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Abstract

Landslides events frequently affect Norwegian communities. Events that impact roads
and other infrastructure are systematically reported based on ground observations;
however the resulting database shows spatial bias towards such infrastructure, and is
incomplete in other areas. Recent studies show that Deep Learning (DL) can be used
to detect and map landslides in satellite images. This study investigates whether
there is potential to improve the landslide database in Norway using these methods.
It is the first attempt of an automated DL process using Norwegian landslide data.

A DL model available in ArcGIS Pro was tested by varying the training data set scale
(national and local) and the combination input bands used for training the classifier.
The Jølster landslide inventory (n=120) from the July 30, 2019 summer rainstorm
was used for verification of the prediction results.

Preparation of the training data set involved (i) selecting events, (ii) acquiring satel-
lite images, and (iii) verification of the events. Firstly, the national landslide poly-
gon database and other inventories were filtered for post-2017 events greater than
1000 m2. Excluding landslides from the verification set, 21 events were available.
Sentinel-1 and Sentinel-2 satellite images of these landslide events were acquired for
each event location using Google Earth Engine (GEE). All landslides were delineated
during the verification process, resulting in a final set of 52 labelled landslide polygons
to use for the training of national DL models. The DL model was then trained using
seven different combinations of input data, including bands from optical and synthetic
aperture radar satellites, as well as digital elevation models.

It was found that the input data that was best suited for detecting landslides was
an image featuring difference Normalised Difference Vegetation Index (dNDVI). With
dNDVI input data it was achieved a precision of 0.30, recall of 0.36, F1 of 0.33 and a
Matthews Correlation Coefficient (MCC) of 0.33.

No significant improvement was observed when using a local training sample set com-
pared to a national sample set. Recall values were slightly higher with the models
trained on local data set, while precision scores were lower than that of the national
model. Precision, F1, MCC and recall values are considerably lower than that of other
studies in literature. This is likely due to unrepresentative training samples, low sam-
ple size, and unsuitable DL parameters.
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These results indicate that there is promising potential to improve landslide data using
these methods, however the results were limited by the lack of available training data
and not having optimal DL parameters. Further studies could benefit from a bigger
sample size and less noise in training samples.
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Sammendrag

Jordskred rammer ofte norske lokalsamfunn. Hendelser som treffer veier og annen in-
frastruktur rapporteres systematisk basert på bakkeobservasjoner; den resulterende
databasen viser imidlertid romlig skjevhet mot slik infrastruktur, og er ufullstendig på
andre områder. Nyere studier viser at dyplæring (Deep Learning, DL) kan brukes til
å oppdage og kartlegge skred i satellittbilder. Denne studien undersøker om det er
potensial for å forbedre skreddatabasen i Norge ved hjelp av disse metodene. Det er
første forsøk på en automatisert DL-prosess som bruker norske skreddata.

En DL-modell tilgjengelig i ArcGIS Pro ble testet ved å variere treningsdatasettets
skala (nasjonalt og lokalt) og ulike kombinasjoner av inndatabånd som brukes til å
trene klassifisereren. Skredinventar (n=120) fra sommerstormen i Jølster 30. juli,
2019 ble brukt til å verifisere prediksjonsresultatene.

Forberedelse av treningsdatasettet innebar (i) valg av hendelser, (ii) innhenting av
satellittbilder, og (iii) verifisering av hendelsene. Førs ble den nasjonale skredpolygo-
nen database og andre inventar filtrert for hendelser etter 2017 og areal over 1000
m2. Ved å ekskludere skred fra verifikasjonssettet var 21 hendelser tilgjengelige.
Sentinel-1 og Sentinel-2 satellittbilder av disse skredhendelsene ble innhentet for hver
lokasjon ved hjelp av Google Earth Engine (GEE). Alle skred ble avgrenset under ver-
ifiseringsprosessen, som resulterte i et endelig sett med 52 merkede skredpolygoner
til bruk for trening av nasjonale DL-modeller. DL-modellen ble deretter trenet ved
hjelp av syv forskjellige kombinasjoner av inngangsdata, inkludert bånd fra optisk-
og syntetisk apertur-radarsatellitter, samt digitale høydemodeller.

Det ble funnet at den inndataen som var best egnet for å oppdage skred var et
forskjellsbilde av normalisert differanse-vegetasjonsindeks (dNDVI). Med dNDVI-inndataene
ble det oppnådd en presisjon på 0,30, recall på 0,36, F1 på 0,33 og en Matthews ko-
rrelasjonskoeffisient (MCC) på 0,33.

Ingen avgjørende forbedring ble observert ved bruk av et lokalt treningsdatasett sam-
menlignet med et nasjonalt treningsdatasett. Recall-verdien var litt høyere med mod-
ellene trent på lokale datasett, mens presisjonsskårene var lavere enn de nasjonale
modellene. Presisjons-, F1-, MCC- og recall-verdier er betydelig lavere enn samme
verdier i andre studier. Dette skyldes sannsynligvis ikke-representative treningsut-
valg, lav sample størrelse og uegnede DL-parametere.
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Disse resultatene indikerer at det er et lovende potensial for å forbedre skreddata ved
å bruke disse metodene, men resultatene var begrenset av mangelen på tilgjengelig
treningsdata og ikke å ha optimale DL-parametere. Ytterligere studier kan dra nytte
av mer treningsdata og mindre støy i treningdataen.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Landslide events frequently affect Norwegian communities. Events that impact roads
and other infrastructure are systematically reported based on ground observations;
however, the Norwegian landslide inventory (www.skredregistrering.no) shows spa-
tial bias towards such infrastructure, and is incomplete in other areas (Jaedicke et al.,
2009). The inventory is maintained by the Norwegian Water Resources and Energy
Directorate (NVE). Events for the database are collected/registered by road and rail-
way authorities, municipalities, private consultants and public from field observations,
historical documents or media (Devoli, 2017).

Given the under-reporting of landslides that do not impact the transport network or
other infrastructure, it is wanted to expand the Norwegian national landslide inventory
by mapping landslides using images from remote sensing Satellites such as Sentinel-
1 and Sentinel-2 (Lindsay et al., 2021). Historically, such mapping has been done
by manual mapping from remote sensing images and ground observations (Highland
and Bobrowsky, 2008). These are, however, time consuming and labour intensive
methods (Guzzetti et al., 2012).

Recent years have shown an increase in studies involving automated landslide map-
ping using deep learning (DL) methods (Prakash et al., 2020; Prakash et al., 2021;
Ghorbanzadeh et al., 2019; Lei et al., 2019; Nava et al., 2021; Herrera Herrera, 2019).
Recent studies also indicate that deep learning methods such as convolutional neural
networks (CNN) will outperform traditional machine learning algorithms in landslide
detecting tasks (Sameen and Pradhan, 2019). Many of these studies feature invento-
ries with earth quake triggered landslide events, with some events triggering several
thousands single landslides (Prakash et al., 2021). Such cases are not common in
Norway, and therefore it would be of interest to assess how DL models trained on
Norwegian landslides perform.

Public access to satellite-based data sets are made available by platforms such as

1
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Google Earth Engine (GEE)1, USGS Earth Explorer2 and Copernicus Open Access Hub3.
These platforms enables viewing and time series analysis of satellite imagery on a
global scale (Herrera Herrera, 2019).

By implementing Python Deep Learning packages (Esri, 2021c) directly in the ArcGIS
Pro software, Esri has made the process of exploring a (DL) problem more accessible
for someone without primary programming knowledge. The user interface allows for
easy management of satellite imagery and training of DL models. A range of differ-
ent computer vision tasks can be performed, including image classification, object
detection, semantic segmentation, and instance segmentation (Esri, 2021d). Most
interesting for the task of landslide mapping is semantic segmentation and instance
segmentation, as those methods allows more precise detection of the boundary of
each feature (Esri, 2021d).

1.2 RESEARCH QUESTIONS

Based on the problem introduced in the previous section, the research question is
presented:

How can Deep Learning be applied to detect landslides
from satellite images?

To answer the main research question, a set of sub-questions are formulated as fol-
lows:

1. How can a national set of landslides be implemented in the same Deep Learning
workflow using Google Earth Engine and ArcGIS Pro?

2. What input data will be best suited for detecting landslides?

3. Will training on a national set of landslides compare differently from training only
on local training samples?

1.3 DESCRIPTION OF STUDY AREAS

The relevant areas for this study are split into two groups. One group for the Jølster
case, where 120 landslides have been thoroughly verified and delineated by Lindsay
et al. (2021). This case is limited to one specific area with the same triggering event
for all the landslides (Heavy rainfall). Since the landslides in this area are well docu-
mented it will serve as a “testing” area for the models that will be trained on samples
from the other study areas, as well as the models trained on the local samples.

The other group is for all the landslides that are to be used as training samples for
the national deep learning models. This group is made up of 22 different areas in
which one or more landslides have been reported to the Norwegian national landslide
database (www.skredregistrering.no), and later verified by examining satellite images
before and after the reported event dates.

1https://earthengine.google.com/
2https://earthexplorer.usgs.gov/
3https://scihub.copernicus.eu/
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1.3.1 Jølster

On the 30th of July, 2019 the municipality of Jølster, In Western-Norway, was hit by
a very heavy rainstorm. The town of Vassenden was most notably affected. Many
weather stations recorded more than 20 mm of rain in one hour and one station in
Haukedal recorded as high as 38 mm in one hour. (Meteorologisk Institutt, 2019) As
a consequence, a series of landslides were triggered over the course of five hours.
Infrastructures were severely damaged, roads were flooded and closed, and one per-
son died (Grov, 2020). More than 150 people had to be evacuated from the area
and several cars were abandoned in the midst of the landslides. It was estimated by
insurance companies that the total cost of cleanup and claims for compensation would
be at least 50 million NOK (NTB, 2019).

In total 120 recorded landslides was triggered that day (Lindsay et al., 2021). As tragic
as the outcome of this event was, the vast landslide count in a relatively small area,
by Norwegian standards, does make for a good area to test an landslide detection
model. Many landslides in the region are visible in the 10 m resolution images from
the Sentinel satellites, which is of great value.

Geologically Jølster is located in the Baltican basement with Caledonian overprint (de-
formation). The dominant rock type is Granitic to dioritic gneiss, in places augen
gneiss, in places migmatitic. Surrounding areas show patches of Caledonian my-
lonite, augen gneiss and quartz schist, see Figure 1.1 (Geological Survey of Norway,
2021). The topsoil in the area is a result of glacial activity following the final Ice Age.
It is dominated by till, in places very thick (See Figure 1.2). The land cover is mostly
forest and sparsely vegetated areas (See Figure 1.3).
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Figure 1.1: Bedrocks in the Jølster Case Area. From NGU 1:250 000 National bedrock
map.

Figure 1.2: NGU 1:50 000 Quaternary materials map from the study area.
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Figure 1.3: Corine Land Cover for the study area.

1.3.2 National training areas

To get sufficient training samples to train a DL model at detecting landslides it has
been necessary to look at the events that have been registered for all of Norway.
The areas where these events have occurred, hereby named national training areas,
have been selected based on a set of criteria described in the methodology chapter
(chapter 3. The training areas have been selected from all over Norway. This does
not include Mid-Norway as no landslide met the criteria for selection in this region.

Not all reported landslides are reported accurately. Some might have reported a land-
slide volume that is higher than what is really is. The consequence of this is that the
landslide is not visible in the 10 m resolution images from Sentinel. Other landslides
might show wrong event date or just an approximate location of the landslide. It is
therefore necessary to do a manual verification of the database. This is done by using
GEE, also described in the methodology chapter (chapter 3).

1.4 THESIS OUTLINE

This thesis document is structured as follows:

• chapter 2 reviews the theoretical background that was needed to undertake the
work in this thesis.

• chapter 3 presents the methods that was used to train a deep learning model
to detect landslides from satellite images. This will in part answer the second
sub-research question.

• chapter 4 describes the implementation details of the methodology and presents
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the results.

• chapter 5 addressees and discusses the results in light of other related works.

• summarises the discussions and answers the main research questions.

It is expected that the reader has some previous knowledge of DL and CNN, as not
all important details concerning the DL methods will be explained.

Post and pre will always in this study refer to respectively, the time after a landslide
event and the time before a landslide event.

1.5 CONTRIBUTION

The analyses and works completed by the author personally are:

• Checking availability of satellite images from reported landslide events in Norway
between 2018 and 2021. This was done with the help of Google Earth Engine
and a script written by Erin Lindsay. The time series of the NDVI-value for a
given point in the landslide have been the primary factor for deciding weather a
landslide is detectable or not.

• Exporting image tiles of landslides and surrounding area: Also done with the
help of GEE and script by Erin Lindsay.

• Processing of the image tiles in ArcGIS Pro (Esri, 2021a): Every image tile had
to be combined to make one single raster file in order to further process the ...
for training data creation.

• Adding and removing bands for training data.

• Exporting training samples and training of Deep Learning models using ArcGIS
Pro tools.

• Computing confusion matrix maps for each DL model.

The main contributions of this study are:

• High spatial variability in training data. Many uses training data related to the
same triggering event. This approach can be used to search out landslides from
a ... and joining them in the same

• Data acquisition using free-of-charge resources. GEE provides a —- for those
familiar with coding in javascript(?). The preparation of the data and machine
learning is done using commercial software, although

1.6 SCOPE AND LIMITATIONS

The aim of this work is to investigate the possibility of using the Deep Learning Li-
braries in ArcGIS Pro for automated detection of landslide activity in Norway. This
thesis will present a method for acquisition and processing of imagery for use in auto-
mated mapping of landslides in Norway. It will also propose the data input that shows
best promises to detect landslides.
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• Due to the uniqueness of the problem and limitations in time only one type of
deep learning algorithm will be explored. This is the Mask RCNN algorithm (He
et al., 2017).

• Google Earth Engine is a free tool for academic and research use. However, other
uses will require users to sign additional terms and agreements with Google.

• This study aims at providing an method for creating a landslide classifier and not
to optimise the DL algorithm for detecting landslides

• The triggering factor for each landslide will not be determined. This study is only
for mapping landslides.
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CHAPTER 2

THEORETICAL BACKGROUND

This chapter is intending to present

The theory in section section 2.1 will be jointly taken from the preliminary works for
this thesis done in Furuseth (2022) with some minor alterations.

2.1 REMOTE SENSING FOR EARTH OBSERVATION

Remote sensing is the science — and art — of gathering information about an object,
area or phenomenon through a device that is not in direct contact with the object,
area or phenomenon under investigation (Lillesand and Kiefer, 1979).

The general way of gathering this information is through instruments mounted on
aircrafts or satellites (US Geological Survey, 2021), but as Figure 2.1 from Yang et al.
(2013) suggest, remote sensing can also be carried out using boats, floating sensors
or ground-based instruments. The choice of vessel depends on the features or objects
that are to be monitored.

Remote sensing technology allow us to see much more than we can see when standing
on the ground, which is of great help when we want to gather information quickly and
for a large area (Yang et al., 2013). This study will have its focus on optical sensors,
i.e. cameras.

The first known use of airphotos for geological mapping was in Libya in 1913. But it
was not until the 1940’s that interpreting and evaluation of the geology from airphotos
became a widespread technique (Lillesand and Kiefer, 1979, p. 112). In the same
period (1946) small cameras where mounted on American V-2 rockets launched in to
space. It became the crude start of Earth observation (EO) from space.

