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A B S T R A C T

A ship automation will be a key to the future maritime. In particular, ship dynamic models play an integral
role. However, it is challenging to develop an accurate model readily. Recent studies proposed a physics-data
cooperative model that predicts a future trajectory by compensating for position errors made by the physics-
based model by using a machine learning model, which learns such a multiple-step-ahead compensation based
on onboard sensor measurements. It seems to be promising to reduce effort in model development by exploiting
observation data while having physics knowledge and a stable foundation in the model. However, it has been
an open question ‘‘how much does the cooperative model benefit from physics knowledge and observation
data?’’. We tackled this key question experimentally. To investigate the benefit of the physics-based model and
the data amount, by changing the accuracy of the physics-based model and the size of observation dataset,
simulation and full-scale experiments were conducted. Results show that the accuracy of the physics-based
model and the data amount were complementary to each other to some extent. A wide range of physics-based
models worked as prior knowledge, however, too inaccurate models disturbed the training.
1. Introduction

Recently, ship autonomy has gained an increasing attention from
the research and industrial communities for ensuring operational safety
and efficiency in the busy marine traffic, such as narrow channels and
ports. They are expected to open new vistas in supporting or even
substituting human onboard decision making to avoid human errors
and make more efficient decisions (Norwegian Shipowners Association,
2019). Although we have seen the rapid success of the autonomous field
robots and cars, that for autonomous ships remains topical. One of the
reasons is the fact that an autonomous ship is a more comprehensive
system composed of versatile marine robotics, automation, and sensing
technologies.

In particular, it is of great importance to have a good situation
awareness understanding what is happening now and will happen in
the future surrounding a ship (e.g., Xiao et al. (2020) and Zhang
et al. (2022)). A ship is a dynamic system with poor maneuverabil-
ity, thereby, poor situation awareness may easily lead to fatal conse-
quences, such as colliding with obstacles or stranding. In this context,
for decades, researchers have been devoting their research effort to
building an accurate ship dynamic model so that it predicts a future
trajectory used for the early warning & prediction of the future colli-
sion risk. Fig. 1 illustrates the relationship between the ship dynamic
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model identification and the early warning & prediction in the versatile
technologies for the ship autonomy in the future maritime transport.

Research communities have grouped approaches of ship dynamics
modeling into three categories; namely, model-based, data-driven, and
cooperative approaches. Model-based approaches formulate a linear
regression model based on the understanding of physics. This study
refers to such models as physics-based models. Model’s parameters are
identified by employing numerical simulations and model/full-scale
experimental data (e.g., Wang et al. (2019)). The biggest advantage lies
in the fact that they can be easily calibrated with a small dataset finding
an optimal function parsimoniously in a parametric manner. Moreover,
we can easily check the model’s validity by looking into identified
parameters. They have been playing a dominant role in applications
by providing a stable and reliable foundation of the understanding
of ship dynamics. However, the practice of parameter identification
is rather sensitive revolving around a good-quality, sufficient, and
balanced dataset in addition to the explicit understanding of real-
world phenomena. Thereby, mostly, it ends up with poor performance
although it takes prohibitive time & cost to be built with physically
reasonable parameters. On the other hand, data-driven approaches of-
fer parsimonious non-parametric models to achieve better performance
by finding patterns in the dataset without depending on scientific
vailable online 8 November 2022
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Fig. 1. A schematic overview of ship dynamic model identification and the early
warning & prediction of the future collision risk in versatile technologies for ship
autonomy in future maritime transport.

knowledge, although it may require more data to be calibrated than
the physics-based model. Since the wake of the so-called third wave
of artificial intelligence since the 1990s, data-driven approaches have
been applied to challenging tasks in the maritime domain (e.g., the
evaluation of ship pollutant emissions (Xiao et al., 2022) and the ship
detection from videos (Chen et al., 2021)). Ship dynamics modeling is
no exception to this trend (e.g., Kawan et al. (2017) and Schirmann
et al. (2022)). However, pure data-driven models have no scientific
interpretability. It becomes more of an issue in the application since
the maritime industry is highly conservative in safety-critical systems.
In addition, it is not a wise step for data-driven models to discard our
domain knowledge packaged into the physics-based model.

A cooperative approach combines model-based and data-driven ap-
proaches. Recently, the maritime applications are not exceptions in a
trend of making a synergy of scientific knowledge and data (e.g., Fon-
seca and Gaspar (2021)). Skulstad et al. (2021a) and Wang et al. (2021)
presented breakthrough ideas that compensate/map trajectories made
by the available physics-based model into true trajectories in a data-
driven manner. Such data-driven geometrical compensation/mapping
achieved a good performance while keeping the stability of the physics-
based model untouched as a stable foundation of the model. Moreover,
in their approaches, we can clearly distinguish the contributions of the
physics-based and data-driven models on the prediction performance as
they play different roles in the model, thus having good interpretability
and maintainability of the model with a good performance. It seems
to be promising to overcome time & cost challenges the maritime
industry faces since it would lower rigorous hurdles of model-based or
data-driven approaches by combining two approaches.

An open question about such cooperative approaches is ‘‘how much
does the cooperative model benefit from physics knowledge and ob-
servation data?’’ to achieve a good performance in a physics-data
cooperative way (referred to as the cooperative performance, here-
inafter). In not only the academic but also the industrial views, this
question is important from the two perspectives. On the one hand, the
accuracy of the available physics-based model is diverse. It could be
degraded, for instance, due to the poor conduct of the parameter iden-
tification, parameters identified in a compromised manner (e.g., copy
& paste parameters of similar ships), low-fidelity actuator models, and
being tuned to the other operations. On the other hand, available data
are mostly limited. Real-world ship maneuvers are required for the
data collection, however, it is money- and time-consuming. Thereby,
a better understanding of the impact of these two components on the
cooperative performance is of great interest to our industrial partners.
To the best of the authors’ knowledge, so far, this open question has
not been addressed in any literature, albeit its importance in industrial
applications. In this study, we validate a cooperative framework, which
builds an accurate ship dynamic model by combining a compromised
2

physics-based model and limited observation data.
To offer one solution to the open question ‘‘how much does the
cooperative model benefit from physics knowledge and observation
data?’’, this study conducted experimental investigations, which are
divided into two parts. First, simulation experiments enabled us to
investigate the impact of the accuracy of the physics-based model and
the data amount on the cooperative performance. Second, in the full-
scale experiment where only limited observation data are available,
we further explore the reasonable range of the physics-based model’s
accuracy on the cooperative performance. The full-scale experiment
was conducted by the 33.9m-length research vessel Gunnerus. The
results showed that we could achieve a good performance by using
the combination of the compromised physics-based model and a small
dataset. The cooperative performance was equivalent to the perfor-
mance of the accurate physics-based model, which takes much more
time & cost to be built. Contributions of this study are summarized as
follows:

• It was found that the balance of the accuracy of the physics-based
model and the data amount was key to achieve a good perfor-
mance of the physics-data cooperative model rather than relying
on either of them. In addition, the full-scale experiment presented
the validity of building a cooperative model with a compromised
physics-based model and a small observation dataset. These find-
ings make the cooperative model more promising for reducing
effort dedicated for the model development by using physics
knowledge and observation data.

