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ABSTRACT

Mortality forecasting is an important tool within, for example, demographic
and actuarial sciences. Many popular mortality models include a multiplicative
term, which means that they elude the group of models applicable to Bayesian
inference with the popular INLA methodology (Rue et al. 2009). Our previous
research (Behrens 2021) indicates that the method proposed by Lindgren
and Bachl (2021), implemented in the R library inlabru, enables Bayesian
inference with INLA also for these mortality models. In this research, we in-
vestigate how the approximate method of inlabru compares to asymptotically
unbiased MCMC methods. Our research consists of three parts. The first part
is a summary of the statistical field of mortality modeling. The second part
is a comparison of inlabru and Stan (Stan Development Team 2019) when
applied to a set of mortality models. We find that inlabru and Stan give
similar, but not identical results and that the difference depends on the data.
In the last part, we demonstrate the potential of using inlabru for Bayesian
inference on mortality models through application to German cancer data.
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SAMMENDRAG

Prediksjon av dødelighet er et viktig verktøy innen for eksempel aktuarviten-
skap og demografi. Mange populære dødelighetsmodeller inneholder multip-
likative ledd som gjør at de ikke inkluderes i gruppen av modeller der man kan
bruke den populære metoden INLA (Rue et al. 2009) for å gjøre bayesiansk
inferens. Våre tidligere undersøkelser har vist at metoden som ble foreslått av
Lindgren and Bachl (2021), og som er implementert i R-biblioteket inlabru,
gjør at bayesiansk inferens med INLA er mulig også for disse modellene. I
denne studien sammenligner vi de tilnærmede resultatene til inlabru med re-
sultatene til asymptotisk forventningsrette MCMC-metoder. Studien vår består
av tre deler. Den første delen er en gjennomgang av dødelighetsmodellering
som et statistisk felt. I den andre delen gjør vi en sammenligning av inlabru

og Stan (Stan Development Team 2019) for et sett med dødelighetsmodeller.
Vi finner at inlabru og Stan gir lignende, men ikke identiske resultater, og at
forskjellen mellom de to avhenger av dataene. I den siste delen demonstererer
vi bruken av inlabru for å gjøre Bayesiansk inferens med dødelighetsmodeller
for tyske kreftdata.
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1

I NTRODUCT ION

Good statistical methods for modeling trends in mortality rates are important
tools in several scientific fields. In the public sector, projections of general and
cause-specific mortality are of key interest in, among others, the development
of health policies and the planning of social securities and pension funds. In
actuarial applications, mortality forecasts play an important role in the pricing
of life insurances and pension products (e.g., Lee and Carter (1992), Brouhns
et al. (2002), Czado et al. (2005), Renshaw and Haberman (2006), Renshaw
and Haberman (2009)).

A common way to model population development is to divide the popu-
lation into age groups, for each period in time. This can be arranged in a
so-called Lexis-diagram (Keiding (1990), Lexis (1875)), where age groups lie
along the vertical axis and calendar periods lie along the horizontal axis. The
age groups and periods are parted into intervals so that the diagram consists of
squares of equal size, representing the part of the population that is in a given
age group at a given period in time. Squares that lie on the same diagonal
correspond to the same year of birth or the same "cohort". Constant mortality
is usually assumed within these units (Czado et al. 2005), typically with some
correlation or smoothing over the Lexis plane (Czado et al. (2005), Riebler
(2010)). Mortality is then considered as a combination of age-, period- and
cohort-specific effects.

Most mortality models are considered in a frequentist framework (see
e.g., Lee and Carter (1992), Brouhns et al. (2002), Renshaw and Haberman
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2 introduction

(2003), Blake et al. (2006), Renshaw and Haberman (2006), Currie (2016)).
However, considering mortality models in a Bayesian framework provides
several advantages. For example, parameter estimates and forecasts can be
done in a single step, avoiding possible incoherence arising from the two-stage
estimation procedures employed for most frequentist models (Czado et al.
2005). Including prior expert knowledge, with corresponding uncertainty, is
straightforward in a Bayesian setting (Wiśniowski et al. 2015), and a Bayesian
approach provides a natural framework for models of multiple populations
(e.g., Berkum et al. (2017), Riebler et al. (2012a)). Finally, it is easier to
interpret and include model and parameter uncertainty in Bayesian models
(Czado et al. (2005), Wong et al. (2018)).

Bayesian mortality models, as Bayesian models in general, may demand
heavy computations. Several methods have been developed to produce pos-
terior inference. The traditional, and seemingly most widely used approach,
is the Markov Chain Monte Carlo (MCMC) method for Bayesian inference.
This method has successfully been used for mortality models by e.g., Czado
et al. (2005), Wong et al. (2018) and Berkum et al. (2017). One of the MCMC
algorithms that has gained popularity in recent years is the Hamiltonian Monte
Carlo (HMC) algorithm (Duane et al. (1987), Neal (1993), Neal (2011)). This
method is faster than traditional MCMC methods (Neal 1993), and thanks to
the Stan software (Stan Development Team 2019) it is also easy to implement.
Stan is available for the common user through for example, the rstan library
of R.

MCMC methods give asymptotically unbiased estimates (e.g, Neal (1993)),
but they do so at the price of computational complexity. An alternative to these
methods is approximate Bayesian inference, such as the method of Integrated
Nested Laplace Approximation (INLA) (Rue et al. 2009). The popularity of
INLA is also increasing within the field of Bayesian computationally intensive
statistics, due to its computational powers (Rue et al. 2016). However, INLA is
only applicable to a subset of mortality models. This is because INLA requires
a linear relationship between the age, period, and cohort effects, that many
mortality models do not fulfill.
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One of the mortality models for which INLA is applicable is the APC (age-
period-cohort) model (Clayton and Schifflers 1987). The APC model is com-
monly used in the field of medical and demographic sciences and is typically
used to model cause-specific mortality. Indeed, there are several examples
of the usage of INLA to obtain Bayesian inference with APC models that
show convincing results (Riebler (2010), Riebler et al. (2012a), Riebler et al.
(2012b)).

However, the scope of INLA excludes the class of mortality models based
on the Lee-Carter model (Lee and Carter 1992), which are commonly used in
the field of actuarial mortality modeling. A defining trait of these models is
the application of an age-modulating factor to the period effect. This appears
as a multiplicative term in the model, which conflicts with the requirement of
a linear relationship between the time effects of INLA. This also applies to the
Cairns-Blake-Dowd (CBD) model (Blake et al. 2006), which uses a simpler,
but still non-linear, relationship between the age and period effects. For these
models, MCMC-based methodologies are the most common option for doing
Bayesian inference (Czado et al. (2005), Wiśniowski et al. (2015), Berkum
et al. (2017), Wong et al. (2018), Hunt and Blake (2021a)). Since INLA is
often significantly faster than traditional MCMC methods, producing results in
seconds or minutes where an MCMC approach would take hours or days (Rue
et al. 2009), it would be beneficial to find a way to use the INLA methodology
on non-linear mortality models.

Recently, Bachl et al. (2019) proposed a method for applying the INLA
methodology to models that do not fulfill its requirement of linearity. We refer
to this method as inlabru, after the R library where it is implemented. inlabru
was originally proposed as a solution to non-linearity problems arising in
ecological data, and we wish to investigate if it is also applicable to non-
linear mortality models. If this turns out to be the case, it would open up
the possibility for more efficient analysis of e.g., Lee-Carter types of mortality
models, by for instance making sensitivity analysis of model parameters faster
and making the comparison of different model choices more feasible.
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We already know that the approximate INLA method gives very similar
results to asymptotically unbiased MCMC methods (Rue et al. 2009). However,
inlabru introduces an additional approximation, namely a linearization of
the non-linear parts of the model. We wish to investigate to what degree this
estimation bias affects the resulting approximate inference when applied to
non-linear mortality models.

This work is an extension of a previous investigation (Behrens 2021), where
we demonstrated that inlabruwas able to correctly identify the mortality rates
and time effects of some simple synthetic data. We then used inlabru to apply
both the APC model and a version of the Lee-Carter model to actual data of
cancer mortality. This previous study showed promising results, indicating that
it is indeed both possible and effective to use inlabru for Bayesian inference for
non-linear mortality models. We now perform a more thorough investigation
of the exact performance of the approximate inlabru method compared to
the MCMC method. Specifically, we compare the inference results of inlabru
to the results of inference with Stan, for a selection of mortality models both
including and excluding a non-linear term.

We find that inlabru and Stan give very similar results in the cases where
the models possess a linear structure. This is as expected since inlabru is
equivalent to INLA in this case. For the cases with non-linear model structures,
we do observe a difference in the estimation results of Stan and inlabru. We
attribute some of this difference to unidentifiability in the data and some to
the bias of the linearization process of inlabru. We discuss these differences
in detail.

In the last part of our research, we demonstrate the abilities of inlabru as
a tool for mortality modeling by using it to apply a Lee-Carter type of model
to data of German cancer mortality. We apply the model both to the full set of
data and to a set where the most recent years are left out, for which we use
inlabru to produce forecasts for the omitted years.
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MORTAL IT Y MODEL I NG AS A STAT I ST ICAL F I E LD

Good statistical methods for modeling trends in mortality rates are important
tools in several scientific fields. In the public sector, projections of general and
cause-specific mortality are of key interest in, among others, the development
of health policies and planning of social securities and pension funds, and in
actuarial applications, mortality forecasts play an important role in the pricing
of life insurances and pension products (Lee and Carter (1992), Brouhns et al.
(2002), Czado et al. (2005), Renshaw and Haberman (2006), Renshaw and
Haberman (2009)).

The dominating approach to mortality modeling on a population level is to
consider mortality, in the form of observed counts of mortality, mortality rates,
or probability of mortality, as a combination of age- and period-specific effects.
In some cases, a cohort effect is included, which describes lifelong effects for
the population with the same birth year. This general structure is common for
most mortality models in literature (Hunt and Blake 2021b). The differences
between the numerous models that we see in the field of mortality modeling
seem to lie in the structure of the relationship between the time effects, in
what way variability is captured by the model, whether a separate cohort
effect is included and whether the model is considered in a Bayesian setting
(Clayton and Schifflers (1987) Lee and Carter (1992), Blake et al. (2006),
Delwarde et al. (2007), Wong et al. (2018), Renshaw and Haberman (2006),
Hunt and Villegas (2015), Riebler (2010), Czado et al. (2005), Wiśniowski
et al. (2015)).
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6 mortality modeling as a statistical field

In the following chapter, we outline some of the discussions on mortality
modeling that have been taking place in recent years. We describe some of the
most commonly used models, as well as the estimation procedures that have
been employed, and the challenges, properties, and discussions associated
with these.

2.1 age-period-cohort models for mortality modeling

Mortality data typically consist of the observed deaths Yx ,t for each age group
x during the period t and the corresponding population at risk Ex ,t . Most
mortality models connect these observation to some age, period and cohort
effects through a likelihood. This can for example be an assumed Gaussian
mortality rate:

mx ,t = Yx ,t/Ex ,t , log(mx ,t) ∼N (ηx ,t , 1/τ),

as in e.g., Lee and Carter (1992). Here, N (µ, 1/τ) denotes a Gaussian dis-
tribution with mean µ and precision (inverse variance) τ. Alternatively, the
observed deaths may be assigned a Poisson distribution as

Yx ,t ∼P oisson(Ex ,t · eηx ,t )

(e.g., Brouhns et al. (2002)). Both models above describe the relation between
mortality and the age, period, and cohort effects through a predictor ηx ,t , and
this predictor is usually given by some version of the structure

ηx ,t = αx +
n
∑

i=1

β
(i)
x κ

(i)
t +β

(0)
x γc. (2.1.1)

Here x = 1, . . . , X denotes the age, t = 1, . . . , T denotes the period, typically
calendar years, and c = 1, . . . , C denotes the birth year, or cohort, usually
given by c = t − x . αx denotes a static age effect, often modeled as the average
mortality for age x over the observed period (e.g., Lee and Carter (1992)).
The β (i)x are modulating age effects, applied to period effects κ(i)t or to the
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cohort effect γc. We refer to these collectively as the random effects or the
time effects.

This general way of expressing age-period-cohort mortality models was
concretized by Hunt and Blake (2021b), as a way to summarize the increasing
number of mortality models that have been proposed over the recent years.
They emphasize, as do we, that this general structure is a result of combining
all models proposed up until recently, and that the original mortality models
were not proposed with the structure of Equation 2.1.1 in mind. Still, we
consider it a useful tool in structuring the model comparison, and we will
discuss the different proposed mortality models in relation to this general
structure in the following section.

2.1.1 Age-Period Models

Several models use only age and period effects to model mortality. In the
actuarial sciences, the model proposed by Lee and Carter (1992), hereby
referred to as the Lee-Carter model, has been popular ever since its introduction.
Variations of this model have largely dominated the field of actuarial mortality
modeling (Renshaw and Haberman (2009), Booth and Tickle (2008)). The
original Lee-Carter model assumes a Gaussian distribution of the log-mortality
rates, where the mean of the distribution is linked to age and period effects
through the predictor:

ηx ,t = αx +βxκt . (2.1.2)
This corresponds to setting n = 1 and γc = 0 in Equation 2.1.1. Here mx ,t is
the mortality rate for an age group x at period t.

After its introduction, numerous extensions of the Lee-Carter model have
been proposed. Brouhns et al. (2002) suggest exchanging the Gaussian log-
mortality model structure with a Poisson structure, where they consider the
observed number of deaths to follow a Poisson distribution:

PLC : Yx ,t ∼P oisson(Ex ,t · eηx ,t ), ηx ,t = αx +βxκt .
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Here Yx ,t is the observed number of deaths and Ex ,t is the exposed population
of age x in year t. We refer to this model as the Poisson Lee-Carter (PLC)
model. Czado et al. (2005) extended the PLC model further, by incorporating
it into a Bayesian framework.

Delwarde et al. (2007) proposed extending the Bayesian PLC model with
an error term to account for the variability that cannot be explained by either
age, period or cohort effects, so-called overdispersion. The Poisson distribution
of the basic PLC model limits the variability to be equal to the predictor ηx ,t .
Wong et al. (2018) demonstrated that the PLC model without the error term
could not sufficiently capture the variability of their example data. Delwarde
et al. (2007) proposed to assign the error term a Gamma prior, and Wong
et al. (2018) suggested an alternative "Poisson log-normal Lee-Carter" (PLNLC)
model that assigns the error term a Gaussian prior.

Another proposed extension of the original Lee-Carter model is the inclusion
of multiple period terms to increase flexibility with respect to age (Renshaw and
Haberman 2003). This corresponds to setting n> 1 and keeping γc = 0 in the
structure of Equation 2.1.1. A variant of these types of models was introduced
by Blake et al. (2006). Their model, known as the CBD model, is directed at
modeling mortality at pensioner ages, and it is suited for modeling longevity
risk. CBD types of models omit the static age effect αx and instead include
multiple period effects modulated by polynomial age functions. Additionally,
the models are fitted to the probabilities of death transformed by a logit link
function, as opposed to the mortality rates.

2.1.2 Cohort Effects in Mortality Modeling

A basic and commonly usedmodel within the fields of medical and demographic
sciences, is the APC (age-period-cohort) model (Clayton and Schifflers 1987).
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The APC model defines a simple, additive relation between the time effects,
which we arrive at by setting β (i)x = 1 and n = 1 in Equation 2.1.1:

ηx ,t = αx +κt + γc.

Its simple structure makes the APC model easy to perform inference with,
especially when it is considered in a Bayesian setting. However, due to the
linear dependence between the time effects, arising from the relation

cohort= period− age,

the additivity of this model makes it especially sensitive to identifiability issues
between the three time effects (e.g., Riebler (2010), Hunt and Blake (2020b)).
There is an entire field of literature dedicated to discussing the APC model
and its performance (see e.g., Riebler and Held (2010)), and many studies
discussing "age-period-cohort" models refer only to this model.