As of the end of 2020, there was more than 900 EO-satellites in orbit (Mohanta,
2021). Many of these satellites are used for climate studies and the most common EO
satellites are Earth imaging satellites (United Nations Office for Outer Space Affairs,
2021). They are a literal ‘step out’ from aerial photographs in that they captures
images of the scenery below them, only from space (Lillesand and Kiefer, 1979).

Laser scanning techniques such as LiDAR (Light Detection And Ranging) is also con-
sidered as remote sensing. It is a useful supplement for landslide mapping, in that it
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Figure 2.1: Different remote sensing apparatuses and uses. In climate observa-
tion remote sensing is carried out using a variety of platforms, including
plane, boat, floating sensors and ground-based instruments. Figure from
Yang et al. (2013).

can be used to create a digital elevation model (DEM) e.g. Ji et al. (2020), but the
technique will not be given much further attention in this study.

2.1.1 Electromagnetic energy

The basis for the principle of remote sensing is the measurement of light intensity, i.e.
electromagnetic (EM) energy, or radiation. The EM radiation consists of photons, that
travels at 300 000 km/s. In remote sensing literature the EM radiation is often given
as a wavelength. The EM spectrum ranges from short wavelengths, like gamma and
x-rays, to longer wavelengths, like micro and radio waves. In between those ranges
we find the visible light (VIS) range and the infrared (IR) range (Lillesand and Kiefer,
1979). Figure 2.2 shows the components of the electromagnetic spectrum and the
relative size of the visible and infrared portions of the spectrum.

The power of remote sensing is that it not only captures light in the visible spectrum,
but also in other regions of the electromagnetic spectrum. The visible light and IR
range are the most important EM ranges in optical remote sensing as visible light is
the easiest for human eyes to interpret and IR energy can tell us a great deal about
the presence of vegetation (Lillesand and Kiefer, 1979).

The shortest wavelengths that are practical to measure for remote sensing we find in
the ultraviolet (UV) region of the spectrum. Some rocks and minerals emit visible light
when illuminated by UV radiation (Canada Centre for remote Sensing, 2019, p. 9).

Although names are given for set regions of the electromagnetic spectrum, e.g. in-
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Figure 2.2: Components of the electromagnetic (EM) spectrum. Figure from Ra-
dio2Space (2013).

frared or ultraviolet, there is no clear-cut dividing line between two spectral regions.
The names are assigned out of convenience. (Lillesand and Kiefer, 1979, p. 4).

2.1.2 Passive vs active sensor

There are two types of remote sensing sensors: Passive and active sensors. A pas-
sive sensor measure the energy that is naturally available, such as the reflected or
re-emitted solar energy. All passive sensors rely on energy that is either reflected
and/or emitted from earth surface features (Lillesand and Kiefer, 1979, p. 27). The
visible wavelengths are reflected from the surface they hit, while the thermal infrared
wavelengths are re-emitted (Canada Centre for remote Sensing, 2019).

Passive sensors require the naturally occurring energy to be present to capture any
useful energy. The sun is a very efficient and convenient provider of such natural
energy. For the reflected solar energy, this can only come about as long as the sun is
illuminating the Earth. This means that at nighttime or in polar regions during winter
there is no reflected energy available (Canada Centre for remote Sensing, 2019).
Infrared energy (heat radiation) can be naturally emitted and can be detected both
day and night, given that the emitted energy is large enough to be observed. (Canada
Centre for remote Sensing, 2019).

However, an active sensor will provide its own energy source for illumination. An
example of such a sensor is a LiDAR (Light Detection And Ranging) system, which
emits its own laser signal. The sensor is equipped with an instrument that emits
radiation directed towards the target surface, which then gets illuminated and the
reflected energy can be measured the same way as for a passive sensor (Canada
Centre for remote Sensing, 2019).

A common camera is an example of a device that act both a passive and an active
sensor. In a bright environment it passively records the reflected light from either the
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sun or other light sources, but if it is too dark a built in flash will illuminate the subject
allowing it to be imaged (Canada Centre for remote Sensing, 2019).

A SAR (Synthetic aperture radar) is another example of an active sensor. It is a remote
sensing imaging radar capable of providing high-resolution images for a multiple of
applications. It can operate regardless of cloud cover and sunlight making it very
useful for EO purposes. As opposed to optical sensors, visualising raw data from the
SAR sensor does not provide any helpful information from the scene. As can be seen
in Figure 2.3, it is necessary to apply a set of filtering operations to visualise the data
in an understandably manner (Moreira et al., 2013).

Figure 2.3: Signal processing of SAR data. SAR data is not straight forward to vi-
sualise, The arrow indicates a complex process of range compression,
convolution and complex conjugation, resulting in a picture that is read-
able to the human eye. Modified from Moreira et al. (2013).

The use of SAR data has proven useful in landslide detection (Nava et al., 2021).
Nava et al. (2021) found that SAR data may provide comparable accuracy to classical
optical landslide detection with overall accuracies of 99.20 % for optical images and
beyond 94 % for SAR data.

However, the results from Lindsay et al. (2021) was not as promising. With only 9 out
of 120 landslides detected using SAR images the authors concluded that no definitive
trends could be found on why some landslides were detected and som were not.

2.1.3 Sentinel-satellites

Sentinel is the name of the series of EO satellites launched by the European Space
Agency (ESA) as a part of the Copernicus program. Copernicus is the European Union’s
program for Earth observation. The program includes both EO satellites, airborne
sensors and ground-based observation stations (Tandberg, 2013). Data from these
satellites will be the ones used for the further study following this project report.

The Sentinel-2 mission consist of two polar-orbiting EO satellites, Sentinel-2A (S2A)
and Sentinel-2B (S2B). They both have onboard sensors that captures EM radia-
tion that produces images of the Earth. S2A and S2B are placed in the same sun-
synchronous orbit, phased at 180° to each other. This gives a revisit time – the time
between two passages – of only 5 days (ESA, 2020).

A sun-synchronous orbit is an orbit in which the satellites passes over any given
point on Earth in the same ’fixed’ position relative to the sun. The satellites are thus
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synchronised with the sun (Lillesand and Kiefer, 1979, p. 532). This means that the
S2 satellite will always observe a location as if it was in the same local time. This
is important, as the surface illumination on the ground will be nearly the same for
images taken days, week, months or years apart. It makes monitoring changes over
time easier (Canada Centre for remote Sensing, 2019).

There are many more providers of satellite imagery, e.g. the US’s Landsat-program,
which is also publicly available – Planet and Worldview are examples of private compa-
nies that specialises in satellite imagery. Their services are primarily available through
subscription only.

2.1.4 Radiometric resolution

The radiometric resolution represents the ability of a digital sensor to distinguish dif-
ferences in light intensity or reflectance, and is measured in bits. A greater radiometric
resolution means a more accurate depiction. The bit range is typically in the range
of 8 to 16 bits, yielding respectively 28 = 256 to 216 = 65 536 different values in light
intensity that the sensor can distinguish between (ESA, 2021a).

The Multispectral Instrument (MSI) mounted in S2 is 12 bit, making it possible to
image light intensity values in the range from 0 (full black) to 4095 (full white). The
MSI in S2 has 13 sensors that captures light in different spectral bands that range
from the visible (VNIR) and Near Infrared (NIR) to the shortwave Infrared (SWIR)
(ESA, 2021a).

2.1.5 Spatial resolution

The spatial resolution is a quality of the remote sensing sensor and refers to the
size of the smallest feature on the Earth surface that can possibly be detected. This
is naturally dependent on the operating altitude of the sensor. The same sensor
will have a better spatial resolution if mounted onboard an aircraft than onboard a
satellite (Canada Centre for remote Sensing, 2019). Within satellite sensing, the
spatial resolution can range from >100 m to 31 cm (ESA, 2021b) depending on which
spectral band and what image provider is used.

Figure 2.4 shows the different spectral bands and their respective spatial resolution
collected from the S2 satellites. Spatial resolution is on the y-axis and wavelength is
on the x-axis (ESA’s Sentinel-2 team, 2015).
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Figure 2.4: Sentinel-2 spectral bands. Ranging from the visible spectre (VIS) to the
Near-InfraRed (NIR) and ShortWave InfraRed (SWIR) spectre. The 60
m resolution bands are not actively used in landslide detection. There
is no band in the 900–1300 nm range because ozone, water, carbon
dioxide, and other molecules in the atmosphere absorbs light in this
range (GISGeography, 2021b). Figure fetched from ESA’s Sentinel-2
team (2015).

The two S2 satellites have roughly the same sensors onboard, but there are some
slight deviances as can be shown in Table 2.1.

Although not a physical property, the temporal resolution is used to specify how
long it takes for the same area to be covered by the remote sensing sensor. The term
revisit time is a synonym for temporal resolution (Canada Centre for remote Sensing,
2019).

Table 2.1: Spectral Bands for Sentinel-2A and 2B. From ESA (2021a).

S2A S2B

Band Description Res.
[m]

Central
Wavelength

[nm]

Bandwidth
[nm]

Central
Wavelength

[nm]

Bandwidth
[nm]

B1 Aerosols 60 443.9 21 442.3 21
B2 Blue 10 496.6 66 492.1 66
B3 Green 10 560 36 559 36
B4 Red 10 664.5 31 665 31
B5 Red Edge 1 20 703.9 15 703.8 16
B6 Red Edge 2 20 740.2 15 739.1 15
B7 Red Edge 3 20 782.5 20 779.7 20
B8 NIR 10 835.1 106 833 106
B8A Red Edge 4 20 864.8 21 864 94
B9 Water vapor 60 945 20 943.2 21
B10 Cirrus 60 1373.5 31 1376.9 30
B11 SWIR 1 20 1613.7 91 1610.4 94
B12 SWIR 2 20 2202.4 175 2185.7 185
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2.2 TRAININGDATARESOURCES [CONSIDERRENAME

HEADING]

In this section a few relevant resources related to the input data for landslide detection
will be presented. These are Digital Elevation Model (DEM) and NDVI (Normalised
Differential Vegetation Index). I addition, the Corine Land Cover (CLC) inventory
will be presented. It does not contribute to the Deep Learning models, but provides
relevant information on the land cover surrounding the landslides.

2.2.1 Digital Elevation Model

A digital elevation model (DEM is, for the purpose of this study, simply a georeferenced
raster graphic where the value of each pixel corresponds to the elevation at that
geographic point. From the DEM slope inclination values and hillshade maps can be
derived using ArcGIS Pro or any other GIS software. The slope map can be used as
an input layer for the training data as well as the DEM, and hillshade maps are great
for visualisations. Figure 2.5 shows examples DEM and the two derivatives sloe and
hillshade. Slope is the inclination at a given pixel an is given as an value from 0 to
90°.

DEM Slope Hillshade

Figure 2.5: Examples of a digital elevation model (DEM), slope map, and hillshade
map. All from the same area. Created using ArcGIS Pro and 10 m DEM
from hoydedata.no

The data is normally captured with airborne sensors, from plane or helicopter. The
traditional methods for DEM creation utilises photogrammetry in addition to field sur-
veys (Ismail and Jaafar, 2013). Recent techniques includes Interferometric Synthetic
Aperture Radar (InSAR) and LiDAR (Geological Survey of Norway, 2015). Elevation
models for all of Norway are public and can be accessed from hoydedata.no. 1 m,
10 m, and 50 m resolution DEMs can be downloaded to a local computer freely for
analysis.

2.2.2 RGB and NIR

Each colour is assigned to its separate channel, or band. Red is in the Sentinel-2 MSI
assigned to the fourth band (B4), green to the third band, and blue to the second
band. When displayed at a computer screen these three bands are displayed in their
respective pixels on the screen, making the image appear natural. Near infrared (NIR)
is in the eight band (B8).
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2.2.3 Sentinel-1 Radar Data

SAR is described in section 2.1.2 and when referred to as training data it will be named
VV an/or VH. VV and VH refer to the polarisation of the signal received (Moreira et al.,
2013). Explaining the theory behind this is rather technical and beyond the scope of
this study.

2.2.4 NDVI (Normalised Differential Vegetation Index)

NDVI is a commonly used dimensionless remote sensing index used to detect vege-
tation and indicate its health and vitality (GISGeography, 2021a). Identifying where
vegetation is, and more important, isn’t can be an indication of where a landslide has
taken place (Lindsay et al., 2021).

Our eyes can see light that is in the visible part of the EM-spectrum, from red to green
to blue. The chlorophyll in healthy vegetation absorbs more of the red and blue light
and reflect more of the green light, which is why healthy plants appear green to us.
But healthy vegetation also reflects wavelengths in the near-infrared (NIR) part of
the spectrum, which our eyes can not see, but an remote sensor can (GISGeography,
2021a).

NDVI (Equation 2.1) is calculated by subtracting the value of the red band (B4) from
the value of the near-infrared band (B8) and then dividing by the sum of those bands
(GISGeography, 2021a). See table 2.1 for details on band names and wavelengths.

NDVI =
NIR− RED
NIR+ RED

(2.1)

This calculation will generate a value between -1 and +1. The value will be close to
+1 if the reflectance from the NIR-band is high while the reflectance from the red
band is low. This indicates healthy vegetation. Conversely, the value will be close to
-1 if the reflectance from the NIR-band is low while the red reflectance is high. This
is an indication of no present vegetation (GISGeography, 2021a).

2.2.5 Change in NDVI (dNDVI)

By taking the NDVI values from one image at a specific date and subtracting them
from another NDVI image taken at different date we get a difference NDVI image
(dNDVI). This allows for detection of changes in vegetation between different dates.
In the case of landslide detection it is common to refer to the time before a landslide
event as pre and the time after a landslide event as post. From this dNDVI can be
calculated as shown in Equation 2.2 (Lindsay et al., 2021):

dNDVI = NDVIpost −NDVIpre (2.2)

Figure 2.6 shows how one such calculation will perform. The image to the left show
the NDVI values from an image taken before the 2019 landslide event in Jølster. Bright
pixels indicate healthy vegetation, while dark pixels indicate unhealthy or the absence
of vegetation. The image in the middle shows the same NDVI calculation only done
an image taken after the landslide event. Some landslides can clearly be seen along
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the lake in the bottom of the image. The image to the left show the calculated dNDVI
values, and the landslides pop out more clearly as features that show low NDVI values
in both pre- and post-images are cancelled out. It is therefore crucial that images
taken before and after each landslide event are available in order to generate dNDVI
images.

NDVI before landslide event NDVI after landslide event dNDVI

Figure 2.6: NDVI images from the Jølster 2019 landslide event. Generated from
GEE script provided at the courtesy of Erin Lindsay (script provided in
section A.2)

2.2.6 Corine Land Cover (CLC)

The Corine Land Cover (CLC) inventory can provide relevant information of the land
cover in which landslides occur. CLC is a database of land cover and its changes, land
use, vegetation state, water cycle and earth surface energy variables for European
countries. The database is jointly implemented by the European Environment Agency
(EEA) and the European Commission DG Joint Research Centre (JRC) (Büttner et al.,
2021). Connecting landslides occurrences to the CLC inventory will make it possible
to say if the landslide training samples show a bias towards a particular type of land
cover.

2.3 CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional neural network (CNN) (Fukushima, 1980; LeCun et al., 1998; Krizhevsky
et al., 2012) is a type of deep learning technique that has proven to be very successful
in extracting information from images. It has even outperformed other conventional
learning methods (Prakash et al., 2020). The concept of CNN dates back to the 1970s.
However, the modern subject of CNNs was established in 1998 by LeCun et al. (1998)
(Nilelsen, 2019, Deep Learning). It has since revolutionised the field of computer vi-
sion (Camps-Valls et al., 2021).