• Although a wide range of physics-based models successfully facil-
itated the model identification, however, it disturbed the training
if it was too inaccurate. This finding highlights the importance
of technologies that develop a simplified physics-based model
readily without compromising its performance drastically.

Hereinafter, this paper unfolds as follows. Section 2 illustrates re-
lated works aiming at the synergy of the scientific knowledge and
data in different applications. In Section 3, we explain the cooper-
ative ship dynamic model employed in this study. An experimental
study in the simulation environment is presented in Section 4. A full-
scale experiment is illustrated in Section 5. Conclusions are given in
Section 7.

2. Related works

In many applications, it is seen to leverage scientific knowledge and
data for better performance and reliability. In Karpatne et al. (2016),
Karpatne et al. named such approaches Theory-Guided Data Science
(TGDS), and grouped diverse approaches into five categories; namely,
theory-guided design of data science models, theory-guided learning of
data science models, theory-guided refinement of data science outputs,
hybrid models of data science and theory, and augmenting theory-
based models using data science. Besides TGDS, different terminologies
(e.g., transfer learning (Panigrahi et al., 2021), physics-informed Ma-
chine Learning (ML) (Karniadakis et al., 2021), informed ML (Vonrue-
den et al., 2021), and gray-box/semi-parametric modeling (von Stosch
et al., 2014)) fully/partly cover ideas of the cooperative approach in
the field of ship dynamics. There is no domain-agnostic ‘‘best practice’’
of the cooperative approach, thereby, it is necessary to carry out a
domain-specific investigation to achieve the good harmony of scientific
knowledge and data.

In this study, we assume we have a physics-based model and a
new dataset of the ship maneuver. The physics-based model could be
derived in the compromised manner and the new dataset is not satis-
factory in terms of its amount, quality, or distribution. In such settings,
the most straightforward and classic way to model ship dynamics is to
re-identify parameters of the physics-based model so that it performs
well in the prepared dataset by using ML algorithms (e.g., support
vector machine (Wang et al., 2019; Luo and Li, 2017), a Bayesian

approach (Xue et al., 2020)). This approach belongs to ‘‘theory-guided



Ocean Engineering 266 (2022) 112998M. Kanazawa et al.
Fig. 2. Snapshots of (a) simulation experiments in Section 4 and (b) full-scale experiments in Section 5. (b) was taken on November 21st, 2019 in the west coast of Norway.
design of data science models’’ in the TGDS’s categorization. If the
identification succeeds, it provides a highly interpretable model. How-
ever, it has been a challenging task since our understanding of ship
dynamics mostly does not fully capture real-world phenomena. This
challenge brought us to use non-parametric models in this domain.
Since the maritime industry highly values the reliability of physics-
based models, previous research in this field has devoted its effort
to building a cooperative architecture of the physics-based and data-
driven models. It corresponds to ‘‘hybrid models of data science and
theory’’ in the TDGS’s categorization. Ven et al. employed a neural net-
work for representing damping terms of the physics-based model (van
de Ven et al., 2007). In Skulstad et al. (2021b) and Kanazawa et al.
(2022), neural networks were used for compensating for the single-step-
ahead prediction error made by physics-based models. Mei et al. (2019)
employed a random forest to map the estimation of the acceleration
made by the similar ship’s dynamic model into that of the targeting
ship by using a dataset of the targeting ship. Those approaches directly
intervene in the performance of the physics-based model by data-
driven models, thus making one unified trajectory in the physics-data
cooperative manner. Their cooperative approaches are efficient thanks
to their simple architecture, however, their stability in the numerical
iteration is hardly validated. Moreover, once trajectories are generated,
it is impossible to isolate the contribution of the physics-based and
data-driven models from the generated trajectory. Thereby, in practice,
they can be used only when we have a relatively-accurate physics-based
model due to reliability reasons.

On the other hand, Skulstad et al. (2021a) trained a neural network
with onboard sensor measurements so that it compensates for the
multiple-step-ahead position error made by the physics-based model.
In Wang et al. (2021), Wang et al. proposed a data-driven model
that maps the future position calculated by the similar ship’s dynamic
model into that of the targeting ship. In their approaches, the roles
of the physics-based and data-driven models are clearly distinguished,
thus contributing to better interpretability and maintainability of the
cooperative architecture. Moreover, in their approaches, the physics-
based model serves not only as prior knowledge of ship dynamics but
also as a stable foundation of the prediction.

3. Cooperative ship model

As explained in Section 2, in the field of ship dynamics, previous
studies have presented different types of cooperative models combining
physics-based and data-driven models. In this study, we employ a
geometry-based cooperative model, that makes a data-driven compen-
sation for multiple-step-ahead position errors made by the physics-
based model, based on the idea presented in Skulstad et al. (2021a)
and Kanazawa et al. (2021).

3.1. Overview

In the experiments of this study, we employed a cooperative model
of ship dynamics as shown in Fig. 3. The cooperative model is com-
posed of a physics-based model highlighted in orange and a data-driven
3

compensator highlighted in green. The physics-based model makes 𝑇 s
prediction of a future trajectory based on the initial state of the ship,
environmental disturbances, and commands to actuators. On the other
hand, based on onboard measurement data, the data-driven compen-
sator compensates for errors in the position made by the physics-based
model, Thus, a multiple-step-ahead position prediction vector made
by the physics-based model is calibrated in a data-driven manner.
By adding outputs of both of them, the cooperative model makes 𝑇 s
prediction of the future trajectory in a data-driven manner while having
a stable and reliable model-based prediction made by the physics-
based model as its foundation. Details of the physics-based model and
data-driven compensator will be explained hereinafter.

3.2. Physics-based model

In the maneuvering theory of ship dynamics, the ship kinematics is
expressed as:

�̇� = 𝑹(𝜓)𝝂 (1)

where 𝜼 is the vector of the ship’s positions in the inertial coordinate, 𝑹
is the rotation matrix between the inertial and body-fixed coordinate,
𝜓 is the ship’s heading, and 𝝂 is the vector of the ship’s velocities in
the body-fixed coordinate. We define 𝑹 as:

𝑹(𝜓) =
⎡

⎢

⎢

⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤

⎥

⎥

⎦

(2)

The ship kinetics is expressed as:

𝑴𝑹𝑩 �̇� +𝑴𝑨𝝂𝒓 + 𝑪𝑹𝑩(𝝂)𝝂 + 𝑪𝑨(𝝂𝒓)𝝂𝒓 +𝑫(𝝂𝒓) = 𝒒 (3)