In the fields of medical mortality modeling, the inclusion of the cohort
effect has long been considered a useful tool to correctly capture mortality,
and the APC model has been used extensively in this field (see e.g., Riebler
et al. (2012a), Riebler et al. (2012b)) In recent years, the need to include an
explicit cohort effect also when describing tendencies in general mortality, has
been pointed out increasingly often in the actuarial community as well (e.g.,
Hunt and Villegas (2015)). This is in contrast to more traditional models for
actuarial mortality modeling, where cohort effects are often acknowledged,
but treated as secondary to the age and period effects (Hunt and Villegas
2015). Although some argue that any observable cohort effects are simply
misplaced age or period effects and that they should be modeled accordingly
(for example Cairns et al. (2011)), there is increasing agreement that cohort
effects are in any case useful in practical mortality modeling.

The inclusion of this cohort effect can be formulated in several ways. Ren-
shaw and Haberman (2006) propose to simply add it as a term in the usual
Lee-Carter model structure. They consider two versions of this model. In the
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first, the cohort effect is modulated by an age effect, similarly to the period
effect:

M : log(µx ,t) = αx +β
(1)
x κt +β

(0)
x γc. (2.1.3)

We refer to this model as model M, following the convention of Renshaw and
Haberman (2006), and later Hunt and Villegas (2015). In the second version,
the age-modulating effect on γc is removed, i.e., β (0)x = 1, which results in the
simple model structure

H1 : log(µx ,t) = αx +βxκt + γc, (2.1.4)

which we denote by H1, also after Renshaw and Haberman (2006). Hunt and
Villegas (2015) argue, after comparing the robustness to changes in data of
the two models, that the H1 model should be preferred.

Similarly, different cohort extensions of the CBD model were proposed
by Cairns et al. (2009), both with and without an age-modulation of the
cohort effect. Cairns et al. (2009) showed that these models were effective for
modeling mortality in older ages.

Multiple terms for the cohort effect have also been proposed, by e.g.,
Hatzopoulos and Haberman (2011). However, this has been found to over-
complicate the models and does not seem to be needed for description of the
cohort effects in most data, and so these models are rarely used (Hunt and
Blake 2021b).

2.1.3 Multivariate Mortality Models

An additional field of mortality models are multivariate mortality models,
aiming to capture differences in the age, period and cohort effects across
subgroups of a population. This can for example be gender-specific differences
in the time effects, or mortality patterns varying across geographical regions.
Riebler andHeld (2010) and Riebler et al. (2012a) discuss multivariate versions
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of the APC model where some of the time effects are shared, while others are
allowed to vary across different strata of the population.

As argued by Riebler et al. (2012a), multivariate modeling of subpopula-
tions may be particularly useful when different quality of data is available
across the different strata. Then the estimations for the strata with lower qual-
ity of data, e.g., more missing values, may borrow strength from the related
populations. This benefit of multivariate models has also been emphasized
and successfully employed in the field of actuarial mortality modeling by e.g.,
Berkum et al. (2017). We acknowledge the vast potential that multivariate
mortality models present, while we limit the scope of our following research
to univariate models.

2.2 identifiability in mortality models

The degree of identifiability of different mortality models has been a widely
discussed topic within the field of mortality modeling. Unidentifiability of a
model entails that there exist multiple different sets of of time effects (age,
period and cohort effects) that give the same fitted mortality rates. These
sets of parameters are equivalent to each other, when considering nothing
other than the available data. It is therefore common practice to apply some
identifying constraints to the model. However, exactly which constraints are
needed to ensure identifiability, and when they suffice to fully identify the
model, has been thoroughly discussed (see e.g., Riebler (2010), Held and
Riebler (2013), Hunt and Villegas (2015), Hunt and Blake (2020a), Hunt and
Blake (2020b)).

The identifiability of the mortality models depends on the model structure,
whether or not a cohort effect is included and the model choices for the time
effects. We outline some of the discussion on identifiability in mortality models,
as well as some recently proposed general conditions for the identifiability of
age-period and age-period-cohort models.
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Hunt and Blake (2020a) and Hunt and Blake (2020b) recently formal-
ized the identifiability of models of the general form of Equation 2.1.1. We
present some key points of their investigation here, as a way to summarize
the discussions on identifiability in mortality models.

2.2.1 Identifiability of Age-Period Models

We begin with the simpler results of Hunt and Blake (2020a), which describe
age-period models of the form

ηx ,t = αx +
N
∑

i=1

β
(i)
x κ

(i)
t . (2.2.1)

Hunt and Blake (2020a) rewrite this to matrix notation as

{ηx ,t}= α1T +βκ.

Here, α is an (X × 1) matrix, 1 is a (T × 1) matrix of ones, β is an (X ×N)

matrix and κ is an (N × T ) matrix. Hunt and Blake (2020a) then show that
the only invariant transformations for this model structure are

{α̂, β̂, κ̂}= {α,βA−1, Aκ}

{α̂, β̂, κ̂}= {α−βB,β,κ+ B1T},
(2.2.2)

where A is an invertible (N × N) matrix and B is an (N × 1) matrix. The
parameter space of these transforms has dimension N(N +1), and thus N(N +

1) constraints are needed for identifiability of the model (Hunt and Blake
2020a). For example, in the case where N = 1, such as for the Lee-Carter
model, two constraints are needed to ensure identifiability.

We should point out, as emphasized by e.g., Hunt and Blake (2020a),
that the identifiability constraints are arbitrary, and that they only serve to
choose one out of many possible sets of parameters. This means that the
constraints can be chosen freely, without altering the fit of the data. It also
means that the constraints in themselves contain no information about the
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data, which one should keep in mind for example when using the fitted model
to forecast future rates. The identifiability constraints do, however, change the
demographic significance of the time effects. Consequently, these constraints
are often chosen in a way that makes the resulting model easily interpretable.
Typically, for age-period models with the structure given in Equation 2.2.1,
the identifying constraints are imposed on βx and κt as

∑

x
βx = 1,
∑

t
κt = 0. (2.2.3)

These constraints have the advantage that they allow the interpretation of αx

as the average mortality rate for each age across the observed period (Hunt and
Blake 2020a). Another common choice of constraint is for example κt1

= 0,
as employed by e.g., Renshaw and Haberman (2003).

Hunt and Blake (2020a) specifically distinguish between models with
parametric and non-parametric age effects β (i)x . They define parametric age
effects as effects where some specific shape of the effect is assumed apriori,
i.e., when β (i)x = f (i)(x ,θ (i)) for some parameters θ (i). The results that we
described above only generally apply to models with non-parametric age
effects. This is because models with parametric β (i)x may not be applicable to
the invariant transformations of Equation 2.2.2, and the required number of
identifying constraints may depend on the form of the age function. We mainly
consider what Hunt and Blake (2020a) refer to as non-parametric functions
for all of the time effects, so we do not elaborate further on this. However, we
do note the importance of the distinction, since applying excessive identifying
constrains may undesirably change the model fit (see e.g., Hunt and Villegas
(2015)).

2.2.2 Identifiability of Age-Period-Cohort Models

When a cohort effect is added to the model structure, an additional identifi-
ability issue arises, due to the linear relation cohort = year - age, which is
not resolved simply by adding an identifying constraint to the cohort effect.



14 mortality modeling as a statistical field

This has been widely discussed for APC models (see e.g., Riebler (2010)), as
this unidentifiability of the time effects is especially apparent in the additive
structure of these models. Solutions to this have been proposed, but none
seem to be widely accepted (see e.g., Luo (2013) and Held and Riebler (2013)
for an impression of the intricacies of the discussions on this topic).

Hunt and Blake (2020b) treat the topic of identifiability in age-period-
cohort mortality models in a general way and consider models of the form

ηx ,t = αx +
N
∑

i=1

β
(i)
x κ

(i)
t + γc=t−x . (2.2.4)

Since the age-period model of Equation 2.2.1 is a submodel of this model,
the identifiability issues discussed for the age-period model also applies here.
With the introduction of the term γc, the parameter space increases, and
so an additional constraint must be imposed on the cohort effect to ensure
identifiability in the sense that it was discussed for the age-period model. This
is typically chosen as

∑

x

∑

t
γt−x = 0,

as suggested by e.g., Cairns et al. (2009), or
tT−x t
∑

c=t1−xX

γc = 0, (2.2.5)

as suggested by Hunt and Villegas (2015). The latter choice of constraint keeps
the interpretation of αx as the average mortality rate when it is combined with
the constraints of Expression 2.2.3. However, simply adding this constraint
does not necessarily ensure identifiability of the collinearity between the age,
period and cohort effects, and this is examined by Hunt and Blake (2020b).

We note that Hunt and Blake (2020b) only consider models without an
age-modulating factor in the term for the cohort effect, meaning that their
findings do not necessarily apply to models with an age-modulated cohort
effect, such as the model M of Renshaw and Haberman (2006). However, as
Hunt and Blake (2021b) discuss, these models are quite rarely used, as they
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have been shown to lack robustness (Hunt and Villegas 2015). Consequently,
we do not consider this a great loss of generality.

Again, Hunt and Blake (2020b) make the distinction between models
with parametric and non-parametric age functions β (i)x . They show that for
non-parametric choices of β (i)x , models with the structure of Equation 2.2.4
do not posses any additional unidentifiability other than that discussed for
the age-period model of Equation 2.2.1. This entails for example that the
model H1 of Renshaw and Haberman (2006) with constraints such as those
given in Expressions 2.2.3 and 2.2.5 is in theory fully identified, as long as
the βx effect is not given some functional shape f (x) apriori. However, for
parametric choices of βx , models with the structure of Equation 2.2.4 are not
necessarily identifiable. The APC model is considered a parametric model,
since it is equivalent to the model in Equation 2.2.4 when we assign βx the
parametric choice βx = 1. Hunt and Blake (2020b) attributes this lack of
identifiability of the APC model to the invariant transformation

{α̂x , κ̂t , γ̂c}= {αx + a(x − x̄),κt − a(t − t̄),γc + a(c− c̄)},

where a is a constant. They also discuss the unidentifiability for mortality
models for other parametric model choices for βx , for instance when βx is
modeled with a polynomial or exponential function, but we do not go into
details of this discussion here.

Hunt and Blake (2020b) discuss different tactics for overcoming these
identifiability issues in the APC and other parametric age-period-cohort mor-
tality models. They emphasize the method of adding another constraint that
removes linear drift from the cohort effect. Such a constraint can for example
be

∑

c
ncγc(c− c̄) = 0, (2.2.6)

where nc is the number of available observations of cohort c. However, this
practice is disputed, with some arguing that imposing demographic significance
of the model in this way only serves to confuse, and that it is more correct to
leave the model in its unidentified state (e.g., Held and Riebler (2013)).



16 mortality modeling as a statistical field

Finally, we note that the theoretic identifiability of the non-parametric age-
period-cohort models of Equation 2.2.4 does not guarantee identifiability in
practice. For instance, Hunt and Villegas (2015) observe identifiability issues in
their theoretically identifiable H1 model, and they attribute these issues to the
near-parametric shape of κt that they find when fitting the H1 model to their
data. Again, they suggest adding an "approximate" identifiability constraint,
such as Equation 2.2.6, and they argue that this removes convergence issues
that they see arising from the unidentifiability.

2.2.3 Identifiability of Models with Different Time Intervals

Finally, a third type of unidentifiablity may arise in age-period-cohort models
for which the age and period intervals are of unequal lengths. This issue has
been discussed for APC models by e.g., Holford (2006) and Riebler (2010),
who describe the unidentifiablity appearing as cyclical patterns in the estimated
cohort effects. Adding smoothing priors to the random effects, such as random
walks of order two, is suggested as a way of removing this type of lack of
identifiability.



3

GERMAN CANCER DATA

In our investigation, we will consider mortality modeling using data of mortal-
ity for lung and stomach cancer in Germany for the years 1999-2016, obtained
from the German Centre for Cancer Registry (2021b). In these data sets, the
observed mortality for the two cancer types is given by the number of cases
for men and women, for each year, for five-year age intervals. The exception is
for the ages above 85 years, which are collected in a single group. We denote
the observed cases of deaths for one cancer type, for one sex, at age group
x and cohort c during period t by Y type, sex

x ,t . We note that the cohort c of the
observation is implicitly given by the age x and the year t.

We find data for the total German population, which serves as our at-risk
population, for the corresponding years and ages at the German Centre for
Cancer Registry (2021a). This dataset contains observations for age groups of
one year, and we aggregate them to the same five-year age groups as for the
cancer data. We denote the observed German population for a given sex, age
group x and cohort c during period t by Esex

x ,t . We then find the corresponding
mortality rates by

mtype, sex
x ,t =

Y type, sex
x ,t

Esex
x ,t

, (3.0.1)

or mtype
x ,t = Y type

x ,t /Ex ,t in the case where we consider the two sexes together.

We index the age groups x , the periods t and the cohorts by

17
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• The age indices x are x = 0, . . . , X = 17.

• The period indices t are t = 0, . . . , T = 17.

• The cohort indices are given by c = 5(X − x)+ t, C = 5X + T = 102,

as proposed by Heuer (1997). We index the cohort effects this way, as opposed
to the canonical c = t − x , to handle the fact that our data contain age- and
period intervals of unequal lengths.

Figure 3.0.1 displays the observed population and cases of lung and stom-
ach cancer deaths over different age groups. Figures 3.0.1b and 3.0.1c show
that there are most observed cancer deaths at older ages, for both males and
females. This is even though the general German population is largest at
around 40 years old. From Figure 3.0.1a, we can observe aging of the German
population, with the most common age shifting from around 40 years old in
1999 to closer to 50 years old in 2016.

Figure 3.0.2 displays the development of the observed population and
cases of lung and stomach cancer deaths for the period 1999-2016. We see
that the observed lung and stomach cancer cases seem to increase with time
for women, but stay rather stable for men. There is a clear drop in the German
population in the year 2011, which can be seen in Figure 3.0.2a. This is an
effect of the population census held in Germany in 2011, which showed that
the estimated population numbers were off by 1.5 million people compared
to the previous years (Statistisches Bundesamt 2013).

Figure 3.0.3 displays the observed male, female and combined cancer
mortality rates, as found from the relation in Equation 3.0.1, averaged over
all available years. We first note that the male and female mortality rates
behave quite differently to each other and to the mortality rates for the full
population. This is the case for both lung and stomach cancer mortality, and
we interpret this as an indication that male and female mortality should be
treated separately in modeling. Our previous work on mortality modeling for
these data confirms this (Behrens 2021). The observed cases of male lung and
stomach cancer follow each other very closely and we expect to get similar
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Figure 3.0.1: The total German population (upper) and the number of stomach and
lung cancer deaths (middle and lower) are displayed by the different age groups, for
the years 1999, 2007, and 2016.
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Figure 3.0.2: The total number of people (upper) and stomach and lung cancer
deaths (middle and lower), summed over all age groups and displayed for each year.
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results when analyzing them. The same traits can be seen in Figure 3.0.4,
which displays the obseerved mortality rates averaged over all age groups.