2.3.1 Neural Networks

To understand what a CNN is we first need to understand the concept of a neural
network. In simple terms, a neural network is a technique for building a computer
program that, in ways, resemble the way we think our human brain work, so that it can
learn from data (Smilkov and Carter, 2022). The first approach at making a machine
learn from external stimuli in a similar way we humans learn can be dated back to the
1950s and the Perceptron model, realised by Frank Rosenblatt (Rosenblatt, 1958).
The Perceptron was designed as “A probabilistic model for information storage and
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organisation in the brain” (Rosenblatt, 1958), and represented the state of the art
in neural networks until the mid-80s. It has since formed the basis of the complex
neural networks of today (Ibañes, 2016).

The basis for a neural network are what is referred to as artificial neurons, or nodes—
the terms are used interchangeably. The nodes are mathematical functions that takes
an input, that is processed, and returns an output. Neural networks are comprised
of several node layers, containing one or several nodes; one input layer, one or more
hidden layers, and an output layer. Each node in one layer is connected to the nodes
in the next layer, with associated weight and bias for each connection. A node can be
seen as its own linear regression model, where input data, weights, and bias are put
together to make one output. The output of one node is the input of the next node
(IBM Cloud Education, 2020b).

To understand this further we will study a simple neural network that takes four inputs
x11, x12, x21 and x22, see Figure 2.7. This network has three layers; one layer with the
four input neurons, one layer with two neurons that does some calculations using the
weights w and the final layer contains the output neuron.

Figure 2.7: Illustration of a very simple neural network with four input nodes, two
calculation nodes and one output node. The activation function f for this
illustration will be an arbitrary function that outputs a number that fits
to the presented task.

Consider a very simple and small image of 2x2 pixels. Figure 2.8 show such an
image where two pixels are black, forming a diagonal feature. Each pixel has a value
corresponding to the colour intensity (-1 for black and +1 for white). These values can
be used as inputs to a neural network that has been trained at recognising diagonal
features in 2x2 images. Figure 2.9 shows what the calculations might look like. Red
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lines indicate a negative weight, grey line indicate a weight of zero and black lines
indicate a positive weight. The activation function is a function that at every node in
the neural network takes in the value x computed from preceding nodes and weights.
x can in theory be any number on the number line. The activation function then
‘squishes’1 the value of x down to fit in the range [0, 1]. Its purpose is to avoid extreme
values in the calculations (Arnx, 2019). By studying the figure it can be understood
how the final output layer gets the value of 1 and the 2x2 image is classified as
“diagonal line”. The activation function ‘squishes’ the number 2 down to 1.

Figure 2.8: Left: Image of size 2x2 pixels of a black diagonal feature. Each pixel
in the image has a numerical value, in this case the value is a number
between -1 and +1, which is illustrated on the right. A black pixel yields
a value of -1 and white pixel a value of +1.

Figure 2.9: Theoretical result from applying an image of a diagonal feature to a
model trained at detecting diagonal features.

One type of activation function is the sigmoid function, shown in Figure 2.10. Other
activation functions exists with different limits, but the aim is still to limit the value of
the neuron (Arnx, 2019).

What happens then, if we try to classify something that is not a diagonal feature?
Figure 2.11 shows a 2x2 image of a black horizontal feature. By using the values of

1https://www.youtube.com/watch?v=aircAruvnKk
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Figure 2.10: Generic Sigmoid function that is often used as an activation function
for neural networks. The function takes in any value t and outputs a
number between 0 and 1. Figure fetched from Arnx (2019).

each pixel as input to our model the output value will be different from the diagonal
feature. Figure 2.12 show the same neural network, only with different inputs, and
now the value in the final output layer is 0.7 and not 1.0. This feature is likely not a
diagonal line.

Figure 2.11: Left: 2x2 pixel image of a black horizontal feature. Right: The pixels’
corresponding numeric values.

This simple network has some flaws and is not trained well enough and will only
classify diagonal features that start in the top left pixel, but it still helps in conveying
the idea behind a neural network. Neural networks and deep learning tend confusingly
to be used interchangeably, but they are not the same. The “deep” in deep learning
simply refer to the number of layers in the neural network. A neural network that
consist of more than three layers would be considered a deep learning network (IBM
Cloud Education, 2020b).

2.3.2 Convolutional Neural Networks

A CNN is to an extent the same as a neural network except that CNNs show superior
performance in image recognition compared to other neural networks. A CNN contains
what is called a convolutional layer. In essence, the convolutional layer identifies
different parts of a feature in an image. It does this by moving a small digital filter of
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Figure 2.12: Theoretical result from applying an image of a horizontal feature to a
model trained at detecting diagonal features. Weights with a value of
1 are represented by black lines, weights with a value of 0 are repre-
sented by grey lines, and -1 by red lines. In reality, these weights will
not be exact whole numbers. This illustration does not show the bias
that is also added at each node.

typically a 3x3 matrix across the image performing several convolutions (IBM Cloud
Education, 2020a). A convolution is a mathematical term expressed as “an integral
that expresses the amount of overlap of one function g as it is shifted over another
function f” (Weisstein, 2022).

These features are then sent on to the next layers for more calculations. Eventually
it ends up in the final layer, where classification is performed based on the features
extracted through the previous layers and their different filters (IBM Cloud Education,
2020a).

2.3.3 Applications of Deep Learning for computer vision

Within DL for computer vision there a number of applications. This section is sum-
marised from Esris page on applications of deep learning. The most common ones
are the following (all images are from Esri (2021d)):

• Image classification: This type of DL algorithm will assign a label to each
image. In the example in Figure 2.13 the image on the left might be labelled
crowd and the image on the right might be labelled cat (Esri, 2021d).
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Figure 2.13: Example of image classification in deep learning (Esri, 2021d).

• Object detection: This type of DL algorithm involves locating and describing
a bounding box for a feature in an image. This might be locating a plane from
a remote sensing image or detect different pets in an image as shown in Fig-
ure 2.14. This is useful for locating specific objects in remote sensing images
and mark them on map (Esri, 2021d).

Figure 2.14: Example of object detection in deep learning (Esri, 2021d).

• Semantic segmentation (Pixel classification) This type of DL algorithm clas-
sifies each pixel in an image as belonging to a class. In the example to the left in
Figure 2.15 road pixels are classified as belonging to a separate class from non-
road pixels. On the right, pixels belonging to a cat are classified as cat. Other
pixels in the image are given different classes depending on what the model has
been trained to recognised (Esri, 2021d).

Figure 2.15: Example of semantic segmentation (pixel classification) in deep learn-
ing (Esri, 2021d).

• Instance segmentation, or object segmentation:
Instance segmentation, also known as object segmentation, detects and draws
the boundary of each desired object. This makes it a more precise object detec-
tion method. For example, in the remote sensing image on the left in Figure 2.16,
each house is recognised as its own object. In addition, the exact outline of the
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roof shape is drawn. In the image on the right, the distinct shapes of cars are
distinguished from the ground (Esri, 2021d).

Figure 2.16: Example of instance segmentation in deep learning (Esri, 2021d).

• Image translation Image translation takes one possible representation or style
of an image and translate it to another. Examples might be noise reduction or
super-resolution as shown in the Figure 2.17. The low-resolution image on the
right is translated to an image with higher resolution using a super-resolution
model (Esri, 2021d). Another task might be to generate a thematic map from
satellite images (Ingale et al., 2021).

Figure 2.17: Example of image translation in deep learning (Esri, 2021d).

• Change detection This type of DL algorithm can look at two images from the
same place but at different times and detect changes in features of interest
between them. The image to the left shows housing development, the middle
image shows the same development five years later, and the image on the right
shows a logical change map where new homes have been detected and shown
in white (Esri, 2021d).

Figure 2.18: Example of change detection in deep learning (Esri, 2021d).

2.3.4 Transfer Learning

Computer vision is a field that has been researched on a large scale (Camps-Valls
et al., 2021). A number of models have been trained on large data sets to make them
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tasks and made public. Anyone can use these generic models to train on their own
data sets. This is called Transfer Learning. Transfer Learning for machine learning
is, according to Seldon.io (2021), “...when existing models are reused to solve a
new challenge or problem.” It is a technique used while training models and not
a type of machine learning algorithm. The original model requires a high level of
generalisation to be able to fit to the new unseen data. Transfer learning allows for
faster training times and saves computer resources. Models do not have to be trained
from scratch, as knowledge from one model can be transferred to e new model. This
kind of knowledge might be parts of the model that identifies the edge of an object
or parts that identifies different textures in an image (Seldon.io, 2021).

2.3.5 Overfitting

Overfitting is according to IBM Cloud Education (2021) “...when a statistical model
fits exactly against its training data.” This is an unwanted situation as an overfitted
model is not generalised enough to predict and classify data it has not been trained
on. This prevents the model from being used as intended. This can occur either if
the model has been trained for too long on the sample data or when the model is too
complex. It can start to see the ‘noise,’ or other irrelevant information as important
parts of the data set (IBM Cloud Education, 2021).

Underfitting is another undesired phenomena related to the training time or model
complexity. This occurs conversely when the model has not been trained long enough
on a data set or the data , and a meaningful relationship between the input and
output variables can not be found (IBM Cloud Education, 2021). This is illustrated to
the left in Figure 2.19 where the trained model (red line) does a poor work of fitting
the training data set. To the right a case of overfitting is illustrated, and in the middle,
an optimal trained model is shown.

Figure 2.19: Illustration from IBM Cloud Education (2021)

There are a number of techniques to avoid overfitting according to IBM Cloud Educa-
tion (2021). The most relevant of them are:

• Early Stopping: By stopping the training early, before the model starts to learn
the noise and irrelevant information, overfitting can be reduced.

• Train with more data: The accuracy of the model can be increased by intro-
ducing more training data. This is more effective when the added data is relevant
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and not too noisy. Otherwise, the complexity of the model will increase and it
will overfit.

• Data augmentation: Generate new data from the training data by adding noise
or distort the images slightly, either by rotation or by stretching the images.

• Dimensionality reduction: More data means more complexity and thus, greater
tendencies to overfitting. Reducing the size of the data set, i.e. the number of
attributes, features or input variables, will prevent the model from overfitting
(Pramoditha, 2021).

2.3.6 Model Inferencing

Once a model has been trained it needs to be applied to a problem we want to in-
vestigate. It is said that the model is inferenced (Esri, 2021b). In ArcGIS Pro there
are mainly two parameters that can be set when inferencing a model: Padding and
batch. The padding refers to a band of extra pixels with that is added outside of the
image when inferencing. The padding is added to use the pixels in the corners of an
image tile in more convolutions. The padding should be adjusted to the tile size of
the images that the model has been trained on.

2.3.7 Metrics for model performance

In the case of object detection where only one class of object is accounted for two
possible outcomes can take place when applying a DLmodel: either the model predicts
the object class to exist in a particular place in the image (positive prediction), or it
does not make a prediction of the object in a particular place in the image (negative
prediction) (Google Developers, 2022). In the case of landslide prediction Landslide
is a positive class and Non-landslide is a negative class. The different outcomes of a
classifier is presented below (Google Developers, 2022):

• A True Positive (TP or Tp) is when the model correctly predicts the positive class
we are looking for (landslide).

• A True Negative (TN or Tn) is when the model correctly predicts the negative
class (non-landslide)

• A False Positive (FP or Fp) is when the model wrongly predicts the negative class
to be positive (non-landslide predicted to be landslide).

• A False Negative (FN or Fn) is when the model wrongly predicts the positive class
to be negative (landslide predicted to be non-landslide).

Metrics to evaluate the DL model can be derived from these four outcomes. In the
following metrics also used in Prakash et al. (2020) will be presented.

Accuracy is defined as the ratio between the number of correct predictions and the
the total number of predictions (Equation 2.3):

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(2.3)

Since the data sets in object detection often are imbalanced, this metric is not very
convenient. The positive class is often the minority and the negative class the major-
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ity. The metric take into account the True Negatives. For a given image the object
(positive feature) will often be outnumbered by the non-object (negative features).
E.g. if the model predicts only negative values in a image of a landslide, TN will be
far greater than TP, resulting in a high score for accuracy even though the landslide
was not detected.

Precision gives a value of how many of the predicted positives are actual positives
and is the ratio of correct positive predictions to all the positive predictions, including
the incorrect predictions (Equation 2.4):

Precision =
Tp

Tp + Fp
(2.4)

Recall (probability of detection) is defined as the ratio between the correct positive
predictions and all the actual positives (Equation 2.5):

Recall =
Tp

Tp + Fn
(2.5)

F1
F1 =

2 ∗ (Precision ∗ Recall)
Precision+ Recall

=
2 ∗ Tp

2 ∗ Tp + Fp + Fn
(2.6)

Matthews corrolation coefficient (MCC)(Equation 2.7), named after Brian Matthews
as it was first used in Matthews (1975) (Baldi et al., 2000), is a coefficient that is
commonly used to assess the corrolation between two variables. If two variables are
independent of each other, then their MCC is 0.

MCC =
Tp ∗ Tn − Fp ∗ Fn√

(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)
(2.7)

The priority in civil protection purposes, such as landslide detection, is to minimise
the number of missed detections (FN) and secondary to limit false detections (FP)
(Brunetti et al., 2018), thus precision and recall needs to be maximised.

Figure 2.20 illustrates some predictions a DL model might make. Let the inside of the
red circle be the actual positive class and the red crosses be the positive prediction.
And let the outside of the red circle be the actual negative class and the grey crosses
be the negative predictions. Then the TP are red crosses inside the circle, FP are red
crosses outside the circle, TN are grey crosses outside the circle, and FN are grey
crosses inside the circle. The figure also indicates what relative precision and recall
one would expect in each case a)—d).
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High precision, low recall Low precision, high recall

Low precision, low recall, high accuracyHigh precision, high recall

a) b)

d)c)

Positive prediction

Inside red circle True Positive False Negative

Outside red circle True Negative

Negative prediction

True Positive

Figure 2.20: Illustration of some scenarios from a CNN model and its relative eval-
uation metrics. a) show a model that has high precision, but low recall
value. This model is very conservative in its predictions. b) model that
has low precision, but high recall. This model is excessive in its pre-
dictions. c) “perfect” model that makes only correct predictions and
consequently the precision and recall values are both high. Figure d)
show how accuracy is not a very useful metric in object detection, as
most of a model’s prediction will be True Negatives. This makes accu-
racy higher than precision and recall as those metrics do not consider
TN.
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CHAPTER 3

METHODOLOGY

In this chapter the methodology to address the research questions presented in sec-
tion 1.2 will be presented. Specifically we here look at the first sub-research ques-
tion, “How can a national set of landslides be implemented in the same Deep Learning
workflow using Google Earth Engine and ArcGIS Pro?”

3.1 VERIFICATION OF REPORTED LANDSLIDES

In order to get the desired images of the landslides to use as training data a number
of steps must be gone through. First step is to filter through a database of reported
landslides1. The database organises all the reported observations that are reported by
users through the online service regObs. RegObs is an inventory service, consisting
of observation of rockfalls, floods and landslides, as well as snow condition and snow
avalanches, and ice cover conditions. When registering an event the user is asked
to specify the date of occurrence/observation, a coordinate reference, pictures of the
observation and, if available, a link to other sources, e.g. a news report (Fjeld, 2018).

