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Summary

In this thesis we will first the weak field limit of Einsteins field equations and the basic for-
malism for GWs in the linearised theory. Further we will take a step outside the linearised
theory in order to able to find the stress-energy tensor of propagating waves. Next we
consider non-relativistic binary systems to the lowest order moment, the quadrupole mo-
ment, and find the power and amplitude of the radiation which the system emits. Lastly we
consider how experiments such as LIGO is able to detect the GW despite their extremely
small amplitude.

Sammendrag

I denne oppgaven vil vi først se den svake feltgrensen til Einsteins feltligninger og den
grunnleggende formalismen for gravitasjonelle bølger i den lineariserte teorien. Videre vil
vi ta et skritt utenfor den lineariserte teorien for å kunne finne spennings-energitensoren til
forplantende bølger. Deretter vurderer vi ikke-relativistiske binære systemer til momentet
av laveste orden, kvadrupolmomentet, og finner kraften og amplituden til strålingen som
systemet sender ut. Til slutt vurderer vi hvordan eksperimenter som LIGO er i stand til å
oppdage gravitasjonelle bølger til tross for deres ekstremt små amplituder.
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Chapter 1
Introduction

Before Einstein would publish his theory of special relativity there was a contradiction be-
tween two seemingly fundamental physical theories, Newtonian mechanics and Maxwells
equations. In Newtonian mechanics the addition of velocities in different inertial frames is
additive, which poses a problem when one consider Maxwells equations which state that
electro-magnetic waves travel at a constant speed regardless of inertial frame. Einstein
solved this by combining the concepts of space and time and using Lorentz transforma-
tions to move from one reference frame to another. One shortcoming of this theory was
the assumption of inertial frames of reference, it could not describe what happens in an
accelerating frame. Thus the quest to expand the theory of special relativity into a more
general theory began. For Einstein it started with him having the “happiest thought of his
life”, he realised a person freely falling from a roof top will have no gravitational field
in their vicinity, everything the person drops during the fall would stay next to them, the
person can therefore interpret themselves to be at rest. This thought led to the equivalence
principle, stating there is no difference between a gravitational and inertial mass, in other
words being affected by gravity is the same as being accelerated. In 1915 Einstein pub-
lished his theory of general relativity where he derived his field equations, which describes
the effect of gravity as a curvature in space-time using Riemannian geometry.

Just one year later in 1916 Einstein solved the field equations approximately for a weak
gravitational field, where he found the solution to be of the form of the wave equation, thus
predicting the existence of gravitational waves [1][2]. The search for experimental proof of
the existence of these waves begun the 1960’s with James Weber, where he hoped to detect
them using the resonant frequency of a mass as the wave passed through, but it did not
yield any conclusive results [3]. It was not until 2016, 100 years after Einstein predicted
their existence that they would be proven to be real by the LIGO (Laser Interferomter
Gravitational Observatory) [4]. A discovery that granted Rainer Weiss, Barry C. Barish,
and Kip Thorne the Nobel prize in physics in 2017 “for their decisive contributions to the
LIGO detector and the observation of gravitational waves”. The discovery and continued
observation of gravitaional waves will allow astronomers to view our universe through a
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Chapter 1. Introduction

new lens, and further research some of the more extreme cases of gravity, like black holes
and neutron stars. In this thesis we will elaborate on the properties of gravitational waves,
especially how they propagate, how they are formed, and how they affect binary systems.
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Chapter 2
The Einstein Field Equations

For a long time the laws that governed gravity were expressed in terms of forces as derived
by Isaac Newton, it was sufficient for our lives on Earth but was incomplete. A more com-
plete theory was derived by Albert Einstein, expanding on the theory of special relativity
he formulated a geometric explanation of gravity, namely the general theory of relativity.
The central result was the Einstein field equations, and from them arose the new concepts
of black holes and gravitational waves. It is the latter we shall look at, which saw its light
through the linear solutions of the field equations.

2.1 Derivation of The Field Equations

In order to find the linear solutions to Einsteins field equations we First need to derive
them, which we will do using a variational approach. The derivation follow closely the
work done in [5].

We begin by looking at the variational principle of classical mechanics, namely the prin-
ciple of least action. It states that a systems trajectory between a configuration at an initial
time and a final time is such that the action, S, of the system is stationary. This principle
can be extended from one of discrete particles into one of continuous fields, as is a natural
starting place for finding the equations for a gravitational field. For a set of fields, Φa, we
have that the action, S, on a general space-time manifold is given by an integral over the
Lagrangian density, L, which depends on the fields and their derivatives. We thus have the
following expression for the action over a regionR

S =

∫
R

L(Φa, ∂µΦa, ∂µ∂νΦa, . . .)d4x. (2.1)

By demanding that the action is invariant under small variations of the fields, δS = 0,
Φa → Φ′a = Φa + δΦa, and that the variation, δΦa, vanishes on the boundary of the

3



Chapter 2. The Einstein Field Equations

region R, we are able to derive the Euler-Lagrange equations for a general field in space-
time. By considering up to second order derivatives of L we get

δL
δΦa

=
∂L
∂Φa

− ∂µ
[

∂L
∂(∂µΦa)

]
+ ∂µ∂ν

[
∂L

∂(∂µ∂νΦa)

]
= 0, (2.2)

where δL/δΦa is the variational derivative.

2.1.1 Field Equations in Vacuum
As alluded to above, in order to derive the field equations we need to find an action that will
allow us to derive the equations of gravity in a vacuum. As physical theories should gener-
ally be covariant, the action, S, has to be a scalar under general coordinate transformations,
which also means that the Lagrangian must be a scalar field at each point in the regionR.
By using the invariant volume element d4V =

√
−gd4x, where g is the determinant of the

metric tensor gµν , we can express the Lagrangian density as L = L
√
−g.

As
√
−gd4x is an invariant scalar field our task becomes to finding an L which is a scalar

under coordinate transformations. In order to make sure this L describes a gravity we also
want it to depend on the components of the metric tensor, gµν . We thus end up with the
Ricci scalar, R, which is the simplest non-trivial scalar that depends on the metric and its
derivatives. It is also the only one derivable from the metric tensor which does not depend
on derivatives higher than the second order. By putting this together we end up with the
Einstein-Hilbert action, SEH.

SEH =

∫
R

R
√
−gd4x. (2.3)

So by defining the Lagrangian density as L = R
√
−g, we see that (2.3) is of the same

form as (2.1). This in turn means that we can write the variational derivative of the system,
δL/δgµν , in the same form as (2.2). The resulting equation is a tedious procedure to
calculate, so instead we look at the variation in the action the arises by varying the metric
tensor:

gµν → gµν + δgµν ,

where δgµν and its derivative vanish on the boundary, δR, of the regionR.
By writing the Ricci scalar in terms of gµν we get the following expression for the variation
in the Einstein-Hilbert action

δSEH =

∫
R

δgµνRµν
√
−gd4x+

∫
R

gµνδRµν
√
−gd4x+

∫
R

gµνRµνδ(
√
−g)d4x. (2.4)

This we can define as a sum of three variations, δSEH ≡ δS1 + δS2 + δS3. In order to
make progress we would like to write all the terms as a product of δgµν , as it is an arbitrary
variation.
First we take a look at δS2. We start by considering the variation in the Riemann curvature
tensor Rσµνρ, which we find in (A.3). As it is a sum of connections, we make an arbitrary
variation in the connection coefficients,

Γσµν → Γσµν + δΓσµν .

4



2.1 Derivation of The Field Equations

Γσµν is the difference between two connections so it is a tensor. We therefore look at
it in local geodesic coordinates at an arbitrary point P, where the neighbourhood of P is
Euclidean, thus we have Γσµν(P ) = 0. So at the point P we are only left with the first two
terms of the Riemann curvature tensor, and thus we have the variation

δRσµνρ = ∂ν(δΓσµρ)− ∂ρ(δΓσµν).

At such a point P the partial derivatives and the covariate derivatives coincide so we can
exchange the partial derivatives with their covariate counterparts, and thus we obtain the
Palitini equation:

δRσµνρ = ∇ν(δΓσµρ)−∇ρ(δΓσµν). (2.5)

By contracting on σ and ρ we get the expression for the variation of the Ricci tensor

δRµν = ∇ν(δΓσµσ)−∇σ(δΓσµν), (2.6)

We can insert (2.6) back into the expression of δS2, and by using that the covariant deriva-
tives of the metric tensor, gµν , vanish we get

δS2 =

∫
R

gµν [∇ν(δΓσµσ)−∇σ(δΓσµν)]
√
−gd4x

=

∫
R

∇ν(gµνδΓσµσ − gµσδΓνµσ)
√
−gd4x

(2.7)

This is of the form of the divergence theorem (A.10), which means we can rewrite it in
terms of a surface integral over the boundary ∂R. As with the variation in the metric, we
assume the variation of the connection vanishes on the boundary. This gives us δS2 = 0.
Now it is time for δS3, in this term we must express δ(

√
−g) in terms of δgµν . First

we note that by using gµρgρν = δµν and that δµν is invariant under variation, we get the
following relation:

δgµρgρν + gµρδgρν = 0. (2.8)

To be able to express δg we need to consider the derivation of g with respect to the metric
tensor. As g = det(gµν) its derivative is calculated using the Jacobi formula (A.11). By
then using equation (2.8) we end up with

δg =ggµνδgµν

=− ggµνδgµν .
(2.9)

Now we have what we need to express what we wanted. By using the chain rule and then
inserting (2.9) we get

δ(
√
−g) = − 1

2 (−g)−1/2δg

= − 1
2

√
−ggµνδgµν

(2.10)

5



Chapter 2. The Einstein Field Equations

Now we can finally combine these results and write the variation in the Einstein-Hilbert
action as

δSEH =

∫
R

(Rµν − 1
2gµνR)δgµν

√
−gd4x (2.11)

We now demand that the variation in the action, δSEH = 0, as the action should be
stationary, and that the variation in the metric tensor, δgµν , is arbitrary. We then finally
end up with Einstein’s field equation in vacuum:

Gµν ≡ Rµν − 1
2gµνR = 0, (2.12)

where we defined the tensor Gµν which is known as the Einstein tensor.

2.1.2 Field Equations in the Presence of Matter

We have now derived the field equations in vacuum, so now we want to consider the field
equations in the presence of other fields. All we have to do is add another term to the
action that will account for additional fields.

S =
1

16π
SEH + SM =

∫
R

(
1

2κ
LEH + LM

)
d4x (2.13)

Here SM is known as the “matter” action for any non-gravitational field present. In order
to make the resulting equations be able to derive Newtons theory of gravity the factor
1/16π was chosen. We now want to vary the action with respect to the contravariant
metric tensor. This gives us the following expression

1

16π

δLEH

δgµν
+
δLM

δgµν
= 0, (2.14)

where by using (2.11) we can express the first term by the result we derived previously.

δLEH

δgµν
=
√
−gGµν , (2.15)

where Gµν is as given in (2.12). So we see that the part not given by the field equations in
vacuum is the definition of the energy-momentum tensor, Tµν . We thus arrive at the full
Einstein equations:

Gµν = 8πTµν , (2.16)

where the energy-momentum tensor is given by:

Tµν = − 2√
−g

δLM

δgµν
. (2.17)

T (φ)
µν = (∇µφ)(∇νφ)− gµν

[
1

2
(∇σφ)(∇σφ)− V (φ)

]
(2.18)
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2.2 Field Equations for Weak Gravitational Fields

2.2 Field Equations for Weak Gravitational Fields
The gravitational field equations are highly non-linear, this makes it almost impossible to
find a general solution for them analytically. In order to find such a general analytical
solution we apply the equations to a weak gravitational field, where the metric takes the
form

gµν = ηµν + hµν , |hµν | � 1. (2.19)

This is known as the weak-field metric, where ηµν is the Minkowski metric for flat space-
time, and hµν is a perturbation that represents the curvature of space-time caused by a
weak gravitational field. An example of such a gravitational field is the one in our solar
system, in this case when considering a Newtonian gravitational field Φ we have the order
of magnitude |hµν | ∼ |Φ| .M�/R� ∼ 10−6 [6]. Because of this low order of magnitude
a good approximation is to expand the field equations in powers of hµν and only keep the
terms to the first order, thus linearising the field equations. The contravariant weak-field
metric to the first order is obtained by defining that gµαgαν = δµν , and we end up with
equation (A.15)

gµν = ηµν − hµν ,
where hµν = ηµαηνβhαβ . Using this result we look at raising and lowering indices to the
first order

gµαhαν = (ηµα − hµα)hαν = ηµαhαν ,

this gives us that we can use ηµν and ηµν instead of gµν and gµν in order to raise and lower
the indices of small quantities.

2.2.1 Linearised Gravitational Field Equations
In order to linearise the field equations we have to linearise its constituents, namely the
Ricci scalar and Ricci tensor. They are written in terms of the connection coefficients
(A.4), we thus insert the weak-field metric (2.19) and get

Γµαβ =
1

2
(ηµν − hµν)[∂α(ηνβ + hνβ) + ∂β(ηαν + hαν)− ∂ν(ηαβ + hαβ)].

The derivatives of the Minkowski metric vanishes along with the second order terms of
hµν , so we are left with

Γµαβ =
1

2
ηµν [∂αhνβ + ∂βhαν − ∂νhαβ ]

=
1

2
[∂αh

µ
β + ∂βh

µ
α − ∂µhαβ ].

