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Abstract

Background: This report looks at the possibility of diagnosing lung cancer us-
ing circulating miRNA. There has been a lot of research in this field, but little
research from a machine learning perspective.

Motivation: Using machine learning to diagnose lung cancer is practical as
current methods for diagnosing lung cancer are resource-intensive and the tumor
is typically found at a late stage when the survival rate is low.

Experiments: I tried to collect all available datasets on circulating miRNA
and lung cancer. Then I tried to find whether there were any patterns in case-
control characteristics using different statistical tests. This includes trying to find
the correlation in log fold change, looking at the proportion of miRNAs that were
differentially expressed in the same way, hierarchical clustering of the datasets
and looking at the consistency in differential expression of miRNAs that meta-
analyses have found to be predictive of lung cancer. I have done machine learning
internally in the different datasets and externally across multiple datasets. There
were some attempts at trying to find higher consistency, including setting an RPM
threshold for sequencing data and removing principal components conjectured to
be noise. I also made a web application for visualizing the data in the different
datasets.

Contributions: The main contributions of this project are to make all available
datasets on circulating miRNA and lung cancer into a common format so that
the work can be built upon by other researchers, and a web application that can
be used by researchers to visualize the data.

Results: The result of this project is that I was not able to find any patterns
in case-control characteristics that could replicate across datasets, with only a
few exceptions. Furthermore, machine learning across different datasets was not
able to learn any patterns in most cases, despite good results when using ma-
chine learning internally in a dataset. The most important exceptions were that
(1) stratification of datasets sometimes gave significant improvement in AUC
when using machine learning across datasets, (2) using an RPM threshold on
sequencing dataset lead to high AUC across the sequencing datasets, (3) model
predictions correlated significantly with case status even when average AUC was
close to 0.50 and (4) case status contributed to the plurality of variance in model
predictions in a PCA analysis.
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Conclusions: Oncology is a field with a low replication rate, which means that
it is important to try to replicate results in order to ensure that they are valid.
This project tried to do this in connection with diagnosis of lung cancer using
circulating miRNAs, and found that findings in single studies rarely have external
validity.
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Sammendrag

Bakgrunn: Denne rapporten ser på mulighetene for å diagnostisere lungekreft
ved hjelp av sirkulerende miRNA. Det har vært mye forskning på dette feltet,
men lite forskning fra et maskinlæringsperspektiv.

Motivasjon: Å bruke maskinlæring for å diagnostisere lungekreft er praktisk
siden dagens metoder for å diagnostisere lungekreft er ressurskrevende og svul-
sten blir vanligvis oppdaget ved senstadium når overlevelsesraten er lav.

Eksperimenter: Jeg prøvde å samle alle tilgjengelige datasett om sirkulerende
miRNA og lungekreft. Deretter prøvde jeg å finne ut om det var noen mønstre
knyttet til kasus/kontroll-status ved å bruke forskjellige statistiske tester. Dette
inkluderer å finne korrelasjonen i log2 foldendring, å finne andelen av miRNA-
sekvenser som ble differensielt uttrykt likt, hierarkisk klynging av datasettene
og å finne hvor konsistent det differensielle uttrykket var for de miRNAene som
metaanalysene har funnet kan prediktere lungekreft. Jeg har gjort maskinlæring
internt i de ulike datasettene og eksternt på tvers av flere datasett. Det var noen
forsøk på å finne høyere konsistens, inkludert å sette en nedre terskel på gjen-
nomsnittlig RPM for sekvenseringsdata og å fjerne prinsipalkomponenter som
ble antatt å skyldes støy. Jeg har også laget en webapplikasjon for å visualisere
dataene fra de forskjellige datasettene.

Bidrag: Hovedbidraget til dette prosjektet er å omgjøre alle tilgjengelige datasett
om sirkulerende miRNA og lungekreft til et felles format slik at dette prosjektet
kan bygges videre på av andre forskere, samt en webapplikasjon som kan brukes
av forskere for å visualisere dataene.

Resultater: Resultatet av dette prosjektet er at jeg ikke var i stand til å finne
noen mønstre i differensielt kasus/kontroll-uttrykk som replikerte på tvers av
datasett, med noen få unntak. Videre var maskinlæring på tvers av ulike datasett
i de fleste tilfeller ikke i stand til å finne noen mønstre, til tross for gode resul-
tater ved bruk av maskinlæring internt i enkeltdatasett. De viktigste mønstrene
som ble funnet var at (1) stratifisering av datasett noen ganger ga signifikant
forbedring i AUC ved maskinlæring på tvers av datasett, (2) det å sette en nedre
terskel på gjennomsnittlig RPM i sekvenseringsdatasettene førte til høy AUC på
tvers av sekvenseringsdatasettene, (3) prediksjoner fra modellene korrelerte sig-
nifikant med kasus/kontroll-status selv når gjennomsnittlig AUC var nær 0,50 og
(4) kasus/kontroll-status bidro til pluraliteten av variasjon i modellprediksjoner
i en PCA-analyse.
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Konklusjon: Onkologi er et forskningsfelt med lav replikasjonsrate, noe som be-
tyr at det er viktig å prøve å replikere resultater for å sikre at de er gyldige. Dette
prosjektet forsøkte å gjøre dette i forbindelse med diagnostisering av lungekreft
ved bruk av sirkulerende miRNA, og fant at resultater i enkeltstudier sjelden har
ekstern validitet.
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Preface

Overall the net consequence of
hospitals is negative. Now that is
just a guess, and it could easily be
wrong, but it also could not be
wrong.

