED WITH THE AUXILIARY GRF ARE SHOWN IN

THE MIDDLE; THE MARGINAL SELECTION SETS Ak IN THE
LEFT BLOCK, AND THE CORRELATIONS WITH THE BASIS

GRF γk , k = 1, 2, 3 IN THE RIGHT BLOCK. THE RANGE

PARAMETER αr ASSOCIATED WITH THE SPATIAL

CORRELATION STRUCTURE IS LISTED
IN THE BOTTOM

modes in the marginal priors are clearly separated. The prior
model should cover the truth, but also be conservative in
the sense of having larger variability. However, since the
data are very distinctly grouped, it is challenging to assign a
prior model with representative variability. This is particularly
challenging for the water saturations since the data is almost
binary. Moreover, the histogram of the true porosity may have
three modes; hence, a bimodal prior model may not be fully
representative.

One realization from the prior model is displayed in Fig. 11.
We see that the realization of each reservoir property is similar
in that they all contain abrupt mode transitions seemingly
without pattern over the entire 2-D section. They are different
in that the porosity is mostly low-valued with many high-
valued speckles, while the water saturations are mostly high-
valued with few low-valued speckles. The prior realization
with 90% HPrD intervals through trace 22 is displayed in
Fig. 12. The realization abruptly transitions between modes
along the trace, and bimodality in the prior model is clearly
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Fig. 11. One realization from the prior model. (Top) Porosity. (Middle) Water saturation in year 10. (Bottom) Water saturation in year 100. The dashed line
through trace 22 indicates the vertical profile we consider closer.

Fig. 12. Prior realization through trace 22. The realization (solid lines) is displayed with 90% HPrD intervals (dot-dashed lines). (Left) Porosity. (Middle)
Water saturation in year 10. (Right) Water saturation in year 100.

reflected in the HPrD interval of each reservoir property. Since
the prior model is stationary, the HPrD intervals are constant
along the trace.

C. Results

The predicted porosity, water saturation in year 10, and
water saturation in year 100 are shown in Figs. 13–15, respec-
tively. For comparison, the true porosity and water saturations
are also displayed. The prediction of porosity appears to be
reliable. The shape of the predicted region with comparatively
higher porosity is very similar to the truth, with the exception

of the lowest of the two thin subregions to the right. This
region is particularly difficult to predict because it is very
thin and contains porosity values in the mid-range that are
hard to differentiate from the lower values. The predicted
porosity values are overall in good agreement with the truth.
The predictions of the water saturations appear to be highly
reliable. The high and low values are correctly located, and the
shape of the regions with comparatively low water saturations
is very similar to the truth.

Since the prediction plots are interpolated, and there-
fore somewhat smoothed, we present the predictions with
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Fig. 13. Inversion result for porosity. (Top) Truth. (Bottom) MMAP. The dashed line through trace 22 in the MMAP indicates the vertical profile we consider
closer.

Fig. 14. Inversion result for water saturation in year 10. (Top) Truth. (Bottom) MMAP. The dashed line through trace 22 in the MMAP indicates the vertical
profile we consider closer.

Fig. 15. Inversion result for water saturation in year 100. (Top) Truth. (Bottom) MMAP. The dashed line through trace 22 in the MMAP indicates the vertical
profile we consider closer.

associated 90% HPD prediction intervals together with the
truth in original grid format along the vertical profile through
trace 22 in Fig. 16. Note that the true CO2 region is relatively
small in year 10, but covers the entire porous layer in year
100. Also note that the bimodality of the posterior distribution
is clearly reflected in the prediction intervals. The prediction
of porosity appears to be reliable; the predicted porosities
deviate from the truth only to a small extent and the posterior

distribution appears unimodal except for near the mode tran-
sitions. The two water saturations also appear to be reliably
predicted. The predicted values match the truth well in both
cases, but the high-to-low mode transition in the predicted
water saturation in year 10 is a bit too low. Note that the
predictions are rarely truncated, and when they are, the effect
is not big since the true MMAP is just barely larger than 1. The
posterior distribution of water saturation in year 10 appears to
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Fig. 16. Inversion result through trace 22. The MMAP predictions (solid lines) are displayed with 90% HPD prediction intervals (dot-dashed lines) and the
truth (dots). (Left) Porosity. (Middle) Water saturation in year 10. (Right) Water saturation in year 100.