Figure 3.0.5 displays the observed mortality rates for each cohort for the
years 1999, 2007, and 2016. Note that we do not have full observations for
the older cohorts. For instance, for the year 2016, we only have observations
of the cohorts down to c = 17. This results from the fact that all observations
older than 85 are counted together, which is a simplification of reality. For
example, there will be some small part of the population that was 85 years
old or older in 1999, and thus part of the c = 0 cohort, that survived until
2016, where the c = 0 cohort is no longer observed. In 2016, these people
would be assigned the cohort c = 17. Although we can technically consider
this as an error in the cohort data, we assume that it will not affect our analysis
significantly, since it applies to such a small part of the population. Still, we
keep in mind that we have fewer observations for the older cohorts. Similarly,
we also have fewer observations for the cohorts born after 1999. Additionally,
Figure 3.0.5 shows that for many of the younger cohorts, mortality rates are
close to zero during the entire observed period 1999-2016.
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Mortality rates averaged over the period 1999-2016

0.000

0.001

0.002

0.003

0.004

0.005

0 20 40 60 80
Age

All sexes

Female

Male

(a) Stomach: Average mortality rates for stomach cancer, male
and female

0.000

0.001

0.002

0.003

0.004

0 20 40 60 80
Age

All sexes

Female

Male

(b) Lung: Averagemortality rates for lung cancer, male and female

Figure 3.0.3: Mortality rates averaged over all years, for males and females
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Mortality rates averaged over ages 0-85+
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Figure 3.0.4: Mortality rates averaged over all age groups, for male and females
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Mortality rates averaged over all birth years
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Figure 3.0.5: Mortality rates averaged over all cohorts, for male and females
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BAYES IAN MORTAL IT Y MODEL I NG

In this research, we will consider mortality models in the framework of
Bayesian statistics. Bayesian statistics differ from classical (frequentist) statis-
tics in the way that all model parameters are considered as random variables
(Gilks et al. 1995). Bayesian statistics can be described as a way to update
one’s current belief in light of new evidence. In practice, this entails that the
prior, subjective, knowledge about some event is taken into account when
considering the probability of that event, in addition to observed data.

As argued by e.g., Czado et al. (2005), Wiśniowski et al. (2015) and
Wong et al. (2018), there are many advantages of considering mortality
modeling and forecasting in a Bayesian framework. In Bayesian models,
incorporating previous expert knowledge (or lack thereof) is intuitive and
straightforward. Additionally, forecasts and estimates of model parameters may
be found simultaneously through a single-step procedure, which eliminates
the risk of incoherence and the reduction in the goodness of fit associated
with alternative two-stage procedures (Czado et al. (2005), Hunt and Villegas
(2015)).

Specifically, we consider a subgroup of Bayesian models, called hierarchi-
cal Bayesian models (see e.g., Allenby et al. (2005), Gamerman and Lopes
(2006)). Hierarchical, or multilevel, models are typically used for modeling
grouped observations (Albert and Hu 2019), and they can be thought of as a
generalization of regression modeling where posterior probability distributions

25
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are estimated also for the regression parameters (Gelman 2006). The models
consist of three parts:

y : The observed data y, generated by some unobserved process x
x : The latent process x, conditional on some hyperparameters θ
θ : The hyperparameter θ.

In a Bayesian framework, these three model components are all treated as
random variables, with a corresponding probability distribution. y is modeled
with a likelihood model given x and θ, our previous knowledge about the
latent process x is expressed through a prior distribution and θ is assigned a
hyperprior distribution reflecting our knowledge of this hyperparameter. This
results in the following structure:

y ∼ π(y | x)

x∼ π(x | θ)

θ ∼ π(θ)

(see e.g., Gamerman and Lopes (2006)).

The mortality models that we have discussed in Chapter 2 can all be
formulated as hierarchical models. The latent field x then consists of the
time effects αx , β (i)x , κ(i)t and γc, which are linked to the observed mortality
through a Gaussian or Poisson likelihood. Prior distributions π(x | θ) can
then be assigned to the age, period and cohort effects. The hyperparameters
of these processes are then the hyperparameters θ of the hierarchical model,
which are in turn assigned some hyperprior π(θ).

Our interest lies in the posterior distributionπ(x,θ | y). This is proportional
to the likelihood models and the prior distributions of x and θ through the
relation

π(x,θ | y)∝ π(y | x,θ) ·π(x | θ) ·π(θ),

following from Bayes’ theorem (Bayes 1763). However, obtaining information
from this posterior distribution often involves calculation of high-dimensional
integrals, which are rarely analytically available (Beguin et al. 2012). There
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are several integration methods that can be employed to solve this, with the
Markov Chain Monte Carlo (MCMC) method being the traditionally dominant
choice.

The MCMC method draws samples from the target distribution (Gilks et
al. 1995), meaning that it produces asymptotically unbiased estimates (Neal
1993). The MCMC method is applicable to nearly every model formulation
(Gilks et al. 1995), which makes it an extremely powerful tool for performing
Bayesian inference. The downside of the classical MCMC algorithm is that it
is computationally demanding, and even though it, in theory, converges to the
correct distribution, it may do so only after a very long time (e.g., (Hoffman and
Gelman 2014)). One possible solution is to use enhancements of the classical
MCMC algorithm, such as the Hamiltonian Monte Carlo (HMC) algorithm
(Duane et al. 1987). HMC utilizes principles of Hamiltonian dynamics to draw
samples more efficiently and thus converges much quicker (see Section 4.1 for
details).

An alternative to MCMC is the Integrated Nested Laplace Approximation
(INLA) method (Rue et al. 2009). The INLA method, described further in
Section 4.2, uses Laplace approximations of integrals to obtain approximate
posterior marginals of the model parameters (Gómez Rubio 2020). It has been
shown that for many problems, INLA can produce accurate results in much
less time than the MCMC method would use to obtain the same accuracy (Rue
et al. 2009), and it is therefore increasing in popularity (Rue et al. 2016).

However, INLA is only applicable to a limited set of models. Of the mortality
models discussed in Chapter 2, it is only possible to use INLA with the APC
model, since this is the only model with a linear relationship between the time
effects. The theory behind this is explained further in Section 4.2. This means
that for the wide class of mortality models with a multiplicative relationship
between the age and period effects, it is not possible to use INLA as it is to
perform inference.

In the following chapter, we give an introduction to these two methods
for Bayesian inference. We first present the HMC method and the statistical
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software Stan, as this is becoming a state-of-the-art approach for MCMC-type
of inference. We then present the INLA method, together with the recently
proposed inlabru method (Lindgren and Bachl 2021), which proposes a
method for applying INLA also to non-linear models.

4.1 markov chain monte carlo

TheMarkov ChainMonte Carlo (MCMC)method, usually attributed toMetropo-
lis et al. (1953), is perhaps the most widely used method for performing
Bayesian inference.

MCMC does inference by drawing samples from a target distribution, which,
in the context of Bayesian statistics, is typically a posterior distribution that
is not available in closed form. These samples can be used to calculate the
desired quantities of the target distribution (the mean, mode, etc.). The driving
principle behind the MCMC algorithm is that these samples are found through
the construction of a Markov Chain with a limiting distribution equal to the
target distribution of interest (see e.g., Robert and Casella (2004)). Commonly
used MCMC algorithms include the Metropolis-Hastings algorithm of Hastings
(1970) and the Gibbs-sampler (S. Geman and D. Geman 1984), which is a
generalization of the former (Geyer 2011).

There are several strong benefits with MCMC. It is, for instance, applicable
to most Bayesian models, it converges in distribution to the target distribution
and it is asymptotically unbiased (see e.g., Neal (1993)). A downside to these
classical MCMC methods, however, is its slowness in convergence, especially
for models with a larger parameter space ((Hoffman and Gelman 2014), (Neal
1993)). As an alternative, computationally more efficient methods within
the MCMC methodology have been proposed. Specifically, we consider the
Hamiltonian Monte Carlo (HMC) method (Duane et al. 1987) with No-U-Turn
Sampling (NUTS) (Hoffman and Gelman 2014), as it is implemented in the
increasingly popular Stan software (Stan Development Team 2019). Stan
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provides an interface with R through the library Rstan, and we will use this
library in our analysis.

Hamiltonian Monte Carlo

The idea behind the Hamiltonian Monte Carlo method is to consider the target
probability system as part of a Hamiltonian system of equations, from which
we can find a Markov transition Betancourt (2016). The HMC then avoids
the random walk behavior of most MCMC samplers, which scales poorly for
complex models and leads to a slow exploration of the target distribution, and
by that, slow convergence (see e.g., Betancourt (2018)). The HMC method
was initially developed by Duane et al. (1987) in the field of quantum physics,
but its usefulness in the statistical field was described by Neal (1993) and the
method has since become increasingly popular.

The purpose of the method is similar to that of the MCMC method, namely
to find some target density π(θ) of some parameters θ, usually given some
observations y. The HMC does this by introducing some auxiliary momentum
variables ρ, and considering the joint distribution between these momentum
variables and the parameters ρ:

π(ρ,θ) = π(ρ | θ)π(θ). (4.1.1)

Usually, the density of ρ is chosen so that it is independent of θ, and Equation
4.1.1 reduces to

π(ρ,θ) = π(ρ)π(θ).

Specifically, in Stan, the density for ρ is chosen to be a multivariate normal
distribution,

ρ∼ mul tiN ormal(0, M),
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where M is the euclidean metric (Stan Development Team 2019). A Hamilto-
nian can be defined on this joint density as

H(θ,ρ, ) = − log(π(θ,ρ))

= − log(π(ρ | θ))− log(π(ρ))

= − log(π(ρ))− log(π(ρ))

= T (ρ)+ V (θ),

when the density of ρ is independent of θ. H(θ,ρ) satisfies Hamilton’s equa-
tions:

dθ
d t

=
∂ H
∂ ρ

=
∂ T
∂ ρ

dρ
d t

= −
∂ H
∂ θ

= −
∂ V
∂ θ

(4.1.2)

As an analogy to the physical systems usually described by Hamiltonian equa-
tions, T (ρ) is often referred to as the kinetic energy of the system, and the term
V (θ) is often referred to as the potential energy of the system. These types of
systems of equations are frequently used e.g., in the field of quantum physics
(Betancourt 2018), and they can be solved by the leapfrog algorithm for nu-
merical integration, which is adapted to be stable for Hamiltonian systems
(Stan Development Team 2019).

The sampling in most HMC algorithms, including the HMC implementation
of Stan, is done in two steps.

• First, a value for the momentum ρ is independently sampled.

• Then, the system in Equation 4.1.2 is developed using the leapfrog
method for numerical integration, starting at the newly sampled value
of ρ and the value of θ from the previous sample.
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One step of the leapfrog method, incrementing the trajectory of (θ,ρ) for a
time step ϵ, consists of the following three substeps:

ρt+ 1
2
← ρt −

ϵ

2
∂ V
∂ θ

(θt)

θt+1← θt + ϵρt+ 1
2

ρt+1← ρt+ 1
2
−
ϵ

2
∂ V
∂ θ

(θt+1).

These leapfrog steps are performed a total of L times, developing the trajectory
for a time ϵL, and the resulting state (θ̃, ρ̃) becomes the proposed sample.

Stan uses the NUTS algorithm, as described in the following Section 4.1,
to perform the leapfrog development, and then uses a multinomial sampling
procedure to find the final sample given the proposed sample (θ̃, ρ̃). In the
case where NUTS is not applied, some correcting Metropolis step is typically
applied to find the final sample. The reason for this final step is that the
leapfrog method is approximate, and so the proposal samples should not be
used directly (Stan Development Team 2019).

The performance and sampling efficiency of HMC greatly depends on the
choice of the parameters of the algorithm:

• The step size, or discretization in time, ϵ

• The metric M

• The number of leapfrog integration steps L

(Hoffman and Gelman (2014), Stan Development Team (2019)). To obtain
efficient sampling, ϵ should be balanced so that a sufficiently large number
of proposal samples are accepted, while still being large enough so that the
integration procedure is not too computationally demanding. Similarly, the
choice of L involves a trade-off between too large values of L resulting in
making unnecessary steps in computation and too low values of L which give
short leapfrog trajectories and sampling patterns that exhibit random walk
behavior. Lastly, the inverse metric M−1 should be a sufficiently good estimate
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of the posterior covariance. If it is not, ϵ must be kept small, and then larger
values are needed for L as a compensation (Stan Development Team 2019).

The Stan methodology automatically optimizes all of these parameters. ϵ
is adjusted to match a target acceptance rate, the warm-up samples are used
to estimate M and the No-U-Turn Sampler is used to dynamically adapt L.
We refer to the Stan reference manual (Stan Development Team 2019) for a
detailed description of the adaption of ϵ and M and briefly outline the concept
of the NUTS algorithm for adaption of L in the following section.

No-U-Turn Sampler

The No-U-Turn Sampler (NUTS) proposed by Hoffman and Gelman (2014) is
a method for dynamical allocation of the number of leapfrog steps L in an HMC
procedure for each sampling step. This removes the need for a potentially
computationally demanding preliminary analysis to find an optimal value for
L, while still keeping the computation time for the procedure low (Hoffman
and Gelman 2014).

The driving idea behind NUTS is that the ideal proposal sample parameter
θ̃ of the HMC is as far as possible from the initially proposed parameter θ. This
is because when successive samples are too close to one another, the chain
displays the undesired random walk behavior and becomes slow in conver-
gence. The leapfrog trajectories of the HMC act like loops, by moving away
from the initial parameter values with the first integration steps, but at some
point turning back towards the initial proposal (Hoffman and Gelman 2014).
Consequently, the NUTS approach strives to find the number of integration
steps L that corresponds to the point of the trajectory right before it turns back
towards the initial values. Hoffman and Gelman (2014) finds this point by
considering the quantity

d
d t

(θ̃−θ)(θ̃−θ)
2

= (θ̃−θ)
d
d t

(θ̃−θ) = (θ̃−θ) · ρ̃, (4.1.3)
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where θ is the initial parameter proposal, θ̃ is the current parameter proposal
and ρ̃ is the current momentum. This quantity is proportional to what can be
interpreted as the amount of progress away from the initial parameter estimate
θ one would make by running the algorithm for d t more time.

The above discussion would suggest an algorithm that runs leapfrog in-
tegration until the quantity in Equation 4.1.3 becomes less than zero, or
conceptually speaking, when the trajectory begins to make a U-turn. However,
this approach does not guarantee reversibility, and by that, it neither guaran-
tees convergence to the correct distribution (Hoffman and Gelman 2014). To
adjust for this, the NUTS algorithm develops the system in Expression 4.1.2
both forwards and backwards in time, creating a balanced binary tree rather
than a single trajectory. The development is then halted when the binary tree
begins to turn back on itself, or in other words, when the two trajectories from
development of the system forwards and backwards in time begin to approach
one another.

4.2 integrated nested laplace approximations

The Integrated Nested Laplace Approximation (INLA ) is a method for approx-
imate Bayesian inference on latent Gaussian models (LGM), first proposed
by Rue et al. (2009). INLA is made readily available through the R package
R-INLA and a thorough explanation of the method and the related framework
can be found in Rue et al. (2009) and at https://www.r-inla.org. Bayesian
inference with INLA is applicable to the class of Bayesian models named Latent
Gaussian Models (LGMs) (Rue et al. 2009).

LGMs are hierarchical models, where the observations y are conditionally
independent given a latent Gaussian random field x and some hyperparame-
ters θ. LGMs are usually expressed through a predictor ηi related to the mean
µi of observation yi through some known link function g−1(·):

µi = g−1(ηi). (4.2.1)

https://www.r-inla.org
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The general form of the predictor is

ηi = α+

nβ
∑

j=1

β jz ji +

n f
∑

k=1

f (k)(uki)+ ϵi (4.2.2)

(Rue et al. 2009). Here, α is the intercept, β are the linear effects on some
covariates z, the f (k)´s are random effects on some covariates u and ϵi is the
error term. The model can be summarized as

y | x,θ ∼
∏

i

π(yi | ηi,θ)

x | θ ∼N (0,Q−1(θ))

θ ∼ π(θ).