Jordan B. Peterson
Professor emeritus in psychology

at the University of Toronto

This is a master’s thesis for a master’s degree in informatics with a specializa-
tion in artificial intelligence, conducted at NTNU with Pål Sætrom as supervisor.
I want to thank friends and family for their support.

Ole Fredrik Borgundvåg Berg
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Chapter 1

Introduction

This report contains further analysis of the data on circulating miRNA and lung
cancer that were collected in Berg [2021].

1.1 Background and Motivation
Lung cancer is a dangerous disease that takes many lives and that has a low
survival rate (see subsection 2.1.1). It has been suggested by several studies that
circulating miRNA can be used to diagnose lung cancer in humans [Shen et al.,
2013]. This can be useful as it is a less resource-intensive way of diagnosing lung
cancer compared to e.g. CT scans. In addition, it can be used to diagnose lung
cancer earlier, which could lead to a higher survival rate.

There have been done many studies on the connection between circulating
miRNA and lung cancer. Some meta-analyses have found some consistency in
what miRNAs are up- or down-regulated in lung cancer [Zhong et al., 2021;
Huang et al., 2021; Jiang et al., 2018; Yi et al., 2021], whilst Berg [2021] found
little consistency when trying to use machine learning to find patterns across
datasets. However, the analyses in Berg [2021] were very naïve. The goal of this
project is to do a more thorough analysis of the data to try to find more subtle
patterns in the datasets.

1.2 Goals and Research Questions
There are some goals that will guide what is done in this project. As this project
is a continuation of Berg [2021], the overall goal is the same:

1
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Goal: Use algorithms from machine learning to predict lung cancer from levels
of circulating miRNA on a larger dataset.

There were some attempts to achieve this goal in Berg [2021], but the results
were generally poor. However, the experiments had huge limitations, and there
is thus a need for more thorough experiments in this project.

One of the reasons for collecting all the datasets in Berg [2021] was that it
would be easy for other researchers to build on top of the work, as they could use
the transformed datasets and thus save time and effort. I would like to formalize
this into a goal: make the data easily available to third parties.

I will do some revisions on the research questions in Berg [2021] as the results
in that project often revealed some implicit assumptions in the questions that
were either taken for granted or not considered. The first research question
was “Are there machine learning algorithms that generally perform better at
diagnosing lung cancer based on miRNA values?”. The question is interesting,
but one thing that is taken for granted in the question is that it is possible to
diagnose lung cancer based on miRNA data at all. It would be a reasonable
assumption, as there is plenty of literature on the subject. On the other hand,
almost all of the literature is studies that are based on single datasets, and Berg
found that the datasets were very different and that it was hard for a machine
learning model that was trained on one dataset to do well on another dataset.
Berg also found that there was little consistency in the fold change of the different
miRNAs.

Even if there is no reproducible differential expression of miRNA in cases
versus controls, one could compare machine learning algorithms’ internal perfor-
mance in the different datasets. If one algorithm has generally better internal
performance in the different datasets, one might say that this algorithm is better
at diagnosing lung cancer based on miRNA-levels. However, this would not be
very helpful, as there is no external diagnostic value. Thus, I will rather change
the question to be more cautious.

Research question 1: To what extent can one find patterns in case-controls
characteristics that generalize across different datasets?

The second research question in Berg [2021] was “Will a combined dataset
lead have better diagnostic value than each of the datasets alone?”. This ques-
tion is also hard to answer given the results in Berg [2021]. One generally gets
better results when doing training and testing inside one dataset, but what is the
diagnostic value if this internal model has no external validity?

I think this research question needs some revision. A better research question
would be:
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Research question 2: Using multiple datasets, to what extent can you find a
model that is able to diagnose lung cancer in a new dataset, given that the
new dataset has a reasonable quality?

It is hard to say whether that is possible, and it is a less fundamental question
than the first question in that it requires the first question to be true. However,
not finding any evidence does not imply that it is false. Therefore, a lack of
evidence after researching the first question does not mean that I will not research
the second question. However, due to the dependencies of the questions, I will
research the first question first.

There are other minor research questions that might be answered through this
project, but they are more interesting from a medical than a machine learning
point of view:

• What is the level of quality of the different datasets?

• Do the miRNAs have the same diagnostic value across different datasets?

• What miRNAs are most important for diagnosing lung cancer?