The inventory is quite extensive, but not all reported landslides events will be suitable
as training data, so the desired landslides has to be filtered out based on a set of
requirements. Figure 3.1 show what parameters the filtering is based on. The filtering
requirements are:

1. Landslide must be larger than 1000 m2: Smaller landslides are difficult to
detect from 10 m resolution satellite images.

2. Landslide has to be debris slide: The database of reported events contains
events from all kinds of landslides and avalanches. This includes small rockfalls
and small rotational slides that have little influence on the reflectance in satellite
images. Clay slides are in this instance accepted as a type of debris slide.

3. Landslide must be after 2017: Sentinel-2 data is only available after March
2017. Under some circumstances it might be necessary to use images from the
year before a landslide event to create pre-event composite images. For this

1www.skredregistrering.no
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reason only landslides after 2017 are selected as to ensure that post-images will
be available for all landslides.

No

No
No

YesYesYes
Filter landslides
in Database

>1000 m2? Debris slide?
After
2017?

LandslideDetection
Database (LDDB)

National
Geohazard/avalanche

Database
(skrednett.no)

Discard

Figure 3.1: Decision tree for filtering for potential landslides to use in the Landslide
Detection Database (LDDB).

The landslides in the database of reported landslides that meet the requirements are
moved to a separate Landslide Detection Database (LDDB). This database will be
brought on to the next step that is the verification of the LDDB. Figure 3.2 show the
process for verification

Landslide identifier

Each landslide in the LDDB is assigned an arbitrary number to keep track of all the dif-
ferent landslides in the database. This number is named LS_ID or landslide identifier
and will be used frequently to refer to the landslides in the training data set.

3.2 IMAGE PRE-PROCESSING

It is very time consuming to acquire and pre-process the relevant images for the
purpose of landslide detection. But it is quite important that it is done in a appropriate
manner so that the quality and relevance of the data is satisfactory. It is also important
that the processing steps are made as uncomplicated as possible so that it is easy to
replicate the process, should it be necessary to do things over. The method for image
acquisition and pre-processing presented in section 3.2.1 is to a large extent based
on the work by Lindsay et al. (2022). Particular the methods involving Google Earth
Engine GEE is mostly based on Lindsay’s work.

3.2.1 Google Earth Engine (GEE)

GEE is cloud-based platform that allows for viewing and analysis of satellite imagery
on a large scale. The possible analysis includes change detection, mapping of trends
and quantification of differences on the Earth’s surface (Gandhi, 2021).

An extensive library of remote sensing data are stored in the Google Earth Engine
cloud and can be accessed and manipulated by the user using a code editor that is
an Integrated Development Environment IDE for Earth Engine Javascript API. The
API contains many pre-made functions and libraries that allows for time saving pre-
processing (Gandhi, 2021).

By uploading a shape file of the verified LDDB, image tiles of 2500x2500 meters for
each LS_ID can be downloaded. Scripts for acquiring image tiles are provided at the
courtesy of Erin Lindsay (see appendix A). The image tiles are downloaded as three
sets. One set with pre-event images, one set with post-event images, and one set
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Figure 3.2: Process for verifying Landslide Detection Database.
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with difference-images (post− pre). In each set bands featuring S1-radar data (SAR),
S2 optical images images and DEM are downloaded.

Cloud filtering

Using optical data for mapping landslides can have serious limitations in the presence
of cloud cover (Nava et al., 2021). It is therefore necessary to reduce the influence
of cloud cover on the images that are acquired.

To get cloud free images it is in GEE possible to select the images with the least cloud
cover. As described in section 2.1.3 the Sentinel satellites have a revisit time of 5
days. This means that for a 1-month period an average of 6 images are taken of the
same place. If the sky is clear on one or more of those revisits, it is possible to select
the images that have the least amount of cloud cover and use those for landslide
detection. This assumes that at least one image in the 1-month period is cloud free,
if not, you get images containing clouds (Erin Lindsay 2022, personal communication,
21 June). The “degree of cloudiness” or Cloud Percentage for an image is an attribute
determined by an algorithm that is applied to all the Sentinel-2 data that is made
publicly accessible. This algorithm is created by the European Space Agency (ESA).

3.2.2 ArcGIS Pro

The use of ArGIS Pro forms the foundation of this thesis’ topic. ArcGIS Pro enables
the use of advanced deep learning algorithms for GIS and remote sensing applica-
tions (Esri, 2021b). The author will claim that an intuitive user interface make the
process of applying complex DL algorithms to a remote sensing problem feasible for
someone without a background in computer science. Figure 3.3 shows the workflow
for processing the image tiles downloaded from GEE, so that proper training data can
be generated. The most important parts of the workflow will be presented in the text,
refer to Figure 3.3 for the full workflow.

Merging of image tiles

Once all the separate image tiles corresponding to each landslide in the verified LDDB
have been downloaded from GEE, they need to be combined to the same raster file.
This will make it easier to extract the different bands and combine them to create
training data with different input data. This is done to answer the second research
question: What input data will be best suited for detecting landslides?.

For some few cases it might be that two or more landslides in the same area have
occurred at different times. If image tiles of these landslides are included in the same
merging sequence a described above, one tile might overlap the other and only the
landslide of the topmost tile will be included in the training data set. This is most
critical if difference images such as dNDVI are used. If such a case happens it is
necessary to clip one or more image tiles so that no landslide is obscured by another
tile. This can be done using the Clip raster function.
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Model Types

In Table 3.1 the different model types are listed. Along the model type is also what
input data goes into each type. The input data is simply added as a raster band to a
composite raster. This is what will be used to determine what input data will be best
suited to detect landslides.

Table 3.1: Input data to each model type. Each colour in RGB requires its own sep-
arate band.

Model Type Input Data
1a B1: dNDVI

1b
B1: dNDVI
B2: DEM

1c
B1: dNDVI
B2: Slope

1d
B1: dNDVI
B2: DEM
B3: Slope

2

B1: dVV
B2: dVH
B3: dNDVI
B4–B6: RGB_post
B7: NIR_post
B8: DEM

3

B1: dNDVI
B2–B4: RGB_post
B5: NIR_post
B6: Slope

4

B1: VV_pre
B2: VH_pre
B3: VV_post
B4: VH_post
B5: Slope

Projection

It is important to change all the raster data sets too the same projection. This will
ensure that the pixel size for all the tiles are the same, as it was discovered that pixels
were elongated in the wrong projection. For this study the ETRS 1989 UTM Zone 33N
projection has been selected. The training data set presented in chapter 4 is scattered
around all of Norway, from Hordaland to Finnmark. The data set is therefore covered
by the UTM zones 32, 33, 34, and 35 (Mæhlum, 2021). Since it is confusing and
troublesome to deal with different projections in the same project UTM 33N has been
selected as the only projection for this study. This will also ensure that the image
pixel aspect ratio remains 1:1.
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Figure 3.3: Process for processing downloaded image tiles. The “Raster Functions”
refer to the tools to use in ArcGIS Pro. Green boxes represent different
tools in ArcGIS Pro, blue boxes represent decisions, yellow input data,
light red input parameters, and grey boxes processes.

34



Section 3.3 - Deep Learning

3.3 Deep Learning

Refer to Figure 3.4 for the workflow for creating image samples to use as training data
for the Deep Learning geoprocessing tools in ArcGIS Pro.

One important note is that the ‘backbone model’-setting in the ‘Train Deep Learning
Model’ tool sets the model to use for transfer learning as described in section 2.3.4.
The backbone model used in the training of the models in this thesis is ResNet50 (He
et al., 2015), one of the most popular and most successful deep learning models so
far (Shakhadri, 2021).

A process that will not be described here is the inferring of the models. Due to time
constraints, the appropriate flowcharts have not been created, but the reader is en-
couraged to look to the Esri-tutorial in https://learn.arcgis.com/en/projects/classify-
mangroves-using-deep-learning/ for the process of applying a classifier on new data.
The output from model inferring is a shape file with georeferenced polygons of pre-
dicted landslides. Along with the polygons are confidence score telling how certain
the model is on its prediction on a scale from 0–100 %.
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Figure 3.4: Process for exporting training samples to use in deep learning in ArcGIS
Pro.
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3.3.1 Confusion matrix map (CMM)

A confusion matrix map (CMM) is a means of visually displaying the predictions made
by a classifier. All the possible outcomes for the predictions (TN, FN, FP, TP) described
in section 2.3.7, will be visualised.

For calculating a CMM it is first necessary to convert the detected landslide polygons
and the ground truth polygons to raster. The raster cells contained within a polygon
are given the value of 1 and all other cells are given the value 0. By adding the raster
of predicted landslides two times to the raster of ground truth landslides, each cell will
have a value of either 0, 1, 2, or 3; 0 = TN, 1 = FN, 2 = FP, and 3 = TP. This technique
was learned from Erin Lindsay on 5 April 2022, and eventually implemented in ArcGIS
Pro by the author, using the geoprocessing tools Polygons to Raster, Reclassify, and
Raster Calculator. They were assembled in the same workflow using the ModelBuilder
for easy replication (Figure 3.5).

Predicted LS
polygon

Polygon to
Raster

Predicted LS
raster

Reclassify
NoData to 0

Raster of value 1
(LS) and zero
(No LS)

Calculate
confusion matrix
in Raster
Calculator

Confusion matrix

GroundTruth
Polygon to
Raster (2)

GroundTruth
raster

Reclassify
NoData to 0 (2)

Ground truthed
LS raster
NoData zero

P P P P

P P P

Figure 3.5: ArcGIS Pro ModelBuilder chart for creating confusion matrix maps
(CMM).
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CHAPTER 4

RESULTS

The results presented here will help answer the main research question How can Deep
Learning be applied to detect landslides from satellite images? Each sub-research
question will be addressed in its separate section (section 4.1, section 4.2 and sec-
tion 4.3.

All the models are trained on the same hyperparameters. The only variable that is
altered from model to model is the input data. The models are trained using Mask
R-CNN1 object detection model type (He et al., 2017). The results are split into three
sets or cases:

A. Models trained on national data set (presented in section 4.2)

B. Models trained on local data set (presented in section 4.3)

C. Models trained on local data set but verified against the data it has been trained
on (presented in section 4.3)

Models in B and C are the same DL models, but inferred on different landslide samples.

The local data set consist of 56 out of the 120 mapped landslides in Jølster. The area
containing the landslides used for the local data set is represented in red tint in the
CMMs in the figures in section 4.3. The area containing the 64 landslides the model
has not been trained on is represented in blue tint in the same figures.

Models trained on local training samples have been trained on the same parameters
as the models trained on the national data set, except for the rotation angle set when
exporting the training samples for the local data set. The rotation was set to 30◦ for
the national data set, while it was set to 90◦ for the local data set. This means that
the local training samples are augmented with a rotation of 90◦ per stride, i.e. four
images are created per stride. This means that the models trained on the local data
set have been trained on fewer image samples.

1https://github.com/matterport/Mask_RCNN
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4.1 WORKFLOW

This section aims at presenting the answer to the first sub-research question: “How
can a national set of landslides be implemented in the same Deep Learning workflow
using Google Earth Engine and ArcGIS Pro?” The answer to this question is described
in the methodology chapter (chapter 3).

The workflow has been established by a means of trial and error in the exploratory
works leading up to the final models and results presented in section 4.2 and sec-
tion 4.3.

4.2 INPUT DATA

This section aims at presenting the answer to the second sub-research question:
“What input data will be best suited for detecting landslides?” It will first present the
results from the verification of reported landslides. This is the first step in getting the
input data needed. Then the geologic distribution of the training samples will be pre-
sented to assess possible bias toward specific categories. Next, the parameter values
selected for the DL process will be explained and presented. Finally, confusion matrix
maps (CMM) and performance metric score for each of the seven models trained on
the training types introduced in the methodology chapter (Table 3.1).

4.2.1 Verification of reported landslides

By following the filtering criterion presented in section 3.1 (landslides after 2017, area
larger than 1000 m2, and classified as debris slides), a total number of 74 landslides
events were selected and moved to the Landslide Detection Database (LDDB) for fur-
ther verification. Following the method for manual verification of the LDDB presented
in Figure 3.2, these 74 events have been deemed detected, detected, but only for
post image events and not detected. The verification was done using GEE by filtering
for satellite images before and after the reported event date for each landslide. In
addition a dNDVI timeseries was generated for a point within the landslide for possible
detection of the date when NDVI dropped.

See Table B.1 in appendix B for the full table containing the verification The results
from the verification is summarised in the map in Figure 4.1. A full page map can be
found in appendix C. This in part help answer the first sub-research question “How
can a national set of landslides be implemented in the same Deep Learning workflow
using Google Earth Engine and ArcGIS Pro?”

Some interesting remarks from the manual verification process:

1. Even though some reported landslides are visible in the satellite image, many of
the landslides follow older landslide scars. This means that there is little to no
difference in pre- and post-images.

2. One reported landslide was not correctly localised in the LDDB (LS_ID 41). But
through some minutes of looking at photographs from a news article and search-
ing in satellite images taken after the event, the exact location of the landslide
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Figure 4.1: Map of examined events. Numbers represent the landslide identifier
(LS_ID). The green dots represents the location of events that will be
used as training samples for Deep Learning. The yellow events are not
suited for difference images, i.e. dNDVI is not possible to calculate. Red
events were not possible to detect from S2-images. When LS_IDs are
mentioned refer to this figure for the geographic location of the corre-
sponding landslide.
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was eventually found. A new point was put in place of the old one and given the
ID 74.

3. It can be difficult to pinpoint the event date if the landslide happened outside
the summer season. Generally lower green vegetation makes the difference in
NDVI much smaller than compared to summer events.

4. Additional landslides were discovered by LS_IDs 74, 48 and 37. These are not the
specific landslides that were reported to regObs, but are landslides that happened
close by and was detected in the dNVDI image.

5. Many landslides were not possible to detect in the satellite images, despite being
reported as larger than 1000 m2. See Figure 4.2 and Figure 4.3 for an example
of such an event (LS_ID 47). The volume of the landslide covering the road was
reported to be <1000 m3.

Figure 4.2: This reported landslide (LS_ID 47), located near the red point, was not
detected even though it was reported that the volume of the debris
covering the road was <1000 m3.

Figure 4.3: NDVI timeseries for a reported landslide (LS_ID 47) that was not de-
tected in satellite images. NDVI graph show a cyclic behaviour due to
different seasons, but no drop in value that would indicate a landslide.

Figure 4.4 show the manually detected and delineated landslides around LS_ID 54 in
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Jondal, Vestland fylke. 23 landslides have been delineated, but there might be more,
as they are difficult to differentiate from one another in dNDVI. This event happened
during the same rainstorm event as that of Jølster 2019, but 140 km further south.
No news report seems to document the event, which is interesting given the number
of landslides. No landslide appears to cross any mayor roads, which might explain
the absence of media coverage.
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Figure 4.4: Map of manually detected and delineated landslides around LS_ID 54.
Basemap is calculated dNDVI from greenest pixel composite images.

After all the models had been trained and CMMs was made it was discovered that
five of the downloaded post event image tiles were lacking important data in the RGB
channels. Either the landslide was obscured by clouds (LS_ID 24,31, and 74) or RGB
was lacking completely (LS_ID 33 and 63). Figure 4.5 shows one of the landslides
that was obscured by clouds (LS_ID 24). The post-image in the lower right show
only clouds and no landslide, while the pre-event image in the lower left is cloud-free.
However, the dNDVI image (upper right) was still created and show the landslide scar,
even if the post-image was cloudy.