(2.20)

We then substitute this expression in the definition of the Riemann curvature tensor (A.3),
and since we only keep terms to the first order we get

Rαµνβ = 1
2 [∂ν(∂βh

α
µ + ∂µh

α
β − ∂αhµβ)− ∂β(∂νh

α
µ + ∂µh

α
ν − ∂αhµν)]

= 1
2 (∂ν∂µh

α
β + ∂β∂

αhµν − ∂ν∂αhµβ − ∂β∂µhαν ).
(2.21)

7



Chapter 2. The Einstein Field Equations

By contracting over α and ν in the equation above we thus get the Ricci tensor

Rµν = 1
2 [∂α∂µh

α
ν + ∂ν∂αh

α
µ −�hµν − ∂ν∂µh], (2.22)

where we have used the d’Alembertian operator� ≡ ∂α∂α and have defined h = hαα. The
Ricci scalar follows as it is just a contraction with the Ricci tensor (A.6), we thus get

R = ηµνRµν =
1

2
[∂α∂

νhαν + ∂ν∂
αhνα −�h− ∂ν∂νh]

= ∂α∂βh
αβ −�h.

(2.23)

Now we just have to insert equation (2.22) and (2.23) into the field equations (2.16), so by
only keeping terms of the first order we arrive at

∂α∂µh
α
ν + ∂ν∂

αhµα −�hµν − ∂ν∂µh− ηµν(∂α∂βh
αβ −�h) = 16πTµν (2.24)

In order to simplify this rather long experssion we define the “trace reverse” of hµν , which
is defined as

h̄µν ≡ hµν − 1
2ηµνh,

where we also have that hµν = h̄µν− 1
2ηµν h̄, where we have defined h̄ = h̄αα. Using these

relations we can write the linearised field equations (LFE) as

∂ν∂αh̄
α
µ + ∂µ∂αh̄

α
ν −�h̄µν − ηµν∂α∂βh̄αβ = 16πTµν (2.25)

2.2.2 Linearised Gravity in the Lorenz Gauge
We start by introducing the gauge transformation for electromagnetic fields, which is when
Aµ is a solution of the electromagnetic field equations then another solution that describes
the same physical situation is given by A(new)

µ = Aµ − ∂µξ, where ξ is any scalar field. If
we consider hµν as a tensor field defined on a background Minkowski space-time we can
consider the infinitesimal general coordinate transformation (A.20) to be analogous to the
gauge transformation in electromagnetism. So from equation (A.20) we see that if hµν is
a solution to the LFE (2.25) then the same physical situation is also described by

h(new)
µν = hµν − ∂µξν − ∂νξµ, (2.26)

now it is considered a gauge transformation rather then a coordinate transformation. We
now want to use this gauge transformation to simplify the LFE (2.25). We denote the
gauge-transformed field as h′µν , and perform a transformation on the trace-reverse form

h̄′µα = h′µα − 1
2η
µαh′

= hµα − ∂µξα − ∂αξµ − 1
2η
µα(h− 2∂βξ

β)

= h̄µα − ∂µξα − ∂αξµ + ηµα∂βξ
β .

(2.27)

By taking the derivative with respect to xα we find

∂αh̄
′µα = ∂αh̄

µα −�ξµ, (2.28)

8



2.2 Field Equations for Weak Gravitational Fields

as the other terms cancel each other after some index tricks. As ξµ are arbitrary functions
we are now free to choose �ξµ = ∂αh̄

µα, such that we will have ∂αh̄′µα = 0. By looking
at the LFE (2.25) we see that in this new gauge all the terms but one vanish on the left
hand side of the equation. This allows us to write the LFE much simpler, by dropping the
primes we get

�h̄µν = −16πTµν . (2.29)

This equation is valid as long as h̄µν satisfies the gauge condition

∂ν h̄
µν = 0. (2.30)

This gauge condition is valid for any further gauge transformations of the same form, given
that

�ξµ = 0, (2.31)

is satisfied.

9
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Chapter 3
Gravitational Waves

In the section above we were able to simplify the LFE by writing them in the Lorenz
gauge, this led to an equation (2.29) that is written on the form of a wave equation. The
equation and its gauge condition resemble what is found when applying the Lorenz gauge
in electromagnetic theory, which led to the solution of electromagnetic waves. Following
this analogy suggests the existence of gravitational wave solutions to the LFE.

3.1 Plane-Wave Solution
The simplest case is in the vacuum where the LFE in the Lorenz gauge reduce to

�h̄µν = 0, (3.1)

with the gauge condition ∂ν h̄µν = 0. This is of the form of the wave equation, which
means that we can find plane-wave solutions for h̄µν of the form

h̄µν = Aµνeikαx
α

, (3.2)

whereAµν are constant complex components of the symmetric amplitude tensor and kα =
(ω,k) are constant real components of a four-wavevector, where ω is the temporal angular
frequency and k is the spatial wave vector. By substituting the plane-wave form (3.2) into
the wave-equation (3.1) and using ∂αh̄µν = kαh̄

µν we get

�h̄µν = ηαβ∂α∂βh̄
µν = k2h̄µν = 0. (3.3)

This means that in order for the wave equation to be satisfied k2 must be a null vector.
This means that the plane-wave solution describes a wave that propagates with a group
and phase velocity at the speed of light, k0 = ω = |k| . More generally for an observer
moving at four-velocity Uµ, we have ω = −kµUµ [7]. Finally we need to consider the
gauge condition ∂ν h̄µν = 0, by inserting the plane-wave equation (3.2) into it we get

Aµνkν = 0. (3.4)

11
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Thus for any kµ that satisfies k2 = 0 and equation (3.4) can be used to find a plane-wave
solution (3.2) to the LFE in the Lorenz gauge in the vacuum. As these solutions are linear
by design we can write any of them as a superposition of the plane-wave solutions of the
form

h̄µν(x) =

∫
Aµν(k)eikαk

α

d3k. (3.5)

3.1.1 Transverse-traceless gauge (TT)
As mentioned above the amplitude tensor is symmetric, Aµν = Aνµ, a property that
reduces the number of independent components from 16 down to 10. From the gauge
condition for plane-waves (3.4) and using that the wave vector must be null we see that
a further four components are restricted and we are left with six independent components
of the amplitude tensor, which is still four more than the two dynamical freedoms a gravi-
tational field in general relativity has [6]. These four extra independent components were
introduced with our gauge transformation, more specifically the arbitrary function ξµ. As
the Lorentz gauge transformation is valid for any ξµ satisfying�ξ = 0 we can restrict this
arbitrary function using its gauge condition. So similar to the plane-wave solution for hµν ,
we choose the solution

ξµ = Bµeikαx
α

, (3.6)

where Bµ is a constant and kα is the same 4-wavevector as earlier. By inserting this
solution and the plane-wave solution of hµν (3.2) into the gauge transformation (2.27) we
get

A′µνeikαx
α

= Aµνeikαx
α

− ∂µBνeikαx
α

− ∂νBµeikαx
α

+ ηµν∂βB
βeikαx

α

, (3.7)

where prime denotes the gauge transformed field. The exponents cancel each other and
we are left with an expression with only Aµν and Bµ

A′µν = Aµν − iBνkµ − iBµkν + iηµνBβkβ . (3.8)

By contracting we get

A′µµ =Aµµ − iBνkν − iBµkµ + 4iBβkβ

=Aµµ + 2iBµkµ,
(3.9)

we now choose Bµkµ = i
2A

µ
µ in order to get a new restriction for the gauge transforma-

tion,
A′µµ = A′ = 0, (3.10)

which tells us that the trace of h̄′µν must be zero and reduces the number of independent
components down to three. We can impose a further restriction which acts as both a gauge
condition and a choice of Lorentz frame [7]

AµνU
ν = 0, (3.11)

12



3.1 Plane-Wave Solution

where Uµ = (1, 0, 0, 0) is a timelike four-velocity, which implies looking at a rest frame.
For this equation to be zero the timelike components of the amplitude tensor, Aµν , must
be zero so we get

Aµ0 = 0. (3.12)

This also means that h′µ0 = 0, and that we are only left with two independent components
of the amplitude tensor, Aµν , just like we wanted. The restrictions we have introduced
above are the gauge conditions for the transverse traceless gauge, we will denote the new
gauge h̄′µν = h̄µνTT . Including the Lorentz gauge condition (2.30) the constraints in the
transverse traceless gauge are thus

h̄µ0TT = 0, (3.13a)

(h̄TT )ii = 0, (3.13b)

∂ih̄
ij
TT = 0. (3.13c)

We thus have that in the transverse traceless gauge only the spatial components are non-
zero and they are trace and divergence free. The equation (3.13b) also means that there is
no difference between h̄µν and hµν and they can be used interchangeably in this gauge.

3.1.2 Plane-wave in TT gauge
Let us now look at what happens to an arbitrary plane gravitational wave (3.2) in this
gauge. By applying the gauge conditions (3.13) we get that the amplitude tensor have the
following properties

Aµ0TT = 0, (ATT)ii = 0, AijTTkj = 0. (3.14)

The last one gives us that the amplitude is perpendicular to the direction of wave propaga-
tion, which means that, like electromagnetic waves gravitational waves are also transverse
waves. Given that we know the amplitude matrix Aµν and the spatial wavevector k we
want to be able to construct the tensor AµνTT that satisfies the above constraints. As men-
tioned, only the spatial components are non-zero so we only have to consider them. The
spatial tensor we are left with thus have to be orthogonal to k and be traceless, we therefore
introduce the spatial projection tensor

Pij ≡ δij − ninj , (3.15)

which projects spatial tensor components onto the surface orthogonal to the unit spatial
vector with components ni, and it has the following properties niP ijv

j = 0 and P ikP
k
j v

j =

P ijv
j , where vj is an arbitrary vector component [5]. To find the components of the spatial

amplitude matrix that are transverse to k we choose ni = k̂i, and apply the projection
tensor onto the spatial amplitude matrix

AijT = P ikP
j
l A

kl. (3.16)

Now that we have found an expression for the transverse part we want to make it traceless,
the trace of this tensor is given by (AT )ii = PklA

kl which we cannot say is traceless. By
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Chapter 3. Gravitational Waves

using P ii = 3− 1 = 2 we can construct a tensor that fulfils the traceless constraint and is
transverse to k, such a tensor is [5]

AijTT = (P ikP
j
l −

1
2P

ijPkl)A
kl. (3.17)

This tensor is still transverse due to the definition of Pij and the choice of unit vector ni.
For future reference we will define the terms in the parentheses as

Λij,kl(n̂) = PikPjl − 1
2PijPkl, (3.18)

which we will call the Lambda tensor and using eq. (3.15) we can write it in terms of n̂

Λij,kl(n̂) = δikδjl − 1
2δijδkl − njnlδik − ninkδjl

+ 1
2nknlδij + 1

2ninjδkl + 1
2ninjnknl.

(3.19)

From our definition of the Lambda tensor we see that it has the property of transforming a
tensor to the TT-gauge,

ATT
ij = Λij,klAkl. (3.20)

We can now verify that this transformation is in fact traceless by taking the trace of an
arbitrary tensor in the TT-gauge,

(ATT)ii = (P ikPil − 1
2P

i
iPkl)A

kl = (Pkl − 2
2Pkl)A

kl = 0.

We thus have found a general formula for the amplitude tensor for a plane gravitational
wave in the transverse traceless gauge. Let us now use equation (3.17) in order to find the
amplitude of a plane wave travelling in the z-direction, we thus have the components of
the wave vector kµ = (ω, 0, 0, ω). From the gauge condition (3.4) we get thatAµ0 = Aµ3,
using this in order to construct a symmetric amplitude matrix we get

[Aµν ] =


A00 A01 A02 A00

A01 A11 A12 A01

A02 A12 A22 A02

A00 A01 A02 A00

 . (3.21)

We can now use equation (3.17) directly to compute the elements of the amplitude matrix
in the transverse traceless gauge

[AµνTT ] =


0 0 0 0
0 1

2 (A11 −A22) A12 0
0 A12 − 1

2 (A11 −A22) 0
0 0 0 0

 , (3.22)

which we see only depends on two independent components, which correlates with the
two dynamical freedoms of a gravitational field in general relativity [6].
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3.2 The Effect on Free Particles

3.2 The Effect on Free Particles
Using the TT gauge we now want to consider what happens to a free particle in the pres-
ence of a gravitational wave, we choose a Lorentz frame such that the particle is initially
at rest. We thus have four velocity Uα = (1, 0, 0, 0), which satisfies the gauge condi-
tion (3.13a). A free particle follows the geodesic equation (A.8), in this case we set the
parameter λ as proper time τ and get

dUα

dτ
+ ΓαµνU

µUν = 0. (3.23)

As we look at a particle that is initially at rest, µ and ν must be zero, and using the
linearised connection (2.20) we get

dUα

dτ
= −Γα00 = − 1

2η
αβ(∂0hβ0 + ∂0hβ0 − ∂βh00). (3.24)

As we also know from the gauge condition hµ0 = 0 (3.13a), which gives us the accelera-
tion

dUα

dτ
= 0.

This means that the particle will remain at rest forever, but at rest in this case means that
the we have constant coordinates for the particle. Thus it is clear that the TT gauge defines
a coordinate system that is attached to the particles. Thus the effect of a gravitational wave
has no measurable consequence on a single particle.