(4.2.3)

The latent field x is given by

x= (η,α,β,f ) (4.2.4)

(Martino and Riebler 2019). The element that distinguishes LGMs from other
Bayesian models is the assumed Gaussian prior on the latent field x (Rue et al.
2009). Here Q(θ) is the precision matrix (inverse of covariance matrix). θ
may have any suitable prior distribution.

The INLA method assumes that the Gaussian field is endowed with a
Markov property, that is, x is a Gaussian Markov Random Field (GMRF) (Rue
and Held 2005). This entails that the matrix Q(θ) is sparse. The methodology
gives approximations to the marginal posterior distributions of the latent field
x and the associated hyperparameters θ. Rue et al. (2009) describe the method
of INLA in its entirety, while Martino and Riebler (2019) give an updated and
concise summary of the main components of the INLA method. We will briefly
outline the estimation procedure of INLA here, and refer to these papers for a
more detailed description.
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4.2.1 The method of INLA

INLA produces deterministic approximations to the univariate marginal pos-
terior distributions for the latent field x and the hyperparameter vector θ of
LGMs. These quantities are given by the integrals

π(θ j | y) =
∫ ∫

π(x,θ | x)dxdθ− j =

∫

π(θ | y)dθ j (4.2.5)

π(x i | y) =
∫ ∫

π(x,θ | x)dx−idθ =

∫

π(x i | θ,y)π(θ | y)dθ (4.2.6)

As described by Martino and Riebler (2019), the integral with respect to θ can
relatively easily be solved with numerical integration. To do this, approxima-
tions of π(θ | y) and π(x i | θ,y) are needed. INLA approximates π(θ | y), at
a certain value θk of the hyperparameter vector, as

π̃(θk | y)∝
π(y | x,θk)π(x | θk)π(θk)

π̃G(x | θk,y)
. (4.2.7)

Here, π̃G(x | θk,y) is a Gaussian approximation of x | θk,y, which is con-
structed from the value and the curvature at themode. A Cholesky factorization
of the matrix Q(θ) is needed to evaluate the denominator of Expression 4.2.7.
Typically, this procedure is computationally expensive. However, the GMRF
assumption of Rue et al. (2009) ensures sparsity of Q(θ), which makes the
Cholesky factorization faster. In other words, as long as θ is not too large, the
above step is not very computationally demanding.

Next, an approximation for π(x i | θ,y) is needed. INLA offers three ways
of doing this, which are all explained in Rue et al. (2009). The default method
is a "Simplified Laplace approximation" (Rue and Held 2005), where the skew-
ness and location of the marginal of the Gaussian approximation π̃G(x | θ,y)

is corrected by a Taylor´s series expansion around the mode of a Laplace ap-
proximation (Tierney and Kadane 1986). This method serves as a compromise
between the accuracy of a full Laplace approximation and the speed of the
Gaussian approximation (Martino and Riebler 2019).
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A scheme describing the INLA algorithm is as follows:

1. θ is explored through the approximation π̃(θ | y), and K support points
{θ1, . . . ,θK} are located in the high-density area of π̃(θ | y)

2. π̃(θk | y) is calculated for each support point θk, k = 1, . . . , K by Equation
4.2.7.

3. π̃(x i | θk,y) is calculated for each support point θk, k = 1, . . . , K using
a Simplified Laplace approximation, a full Laplace approximation or a
Gaussian approximation

4. Numerical integration is used to solve Integral 4.2.6 by

π̃(x i | y) =
K
∑

k=1

π̃(x i | θk,y)π̃(θk | y)∆k,

where ∆k are the appropriate weights for the support points. Integral
4.2.5 is solved in a similar manner

The main advantage of INLA compared to other methods for Bayesian
inference is its computational power. Compared to the widely used Markov
Chain Monte Carlo (MCMC) method, for instance, it has been shown that
INLA can produce more accurate results in seconds or minutes than MCMC
can produce in hours or days (Rue et al. 2009). This often makes INLA,
when applicable, the preferred method of inference when working with model
fitting, as it allows for efficient comparison of model fits and it opens up the
possibility of sensitivity analysis, comparing the results when varying the prior
distributions. Still, the usefulness of INLA is restricted by the requirements on
the models it is applicable to.
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4.2.2 Restrictions of the INLA framework

A limitation of the INLA approach is that it imposes some restrictions on the
model used in the Bayesian inference. These restrictions can be formulated in
three requirements:

1. It should be possible to write the model as an LGM

2. Each observation yi should depend on the latent field x only through
the predictor ηi

3. The predictors ηi of the LGM should depend linearly on α, β and f of
Expression 4.2.3

(Martino and Riebler 2019).

Out of all the models discussed in Section 2, only the models where β (i)x are
constant fulfill these criteria. Among these is the APC model, for which INLA
has indeed been widely and successfully used for performing inference (e.g.,
Riebler (2010)). However, for the large body of Lee-Carter types of models,
this is not the case. This means that so far, it has not been possible to use
the INLA framework to perform inference on Lee-Carter types of mortality
models.

4.3 linearization of non-linear predictors within the inla
framework

Recently, a new methodology was proposed that enables the usage of the INLA
methodology on LGMs that include some non-linear terms in the predictor
ηx ,t . The method was first proposed by Bachl et al. (2019) in the setting of
ecological surveys, but it is widely applicable to several other fields. We call
this method inlabru after the associated R library that implements it. The
inlabru method involves finding a linearization of the non-linear predictor
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through a fixed-point iteration using INLA and then setting this linearization
as the predictor in the final INLA run. Information about the installation and
usage of the inlabru R library can be found at Lindgren and Bachl (2021).
Here, we outline the approach of Bachl et al. (2019) for the linearization and
following model approximations of LGMs with non-linear predictors. For a
more thorough explanation of the method and the application to ecological
data, we refer to their original paper (Bachl et al. 2019) and to Lindgren and
Bachl (2021).

We assume that we have an LGM, with a structure as described in 4.2.3,
but where the likelihood depends on a non-linear predictor η̃(x):

y | x,θ ∼ π(y | η̃(x),θ), (4.3.1)

where x is the latent field. inlabru then uses a linearization of η̃(x) to
be able to successfully run INLA . The linearization is found using a Taylor
approximation around some point x0:

η̄(x) = η̃(x0)+ B(x−x0), (4.3.2)

where B is the Jacobian matrix of η̃(x) evaluated at x0. This linearized
predictor is then used to run INLA , by substituting η̄(x) for η̃(x) in the
likelihood models to obtain an approximation for the likelihood:

π̄(y | x,θ) = π(y | η̄(x),θ) ≈ π(y | η̃(x),θ) = π̃(y | x,θ). (4.3.3)

By running INLA with this approximated likelihood, approximated posterior
distributions are obtained for the latent effects, hyperparameters, and the
predictor η̃(x). inlabru finds the optimal linearization point x0 through a
fixed-point iteration with INLA . For each step s in the iteration, the point x′
is found that maximizes the posterior distribution for the latent effects that
resulted from the INLA approximation using the linearization from the last step
xs−1. We denote this posterior approximated distribution as π̄xs−1

(x | y,θ).
The fixed-point scheme to find the optimal linearization point x0 is given in
Algorithm 1 (Lindgren and Bachl 2021). We note that the full scope of the
inlabrumethod has not yet been fully investigated (Lindgren and Bachl 2021).



4.3 linearization of non-linear predictors within the inla framework 39

Since the method is based on the linearization of a non-linear expression, we
might expect it to fail if the non-linearity is too extreme.

Algorithm 1 Fixed-point scheme for finding optimal linearization point x0

s← 0
us=0← initial linearization point
while not convergence do

B← Jacobian matrix of η̃(x) evaluated at us
η̄(x)us

← η̃(us)+ B(x−us)
run INLA with η̄(x)us

as the linear predictor
π̄us

(θ | y)← posterior approximate distribution for θ from INLA run
π̄us

(x | y,θ)← posterior approximate distribution for x from INLA run
θ̂← argmaxθπ̄us

(θ | y)
u′← argmaxxπ̄us

(x | y, θ̂)
if us ≈ u′ then ▷ Convergence

x0← u′

return x0
else

us+1← (1−λ)us +λu
′ such that λ minimizes ∥η̃(us+1)− η̄us

(u′)∥
s← s+ 1

end if
end while
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5

S IMULAT ION STUDY

In this chapter, we perform a simulation study to compare the performance of
inlabru and Stan on a series of mortality models with increasing complexity.
To make the investigation as simple as possible, we only look at models with
one multiplicative term βxκt , and we do not consider cohort effects in this part
of the investigation. This is because we are mainly interested in the results
of inlabru when we apply it specifically to the multiplicative term, and these
results should extend to models with multiple terms for the period effects or
models with cohort effects.

We apply inlabru and Stan to two sets of mortality models, one set with
Gaussian likelihoods and one set with Poisson likelihoods. The results are
described in the following two sections.

The full code used to produce the results in this chapter can be found at
https://github.com/Helenerb/Masters-thesis.

5.1 models with gaussian likelihoods

We consider models of the form

mx ,t = Yx ,t/Ex ,t , log(mx ,t) ∼N (ηx ,t , 1/τϵ). (5.1.1)

41

https://github.com/Helenerb/Masters-thesis
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Here, mx ,t are the observed mortality rates for age groups x = 1, . . . , X during
periods t = 1, . . . , T . The values of mx ,t are found from the observed number
of deaths Yx ,t and the exposed population Ex ,t .

We include two versions of the predictor ηx ,t . The first has a linear struc-
ture:

ηx ,t = αx +κt .

For this predictor, inlabru should act exactly like INLA, which we know should
produce very similar results to Stan (Rue et al. 2009). We include it mainly to
check that our implementation is correct. Secondly, we consider the classical
Lee-Carter predictor:

ηx ,t = αx +βx ·κt .

For both models, we assign the following priors to the time effects:

αx ∼ RW1(τα)
βx ∼ iid(τβ )
κt ∼ RW1(τκ).

(5.1.2)

Here RW1(τ) denotes the first-order random walk and iid(τ) denotes the
independent random noise model, as defined by Rue and Held (2005). τ
denotes the precisions of the models. We impose the identifying constraints

∑

x
βx = 1,
∑

x
κt = 0. (5.1.3)

Finally, we let the two models have both fixed and varying hyperparameters
τα, τβ , τκ and τϵ. In the cases where we let the hyperparameters vary, we
assign them vague Gamma-priors:

θα = log(τα), θα ∼ logG amma(1,0.00005)

θβ = log(τβ ), θβ ∼ logG amma(1, 0.00005)

θκ = log(τκ), θκ ∼ logG amma(1,0.005)

θϵ = log(τϵ), θϵ ∼ logG amma(1,0.00005)

(5.1.4)
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Model name Predictor Hyperparameters
G1lin ηx ,t = αx +κt Fixed
G2lin ηx ,t = αx +κt Gamma
G1 ηx ,t = αx +βx ·κt Fixed
G2 ηx ,t = αx +βx ·κt Gamma

Table 1: The models included in the analyses of Section 5.1. All models have the
likelihood structure of Expression 5.1.1

where θ = log(τ) ∼ logG amma(a, b) if τ ∼ G amma(a, b). We define the
priors on the log-precision because that is the standard implementation in
INLA (Rue and Held 2005). Variations of vague Gamma priors are commonly
used in literature, see e.g., Czado et al. (2005), Wong et al. (2018).

A summary of the four models that we analyze in this section is presented
in Table 1.

Preliminary Implementation Study

In the inlabru library, the random walk models and the constraints are im-
plemented in a specific way, as defined in Rue and Held (2005). In Stan,
there are several possible ways to define both the random walk models and
the constraints (see e.g., Knorr-Held and Rainer (2001), Morris (2019) and
discussions at e.g., Stan Discussion Forum (2019)). To be sure that the specific
Stan implementations do not influence the results of the comparison, we per-
form a preliminary analysis to check that our implementation of these model
components in Stan are equivalent to those of inlabru. The results of this
study show that this is indeed the case. The full study and the results can be
found in Appendices A.1 and A.2.

Synthetic Data

We produce four sets of synthetic data for the simulation study. These sets
of data are all based on the German male lung cancer data, as described in
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Chapter 3. Section A.3 gives a detailed description of how these sets of data
are generated, and we present them briefly here.

We have one main set of data:

• Full.1 : Based on the full male lung cancer data. It has dimensions
x = 1, . . . , 18, t = 1, . . . , 18 and it contains some observations where
Yx ,t = 0.

Additionally, we have three supporting sets of data. We only discuss the results
of these data when they provide some complementary insight to the results of
the Full.1 data.

• Reduced.1 : Based on male lung cancer data for ages above 45 years old.
This data has generally higher values for the counts Yx ,t compared to
the Full.1 data. It has dimensions x = 1, . . . , 9, x = 1, . . . , 18.

• Full.2 : Based on the full male lung cancer data. This data has the same
dimensions as the Full.1 data, but no occurrences of Yx ,t = 0. κt is
adjusted so that it is not too small compared to the age effect, and βx is
adjusted to be positive for all values of x .

• Reduced.2 : Based on male lung cancer data for ages above 10 years.
This data has slightly different dimensions compared to the Full.1 data,
x = 1, . . . , 16, x = 1, . . . , 18 and no occurrences of Yx ,t = 0.

Figure 5.1.1 displays the synthetic observed log-mortality of the Full.1
data. Similar plots of the Reduced.1 , Full.2 , and Reduced.2 are included in
Appendix A.3 in Figures A.3.1, A.3.2 and A.3.3.
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Full.1 data
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Figure 5.1.1: Observed log-mortality rates log(mx ,t) of the Full.1 data for points
(x , t) = (1,1), . . . , (1,18), . . . , (18, 1), . . . , (18,18)

5.1.1 G1lin: Linear Gaussian Model with Fixed Precisions

We first evaluate the G1lin model of Table 1. This model is linear, with the
hyperparameters fixed to the given values

τα = 1.96, τκ = 336, τϵ = 420.

We apply this model to the Full.1 data using both inlabru and Stan. The
Full.1 data is generated using a non-linear model, so we do not expect the
estimation results to necessarily fit the data very well. However, we expect
inlabru and Stan to give similar results, and hence we compare the results of
inlabru and Stan to each other, but not to the Full.1 data. This applies to all
linear models in this chapter.

The estimation results of inlabru and Stan are practically identical. This
is as expected, since inlabru should produce the same results as INLA for
models with linear predictors, and it has been thoroughly shown that the INLA
approximations are very close to results produced by MCMC methods (Rue
et al. 2009).
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Plots of the results are included in the Appendix, where Figure B.1.1a
displays some of the values of ηx ,t as estimated by Stan and inlabru, and
Figure B.1.1b displays the corresponding estimated random effects.

5.1.2 G2lin: Linear Gaussian Model with Gamma Precisions

Model G2lin differs from the model in Section 5.1.1 by the fact that the
hyperparameters τα, τκ, and τε are not fixed, but assigned the Gamma-priors
of Expression 5.1.4.

In this case, as well, results from the two inferential methods are practically
identical. Detailed plots with a comparison of the results are displayed in
Appendix B, in Figures B.1.2 and B.1.3.

5.1.3 G1: Gaussian Model with Fixed Precisions

We now move on to the nonlinear models. First, we consider the G1 model
where the hyperparameters are fixed to the following values:

τα = 1.96, τβ = 202, τκ = 30, τϵ = 420.

We apply this model to the Full.1 data and compare the estimate for the
predictor ηx ,t .