Figure 4.6 shows another example of an RGB-image that has lost some data. The part
of the post-image (lower right) containing the landslide is cropped out and only a black
nan (not a number) values are present. Like the images with obscured landslides,
the dNDVI image (upper right) was still created even if the post-RGB image tile was
missing data. It was not clearly understood at the time of writing why some image
tiles like these were incomplete.
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Figure 4.5: Downloaded image tiles from LS_ID 24. Top left: Aerial image (World
Imagery, Esri). Top right: dNDVI. Bottom left: Pre-event RGB image.
Bottom right: Post-event RGB image with unsuccessful cloud filtering.

Figure 4.6: Downloaded image tiles from LS_ID 63. Top left: Aerial image (World
Imagery, Esri). Top right: dNDVI. Bottom left: Pre-event RGB image.
Bottom right: Post-event RGB image where the part with the landslide
is clipped out.

44



Section 4.2 - INPUT DATA

4.2.2 Geologic distribution of training samples

Figures 4.7—4.10 show the distribution of respectively underlying bedrock, quater-
nary geology, Corine Land Cover, and landslide type for the landslides in the national
data set. The bedrock and quaternary geology are obtained from NGU’s N250 geologic
map and Quaternary Geology County map (fylkeskart). The land cover is obtained
from Corine Land Cover (CLC) 2018 inventory (see section 2.2.6). It is important to
note that these are regional maps with limited precision and accuracy. They are not
necessarily meant for mapping of relatively small features such as landslides.

In places where the landslide cover multiple types of geologic units or land cover types
the landslide will be given multiple classes, so the total number of registered entries
will differ from the number of landslides in the national data set. Generally, it can be
said that the distribution in geology type is fairly evenly distributed, while the most
common land cover is a forest type.

Figure 4.7 shows that slate is the most common underlying bedrock where landslides
occur, with 5 events registered, while the less common rocks mylonite, migmatite,
limestone, gabbro, and eclogite only have 1 registered event each.
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Figure 4.7: Distribution of underlying bedrock for national landslide polygons.

Figure 4.8 shows that the most common soil material for landslides to occur in are
landslide deposits and till.

Figure 4.9 shows that the landslides events in the national data set are heavily biased
towards events occurring in forests. A few events are registered in agricultural areas
or low vegetation and sparsely vegetated areas.

Figure 4.10 shows that the most common type of landslide in the national data set is
debris flows, which is the type of landslide that has been filtered for (see section 3.1).
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Figure 4.8: Distribution of quaternary geology for national landslide polygons.
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Figure 4.10: Distribution of landslide types for national landslide polygons.

4.2.3 DL parameters

All models have been trained on image samples with the parameters shown in Ta-
ble 4.1:

The export parameters for national training samples are presented in Table 4.1. The
parameters are prompted by the “Export Training Data for Deep Learning” geopro-
cessing tool in ArcGIS Pro.

Table 4.1: Export parameters for national training samples exported using the Geo-
processing tool “Export Training Data for Deep Learning”

Export parameters Value Unit
Pixel dimension 10 Meters
Chip size 180 Pixels
Stride length 70 Pixels
Rotation angle 30 Degrees
Metadata format RCNN Masks -

In Table 4.2 the hyperparameters for the model training are shown. Hyperparameters
are parameters that control the learning process, but are not part of the model itself.
They remain the same when training ends (Nyuytiymbiy, 2020). They have been
chosen by trial and error to get models that are trained to the point where an extra
epoch will not make the model perform better. In the following each parameters will
be described:
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Table 4.2: Hyperparameters set for the training of the national models using the
Geoprocessing tool “Train Deep Learning Model.”

Hyperparameters Value
Epochs 75
Batch 8
Backbone model ResNet-50
Validation 20 %
Freeze backbone model True

Epochs are the number of iterations that the model goes through a training sample
set. The model adjusts its weights (section 2.3) only after each epoch, so for the
model to continuously improve its performance it needs several epochs.

Batch represents the number of image samples that the model will be trained on at
the same time. This number is dependant on the size of the graphical processing unit
(GPU) and the data size of the training samples. Batch number must always be equal
or lower than the epoch value.

Validation is the percentage of training samples that will be set aside by the algorithm
to use as validation samples when training the model. The model will only “see”
these samples after each epoch of training. This allows the algorithm to know how
well the model is performing against unseen data, so that it can adjust the weights
(section 2.3) to minimise the loss function (improving the model).

The freeze backbone model option will, if selected, force the main layers of the
backbone model (Transfer learning, see section 2.3.4) to stay the same. This saves
computing time, but may make the model less accurate (Sagar, 2019).

4.2.4 Landslide detection

Model Type 1a: Trained on dNDVI images only and is the model with overall best
score. It predicts many landslides correctly, and it found almost the exact shape of
the big landslide south of Jølstravatnet. However, it still does not predict many of
the small clusters of landslides north of Vassenden (middle of the map). It is also
excessive in its predictions with many false positives (blue). It received the highest
MCC, recall and F1 score of all the models, and the precision is only slightly lower
than that of model Type 3.

Model Type 1b: Trained on dNDVI images and a digital elevation model (DEM). This
model makes fewer predictions than the Type 1a model, so the number of false posi-
tives and true positives are lower, reflected in the lower performance metric scores.
Some of the false positives are even bodies of water.

Model Type 1c: Trained on dNDVI images and slope information. This is the model
with overall worst score. It makes only one correct prediction (far left next to a cluster
of false positives) and makes generally few false predictions.

Model Type 1d: Trained on dNDVI images, DEM, and slope information. It performs
slightly better than model Type 1c, as reflected in slightly higher performance metric
scores, but the difference is only 0.01 for the MCC score and 0.02 for the precision.
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Recall and F1 values remain the same. It makes correct predictions in two small areas
and is nowhere near in detecting a full landslide.

Model Type 2: Trained on dVV, dVH, dNDVI images, RGB-post, NIR-post, and DEM.
This model makes better predictions than Type 1b, 1c, and 1d models, but still very
few landslides are actually detected and the number of false positives are greater than
true positives. Thus, the performance metric scores are fairly low.

Model Type 3: Trained on dNDVI, RGB-post, NIR-post, and slope. The model has
very few false negatives compared to the rest of the models, which is also indicated
by the highest precision score (0.31) of all models.

Model Type 4: Trained on VV-pre, VH-pre, VV-post, VH-post, and slope. This model
performs similar to Type 3 model, but the metric scores are overall lower. It makes
few predictions, but since the number of false negatives are fairly low, the precision
score (0.26) is higher than the other metrics for this model.

4.3 NATIONAL VS. LOCAL DATA SET

4.3.1 DL parameters

Table 4.3: Export parameters for local training samples exported using the Geopro-
cessing tool “Export Training Data for Deep Learning”

Export parameters Value Unit
Pixel dimension 10 Meters
Chip size 180 Pixels
Stride length 70 Pixels
Rotation angle 90 Degrees
Metadata format RCNN Masks -

Table 4.4: Hyperparameters set for the training of the local models using the Geo-
processing tool “Train Deep Learning Model.”

Hyperparameters Value
Epochs 75
Batch 8
Backbone model ResNet-50
Validation 20 %
Freeze backbone model True

4.3.2 Landslide detection

Presented in this section are the resulting Confusion Matrix Maps (CMM) from infer-
encing of the models trained on the local data set on the Jølster area.

Model Type 1a: Trained on dNDVI images and a digital elevation model (DEM). This
model makes the most correct predictions of all the locally trained models. This is
reflected in the highest recall value of 0.39. It also outperforms the Type 1a model
trained on the national data set. The validation of the model shows that it also makes
excessive predictions (many false positives), so the precision score is lower.
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Figure 4.11: Confusion Matrix Maps and performance metrics from models 1a and
1b trained on national data set.
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Figure 4.12: Confusion Matrix Maps and performance metrics from models 1c and
1d trained on national data set.
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Figure 4.13: Confusion Matrix Maps and performance metrics from models 2 and 3
trained on national data set.
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Figure 4.14: Confusion Matrix Maps and performance metrics from model 4 trained
on national data set.
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Model Type 1b: Trained on dNDVI images and a digital elevation model (DEM).
This model makes slightly fewer predictions than Type 1a model, as shown by higher
precision, but lower recall.

Model Type 1c: Trained on dNDVI images and slope information. This model makes
only one correct prediction and many more false predictions, yielding quite low per-
formance scores.

Model Type 1d: Trained on dNDVI images, DEM, and slope information. This model
performs slightly better than model Type 1c, with almost the full area of one landslide
detected. Still, it makes few correct predictions, so scores are low.

Model Type 2: Trained on dVV, dVH, dNDVI images, RGB-post, NIR-post, and DEM.
One landslide is correctly predicted and several false positive are made by this model.
Overall very low performance metric scores.

Model Type 3: Trained on dNDVI, RGB-post, NIR-post, and slope. Slightly more cor-
rect predictions than Type 2 model, but still they are only of the two largest landslides
in the area.

Model Type 4: Trained on VV-pre, VH-pre, VV-post, VH-post, and slope. This is the
locally trained model with overall lowest performance metric scores. It makes a few
predictions, but almost all are false negatives, so scores are low.
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Figure 4.15: Confusion Matrix Maps and performance metrics from models 1a and
1b trained on local data set.
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Figure 4.16: Confusion Matrix Maps and performance metrics from models 1c and
1d trained on local data set.
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Figure 4.17: Confusion Matrix Maps and performance metrics from models 2 and 3
trained on local data set.
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Figure 4.18: Confusion Matrix Maps and performance metrics from model 4 trained
on local data set.

4.3.3 Compiled performance metrics

Performance metrics for all models for case A, B, and C are presented in Table 4.5.
Also included are the performance metrics for the verification of the locally trained
models inferred on the same data set as they have been trained on. This has been
done as means of verifying how well the model recognises the landslides it has been
trained on. Table is colour graded, with the highest score receiving a green cell, while
median values are coloured white, and scores close to zero receive a red cell colour.

Table 4.5 shows that the models inferred on the same landslide samples as they had
been trained performed better for all model Types. The maximum recall value was
0.6262 for the Type 3 model.

For illustration of some trends within each model as set of spider plots have been
created (Figure 4.19). A spider plot, also known as radar diagram, presents data
from several parameters in a circular chart, with the higher values away from the
centre of the chart. It can give a good overview of the predictive performance of a
model at just a quick “glance”

Generally, this shows that models trained on a national data set show higher precision
and lower recall values, while models trained on local data set show lower precision
and higher recall values.
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Table 4.5: Statistics from predicted landslides using all model types for different
training data sets. Matthews Corrolation Coefficient (MCC), recall value,
F1 score and precision (See section 2.3.7) have been calculated for the
three cases (A), (B) and (C). (A) Validation from models trained on the
national data set. The models have been applied to landslides it has not
been trained on. (B) Validation from models trained on the local data
set, where 56 out of 120 mapped landslides have been used as training
data. The models are applied to the other half containing the 64 “unseen”
landslides. (C) Verification of models trained on the local data set. This
is the result from applying the models from (B) to the area containing the
56 training samples. This explains the relatively higher scores.

(A) Validation national data set
Model Type MCC Recall F1 Precision
1a 0.3286 0.3640 0.3297 0.3013
1b 0.2075 0.1914 0.2091 0.2304
1c 0.0122 0.0056 0.0095 0.0329
1d 0.0184 0.0076 0.0132 0.0513
2 0.1128 0.1174 0.1158 0.1144
3 0.1187 0.0471 0.0816 0.3052
4 0.0875 0.0305 0.0546 0.2564

(B) Validation local data set
Model Type MCC Recall F1 Precision
1a 0.2567 0.3892 0.2402 0.1736
1b 0.2679 0.2926 0.2694 0.2496
1c 0.0440 0.0317 0.0430 0.0665
1d 0.1742 0.1490 0.1738 0.2086
2 0.0252 0.0180 0.0250 0.0408
3 0.1252 0.1116 0.1264 0.1456
4 0.0127 0.0126 0.0149 0.0183

(C) Verification local data set
Model Type MCC Recall F1 Precision
1a 0.4040 0.5988 0.3788 0.2771
1b 0.4552 0.6055 0.4407 0.3464
1c 0.3613 0.4525 0.3561 0.2936
1d 0.3794 0.4838 0.3721 0.3024
2 0.4665 0.6004 0.4552 0.3666
3 0.5222 0.6262 0.5163 0.4392
4 0.2942 0.3872 0.2878 0.2290
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Figure 4.19: Spider plots showing the performance of the different Deep Learning
models. (A): Models trained on national data set, inferred on unseen
landslides. (B): Models trained on local data set, inferred on unseen
landslides. (C): Models trained on local data set, inferred on same data
set as they have been trained on. (D): Illustration of some shapes that
display models with distinct characteristic.
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Model Type 2 has only been trained on 25 epoch as opposed to 75 for the rest of the
models. This was done as it was found that that the model trained on fewer epochs
performed better when applied to the Jølster area.
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CHAPTER 5

DISCUSSION

In this chapter, the results presented in chapter 4 will be discussed with the research
questions from section 1.2 in mind:

How can Deep Learning be applied to detect landslides from satellite images?

where the the sub-research questions will be directly addressed in their separate
sections:

1. How can a national set of landslides be implemented in the same Deep Learning
workflow using Google Earth Engine and ArcGIS Pro? (Discussed in section 5.1)

2. What input data will be best suited for detecting landslides? (Discussed in sec-
tion 5.2)

3. Will training on a national set of landslides compare differently from training only
on local training samples? (Discussed in section 5.3)

An important aspect of deep learning is that the data is relevant and shows the feature
of interest. The work done in this study has in part not succeeded at creating a set of
training samples that show all the relevant features. Some landslide samples that the
models has been trained on have not been visible to the DL algorithm. This makes
comparison with other studies challenging as the sources of error are quite substantial
and the trained models performs poorly.

5.1 WORKFLOW

This sections aims at answering the first sub-research question: “How can a national
set of landslides be implemented in the same Deep Learning workflow using Google
Earth Engine and ArcGIS Pro?”

The first thing worth mentioning is that the workflow for generating and processing
remote sensing images for deep learning purposes can be long and complex, as illus-
trated in the number of flowcharts presented in the methodology chapter (chapter 3).
The process involves selection of possible appropriate landslides from the Norwegian
Landslide Inventory and then verifying that they are in fact detectable in satellite im-
ages. Furthermore, cloud-free image tiles of these landslides must be downloaded
using GEE and put together in the same raster file in ArcGIS Pro. Once the desired
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band combinations are made, landslide polygons can be created and used to export
training data for the DL model. The exported training data are then used for training
the models. Trained models are tested on the 120 mapped landslides in the Jølster
area. The resulting detected landslides polygons are used for creating confusion ma-
trix maps (CMM) and performance metrics are calculated for each model.

The work of Herrera Herrera (2019) also display fairly comprehensive processes for the
workflow of image-processing and model testing. This included pre-processing in GEE,
feature computations at pixel level, and image segmentation, and image classification,
to name a few. All for the purpose of detecting landslides from satellite images.

For the purpose of this study, where the aim has been to find the best suited input
data, it has been generated and downloaded many unnecessary image bands that
were not used as training data for the final model. Bands not used included pre-
images of RGB and NIR, and difference images in RGB, NIR, VV and VH. These bands
will redundantly take up computer storage space. The process could therefore have
been optimised by not including those bands in the GEE workflow. As an extra benefit,
the step in the processing of downloaded image tiles (Figure 3.3) where raster bands
are extracted and made into new composites would not be needed, as these band
combinations could simply be created directly in the GEE scripts.