• What is the effect of lung cancer on the miRNA-levels?

These minor questions are the same that were asked in Berg [2021].

1.3 Research Method
This project is primarily an experimental one, as one needs to actually train
models on the datasets in order to compare the outcomes. The outcomes of the
machine learning model are quantitative, and thus an analytical approach will
be used. The main theoretical parts of this project are the parts concerning
miRNAs and lung cancer, as the outcomes of the machine learning might help in
understanding the effect of lung cancer on miRNAs, but as these questions are
not related to machine learning directly, they are not the main focus.

1.4 Report Structure
Chapter 2 will include some theory around lung cancer and miRNA, together
with theory around the machine learning and statistical methods and concepts
that are used in this project. Chapter 3 is about how the literature search was
done, and technical details concerning some of the experiments. Chapter 4 is
about how the experiments were performed and their results. Finally, chapter 5
is about the conclusions that are made from the results.
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Chapter 2

Background Theory

This project is a cross-disciplinary one, as it combines machine learning and
medicine, and as such, some theory from both disciplines is necessary in order
to understand the project. Most of the subsections here were originally found
in Berg [2021], as the necessary preliminaries are mostly the same as in the
specialization project.

2.1 Biological Theory
The first major part of the theory is the biological/medical part.

2.1.1 Lung Cancer
Lung cancer is the second most common type of cancer worldwide, and the type
of cancer with the highest total mortality worldwide, causing about 1.8 million
deaths per year [Sung et al., 2021]. Lung cancer is also the cancer type leading to
the most deaths in Norway, amounting to 1500 deaths per year [Cancer Registry of
Norway, 2021]. The most important risk factor related to lung cancer is smoking.
Smoking is estimated to explain about 90% of the risk of lung cancer in men, and
70% to 80% of the risk of lung cancer in women [Walser et al., 2008]. Furthermore,
about 90% of lung cancer deaths in men, and 79% of lung cancer deaths in women
are caused by smoking [Shopland et al., 1991].

There are two main types of lung cancer, Small Cell Lung Cancers (SCLC)
and Non-Small Cell Lung Cancers (NSCLC) [Ciupka, 2020]. Of lung cancer
cases, about 80-85% are NSCLC, whilst 10-15% of the cases are SCLC, and a few
percent are minor types of lung cancer [American Cancer Society, 2019]. NSCLC
cancers tend to grow slower than the SCLC cancer types, and thus SCLC has
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usually already spread when it is diagnosed [American Cancer Society, 2019]. The
NSCLC has three major subtypes: adenocarcinoma (30-40% of NSCLC cases),
squamous cell (30%) and large-cell undifferentiated carcinoma (10-15%) [Ciupka,
2020]. The treatment and prognosis for the different NSCLC subtypes are similar
[American Cancer Society, 2019].

Lung cancer develops in different stages. According to Bernstein [2019], the
main four are:

1. The cancer is only situated in your lung

2. The cancer may have spread to the lymph nodes near the lung

3. The cancer has spread deeper into the lymph nodes and into the middle of
your chest

4. Cancer is widespread throughout your body

The main advantage of diagnosing lung cancer early is that the cancer has
not yet spread to other parts of the body, which means that it can be removed
by surgery [American Cancer Society, 2021]. On the other hand, later stages
might require chemotherapy, radiation therapy or immunotherapy, but as the
cancer has spread widely, this cure will likely not remove the cancer completely
[American Cancer Society, 2021].

2.1.2 MicroRNA
MicroRNAs (miRNAs) are short sequences of RNA, about 22 nucleotides each,
that regulate the expression of mRNA by binding to the target mRNA-sequence
and thus stopping it from being translated. Circulating miRNA has been found to
be a biomarker for many diseases, including cancer, infectious diseases and mental
illnesses [Correia et al., 2017; Kosaka et al., 2010; Geekiyanage et al., 2012; van
den Berg et al., 2020]. miRNA-sequences are usually named with “miR” as prefix
and a unique number as suffix. The most commonly used database with known
miRNA-sequences is the miRBase database [Griffiths-Jones et al., 2006].

2.1.3 MicroRNA and Lung Cancer
The overall roles of miRNAs in relation to lung cancer are not fully understood
[Uddin and Chakraborty, 2018]. MicroRNAs are thought to function both as tu-
mor suppressor genes and as oncogenes, and tumor miRNA expression profiles can
distinguish tumors from normal tissue, distinguish tumor subtypes and predict
survival [Lynam-Lennon et al., 2009]. Moreover, multiple studies report differen-
tial expression of circulating miRNA-sequences in cancer patients compared to
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healthy controls, which results in expression of miRNA being a promising method
for diagnosing lung cancer [Uddin and Chakraborty, 2018].

2.1.4 MicroRNA profiling methods
There are several methods for measuring levels of miRNA. The most common ones
are qRT-PCR, microarrays and sequencing. Here is a very high-level description
of the different methods. For more technical details see e.g. Pritchard et al. [2012].
The different technologies typically have different advantages and disadvantages.