For most points (x , t), the value of ηx ,t is estimated very similarly by the
two methods, as can be seen from the posterior marginal distributions of ηx ,t

that are displayed in Figure 5.1.2. We also see, from Figure 5.1.2b that both
estimates follow the true values of ηx ,t quite well. However, for some points,
we observe a slight shift between the estimations of inlabru and Stan.
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G1: Gaussian Model
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Figure 5.1.2: Estimation results of linear predictor ηx ,t from applying the G1 model
to the Full.1 data using Stan and inlabru
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G1: Gaussian Model
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Figure 5.1.3: Estimated predictor ξx=2,t=18 from applying the G1 model to the Full.1
data using Stan and inlabru

Figure 5.1.3 displays the estimations of the value of ηx=2,t=18, where the
difference is at its largest. We attribute this difference to the approximation
that inlabru makes in the linearization of the predictor ηx ,t . The difference
that we observe is small, and we doubt that it would provide any practical
problems.

Figure 5.1.4 displays the estimated random effects, and we observe that
these are also estimated slightly differently by Stan and inlabru. More specif-
ically, the two factors in the multiplicative term, βx , and κt are estimated
differently by the two methods, while the estimates for αx seem to be iden-
tical. Plots of the posterior marginal distributions of βx and κt can be found
in the Appendix, in Figure B.1.4. In general, the estimations of the random
effects seem accurate, as most of the true values are contained within the 95%

estimation bounds of both inlabru and Stan.

We apply the G1 model to the Reduced.1 data set as well, to investigate how
the results of inlabru and Stan compares for a different set of data, where the
values of the predictor are generally higher. These results are included in the
Appendix in Figures B.1.5 and B.1.6. For the Reduced.1 data, the difference
in the estimation between inlabru and Stan is only barely observable.
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G1: Gaussian Model
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Figure 5.1.4: Estimated random effects αx , βx and κt from applying the G1 model
to the Full.1 data using Stan and inlabru

One possible explanation of the different behavior for different sets of data,
is that there are some unidentifiability between βx and κt in the Full.1 data,
that is not as apparent in the Reduced.1 data. Looking at the estimates of κt

in Figures 5.1.4, we see that the change points of κt are similar in the Stan
and inlabru estimation, and that the difference in the estimations of κt lies in
the slope. The inlabru estimations are steeper than the Stan estimation, but
they have the same shape. We note that theoretical identifiability of the basic
Lee-Carter model which have been shown multiple times (see e.g Hunt and
Blake (2020a)), does not guarantee identifiability in practice for all realized
data.

5.1.4 G2: Gaussian Model with Gamma Precisions

We now let the hyperparameters vary, and we use the gamma priors of Expres-
sion 5.1.4 for the hyperparameters τα, τβ , τκ and τϵ.
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G2: Gaussian Model
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Figure 5.1.5: Estimation results of linear predictor ηx=2,t=18 from applying the G2
model to the Full.1 data using Stan and inlabru

The results when we apply this model to the Full.1 data are displayed in
Figures 5.1.5 and 5.1.6. Also in this case, the estimations from inlabru and
Stan are similar, but not identical. Figure 5.1.5 displays the estimated value
for ηx=2,t=18, which is one of the points where the difference between the
two estimation methods seem to be largest. We observe that this difference is
of the same size as the largest difference for the G1 model (Figure 5.1.3). The
difference in the random effects however, is slightly more extreme compared
to the estimated random effects of the G1 model. We observe that there are
some differences in the estimation of the hyperparameters as well, as can be
seen in Figure 5.1.6b. We note that the difference between inlabru and Stan
for the predictor do not increase for the G2 model compared to the G1 model.
This underlines the impression that there is some unidentifiability between
the effects κt and βx that inlabru and Stan interprets differently.

Complementary results for the G2 model can be found in Appendix B in
Figures B.1.7 and B.1.8.
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G2: Gaussian Model
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Figure 5.1.6: Estimation results from applying the G2 model to the Full.1 data using
Stan and inlabru



52 simulation study

5.1.5 Conclusion on Comparison of Gaussian Models

After considering the results of applying inlabru and Stan to four different
models with Gaussian likelihoods, we make two remarks. The first is that
inlabru seem to give the same results as Stan in the case where the predictor
is linear. This is a clear indication that our implementations of the Stan model
is equivalent to that of inlabru, and it confirms that inlabru performs in the
same way as INLA for models with linear predictors.

Secondly, we have seen that inlabru produces similar, but not equal results
to Stan, in the cases with non-linear models. Furthermore, we have observed
that the difference between inlabru and Stan seem to depend on the under-
lying data. We attribute some of these difference to unidentifiability between
the time effects in the data and some to biases in the linear approximation
of inlabru. However, we are not able to quantify how much of the difference
arises from each of these causes.

Complementary plots of the results in Section 5.1, that have not been
explicitly discussed here, are included in Appendix B.1.

5.2 models with poisson likelihoods

We now consider models of the form

Yx ,t ∼P oisson(Ex ,t · eηx ,t ). (5.2.1)

Here, Yx ,t are the observed numbers of deaths in the exposed populations Ex ,t

of ages x = 1, . . . , X during periods t = 1, . . . , T . We again consider one linear
version of the predictor ηx ,t :

ηx ,t = αx +κt + ϵx ,t ,
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Model name Predictor Hyperparameters
P1lin ηx ,t = αx +κt + ϵx ,t Fixed
P2lin ηx ,t = αx +κt + ϵx ,t Gamma
P1 ηx ,t = αx +βx ·κt + ϵx ,t Fixed
P2 ηx ,t = αx +βx ·κt + ϵx ,t Gamma

Table 2: The models included in the analyses of Section 5.2. All models have the
likelihood structure of Expression 5.2.1

and one non-linear version of the predictor:

ηx , t = αx +βx ·κt + ϵx ,t .

αx , βx and κt are modeled as in Section 5.1, Equations 5.1.2 and 5.1.3, and
the error term ϵx ,t is modeled as an iid effect:

ϵx ,t ∼ iid(τϵ).

We include the error term to model overdispersion in the data. Again, we
consider versions of the model where the hyperparameters τα, τβ , τκ and τϵ
are fixed and when they are assigned flat priors. A summary of the models
that are included in this section is presented in Table 2. We use the same data
for the Poisson models as for the Gaussian models, described in Appendix A.3,
with the exception that we fit the models to the numbers of deaths Yx ,t and
not to the log-mortality rates mx ,t .

5.2.1 P1lin: Linear Poisson Model with Fixed Precisions

The first Poisson model (P1lin) of Table 2 has a linear predictor and hyperpa-
rameters fixed to the following values:

τα = 1.96, τκ = 336, τϵ = 420.

We apply this model to the Full.1 data.
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As for the models with Gaussian likelihoods, the estimation results of Stan
and inlabru are practically exactly equal for the P1 model, as can be seen
from Figure B.2.1 in Appendix B.

5.2.2 P2lin: Linear Poisson Model with Gamma Precisions

The next model is the P2lin model. We assign this the same hyperpriors as
for the Gaussian model, which are given in Expression 5.1.4. We apply this
model to the Full.1 data using Stan and inlabru, and the results can be found
in Figures B.2.2 and B.2.3 in Appendix B.

As for the other linear models and as expected, both the predictor ηx ,t ,
the random effects and the precisions are estimated very similarly by inlabru

and Stan.

5.2.3 P1: Poisson Model with Fixed Precisions

We now consider the non-linear P1 model, where the hyperparameters are
fixed to the values

τα = 1.96, τβ = 202, τκ = 30, τϵ = 420.

As for the Gaussian G1 model, we see that while most of the values of
ηx ,t are estimated similarly by Stan and inlabru (as can be seen from Figure
5.2.1a), there are some shifts between the estimations at some points. Figure
5.2.1b displays the estimation of ηx=3,t=18 where we see the largest difference.
While this difference is still relatively small, we note that it is slightly larger
than the differences observed for the G1 model, which was displayed in Section
5.1.3.
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P1: Poisson Model
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Figure 5.2.1: Estimation results from applying the P1 model to the Full.1 data using
Stan and inlabru
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P1: Poisson Model
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Figure 5.2.2: Estimation results of random effects αx , βx and κt from applying the
P1 model to the Full.1 data using Stan and inlabru

For the random effects, the differences between the estimations by Stan
and inlabru is somewhat larger for this P1 model compared to the G1 model,
as seen in Figure 5.2.2. Again, we suspect that this difference originates from
some unidentifiability in the data. It appears from the plot of the period effect
κt that the estimates of inlabru and Stan are similar, except that they are
tilted around the middle point (at around t = 10) when compared to each
other. We recognize this "tilting" as a characteristic of unidentifiability, which
have been described in other literature for similar mortality models (see e.g.,
Riebler (2010) and Hunt and Villegas (2015)). Furthermore, we note that the
estimations of inlabru seem to lie closer to the true values of κt than the Stan
estimates do.

We apply the P1 model also to the Reduced.1 data, to see how inlabru

and Stan performs on a different set of data. As for the G1 model, the random
effects is estimated much more similarly for the Reduced.1 data. This can be
seen from Figures B.2.5 and B.2.6 in the Appendix.
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5.2.4 P2: Poisson Model with Gamma Precisions

Finally, we consider the full P2 model, with the same hyperpriors as for the G2
model, given in Expression 5.1.4. We apply this model first to the Full.1 data.

Once again, we see that inlabru and Stan estimate the values of the
predictor ηx ,t similarly for most points (x , t), but gives different estimates for
some values of ηx ,t . This can be observed in Figure 5.2.3a, which displays
the estimations of some arbitrary values of ηx ,t and from Figure 5.2.3b which
displays the estimations of ηx=3,t=18, where the difference between inlabru

and Stan is at its largest.

Unlike the models with Gaussian likelihoods, the largest difference between
inlabru and Stan increased drastically for the P2 model compared to the P1
model. We see this by comparing Figure 5.2.3b for the P2 model with Figure
5.2.1b.

Figure 5.2.4 displays the random effects of the model as estimated by
inlabru and Stan. From this figure, we see that the difference between the
estimated random effects for inlabru and Stan have also increased for the P2
model compared to the P1 model.

When comparing the estimates and the true values, it looks like inlabru

produces more accurate estimations for both βx and κt (Figure 5.2.4). For κt ,
in particular, it does not seem like the Stan estimation captures the curvature
of the period effect, and it fails to include several of the true points in its 95%

confidence bound (t = 8,9, 17,18). In comparison, the estimates of inlabru
has wider confidence bounds with full coverage of the true values, and it
displays some curvature similar to the true period effect. For the estimations
of βx , Stan gives much wider confidence bounds compared to inlabru .

To get a better impression of the performance of inlabru and Stan for the
P2 model, we fit this model to three more sets of data: the Reduced.1 data,
the Reduced.2 data and the Full.2 data.
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P2: Poisson Model
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Figure 5.2.3: Estimation results from applying the P2 model to the Full.1 data using
Stan and inlabru
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P2: Poisson Model
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Figure 5.2.4: Estimated random effects αx , βx and κt from applying the P2 model to
the Full.1 data using Stan and inlabru
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to the Full.1 data using Stan and inlabru
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The Reduced.1 data has generally higher values for ηx ,t and different
dimensions from the Full.1 data. For the Reduced.1 data, inlabru and Stan
give almost identical estimations results, as seen in Figure B.2.10a. The full
estimation result for the Reduced.1 data are presented in Figures B.2.10,
B.2.11 and B.2.12.

In the Full.2 data the values of ηx ,t are of roughly the same size as the
Full.1 data, but the Full.2 data does not contain any points where Yx ,t is zero.
inlabru and Stan give very similar results when we apply the P2 model to the
Full.2 data. The Full.2 data has the same dimensions of the Full.1 data, which
indicates that the dimensions of the data are not the reason of the difference
in the estimations. Plots of the estimations for the Full.2 data can be found in
Figures B.2.13, B.2.14 and B.2.15.

The results from applying the P2 model to the Reduced.2 data show a
situation where inlabru converges, while Stan does not. The Reduced.2 data
does not contain any points where Yx ,t is zero, and it has slightly reduced
dimensions compared to the Full.1 data. Figure B.2.16 displays the trace plots
from the Stan run with the Reduced.2 data, where we see that Stan does not
converge for several model parameters. Figure B.2.18a displays the estimated
random effects, and we see that inlabru gives estimations close to the true
random effects. This is especially clear for the estimation of κt , where inlabru
is able to correctly identify the period effect, while the diverging results of
Stan give estimations with much too wide confidence bounds.

This is an interesting results, since it indicates that inlabru may be able
to converge and give good results in cases where Stan does not converge.
The full estimation results for the Reduced.2 data are included in Figures
B.2.17, B.2.18 and B.2.19. Convergence issues and lack of robustness have
been discussed for similar estimation procedures in other literature (by e.g.,
Hunt and Villegas (2015)), but this has usually been in relation to mortality
models with a cohort effect. We note that the error term ϵx ,t might affect
convergence in some of the same way as a cohort effect, since we let it vary
with x and t.
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We underline that we do not observe convergence issues for the Full.1 data
similar to those of the Reduced.2 data. This can be seen from the trace plots
of the Stan estimation for the Full.1 data, presented in Appendix B in Figure
B.2.9. Consequently, we can not conclude that convergence issues can explain
the differences we see for the P2 model applied to the Full.1 data.

5.2.5 Conclusion on Comparison of Poisson Models

The analysis of the performance of inlabru and Stan when applied to mortality
models with Poisson likelihoods have presented several interesting results,
which we summarize here.

Firstly, we have seen that for the models with linear predictors ηx ,t , the
results of Stan and inlabru are very similar, as expected. We see this as an
indication that our model implementations are equivalent in inlabru and
Stan.

Secondly, inlabru and Stan give overall similar, but not identical results
also for the models with non-linear predictors. This aligns with the results
from the study of mortality models with Gaussian likelihoods.

Unlike the Gaussianmodels discussed in Section 5.1, we have seen examples
where the difference between inlabru and Stan is unexpectedly large for the
Poisson models. We are not able to fully explain the reason for this difference.
We observe that for the P2 model, Stan sometimes display difficulties with
convergence that we do not see from the results of inlabru. Additionally,
we note that the Full.1 data, for which the unexpected difference between
inlabru and Stan occurs, several of the observed number of deaths are zero.
However, we do not have sufficient evidence to conclude that any of these
reasons fully explain the larges differences between Stan and inlabru.

When we apply the P2 model to the Full.1 data, our results indicate that
inlabru estimates the random effects better than Stan. We emphasize that we
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do not say that inlabru is better than Stan, as this would be a bold claim that
we do not have evidence to support. Since Stan is asymptotically unbiased
and inlabru is not, it also does not align well with theory. However, it could
be the case that Stan experience convergence issues with some sets of data,
that the INLA methodology more easily overcomes, and thus produces more
accurate results. This hypothesis may provide an interesting starting point for
further research on the performance of inlabru on mortality models.

Complementary plots of the results in Section 5.2, that have not been
explicitly discussed here, are included in Appendix B.2.

5.3 comparison of run times

A large part of the motivation behind using inlabru to do inference with
mortality models is the computational power of the INLA methodology (Rue et
al. 2009). Since inlabru does multiple runs of INLA as part of the linearization,
we expect it to be somewhat slower compared to INLA. When comparing the
runtimes for the eight models that we considered in this chapter, we see that
in general, inlabru is faster than Stan. The computational advantage of
inlabru seem to increase with the complexity of the model. inlabru provides
the largest computational benefit for the P2 model, where we need many
iterations in Stan to get a good result but inlabru still converge fairly quickly.

The exact runtimes, as well as the number of HMC iterations we used for
Stan, for each model, are included in Appendix B.3 in Table 8.
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APPL ICAT ION TO GERMAN CANCER DATA

In this final part of our research, we use inlabru to perform Bayesian inference
for mortality of German lung and stomach cancer in the years 1999-2016,
described in Chapter 3. We define one mortality model and apply this to the
full sets of data (Section 6.2) and to produce forecasts of future mortality
(Section 6.3). We assess how our model compares to alternative, similar
mortality models in Sections 6.2.2 and 6.4.