The integration of the image tiles downloaded from GEE to ArcGIS Pro is made quite
easy as all image tiles are georeferenced and will show up in the ArcGIS map with
a simple “drag-and-drop”-manoeuvre. There are many steps in this procedure, and
it has been essential to have a software that makes organising and processing of
satellites images as uncomplicated as possible.

Bumping into a minor problem or setback that will halt the progress is not uncommon.
A full reinstallation of the ArcGIS Pro software and Deep Learning libraries has been
performed more than once. Hopefully, the workflow presented in the methodology
chapter (chapter 3) will aid the next work examining this problem, so that the setbacks
are not as frequent.

It has been a great challenge in having a data-set that has such a large spacial dis-
tribution. It would have required less work to simply have one area of limited extent,
e.g. 20x20 km, but in Norway, places where enough landslide events are available,
are rare. Mapping from low resolution satellite images is very challenging. dNDVI in
combination with post RGB is probably the best tool for mapping landslides.

On a final remark, it should be noted the importance of keeping a well organised
folder hierarchy. This is of paramount importance for having an efficient workflow in
any type of computer work. It has proven valuable for this study.

5.2 INPUT DATA

This section will answer the second sub-research question: “What input data will be
best suited for detecting landslides?”

The results presented in section 4.2 shows that a single band of dNDVI is the best
input data for detecting landslides (Model Type 1a). The maximum MCC score for this
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model type was 0.33 and maximum recall value was 0.36. For comparison, Prakash
et al. (2020) got an MCC score of 0.495 and a recall value of 0.72 as their maximum
for their best performing model.

This finding corresponds to that of Fjeld (2018), where it was concluded that “The
NDVI is highly applicable for indication of landslide activity”. The creation of difference
NDVI images makes landslides appear more clearly than in just post-NDVI (Lindsay
et al., 2022), and thus, more easily detected by the DL model.

It is still surprising to the author that the performance is reduced when more features
are added. It is highly likely that this is due to the problem where some landslide
samples were not showing the landslides as stated in section 4.2 and Figure 4.5 and
Figure 4.2.

No other research that the author know of has been done on automated landslide
detection from dNDVI images, so it is difficult to analyse this in detail using other
literature, but it can be said that it performs better than RGB which is often used in
other research.

One problem with the dNDVI-approach is that it require more pre-processing effort
than acquiring only post-images, which are commonly used (Ghorbanzadeh et al.,
2019; Prakash et al., 2020; Prakash et al., 2021; Nava et al., 2021). The extra
task of getting pre-event images makes the process particularly more complex, but
eventually, when the proper tools get more available this extra “burden” should not
be as great.

The results from verification of the reported landslides demonstrates why it is neces-
sary to do the verification in the first place—There might be landslides that have the
wrong date reported, wrong location of the point, or it simply might not be visible in
the satellite image. If this step is not done, acquiring good quality input data will be
difficult.

When assessing the suitability for the different types of input data it was decided
that it was best to test on a range of different combinations of image bands to see
which combination resulted in the best performing model. The band combinations
could have been arranged differently, particularly, the DEM or slope should probably
not have been assigned to 6 out of 7 training types. This is reasoned in that the
performance metrics drop when DEM and slope is added to the the models with only
dNDVI band (type 1 models). The DEM and slope was not removed from the rest of
the models as the analysis was not done before all models were trained, and due to
time constraints new models have not been trained since discovering that DEM and
slope have negative impact on the performance of the models.

It was believed that the topographic information would help in limiting the FP predic-
tions in flatter regions as proposed by Prakash et al. (2021). However, this has not
been the case in this study. Though surface topography is considered to be one of
the main driving forces for landslides (Ghorbanzadeh et al., 2019), the model does
not seem to make that connection. This unexpected outcome was also encountered
by Ghorbanzadeh et al. (2019) and Herrera Herrera (2019). They did not attempt to
suggest a reason for this issue. One possible explanation to this misinterpretation by
the model could be that the neural network does not correlate the value of the DEM
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layer to the other layers. As no visual information about a landslide is given by the
DEM or slope it might draw the conclusion that “anything that is not flat could be a
landslide”, and then suppress the information given in the optical bands.

It can be interpreted that the reduced model performance for the models is a result
of the model complexity getting too large, and the model becomes overfitted, as
described in section 2.3.5. It might be that the added layers adds more noise than
structured information on the landslides, making the models perform poorly. This is,
however, contrary to the results from Herrera Herrera (2019), where the performance
metric scores increased when more features were added. It is strange, then, that a
so abrupt reduction in performance is observed with our models.

Looking at the spider plots in Figure 4.19 it is very clear that even the best performing
models still has great potential for improvement. Prakash et al. (2021) present their
performance metrics in a similar way, and generally, most of their DL models show
better performance.

The results from Prakash et al. (2021) show a small bias towards higher recall scores,
which is also the case for the Type 1a model in this study, with only dNDVI. But,
the Type 3 and 4 models show very low recall values, but better precision scores.
Possibly, the performance scores in Prakash et al. (2021) are higher due to a better
quality control of the input data.

Another explanation for the relative low performance is to do with the quality of the
data itself. As the results show, not all image tiles contained the relevant data. Five
image tiles did in fact not show any landslide at all. Two image tiles lacked RGB and
NIR data completely (LS_ID 63 and 33), while three were entirely obscured by clouds
(LS_ID 24, 31, and 74). These images should have been excluded from the data set
before training commenced.

A perhaps more successful way of creating cloud free images would have been to
create a multi-temporal post-event image stack and select the pixels with the max-
imum NDVI value to produce an aggregate image, a method developed by Lindsay
et al. (2022). This would have had the effect of removing cloudy pixels and evening
out reduced NDVI signals from agricultural activity (Lindsay et al., 2022). However,
the generation of such images require considerable calculation time, as they utilises
per-pixel calculations. An effect is also that landslides will appear discoloured (Erin
Lindsay 2022, personal communication, 21 June).

As for the Sentinel-1 SAR data (VV and VH bands), the reason for selecting those as
training data was that there has been an increasing interest in using SAR data for
landslide detection (Nava et al., 2021), due to the radar’s “cloud penetrating” abilities
(Lindsay et al., 2022). The Type 2 and 4 models that use VV and VH bands both
got low performance scores. Type 4 model did receive a precision score of 0.26,
which is among the highest precision score for all model types. But, the model is
very conservative in its predictions, so it only found 1 of 120 landslides. The analysis
methods and classification algorithms needed for landslide detection with SAR data is
not yet fully developed, but the research is growing (Nava et al., 2021; Lindsay et al.,
2022; Rouault, 2020).

The DL process is still perceived as a “black box”, where it is not known how each
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layer in the image is interpreted and how the model weights the relation between e.g.
slope and dNDVI. To the human mind it is clear that if you have a spatial feature with
lower dNDVI values and high slope values the feature in question is somewhere steep
where there has been a recent loss in vegetation — most likely a landslide. However,
the machine does not in this case see that. A better understanding of DL is needed
to process this further.

5.3 NATIONAL DATA SET VS. LOCAL DATA SET

In this section the third sub-research question will be addressed: “Will training on
a national set of landslides compare differently from training only on local training
samples?”

Despite the national data set having five landslides that were not visible in its training
data, it still performs similarly to the models trained on the local data set. This implies
that the rest of the training samples are of good quality. It is quite certain that all the
training samples in the local data set show the relevant landslides in the images. One
would therefore expect the local models to yield higher performance metric scores
than the national models. They do, however, perform relatively similar. Thus, the
effect of the five image tiles not showing the landslide in the national landslide data
set might not be too large.

Since no model do a successful job of detecting most of the landslide in the Jølster
area it is difficult to draw some conclusion on exactly why one model performs better
than the other. Particularly for the Type 1c, 1d, 2, 3, and 4 models the performance
metrics are so small (See Table 4.5) that it can definitely be said that they do not
work as intended.

The local 1b model performs slightly better than the national 1b model. The recall
value of the local model is 0.29 compared to 0.19 for the national model. Still, a
relative low score, but a noticeable difference.

The reason for the model’s low validation results becomes apparent when looking at
the verification results (case C in Table 4.5). Even if the models in this case are inferred
on the same data set they have been trained on, precision scores are still below 0.5
as shown in Table 4.5. Most models in Prakash et al. (2021) had precision scores
exceeding 0.6, and these are for models inferred on unseen landslides (verification),
which should be expected to yield poorer results than inferring on the training data
set. The same comparison can be made with the results from Ghorbanzadeh et al.
(2019). 13 out of their 20 landslide detection models got precision scores well above
0.5.

Given the low validation results compared to the verification results in literature, it
is deduced that our models are not trained optimally. The reasons for this can be
complex, relating to both the data itself and to the internal processes in the convolu-
tional neural network (CNN). It might be that the training sample size is too low. Our
sample size is 52 individual landslides, while Herrera Herrera (2019) had a sample
size of 110 individual landslides and Prakash et al. (2021) had a total sample size
of more than 11 000 landslides distributed on seven different study areas all over
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the world. This is quite possibly the most significant explanation for the difference in
model performance. In addition, the parameter values set for our DL algorithm are
most likely not the best suited values, but it was not the aim of this study to find the
optimal model.

This study show that training DL models on a national set of landslides results in
models that do not differ considerably from models trained on a local set of landslides.
The recall values were slightly higher with the models trained on the local data set,
while the precision scores were lower than that of the model trained on the national
data set.

5.4 SUMMARY OF DISCUSSION

Here follows the most important message from this discussion:

This work has succeeded in creating a workflow that enables creation of DL models
for automated landslide detection in Norway. It does so by generating appropriate
images of landslides in Google Earth Engine (GEE). These images are then processed
in ArcGIS pro, where landslides are labelled and then training samples are exported
so that a DL algorithm can make a model learn what a landslide look like.

Although the workflow does work, it has not succeeded in creating a well-functioning
model that detects most landslides. It was found that dNDVI shows the most promise
as input data for landslide detection. However, the performance of the models trained
on dNDVI are still not as precise as that of other studies, such as Prakash et al. (2021)
or Ghorbanzadeh et al. (2019).

It was not observed a considerable difference in training the models on different data
sets. There were some slight variations in model performance between models trained
on national and local data set, but the overall performance scores were low in both
cases and no distinct improvement could be observed.

5.5 SUGGESTED FURTHER STUDIES

For further studies, it is suggested to look at the following:

• Include more training samples from outside of Norway, particularly the Nordic
countries, using the methods presented.

• Explore the optimum image “chipification”, i.e. the number of augmented im-
ages created per landslide polygon. Does the accuracy of the model improve
when more data is generated from the same landslides, or does it only take up
unnecessary storage space and make the model become overfitted?

• Train a single model on all training samples — both national data set and local
data set.

• Explore the effect of different validation percentages. This is something that has
not been discussed in this thesis, since it is related to the DL process. By altering
the percentage of training samples that the DL algorithm sees during training,
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the model will perform differently1. The choice of keeping this parameter to
20 % for the work in this thesis was an “educated guess”, so there is room for
improvement.

• Fine-tune the model by unfreezing the backbone model2.

• Make some corrections to GEE script so that cloudy images are not generated.

1https://playground.tensorflow.org/
2https://keras.io/guides/transfer_learning/
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CHAPTER 6

Conclusions

The main research question of this thesis is How can Deep Learning be applied to
detect landslides from satellite images? To answer this question three sub-research
questions was investigated:

1. How can a national set of landslides be implemented in the same Deep Learning
workflow using Google Earth Engine and ArcGIS Pro?

The workflow for generating and processing remote sensing images for deep
learning purposes is long and complex. this study found that a national set of
landslides can be implemented in the same Deep Learning workflow by first ver-
ifying that landslides reported to the Norwegian national landslide inventory are
detectable in satellite images using Google Earth Engine (GEE). From this verifi-
cation Sentinel-1 and Sentinel-2 images can be acquired from GEE and processed
in ArcGIS Pro. Landslides must be delineated an labelled for the DL algorithm.
Once models are trained they can be tested on an landslide inventory that the
model has not been trained on. In this case, the Jølster inventory. Prediction
results can then be assessed and analysed using the metrics, recall, precision,
F1, and MCC.

The method could be improved by knowing on beforehand what bands to use
as training data, as this method currently acquires an excess of data from GEE
that will not be used as training data. It is recommended to do more research
involving the DL libraries in ArcGIS Pro, due to the simplicity of managing and
creating training samples and training models.

2. What input data will be best suited for detecting landslides?

The best suited input data is a “difference Normalised Difference Vegetation In-
dex” (dNDVI). The best performing DL model achieved a precision of 0.30, recall
of 0.36, F1 of 0.33 and a Matthews Correlation Coefficient (MCC) of 0.33. A
decent DL model that could predict most landslides was not produced. The per-
formance metric scores of the best performing model were considerably lower
compared to the same metrics from other studies. The reason for the model’s
poor performance can have root in a number of causes, but low sample size, un-
representative training samples, and overfitting are the most probable causes.
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3. Will training on a national set of landslides compare differently from training
only on local training samples?

The results demonstrated that there were no significant improvement when using
a local training sample set compared to a national sample set. Recall values were
slightly higher with the models trained on local data set, while precision scores
were lower than that of the national model. It is difficult to draw some conclusion
on exactly why one model performs better than the other, as the performance
metrics of most models are so low that it can definitely be said that they do not
work as intended.

Still the DL process is perceived as a “black box” in that it is not known how each
layer in the image is interpreted and how the model weights the relation between e.g.
slope and dNDVI. To the human mind it is clear that if you have a spatial feature with
lower dNDVI values and high slope values the feature in question is somewhere steep
where there has been a recent loss in vegetation — most likely a landslide. However,
the machine does not in this case see that. A better understanding of DL is needed
to process this further.
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Appendix

A Google Earth Engine Scripts

Two of the GEE scripts will be shown here in full-text, while the rest are available only
through a url-link to the GEE site.