2.1.4.1 qRT-PCR

Quantitative Reverse Transcription - Polymerase Chain Reaction (qRT-PCR) is
a common method of measuring miRNA-levels. As the name implies, the process
depends on reverse transcription, where miRNA is reverse transcripted, using
the enzyme reverse transcriptase, into complementary DNA (cDNA). Then poly-
merase chain reactions are initiated and monitored in order to measure miRNA-
levels.

In qRT-PCR, one needs a primer for each miRNA-sequence that is going to
be measured. Therefore, it can only measure miRNA-sequences that are decided
beforehand. The main advantage of qRT-PCR is that it is the most sensitive
method of the different technologies [Pritchard et al., 2012], which means that
the results are more accurate and that it also works well when the concentration
of miRNA is low.

2.1.4.2 Microarrays

Microarrays are what is called a hybridization method. It starts similarly to qRT-
PCR, by converting miRNA into cDNA, but the miRNA is fluorescently labeled
in this case. The microarray has several spots, each with single-stranded DNA
samples (called probes) that are mounted to the microarray. When the cDNA is
added to the microarray, the cDNA will bind to the DNA samples that have the
same sequence, in a process called hybridization. Afterward, the microarray is
washed clean, and only the cDNA that has managed to bind will remain. Thus,
by checking for the fluorescence of the different spots, one can find which DNA-
probes had cDNA bind to it, and which had not. The level of fluorescence is then
a measure of the concentration of the corresponding miRNA-sequence.

The main advantage of microarrays is that it is the cheapest of the main tech-
nologies [Pritchard et al., 2012]. The disadvantages are that it has low sensitivity
and that you have to decide beforehand what miRNA-sequences you want to
measure, as you need to populate the microarray with the corresponding DNA-
probes.
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2.1.4.3 Sequencing

Sequencing also starts with converting miRNA into cDNA. A primer is then
connected to the cDNA in one direction. The sequencing step works by adding
fluorescent bases one by one, and then see if they add to the sequence starting
with the primer. Thus, one can read out the sequence of the cDNA.

The main disadvantage of sequencing is that it is expensive [Pritchard et al.,
2012]. It is also less sensitive than qRT-PCR. The main advantage, however, is
that you do not need to decide beforehand the miRNA-sequences you want to
measure.

2.1.5 Types of blood fractions
When doing blood profiling, there are different ways to process and filter the
blood depending on what parts of the blood one wants in the final sample. There
are three different main types.

2.1.5.1 Whole blood

Whole blood is the simplest type, as it is the blood that runs through your body
without any filtering. It might be added anticoagulant, as blood will naturally
start clotting outside of the human body unless something is done.

2.1.5.2 Serum

Here you let the blood clot, which means that no anticoagulant is added. When
you let the blood clot you end up naturally with a liquid and a solid part, whereas
the serum is the liquid part. The solid part has cells, including red blood cells
that are thus filtered out. To separate the liquid and solid parts, centrifugation
is often used.

2.1.5.3 Plasma

Here you add anticoagulant and then apply centrifugation. Again, the sample
will separate into two parts, but here both parts are liquid. The heavy part with
all the blood cells will fall to the bottom, and you get a clear liquid at the top.
The clear liquid on the top is what is the plasma. One main difference from
serum is that plasma contains fibrinogen, which is a protein that is converted to
fibrin in blood clotting.

One important thing to note is that serum and plasma are very similar liquids,
while whole blood has a different consistency as it contains many cells, especially
red blood cells.
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Figure 2.1: Mean and variance in different miRNA-sequences in Duan et al. [2021]

2.2 Machine learning/statistical theory

The second major part of this project is the machine learning.

2.2.1 Variance stabilizing transformation

In miRNA measurements, one often sees that the variance in miRNA concentra-
tion is a function of the mean miRNA concentration. One possible transformation
is the log transformation where one takes the logarithm of the data. That can
change a curve where Var[Y ] ∝ E[Y ]2 into a curve where the variance of Y is
independent of the mean of Y . One example of this can be seen in Figure 2.1.

Another advantage of a variance stabilizing transformation is to ensure that
the data is not skewed. Other statistical tools like explained variance (subsec-
tion 2.2.5) assume that the underlying data has a normal distribution. A normal
distribution, however, has no skew, therefore unskewing the data is necessary for
ensuring that other methods are giving valid results. More formally, if we assume
that Y ∼ g(X) for some function g and that X ∼ N(µ, σ), then doing the trans-
formation y′ = g−1(y) ensures that our variables are normally distributed. In
particular, if we assume that g(X) = eX , then the log transformation will ensure
that our data is normally distributed.
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2.2.2 Fold change
Fold change is defined as the ratio of a certain value between two different pop-
ulations. In this project, the fold change used is typically the ratio of levels of
a certain miRNA-sequence between cases and controls. Log fold change is the
logarithm of the fold change (by convention log2 is used in this area of research).
Furthermore:

Fold change = a

b

Log fold change = log2

(a
b

)
= log2 a− log2 b

In other words, the log fold change is the difference in miRNA expression
when the data are log transformed.