Throughout this chapter, we consider four subsets of the cancer data:

• Female lung cancer data

• Male lung cancer data

• Female stomach cancer data

• Male stomach cancer data

We treat these four data sets separately, as we expect this to give the best
results. In our previous work (Behrens 2021), we investigated multivariate
models for considering male and female mortality jointly, and we found that
separate models performed better.

The full code for running the analyses in this chapter can be found at the
GitHub repository https://github.com/Helenerb/Masters-thesis.
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6.1 the poisson lee-carter cohort model

To analyze German cancer mortality data we employ the model

PLCC:
Yx ,t ∼P oisson(Ex ,t · eηx ,t )

ηx ,t = αx +βx ·κt + γc + ϵx ,t ,
(6.1.1)

for age groups x = 0, . . . , 17, years t = 0, . . . , 17 and cohorts c = 0, . . . , 102.
αx is the main age effect, κt is the period effect, βx is a modulating age effect
and γc is the cohort effect. ϵx ,t is an error term, which included to account
for overdispersion. We refer to the model as the Poisson Lee-Carter Cohort
(PLCC) model.

To make the model identifiable, we apply the following constraints:
∑

x
βx = 1,
∑

t
κt = 0,
∑

c
γc = 0. (6.1.2)

According to Hunt and Blake (2020b), models similar to the PLCC model, but
without the additional error term, should be fully identified, when the con-
straints in Expression 6.1.2 are applied. However, we have not seen equivalent
results for models where extra error terms for overdispersion are added, and
we keep this in mind when investigating the identifiability of our results.

Since we consider the model in a Bayesian setting, we assign prior distri-
butions to the random effects and the error term as:

αx ∼ RW1(τα)
βx ∼ iid(τβ )
κt ∼ RW2(τκ)
γc ∼ RW1(τγ)
ϵx ,t ∼ iid(τϵ),

(6.1.3)

where RW1, RW2 , and iid denote the first and second-order random walks
and the independent random noise models of Rue and Held (2005). We use
RW1models for the age effect αx and the cohort effect γc since we expect some
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smoothness in these effects. Previous literature (e.g., Czado et al. (2005)) has
shown that βx often takes a more erratic shape, and thus we assign the iid
prior for this effect. We assign an RW2 model to the period effect κt , since
RW2 models penalize deviation from a linear trend (Rue and Held 2005),
and this linear trend can be used for projection into future periods. This kind
of projection can be done with many different models, but since the second-
order random walk is readily implemented in the inlabru framework, this is
a natural choice.

To complete the specification of our Bayesian model, we need to specify
prior distributions for the hyperparameters of the model as well. We apply
penalized complexity priors (Simpson et al. 2017) for the hyperparameters
τα, τκ, and τγ of the random walks, with parameters such that

P(1/
p
τ > 1) = 0.01, (6.1.4)

as suggested by Rue (2022). For the priors of the iid effects, τβ and τϵ, we
assign gamma priors:

τ∼ G amma(1,0.00005).

6.2 application to full german cancer data

We fit the PLCC model presented in Section 6.1 to the female lung cancer data.

Figure 6.2.1 displays the estimated female lung cancer deaths, and we see
that the estimated deaths follow the observed cancer deaths quite closely. For
younger ages, both the observed and estimated numbers of deaths are very
close to zero, and for this reason, we only display the results for ages where
the cancer mortality rate is sufficiently non-zero in Figure 6.2.1b.

6.2.2 displays the estimated age, period, and cohort effects for the female
lung cancer data. We observe that the estimated values for βx have quite
wide 95% confidence bounds for lower values of x . Since we are mainly
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Estimated and Observed Female Lung Cancer Deaths
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(b) Observed and estimated number of female lung cancer deaths, for age groups 50-54
and older

Figure 6.2.1: Estimated (blue dots) and observed (yellow X-es) female lung cancer
deaths, resulting from applying the PLCC to the full German female lung cancer data
using inlabru
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Female Lung Cancer - Estimated Time Effects
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Figure 6.2.2: Estimated time effects αx (upper left), βx (upper right), κt (lower left)
and γc (lower right), resulting from applying the PLCC model to the full German
female lung cancer data using inlabru

interested in the estimates for older ages, we do not see this as a great concern.
Furthermore, there seems to be some unidentifiability between the period
effect κt and the cohort effect γc. Specifically, it seems like these effects may
be tilted around their zero point. This kind of "tilting" unidentifiability has
been described by Hunt and Villegas (2015) for a model similar to the PLCC
model. They suggest adding an approximate identifiability constraint to the
cohort effect, to remove linear drift. We hesitate from doing this, as it would
slightly alter the model fit. Additionally, it would impose a different medical
or demographic significance for the time effects, which we do not have the
medical knowledge to support.

6.2.3 presents the estimated mean values of the error term ϵx ,t , and we
see that the magnitudes of the error terms ϵx ,t are relatively small compared
to the magnitudes of the time effects. We interpret this as a sign that the main
part of the variability in the data that may be attributed to some of the time
effects, has correctly been attributed to these.
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Female Lung Cancer - Estimated Error Terms
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Figure 6.2.3: Estimated mean values for the error term ϵx ,t , resulting from applying
the PLCC model to the full German female lung cancer data using inlabru
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Figure 6.2.4: Observed and estimated number of male lung cancer deaths, for age
groups 50-54 and older, resulting from applying the PLCC model to the full German
male lung cancer using inlabru
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Male Lung Cancer - Estimated Time Effects
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Figure 6.2.5: Estimated time effects αx , βx , κt and γc, resulting from applying the
PLCC model to the German male cancer data using inlabru

We now fit the PLCC model to the male lung cancer data. Figure 6.2.4
displays the estimated number of deaths. Also for this data, the values of Yx ,t

as estimated by inlabru seem to align well with the observed values.

Figure 6.2.5 displays the estimated random effects for the male lung can-
cer data, and we see that many of the traits discussed for the female lung
cancer data apply here as well. Additionally, we observe what might be some
periodicity in the cohort effect. Other literature, e.g., Riebler (2010), have
described similar periodicity in cohort effects in APC models, warning that it
may be the result of unidentifiability arising from different lengths of the age
and period intervals of the data. Since our data indeed has age and period
intervals of different lengths, we treat this periodicity with skepticism and not
as true cohort effects in the data.

Riebler (2010) suggests applying smoothing priors, such as second-order
random walks, to the cohort effect to avoid periodicity. However, we note that
assuming an RW2 on the cohort effect might lead to estimations with more lin-
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ear drift, as the RW2 model penalizes deviation from a linear trend as opposed
to the RW1 model that penalizes deviation from a constant (Knorr-Held and
Rainer 2001). Linear drift in the cohort effect is described as problematic in
some literature (e.g., Hunt and Blake (2021a)), which argues that the cohort
effect should be driftless to avoid period effects being misclassified as cohort
effects.

We apply the PLCC model to the female and male stomach cancer as well,
and the resulting estimates display similar properties to what we have seen
for the lung cancer data. Plots of these results are included in Appendix C.1 in
Figures C.1.3, C.1.4 and C.1.5 for the female cancer data, and in Figures C.1.6,
C.1.7 and C.1.8 for the male cancer data. We observe a similar periodicity in
the cohort effect of the male stomach cancer data, as can be seen in Figure
C.1.7a, but not for the female stomach cancer data.

Remaining plots of the full results, that have not explicitly been discussed
here, are also included in Appendix C.1.

6.2.1 Quantifying Model Fit

To quantify the model fit, we calculate the percentage of the observed values
for Yx ,t that falls within the 95% confidence bounds of the inlabru estimations.
This value is calculated by

Coverage 95% interval =
1

(X + 1)× (T + 1)

∑

x ,t
1(lx ,t ≤ Yx ,t < ux ,t), (6.2.1)

where Yx ,t is the observed cancer deaths, 1(·) is the indicator function and
lx ,t and ux ,t are the lower and upper 95% quantiles for the predicted cancer
deaths for age group x and period t. We calculate the coverage for both
the entire set of observations and for the set of observations where x > 5,
omitting the values where the mortality rate is very close to zero. The results
are presented in Table 3, together with the number of iterations before the
inlabru linearization reaches convergence.
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Data Iterations Coverage Coverage, x > 5
Female, lung 34 0.97 0.98
Male, lung 12 0.98 0.98
Female, stomach >100 0.98 0.98
Male, stomach 10 0.98 0.99

Table 3: The number of inlabru iterations before convergence and the coverage
percentage of the 95% confidence bounds, when the PLCC model is applied to the
different sets of data.

From Table 3, we see that the speed of convergence varies between the
different sets of data. While the linearization procedure of inlabru reaches
convergence after 12 and 10 iterations for male lung and stomach cancer,
respectively, inlabru needs 34 iterations to converge for the female lung
cancer data set. For the female stomach cancer data, inlabru does not reach
convergence at all after running for a 100 steps. For all sets of data, the
coverage percentage lies around 98%, which is slightly higher than the ideal
95%, but we still consider this quite good.

6.2.2 Removing the Error Term

As previously mentioned, the magnitude of the estimated error term ϵx ,t is in
general quite small compared to the values of the time effects. This is especially
the case for the male lung cancer data, as can be seen in Figure 6.2.6, which
displays the estimated mean values of the error terms for the male lung cancer
data. We wish to investigate whether the error term may be omitted.

Consequently, we slightly modify the model for male lung cancer data by
removing the error term ϵx ,t as

áPLCC : Yx ,t ∼P oisson(Ex ,t e
ηx ,t ), ηx ,t = αx +βxκt + γc, (6.2.2)

with constraints and prior distributions as given by Equations 6.1.2 and 6.1.3.
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Male Lung Cancer - Estimated Error Terms
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Figure 6.2.6: Estimated mean values for the error term ϵx ,t .

Data Iterations Coverage Coverage, x > 5

Male, lung,áPLCC 10 0.96 0.95

Table 4: Score statistics for theáPLCC model, calculated as described for Table 3
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Male Lung Cancer -áPLCC Model
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(a) Observed and estimated number of male lung cancer deaths, for age groups 50-54
and older, resulting from applying theáPLCC model to the full German male lung cancer
using inlabru
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(b) Estimated time effects αx (upper left), βx (upper right), κt (lower left) and γc (lower
right).

Figure 6.2.7: Estimated number of deaths (upper) and time effects (lower), resulting
from applying theáPLCC model to the male lung cancer data
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The resulting estimated deaths and time effects are displayed in Figure
6.2.7. We observe that these results look very similar to the results from the
full PLCC model, displayed in Figures 6.2.4 and 6.2.5.

The number of inlabru iterations before convergence and the coverage
percentage are displayed in Table 4, and they are relatively similar to the
scores of Table 3 for the full model. TheáPLCC model converges faster and
it has a coverage closer to 95%. The lower coverage of theáPLCC model may
indicate that the confidence bounds are more correct for this model. However,
the differences are small, so we do not conclude that theáPLCC model is much
better than the PLCC model. In our further investigation, we keep the original
PLCC model with the error term accounting for overdispersion.

6.3 forecasting german cancer data

In this stage of our research, we investigate how the PLCC model performs
when it is used for forecasting mortality. We hold back the data for years
2011-2016, and fit the model to the data for the years 1999-2011 while
simultaneously generating forecasts for the period 2011-2016. We assume the
population at risk, Ex ,t to be known for the full period.

In the following discussion, we find it necessary to treat the results for the
estimations for the observed years 1999-2010 differently from the estimations
for the forecast years 2011-2016. For simplicity, we refer to the data for the
forecast years as the out-data and to the data for the observed years as the
in-data.

We begin by finding forecasts for the female lung cancer data, and Figure
6.3.1 displays the estimations and forecasts of the cancer deaths Yx ,t . We
observe that the forecasts match the observations quite well, with the majority
of the observed deaths seemingly lying within the forecast 95% intervals.
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Female Lung Cancer - Forecasting Years 2011-2016
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Figure 6.3.1: The estimated (blue dots) and the observed (yellow X-es) cancer deaths,
for the ages 50-85+ and the period 2011-2016 for female lung cancer, when years
2011-2016 are forecast by the PLCC model. The green line marks the beginning of
the forecast period
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Figure 6.3.2: Estimated time effects αx , βx , κt and γc for female lung cancer, when
years 2011-2016 are forecast by the PLCC model. The green line in lower left plot
marks the beginning of the predicted period. The green and orange lines in the lower
right plot marks the beginning of the partially and the fully unobserved cohorts

Although the PLCC model seem to produce good forecasts for most of the
data, there are some observations that lie outside the forecast confidence
bounds that we look further into. We observe that the age-group 70-74 is
somewhat underestimated in the forecasts produced by inlabru, as seen in
Figure 6.3.1. However, it is only the observation for the year 2012 that clearly
lies outside of the forecast confidence interval, and we do not interpret this as
a sign that the PLCC model is unsuited for forecasts with this type of data.

Figure 6.3.2 present the random effects as estimated for the forecasting
model by inlabru. The time effects look quite similar to those resulting
from fitting the model to the full data (Figure 6.2.2). Again, we observe
unidentifiability between the period effect κt and the cohort effect γc.

We use the PLCC model to forecast the female stomach cancer, and the
results are included in Appendix C.2 in Figure C.2.1. These results are similar
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Figure 6.3.3: The estimated (blue dots) and the observed (yellow X-es) cancer deaths,
for the ages 50-85+ and the period 2011-2016. for male lung cancer, when years
2011-2016 are forecast by the PLCC model. The green line marks the beginning of
the forecast period.

to those of the female lung cancer, with similar tendencies in the estimated
random effects and the number of deaths.

Next, we use the PLCC model to produce forecasts for the male lung cancer
data. The resulting estimated and forecast number of deaths are displayed
in Figure 6.3.3. We observe that the forecasts seem to underestimate the
mortality for the oldest age group. We find this underestimation slightly
worrisome, since the observed deaths for this age group consistently lie above
the forecast 95% interval.

The random effects for the male lung cancer data, as estimated and forecast
by inlabru are presented in Figure 6.3.4. For the PLCC model applied to the
full male lung cancer data, the estimated modulating age effects βx display a
clear drop for the oldest age group compared to the younger ages (see Figure
6.2.5). We do not see a similar drop in the estimated βx for the forecast model.
This may be related to the poor forecasts for the male data for the 85+ age
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Figure 6.3.4: Estimated time effects αx , βx , κt and γc for male lung cancer, when
years 2011-2016 are forecast by the PLCC model. The plot layout is as described for
Figure 6.3.2

group. Since the period effect for the male cancer data is declining, a decrease
in the value of the modulating βx corresponds to an increase in the overall
mortality, which supports this hypothesis. Additionally, we observe the same
periodicity in the cohort effect as for the full data (Figure 6.2.5).

Finally, we use the PLCC model to estimate and forecast the male stomach
cancer data. Plots of these results are included in Appendix C.2 in Figure
C.2.2. The forecast results of the male stomach cancer are quite similar to
those of male lung cancer, again displaying an underestimation in the forecast
for the oldest age groups and similar patterns in the random effects.

We calculate the coverage percentage of the confidence bounds for the
in- and out data observations combined, and we find that the coverage lies
around 96% for all data sets. This could be an indication that the confidence
bounds are slightly wider than they should be. However, since the calculation
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Data Iterations Coverage
Female, lung 10 0.89
Male, lung 9 0.90
Female, stomach 81 0.88
Male, stomach 8 0.89

Table 5: The number of inlabru iterations before convergence and the coverage
percentage of the out data, when the PLCC model is used for forecasting the years
2011-2016. The coverage are calculated for predictions where x > 5.

of the coverage is based on relatively few observations, we do not conclude
that this is certainly the case.