𝒒 = 𝒒wind + 𝒒wave + 𝒒thr (4)

where 𝑴𝑹𝑩 is the rigid-body mass matrix, 𝑴𝑨 is the added-mass
matrix, 𝑪𝑹𝑩(𝝂) is the rigid-body coriolis-centripetal matrix, 𝑪𝑨(𝝂𝒓)
is the added-mass coriolis-centripetal matrix, 𝑫(𝝂𝒓) is the damping
matrix, 𝝂𝒓 = 𝝂 − 𝝂𝒄 is the relative velocity vector, 𝝂𝒄 is the current
velocity vector, 𝒒wind is the wind-force vector, 𝒒wave is the wave-force
vector, and 𝒒thr is the thruster force vector. In this study, we assume
the effects of the ocean current and waves on the ship motion are
marginal due to the limitation that ships are not equipped with sensors
measuring ocean currents and waves in real time. This assumption is
acceptable under mild environmental disturbances. Thereby, this study
introduces 𝝂𝒓 = 𝝂 and 𝒒wave = 𝟎. The wind-force model is constructed
by dedicated numerical simulation and experiments as:

𝒒wind = 1
2
𝜌𝑎𝑉

2
𝑟𝑤

⎡

⎢

⎢

⎣

𝐶𝑋 (𝛾𝑟𝑤)𝐴𝐹𝑊
𝐶𝑌 (𝛾𝑟𝑤)𝐴𝐿𝑊

𝐶𝑁 (𝛾𝑟𝑤)𝐴𝐿𝑊 𝐿𝑜𝑎

⎤

⎥

⎥

⎦

(5)

where 𝐶𝑋 , 𝐶𝑌 , and 𝐶𝑍 are the wind coefficients identified for the
surge, sway, and yaw directions. 𝐴 and 𝐴 are the frontal and
𝐹𝑊 𝐿𝑊
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Fig. 3. An overview of the cooperative model. Sensor data (current ship’s states, thruster command values, and wind information) are given to the physics-based model and data-
driven compensator. The physics-based model is a 3DOF maneuvering model outputting a trajectory prediction. The data-driven compensator, of which input–output relationship
is shown in (13), compensates for multiple-step-ahead position errors made by the physics-based model.
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Fig. 4. A schematic relationship between the body-fixed coordinate when making a
prediction and the inertial coordinate. The data-driven compensator compensates for
position errors made by the physics-based model in the body-fixed coordinate when
making a prediction.

lateral projected areas, respectively. 𝐿𝑜𝑎 represents the ship length. The
relative wind velocity 𝑉𝑟𝑤 and direction 𝛾𝑟𝑤 are given as:

𝑉𝑟𝑤 =
√

𝑢2𝑟𝑤 + 𝑣2𝑟𝑤 (6)

𝛾𝑟𝑤 = −atan2(𝑣𝑟𝑤, 𝑢𝑟𝑤) (7)

where:

𝑢𝑟𝑤 = 𝑢 − 𝑉𝑤 cos (𝛽𝑤 − 𝜓) (8)

𝑣𝑟𝑤 = 𝑣 − 𝑉𝑤 sin (𝛽𝑤 − 𝜓) (9)

𝑉𝑤 and 𝛽𝑤 are the true wind velocity and direction in the inertial
4

coordinate. The thruster-force vector 𝒒thr is calculated based on thruster
commands and 𝝂 by the mathematical model 𝑓𝑡ℎ𝑟 provided by manufac-
turers of thrusters. In this study, the ship is equipped with two azimuth
thrusters and one bow thruster. The bow thruster was turned off in the
experiments. Namely:

𝒒thr = 𝑓𝑡ℎ𝑟(𝝂, 𝑛𝑝, 𝛿𝑝, 𝑛𝑠, 𝛿𝑠) (10)

here 𝑛𝑝 and 𝑛𝑠 represent thruster revolutions of the port- and starboard
ide azimuth thrusters. 𝛿𝑝 and 𝛿𝑠 are thruster angles of the port-
nd starboard-side thrusters. Hence, by using wind, thruster, and hull
odels, total forces and moment acting on the hull are calculated. By
ultiplying 𝑴−1 = (𝑴𝑹𝑩+𝑴𝑨)−1, the acceleration vector is estimated.
e numerically integrate the estimated acceleration vector into the

elocity vector in the body-fixed coordinate. The numerical integration
f this velocity vector over the prediction horizon yields the model-
ased predicted trajectory [�̂�𝑚

1 ,… , �̂�𝑚
𝑖 ,… , �̂�𝑚

𝑛𝑇
, �̂�𝑚1 ,… , �̂�𝑚𝑖 ,… , �̂�𝑚𝑛𝑇 ] in

the future, where �̂�𝑚
𝑖 and �̂�𝑚𝑖 represent model-based predicted ship’s

north and east positions at 𝑖th step future, respectively. 𝑛𝑇 denotes the
number of time steps of the prediction horizon. In this study, the Euler
method is employed for the numerical integration with 1s time step;
namely, 𝑛𝑇 = 𝑇 .

As shown in Fig. 4, this study expresses trajectories in the 𝑥 − 𝑦
coordinate of which origin is located at the center of gravity of the ship
when making a prediction. The positive directions of the 𝑥 and 𝑦 axes
re the longitudinal and lateral directions of the ship. Thereby, future
ositions in the 𝑥 − 𝑦 and 𝑁 − 𝐸 coordinates are interconvertible as:

𝑥
𝑦

)

=
(

cos𝜓0 sin𝜓0
− sin𝜓0 cos𝜓0

)(

𝑁 −𝑁0
𝐸 − 𝐸0

)

(11)

here 𝑁0, 𝐸0, and 𝜓0 represent the north, east positions and heading
hen making a prediction. Hence, the model-based predicted trajectory
�̂�𝑚

1 ,… , �̂�𝑚
𝑛𝑇
, �̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 ] in the 𝑁 − 𝐸 coordinate is converted to

[�̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 , �̂�
𝑚
1 ,… , �̂�𝑚𝑛𝑇 ] in the 𝑥−𝑦 coordinate to provide target vectors

of the data-driven compensator.

3.3. Data-driven compensator

The data-driven compensator makes prediction of [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,
𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] where 𝛥�̂�𝑚𝑖 = 𝑥𝑖−�̂�𝑚𝑖 and 𝛥�̂�𝑚𝑖 = 𝑦𝑖−�̂�𝑚𝑖 , respectively, based
on onboard sensor measurements. 𝑥𝑖 and 𝑦𝑖 are the true position at the
𝑖-step future. This target vector is given not in the model deployment

but in the model training.
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3.3.1. Input features
Input features of any ML models must be carefully selected. Oth-

erwise, ML models would suffer from missing important information.
In such settings, ML models fail to be efficiently trained. This study
selects input features based on the theory of ship dynamics that future
trajectories are determined by inertial and hydrodynamic parameters
of the ship, the initial state of the ship, commands to thrusters, and
environmental disturbances. As we develop data-driven compensators
for the specific loading condition of the specific ship, the inertial and
hydrodynamic parameters are assumed to be constant. Wave and ocean
current data are not included in input features as they are mostly not
measured in real time. We assume commands to thrusters, the true
wind velocity, and the true wind direction are kept unchanged over
the prediction horizon. These assumptions yield the formulation of the
data-driven compensator 𝑓𝑁 :

[𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ]

= 𝑓𝑁 (𝝂𝟎, 𝑛
𝑝
0, 𝛿

𝑝
0 , 𝑛

𝑠
0, 𝛿

𝑠
0, 𝑢𝑟𝑤,0, 𝑣𝑟𝑤,0) (12)

he suffix 0 represents the values when making a prediction. The
nput vector is z-score normalized with the statistic values in the
raining dataset. The same values are applied to the normalization in
he validation and test datasets. In the experiments of this study, two
zimuth thrusters are manipulated with the same commands. Thereby,
12) is reduced to:

𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 ,𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ]

= 𝑓𝑁 (𝝂𝟎, 𝑛0, 𝛿0, 𝑢𝑟𝑤,0, 𝑣𝑟𝑤,0) (13)

here 𝑛0 = 𝑛𝑝0 = 𝑛𝑠0 and 𝛿0 = 𝛿𝑝0 = 𝛿𝑠0.