2.2.3 Loess regression
Loess regression is also sometimes called local regression, and it is a type of regres-
sion that is made for smoothing scatter plots [Cleveland, 1979]. The regression
works by fitting a low degree polynomial for each data point. The fitting of each
polynomial works by giving weight to nearby points that are used for fitting the
polynomial, where more weight is given to points near the original data point.
The regression value for each data point is thus the value of the corresponding
polynomial evaluated in this point.

Loess regression is practical when the mean and the variance still are not
independent after a log transformation. Using loess regression can ensure that
they become independent.

2.2.4 Principal component analysis
Principal component analysis (PCA) is a method of data reduction, where a
dataset in Rn is projected down on a lower-dimensional vector space Rm. The
projection in PCA is the projection that ensures that most of the variance of
the original dataset is kept in the 1 ≤ k ≤ m first principal components, whilst
ensuring that the projection is not expanding the dataset. One of the main
advantages of PCA is that you could project a dataset down to just two or three
dimensions, which makes it possible to plot the dataset.

2.2.5 Explained variance
Explained variance is a way of analyzing the sources of variance in a dataset. Us-
ing linear regression, one assumes that the dependent variable y = [y1, y2 . . . yn],
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covariates X and residuals ε ∼ N(0, σ) have the relationship y = Xβ+ε, for some
parameter vector β. Furthermore, let ȳ be the mean of the y’s, i.e ȳ = 1

n

∑n
i=1 yi.

If one creates a linear regression model of the dataset, one gets a param-
eter vector β̂ which is the maximum likelihood estimate of β, and predictions
ŷ = Xβ̂ for y. Also, define SST =

∑n
i=1 (yi − ȳ)

2 as the total sum of squares,
SSR =

∑n
i=1 (ŷi − ȳ)

2 as the sum of squares due to regression and SSE =∑n
i=1 (yi − ŷi)

2 as the sum of the squared estimates of errors. Then we have the
following relationship:

SST = SSR+ SSE

The proportion of the empirical variance that can be explained by the covari-
ates is thus

R2 =
SSR

SST

2.2.6 Wilcoxon signed-rank test
Wilcoxon signed-rank test is a statistical test to find the location of a distribution
[Wilcoxon, 1945; Pratt and Gibbons, 1981]. More formally, if X1 and X2 are
independently distributed with cumulative distribution function F , and

p = P

(
1

2
(X1 +X2) > 0

)
then the test is testing the null hypothesis p = 1

2 against the alternative hypothe-
sis p 6= 1

2 . The median of 1
2 (X1+X2) is called the pseudomedian of F . F is called

symmetric about µ if f(µ + x) = f(µ − x). Furthermore, F is called symmetric
if there exists such a µ. If F is symmetric, the median and the pseudomedian
are the same. Thus, if F is assumed to be symmetric, the null hypothesis is
equivalent to that the median of F is µ = 0, against the alternative hypothesis
that µ 6= 0.

If one has pairs (X,Y) where X ∼ FX and Y ∼ FY , with the null hypothesis
FX = FY , then under the null hypothesis X − Y has a symmetric distribution
(as the distribution is the same as Y −X as X and Y are interchangeable) and
it has a median of 0. Let X−Y have a cumulative distribution function FX−Y .
If FX 6= FY , it cannot be guaranteed that FX−Y is symmetric. However, one
can instead test the null hypothesis that FX−Y is symmetric around 0 against
the alternative hypothesis that FX−Y has a median not equal to 0 (and is not
necessarily symmetric).

2.2.7 Bonferroni correction
A Bonferroni correction is a correction that is done when doing multiple testing
to avoid false positives [Bonferroni, 1936]. The correction is in order to control
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the family-wise error rate (FWER). FWER is the probability of at least one type
I error when testing several hypotheses simultaneously. The correction is based
on Boole’s inequality:

P (

n⋃
i=1

Ai) ≤
n∑

i=1

P (Ai)

for all possible events Ai. Letting Ai be the event that one makes a type I error
in hypothesis i, and letting n be the number of hypotheses gives that FWER
= P (

⋃n
i=1 Ai). Setting a significance level α0 for each hypothesis gives that

P (Ai) ≤ α0. Then:

FWER = P (

n⋃
i=1

Ai) ≤
n∑

i=1

P (Ai) ≤ n · α0

If we want FWER ≤ α, this can be achieved by setting α0 = α
n .