3.2.1 Response of two particles
We will now instead consider the relative motion of nearby particles in the presence of a
gravitational wave, which is described by the equation of geodesic deviation (A.9). Let
us now consider the two particles A and B, where we choose our coordinate system to be
attached to the world line of A, which is known as the proper reference frame of A and is
a local Lorentz frame [6]. We define both particles to be initially at rest, and as defined
A is in the origin xia = (0, 0, 0) and particle B will be an arbitrary distance away from
A, xiB = (xB , yB , zB), we let ξα be the components of the separation vector describing
the distance from A to B. As both particles are initially stationary they therefore have the
same four-velocity Uα = (1, 0, 0, 0), inserting this into the equation of geodesic deviation
(A.9) simplifies the Riemann curvature tensor to Rα00β , thus our equation reduces to

D2ξα

Dτ2
= Rα00βξ

β . (3.25)

The left hand side includes the connection (A.4), which at particle A, where we do our
calculations, will vanish due to the locally flat spacetime. So our left hand side ends up as
just a derivative with respect to proper time,

d2ξα

dτ2
= Rα00βξ

β . (3.26)
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Chapter 3. Gravitational Waves

As we saw in the section above in the TT-gauge there is a coordinate system that stays with
the particle A and its reference frame, so it is a valid gauge for this scenario. By writing the
Riemann curvature tensor in linear terms (2.21) and applying the gauge condition (3.13a)
we are able to write equation (3.26) as

d2ξi

dt2
=

1

2

∂2hTTi
j

∂t2
ξj , (3.27)

where we used that to first order in hTT
ij we have τ = t [6]. We thus have found that the

acceleration relative between the two particles are proportional to the second derivative of
hTT
µν and the initial separation, so a larger initial separation will result in a bigger effect

from the wave.

3.3 Polarisation of a Plane-Wave
To better understand the effects of equation (3.27) we consider the case of a gravitational
plane wave (3.2) propagating in the z-direction, kα = (ω, 0, 0, kz). We already calculated
the amplitude matrix in the TT-gauge (3.22) earlier, and for future convenience we would
like to rewrite it using

h+ = 1
2 (A11 −A22) and h× = A12.

The amplitude matrix is now given by

[AµνTT ] =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (3.28)

which when applied to equation (3.27) makes it clear that only separation vector com-
ponents orthogonal to the propagation will cause a disturbance, as is expected from a
transverse wave. Our two amplitude components h+ and h× will have different effects on
the separation vector, so we want to separate their contributions by first setting h× = 0.
Then we end up with the two equations

∂2ξx

∂t2
=

1

2
ξx
∂2

∂t2
(h+e

ikαx
α

), (3.29a)

∂2ξy

∂t2
= −1

2
ξy
∂2

∂t2
(h+e

ikαx
α

). (3.29b)

In the period before the wave passes the particles we have a wave-free region, hTT
ij = 0, in

this period we define the static separation vector components as ξi = ξi(0). Using these
as our boundary conditions we are able to solve the two differential equations (3.29). Thus
in the lowest order we have

ξx = (1 + 1
2h+e

ikαx
α

)ξx(0), (3.30a)

ξy = (1− 1
2h+e

ikαx
α

)ξy(0). (3.30b)
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3.4 The Energy Carried by a Gravitational Wave

From this we see that particles initially separated in the x-direction will oscillate in the
x-direction and the same is the case for particles separated in the y-direction. A good way
to visualise the effect a gravitational plane wave will have on a set particles is to organise
them in a circle on the x − y plane, the passing wave will then alternate stretching the
circle in either the x- or y-direction, in a pattern +, making it into an ellipse. This makes
the choice of introducing the subscript “+” more apparent.
We now return to the other case where h× = 0 and h+ 6= 0, we then get the equations

∂2ξx

∂t2
=

1

2
ξy
∂2

∂t2
(h×e

ikαx
α

), (3.31a)

∂2ξy

∂t2
=

1

2
ξx
∂2

∂t2
(h×e

ikαx
α

). (3.31b)

By using the same conditions as for +, we get

ξx = ξx(0) + 1
2ξ
y(0)h×e

ikαx
α

, (3.32a)

ξy = ξy(0) + 1
2ξ
x(0)h×e

ikαx
α

. (3.32b)

These equations tell us that the particles will oscillate at a 45◦ angle to their respective x-
and y-direction. A circle of particles would behave as the case above just at the aforemen-
tioned 45◦ angle and would move in the pattern of a ×.
We have now found the two independent modes of linear polarisation for a gravitational
wave, given by h+ and h× [6]. We can however also consider circular polarisation of
the wave, in this case we have a right handed, hR, and a left handed, hL, mode which is
obtained by defining [7]

hR =
1√
2

(h+ + ih×), (3.33a)

hL =
1√
2

(h+ − ih×). (3.33b)

The effect of a circular polarised wave on the circle of particles we discussed earlier is the
apparent rotation of the ellipse, where an hR polarisation would rotate it in a right-handed
sense.

3.4 The Energy Carried by a Gravitational Wave
The stretching of test particles by a passing gravitational wave do remind us of the effects
of tidal forces which we know can generate a lot of heat in celestial bodies, one example
in our own solar system is Jupiter’s moon Europa which is able to sustain a liquid ocean
beneath its icy surface due to the tidal heating caused by Jupiter’s gravitational field[8]. So
for a gravitational wave to carry energy should not be far fetched, even though that was not
what Einstein and Rosen first argued from their cylindrical wave solutions they reached
the conclusion that the waves are unstable and would collapse. They first tried to publish
this result in Physical Review, but was rejected by a referee due to their solutions collapse
existing due to a singularity of their coordinate system and not a physical one [9]. The
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idea of gravitational waves not being physical (having zero energy) was further pushed by
Rosen in his attempt at calculate the stress-energy tensor for the waves which he found
to be zero everywhere. At a conference in 1957 Feynman pointed out that a stick with
two freely moving masses placed transversely to a GW would rub against the stick and
create heat through the friction, the length of the stick would be unchanged due to atomic
forces, thus GWs must carry energy[10]. This concept put forward by Feynman was later
the same year elaborated on by Bondi, and Weber and Wheeler, proving that GWs carry
energy [11] [12]. Two decades later an observation of the energy of GWs was found by
monitoring the orbital period of a binary system, which they found to be decreasing at a
rate similar to what one would expect from energy loss due to GWs [13].

If we want to derive an expression for the stress-energy tensor we have to mainly face
two challenges, the first being the limitations of a linear theory. To see why we consider a
simple aspect of the field equations (2.16), namely that energy is what causes the curvature
of spacetime, thus it is natural to to consider how a GW will affect the curvature in order
to find the stress-energy of the wave. In the linear case with the metric gµν = ηµν + hµν
we are limited to only look at the perturbations on a flat background spacetime which in
turn means the inability to consider the curvature and thus the energy of a wave. So we
must step out of the comfort zone of the linear formulation of the field equations in order
to find the stress-energy of a GW. The other challenge is the fact that it is impossible to
find the energy of gravitational field in some local inertial frame, the gravitational fields
are non-local, in other words there is no observable quantity of them in a some local region
of spacetime. To see why this must be the case we can simply take Einsteins equivalence
principle into consideration, as it gives us that we can always find in any given locality a
frame of reference in which all local gravitational fields disappear (locally we have a flat
spacetime) [6]. It tells us that will have a region with no gravitational fields and will thus
neither have any local energy, which complicates the process of finding the energy of the
energy that a GW will carry as we cannot determine the energy of single wave crest.

We have now gotten an overview of the two major obstacles in our path, in order to find
an expression for the stress-energy of a wave we will follow the procedure as outlined by
Maggiore and MTW [14] [6]. Let us start by stepping outside the linear theory by defining
a new background, ḡµν , which is dynamical and can be curved, this gives us a new metric
to work with

gµν = ḡµν + hµν , |hµν | � 1. (3.34)

We now have a metric which allows for both the terms to be dynamical and have curvature,
which raises the problem of how we can distinguish the two terms. We defined ḡµν to
represent the background curvature and hµν to represent the perturbations that arises from
a GW, both of which we know the scale of. For a background curvature we consider
the example of the scale of the Newtonian gravitational field in our solar system, |Φ| .
M�/R� ∼ 10−6, while the scale of GWs are of order |hµν | ∼ 10−21, this difference in
scale makes for a good way to distinguish the two terms in the metric. Let us thus introduce
the variable LB which represents the spatial variation in the background ḡµν and for the
perturbations we denote them with the wavelength λ such that

λ� LB , (3.35)
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where λ = λ/(2π) is the reduced wavelength which we get from an oscillating function
f(x) = eikx, with k = 2π/λ. This is the spatial difference between the background and
the perturbation, to consider the temporal difference we look at the equivalent statement
but in frequency space

f � fB , (3.36)

where f is the peak of hµν and fB is the peak of ḡµν . The method of separating a smooth
background from more rapid fluctuations is known as the short-wave expansion. We can
now move on to explain how this high-frequency (short wavelength) perturbation propa-
gates in the background and how it affects the background itself.

3.4.1 GWs affect on the background
We want to understand how the perturbation hµν propagates through and affects the back-
ground ḡµν , to achieve that we will expand the field equations (2.16) around the back-
ground metric. In this expansion we will consider two small parameters, the amplitude
h ≡ O(|hµν |) and either λ/LB or fB/f . Either case can be treated in parallel given the
appropriate notation, and both will be referred to as the short-wave expansion.
A convenient first step is to rewrite the field equations to the form

Rµν = 8π(Tµν − 1
2gµνT ), (3.37)

where T is the trace of the stress-energy tensor Tµν . Now we will expand the Ricci tensor
to second order in hµν

Rµν = R̄µν +R(1)
µν +R(2)

µν + ..., (3.38)

where R̄µν is constructed only using ḡµν , R(1)
µν is linear in hµν , and R(2)

µν is quadratic in
hµν . This gives us a relation between the terms and the two scales of frequency modes,
R̄µν can only contain low-frequency modes and R(1)

µν can only contain high-frequency
modes. For R(2)

µν we can have both modes as a quadratic term ∼ hµνhαβ can consist as a
combination of the two high-frequency wave-vectors k1 and k2 ' −k1 which can combine
into a low-frequency wave-vector. By expressing the field equations (3.37) in terms of the
expanded Ricci tensor (3.38) we can can split the high- and low-frequency modes into two
separate equations

R̄µν = −[R(2)
µν ]Low + 8π(Tµν − 1

2gµνT )Low, (3.39)

R(1)
µν = −[R(2)

µν ]High + 8π(Tµν − 1
2gµνT )High, (3.40)

here the superscripts would be switched had we instead looked at wave-lengths. The ex-
pression for the linear R(1)

µν has already been found earlier (2.22) when we derived lin-
earised gravity, we do have to replace the derivatives with covariant derivatives (A.7) in
order for it to apply to the curved background metric ḡµν , which we denote as D̄µ. We
thus get

R(1)
µν = 1

2 [D̄αD̄µhνα + D̄αD̄νhµα − D̄αD̄αhµν − D̄νD̄µh]. (3.41)

The quadratic term of the Ricci tensor is found by the same procedure as for the LFE in
section 2.2.1 but instead of using the weak-field metric (2.19) you use the one we have
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worked with in this section (3.34). It is a rather lengthy algebraic process to find, so we
will just write down the end result [14]

R(2)
µν = 1

2 ḡ
ρσ ḡαβ [ 12D̄µhραD̄νhσβ + (D̄ρhνα)(D̄σhµβ − D̄βhµσ)

+ hρα(D̄νD̄µhσβ + D̄βD̄σhµν − D̄βD̄νhµσ − D̄βD̄µhνσ)

+ ( 1
2D̄αhρσ − D̄ρhασ)(D̄νhµβ + D̄µhνβ − D̄µhµν)],

(3.42)

where we note that ḡµν is the metric that is used to raise and lower the indices, and will
the be the case for other expressions as well. We will now go back and look at equation
(3.39). For the case we have with the length scale of λ and LB being vastly different there
is a simple way to perform the projection on the long wavelength modes, we introduce a
new scale l̄ such that λ � l̄ � LB and average over a spatial volume with side l̄. The
wavelengths of the background LB will be untouched during this procedure as they will
be constant at the scale of l̄. The wavelengths at the scale of λ will oscillate rapidly and
average out to be zero. For the temporal approach we have used thus far we achieve the
same by introducing a time scale t̄, which is much larger than 1/f and much smaller than
1/fB , and average over t̄. Equation (3.39) can thus be rewritten as

R̄µν = −〈R(2)
µν 〉+ 8π〈Tµν − 1

2gµνT 〉, (3.43)

where 〈...〉 denotes the averaging over either many wavelengths λ or several periods 1/f .
Through averaging we are also able to overcome our second challenge, namely the non-
locality of gravitational energy. By looking at the effect of the perturbations on a macro-
scopic scale we are able to see the effects on the physical curvature in that macroscopic
region, which enables us to talk about an effective “smeared-out” tensor for the stress-
energy of the GWs. In other words, by doing the averaging the curvature in the region
should give us a frame of reference such that will obtain a gauge invariant expression for
the stress-energy. We denote this effective tensor by T̄µν and define it from

〈Tµν − 1
2gµνT 〉 = T̄µν − 1

2gµν T̄ , (3.44)

where T̄ = ḡµν T̄
µν is the trace. We will also define another quantity tµν as

tµν = − 1

8π
〈R(2)

µν − 1
2 ḡµνR

(2)〉, (3.45)

where R(2) = ḡµνR
(2)
µν , and its trace is defined as t = ḡµνtµν = 1

8π 〈R
(2)〉, here we used

that ḡµν is constant under the averaging. We are now able to write the field equations in
the following way

R̄µν − 1
2 ḡ
µνR̄ = 8π(T̄µν + tµν), (3.46)

which gives us the dynamics of ḡµν , the long wavelength part of the metric and can be
thought of as “macroscopic” field equations. The tensor tµν gives us the part of the stress-
energy which is only dependent on the gravitational field itself and not any matter.