.3.2. Model training
This study employs a MultiLayer Perceptron (MLP), a fully-

onnected feedforward neural network, which is one of the most classic
rchitectures of neural networks. It consists of an input layer, hidden
ayer(s), and an output layer. tanh and linear functions are used for
he hidden layer(s) and the output layer, respectively. Weights and
iases are updated in the manner of the backpropagation by using
dam (Kingma and Ba, 2015) optimizer so that it minimizes the mean
quared error between MLP’s output and target vectors. During train-
ng, we separate some maneuvers from a training–validation dataset
nd keep them as a validation dataset. The validation loss is monitored
o avoid overfitting the training dataset. If the validation loss does not
mprove over 200 epochs, the training is automatically terminated, and
he best model is used for the prediction (early stopping). In this study,
e build an MLP in the Pytorch (Paszke et al., 2019) framework in
ython.

.3.3. Hyperparameter tuning
Hyperparameters are parameters to be fixed in advance to deter-

ine ML model’s architecture and training setting. A hyperparameter
uning is important to achieve a good performance of ML models. In this
tudy, the number of hidden layers ∈ [1, 3], the number of units in hid-
en layer(s) ∈ [10, 500], the drop-out rate in the input layer ∈ [0.0, 1.0],
he drop-out rate in hidden layer(s) ∈ [0.0, 1.0], and the learning rate of
he optimizer ∈ [10−5, 10−1] are optimized. The hyperparameter tuning
s an optimization problem finding the best set of hyperparameters
hat performs the best in the validation dataset. In this study, such an
ptimum set is searched by using the Tree-structured Parzen Estimator
TPE) optimizer in the optuna (Akiba et al., 2019) framework. The TPE
ptimizer is one of the Bayesian optimization methods. It has been
idely used for the hyperparameter tuning with a great performance
nd small computational time. Thereby, in the optuna, the TPE is
elected as a default algorithm. In this section, details of the TPE
lgorithm are not revisited as it is not the focus of this study. For further
nformation, original articles (Bergstra et al., 2013, 2011) for the TPE
5

an be referred. The number of trials for the parameter search is 50 as
urther drastic improvement of the validation loss was not found with
he larger number of trials than 50. The learning rate is searched in
he log domain. After 50 trials of the hyperparameter search, a set of
yperparameters with the best performance in the validation dataset
as selected as a set of optimum hyperparameters. Hyperparameter

uning was conducted independently for having different physics-based
odels and dataset.

.3.4. Model deployment
In the model deployment, the data-driven compensator makes pre-

iction [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 , 𝛥�̂�
𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] based on input vectors provided

y onboard sensors. By adding the model-based predicted position vec-
or [�̂�𝑚1 ,… , �̂�𝑚𝑛𝑇 , �̂�

𝑚
1 ,… , �̂�𝑚𝑛𝑇 ], the cooperative prediction yields [�̂�1,… ,

̂𝑛𝑇 , �̂�1,… , �̂�𝑛𝑇 ] where �̂�𝑖 = 𝛥�̂�𝑚𝑖 +�̂�
𝑚
𝑖 and �̂�𝑖 = 𝛥�̂�𝑚𝑖 +�̂�

𝑚
𝑖 . It is re-converted

to the position vector in the 𝑁 − 𝐸 coordinate by (11).

3.4. Evaluation metrics

The accuracy of the physics-based model 𝐴 is evaluated with the
Root Mean Squared Error (RMSE) of the geometrical similarity between
true and predicted trajectories in the test dataset.

𝐴 = 1
𝑆

𝑆
∑

𝑘=1

√

(𝑁𝑘 − �̂�𝑚
𝑘 )

2 + (𝐸𝑘 − �̂�𝑚𝑘 )
2 (14)

𝑁𝑘 and 𝐸𝑘 represent the true north and east positions of the 𝑘th
sample. �̂�𝑚

𝑘 , and �̂�𝑚𝑘 are the north and east positions of the 𝑘th
sample predicted by the physics-based model. 𝑆 is the number of data
samples. 𝑁𝐷 represents the number of maneuvers in the dataset used
for the training. The larger the 𝑁𝐷 is, the larger the dataset is. Hence,
cooperative models are characterized by the combination (𝐴,𝑁𝐷) in
this study. It should be noted that the ship dynamics is highly complex
and nonlinear, thereby, a single metric 𝐴 does not fully represent the
characteristic of the physics-based model.

The errors made by the cooperative model 𝐻 of (𝐴,𝑁𝐷) is evaluated
with the RMSE of the geometrical similarity between the true and
predicted trajectories made by the cooperative model:

𝐻 = 1
𝑆

𝑆
∑

𝑘=1

√

(𝑁𝑘 − �̂�𝑘)2 + (𝐸𝑘 − �̂�𝑘)2 (15)

where �̂�𝑘 and �̂�𝑘 are the north and east positions of the 𝑘th sample,
predicted by the cooperative model. It should be noted that 𝐴 is not
used for selecting a good physics-based model for better cooperative
performance since it is defined in the test dataset. 𝐴 is only employed
for presenting the relationship between 𝐻 and (𝐴,𝑁𝐷) in the test
dataset to develop a better understanding of the contribution of the
physics-based model and data to the cooperative performance. If 𝑁𝐷 =
0, we substitute �̂�𝑚

𝑘 and �̂�𝑚𝑘 for �̂�𝑘 and �̂�𝑘 in graphs since the coop-
erative model without using any data is regarded as the physics-based
model. If the pure data-driven model is used, �̂�𝑘 and �̂�𝑘 are calculated
without the help of the physics-based model. In the application, large
prediction errors become an issue since they could negatively affect our
decision making ending up with fatal consequences. Thereby, we define
the 90% of percentile of

√

(𝑁𝑘 − �̂�𝑘)2 + (𝐸𝑘 − �̂�𝑘)2 as 𝐻90 to examine
the occurrence of large prediction errors.

4. Simulation experiment

Before performing full-scale experiments in Section 5, we examine
the contribution of the physics-based model and data to the cooperative
performance in the simulation environment. In the simulation environ-
ment, we can build physics-based models with different accuracy in a
flexible manner since the ground-truth model is known. In addition, we
can efficiently investigate the impact of data amount on the cooperative
performance as we can generate virtual maneuvers as much as we
need. Since trajectory predictions are used for the purpose of the early
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Fig. 5. Experimental setting.
Fig. 6. Trajectories of maneuvers employed in the simulation experiment. Black
trajectories show maneuvers grouped into the training–validation dataset and red
trajectories show maneuvers grouped into the test dataset. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

warning of the collision risk, 𝑇 , which is longer than the time that the
ship can take evasive actions, is preferable for the evaluation of ship
dynamic models. In the simulation experiment, the cooperative model
was trained and evaluated for making 𝑇 = 30s trajectory prediction.