2.2.8 Interval using t-distribution
Given that I have n random variables X1,X2, . . . ,Xn where Xi ∼ N(µ, σ2),
then what is the conditional distribution of Xk, k ∈ {1 . . . n}, if we are given the
sample mean (X̄) and the sample variance (S2 = 1

n−1

∑n
i=1

(
Xi − X̄

)2)?
We have that E[Xk − X̄] = E[Xk]−E[X̄] = µ− µ = 0. Furthermore:

Var[Xk − X̄]

=Var[Xk − 1

n

n∑
i=1

Xi]

=Var[−n− 1

n
Xk +

1

n

n∑
i=1
i 6=k

Xi]

=Var[−n− 1

n
Xk] +Var[

1

n

n∑
i=1
i 6=k

Xi]

=
(n− 1)

2

n2
Var[Xk] +

1

n2

n∑
i=1
i 6=k

Var[Xi]

=
(n− 1)

2

n2
σ2 +

n− 1

n2
σ2

=
n− 1

n
σ2
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Thus:

Xk − X̄√
n−1
n σ2

∼ N(0, 1)

We know that (n − 1)S
2

σ2 ∼ χ2
n−1. And if Z ∼ N(0, 1) and V ∼ χ2

v are
independent then:

Z√
V
v

∼ Tv

Thus, this will be an approximation of a such interval:
Xk−X̄√

n−1
n σ2√

(n−1)S2

σ2

n−1

=
Xk − X̄√

n−1
n S2

∼ Tn−1

It is only an approximation as Xk − X̄ is not independent of S2.
Finally, an approximate α-interval for Xk is:

−t1−α/2,n−1 ≤ Xk − X̄√
n−1
n S2

≤ t1−α/2,n−1

X̄− t1−α/2,n−1

√
n− 1

n
S2 ≤Xk ≤ X̄+ t1−α/2,n−1

√
n− 1

n
S2

2.2.9 Logistic regression
Assume that you have Bernoulli trials where each yi ∼ Bernoulli(pi) with the
relationship:

pi
1− pi

= ex
T
i β

for some covariates xi and some parameter vector β. Then one can show that

pi =
1

1 + e−xT
i β

A logistic regression model can find β̂, the maximum likelihood estimate of β.
Logistic regression is a relatively simple classification model, and in the studies

used in this project, logistic regression is the most commonly used model for
diagnosing lung cancer based on miRNA-levels.
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2.2.10 Support Vector Machine
A support vector machine (SVM) is a machine learning algorithm that works by
creating boundaries in high dimensional vector space [Cortes and Vapnik, 1995].
The easiest form of SVM is a binary linear SVM. Then the algorithm creates
a hyperplane in the data space that separates the two classes in an optimal
way, where different loss functions would lead to different hyperplanes being
optimal. If the data is linearly separable, then a linear SVM would create a
perfect separation.

However, the data is often not linearly separable, but might be separable with
a more complex boundary. In these cases, one can use a kernel SVM. A kernel
SVM would map the data onto a higher-dimensional space, where the data is
linearly separable [Patle and Chouhan, 2013]. A common kernel, which is default
in scikit-learn, is the radial basis function (RBF) kernel [Chang et al., 2010].
RBF is a kernel that is based on radial distances between points, where points
have exponentially less influence on each other as the distance between points
grows.

2.2.11 Random Forest
A decision tree is a tree-like model, where at each internal node the next node is
further down the tree. Which node is next is based on the decision criterion in the
current node. The decision criterion is a condition on your data point. Finally,
leaf nodes have the classification of the data point. Decision tree learning is when
one learns these criteria based on data to find an optimal classification [Hastie
et al., 2009]. A random forest is a classifier where one trains multiple trees, where
each three is trained on a subset of the training set. Having each tree being trained
on only a subset of the training set is a way of reducing overfitting. The overall
classification is then given by aggregating the results from the classification given
by the different trees [Hastie et al., 2009].

2.2.12 XGBoost
XGBoost is a machine learning algorithm that is based on gradient tree boosting
[Chen and Guestrin, 2016]. Boosting algorithms are machine learning algorithms
that combine weak models into stronger models, by using the combined output
of several weak models. Gradient boosting is a type of boosting algorithm that
uses an idea similar to gradient descent to find optimal weights given to each of
the weaker models [Friedman, 2001]. Instead of using the gradient directly, the
algorithm just ensures that the weights are updated such that the loss function
is lowered in each step. Gradient tree boosting is gradient boosting where the
weak models are decision trees. XGBoost’s decision trees have default directions
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of descending in the tree if there are missing data, thus good handling of missing
values is one of XGBoost’s biggest advantages.

XGBoost is a popular machine learning algorithm on the machine learning
contest site Kaggle1, winning 17 of 29 contests in 2015 [Chen and Guestrin, 2016].

1https://www.kaggle.com

https://www.kaggle.com
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Chapter 3

Methodology

For a description of the data processing, see Berg [2021].
This project consists of the following steps:

1. Checking if there are properties of the datasets (like the type of technol-
ogy used for measuring miRNA) that contribute to the log fold change
correlation.

2. Finding whether there is evidence that there are patterns in miRNA expres-
sion that are consistently found to be related to case-control characteristics.