Table 5 presents the number of linearization steps inlabru makes before
convergence and the coverage percentage for the out-data. The coverage
percentages are lower for the forecast data, at around 89% for all data sets,
which indicate that the confidence bounds are slightly too narrow. We note that
inlabru in general seem to converge more quickly when forecasting compared
to the estimations given the full data. For example, inlabru now reaches
convergence in under 100 iterations for the female stomach cancer model.

6.4 comparison of model choices for period effects

So far, we have used a second-order random walk model as the prior distribu-
tion for the period effect κt . This has also been done in previous literature, see
e.g., Riebler (2010). However, the seemingly dominating model choice for the
period effect in Lee-Carter types of models is a first-order random walk model
with drift (see e.g., Lee and Carter (1992), Czado et al. (2005)). We wish
to investigate how our choice of using a second-order random walk affects
the quality of the forecasts, compared to models that use a random walk with
drift.
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A random walk model with drift is defined as

κt = κt−1 +φ+ ϵt , ϵt ∼N (0,τκ),

where φ is a drift term. This model is not directly implemented as a random
effect in inlabru. However, we can rewrite it as the sum of a linear term and
a regular random walk of order one (RW1), as

κt = κ
∗
t +φ · t, κ∗t = κt−1 + ϵt , ϵt ∼N (0,τκ). (6.4.1)

Separately, these two terms are implemented in inlabru. When we insert
Expression 6.4.1 into the PLCC model, we get the new model

PLCC∗ : ηx ,t = αx +βx(φ · t +κ∗t )+ γc + ϵx ,t .

We model αx , βx , γc and ϵx ,t in the same way as for the regular PLCC model
(see Equations 6.1.2 and 6.1.3). The linear term φ · t and the first-order
random walk κ∗t are modeled as described by Rue and Held (2005). We assign
φ the prior

φ ∼N (0, 1),

and we use a PC-prior as described in Equation 6.1.4 for the precision of κ∗t .

To ensure identifiability, we impose a sum-to-zero constraint on κ∗t . The
linear term is in itself constrained to φ · t0 = 0 for period indices t = 0, . . . , T .
This should not change the model fit, as we are free to choose the identifiability
constraints as we wish, but it does change the demographic significance of the
time effects compared to the regular PLCC model.

We fit the PLCC∗ model to the female lung cancer data, using inlabru, and
we forecast the years 2011-2016 as described in Section 6.3. The resulting
forecast cancer deaths are displayed in Figure 6.4.1. We compare these results
to those of Figure 6.3.1 which displays the corresponding results for the regular
PLCC model. The results from the PLCC and the PLCC∗ models overall look
quite similar. The confidence bounds for the estimated and forecast deaths
seem slightly wider for the PLCC∗ compared to the PLCC model, as we can
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Figure 6.4.1: The estimated (blue dots) and the observed (yellow X-es) cancer deaths,
for the ages 50-85+ and the period 2011-2016 for female lung cancer, when years
2011-2016 are forecast using the PLCC∗ model. The green line marks the beginning
of the forecast period.
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Female Lung Cancer - Forecasting Years 2011-2016 - PLCC∗ Model
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Figure 6.4.2: Estimated time effects αx , βx , κ∗t +φ · t and γc for female lung cancer,
when years 2011-2016 are forecast using the PLCC∗ model. The plot layout is as
described for Figure 6.3.2

see that the coverage of the PLCC∗ is higher than the PLCC model. Still, we
emphasize that the difference is marginal.

Figure 6.4.2 displays the random effects for the PLCC∗ model, and we
compare these as well to the random effects of the PLCC model (Figure 6.3.2).
The estimated period effects are naturally differently defined, but the estimated
age effect αx and cohort effect γc are notably similar for the two models.

To further compare the performance of the two models, we use a statistic
that consider both the accuracy and the sharpness of the predictions. Predic-
tions with a higher accuracy are preferred to predictions with lower accuracy,
and sharp predictions, with a narrow prediction interval, are preferred as long
as the predictions are also fairly accurate. A score statistic that take all of this
into consideration is the Dawid-Sebastiani Score (DSS), defined by

DSS = (
Yx ,t −µx ,t

σx ,t
)2 + 2 · log(σx ,t). (6.4.2)
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Data MDSS (in) MDSS(out) Iterations Coverage
PLCC: female, lung 7.11 9.23 10 0.89
PLCC∗: female, lung 7.33 9.57 10 0.92

Table 6: The MDSS for the in and out data, the number of iterations before inlabru

converge and the coverage percentage for the out data, when the PLCC∗ and the PLCC
models are applied to the female lung cancer data.

Here Yx ,t is the observed number of deaths for age group x in year t, µx ,t is
the mean of the corresponding predicted number of deaths, and σx ,t is the
standard deviation of the prediction (Gneiting and Raftery 2007). A lower
DSS indicates a better prediction (see Keilman (2020) for details). Following
e.g., Riebler et al. (2012a), we use the DSS to quantify goodness of fit for the
models. Since the DSS is calculated for each predicted number of deaths at
age x and year t, we take the average over all ages and periods, and use this
measure, denoted MDSS, in our comparison.

The MDSS for the in and out data, the coverage percentage and the number
of inlabru iterations before convergence for the PLCC∗ and the PLCC models
are displayed in Table 6. These results confirm that the PLCC∗ model has a
marginally larger coverage than the PLCC. When we compare the MDSS for the
two models, we see that the PLCC model gives a somewhat lower MDSS score
than the PLCC∗ model, which indicates a slightly better model fit. However, as
for the difference in coverage, this difference is hardly large enough to draw
any conclusions.

In any case, we do not see any signs that the PLCC model performs signif-
icantly worse than the more commonly used PLCC∗ model. Since the PLCC
model is more easily implemented in inlabru, we argue that it is the preferred
model in our case.
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7

CLOS I NG REMARKS

We have shown that Bayesian inference using inlabru on mortality models
with multiplicative terms in the predictor gives results close, but not identical,
to those produced by MCMC methods. This was done by applying inlabru and
Stan (a software that produces HMC estimates) to a set of mortality models
for some synthetic data, and comparing the results. We have seen that the
difference between Stan and inlabru depends on the model choice and of the
data the model is applied to. For some sets of data, the results of inlabru and
Stan were hardly distinguishable. For other sets of data, the results of inlabru
and Stan were notably different for some of the models at some points in the
data.

We are cautious with concluding on exactly why the results of inlabru
and Stan are sometimes different. Instead, we make some remarks based on
the results of our investigations:

• For some combinations of mortality models and data sets, inlabru
reached convergence when Stan did not. For these cases, the results
of inlabru seemed to be relatively correct when compared to the true
model. This may indicate that inlabru can serve as a method to avoid
convergence issues that are present for MCMC methods.

85
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• The difference between inlabru and Stan was particularly large for the
mortality models with a Poisson likelihood. The estimates of inlabru
seemed to be closer to the true values. Furthermore, we observed that
the data set where this difference was especially apparent contained
multiple occurrences of zero observed deaths.

• We have observed signs of unidentifiability between the random effects
for some of the sets of data. The results for these sets of data give rise
to a suspicion that Stan and inlabru give different estimates for the
random effects in the cases where they are unidentifiable.

• From the models where the results of Stan and inlabru were very dif-
ferent, inlabru seemed, to our judgment, to give the best estimates of
the random effects. This may be the result of a lack of convergence in
Stan, although the trace plots of Stan did not show any signs of this.

• In general, Stan seems to spend somewhat longer to produce results
with the same accuracy as inlabru, according to our measurements.
The computational advantage of inlabru seems to increase with the
complexity of the model.

Further research on the topic may include an even more thorough inves-
tigation of the characteristics of the data that lead to similar and dissimilar
results between inlabru and Stan. It may also be interesting to perform the
same experiments with other MCMC software. And finally, running the Stan
estimation for many more iterations may give further insight into what part of
the difference is caused by lack of convergence.

Although we have not been able to show that inlabru produces exactly
equivalent results to Stan, our results still suggest that inlabru is in practice
a useful tool for Bayesian inference with mortality models. We have demon-
strated this by using inlabru to produce mortality estimates and forecasts for
German cancer data, and shown that these fit well to the observed German
cancer mortality.
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A
PROCEDURES I N TH E S IMULAT ION STUDY

In this chapter, we describe some of the complimentary procedures and inves-
tigations that were performed in the simulation study of Chapter 5.

a.1 comparison of random walk models

In this section, we perform a simple analysis to ensure that our implementation
of a random walk of order one in Stan is equivalent to the RW1 model that is
implemented in inlabru.

In inlabru, a first-order random walk is defined by Gaussian distributed
differences, as

∆x i = x i − x i−1 ∼N (0,1/τ) (A.1.1)
(Rue and Held 2005).

We consider two different implementations of this in Stan. The first is a
simple implementation, where we slightly rewrite Equation A.1.1 as

x1 ∼N (0, 104)

x i+1 = x i + ϵi, ϵi ∼N (0,1/τ).
(A.1.2)

This way of modeling a first-order random walk has previously been employed
by e.g., Knorr-Held and Rainer (2001). The random walk on this form is easy
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to implement in Stan, as we can simply give each step x i a Gaussian prior with
a mean of x i−1. We refer to this implementation as the "Stepwise" random
walk.

Secondly, we consider an implementation closer to Equation A.1.1. To
implement this in Stan, we use a transformed parameter that is the differences
of the random walk and define Gaussian priors on these. This implementation
is slightly more complicated, as it involves two sets of parameters for each
random walk in the model, one set containing the steps of the random walk
and one set containing the differences. We refer to this implementation as the
"Difference" implementation of a first-order random walk.

We use a simple example to compare the different implementations in Stan
to the random walk model of inlabru and define the simple model

yz ∼ ηz + ϵz, ηz ∼ RW1(τη), ϵx ∼N (0, 1/τy), (A.1.3)

for z = 0, . . . , 99. We sample the data by yz = sin(z/16.5) + ϵz, where ϵz
is independently sampled from a Gaussian distribution with zero mean and
standard deviation σ = 0.5. We do inference on this data with the model of
Expression A.1.3 with inlabru and the two implementations of Stan. The Stan
programs, as well as the script for performing this comparison and produce the
full results can be found at https://github.com/Helenerb/Masters-thesis.

Figure A.1.1a displays the estimated randomwalk, for some selected points,
and Figure A.1.1b displays the estimated τη and τy for the three implemen-
tations. We observe that the results produced by inlabru and the two Stan
implementations seem practically identical. The two Stan implementations
require roughly the same amount of time to run for the same number of it-
erations, and we do not see any clear difference in the convergence between
the two. Figure A.1.2 displays the trace plots of the precisions τη and τy ,
two steps of the random walk and the log-precisions θη and θy after running
the "Stepwise" and the "Difference" Stan programs for four chains and 20000
iterations. The two processes seem to explore the parameter space equally
well. Since both Stan implementations seem to be equivalent to the random

https://github.com/Helenerb/Masters-thesis
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First-Order Random Walk Implementations in Stan and inlabru
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Figure A.1.1: A first-order random walk, as estimated by inlabru , the "Stepwise"
Stan implementation, and the "Difference" Stan implementation.
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Trace Plots for the "Stepwise" and "Difference" Stan Implementations
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Figure A.1.2: Trace plots of some selected parameters from running Stan for 20000
iterations and 4 chains for the "Stepwise" random walk implementation (upper) and
the "Difference" random walk implementation (lower)
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walk implementation and the two Stan programs seemingly perform equally
well, we could use either in our further investigation. We use the "Stepwise"
implementation in our investigation when considering random walk models,
because of its simplicity.

a.2 implementation of constraints in stan and inlabru

The sum-to-zero and sum-to-unit constraints that are used for the random
effects throughout Chapter 5 (see Expression 5.1.3) are implemented differ-
ently in inlabru and Stan. The inlabru framework implements constraints as
described by Rue and Held (2005). As their exact approach is complicated to
implement in Stan, we use an alternative approach and model the constraints
by imposing so-called soft constraints (Morris 2019). This involves imposing a
sharp prior with mean at zero for on the sum of the effects:

∑

x
βx ∼N (1, sd = 0.001 · X ),
∑

t
κt ∼N (0, sd = 0.001 · T ).

To verify that this is equivalent to inlabru, we extend the simple example
of Section A.1 to include a constraint:

yz ∼N (µ+ηz, 1/τy), ηz ∼ RW1(τη), µ∼N (0,1/0.001),

with
∑

z
ηz = 0. (A.2.1)

We apply this model to the data described in Section A.1 using both inlabru

and Stan, where the latter uses soft constraints for ηz.

Figure A.2.1 displays some values of ηz as estimated by inlabru and Stan,
Figure A.2.2 displays the estimated intercept and Figure A.2.3 displays the
hyperparameters. The results of inlabru and Stan are very similar for all
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Example for Testing Constraint Implementations
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Figure A.2.1: Estimation results of some arbitrary values of ηz from the example
discussed in Section A.2, comparing implementations of constraints
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Figure A.2.2: Estimated intercept µ from the example discussed in Section A.2,
comparing implementations of constraints
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Example for Testing Constraint Implementations
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Figure A.2.3: Estimated precisions τη and τy from the example discussed in Section
A.2, comparing implementations of constraints

model parameters, and we conclude that the soft-constraint implementation
of Stan is equivalent to that of inlabru.

The full code for producing these results can be found at https://github.
com/Helenerb/Masters-thesis.

a.3 generating synthetic data

For the first part of our analysis, we use synthetic sets of mortality data, where
we know the underlying values of the time effects.

In the simulation study of Chapter 5, we consider two sets of mortality
models. One set of mortality models with Gaussian likelihoods,

log(mx ,t) =N (ηx ,t , 1/τϵ),

https://github.com/Helenerb/Masters-thesis
https://github.com/Helenerb/Masters-thesis
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for which the response variable is the mortality rate mx ,t , and one set with
Poisson likelihoods

Yx ,t ∼P oisson(Ex ,t · eηx ,t ), (A.3.1)
where the response variable is the observed cases of deaths Yx ,t . We generate
the synthetic data from the following structure of the predictor ηx ,t :

ηx ,t = µ+αx +βx ·κt + ϵx ,t , (A.3.2)

with the constraints
∑

x
αx = 0,
∑

x
βx = 1,
∑

t
κt = 0. (A.3.3)

For the random effects, we make the following model choices

µ∼N (0, 1/0.001)

αx ∼ RW1(τα)
βx ∼ iid(τβ )
κt ∼ RW2(τκ)
ϵx ,t ∼ iid(τϵ).

(A.3.4)

Here, RW1, RW2 and iid denote the first-order random walk, second-order
random walk and independent random noise models of Rue and Held (2005).
τα, τβ , τκ and τϵ denote the precisions. We use the following hyperpriors:

τα,τβ ,τϵ ∼ G amma(1, 0.00005)

τκ ∼ G amma(1, 0.005)
(A.3.5)

To generate the synthetic values for Yx ,t and mx ,t , we employ the following
procedure:

1. Fit the model in Expression A.3.1 to the male German lung cancer data
described in Section 3:

(a) The observed deaths Yx ,t are the observed cancer deaths
(b) The population at risk Ex ,t is the German male population
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(c) The predictor ηx ,t is defined as in Expressions A.3.2 through A.3.5

2. Extract the inlabru estimates of the precisions τα, τβ , τκ, τϵ

3. Extract the inlabru estimate for the intercept µ

4. Use the values of τα, τβ , τκ, τϵ to sample values for the random effects
αx , βx , κt and ϵx ,t , by the models in Expression A.3.4

5. Shift αx , βx and κt so they fulfill the constraints in Expression A.3.3

6. Construct ηx ,t by Equation A.3.2, with the inlabru estimate for µ and
and the sampled αx , βx , κt and ϵx ,t

7. Generate synthetic observations:

(a) Find synthetic mortality rates by mx ,t = exp(ηx ,t)

(b) Find synthetic observed deaths by sampling
Yx ,t ∼P oisson(Ex ,t · eηx ,t ).
Here Ex ,t are the real values of the German male population.