3.4.2 Wave propagation in a curved background

Before we consider expressing tµν in terms of R(2)
µν (3.42) we will first consider the prop-

agation equation R(1)
µν = 0, which is just the vacuum solution. As we did for the linearised
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case we define the new quantity

h̄µν ≡ hµν − 1
2hḡµν . (3.47)

RewritingR(1)
µν = 0 using h̄µν , equation (3.41) and the commutation relation (B.5), we get

D̄αD̄
αh̄µν + D̄βD̄αḡµν h̄

αβ − D̄αD̄ν h̄αµ

−D̄αD̄µh̄αν + 2R̄αµβν h̄
αβ − R̄αµh̄αν − R̄αν h̄αµ = 0.

(3.48)

We are able to simplify the above equation by applying a suitable gauge. Like for the case
of the linearised theory we choose the infinitesimal coordinate transformation (A.20) as
our gauge transformation. To apply it to our non-flat background we have to use covariant
derivatives, thus we get

h′µν = hµν −Dµξν −Dνξµ, (3.49)

where prime denotes the system after the transformation. As we know, choosing the func-
tions ξµ appropriately we are able to apply the Lorentz gauge condition D̄αh̄

α
µ = 0, thus

reducing equation (3.48) to

D̄αD̄
αh̄µν + 2R̄αµβν h̄

αβ − R̄αµh̄αν − R̄αν h̄αµ = 0. (3.50)

We note that normally the covariant derivative does not commute as of equation (B.5)
and thus we should not be able to use the Lorentz gauge condition on some of the terms.
However we see that the two terms involving the Riemann curvature tensor in equation
(B.5) both are to third order in hµν so they vanish within our precision, and we can thus
commute the covariant derivatives. The last two terms of equation (3.50) also disappear
due to them being to third order in hµν as well, so we are left with

D̄αD̄
αh̄µν + 2R̄αµβν h̄

αβ = 0, (3.51)

which is the propagation equation for a GW on a curved background in the Lorentz gauge,
which we see reduces to the form of the wave equation (3.1) in flat spacetime.

3.4.3 The stress-energy tensor of GWs
The expression for tµν (3.45) we defined in section 3.4.1 is difficult to interpret in terms of
GWs at first glance, but through the use ofR(2)

µν given by equation (3.42) we will be able to
find an explicit expression that better suits our needs. In order to make this process simpler
we introduce some properties of the averaging process denoted by the brackets 〈...〉 [6]

1. Covariant derivatives commute; 〈h DαDβhµν〉 = 〈h DβDαhµν〉. The fractional
errors made by commuting are ∼ (λ/LB)2, well below the accuracy of the averag-
ing process itself.

2. Gradients average out to be zero; 〈Dβ(Dαhhµν)〉 = 0. The fractional errors are
. λ/LB .

3. One can freely integrate by parts, flipping derivatives from one h to the other;
〈h DαDβhµν〉 = 〈−Dβh Dαhµν〉.
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Using these properties we along with the expression for R(2)
µν (3.42), the definition of h̄µν

(3.47), and the propagation equation (3.51) on the expression of tµν (3.45) we get

tµν =
1

32π
〈D̄µh̄αβD̄ν h̄

αβ − 1
2D̄µh̄D̄ν h̄− D̄βh̄

αβD̄ν h̄αµ − D̄βh̄
αβD̄µh̄αν〉, (3.52)

the equation was also simplified by using 〈R(2)
µν 〉 = 0. By choosing the Lorentz gauge,

D̄αh̄
α
µ = 0, as well as a traceless gauge, h̄ = 0, we end up with a much simpler expression

tµν =
1

32π
〈D̄µh̄αβD̄ν h̄

αβ〉. (3.53)

For the case of a GW far away from a source we have flat spacetime and thus the co-
variant derivatives reduce to simple partial derivatives. Through a gauge transformation
of the form of the infinitesimal coordinate transformation (3.49) we can verify that the
stress-energy tensor (3.52) is gauge invariant and indeed a physical quantity as we set out
to find. Through a more detailed study of the magnitude of the different terms of the ex-
panded Ricci tensor (3.38) and Riemann tensor carried out by Isaacson one finds that the
first order term is the dominant one for both tensors. By calculating the transformation of
these tensors directly or by using the definition of the Lie derivative, one is able to verify
that the expansion and thus the resulting stress-energy tensor are gauge invariant to a very
good approximation. This is the case because of our short wave approximation where we
assumed the waves to have a much higher frequency than the background [15].

One final thing we will note is the conservation of stress-energy, which arises from the
Bianchi identity on the Einstein tensor (B.3) we have

D̄µ(R̄µν − 1
2 ḡ
µνR̄) = 0. (3.54)

By taking the covariant derivative of eq. (3.46) we realise we have

D̄µ(T̄µν + tµν) = 0. (3.55)

Thus it is the sum of the energy from the source and GWs that is covariantly conserved,
rather than the individual terms. Reflecting the transfer of energy and momentum between
the source and GWs.

3.4.4 The stress-energy tensor in the TT-gauge
We will now calculate the stress-energy in the TT-gauge of a single plane wave travelling
in the z-direction in asymptotically flat space. The TT-gauge includes both the Lorentz
gauge condition and the traceless condition already included in equation (3.52) so we only
have to add the transverse gauge condition (3.13a) to it. so in the TT-gauge tµν takes the
form

tµν =
1

32π
〈∂µhTT

αβ∂νh
αβ
TT 〉. (3.56)

We take the real part of the plane wave (3.2) and set the phase such that we have a sine
wave

hTT
αβ = Aµν sin(kαx

α). (3.57)
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Inserting this expression for hTT
αβ into equation (3.56) we get

tµν =
1

32π
kµkνAαβA

αβ
〈

cos2(kλk
λ)
〉
. (3.58)

The average of cos2 over several wavelengths is〈
cos2(kλk

λ)
〉

=
1

2
. (3.59)

To evaluate the other factors in equation (3.58) we use that the wave vector is given by

kµ = (−ω, 0, 0, ω), (3.60)

and use equation (3.28) to evaluate the amplitude matrices

AαβA
αβ = 2(h2+ + h2×). (3.61)

Angular frequencies are not common to use when working with GWs so we instead use
f = ω/2π, inserting this back into equation (3.58) we get [7]

tµν =
π

8
f2(h2+ + h2×)


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 . (3.62)

We will get a better understanding for the magnitude of the stress-energy tensor when we
will direct our focus towards how GWs are generated and how we can detect them.

3.4.5 The energy flux
The energy flux of GW is the amount of energy carried by a GW through a unit surface far
away from the source. In order to find the flux will first find the change of energy within a
volume V with the shape of a spherical shell, which is placed far away from the source at
which it is centred on. The energy within V is given by

EV =

∫
V

d3x t00, (3.63)

where t00 is the energy-density of the GWs in the volume. Differentiating with respect to
time we get the change of energy

d

dt
EV =

∫
V

d3x ∂tt
00. (3.64)

We can rewrite this using he conservation of energy derived from the Bianchi identity
(3.55) which reduces to

∂µtµν = 0, (3.65)
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when we are far away from the source in asymptotically flat space as both Tµν and the
Christoffel symbols vanish. Letting ν = 0 we get

∂0t
00 + ∂it

i0 = 0. (3.66)

We substitute this into eq. (3.64) and get

d

dt
EV = −

∫
V

d3 x∂it
i0 = −

∫
S

dA nit
0i, (3.67)

where in the last equality we used the divergence theorem (A.10) and ni are the normal
vector components to the outer surface S, and dA is a surface element. We denote the
outer surface with a radius r which is still far away from the source, the surface element is
thus dA = r2dΩ, where dΩ is the solid angle element. Due to the spherical symmetry the
normal vector becomes n̂ = r̂, the unit vector in the radial direction, so we have

d

dt
EV = −

∫
S

dA t0r. (3.68)

The region we look at is in flat space so we can impose the TT-gauge, which has the
following expression for the stress-energy tensor (3.56)

t0r =
1

32π
〈∂0hTT

ij ∂rh
TT
ij 〉. (3.69)

So far we have not found an expression for hTT
ij , which we shall look into in Section 4.1,

where we will find that it can be expressed on the general form

hTT
ij (t, r) =

1

r
fij(t− r), (3.70)

where f is a function of the retarded time. Therefore we have

∂rh
TT
ij (t, r) = − 1

r2
fij(t− r) +

1

r
∂rfij(t− r) (3.71)

Functions on the form f(t− r) have the property

∂rfij(t− r) = −∂tfij(t− r), (3.72)

which gives us

∂rh
TT
ij (t, r) = − 1

r2
fij(t− r)− ∂tfij(t− r). (3.73)

Using that ∂rhTT
ij (t, r) = 1

r∂tfij(t− r) we get

∂rh
TT
ij (t, r) = ∂0hTT

ij (t, r) +O(1/r2), (3.74)

where for large distances we can ignore the terms of order O(1/r2), thus using eq. (3.69)
we see that for large distances t0r = t00. Letting us write the total energy change inside
the volume V as

d

dt
EV = −

∫
dAt00, (3.75)
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3.4 The Energy Carried by a Gravitational Wave

as we can not have a negative energy density the energy travelling through the outer surface
of V must be negative. This energy transport must be the energy carried away by the GW,
whose energy per surface element dA must in turn be

d

dtdA
E = t00 =

1

32π
〈∂0hTT

ij ∂
0hTT
ij 〉. (3.76)

Thus for a surface element dA = r2dΩ we have the total energy change

dE

dt
=

r2

32π

∫
dΩ〈∂0hTT

ij ∂
0hTT
ij 〉. (3.77)

However we still have to take care of the average 〈∂0hTT
ij ∂

0hTT
ij 〉, which is over either the

wavelength or the frequency of the wave. The most convenient choice for GW detectors
is the frequency as it is done over time rather than space. For the case of an frequency
average we can effectively remove the need for averaging by using eq. (3.76) and taking
the integral from t = −∞ → t = ∞, giving us the total energy flowing through an area
dA,

d

dA
E =

1

32π

∞∫
−∞

dt〈∂0hTT
ij ∂

0hTT
ij 〉. (3.78)

After the integral has been performed we will be left with a time-independent average,
which for the case of a purely temporal average will be over a constant. The averaging can
thus be omitted and we get

d

dA
E =

1

32π

∞∫
−∞

dt(∂0hTT
ij ∂

0hTT
ij ), (3.79)

which is the total energy carried by a GW through an area dA.
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Chapter 4
Generation of Gravitational Waves

In section 3.4 we elaborated on and found an expression for the energy carried by a GW,
but as we know energy can not be created from nothing so a natural next step is to look at
the origin of GWs. To get an idea of where we are headed we can compare to the study of
electromagnetic radiation, where one considered the contribution from electric monopoles,
dipoles, and quadrupoles. Converting them to their gravitational analogues we have the
mass monopole, which is the total mass-energy, which due to conservation of energy and
mass do not radiate. For the dipole we have two equivalents, the electric and magnetic
dipole moment, the radiation of which are given by their second time derivatives. The
analogues for mass dipoles after differentiation is linear and angular momentum respec-
tively, both of which are conserved quantities and will not result in radiation. This leaves
us with the mass quadrupole moment which in its simplest form is generated by a binary
system, which we would expect to give a non-zero result due to the observations of the
Hulse-Taylor binary [13]. In this chapter we will follow the work of Maggiore [14].