3. Finding whether there are structural differences between the datasets by
seeing whether a machine learning algorithm can distinguish samples from
different datasets.

4. Finding datasets that are similar to each other using hierarchical clustering
algorithms.

5. Do machine learning internally in each dataset, as it would be close to an
upper threshold on the accuracy that can be found across datasets.

6. Try to find one or more miRNA-sequences that are consistent biomarkers
for lung cancer using meta-analyses and the datasets.

7. PCA analysis using several datasets at once.

8. Machine learning on multiple datasets that are joined in different ways.

9. Looking for noise in PCA components.

10. Checking for optimal RPM thresholds in sequencing data.

17
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11. Checking for red blood cells in the data.

12. Creating a web application for visualizing the data.

The methodology only includes experiments where additional details are needed.
All experiments are described in the results.

3.1 Structured Literature Review Protocol
The literature review was done in Berg [2021] and the same explanation can be
found there, but is also added here for completeness.

The point of the literature search was to find studies relevant to circulating
miRNA and lung cancer. The main search engine used was PubMed1, which is a
commonly used search engine for medical literature. The search term used was:

(lung OR pulmonary OR NSCLC) and (tumor OR cancer OR carcinoma) and
(microRNA* OR miRNA* OR miR*) and (diagnosis OR biomarker OR detection)
and (serum or plasma or "whole blood")

In addition, I searched databases that have public gene expression data, as de-
scribed in Table 3.1.

Table 3.1: Search in public gene expression databases. The first column is the
name of the database. The second column is the search term that was used to
search the database.

Database name Search term
ArrayExpress2 microrna lung cancer
Gene Expression
Omnibus (GEO)3

(mirna OR microrna) AND "lung cancer"
AND (diagnosis OR detection)

OmicsDI4 "lung cancer" AND TAXONOMY: 9606 AND -
"breast cancer" AND (mirna OR microrna)
AND (serum OR plasma OR "whole blood")

The inclusion criteria were based on what datasets I thought were relevant to
this project:

• The paper is an experiment where circulating miRNA is measured.
1https://pubmed.ncbi.nlm.nih.gov/
2https://www.ebi.ac.uk/arrayexpress/
3https://www.ncbi.nlm.nih.gov/gds
4https://www.omicsdi.org

https://pubmed.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/gds
https://www.omicsdi.org
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Some of the studies measured miRNA levels in the lung tissue or in the sputum,
rather than measuring circulating miRNA. As the values are somewhat different
between lung tissue miRNA and circulating miRNA [Petriella et al., 2016], only
the circulating miRNA ones were selected in order to have a consistent dataset. In
addition, the research question was to look at the diagnostic value of circulating
miRNA, which makes it reasonable to only use circulating miRNA data.

• The study both has people diagnosed with lung cancer and controls not
diagnosed with lung cancer.

The controls in some of the studies are not healthy, but suffer from other
kinds of lung diseases. Other studies have both healthy controls and controls
with other lung illnesses. Both are relevant, as on one hand, one would like to see
the difference between healthy controls and patients with lung cancer in order
to find what miRNA changes are due to the lung cancer. On the other hand,
people who are getting checked for lung cancer often have lung issues, which is
the reason for their checkup, so distinguishing lung cancer from other illnesses is
important.

Some studies were excluded as they did not have a control group like Mitchell
et al. [2017].

• At least four different miRNA-sequences were measured.

The point of this project is to combine and compare datasets. Having few
miRNA-sequences measured makes it hard to combine datasets, as there is a high
likelihood that there are no overlapping miRNA-sequences between the datasets.

• Meta-analyses were used as a source of relevant studies.

Some of the studies found were meta-analyses. In that case, relevant studies
were retrieved from the references of the meta-analysis.

3.2 Technical setup

In Table 3.2, the main software used in this project is listed.



20 CHAPTER 3. METHODOLOGY

Table 3.2: Software used in this project. The first column is the name of the
software, the second column is the version of the software and the last column is
the usage of the software.

Software Version Usage
Python5 3.9.7 Programming language
NumPy6 1.20.3 Numerical calculations with vectors and matrices

scikit-learn7 0.24.2 Machine learning
XGBoost8 1.4.2 XGBoost machine learning algorithm
SciPy9 1.7.1 Scientific programming

3.3 Evidence for consistently differentially expressed
miRNA-sequences

There are multiple ways to find out whether there are miRNAs that are consis-
tently differentially expressed.