4.1. Overview

The overview of simulation experiments in this study is illustrated in
Fig. 5. 18 different physics-based models were used in the cooperative
models. A dataset with 120 maneuvers was prepared in this study.
They are explained in detail in the following subsections. 20 maneuvers
in the dataset were randomly selected for the test dataset and kept
untouched during training and validation of the cooperative models. By
selecting 𝑁𝐷 maneuvers from the remaining 100 maneuvers, we built
the training and validation sub dataset 𝑁𝐷 with the different number
of maneuvers. Please note that 𝑁𝐷=𝑎 ⊂ 𝑁𝐷=𝑏 if 𝑎 < 𝑏. In this study,
ten sub datasets from 𝑁𝐷=10 to 𝑁𝐷=100 were prepared. We trained
the cooperative models with different physics-based models and sub
6

datasets; thus examining the impact of the accuracy of the physics-
based model and dataset on the cooperative performance. For the
different combinations of the physics-based models and sub datasets,
hyperparameter tuning was conducted independently. In 𝑁𝐷 , 80% of
maneuvers were used for the training and the remaining 20% were
used for the validation. The performance of the trained cooperative
model was examined by using 20 maneuvers in the test dataset. The
test dataset was always identical regardless of which sub dataset was
used during training.

4.2. Dataset

A simulation dataset was generated by using a six Degrees of
Freedom (DoF) seakeeping and maneuvering model of the R/V Gun-
nerus, which is a 28.9m-length Norwegian University of Science and
Technology (NTNU)’s research ship. It is a high-fidelity ship dynamic
model provided in the Open Simulation Platform project, which is a
joint project with Kongsberg Maritime, DNV, SINTEF, and NTNU. It
is composed of a hull model (Ross, 2008; Hassani et al., 2015) and
thruster models running on the simulation platform Vico (Hatledal
et al., 2021). Two azimuth thrusters were manipulated simultaneously.
120 unique turning maneuvers were generated by randomly selecting
thruster revolution 𝑛 ∈ [50, 200] Revolution Per Minute (RPM), and
thruster angle 𝛿 ∈ [−50, 50]◦. The ship’s motion was disturbed by the
constant wind and irregular waves in the simulation. The true wind
direction 𝛽𝑤 ∈ [0, 360)◦, the true wind speed 𝑉𝑤 ∈ [0, 6] m∕s, and the
global wave direction ∈ [0, 360)◦ are randomly chosen for each maneu-
ver. The wave spectrum was JONSWAP spectrum (Hasselmann et al.,
1973) with 1.0 m significant wave height and 5.0s significant wave
period. The time step of the simulation environment was 0.05s. 50 s
time series were saved in 1 Hz with 30 s future trajectory at each time
step for each maneuver. Future trajectories were used only for training
and evaluation purposes. Generated trajectories are shown in Fig. 6. A
snapshot of a simulation experiment is shown in Fig. 2(a). Minimum,
mean, and maximum input values of the data-driven compensator in
datasets are shown in Table 1.

4.3. Physics-based models

In this experiment, cooperative models were trained with different
physics-based models. They were developed by shifting parameters
of the ground-truth model used in the simulation environment. This
procedure introduced the model’s uncertainty that we had in reality
due to poorly identified parameters. We randomly produced 18 physics-
based models with parameter uncertainty to examine the impact of the
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Table 1
Minimum, mean, and maximum input values in the sub datasets for the training and validation and the test dataset in the simulation experiment.

10 20 30 40 50 60 70 80 90 100 Test

𝑢0 (m/s)
min 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
mean 2.2 2.3 2.2 2.2 2.2 2.2 2.3 2.4 2.4 2.4 1.9
max 5.4 5.4 5.4 5.4 5.8 5.8 5.8 6.0 6.0 6.0 5.3

𝑣0 (m/s)
min −0.9 −0.9 −0.9 −1.1 −1.1 −1.1 −1.1 −1.1 −1.1 −1.1 −0.8
mean 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
max 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 0.8

𝑟0 (◦/s)
min −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −8.2 −3.9
mean −0.5 −0.3 −0.4 −0.1 −0.1 −0.1 0.0 0.1 −0.1 0.0 0.2
max 6.4 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 5.2

𝑛0 (RPM)
min 62.8 62.8 55.9 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.0
mean 133.4 133.3 126.9 126.2 122.7 123.6 125.2 128.9 130.1 129.4 103.9
max 191.7 192.4 192.4 192.4 199.6 199.6 199.6 199.6 199.6 199.6 189.1

𝛿0 (◦)
min −37.3 −45.8 −45.8 −47.4 −47.4 −47.4 −47.4 −48.7 −48.7 −48.7 −38.7
mean 1.7 0.8 1.9 −0.4 −0.7 −2.3 −2.6 −3.6 −2.1 −2.7 0.7
max 48.3 48.3 48.3 48.3 48.3 48.3 48.3 48.3 49.4 49.4 41.4

𝑢𝑟𝑤,0 (m/s)
min −4.0 −4.0 −4.0 −4.0 −4.2 −4.2 −4.4 −4.4 −4.4 −4.4 −3.0
mean 2.9 3.1 3.1 2.7 2.5 2.5 2.6 2.7 2.8 2.8 2.5
max 7.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 7.4

𝑣𝑟𝑤,0 (m/s)
min −5.1 −5.4 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.0 −6.4
mean 0.3 0.1 −0.1 −0.1 0.0 0.0 −0.2 −0.1 0.1 0.0 −0.4
max 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.3 6.3 5.8
accuracy of the physics-based model on the cooperative performance.
18 models were grouped into moderately- and highly-uncertain models.
It should be noted that none of them were identical to the ground-
truth model used in the simulation. They produced prediction errors
at different levels due to different reasons.

4.3.1. Moderately-uncertain models
We prepared ten physics-based models by randomly shifting pa-

rameters of the ground-truth model in 𝑫(𝝂𝒓). They were grouped into
moderately-uncertain models in this paper. The ground-truth model has
32 hydrodynamic derivatives 𝜃1 − 𝜃32 in 𝑫(𝝂𝒓) (such as 𝑋𝐿

𝑢𝑢, see Ross
et al. (2015) for details). A set of disturbed parameters 𝜃′𝑖,𝑗 the 𝑖th
hydrodynamic derivative of the 𝑗th moderately-uncertain model was
introduced as:

𝜃′𝑖,𝑗 = 𝛥𝑖,𝑗𝜃𝑖 (16)

0.4 < 𝛥𝑖,𝑗 < 1.6 was randomly selected for the 𝑖th hydrodynamic
derivative of the 𝑗th moderately-uncertain model. Although they made
prediction errors due to poorly identified parameters, predicted tra-
jectories they made could represent the basic characteristics of the
true dynamics of the targeting ship. The mass, inertia moment, added-
mass coefficients, and thruster models were kept unchanged from the
ground-truth model. This situation could occur if we copy and paste
hydrodynamic parameters of similar ships, we have a physics-based
model adjusted to the different operational conditions, and so on.