4.1 Sources at Weak Fields

Our goal is to find an expression for the perturbation hµν in asymptotically flat space
which would originate from a source. As we are far away from the source we return to the
LFE in the Lorentz gauge (2.29)

�h̄µν = −16πTµν . (4.1)

In this section we will follow the procedure of Maggiore [14]. As we know it is not very
hard to solve it for a vacuum, but to find the effect from a source we naturally have to
solve it while we keep the stress-energy tensor. We also note that Tµν is conserved, so it
obeys the flat space conservation law ∂µTµν = 0. Through the use of a Green’s function
G(xµ − x′µ) we are able to solve equation (4.1), more specifically we want the Green’s
function for the d’Alembertian which gives us the solution of the wave equation in the
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presence of a delta source term [7]

�xG(xµ − xµ′) = δ(4)(xµ − x′µ), (4.2)

where �x is the d’Alembertian with respect to xµ. Multiplying both sides of equation
(4.2) with Tµν(xµ′) and integrating with respect to xµ′ we get∫

d4x′�xG(xµ − x′µ)Tµν(x′µ) =

∫
d4x′δ(4)(xµ − x′µ)Tµν(x′µ). (4.3)

The d’Alembertian is with respect to xµ so we can take it outside the integral. It is worth
mentioning the lack of the factor

√
−g in the integral as we operate in flat spacetime. The

right hand side is simply evaluated to be Tµν(xµ), inserting into equation (4.1) we end up
with

h̄µν(xµ) = −16π

∫
d4x′G(xµ − x′µ)Tµν(x′µ). (4.4)

So in order to find the perturbation produced by a wave h̄µν(xµ) we have to find a function
G(xµ−xµ′) which satisfies equation (4.2). This is a lengthy process so to not distract from
the main goal of the section the calculations are shown in Appendix C.1. To summarise you
use the Fourier transform of equation (4.2) and solve the resulting PDEs. From equation
(C.20) we get

G(xµ − x′µ) = − 1

4π|x− x′|
δ(x0r − x′0), (4.5)

where x are spatial vectors and “r” denotes the retarded coordinates and we have defined
the retarded time as

x0r = tr = t− |x− x′|. (4.6)

So the solution of equation (C.5) is

h̄µν(t,x) = 4π

∫
d3x′

1

|x− x′|
Tµν
(
t− |x− x′|,x′

)
, (4.7)

where we integrated over x′0. This general formula gives us that the perturbation is the
sum of the stress-energy at the retarded time, which is the time at which the source started
emitting radiation to an observer. Far away from the source we can transform this solution
to the TT-gauge by using the Lambda tensor (3.18), where we use that it is traceless to get
hTT
ij = Λij,klh̄kl. In the TT-gauge equation (4.7) becomes

hTT
ij (t,x) = 4Λij,kl(n̂)

∫
d3x′

1

|x− x′|
Tkl
(
t− |x− x′|, x′

)
, (4.8)

where we let x̂ = n̂ and will denote |x| = r. The reason we are able to write the stress-
energy tensor using only spatial components is because the spatial components and tem-
poral ones are related through the conservation of stress-energy tensor. To see how hTT

ij

behaves at large distances from a source of radius d, where we have r � d, we expand

|x− x′| = r − x′ · n̂ +O(d2/r). (4.9)
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We now take the limit r → ∞ at fixed time we are only left with r. So far away from the
source we have

hTT
ij (t,x) = 4Λij,kl(n̂)

1

r

∫
d3x′ Tkl

(
t− r + x′ · n̂, x′

)
, (4.10)

where we have neglected the terms of O(1/r2). As with most things that oscillate we
would like to to rewrite Tkl using the Fourier transform in order to have them in terms of
the frequency

Tkl(t,x) =
1

(2π)4

∫
d4k T̃kl(ω,k)e−iωt+ik·x. (4.11)

We now want to evaluate the integrand of equation (4.10)∫
d3x′Tkl

(
t− r + x′ · n̂, x′

)
=

1

(2π)4

∫
d3x′

∫
dωd3kT̃kl(ω,k)e−iω(t−r)ei(k−ωn̂)·x

=
1

(2π)4

∫
dωd3k T̃kl(ω,k)e−iω(t−r)(2π)3δ3(k− ωn̂)

=
1

2π

∫
dω T̃kl(ω, ωn̂)e−iω(t−r),

(4.12)

we thus get

hTT
ij (t,x) = 4Λij,kl(n̂)

1

r

1

2π

∞∫
−∞

dω T̃kl(ω, ωn̂)e−iω(t−r). (4.13)

We have only made assumptions about the position relative to the source so we have found
a general expression valid for both relativistic and non-relativistic speeds. By setting dA =
r2dΩ in eq. (3.79) we get the total energy per unit solid angle

d

dΩ
E =

r2

32π

∞∫
−∞

dt (∂0hTT
ij ∂

0hTT
ij ). (4.14)

By inserting eq. (4.13) we get an integral of the form
∫∞
−∞ dt

∫∞
−∞

∫∞
−∞ dωdν, where ω

and ν are frequencies. Through a plane wave expansion we are able to use the property
T̃kl(−ω,−ωn̂) = T̃ ∗kl(ω, ωn̂) to write the integral over the frequencies the following way
[14]

∞∫
−∞

dω T̃kl(ω, ωn̂)e−iω(t−r) =

∞∫
0

dω
(
T̃kl(ω, ωn̂)e−iω(t−r)

+ T̃ ∗kl(ω, ωn̂)eiω(t−r)
)
.

(4.15)

Using this expression we differentiate with respect to time and multiply both frequency
integrands together. We notice that only the exponential factors are time dependent and
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that they can be evaluated using the Fourier representation of the δ-function

δ(x) =
1

2π

∞∫
−∞

dξe−iξx, (4.16)

as we have limited ourselves to positive frequencies the cross terms are the only ones that
will have a non-zero δ-function, which is the case when ω = ν. The general equation for
the energy per unit solid angle is thus

dE

dΩ
=

Λij,kl(n̂)

2π2

∞∫
0

dω ω2T̃ij(ω, ωn̂)T̃ ∗kl(ω, ωn̂), (4.17)

where we used that the lambda tensor is a projector, Λij,abΛab,kl = Λij,kl.

4.2 Low Velocity Expansion
One way of simplifying the equations for radiation is to assume that the velocities inside
the source is much smaller than the speed of light. If we let the typical frequency inside the
source be denoted by ωs and the source have radius d we get the velocity v ∼ ωsd inside
the source. Here the source is the region with a configuration of masses that will produce
GWs. As the frequency of radiation ω will be dependent on the motion inside the source
it is fair to assume it will be of order ωs. Using that the wavelength of said radiation is
λ = 1/ω, it will be of order

λ ∼ d

v
. (4.18)

So for velocities in the non-relativistic range, where v � 1, the reduced wavelength will
be much larger than the radius of the source, λ� d. This means that the finer details of the
motion inside the source do not contribute a lot to the overall radiation, so we care more
about the courser features i.e. the lower order multipole moments. From our analysis in the
introduction of this chapter we know that the lowest order multipole moment should be a
quadrupole moment. We will start the multipole expansion by considering the expression
for hTT

ij in asymptotically flat space, which we recall is given by eq. (4.10)

hTT
ij (t,x) = 4Λij,kl(n̂)

1

r

∫
d3x′ Tkl

(
t− r + x′ · n̂, x′

)
, (4.19)

where Tkl is given in terms of its Fourier transform

Tkl(t− r + x′ · n̂, x′) =
1

(2π)4

∫
d4k T̃kl(ω,k)e−iω(t−r+x′·n̂)+ik·x′

. (4.20)

The stress-energy tensor Tij is only non-vanishing inside the source, so the integral in eq.
(4.19) is restricted to the region |x′| ≤ d, where we remember that the primed coordinates
denote a position of radiation within the source. If we let the peak of the non-relativistic
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source T̃kl(ω,k) be around the frequency ωs, the dominant contribution to hTT
ij must be

given by a frequency ω that satisfies

ωx′ · n̂ . ωsd� 1. (4.21)

Given this we can expand the exponential in (4.20) as follows

e−iω(t−r+x′·n̂)+ik·x′
= e−iω(t−r)

[
1− iωx′ini + 1

2 (−iω)2x′ix′jninj + ...
]
, (4.22)

which we see is equivalent to expanding

Tkl(t− r + x′ · n̂, x′) ' Tkl(t− r, x′) + x′ini∂tTkl + 1
2x
′ix′jninj∂2t Tkl + ..., (4.23)

where the derivatives are evaluated at (t− r, x′). We insert this into eq. (4.19) and define
the following tensors which are the momenta of the stress tensor T ij

Sij(t) =

∫
d3x T ij(t,x), (4.24a)

Sij,k(t) =

∫
d3x T ij(t,x)xk, (4.24b)

Sij,kl(t) =

∫
d3x T ij(t,x)xkxl. (4.24c)

Using these momenta we can write hTT
ij as

hTT
ij (t,x) = 4Λij,kl(n̂)

1

r

[
Skl + nmṠ

kl,m + 1
2nmnpS̈

kl,mp
]

ret
, (4.25)

where “ret” means it is evaluated at retarded time. The tensors Sij,... must be symmetric
in the first two indices as they are defined in terms of the symmetric tensor T ij . Each
factor xm is of order O(d) and each time derivative of Sij gives a factor of order O(ωs),
so Ṡkl,m will give an additional factor of order O(ωsd = v), and thus S̈kl,mp a factor
O(v2). In order to get a clearer physical interpretation of the various terms in the above
expansion we would like to replace the momenta of T ij with the momenta of the energy
density T 00 and the momenta of the momentum density T 0i. The momenta of T 00 we
define as

M =

∫
d3x T 00(t,x), (4.26)

M i =

∫
d3x T 00(t,x)xi, (4.27)

M ij =

∫
d3x T 00(t,x)xixj , (4.28)

M ijk =

∫
d3x T 00(t,x)xixjxk. (4.29)

The momenta of momentum density we define as

P i =

∫
d3x T 0i(t,x), (4.30)
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P i,j =

∫
d3x T 0i(t,x)xj , (4.31)

P i,jk =

∫
d3x T 0i(t,x)xjxk. (4.32)

We are working in the linearised theory and therefore we work with the assumption that
Tµν impacts the surrounding spacetime minimally such that we can assume flat-space and
the relation

∂µT
µν = 0. (4.33)

This means we are neglecting the effects the GWs have on the source. So for a volume V
larger than the source with boundary ∂V we have

Ṁ =

∫
V

d3x ∂0T
00 = −

∫
V

d3x ∂iT
0i

=−
∫
∂V

dΣi T 0i

=0,

(4.34)

where Σ is the surface and used that Tµν vanishes outside the source. So in the linearised
theory system that radiates GWs will not lose mass, which shows some of the limitations
with using a linear model, as a physical system that radiates GWs will lose mass [14]. For
the other momenta of T 00 we get

Ṁ i =

∫
V

d3x xi∂0T
00 = −

∫
V

d3x xi∂jT
0j

=

∫
V

d3x (∂ix
i)T 0j =

∫
V

d3x (δij)T
0j

=P i,

(4.35)

and by using a similar procedure we calculate the rest of the momenta

Ṁ = 0, (4.36a)

Ṁ i = P i, (4.36b)

Ṁ ij = P i,j + P j,i, (4.36c)

Ṁ ijk = P i,jk + P j,ki + P k,ij . (4.36d)

For the momenta of T 0i we get
Ṗ i = 0, (4.37a)

Ṗ i,j = Sij , (4.37b)

Ṗ i,jk = Sij,k + Sik,j . (4.37c)
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The equations Ṁ = 0 and Ṗ i = 0 are the conservation of mass and momentum respec-
tively, which is what we expected form our qualitative analysis earlier. Using the symmetry
of Sij we get from eq. (4.37b) the equation

Ṗ i,j − Ṗ j,i = Sij − Sji = 0, (4.38)

which gives us conservation of the angular momentum of the source. We will now use
these momenta to express the momenta of Sij and Ṡij,k. Differentiating eq. (4.36c) and
inserting eq. (4.37b) we get the identity

Sij = 1
2M̈

ij . (4.39)

If we differentiate eq. (4.36d) twice and insert eq. (4.37c) we get

...
M

ijk
= 2(Ṡij,k + Ṡik,j + Ṡjk,i), (4.40)

which we can insert the derivative of eq. (4.37c) into and get

Ṡij,k = 1
6

...
M

ijk
+ 1

3 (P̈ i,jk + P̈ j,ik − 2P̈ k,ij). (4.41)

We have thus expressed the two lowest orders of momenta of the source in terms of its
momentum and mass, which we will take advantage of in the next section where we will
derive the radiation emitted from a quadrupole.

4.3 Mass Quadrupole Radiation
We will now consider the leading term of eq. (4.25) which we will rewrite using eq. (4.39)

hTT
ij (t,x) = 2Λij,kl(n̂)

1

r
M̈kl(tr). (4.42)

The tensor Mkl can be decomposed into an irreducible representation

Mkl = (Mkl − 1
3δ
klMii) + 1

3δ
klMii, (4.43)

here we effectively have created a traceless term, where Mii is the trace of Mkl. The
Lambda tensor when contracted will result in a traceless-transverse tensor, so when con-
tracting with eq. (4.43) the last term will vanish. The traceless term is thus the only
contributing term, which we recognise from electromagnetism as the quadrupole moment

Qij ≡M ij − 1
3δ
ijMkk =

∫
d3x ρ(t,x)(xixj − 1

3r
2δij), (4.44)

where we use ρ = T 00 for the energy density of the system, a quantity which includes the
contributions from the rest mass, and the kinetic and potential energy of the system. The
lowest order contribution to GWs is thus the quadrupole moment, inserting it back into eq.
(4.42) we get

[hTT
ij (t,x)]quad = 2Λij,kl(n̂)

1

r
Q̈kl(tr). (4.45)
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For completeness sake we contract the Lambda tensor with the quadrupole moment and
by design we get

[hTT
ij (t,x)]quad ≡ 2

1

r
Q̈TT
ij (tr). (4.46)

We have thus managed to show that, as we suspected, the lowest order momenta which
contributes to the emittance of GWs is the quadrupole moment.

4.3.1 Quadrupole radiation in an arbitrary direction
To find the quadrupole radiation emitted in an arbitrary direction n̂, we will first find it
for the z-direction in the TT-gauge. The first step is contracting the Lambda tensor with
the quadrupole moment to get an explicit expression. From the definition (??) we see
that only the term M ij contribute as contracting with the Kroenecker δ-function results
in it vanishing. It is thus equivalent to use M̈ ij instead of Q̈ij , for the sake of physical
interpretation we will use the former. We have already calculated the effect of the Lambda
tensor for the case of wave travelling in the z-direction in section 3.1.2, so using eq. (3.22)
we get

Λij,kl(n̂)M̈kl =

 1
2 (M̈11 − M̈22) M̈12 0

M̈12 − 1
2 (M̈11 − M̈22) 0

0 0 0

 . (4.47)

The two polarisation amplitudes follows naturally as

h+ =
1

r
[M̈11(tr)− M̈22(tr)], (4.48)

h× =
2

r
M̈12(tr). (4.49)

Now that we know the amplitudes for the z-direction we will would like to find the mo-
menta for an arbitrary direction n̂ in a coordinate system (x, y, z). To accomplish this we
will introduce the unit vectors û and v̂, which are orthogonal to n̂ and each other. Now
we let û × v̂ = n̂ and define the vectors (û, v̂, n̂) to be the axes of a coordinate system
(x′, y′, z′), thus our GW will propagate in the z′-direction. As the polarisation modes we
are given in the plane transverse to the direction of propagation we can write them as

h+ =
1

r
[M̈ ′11(tr)− M̈ ′22(tr)], (4.50)

h× =
2

r
M̈ ′12(tr). (4.51)

The next step is to convert them to the unprimed frame, (x, y, z). A good place to start
is how the vector n̂ is related in the two coordinate systems, in the primed frame it has
the coordinates n′i = (0, 0, 1) and in the unprimed system it has the coordinates ni =
(sin θ sinφ, sin θ cosφ, cos θ). The relation between them can thus be expressed through
a rotation matrixR as ni = Rijn′j . A rotation matrix which takes the form

R =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 . (4.52)
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Our momenta in the unprimed frame will thus be

Mij = RikRjlM ′kl. (4.53)

Using this relation we are able to write the polarisation modes in terms of polar coordinates
which gives us the ability to calculate the angular distribution of the quadrupole moment.