Fig. 17. Variance of posterior samples. (Top) Porosity. (Middle) Water saturation in year 10. (Bottom) Water saturation in year 100.

have a high valued mode throughout the entire profile. Here,
the CO2 region is small, causing the posterior to be somewhat
uncertain. However, the probability of the high valued mode
does seem to shrink in this region. The posterior distribution
of water saturation in year 100 displays much unimodality, but
bimodality can be seen near the locations of the mode transi-
tions and to a small extent in the middle of the CO2 region.

The prediction variances are presented in Fig. 17. As
expected, the variances are high near the borders separating the
two qualitatively different regions for each reservoir property.
Note also the large variance in the porosity predictions to the
right, where the two thin subregions are located.

The correlation between the predictions and the truth, and
the empirical coverage of the 90% HPD prediction intervals
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TABLE VI

EMPIRICAL CORRELATION BETWEEN THE MMAP PREDICTIONS AND THE
TRUTH, AND EMPIRICAL COVERAGE OF THE 90% HPD

PREDICTION INTERVALS

are displayed in Table VI. As expected, the correlation asso-
ciated with each reservoir property is high, but higher for
the water saturations than for porosity. The relatively low
correlation associated with porosity is most likely a result of
the bimodal prior model not being fully representative of the
possibly trimodal characteristics of porosity. The computed
coverages are somewhat higher than the specified 90%, which
indicates that the variability in the prior model may be too
high. This is as expected, since the reservoir properties exhibit
quite distinct levels which are challenging to model.

The methodology is validated on a 2-D problem, but it can
be extended to 3-D studies in a trace by trace inversion setting.
Each trace is indeed inverted independently and the continuity
of the results depends on the continuity of the input seismic
data. The computational cost of the inversion increases linearly
with the number of traces.

VI. CONCLUSION

The time-lapse seismic AVO inversion problem is
approached in a Bayesian framework where the likelihood
model is Gauss-linear and the prior model is an S-GRF. The
likelihood model captures the joint effect of the reservoir
properties on the seismic data at both time points. The prior
model is chosen due to its ability to represent multimodality
and to reproduce abrupt spatial mode transitions, seen in the
reservoir properties. The model makes it possible to do joint
seismic inversion for the two time points, and the inversion
result is represented by the posterior model. The methodology
is demonstrated on two realistic synthetic cases; on predicting
the changes along a 1-D profile of an oil reservoir induced
by oil production, and on predicting the expansion of a CO2

region in a 2-D section of a subsurface potential CO2 storage
unit caused by injection of CO2.

The inversion methodology reproduces the abrupt mode
transitions seen in the true reservoir properties and provides
reliable inversion results in both cases. In the 2-D case,
the reservoir properties are distinctly multimodal and appear
to correlate in a complex way. These characteristics are
challenging to model, and specifying a prior model with
representative variability is particularly hard. The 1-D case
is not as problematic because the reservoir properties are
not as distinctly multimodal and since the correlation has to
be specified along one trace only. Moreover, the inversion
methodology is capable of predicting relatively thin layers of
locally extreme values. This is particularly evident in the 1-D
case. However, the mid-valued thin lower subregion in the true
porosity in the 2-D case is not reproduced in the prediction.
This is likely caused by the prior model of porosity not being
fully representative, and the absence of lateral correlation

in the prior model may be a contributing factor. The prior
model can be extended to honor geological layering better
by introduction of lateral correlation. This is computationally
more expensive because it requires trace conditioning, but may
improve resolution in the 2-D case. Overall, the results are very
encouraging, indicating that the proposed model formulation
and statistical assumptions are particularly suited for fluid flow
monitoring problems.
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