A.1 Validation of landslide occurrence and visibility

https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3AL
S_Verification

1 // Modified time-series script:
https://code.earthengine.google.com/9c091e27ca86c3d1e6adbefea8769cc3↪→

2

3 // using cloud filter from:
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2↪→

4

5 // How to use this script:
6 // 1. Set band description and import table (shapefile) for analysis - can be

points or polygons↪→

7 // 2. Select band from list below and add in SET BAND FOR ANALYSIS
8

9 var region = geometry.buffer(2000).bounds();
10

11 //############### 1. SET BAND DESCRIPTION #################################
12 var band_description = 'NDVI';
13

14 //###############################################################################
15

16 // Load imagery.
17 var s2 = ee.ImageCollection('COPERNICUS/S2')
18 .filterBounds(region)
19 .filterDate('2015-01-01', '2022-03-16')
20 .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 50)) // Pre-filter to get

less cloudy granules.↪→

21 .map(function(image) {
22

23 //############### 2. SET BAND FOR ANALYSIS
#################################↪→

24 var nir = image.select('B8');
25 var red = image.select('B4');
26 var blue = image.select('B2');
27 var green = image.select('B3');
28

29 var ndvi = image.normalizedDifference(['B8',
'B4']).rename(band_description);↪→

30 var band = ndvi
31

32 //################################################################################
33 var qa = image.select('QA60');
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34 var cloudBitMask = 1 << 10; // Bits 10 and 11 are clouds and cirrus,
respectively.↪→

35 var cirrusBitMask = 1 << 11;
36 var mask = qa.bitwiseAnd(cloudBitMask).eq(0) // Both flags should be set

to zero, indicating clear conditions.↪→

37 .and(qa.bitwiseAnd(cirrusBitMask).eq(0));
38 return image.updateMask(mask)
39 .divide(10000)
40 .addBands(band)
41 .select(band_description)
42 .copyProperties(image, ['system:time_start']);
43 });
44

45 print('Size of S2 collection', s2.size());
46

47 Map.centerObject(region);
48 Map.addLayer(geometry, {color: 'gray'}, 'landslide');
49

50 var testlandslide = geometry
51

52 //Map.centerObject(testPoint, 10)
53 var chart = ui.Chart.image.series({
54 imageCollection: s2.select(band_description),
55 region: geometry,
56 }).setOptions({
57 interpolateNulls: true,
58 lineWidth: 1,
59 pointSize: 3,
60 title: band_description + ' timeseries for a single landslide',
61 vAxis: {title: band_description},
62 hAxis: {title: 'Date', format: 'YYYY-MMM', gridlines: {count: 12}}
63 });
64

65 print(band_description + ' chart', chart);
66

67 // View cloud free images per year
68 var s2_best_rgb_17 = ee.ImageCollection('COPERNICUS/S2_SR')
69 .filterBounds(geometry)
70 .filterDate('2017-06-01', '2017-07-31') // filter for summer 2017
71 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
72 .clip(region);
73

74 var s2_best_rgb_18 = ee.ImageCollection('COPERNICUS/S2_SR')
75 .filterBounds(geometry)
76 .filterDate('2018-06-01', '2018-07-31') // filter for summer 2018
77 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
78 .clip(region);
79

80 var s2_best_rgb_19 = ee.ImageCollection('COPERNICUS/S2_SR')
81 .filterBounds(geometry)
82 .filterDate('2019-06-01', '2019-07-31') // filter for summer 2019
83 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
84 .clip(region);
85

86 var s2_best_rgb_20 = ee.ImageCollection('COPERNICUS/S2_SR')
87 .filterBounds(geometry)
88 .filterDate('2020-06-01', '2020-07-31') // filter for summer 2020
89 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
90 .clip(region);
91

92 var s2_best_rgb_21 = ee.ImageCollection('COPERNICUS/S2_SR')
93 .filterBounds(geometry)
94 .filterDate('2021-06-01', '2021-07-31') // filter for summer 2021
95 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
96 .clip(region);
97

98 var s2_best_rgb_22 = ee.ImageCollection('COPERNICUS/S2_SR')
99 .filterBounds(geometry)
100 .filterDate('2021-08-25', '2021-09-26') // filter for september 2021
101 .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
102 .clip(region);
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103

104 var RGB_params = {bands: ['B4', 'B3', 'B2'], min: 0, max: 3000, gamma: 1.5};
105

106 Map.addLayer(s2_best_rgb_17, RGB_params, 'best_RGB_17');
107 Map.addLayer(s2_best_rgb_18, RGB_params, 'best_RGB_18');
108 Map.addLayer(s2_best_rgb_19, RGB_params, 'best_RGB_19');
109 Map.addLayer(s2_best_rgb_20, RGB_params, 'best_RGB_20');
110 Map.addLayer(s2_best_rgb_21, RGB_params, 'best_RGB_21');
111 Map.addLayer(s2_best_rgb_22, RGB_params, 'best_RGB_sep21');
112

113 print(s2_best_rgb_18);
114

115 Map.addLayer(landslides);

A.2 Post event – Export training data A
https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FA.%20Post_training_1_month_S1_S2

1 // Make Post images for training data
2

3 // Input: shapefile points with the following mandatory attributes: 'LS_ID',
'event_date'↪→

4

5 //Processing:
6 //S1- filter by date, location, polarisation (VV, VH), sensor mode (IW).
7 //Apply terrain correction by Vollrath
8 //Take median of image stack for each of VV and VH bands.
9

10 //S2 - filter by date and location.
11 //take maximum NDVI value for greenest pixel composites, used for dNDVI images.
12 //take least cloudy image for RGB and NIR bands.
13

14 //Outputs:
15 // merges bands from S1, S2 and DEM into final image for each point that can be

exported.↪→

16

17

18 // ########################## User Inputs:
#########################################↪→

19

20 // 1. set points - mandatory columns: ['LS_ID, 'event_date']
21 var fc_points = ee.FeatureCollection(landslides); // Imported landslide point

shape-file with mandatory columns: ['LS_ID, 'event_date']↪→

22 Map.addLayer(fc_points, {color: 'FF0000'}, 'points');
23

24 //2. Set number of months for making composite image
25 var months = 1;
26 var my_google_drive_folder = 'earthengine/A_Post'; // Folder name in Google Drive

that files will be exported to.↪→

27

28 //###################### IMAGE COLLECTIONS
###########################################↪→

29

30 var S2 = ee.ImageCollection('COPERNICUS/S2_SR'); //Level-2C - but note there is a
problem with over correction of shadows↪→

31 var S1 = ee.ImageCollection('COPERNICUS/S1_GRD');
32 var DEM = ee.Image('users/jarnaalexandra/TerrengNorge3').select('elev');
33 var DEM_all = ee.Image('users/jarnaalexandra/TerrengNorge3').select(['elev',

'slope', 'slope_sum']);↪→

34

35 // Visualisation parameters:
36 var viz_rgb = {bands: ['B4', 'B3', 'B2'], min: 0, max: 3000, gamma: 1.5};
37

38 // ###################### FUNCTIONS
##############################################↪→

39

40 // function: create a new feature.
41 var getPoints = function(feature) {
42 var point = feature.geometry();
43 // Return a new Feature, copying properties from the old Feature.
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44 return ee.Feature(point).copyProperties(feature);
45 };
46

47 //function: create region
48 var bufferPoly = function(feature) {
49 return feature.buffer(2500).bounds();
50 };
51

52 function addS2NDVI(image) {
53 var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI');
54 return image.addBands(ndvi);
55 }
56

57 //Function: add pre and post dates as a property
58 var addDates = function(feature) {
59 var event_date = ee.Date(feature.get('event_date'));
60 var keepProperties = ['LS_ID'];
61 var pre_date = ((event_date).advance((ee.Number(months)).multiply(-1),

'Month'));↪→

62 return feature.set({
63 post_date : ee.Date((event_date).advance(ee.Number(months), 'Month')),
64 pre_date : pre_date,
65 event_date : ee.Date((pre_date).advance(ee.Number(months), 'Month'))
66 }).copyProperties(feature, keepProperties);
67 };
68 // Topographic correction function
69 /**
70 * Radiometric slope correction algorithm for topographic correction
71 * The library by Andreas Vollrath that has topographic slope correction described

in https://doi.org/10.3390/rs12111867↪→

72 * This is a copy of Vollrath's script with a bug fix (by Eric Bullock)
73 */
74 var slope_correction = function (collection,
75 options
76 ){
77 // set defaults if undefined options
78 options = options || {};
79 var model = options.model || 'volume';
80 var elevation = options.elevation || DEM
81 // var elevation = options.elevation || ee.Image(DEM);
82 var buffer = options.buffer || 0;
83 // we need a 90 degree in radians image for a couple of calculations
84 var ninetyRad = ee.Image.constant(90).multiply(Math.PI/180);
85 // Volumetric Model Hoekman 1990
86 function _volume_model(theta_iRad, alpha_rRad){
87 var nominator = (ninetyRad.subtract(theta_iRad).add(alpha_rRad)).tan();
88 var denominator = (ninetyRad.subtract(theta_iRad)).tan();
89 return nominator.divide(denominator); }
90 // surface model Ulander et al. 1996
91 function _surface_model(theta_iRad, alpha_rRad, alpha_azRad){
92 var nominator = (ninetyRad.subtract(theta_iRad)).cos();
93 var denominator = alpha_azRad.cos()
94 .multiply((ninetyRad.subtract(theta_iRad).add(alpha_rRad)).cos());
95 return nominator.divide(denominator); }
96 // buffer function (thanks Noel)
97 function _erode(img, distance) {
98 var d = (img.not().unmask(1)
99 .fastDistanceTransform(30).sqrt()
100 .multiply(ee.Image.pixelArea().sqrt()));
101 return img.updateMask(d.gt(distance)); }
102 // calculate masks
103 function _masking(alpha_rRad, theta_iRad, proj, buffer){
104 // layover, where slope > radar viewing angle
105 var layover = alpha_rRad.lt(theta_iRad).rename('layover');
106 // shadow
107 var shadow =

alpha_rRad.gt(ee.Image.constant(-1).multiply(ninetyRad.subtract(theta_iRad))).rename('shadow');↪→

108 // combine layover and shadow
109 var mask = layover.and(shadow);
110 // add buffer to final mask
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111 if (buffer > 0)
112 mask = _erode(mask, buffer);
113 return mask.rename('no_data_mask'); }
114 function _correct(image){
115 // get image geometry and projection
116 var geom = image.geometry();
117 var proj = image.select(1).projection();
118 // get look direction angle
119 var heading = (ee.Terrain.aspect(
120 image.select('angle')).reduceRegion(ee.Reducer.mean(), geom,

1000).get('aspect') );↪→

121 // Sigma0 to Power of input image
122 var sigma0Pow = ee.Image.constant(10).pow(image.divide(10.0));
123 // Radar geometry
124 var theta_iRad = image.select('angle').multiply(Math.PI/180).clip(geom);
125 var phi_iRad = ee.Image.constant(heading).multiply(Math.PI/180);
126 // Terrain geometry
127 var alpha_sRad = ee.Terrain.slope(elevation).select('slope')
128 .multiply(Math.PI/180).setDefaultProjection(proj).clip(geom);
129 var phi_sRad = ee.Terrain.aspect(elevation).select('aspect')
130 .multiply(Math.PI/180).setDefaultProjection(proj).clip(geom);
131 // Model geometry
132 //reduce to 3 angle
133 var phi_rRad = phi_iRad.subtract(phi_sRad);
134 // slope steepness in range
135 var alpha_rRad = (alpha_sRad.tan().multiply(phi_rRad.cos())).atan();
136 // slope steepness in azimuth
137 var alpha_azRad = (alpha_sRad.tan().multiply(phi_rRad.sin())).atan();
138 // Gamma_nought
139 var gamma0 = sigma0Pow .divide(theta_iRad.cos());
140 // models
141 if (model == 'volume')
142 var corrModel = _volume_model(theta_iRad, alpha_rRad);
143 if (model == 'surface')
144 var corrModel = _surface_model(theta_iRad, alpha_rRad, alpha_azRad);
145 if (model == 'direct')
146 var corrModel = _direct_model(theta_iRad, alpha_rRad, alpha_azRad);
147 // apply model to derive gamma0_flat
148 var gamma0_flat = gamma0.divide(corrModel);
149 // transform to dB-scale
150 var gamma0_flatDB = (ee.Image.constant(10)
151 .multiply(gamma0_flat.log10()).select(['VV', 'VH']));
152 // get Layover/Shadow mask
153 var mask = _masking(alpha_rRad, theta_iRad, proj, buffer);
154 // return gamma_flat plus mask
155 return gamma0_flatDB.addBands(mask).copyProperties(image);}
156 // run correction function and return corrected collection
157 return collection.map(_correct);};
158 // export function
159 exports.slope_correction = slope_correction;
160 //###################################################################################
161

162 // Map the point getting, date adding and polygon making functions over the
features.↪→

163 var fc_ROIs = fc_points.map(getPoints).map(addDates).map(bufferPoly); //take
points, end up with polygon ROIs with pre and post dates added↪→

164 var count = fc_points.size();
165 print ('count', count);
166

167 Map.addLayer(fc_ROIs, {}, 'ROIs');
168 print ('ROIs', fc_ROIs);
169

170 //##########################################################################
171

172 // function: create post image composites from feature collection
173 var createPost = function(feature) {
174 var region = feature.geometry();
175 var post_start = ee.Date(feature.get('event_date'))
176 var post_end = ee.Date(feature.get('post_date'))
177 var LS_ID = feature.get('LS_ID');
178

A5



A - Google Earth Engine Scripts

179 var S2_post_NDVI = S2.filterDate(post_start, post_end)
180 .filterBounds(region)
181 .map(addS2NDVI)
182 .qualityMosaic('NDVI') //greenest pixel - maximum Ndvi
183 .select('NDVI')
184 .set({'LS_ID': LS_ID});
185

186 // Filter S2 images
187 var S2_filtered = S2
188 .filterBounds(region)
189 .filterDate(post_start, post_end)
190 // .sort('CLOUDY_PIXEL_PERCENTAGE').first() // gives least cloudy image
191 .select('B2','B3', 'B4', 'B8')
192 .set({'LS_ID': LS_ID});
193 var S2_sorted = S2_filtered
194 .sort('CLOUDY_PIXEL_PERCENTAGE').toList(S2_filtered.size()); // gives least

cloudy image↪→

195 var S2_least_clouds_post = ee.List(S2_sorted.get(1));
196

197 var S1_post_data = S1.filterDate(post_start, post_end)
198 .filterBounds(region)
199 .filterMetadata('transmitterReceiverPolarisation','equals',["VV", "VH"])
200 .filterMetadata('instrumentMode','equals','IW')
201 .set({'LS_ID': LS_ID});
202

203 var S1_post_corrected = slope_correction(S1_post_data) //apply terrain correction
function to S1_post_data↪→

204 .map(function(im) {return im.updateMask(im.select('no_data_mask'))}) // Apply
no data mask↪→

205 .reduce(ee.Reducer.median())
206 .rename(S1_post_data.first().bandNames())
207 .select('VV', 'VH')
208 .set({'LS_ID': LS_ID});
209

210 var merged_post = S1_post_corrected // VV, VH
211 .addBands(S2_post_NDVI) //NDVI
212 .addBands(S2_least_clouds_post) // R, G, B, NIR
213 .addBands(DEM_all) // elevation, slope, slope_sum
214 .set({'LS_ID': LS_ID})
215 .toFloat()
216 .clip(region);
217

218 return ee.Image(merged_post);
219 };
220

221 // functions: export images
222 var exportPostImage = function (image) {
223 image = ee.Image(image);
224 var LS_ID = image.get('LS_ID');
225 var name = 'A_post_' + LS_ID.getInfo();
226 var ROI = image.geometry();
227 Export.image.toDrive({
228 image: image,
229 description : name,
230 folder : my_google_drive_folder,
231 region : ROI,
232 scale: 10,
233 });
234 return 0;
235 };
236

237 //############################################################################
238 //Map the image creating function over the feature collection
239 var post_collection = ee.ImageCollection(fc_ROIs.map(createPost)); //for each

polygon ROI, make a post image↪→

240 Map.addLayer(post_collection.mosaic(), viz_rgb, 'post least clouds RGB');
241 print('post coll', post_collection);
242

243 // For loop. getInfo to get properties from server, then Export images
244 var post_list = post_collection.toList(count, 0);
245 for (var i = 0; i < count.getInfo(); i++){
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246 exportPostImage(post_list.get(i));
247 }

A.3 Difference — Export training data A
https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FA.%20Diff_training_1_month_S1_S2

A.4 Pre event — Export training data A
https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FA.%20Pre_training_1_month_S1_S2

A.5 Post event — Export training data B
https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FB.%20Post_training_Jul-Sep_S1_S2

A.6 Difference — Export training data B
https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FB.%20Diff_training_Jul-Sep_S1_S2

A.7 Pre event — Export training data B

https://code.earthengine.google.com/?scriptPath=users%2FJohnIF%2FGEE_scripts%3At
raining%20data%2FB.%20Pre_training_Jul-Sep_S1_S2
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B Tables

B.1 Verification Table

Table B.1: Verification of landslides from Landslide Detection Database. For column
“Confirmed?”: A value of 1 corresponds to ‘detected’, 0.5 corresponds to
‘detected, but only in post image’, and 0 corresponds to ‘not detected’.
See Figure 3.2 for method for verification.