4.3.2 Power radiated from a quadrupole

To find the energy contribution from the quadrupole moment gives to the radiated energy
we just need to insert eq. (4.45) into the general eq. for the radiated energy (3.77)

P =
r2

32π

∫
dΩ Λij,kl〈

...
Qij

...
Qkl〉. (4.54)

Only Λij,kl(n̂) has angular dependence and is thus the only factor we have to evaluate in
the integral, which we now from eq. (3.19) can be expressed as a product of the compo-
nents of n̂. There are thus terms consisting of products of two and four vector components,
which we can solve using the identities

1

4π

∫
dΩ ninj =

1

3
δij , (4.55)

1

4π

∫
dΩ ninjnknl =

1

15
(δijδkl + δikδjl + δilδjk). (4.56)

Here we used that both tensors ninj and ninjnknl are symmetric and therefore the inte-
gral can only depend on the symmetric product of Kronecker deltas [14]. Evaluating the
angular integral of the Lambda tensor we get∫

dΩ Λij,kl =

∫
dΩ
(
δikδjl − 1

2δijδkl − njnlδik − ninkδjl

+ 1
2nknlδij + 1

2ninjδkl + 1
2ninjnknl

)
,

(4.57)

which after applying eq. (4.55) and (4.56) becomes∫
dΩ Λij,kl =

2π

15
(11δikδjl − 4δijδkl + δilδjk). (4.58)

The radiated power from a quadrupole is thus

Pquad =
1

5
〈
...
Qij

...
Qij〉. (4.59)

This equation is known as the quadruopole formula, which was derived by Einstein. As
we see it tells us that the power generated from a quadrupole is dependent on the jerk of
the quadrupole averaged over time and evaluated at the retarded time t− r.
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4.3.3 The reaction on non-relativistic sources
We would now like to direct our attention towards what happens to the source itself as it
emits GWs. To do so we will evaluate what happens to a non-relativistic source that emits
a GW at retarded time, t− r, which is observed at a large distance r from the source. For
this we will stick with the linear theory of gravity, thus not taking into account the effects
a curved space-time might have on the transfer of energy from the source to the distance
r. In section 4.3.2 we found that the power observed at this large distance away from the
source is given by eq. (4.59), as we are in flat spacetime the power lost from the source at
time t− radiationr must therefore be the negative of this

Psource = −1

5
〈
...
Qij

...
Qij〉. (4.60)

It is worth noting that the averaging is evaluated at retarded time both for eq. (4.59)
and eq. (4.60). As we have assumed a non-relativistic source we can safely use Newtonian
mechanics to find the back-reaction on the source in terms of a force F. From the definition
of power we have

dEsource

dt
= 〈Fivi〉, (4.61)

which for the source we have written in terms of the averaged power at the retarded time,
as the energy is only defined if we take the average over several periods. For an extended
body we can write this as

dEsource

dt
=
〈∫

d3x
dFi
dV

ẋi

〉
, (4.62)

dFi/dV is the force per unit volume. To write this force in terms of the quadrupole mo-
ment we will rewrite eq. (4.60) using integration by parts such that we only have one factor
be a first order derivative, using the properties laid out in Section 3.4.3 we get

dEsource

dt
= −1

5
〈dQij
dt

d5Qij
dt5

〉. (4.63)

The reason for this movement of derivatives will become apparent when we use the defi-
nition of the quadrupole moment (4.44) to find its time derivative

dQij

dt
=

∫
d3x′ ∂tρ(t,x′)(x′ix′j − 1

3r
2δij), (4.64)

and observe that the term involving δij will vanish when contracted with d5Qij/dt5, asQij
is traceless. The conservation of the stress-energy tensor gives us the continuity equation

∂0T
00 + ∂iT

0i = 0, (4.65)

which for our Newtonian source is

∂tρ+ ∂i(ρvi) = 0. (4.66)
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Using the continuity equation (4.66) we can substitute ∂tρ in eq. (4.64) with−∂i(ρvi), we
can then integrate it by parts

dQij

dt
=

∫
d3x′ ∂tρ(t,x′)x′ix′j = −

∫
d3x′ ∂k[ρ(t,x′)ẋk]x′ix

′
j

=− x′ix′j
∫
d3x′ ∂k[ρ(t,x′)ẋk] +

∫
d3x′ ρ(t,x′)ẋk∂k(x′ix

′
j),

(4.67)

the first term is a surface integral that vanishes as ρ vanishes at infinity, so we get

dQij

dt
=

∫
d3x′ ρ(t,x′)ẋ′k(δikx

′
j + δjkx

′
i). (4.68)

Inserting eq. (4.68) into our expression for the power radiated from the source (4.63)

dEsource

dt
=− 1

5

〈d5Qij
dt5

∫
d3x′ ρ(t,x′)ẋ′k(δikx

′
j + δjkx

′
i)
〉

=− 2

5

〈d5Qij
dt5

∫
d3x′ ρ(t,x′)ẋ′kx

′
j

〉
.

(4.69)

Comparing this equation to the one we found for the power given by the forces acting
inside the source (4.62) and moving d5Qij/dt5 inside the integral, we observe that we
have found an expression of said forces

dFi
dV ′

= −2

5

d5Qij
dt5

(t)ρ(t,x′)x′j . (4.70)

Integrating the over the unit volume we get the total force

Fi = −2

5

d5Qij
dt5

(t)

∫
d3x′ ρ(t,x′)x′j , (4.71)

which we can write in terms of the centre of mass coordinates

xj(t) ≡
1

m

∫
d3x′ ρ(t,x′)x′j , (4.72)

thus we get

Fi = −2

5

d5Qij
dt5

(t)mxj(t) (4.73)

We have thus found the self-force of the source as it radiates by using the energy balance
of the emitted GW at infinity. The self-force is thus causing the system to inspiral at a
rate proportional to the fifth time derivative of the quadrupole moment of the system, this
inspiraling is what we expect as a gravitational system radiates. The motion of particles in
a gravitational field is governed by the metric, so one should be able to find the self-force
through the metric in the near-source region. To be able to achieve this one need to find
the corrections to the geodesic motion of the source imposed by the self-force. As the
metric in the near-source region must be taken as curved we must use the non-linear field
equations for the calculations, which for products of point like source distributions does
only have solutions under special circumstances [16]. There are ways around this which
will need a deeper look into the non-linear field equations.
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4.3.4 Radiation from a closed system of point masses
Let us consider a system of closed point masses in order to find what the radiation from
such a system can look like. We start by considering a point-like particle moving on a
trajectory x0(t) in flat spacetime, whose stress-energy tensor is given by [17]

Tµν(t,x) = pµ(t)
dx ν0 (t)

dt
δ3(x− x0(t)). (4.74)

For a system of free point particles with the label n, which are moving on trajectories
xn(t), we have the total stress-energy tensor

Tµν(t,x) =
∑
n

p µn (t)
dx νn (t)

dt
δ3(x− xn(t))

=
∑
n

γnmn
dx µn (t)

dt

dx νn (t)

dt
δ3(x− xn(t)),

(4.75)

where we used that in flat space the momentum pµ = mdx µ0 /dτ), where τ is the proper
time, becomes pµ = γm(dx µ0 /dt, where γ = (1− v2)−1/2. The energy density and flux
for this system is given as

Tµ0(t,x) =
∑
n

p µn (t)δ3(x− xn(t)), (4.76)

which we see reduces to an expression only dependent on the velocity, mass, and trajectory
of the particle. Let us consider the conservation of energy using the Bianchi identity (B.3)
in flat spacetime, ∂µTµν = 0, on eq. (4.75) where we will start with the case of one spatial
component

∂

∂xi
Tµi(t,x) =

∂

∂xi

∑
n

p µn (t)
dx in(t)

dt
δ3(x− xn(t))

=−
∑
n

p µn (t)
dx in(t)

dt

∂

∂x in
δ3(x− xn(t)).

(4.77)

which we can rewrite using the chain rule and then we compare the result to eq. (4.76)

∂

∂xi
Tµi(t,x) =−

∑
n

p µn (t)
∂

∂t
δ3(x− xn(t))

=− ∂

∂t
Tµ0 +

∑
n

∂p µn (t)

∂t
δ3(x− xn(t))

(4.78)

Moving the first term on the RHS we get the Bianchi identity we sought out to find

∂µT
µν =

∑
n

∂p µn (t)

∂t
δ3(x− xn(t))

=
∑
n

γnmn
d2dx µn (t)

dt2
δ3(x− xn(t)) = 0.

(4.79)
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The geodesic equation (A.8), in flat spacetime reduces to d2xα/dτ2 = d2xα/dt2 = 0,
we therefore see that every particle, n, must follow their geodesics in flat spacetime. Thus
it does not make sense to use this stress-energy tensor (4.75) for interacting particles as
the interactions would cause the particles to deflect from their geodesic. We need to look
past the linear theory to be able calculate the corrections which are needed for interacting
particles in a self-gravitating system, however we are still able to use the linear theory to
calculate the leading terms of the quadrupole radiation (4.25) while ignoring the interac-
tion terms. The reason is that in the non-linear theory one finds that the full stress-energy
tensor of a self-gravitating system are of orderO(v2), so for a non-relativistic two particle
system we have [14]

Tµν(t,x) =

2∑
n=1

mn
dx µn (t)

dt

dx νn (t)

dt
δ3(x− xn(t)) +O(v2). (4.80)

This gives us T 00 = O(v0), T 0i = O(v), and T ij = O(v2), which is why we are able
to calculate T 00 and T 0i to the lowest order as they will not include the interaction terms.
These lowest order terms

T 00 =
∑
n

mnδ
3(x− xn(t)), (4.81)

T 0i =
∑
n

mn
dx in(t)

dt
δ3(x− xn(t)), (4.82)

do fulfil the conservation of energy, ∂0T 00 + ∂iT
0i = 0. Following the same calculations

as for eq. (4.77) we get

∂0T
00 = −

∑
n

mn
dx in(t)

dt

∂

∂x in
δ3(x− xn(t)), (4.83)

and

∂iT
0i =

∑
n

mn
dx in(t)

dt

∂

∂x in
δ3(x− xn(t)), (4.84)

which we see satisfy ∂0T 00 + ∂iT
0i = 0 independently of the trajectory x in. On the

other hand the conservation of energy for ∂µτµj , where τµν is the stress-energy tensor
with non-linear corrections, is dependent upon the gravitational potential of the system
and therefore so must the trajectory of the particles [14]. We will not go further into τµν

as it requires us to go past the linear theory, it is still worth mentioning as it tells us that
due its dependence on the potential and by extension the interaction terms we can not
calculate the leading terms of the quadrupole radiation (4.25), Sij + nmṠ

ij,m, directly
within our current framework. All is not lost as we can use energy-momentum conserva-
tion instead, as we did in section 4.3.3. Using eq. (4.39) and (4.41) we are able to replace
Sij + nmṠ

ij,m, with
...
M

ijk
and P̈ i,jk, which are the momenta of energy and momentum

density respectively. When we derived both of these quantities used the conservation of the
stress-energy tensor. Thus by using them to calculate the GW amplitude for a quadrupole
we are implicitly including the interaction terms of Tµν , while only needing to know that
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it is conserved and nothing else. A good tool to have which will allow us to calculate
behaviour of GW in the non-relativistic limit.

4.4 The behaviour of a binary system
The framework for how a non-relativistic binary system should behave has been laid out
in the previous sections, so it now time to put it together to see how a binary system of
two compact stellar objects will give rise to GWs and the effect it has on the system. We
already know from section 4.3.3 that they will spiral towards each other as they radiate,
the details of which and the details GWs radiated will be worked out in this section. We
are considering compact objects such as neutron stars or black holes so we can treat them
as point like masses, with mass m1 and m2, and position r1 and r2, respectively. The
non-relative nature of the chosen system allows us to use a Newtonian approximation in
the center-of-mass frame, with coordinates

rCM =
m1r1 +m2r2
m1 +m2

. (4.85)

Using the reduced mass
µ =

m1m2

m
, (4.86)

where m = m1 + m2, and also the relative coordinates r = r2 − r1. The second mass
moment is thus

M ij = m1r
i
1 r

j
1 +m2r

i
2 r

j
2 = mriCMr

j
CM + µrirj . (4.87)

For an isolated the system the centre of mass will not be moving and we can thus choose a
frame such that rCM = 0, thus we have reduced the system to effectively only one particle
with a mass µ and coordinate r. So in the CM frame we have the mass density

ρ(t,x) = µδ(3)(x− r), (4.88)

and a second mass moment
M ij = µrirj . (4.89)

From eq. (4.44) we also have the quadrupole moment of the system

Qij(t) = µ(ri(t)rj(t)− 1
3r
krk)δij . (4.90)

This system has been reduced to a one-body problem whose equation of motion is

r̈ = −m
r3

r, (4.91)

where we recall that we have chosen units where G = 1. For a system with an orbital
radius R the orbital frequency is [14]

ωs =
m

R3
. (4.92)

We will use this system in the next sections to find the amplitude of the GW produced by
such a system and the power which is radiated as a consequence.
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4.4.1 GW amplitude from a binary system
To find the amplitude of the GWs produced by the system we will start with a simple case
where we assume the motion of the relative coordinate, r, is circular and we neglect the
self-force from the gravitational radiation. The calculations will follow problem 3.2 and
section 4.1 of Maggiore [14].