4.3.2. Highly-uncertain models
We prepared another eight physics-based models by randomly shift-

ing the mass, inertia moment, added-mass coefficients, and propeller
diameter of the thruster model up to 40%, in the same procedure as
(16), in addition to the parameter shift introduced in the moderately-
uncertain models. The trajectories they predicted had very different
characteristics from the true trajectories since the basic parameters
of the model were shifted. This situation could occur if we copy and
paste parameters of very different ships or actuator models have large
uncertainty.

4.3.3. No model
If no model was assigned to the physics-based model, a pure data-

driven model was built in the experiment. It was trained in the same
manner as the cooperative model, however, the target vector was not
the residual vector [𝛥�̂�𝑚1 ,… , 𝛥�̂�𝑚𝑛𝑇 , 𝛥�̂�

𝑚
1 ,… , 𝛥�̂�𝑚𝑛𝑇 ] but the future position

vector [�̂�1,… , �̂�𝑛𝑇 , �̂�1,… , �̂�𝑛𝑇 ] without the help of any model-based
7

guides.
4.4. Results

Snapshots in Fig. 7 show predictions with different physics-based
models with different sub datasets at one of the example prediction
time instance in the test dataset. Black dotted lines show the 30 s true
trajectories, which are the same in the three subfigures. In Fig. 7(a),
predicted trajectories made by pure data-driven models trained with
10, 30, and 100 are shown. Since they were not supported by
any prior knowledge of ship dynamics, it is seen that they needed
a large dataset to make predictions accurately. Models trained with
10 and 30 ended up making discontinuous trajectories with less
similarity to the true trajectory. In Fig. 7(b), predicted trajectories
made by cooperative models with one of the moderately uncertain
physics-based models with 10, 30, and 100 are shown. Although
physics-based models made prediction error in (b), it was rather small
and captured the basic geometry of the true trajectory. It is seen that
data-driven compensators compensated for such errors well only by
using a small dataset 10. As the pure data-driven model with 10 failed
at making an accurate prediction in (a), it implies that the physics-
based model successfully supported the cooperative performance. In
Fig. 7(c), predicted trajectories made by cooperative models with one
of the highly-uncertain physics-based models with 10, 30, and 100
are shown. In (c), a trajectory predicted by the physics-based model
notably diverges from the true trajectory. The poor performance of
the physics-based model was induced by its parameters with higher
uncertainty. We see it deteriorated the cooperative performance with
10 and 30 significantly while the performances in (b) were very
good with the same datasets. Moreover, although the large prediction
error was mitigated by having a large sub dataset 100, the cooperative
performance with 100 in (b) outperforms that in (c).

An overview of results is illustrated in Fig. 8. As addressed in
Section 3.4, this figure shows the relationship between the errors made
by the cooperative model 𝐻 as a height of bars and its (𝐴,𝑁𝐷) as a
position of bars on the bottom plane, where 𝐴 denotes the errors made
by the physics-based model and 𝑁𝐷 denotes the number of maneuvers
in the training dataset. For instance, the height of the bar located at the
small 𝐴 and large 𝑁𝐷 on the bottom plane shows the errors made by
the cooperative model with a combination of such an accurate physics-
based model and a large dataset for the training. Bars at 𝑁𝐷 = 0 shows
the original performance of the physics-based model without using any
data for the training. We see that most cooperative models with highly-

uncertain physics-based models made larger errors than cooperative
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Fig. 7. Snapshots of trajectory predictions made by (a) the pure data-driven model, (b) the cooperative model with one of the moderately-uncertain physics-based models, and
(c) the cooperative model with one of the highly uncertain physics-based models with sub dataset 10, 30, and 100.
Fig. 8. The effect of the errors of the physics-based model 𝐴 and the data amount 𝑁𝐷
on the errors made by the cooperative model 𝐻 in the test dataset.

models with moderately-uncertain physics-based models with the same
amount of data for training. In addition, a trend was seen that the
higher cooperative performance was achieved with a larger dataset and
a more accurate physics-based model. A good cooperative performance
was achieved by either having an accurate physics-based model or
having a large dataset; thereby, they are complementary to each other
to some extent.

Fig. 9 is a projected graph of Fig. 8 on the 𝑁𝐷 − 𝐻 plane for
better visibility of absolute values of the cooperative performance. In
Fig. 9, a trend is seen that the higher the accuracy of the physics-based
model was, the higher the cooperative performance was, especially
when the dataset was small. At the same time, cooperative models with
a wide range of physics-based models, including some highly-uncertain
8

Fig. 9. A projected 2D graph of the effect of the accuracy of the physics-based model
𝐴 and the data amount 𝑁𝐷 on the errors made by the cooperative model 𝐻 in the
test dataset.

models with relatively better performance, were found to outperform
the pure data-driven model. It implies the possibility of the cooperative
framework of building an accurate model with a compromised physics-
based model and a small dataset. However, it does not mean any
physics-based models are acceptable as a foundation of cooperative
models. It is clearly seen that some cooperative models with highly-
uncertain physics-based models ended up with poorer performance
than the pure data-driven models. In such cases, physics-based models
seem to not introduce prior knowledge of ship dynamics but introduce
disturbances in the training. Thereby, the negative impact of having
such physics-based models with the poor performance on the coopera-
tive performance remained even if we had a large dataset. In particular,
the performance of the cooperative model with the most inaccurate
physics-based model fluctuated much depending on the sub dataset
used for the training. It is seemingly caused by its high data dependency
with a physics-based model introducing disturbance to the training.

Fig. 10 shows the relationship between 𝑁𝐷 and 𝐻90 of models. Its
trend is similar to that in Fig. 9. That means findings in Fig. 10 are
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Fig. 10. A projected 2D graph of the effect of the accuracy of the physics-based model
𝐴 and the data amount 𝑁𝐷 on the 90% percentile cooperative performance 𝐻90 in the
test dataset.

also applied to the strategy of how we reduce the occurrence of large
prediction errors by using the physics-based model and data in this
experiment.

5. Full-scale experiment

Hereinafter, we further explore the reasonable range of the physics-
based model’s accuracy on the cooperative performance in the real-life
project by employing a small dataset of a full-scale experiment in the
open sea. This full-scale experiment validates that we can build an
accurate ship dynamic model in the practical project by combining
a compromised physics-based model and a small dataset rather than
relying on either of them. A snapshot of the experiment is shown in
Fig. 2(b).

5.1. Overview

We made 𝑇 = 15s trajectory predictions in the full-scale experi-
ment since thruster commands changed drastically over the prediction
horizon longer than 𝑇 = 15s in a full-scale zigzag maneuvers. In
addition, in the full-scale experiment, having too much uncertainty
from unexpectable environmental disturbances in the longer prediction
horizon makes a fair comparison between dynamic models challenging.
Due to this limitation, errors over the prediction horizon from 15 s to
30 s have been widely used as a metrics of the accuracy of ship dynamic
models in the full-scale experiment (see Skulstad et al. (2021a) and
Wang et al. (2021)). The zigzag maneuver is one of the maneuvers that
the International Towing Tank Conference (the ITTC) recommends as
a full-scale maneuvering trials procedure. During the zigzag maneuver,
ship’s heading swings from side to side. The detailed definition of the
zigzag maneuver can be referred to The International Towing Tank
Conference (2002). In the full-scale experiment, we investigated the
cooperative performances with different physics-based models and a
small dataset to examine the framework building an accurate model
with a compromised physics-based model and a small dataset.