We perform this procedure four times, producing four different sets of
synthetic data:

• Full.1 : Generated using the full set of male cancer data for x = 0, . . . , 17

and t = 0, . . . , 17.

• Reduced.1 : Generated using a reduced set of male cancer data for
x = 9, . . . , 17 and t = 0, . . . , 17.

• Full.2 : Generated using the full set of male cancer data for x = 0, . . . , 17

and t = 0, . . . , 17.1

• Reduced.2 : Generated using a reduced set of male cancer data for
x = 2, . . . , 17 and t = 0, . . . , 17.

1 For the Full.2 data, we make a small adjustment to the data generating procedure. At step
4, we adjust the values of τβ and τκ so that the range of κt is not too low compared to the
range of αx and so that all values of βx are positive.
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Data µ τα τβ τκ τϵ
Full.1 -9.83 1.96 202 338 420
Reduced.1 -6.46 6.01 63.8 455 419
Full.2 -9.83 1.96 1262.5 202.8 420
Reduced.2 -9.83 1.97 174 364 419

Table 7: The exact values of µ, τα, τβ , τκ and τϵ that we use to generate the four
sets of data

Reduced.1 data

−7.00

−6.75

−6.50

−6.25

−6.00

0 50 100 150
x, t

Eta, Reduced.1 data

Figure A.3.1: Observed ηx ,t of the Reduced.1 data for the points (x , t) =
(1, 1), . . . , (1, 18), . . . , (9,1), . . . , (9,18)

Throughout Chapter 5, we shift the indices of t and x , so that the age and
period effects are one-indexed, since this simplifies the Stan implementation.

Table 7 presents the exact values of µ, τα, τβ , τκ and τϵ that we use to
generate the four sets of data. The full code the generation of these sets of
data can be found at https://github.com/Helenerb/Masters-thesis.

Figure 5.1.1 displays the quantity ηx ,t for the Full.1 data, while Figures
A.3.1, A.3.2 and A.3.3 display ηx ,t for the Reduced.1 , Full.2 and Reduced.2
data.

https://github.com/Helenerb/Masters-thesis
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Full.2 data
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Figure A.3.2: Observed ηx ,t of the Full.2 data for the points (x , t) =
(1,1), . . . , (1, 18), . . . , (16, 1), . . . , (16,18)

Reduced.2 data
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Figure A.3.3: Observed ηx ,t of the Reduced.2 data for the points (x , t) =
(1,1), . . . , (1,18), . . . , (18, 1), . . . , (18,18)
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B
COMPLEMENTARY RESULTS FROM TH E S IMULAT ION
STUDY

In this chapter, complementary figures and supporting results of Chapter 5
are presented.

b.1 models with gaussian likelihoods

In the following section, complementary figures for Section 5.1 are presented.

Figures B.1.1 and B.1.2 display the estimated predictor and random effects
for the G1lin and the G2lin models respectively. Figure B.1.3 displays the
estimated hyperparameters of model G2lin.

Figure B.1.4 shows the posterior marginal distributions for the G1 model.

Figure B.1.5 displays the estimated predictor and random effects for the G1
model applied to the Reduced.1 data. The corresponding posterior marginals
are displayed in Figure B.1.6.

Figure B.1.7 displays the estimated predictor of model G2 at some arbitrary
values. Figure B.1.8 shows posterior marginal distributions of βx and κt for
the same model.

109
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G1lin: Linear Gaussian Model
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(a) Estimation results of linear predictor ηx ,t
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(b) Estimated random effects αx and κt

Figure B.1.1: Estimation results from applying the G1lin model to the Full.1 data
using Stan and inlabru



B.1 models with gaussian likelihoods 111

G2lin: Linear Gaussian Model
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(b) Estimated random effects.

Figure B.1.2: Estimation results from applying the G2lin model to the Full.1 data
using Stan and inlabru
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G2lin: Linear Gaussian Model
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Figure B.1.3: Estimated hyperparameters τα, τκ and τϵ from applying the G2lin
model to the Full.1 data using Stan and inlabru
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G1: Gaussian Model
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(a) Estimation results of non-linear predictor ηx ,t
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Figure B.1.4: Estimation results from applying the G1 model to the Full.1 data using
Stan and inlabru
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G1: Gaussian Model - Reduced.1 data
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Figure B.1.5: Estimation results from applying the G1 model to the Reduced.1 data
using Stan and inlabru
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G1: Gaussian Model - Reduced.1 data
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Figure B.1.6: Estimation results from applying the G1 model to the Reduced.1 data
using Stan and inlabru
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G2: Gaussian Model
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Figure B.1.7: Estimation results of the linear predictor ηx ,t from applying the G2
model to the Full.1 data using Stan and inlabru
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G2: Gaussian Model
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Figure B.1.8: Estimation results from applying the G2 model to the Full.1 data using
Stan and inlabru
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b.2 models with poisson likelihoods

In the following section, complementary figures for Section 5.2 are presented.

Figures B.2.1 and B.2.2 display the estimated predictors and random effects
of the P1lin and P2lin models respectively. Figure B.2.3 display the estimated
hyperparameters of the P2lin model.

Figure B.2.4 displays posterior marginal distributions of βx and κt for the
P1 model. The estimation results of applying the P1 model to the Reduced.1
data are displayed in Figures B.2.5 (predictor and random effects) and B.2.6
(posterior marginals of βx and κt).

Figures B.2.7 and B.2.8 display posterior marginal distributions of βx and
κt when applying the P2 model to the Full.1 data. Figure B.2.9 displays the
trace plots of the corresponding Stan run.

Figures B.2.10, B.2.11 and B.2.12 display the estimated predictor, random
effects and hyperparameters of applying the P2 model to the Reduced.1 data.
The corresponding plots for the Full.2 data are presented in Figures B.2.13,
B.2.14 and B.2.15.

Figure B.2.16 displays the trace plots of the Stan run when applying the P2
model to the Reduced.2 data. The estimation results for the P2 model with the
Reduced.2 data are included in Figure B.2.17 (the predictor), Figure B.2.18
(the random effects and hyperparameters), Figure B.2.19 (posterior marginals
of βx and κt) and Figure B.2.20 (posterior marginals of ϵx ,t).
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P1lin: Linear Poisson Model
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(b) Estimation results of random effects αx and κt

Figure B.2.1: Estimation results from applying the P1lin model to the Full.1 data
using Stan and inlabru
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P2lin: Linear Poisson Model
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Figure B.2.2: Estimation results from applying the P2lin model to the Full.1 data
using Stan and inlabru
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P2lin: Linear Poisson Model
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Figure B.2.3: Estimated hyperparameters τα, τκ and τϵ from applying the P1lin
model to the Full.1 data using Stan and inlabru
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P1: Poisson Model
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Figure B.2.4: Estimation results from applying the P1 model to the Full.1 data using
Stan and inlabru
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P1: Poisson Model - Reduced.1 data
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Figure B.2.5: Estimation results from applying the P1 model to the Reduced.1 data
using Stan and inlabru
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P1: Poisson Model - Reduced.1 data
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Figure B.2.6: Estimation results from applying the P1 model to the Reduced.1 data
using Stan and inlabru
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P2: Poisson Model
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Figure B.2.7: Estimation results from applying the P2 model to the Full.1 data using
Stan and inlabru
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P2: Poisson Model
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Figure B.2.8: Estimation of selected values of εx ,t

P2: Poisson Model - Full.1 Data - Trace plot
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Figure B.2.9: Trace plots from the Stan run of model P2 on the Full.1 data
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P2: Poisson Model - Reduced.1 Data

0

5

10

15

20

25

−6.8 −6.7 −6.6
 

 

Predictor[1]

0

10

20

−6.9 −6.8 −6.7 −6.6
 

 

Predictor[32]

0

10

20

−6.3 −6.2 −6.1
 

 

Predictor[64]

0

5

10

15

20

25

−6.3 −6.2 −6.1 −6.0
 

 

Predictor[96]

0

3

6

9

12

−7.1 −6.9 −6.7 −6.5
 

 

Predictor[128]

0

5

10

−7.2 −7.0 −6.8 −6.6
 

 

Predictor[162]
Inlabru

Stan

(a) Estimation results of the predictor ηx ,t .

−6.75

−6.50

−6.25

−6.00

2.5 5.0 7.5
x

Alpha

0.0

0.1

0.2

2.5 5.0 7.5
x

Beta

−1

0

1

5 10 15
t

Kappa

Inlabru

Stan

True

Inlabru

Stan

True

(b) Estimation results of random effects αx , βx and κt

Figure B.2.10: Estimation results from applying the P2 model the the Reduced.1 data
using Stan and inlabru
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P2: Poisson Model - Reduced.1 Data
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(a) Marginal posterior distributions for selected values of βx
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Figure B.2.11: Estimation results from applying the P2 model the the Reduced.1 data
using Stan and inlabru
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P2: Poisson Model - Reduced.1 Data
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Figure B.2.12: Estimation results from applying the P2 model the the Reduced.1 data
using Stan and inlabru
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P2: Poisson Model - Full.2 Data
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Figure B.2.13: Estimation results from applying the P2 model to the Full.2 data using
Stan and inlabru
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P2: Poisson Model - Full.2 Data
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Figure B.2.14: Estimation results from applying the P2 model to the Full.2 data using
Stan and inlabru
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P2: Poisson Model - Full.2 Data
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(b) Marginal posterior distributions for selected values of ϵx ,t

Figure B.2.15: Estimation results from applying the P2 model to the Full.2 data using
Stan and inlabru
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P2: Poisson Model - Reduced.2 Data - Trace plot
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Figure B.2.16: Estimation results from applying Stan and inlabru to model P2
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P2: Poisson Model - Reduced.2 Data
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P2: Poisson Model - Reduced.2 Data
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Figure B.2.18: Estimation results from applying the P2 model to the Reduced.2 data
using Stan and inlabru
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P2: Poisson Model - Reduced.2 Data
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(a) Marginal posterior distributions for selected values of βx
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(b) Marginal posterior distributions for selected values of κt

Figure B.2.19: Estimation results from applying the P2 model to the Reduced.2 data
using Stan and inlabru



B.2 models with poisson likelihoods 137

P2: Poisson Model - Reduced.2 Data
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Figure B.2.20: Marginal posterior distributions for selected values of ϵx ,t from apply-
ing the P2 model to the Reduced.2 data using Stan and inlabru



138 complementary results from the simulation study

Model inlabru Stan Stan iterations
G1lin 11 32 5000
G2lin 52 33 5000
G1 54 86 10000
G2 66 148 25000
P1lin 17 61 10000
P2lin 24 65 10000
P1 93 202 10000
P2 98 724 50000

Table 8: Run times in seconds for applying the models to the Full.1 data using inlabru
and Stan, as well as the number of iterations per chain in Stan. All runs are timed
using the author’s personal computer

b.3 comparison of run times

Table 8 displays the computational time of running inlabru and Stan for each
of the models discussed in Chapter 5 when applied to the Full.1 data. The
number iterations per HMC chain that we use in the Stan estimations are
also presented. Throughout the study, we have used four chains in all Stan
programs. We set the number of iterations such that Stan does not report
any convergence issues and that the samples seem to give sufficiently smooth
densities. We report the full elapsed time for generating the results of inlabru
and Stan on the author´s personal computer.



C
COMPLEMENTARY F IGURES FROM TH E APPL ICAT ION TO
GERMAN CANCER DATA

In this chapter, complementary figures for Chapter 6 are presented.
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Estimated and Observed Female Lung Cancer Deaths
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Figure C.1.1: Estimated values for the precisions τα (upper right), τβ (upper right),
τκ (lower left), τγ (lower middle) and τϵ (lower right) from applying the PLCC model
to the full German female lung cancer data using inlabru

c.1 application to full german cancer data

In the following section, complementary figures for Section 6.2 are presented.

Figure C.1.1 displays the estimated hyperparameters resulting from ap-
plying the PLCC model to the female lung cancer data. Figure C.1.2 presents
the estimated hyperparameters from applying the model to male lung cancer
data.

Figure C.1.3 presents the number for female stomach cancer deaths, as
observed and estimated by inlabru. Figures C.1.4 and C.1.5 display the
corresponding estimated random effects, error terms and hyperparameters.

Similar results for the male stomach data are presented in Figure C.1.6
(number of deaths), Figure C.1.7 (random effects and error terms) and Figure
C.1.8 (hyperparameters).
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Male Lung Cancer - Estimated Precisions
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Figure C.1.2: Estimated values for the precisions τα, τβ , τκ, τγ and τϵ, resulting
from applying the PLCC model to the German male cancer data using inlabru
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Estimated and Observed Female Stomach Cancer Deaths
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(b) Observed and estimated number of female stomach cancer deaths, for age groups
50-54 and older

Figure C.1.3: Estimated (blue dots) and observed (yellow X-es) female stomach
cancer deaths, resulting from applying inlabru with the model defined in Equations
6.1.1 through 6.1.3 to the full German female stomach cancer data
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Female Stomach Cancer - Estimated Time Effects
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Figure C.1.4: Estimation results from applying the PLCC model to the full German
female stomach cancer data using inlabru
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Female Stomach Cancer - Estimated Hyperparameters
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Figure C.1.5: Estimated values for the precisions τα, τβ , τκ, τγ and τϵ resulting
from applying the PLCC model to the full German female stomach cancer data using
inlabru
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Estimated and Observed Male Stomach Cancer Deaths
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(b) Observed and estimated number of male stomach cancer deaths, for age groups 50-54
and older

Figure C.1.6: Estimated (blue dots) and observed (yellow X-es) male stomach cancer
deaths, resulting from applying the PLCC model to the full German male stomach
cancer data using inlabru
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Male Stomach Cancer - Estimated Time Effects
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Figure C.1.7: Estimation results from applying the PLCC model to the full German
male stomach cancer data using inlabru
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Male Stomach Cancer - Estimated Hyperparameters
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Figure C.1.8: Estimated values for the precisions τα, τβ , τκ, τγ and τϵ, resulting
from applying the PLCC model to the full German male stomach cancer data using
inlabru
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c.2 forecasting german cancer data

In the following section, complementary figures for Section 6.3 are presented.

Figure C.2.1 presents the estimated and forecast number of deaths (Figure
C.2.1a) and estimated random effects (Figure C.2.1b) when applying the PLCC
model to the female stomach cancer. Figure C.2.2 displays similar plots for
the results of forecasting male stomach cancer using the PLCC model.
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Female Stomach Cancer - Forecasting Years 2011-2016
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(a) The estimated (blue dots) and the observed (yellow X-es) cancer deaths, for the ages
50-85+ and the period 2011-2016. The green line marks the beginning of the forecast
period.
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(b) Estimated time effects αx (upper left), βx (upper right), κt (lower left) and
γc (lower right). The green line in the lower left plot marks the beginning of
the predicted period. The green and orange lines in the lower right plot marks
the beginning of the partially and the fully unobserved cohorts

Figure C.2.1: Estimated number of deaths (upper) and time effects (lower) for female
stomach cancer, when years 2011-2016 are forecast by the PLCC model
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Male Stomach Cancer - Forecasting Years 2011-2016
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(a) The estimated and the observed cancer deaths, for the ages 50-85+ and the period
2011-2016.
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(b) Estimated time effects αx , βx , κt and γc .

Figure C.2.2: Estimated number of deaths and time effects for male stomach cancer,
when years 2011-2016 are forecast by the PLCC model. The layout of the plots are as
described for Figure C.2.1
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