We choose a Cartesian coordinate system, r = (x, y, z), for the spatial coordinates such
that the orbit lies in the (x, y) plane, we thus have

x0(t) = R cos (ωst+ π
2 ), (4.93a)

y0(t) = R sin (ωst+ π
2 ), (4.93b)

z0(t) = 0, (4.93c)

The second mass moment for the system can thus be found through eq. (4.89), of which
the contributing components are

M11 = µR2 1− cos (2ωst)

2
, (4.94a)

M22 = µR2 1 + cos (2ωst)

2
, (4.94b)

M12 = M21 = −µR2 sin (2ωst)

2
. (4.94c)

In section 4.3.1 we found the amplitude of a propagating GW along the z-axis, eq. (4.50)
and . Through a coordinate transformation of the moment (4.53)

Mij = RikRjlM ′kl, (4.95)

the amplitude will be given for an arbitrary propagation direction in polar coordinates,
where the primed coordinates are given along the z-axis and the rotation matrixR is given
by eq. (4.52). So solving eq. (4.95) for M ′ij gives us

M ′ij = (RTMR)ij , (4.96)

whereRT is the transpose ofR. Taking the time derivative of the mass moments (4.94)

M̈11 = 2µR2ω2
s cos (2ωst), (4.97a)

M̈22 = −2µR2ω2
s cos (2ωst), (4.97b)

M̈12 = 2µR2ω2
s sin (2ωst), (4.97c)

we note that M̈11 = −M̈22. Finally we can insert the above equations into eq. (4.50) and
(4.4.1), and after some matrix multiplication we get the polarised amplitudes given by the
non-vanishing momenta
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h+ =
1

r
[M̈11(cos2 φ− sin2 φ cos2 θ

+ M̈22(sin2 φ− cos2 φ cos2 θ)

− M̈12(sin 2φ(1 + cos2 θ)]

=
1

r
4µω2

sR
2 1 + cos2 θ

2
cos (2ωstr + 2φ),

(4.98)

and

h× =
1

r
[(M̈11 − M̈22) sin 2φ cos θ + 2M̈12 cos 2φ cos θ

=
1

r
4µω2

sR
2 cos θ sin (2ωstr + 2φ).

(4.99)

Here r is the distance from the source and tr is the retarded time. The quadrupole radiation
thus has a frequency twice the frequency of the source, ωGW = 2ωs. To more easily study
these amplitudes we would like to use eq. (4.92) to replace the orbital distance R with
fGW = ωGW/(2π) = ωs/π, while also introducing the chirp mass

Mc = µ3/5m2/5. (4.100)

The amplitudes thus take the form

h+ =
4

r
M5/3
c (πfGW)2/3

1 + cos2 θ

2
cos (2πfGWtr + 2φ), (4.101)

and
h× = frac4rM5/3

c (πfGW)2/3 cos θ sin (2πfGWtr + 2φ). (4.102)

It is thus clear that to the lowest order the two factors that determine the amplitude are
the masses of the two objects in the binary system along with their rotational frequency.
We can further introduce two other quantities to help simplify the equations, the reduced
wavelength λ = 1/ωGW, and the Schwarzschild radius given the chirp mass

Rc ≡ 2Mc. (4.103)

The Schwarzschild radius is a constant which arises from the static, spherically symmetric
vacuum solution of Einstein’s field equations, which for this case has been adopted for
the chirp mass [7]. We combine λ, Rc, and the distance r into a new constant (r can be
regarded as a constant as it is practically the distance from the Earth to the system)

A = 2−1/3
Rc
r

(Rc
λ

)2/3
(4.104)

The amplitudes thus take the form

h+ = A1 + cos2 θ

2
cos (2πfGWtr + 2φ), (4.105)

h× = A cos θ sin (2πfGWtr + 2φ), (4.106)

where we are left with only the angular dependence of the amplitude and the constant A.
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4.4.2 GW radiated power from a binary system
To calculate the power this system radiates we will consider the point of view of an ob-
server trying to measure the GWs, which allows us to convert some variables into con-
stants. The radiation that reaches the observer is whichever part of the system points
toward it, therefore this direction makes a good choice for aligning the axis of our coor-
dinate system. The angle θ thus becomes the angle between the orbit of the system and
the normal to our line of sight, which will be a constant angle we name ι as long as the
systems orbit stays fixed. As we have assumed a circular orbit any change in the angle
φ can be written as ∆φ = ωs∆t, where ∆t is the corresponding time it takes to rotate.
Therefore one has to consider the combination ωstr + φ to get the correct result, as both
affect the angular position within the orbit. This allows us to shift the retarded time such
that we have ωstr = ωst + α, where α = φ − ωsr is a constant. We can now choose our
time origin such that cos (2ωst+ 2α) → cos 2ωst. Implementing these relations we can
write the amplitudes as

h+ = A1 + cos2 ι

2
cos (2ωst), (4.107)

h× = A cos ι sin (2ωst), (4.108)

where we can note how the two different polarisations change in relative strengths as our
angle of observation ι changes. This will result in different polarisation patterns such as
circular polarisation when both polarisations has an equal contribution at ι = 0.
We already have found the equation for power radiation earlier, it is given by eq. (4.59),
which we will write on differential form

dP

dΩ
=

r2

32π
Λij,kl〈

...
Qij

...
Qkl〉. (4.109)

Written in terms of the polarisation modes we get[14]

dP

dΩ
=

r2

16π
〈ḣ2+ + ḣ2×〉, (4.110)

we use that 〈sin2 x〉 = 〈cos2 x〉 = 1/2 and end up with

dP

dΩ
=

2

π

(McωGW

2

)10/3
g(θ). (4.111)

The function g(θ) we have defined as

g(θ) ≡
(1 + cos2 θ

2

)2
+ cos2 θ. (4.112)

Finding the angular average of g(θ)∫
dΩ

1

4π
g(θ) =

4

5
, (4.113)

which leads us to finding the total power radiated

P =
32

5

(McωGW

2

)10/3
(4.114)
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The radiated energy must have a source, which for a circular orbit is the sum of the kinetic
and potential energy of the system

Eorbit = −m1m2

2R
. (4.115)

The loss of energy must therefore result in a decreasing orbital radius, R, which given
eq.(4.92) means that orbital frequency ωs must increase. This increase in ωs also means
that total power radiated (4.114) will also increase as the system spirals inwards and will
thus emit its largest burst of energy when the objects in the system collides.
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Chapter 5
Detection of Gravitational Waves

The detection of gravitational waves is rather favourable here on Earth as our solar system
has weak gravitational field, meaning that plane gravitational waves passing through the
solar system stays more or less as plane waves [6]. So the effect they have on a collection
of particles can be described by the equations (3.29) and (3.31), a +-polarised wave pass-
ing through some object will thus oscillate it as seen in Figure ??. By observing the effect
of these transverse oscillations and removing the possibility of other disturbances we are
able to detect the effect of a passing wave. The first attempt at detecting a gravitational
wave was done in the 1960’s by Weber using a resonant mass detector [3]. But due to
the generally small amplitude of gravitational waves, h ∼ 10−21, these kinds of detectors
struggle reaching the required sensitivity [18].

Many years later in 2016 the first gravitational wave was confirmed detected at the Laser
Interferometer Gravitational-Wave Observatory (LIGO) in USA, it confirmed yet another
prediction made by the general theory of relativity[4]. It also marked the beginning for
a new era of astronomy, one were we can add gravitational waves to our disposal for
researching objects that are hard or impossible to detect with electromagnetic radiation,
such as dark matter and black holes. A bit amusing is the fact that the experimental setup
is rather similar to the very first interferometer, which was made by Albert Michelson of
the famous Michelson-Morley experiment.

5.1 Laser Interferometers
Like the Michelson-Morley experiment, LIGO tries to detect the difference in time light
takes takes to travel down two orthogonal arms, the light start out at as a single source
which is split into each arm where it will be reflected back to the starting point by a mirror
located at the end. When the beam is split the two resulting beams have correlated phases,
if one arm is longer by half of the lights wavelength then the two beams will interfere
destructively when they return, if there are no external disturbances. When a wave passes
through the detector at a reasonable angle it will stretch one arm and shrink the other, thus
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Figure 5.1: Schematic of the proposed design of LIGO, the angles mark the propagation direction
for a gravitational wave passing through the detector. Taken from [19].

causing a relative phase shift in the beams and making them have constructive interference,
giving us a measurable signal. The relative stretching of the two arms of length L is given
by the linear combination of the two polarisation modes h+ and h× [19]

δL

L
= [ 12 (1 + cos2 θ) cos 2φ]h+ + [cos θ sin 2φ]h× ≡ h, (5.1)

where the angles are as given in Figure 5.1, and δL = Lx − Ly . The quantity h is also
known as the gravitational strain on a test mass, and is the combined amplitude of a passing
gravitational wave. As mentioned, this amplitude is generally on the order of h ∼ 10−21,
for a length L given in kilometers the change of distance δL will be of order

δL ∼ 10−18m. (5.2)

When compared to the Bohr radius, a0 ∼ 5 × 10−11m, the challenge of detecting grav-
itational waves becomes clear. Nevertheless LIGO managed to create an interferometer
that is sensitive enough to detect these minuscule changes, one of the techniques used was
just making the arms long, as known from equation (3.27) the wave will cause a larger
disturbance from a larger initial separation. This why LIGO is built with arms of length
L = 4km, but that length still was not enough, to increase the effective length of the arms
the laser beams are bounced back and forth many times, thus achieving a greater phase
shift. If the beam is doing 100 round trips we get a phase shift of [7]

δφ ∼ 200
2π

λ
δL ∼ 10−9, (5.3)

which is of an order that is easier to measure. The result of this feat of engineering bore
fruits in 2016 when the signal in Figure 5.2 was detected, where we see the oscillations
of a wave passing through the earth. The spike we see is a result of the increasing energy
radiated as the two black holes collided, as we discussed at the end of section 4.4.2, at
least for system
By having multiple of these types of interferometers across the globe we are able to cross
check the results to verify that the signal was not just noise and also be able to more pre-
cisely find the origin of incoming waves. This is why LIGO consists of two locations
across the USA, but LIGO is not alone some other are VIRGO in Italy [20], GEO600 in
Germany [21] and KAGRA in Japan[22]. These projects leads the development of ground
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5.1 Laser Interferometers

Figure 5.2: The first detection of gravitational wave by LIGO in 2016, showing the oscillations
of a passing wave compared with the expected results calculated numerically. Courtesy of: Cal-
tech/MIT/LIGO Lab [4].

based gravitational wave observatories. The next major step in gravitational wave astron-
omy will be to eliminate the disturbances and space restrictions we have here on Earth and
launch an interferometer into space, this project is known as LISA (Laser Interferometer
Space Antenna) and is carried out by ESA and NASA. The plan is to have an interfer-
ometer orbit the sun staying in the same orbit as the Earth, staying about 50-65 million
kilometers behind, with three arms each being 2.5 kilometers long. LISA would be able
to reach sensitivity in a band from below 10−4Hz to above 10−1Hz [23].