5.2. Dataset

We conducted full-scale experiments in the open sea on Novem-
ber 21st, 2019 in Trondheim, Norway. The 33.9m-length R/V Gun-
nerus was employed. Under the mild weather condition, we conducted
10◦/10◦, 15◦/15◦, 20◦/20◦, 25◦/25◦, and 30◦/30◦ zigzag maneuvers
9

with high (𝑛 ≈ 145RPM) and low (𝑛 ≈ 125RPM) surge velocities.
Each maneuver was saved in 1 Hz and cut into 85 s time series
with 15 s future positions at each time step. The number of sampled
maneuvers was 16. A 20◦/20◦ zigzag maneuver with the high surge
velocity was kept untouched for the test dataset. This maneuver was not
included in the other maneuvers in the training–validation dataset. Dur-
ing the full-scale experiment, onboard sensors provided the following
measurements:

• Positions: North and East positions in the NED coordinate in
addition to the heading.

• Velocities: The surge, sway, and yaw velocities.
• Commands: Thruster revolution and angle of the port- and

starboard-azimuth thrusters.
• Wind: The true wind direction and velocity.

During maneuvers, same commands were given to the two azimuth
thrusters and the bow thruster was turned off. Except for the maneuver
in the test dataset, 15 maneuvers were used for the training. The three-
fold cross validation was conducted by using 15 maneuvers in the
training and validation dataset. Minimum, mean, and maximum input
values of the data-driven compensator in datasets are shown in Table 2.

5.3. Physics-based models

In the full-scale experiment, we employed two physics-based mod-
els; namely, accurate and inaccurate physics-based models to examine
the impact of having different physics-based models on the cooperative
performance with a real-life small dataset.

5.3.1. Accurate physics-based model
Before the full-scale experiment, the R/V Gunnerus was elongated

from 28.9 m to 33.9 m. However, the corresponding ship dynamic
model has not been fully developed. In this study, we employ a ship
dynamic model of the 28.9 m R/V Gunnerus before the elongation as
a physics-based model since it well captures the dynamic behavior of
the elongated R/V Gunnerus as well. It is referred to as the accurate
physics-based model in this experiment. It represents an optimistic
assumption that an accurate physics-based model is available in the
project.

5.3.2. Inaccurate physics-based model
In an inaccurate physics-based model, we shifted dominant damping

coefficients in addition to removing higher-order damping coefficients
in 𝑫(𝝂𝒓). The inaccurate physics-based model represents a pessimistic
assumption that the available physics-based model performs poorly due
to different reasons.

5.3.3. No model
If no physics-based model was given, as we did in the simulation

experiment, a pure data-driven model was built without the help of
the inaccurate physics-based model.

5.4. Results

In Fig. 11, snapshots of 15 s trajectory predictions of the maneuver
in the test dataset at 𝑡 = 20s in (a), 𝑡 = 40s in (b), and 𝑡 = 60s
in (c) are shown. Time histories of the thruster revolution and angle
of this maneuver are shown in Fig. 12. In Fig. 11(a), although the
cooperative model with the accurate physics-based model made smaller
errors compared to the other models, all models deviated from the true
trajectory notably. In the full-scale experiment, as the dataset used for
training was limited, it was seen that cooperative models did not always
make a good prediction seemingly due to the lack of experience during
training. On the other hand, in (b) and (c), cooperative models notably
reduced prediction errors made by the corresponding physics-based
models and significantly outperformed the pure data-driven model. In
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Fig. 11. Snapshots of trajectory predictions at (a) 20 s, (b) 40 s, and (c) 60 s of the maneuver in the test dataset.
Fig. 12. A time series of thruster angle 𝛿 and revolution 𝑛 in the example maneuvers in the test dataset shown in Fig. 11.
Fig. 13. Time series of the average prediction error 𝐻 in the 15 s prediction horizon at each prediction instance of the maneuver in the test dataset.
(b), the cooperative model with the inaccurate physics-based model
performed better than the accurate physics-based model. In (c), its
performance was comparable to the accurate physics-based model.
Hence, although the cooperative model with the inaccurate physics-
based model did not outperform that with the accurate physics-based
model, the contribution of having such a compromised physics-based
model was clearly discerned. This finding corresponds to the results
presented in the simulation experiment.

Time histories of the prediction error 𝐻 for pure data-driven, pure
physics-based, and cooperative models are shown in Fig. 13. The
prediction performance fluctuated as time advanced due to having
epistemic and aleatoric uncertainties. Thereby, it is seen that models
did not make accurate predictions at some time steps, as shown in
Fig. 11(a), however, the overall prediction performance of the coop-
erative model outperformed the pure data-driven and corresponding
physics-based models. The performance of the cooperative model with
10
the inaccurate physics-based model was mostly comparable with that
of the accurate physics-based model.

Fig. 14 shows the average prediction error 𝐻 in the 15 s prediction
horizon at each prediction instance made by the pure data-driven, pure
physics-based, and cooperative models. The prediction error becomes
larger in the distant horizon as we have much uncertainty in the
distant future. The pure data-driven model made larger prediction
errors than the other models over the prediction horizon. It highlights
the benefit of having the physics-based model in terms of prediction
performance. Although the inaccurate physics-based model did not
perform well in the experiment over the prediction horizon, its pre-
diction error was well compensated for by using the small dataset.
Its overall performance is comparable to that of the accurate physics-
based model, which requires much time & effort to be developed. In
addition, in Fig. 14, the discrepancy of the prediction error 𝐻 made
by the accurate and inaccurate physics-based model was found to be
large. On the other hand, by using the small dataset, the discrepancy
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Fig. 14. The prediction error 𝐻 over the prediction horizon made by pure data-driven, pure physics-based, and cooperative models.
Table 2
Maximum and Minimum input values in the training and validation
dataset and the test dataset in the full-scale experiment.

Training–validation Test

𝑢0 (m/s)
min 2.4 3.5
mean 4.1 3.8
max 5.0 4.7

𝑣0 (m/s)
min −0.6 −0.3
mean 0.2 0.2
max 0.8 0.7

𝑟0 (◦/s)
min −3.9 −3.9
mean −0.1 −0.1
max 4.0 3.8

𝑛0 (RPM)
min 115.2 123.8
mean 136.5 144.6
max 145.1 146.1

𝛿0 (◦)
min −29.7 −23.9
mean 0.8 1.2
max 29.8 25.9

𝑢𝑟𝑤,0 (m/s)
min −3.3 −0.8
mean 0.6 0.8
max 7.5 2.8

𝑣𝑟𝑤,0 (m/s)
min −5.8 −4.3
mean −0.8 −2.9
max 6.0 −0.2

between corresponding cooperative performances becomes smaller. It
implies the robustness of the cooperative model to the poor accuracy
of the physics-based model.