LS_ID Confirmed? Event Date Comment
Landslide
Type

Location

3 1 2019-07-30 Big landslide in Vassenden.
Clear NDVI-break. Clear
image. Good training data.

144 Årsetelva,
Vassenden

4 1 2019-07-30 Visible but not large in ex-
tent. Clear NDVI-break.
Training data-worthy.

144 Løsetslåtten
2019

5 1 2019-07-30 Small landslide visible in
both image and NDVI. OK
training data.

144 Løsetslåtten
2019

6 1 2019-07-30 Large clearly visible land-
slide. Good training data.

144 Strandsvollen,
south side of
Jølstravatnet

7 1 2019-07-30 Small landslide visible in
both image and NDVI. Re-
lated to larger LS closeby.
OK training data.

144 Slåtten 2019

8 1 2019-07-30 Medium landslide clear in
both NDVI and visual

144 Slåttene, Jølster

9 1 2019-07-30 Medium landslide clear in
both NDVI and visual

144 Slåttene, Jølster

10 1 2019-07-30 Runout area of landslides
7–9

142 Slåtten

11 1 2019-07-30 Flood slide? Clear in both
NDVI and visual, but atyp-
ical landslide colour?

142 E39, Vassenden

17 1 2018-05-09 No clear NDVI-break, but
values are slightly lower.
Landslide is visible.

144 Svatsum

21 1 2018-09-26 Small landslide. Hard to
see a break in NDVI, but
values are lower following
years.

144 Skar ved Liave-
gen

22 1 2018-09-19 Good training data. Clear
in both visual and NDVI. A
road goes now in parts of
the debris.

140 Slåttene, Førde

23 1 2019-09-16 Quick clay slide. Large
enough for training data.
Easily detected in both vi-
sual and NDVI. (https://ww
w.aftenposten.no/norge/i
/4qvEmR/jordraset-i-nitt
edal-har-skapt-dette-hul
let-i-veien-ordfoereren-
frykte)

141 Quick clay slide
at Li

24 1 2019-08-19 LS follows old landslide
path. Observable from
both visual and NDVI,
but very small. Another
undregistered LS slightly
south-east of point around
same date, maybe a few
days later – can be also
from avalanche?

142 Småskreden
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31 1 2018-08-08 Very small LS, but visible.
No NDVI from time of oc-
curance.

144 Skogsvika

33 1 2020-08-23 LS clear to see in both vis-
ible and NDVI. Should pro-
vide good dNDVI training
data. LS follows a narow
valley.

142 Tindbekken, be-
tween Fjellstad
and Tunebrua

34 1 2020-06-06 LS clear to see in visible.
NDVI shows clear reduc-
tion the next years, but no
clear break as event was in
early summer.

144 Nergård

35 1 2020-08-23 LS right by 34, but hap-
pened later that summer.
Clear NDVI-break

144 Haugnes

37 1 2020-10-28 Good training data for
small LS. Happened mid-
fall, so no clear NDVI-
break.

144 Mundheimsdalen
/KVAM

38 1 2021-01-01 LS follows narrow valley
and ends on agricultural
land. Difficult to notice the
landslide from image, but
NDVI values are clearly re-
duced.

144 Skulerud

39 1 2020-12-30 Quick clay slide at Gjer-
drum. Too large to not no-
tice

141 Ask, Gjerdrum

40 1 2021-06-14 LS faintly visible but no-
ticeable. Long and narrow.

144 Indre Nordneset

48 1 2020-09-22 Not able to see LS by point,
but another LS is visiblie
right north of point.

144 Pollen

51 1 2018-05-14 LS is dated to Aug 2019,
but from NDVI it might
look like it happened in
late 2017. News report
was from May 2018. Good
training data. https://ww
w.nrk.no/tromsogfinnmark
/stort-jordskred-i-finnm
ark_-_-det-ser-brutalt-
ut-1.14050020&144

Muotkkenjarga

52 1 2019-06-04 Small LS, but decent train-
ing data for small LS.
Trivia: Road relocated as a
consequence of LS.

144 Berget

54 1 2019-07-30 Several LS in same are oc-
curred in the same sum-
mer. Not sure if in same
event. NDVI-break is pre-
cicely as reported. Same
as Jølster event.

144 Torsnesdalen
/JONDAL

58 1 2018-07-21 Landslide located 100 m
west of point. Clear NDVI-
break and landslide scar is
clearly visible. regDato is
01.08.2019. Seem plausi-
ble.

142 Gjelgrova 2019

63 1 2018-07-30 Can’t see reported LS but
another LS is seen right
above. From NDVI it seem
it occurred in the end of
July 2018.

144 Sogndal

67 1 2019-07-30 LS easily seen in image.
Dosen’t show up in NDVI.
Area is problably too bar-
ren?

144 Strandsvollen,
south side of
Jølstravatnet
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68 1 2019-07-30 From Jølster event. Starts
high up, but follows old LS
scar further down. 2020
best image has much snow
in it.

144 Strandsvollen,
south side of
Jølstravatnet

69 1 2021-04-29 Main event happened in
Nov. 2019. Clear LS cut,
but it is clay, so different
imprint. NGI-report: http
s://www.ringerike.kommun
e.no/contentassets/71e0a
5fd65694512a5a829acb4365
ae3/befaringsnotat-ngi-2
8.11.19.pdf

143 Hovsenga,
Ringerike

74 1 2019-08-19 New point location from
FID 41

144 Correct poin
location,
Saudafjorden

2 0.5 2019-07-30 regDate is 15.12.2021 and
we have not enough data
after that event? No clear
NDVI-break. No visible
sign of landslide. NDVI af-
ter 15.12.2021might show
lower than normal values.

142 Gjelgrova 2019

12 0.5 2019-12-29 Landslide too small to no-
tice. Only follows small
stream. Went only to ditch
of road. NDVI-break no-
ticeable.

144 Sogndal

13 0.5 2019-12-29 Very small impact on im-
age. Slide follows small
stream. Most noticeable
location is a few hundred
meters north of original
point.

144 Sogndal

16 0.5 2018-12-31 Original landslide hap-
pended in November 2013
(https://www.nrk.no/mr/_-
trodde-ikke-dette-kunne-
skje-oss-1.11361407). So
no difference image will be
possible, but quite distinct
landslide scar.

142 Årsetdalen Vart-
dal

18 0.5 2019-07-30 Landslilde is mapped in
Geocache basis basemap.
Most likely older than
2016, so no difference
image available. Clear
landslide scar.

142

19 0.5 2018-12-31 Main landslide is from Nov
2013. This point is related
to a flomskred not seen in
image or NDVI. Origanal
LS useful for training mi-
nus difference image. http
s://www.nrk.no/vestland/
ras-stengjer-e39-mellom-
eid-og-stryn-1.14360892

142 Skredestranda

26 0.5 2020-02-01 Not able to see in 2020,
but in 2021. It might be
the leveling after that we
see. In that case it will not
be possible to see.

143 Kirkebygda
Enebakk

28 0.5 2020-02-11 Maybe one visible LS. Long
and narrow.

144 Veikledalen

29 0.5 2019-12-29 Old landslide scar visible,
but no change observed
around date of occurance.

144 Sogndal
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30 0.5 2018-05-08 Some small LS-scars ob-
served, but not difference
images. Could still be valu-
able as training data for
non-difference images.

142 Hesthåggån

32 0.5 2020-08-24 Old LS scar visible, but not
able to see new LS

142 Fv 7928 Signal-
dalen

50 0.5 2020-05-14 LS is visible, but appears
as a small blob close to the
road. Not sure if decent
training data.

144 Krokseng Bru

57 0.5 2021-04-04 LS too small to spot? Some
lower NDVI values after
the date, but not con-
firmed in image.

142 Mundheimsdalen
/KVAM

59 0.5 2019-07-30 Some debris detectable in
image, but not very char-
acterstic

142

65 0.5 2019-07-30 Difficult to tell as there
are many old landslides
in the region. A new
LS will not remove any
vegetation. Decent non-
difference-training data.

144 Strandsvollen,
south side of
Jølstravatnet

66 0.5 2019-07-30 Again, diffucult to tell as
there are a few old LS in
the area. Decent non-
deifference-training data.

144 Strandsvollen,
south side of
Jølstravatnet

71 0.5 2021-07-28 LS too recent to be seen
properly. Follows old LS
scar or stream. Decent
training data

144

0 0 2021-04-04 Date reported
(04.15.2021) does not
correspond with NDVI-
break (29.08.2020).
NDVI-break shows up in
almost any point, so it
might be related to re-
gional lighting. (Sorry
my bad, NDVI was set
to average of region) No
landslide visible.

142 Mundheimsdalen
/KVAM

1 0 2021-04-04 Same as FID 0. They are
somehow related to the
same event, but not visi-
ble.

142 Mundheimsdalen
/KVAM

14 0 2021-10-20 Clear NDVI-break, but not
able to see any change in
visual. Most likely a rock
fall.

144 Skjåk

15 0 2018-04-26 Unknown date and not
possible to see. Might be
older than 2018.

144 Tjoflot

20 0 2020-05-22 Landslide not visible in
NDVI or image. Follows
small stream.

142 Almhol

25 0 2019-12-24 Reported as fairly large
quick clay slide, but not
visible from imagery.

143 Løken,
Lillestrøm kom-
mune

27 0 2020-02-11 Many LS reported, but
none visible. Narrow val-
ley with flood slides.

142 Veikledalen

36 0 2020-03-01 Quick clay slide. Not
really easy to see from
image and very small
extent. Leveling sone
in 2021yields low NDVI-
values

143 Leirbekken,
Nannestad
kommune
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41 0 2019-08-19 News report clearly show
LS, but point location is not
precise. I think I have
found correct location of
LS. NDVI-break corrolates
to reported date. LS is
partly obsured by forest.
Hooray, I’m a detective! ht
tps://www.aftenbladet.no
/lokalt/i/2GXqbR/flom-og
-jordras-saudafjorden-se
r-ut-som-glomma-i-glanst
iden

144 Saudafjorden

42 0 2018-09-26 Not verified. Flood slide
that is hidden in the forest.
No visible change.

142 Eventyrskogen
Bønardalen
Årdal

43 0 2020-01-06 Most likely very small slide
not visible from satellite

141 Østerøyvegen
41

44 0 2020-01-03 Slide due to landfill. Not
sure if image show LS or
just landfill… not very use-
able as there’s a lot going
on in the image.

144 Auli

45 0 2019-08-29 Erosion on agricultural
land difficult to spot. No
NDVI result.

144 Akkerhaugen

46 0 2019-04-28 LS in alpine resort, so hard
to detect any changes. LS
mght be very small.

144 Såhaugløypa

47 0 2021-02-28 There has been a large
landslide <1000 m^3, but
for some reason it is not
easy to see in image.

142 Sifjordura øst

49 0 2020-09-22 LS do not show up in im-
age. Not so large and in a
residential area.

144 Storsteinnes

53 0 2019-04-23 Image too ”messy” to spot
the LS.

144 Sandvika

55 0 2021-02-28 No LS spotted in image.
Reported as blocking the
road.

142 Skjellvika

56 0 2021-02-28 LS not visible in image.
Reported as blocking the
road. Probably too small to
leave a scar

142 West of Kvalvika

60 0 2019-07-30 LS too small to spot? Some
forestry in the area will
make it difficult to be sure
on what is LS and not.
Landslidee is probably in-
duced by forestry activity.

142

61 0 2019-07-30 No LS spotted in image.
Runs over an old landslide.

142

62 0 2018-09-26 Not able to see. What
looks like a landslide is
most likely forestry. Re-
port say that LS not visible
from aerial image.

144 KV Liavegen
/SAMNANGER

64 0 2019-08-29 Can’t really see any LS in
this area even though it
was very heavy rain that
night.

144 Fosso /KVAM

70 0 2020-05-14 No clear LS. It has most
likely went in a small
stream, but not large
enough to remove fresh
vegetation.

144 Krokseng bru,
Målselv

72 0 2018-12-31 Not able to spot LS. Too
small?

144 Skredestranda

A12

https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden
https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden
https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden
https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden
https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden
https://www.aftenbladet.no/lokalt/i/2GXqbR/flom-og-jordras-saudafjorden-ser-ut-som-glomma-i-glanstiden


B - Tables

73 0 2021-04-04 Not able to spot LS. Too
small?

142 Mundheimsdalen
/KVAM

A13



C - Maps

C Maps

A14



00

11

22 3344

66
77

1212
1313

1414

1515

1616

1717

1818
1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030
3131

3232

3333

34343535

3636

3737 3838

3939

4040

4141
4242

4343

4444

4545

4646

4747

4848
4949

5050

5151

5252

5353

5454

5555
5656

5757

5858

59596161

6262

6363

6464

6565

6666

6969

7070

7171

7373

7474

Esri, HERE, Garmin, FAO, NOAA, USGS

65
°0

'0
"N

60
°0

'0
"N

70
°0

'0
"N

65
°0

'0
"N

60
°0

'0
"N

25°0'0"E20°0'0"E15°0'0"E10°0'0"E5°0'0"E

25
°0

'0
"E

20°0'0"E15°0'0"E10°0'0"E5°0'0"E

Landslide
detected?

Detected. Post and
pre images
available. Event
date verified or
corrected (32)

Detected. But only
post image
available. (17)

Not detected (26)

0 200 400100 Kilometers



Autom
ation of landslide detection using D

eep Learning
John Isak Furuseth

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e 
an

d 
Pe

tr
ol

eu
m

John Isak Furuseth

Automation of landslide detection
using Deep Learning

Master’s thesis in geotechnology
Supervisor: Ola Fredin
Co-supervisor: Erin Lindsay
June 2022

M
as

te
r’s

 th
es

is


	Preface
	List of Figures
	List of Tables
	List of abbreviations and glossary
	INTRODUCTION
	BACKGROUND
	RESEARCH QUESTIONS
	DESCRIPTION OF STUDY AREAS
	THESIS OUTLINE
	CONTRIBUTION
	SCOPE AND LIMITATIONS

	THEORETICAL BACKGROUND
	REMOTE SENSING FOR EARTH OBSERVATION
	TRAINING DATA RESOURCES [CONSIDER RENAME HEADING]
	CONVOLUTIONAL NEURAL NETWORK (CNN)

	METHODOLOGY
	VERIFICATION OF REPORTED LANDSLIDES
	IMAGE PRE-PROCESSING
	Deep Learning

	RESULTS
	WORKFLOW
	INPUT DATA
	NATIONAL VS. LOCAL DATA SET

	DISCUSSION
	WORKFLOW
	INPUT DATA
	NATIONAL DATA SET VS. LOCAL DATA SET
	SUMMARY OF DISCUSSION
	SUGGESTED FURTHER STUDIES

	Conclusions
	References
	Appendix
	Google Earth Engine Scripts
	Tables
	Maps