47



Chapter 5. Detection of Gravitational Waves

48



Chapter 6
Conclusion and outlook

In this thesis we have explored the framework of GWs from their mathematical origin as
a perturbation upon a flat background spacetime to being able to predict the inspiraling of
binary system at the lowest order and how that plays a role in our ability to detect GWs. We
started by deriving the Eisntein field equations through the variational method, which we
looked closer upon in the weak field limit and lead to us finding that the basic formalism
for GWs in the linearised theory. A formalism we expanded upon in the TT-gauge and
discovered the polarisation modes of GWs. Then we had to step outside the linearised
theory in order to able to find the stress-energy tensor of propagating waves, a result which
we used later to be able to find the power radiated in binary systems. The special case of
binary systems we took a look at what was that of non-relativistic systems, where used
the lowest order moment, the quadrupole moment, to find the power and amplitude of the
radiation which the system emitted. Lastly we considered how experiments such as LIGO
is able to detect the GW despite their extremely small amplitude.
Subjects that could be of further interest are a closer look into the non-linear aspects of
GWs and consider their behaviours on a curved background, as well as a the angular
momentum of GWs and the link to the graviton having to be a spin-2 particle.
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Appendix A
Appendix A

A.1 Notation and conventions

Units

Throughout this thesis we use geometrised units, where the speed of light is set to unity,
c = 1, and the gravitational constant is also set to unity, G = 1. The metric signature
we use is of the form (-,+,+,+). The Einstein summation convention is employed, where
summation over repeating indices is assumed. Indices that are written using the Greek
alphabet signify time and space components, while indices using the Latin alphabet signify
only spatial components. On a pseudo-Riemannian manifold we use the interval:

ds2 = gµνdx
µdxν , (A.1)

where gµν is the covariant metric tensor and dxµ are the components of an infinitesimal
displacement of a four-vector.
The new metric for a coordinate transformation xµ → x′µ is given by

g′µν = gρσ
∂xρ

∂x′µ
∂xσ

∂x′ν
. (A.2)

Tensors and relativity

The Riemann curvature tensor is written as

Rρµνσ = ∂νΓρµσ − ∂σΓρµν + ΓρλνΓλµσ − ΓρλσΓλµν , (A.3)
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where Γ are the Christoffel symbols. The Christoffel symbols written as derivatives of the
metric tensor is also known as the metric connection, it is written as follows

Γabc =
1

2
gad(∂bgdc + ∂cgbd − ∂dgbc). (A.4)

By using the symmetry properties of the Riemann curvature tensor, and contracting the
first and last indices we end up with a new tensor, the Ricci tensor, which is defined as:

Rµν ≡ Rαµαν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓβµα (A.5)

The Ricci scalar is given by the contracting the Ricci tensor, which means we get

R ≡ gµνRµν = Rµµ. (A.6)

The derivative of the components of a vector, vα, along a curve parametrised by λ is given
by

Dvα

Dλ
≡ dvα

dλ
+ Γαβγv

β dx
γ

dλ
(A.7)

To find the geodesic xα(λ), the parametrised path of freely falling particles, we use the
equation [6]

d2xα

dλ2
+ Γαγβ

dxγ

dλ

dxβ

dλ
= 0, (A.8)

which is known as the geodesic equation, where λ is a scalar parameter of motion. The
distance between to points on two different geodesics is given by the separation vector
ξα(λ), the equation that describes how this distance evolve is given by the equation of
geodesic deviation [7]

D2ξα

Dλ2
= Rαµνβẋ

µẋνξβ . (A.9)

Divergence theorem

For an arbitrary vector field, V µ, we get the divergence theorem:∫
R

(∇µV µ)
√
|g|d4x =

∫
∂R

nµV
µ
√
|γ|d3y (A.10)

Here γ is the determinant of the induced metric on the boundary, and nµ is the unit normal
on the boundary.
The differential of the determinant of a matrix A, is given by Jacobi’s formula:

d det(A) = Tr(adj(A)dA)) (A.11)
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A.2 Calculations weak-field metric
Contravariant weak-field metric

An alternative way of writing the contravariant weak-field metric is gµν = g′µν + δgµν .
We use the definition gµαgαν = δµν , in order to find an expression for the variation of the
contravariant metric tensor.

δ(gµνgµν) = gµνδ(gµν) + δ(gµν)gµν = δ(δµν ) = 0, (A.12)

by contracting with gµν and rearranging we get

δ(gµν) = −gµαδ(gαβ)gβν . (A.13)

By choosing g′µν to be the Minkowski metric we get g′µν = ηµν , we also choose the
variance in the metric to be δ(gµν) = hµν . We thus get to the first order of δ(gµν)

δ(gµν) = −(ηµα + δgµα)hαβ(ηβν + δgβν)

δ(gµν) = −ηµαhαβηβν = −hµν .
(A.14)

We thus end up with the following expression for the contravariant field metric

gµν = ηµν − hµν . (A.15)

A.3 Gauge and coordinate transformations in linearised
theory

The basic equations for a linearised theory of gravity for a coordinate system that is nearly
globally Lorentz are the equation for the weak-field metric (2.19) and the linear field equa-
tions (2.25). The coordinate transformations that connect nearly globally Lorentz systems
to each other are the global Lorentz transformation and the infinitesimal coordinate trans-
formation [6], both of which will be introduced here.

A.3.1 Global Lorentz transformations
Global Lorentz transforms are of the form [5]

x′µ = Λµνx
ν , where ηµν = ΛαµΛβνηαβ ,

the coefficients Λµν are constant everywhere. By using the Jacobian we see that the metric
tensor transforms as follows

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = ΛαµΛβν(ηαβ + hαβ) = ηµν + ΛαµΛβνhαβ , (A.16)

we see that the transformed metric tensor is still of the same form as the weak-field metric
(2.19). The difference being that we have

h′µν = ΛαµΛβνhαβ . (A.17)
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Thus we see that the change that occurs under a transformation of the metric in the weak-
field case is only given by the change in the perturbation term hµν . Instead of a considering
a slightly curved space-time representing the general relativistic weak field, we can view it
in means of hµν and h̄µν as symmetric rank-2 tensors defined on a flat Minkowski space-
time [5]. This gives us the property that we only need to consider the change in hµν and
h̄µν as opposed to the whole metric, thus this is a special relativistic field akin to how the
4-potential, Aµ, describes electromagnetic fields on a flat Minkowski space-time.

A.3.2 Infinitesimal general coordinate transformations
Infinitesimal general coordinate transformation takes the form [5]

x′µ = xµ + ξν(x), (A.18)

where ξν(x) are four arbitrary functions with the same dimensions as hµν . This type of
transformation makes tiny changes in the forms of scalar, vector and tensor fields, but
can be ignored in all of them except for the metric tensor as the tiny deviations from ηµν
contains all the information about gravity [5]. We want to express the metric tensor using
this transformation, so we need to find the expression for the Jacobian. So from equation
(A.18) we get

∂x′µ

∂xν
= δµν + ∂νξ

µ,

where we have the inverse form

∂xµ

∂x′ν
= δµν − ∂νξµ.

Both ξµ and hµν are small quantities, so by working to the first order of these quantities
we end up with the metric transformation

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = (δαµ − ∂µξα)(δβν − ∂νξβ)(ηαβ + hαβ)

= ηµν + hµν − ∂µξν − ∂νξµ,
(A.19)

where we have defined ξµ = ηµνξ
ν . We also see here that the transformation of the

metric keeps the same form as the weak-field metric (2.19). So the transformation of the
perturbation hµν is given by

h′µν = hµν − ∂µξν − ∂νξµ. (A.20)
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Appendix B
Riemann Geometry

B.1 The Bianchi Identity
By considering the permutations of the covariant derivative of the Riemann tensor along
with its anti-symmetry Rαβµν = −Rβαµν one arrive at what is known as the Bianchi
identity [7]

∇[λRαβ]µν = 0, (B.1)

where the square brackets denotes the permutation of the components within. By contract-
ing twice on the Bianchi identity (B.1) one arrives at the relation

∇µRαµ = 1
2∇αR, (B.2)

which in turn gives us the covariant derivative of the Einstein tensor (2.12)

∇µGµν = 0. (B.3)

B.2 Non-commutation of covariant derivatives
For a vector field with components Bµ we have the following commutation property for
the covariant derivatives [6]

DαDβB
µ = DβDαB

µ +RµνβαB
ν . (B.4)

For a second-rank tensor field with components Sµν we have the following commutation
property for the covariant derivatives [6]

DαDβS
µ = DβDαS

µ +RµρβαS
ρν +RνρβαS

µρ (B.5)
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Appendix C
Green’s Function

C.1 Green’s Function for the Wave Equation
One way to solve the inhomogeneous wave equation of the form

�Ψ(x, t) = f(x, t), (C.1)

is through the use of a Green’s function G, here Ψ is an arbitrary wave function and f is
an arbitrary source term. Here � is the d’Alembertian defined as

� = −∂2t +∇2, (C.2)

where∇2 is the spatial Laplacian. We start by considering a Green’s function as a solution
to the wave equation for a δ-function source term

�xG(x, t;x′, t′) = δ(3)(x− x′)δ(t− t′), (C.3)

where the primed coordinates are the location of the source. By multiplying both sides of
equation (C.3) with f(x′, t) and integrating with respect to xµ′ we get∫

d4x′�xG(x, t;x′, t′)f(x′, t) =

∫
d4x′δ(3)(x− x′)δ(t− t′)f(x′, t). (C.4)

Evaluating the RHS to simply be f(x, t), which we can insert back into eq. (C.1) and after
integration we end up with the general solution for Ψ

Ψ(x, t) =

∫
d4x′G(x, t;x′, t′)f(x′, t). (C.5)

Finding the solution to the Green’s function G will in turn give us the solution to Ψ.
A process we start by taking the Fourier transform with respect to the time coordinate of
equation (C.3) we convert our time-dependent equation to the time-independent Helmholtz
equation

(∇2 + k2)G(x,x′, ω) = δ(3)(x− x′)eiωt
′
, (C.6)
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where k = ω, which for the limit k → 0 reduces to the Poisson equation. We will consider
this system with the spatial boundary condition G(x,x′, ω) → 0 as |x− x′| → ∞. As
we are considering a point source the resulting waves will be spherical spatially and the
system will thus have spherical symmetry. To make it easier for us we will first evaluate
eq. (C.13) for x 6= x′, which results in the homogeneous Helmholtz equation

(∇2 + k2)G(x,x′, ω) = 0. (C.7)

As this system is spherically symmetric, there are no angular dependence in G, we thus
introduce r = |x| which leaves us with

1

r2
∂r(r

2∂rG) + k2G = 0, (C.8)

simplifying we get
∂2r (rG) + k2(rG) = 0. (C.9)

This is just an ODE with the solutions

G =
1

r
Aeikr +

1

r
Be−ikr. (C.10)

The more interesting result we gain by ignoring the constants A and B, instead we put
1
r e
±ikr into the homogeneous Helmholtz equation (C.7)

(∇2 + k2) 1
r e
±ikr = ∇ ·

(
± ik 1

r e
±ikr r̂

)
+∇e±ikr · ∇ 1

r

+ e±ikr∇2 1
r + 1

rk
2e±ikr

= e±ikr∇2 1
r

= − 4πe±ikrδ3(x).

(C.11)

We note that the e±ikrδ3(x) is the same as δ3(x) due to the δ-function forcing x = 0, so
we get

(∇2 + k2) 1
r e
±ikr = −4πδ3(x) (C.12)

With this result in the back of our minds we will direct our attention back towards the gen-
eral Green’s function for the wave equation (C.3). For the following calculations we will
introduce the variables R = |x− x′| and τ = (t− t′). Through the Fourier transform we
get the following relations; the Green’s function G(R, τ) as the inverse Fourier transform
with respect to τ

G(R, τ) =
1√
2π

∞∫
−∞

dωG(R,ω)e−iωτ , (C.13)

and the Fourier representation of the δ-function

δ(t) =
1

2π

∞∫
−∞

dωe−iωt. (C.14)
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By substituting eq. (4.2) and (C.14) into equation (C.3), we get

�x

(
1√
2π

∞∫
−∞

dωG(R,ω)e−iωτ
)

=δ3(x− x′)
1

2π

∞∫
−∞

dωe−iωt

1√
2π

∞∫
−∞

dω(∇2 + k2)G(R,ω)e−iωτ =δ3(x− x′)
1

2π

∞∫
−∞

dωe−iωt.

(C.15)

Moving them to the same side of the equation we get

1√
2π

∞∫
−∞

dω
[
(∇2 + k2)G(R,ω)− 1√

2π
δ3(x− x′)

]
e−iωτ = 0. (C.16)

We see that the integrand must be zero, which is the case when

(∇2 + k2)G(R,ω) =
1

2π
δ3(x− x′) (C.17)

From the homogeneous solution (C.12) we know an expression for G(R,ω) that will sat-
isfy the above equation, we thus have the two solutions

G±(R,ω) = − 1

4π
√

2π

1

R
e±ikR. (C.18)

Now we just have to take the inverse Fourier transform

G±(R, τ) =− 1

4π
√

2π

1√
2π

∞∫
−∞

dω
1

R
e±ikRe−iωτ

=− 1

8π2

1

R

∞∫
−∞

dωe−iω(τ∓R)

=− 1

4π

1

R
δ(τ ∓R),

(C.19)

where we used k = ω. We now insert back the original expressions for R and τ and end
up with the retarded and advanced Green’s functions respectively

G±(x, t;x′, t′) = − 1

4π

1

|x− x′|
δ
[
(t− t′)∓ |x− x′|

]
. (C.20)

The difference between the two solutions have an important physical distinction as the
retarded solution is non-vanishing for events after the time of the source, t′, while the
advanced solution is non-vanishing for events before t′. The retarded solution is thus the
more interesting solution for most physical systems. A more rigorous approach involves
applying the Sommerfeld radiation condition

lim
R→∞

R
(
∂R − ik

)
G(R,ω) = 0, (C.21)
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which ensures we have a sink and not a source at infinity. Inserting the solutions for the
Green’s function in the frequency domain (C.18) we get for the retarded Green’s function
G+(R,ω)

lim
R→∞

R
(
∂R − ik

)
G+(R,ω) = lim

R→∞
R
( ieikR(kR+ i)

R2

)
− ik e

ikR

R

= − lim
R→∞

eikR

R
= 0.

(C.22)

As we expected from our physical interpretation the retarded Green’s function do fulfil
the Sommerfeld radiation condition. On the other hand, when we do the same for the
advanced Green’s function G−(R,ω) we get

lim
R→∞

R
(
∂R − ik

)
G−(R,ω) = lim

R→∞
R
( ie−ikR(−1− ikR)

R2

)
− ik e

−ikR

R

= − lim
R→∞

e−ikR

R
+ ie−ikR(k + 1) 6= 0,

(C.23)

which as expected does not satisfy the radiation condition. The advanced solution could
thus be interpreted as energy coming from infinity and into a sink, which is not what we
are after when considering the source of a wave equation.
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