6. Discussion

In this section, key findings in the simulation and full-scale exper-
iments related to the open question ‘‘how do a physics-based model
and data cooperate with each other in the cooperative model?’’ are
summarized. In addition, this section clearly presents our suggestions
for industrial applications based on the key findings. In the end, the
limitations of this work and future works are discussed.
11
6.1. Key findings

In the simulation and full-scale experiments, cooperative models
were found to work better with a wide range of physics-based
models than the pure data-driven models. It indicates the coop-
erative model effectively introduced prior knowledge packaged in a
wide range of physics-based models into the training in addition to
acting as a stable foundation for making a prediction. The cooperative
performance was notably improved by having larger datasets, thereby,
the cooperative model was found to be robust to the poor accuracy of
the physics-based model. On the other hand, the contribution of the
physics-based model was critical when the dataset was small. If large
datasets are available, the low accuracy of the physics-based model can
be compensated to some extent.

In the cooperative models, the most important perspective was to
balance the physics-based model and data rather than solely rely-
ing on either of them. In the experiments, in some cases, it was seen
that the combination of a moderately-accurate physics-based model and
a relatively-small dataset outperformed pure data-driven models with
larger datasets or more highly-accurate physics-based models.

Although cooperative models were found to be robust to the poor
accuracy of the physics-based model by being trained in a data-driven
manner, we have no such thing as a general ship model that
serves as a fundamental physics-based model of any ships. Simula-
tion experiments in this study showed that a significantly inaccurate
physics-based model may disturb the training of cooperative models
instead of facilitating it with prior knowledge of ship dynamics. Its
negative impact was found to remain even with a large dataset and it
induced the instability of the performance due to them heavily relying
on data with a disturbing foundation. Such models are not acceptable
as a foundation and we should pay much attention to avoid using them.

Unlike the simulation experiment in Section 4, the full-scale exper-
iment in Section 5 represents a real-life problem setting including the
impact of real-world environmental disturbances and dataset. Thereby,
the result in Section 5 validated the practical application of the frame-
work of building an accurate model with a compromised physics-based
model and a small dataset.
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6.2. Suggestions for industrial applications

Findings in this study bring us to some suggestions for indus-
trial applications. First, we should devote more effort to develop-
ng methodologies that more easily and efficiently find highly-
ccurate physics-based models from the database. It is expected for
hipyards to accumulate results of numerical simulations, model/full-
cale experiments, and hopefully identified parameters of the physics-
ased model of similar ships in their database. We could find a physics-
ased model of similar ships in the database in a more time- and cost-
ffective manner compared to the data collection; thereby, it would be
first priority in the model development. Having an accurate physics-
ased model makes the cooperative performance better, especially
hen a dataset is small. However, only a few studies (e.g., Mei et al.

2019)) have focused on the importance of this practice.
Second, a key technology in the future would be how to build
simplified physics-based model easily. Probably, we would not be

ble to find a physics-based model of similar ships from the database,
specially when the project is carried out by small stakeholders without
iverse experiences. In such settings, it is important to develop a
hysics-based model of which performance is in the acceptable range.
ith such a compromised model, we can improve the performance by

ollecting a limited amount of data as we showed in Section 5. It needs
o be mentioned that we have criteria to be eligible for being a founda-
ion model, although a wide range of physics-based models was found
o be helpful. If the performance is too poor, it ruins the cooperative
erformance instead of helping. The co-simulation technology (e.g., Ha-
ledal et al. (2021)) would be useful to build a simplified physics-based
odel only by assembling sub models. Such technology has not been

ully applied to the maritime industry, however, it has great potential
o provide a physics-based model with acceptable performance easily
nd readily.

.3. Limitations

This study conducted experimental investigations by using different
ase studies in the simulation and full-scale experiments. Thereby, it
s plausible to say that the findings in this study would provide basic
nsights for the practical applications of cooperative models. However,
n future work, we must check how general our findings are in the
heoretical, experimental, and practical manners involving more case
tudies.

This study employed a data-driven model without a physics-based
odel as a baseline. It does not represent a definite limitation of the
ata-driven approach itself. By using state-of-the-art ML architectures,
ure data-driven models might perform better than we presented in this
aper. However, in this field, the maritime industry does not apply such
omplex ML models without a physics foundation in their industrial
pplications due to the lack of the model’s interpretability. In addition,
uch models would require great effort in their tuning and training.
hereby, good performance with a simple ML architecture could be
een as a practical benefit of having a physics-based model.

In the future, our research effort should be paid to developing
ethodologies how to balance our effort dedicated to having a physics-

ased model and collecting data. This study presented its basic un-
erstandings, however, it has not been revealed how to balance two
ethodologies in industrial practices and how it reduces the time &

ost dedicated to the model development.
Cooperative models offer the development of the ship dynamic

odel in a timely and easy fashion for some applications including the
ituation awareness and onboard decision support. It can be also used
s an initial-stage model of the project. However, it does not intend
o substitute conventional ship dynamic models in all applications. For
xample, they would face a challenge in ensuring stability when they
12

re fully implemented in the control system. A
This study focused on challenges in building a ship dynamic model.
uch a model is useful for a short-term prediction, estimating maneu-
erability, and building a simulator for training purposes. Dynamic
odels do not have information about the surrounding geography,

raffic, and future environmental disturbances. Thereby, it should be
oted that it is not suitable for making a long-term trajectory prediction
uch as 30 min.

. Conclusion

In the era of ship automation in the future, precise ship dynamic
odels play an integral role in making the early warning of the future

ollision risks. In practice, it has been a great challenge how we develop
uch a model while minimizing the time & cost dedicated to the model
evelopment. A cooperative ship dynamic model, which employs a
ata-driven model for compensating for the position error made by
he physics-based model, was presented in recent studies. It develops

ship dynamic model in a non-parametric manner exploiting data
hile having an interpretable and stable foundation of the physics-
ased model. Although it seems to be a promising direction to combine
wo approaches to overcome the time & cost challenges in industrial
ractices, it has been an open question ‘‘how much does the cooperative
odel benefit from physics knowledge and observation data?’’. This

tudy conducted simulation and full-scale experiments to offer one
olution through case studies and explore a safe zone of cooperative
odels in the physics-based model’s accuracy and the data amount
imensions. In the simulation experiments, the performances of the
ooperative models with different physics-based models and different
atasets were examined. In addition, in the full-scale experiment, the
mpact of having different physics-based models on the cooperative
erformance with a real-life small dataset was investigated. Findings
n the experiments showed that the balance of the accuracy of the
hysics-based model and the data amount is key to achieve a good
erformance of the cooperative model rather than relying on either
f them. Although a wide range of physics-based models successfully
acilitated the model identification, however, it disturbed the training
f it was too inaccurate. In the full-scale experiment, a framework of
uilding an accurate model with a compromised physics-based model
nd a small dataset was validated. Hence, for reducing the time & cost
hallenges in the cooperative framework, it would be pivotal to find
n accurate physics-based model from database or build a simplified
hysics-based model with acceptable performance efficiently.
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