3.3.1 Paired sign test
A paired sign test is in this case an experiment trying to estimate the probability
that a miRNA-sequence is differentially expressed in the same direction (up-
or down-regulated in cancer) in two different datasets. This will be done by
finding all pairs of studies where both have a given miRNA, and then find the
differential expression of the given miRNA in the two studies. This will be done
for all miRNAs, resulting in one pair for each time two studies have measured
the same miRNA. By looking at all these pairs, it is possible to calculate the
wanted probability by looking at the proportion of such pairs that have differential
expressions in the same direction. One question is whether one should only
consider pairs where both miRNAs are significantly differentially expressed, i.e.
a p-value less than 0.05 on a t-test of the log fold change, or not. One advantage
of only considering significantly differentially expressed miRNAs is that when the
difference is not significant, it is more likely that the sign of the difference is only
due to chance. On the other hand, if a miRNA is significantly up-regulated in one
study, but not significantly regulated in another study, this lowers the consistency

5https://www.python.org
6https://numpy.org
7https://scikit-learn.org/
8https://xgboost.readthedocs.io/
9https://scipy.org

https://www.python.org
https://numpy.org
https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://scipy.org
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of the differential expression. Due to the advantages and disadvantages of both
options, I will report using (1) only pairs where both are significant, (2) pairs
where at least one is significant and (3) all pairs, and corresponding p-values that
the different probabilities are larger than 0.50 using a binomial test.

3.3.2 Signed-rank test with cross validation
Another way to find whether there is any consistency in the differential expression
of miRNA is to use Wilcoxon signed-rank test (see subsection 2.2.6). This will
be done by looking at the log fold change in a miRNA-sequence across different
studies, and then use the signed-rank test to find whether the miRNA-sequence is
significantly up- or down-regulated across studies, by looking at the signed-rank
test of median differential expression of the miRNA-sequence, and whether this
median is positive or negative.

3.3.2.1 Using t-test results as values for signed-rank test

As seen in Berg [2021], there is a large difference in the number of samples in
the different datasets, which means that using raw log fold chance might lead
to small datasets having a big impact on the signed-rank test due to chance.
Therefore, I will also do an experiment where instead of using log fold change
in the signed-rank test, I will use the p-value of a t-test instead. Then, datasets
with more samples get a larger impact as they have more statistical power. More
formally, I will do a two-sided t-test of the log fold change and use sgn(t-value)

p-value as
the value for the signed-rank test. Notice that the sign is the same as the log fold
change, and that the absolute value of the fraction is inverse proportional to the
p-value. As the signed-rank test only considers the rank of the value, and not
the absolute value, any function decreasing by increasing p-values would work,
including this.

3.3.2.2 Cross validation

Firstly, to ensure external validity of the results of the signed-rank test, I will do
a test where I do a signed-rank test on all studies, except two that are exempted.
Then I will look at the 10 most and 10 least consistently differentially expressed
miRNA-sequences based on the signed-rank test, using only miRNAs that are
in at least ten of the studies, where these 20 miRNA-sequences are also in the
two exempted studies. If two exempted studies do not have at least 20 miRNA-
sequences in common that are in at least ten of the other datasets, that pair
of studies will not be exempted together. Otherwise, all pairs of two datasets
will be tried as exempted datasets. If there is a larger consistency in the two
exempted datasets in the expression of the miRNAs that had the most consistency
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in the signed-rank test, that would suggest that the signed-rank test has external
validity. The consistency in the two exempted datasets will be calculated similarly
to subsection 3.3.1, i.e. the proportion of miRNAs that have the same direction of
differential expression is compared between the 10 most and 10 least consistently
differentially expressed miRNA-sequences in the signed-rank test.

3.3.2.3 Finding most consistently differentially expressed miRNAs

By using the signed-rank test on all the datasets, one can find the miRNA-
sequences that are the most consistently differentially expressed in the datasets.
This will both be done using log fold change and using t-test results as the
value in the signed-rank test. Thereafter, I will find the 10 most consistently
differentially expressed miRNAs using each of the two possible metrics for the
change in miRNA expression. The p-values will be adjusted using a Bonferroni
correction, to adjust for the multiple testing.

3.4 Hierarchical clustering of datasets
The clustering will be computed using scipy.cluster.hierarchy.linkage in
SciPy with “ward” as method. The distance will be the mean of the squared
difference in log fold change for each miRNA-sequence that the two datasets
have in common. I.e. if xi and yi are the log fold changes in miRNA i in the two
datasets, and there are n miRNA-sequences in common between these datasets.
Then the distance is

dist(x, y) = 1

n

n∑
i=1

(xi − yi)
2

The results will be visualized in a dendrogram.

3.5 Machine learning on single datasets
I will train four different models on each dataset using logistic regression, SVM,
random forest and XGBoost. The models will be tested using AUC, and the
AUC will be calculated using cross validation where the dataset is split into
c = min(5,#Cases,#Controls) equal parts and for each of the c parts, there will
be a round where the model is trained on the c−1 other parts of the dataset and
tested on the last part. The resulting AUC will be the average over the c rounds.

3.6 Machine learning using multiple datasets
There are multiple ways to do machine learning using multiple datasets.
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3.6.1 Using the most replicated miRNA-sequences from
the meta-analyses

I will select the datasets that have all the miRNA-sequences that were most repli-
cated in the meta-analyses, and train a logistic regression model using leave-one-
out cross validation. One dataset is chosen as the test dataset in each iteration,
whilst the model is trained on the other datasets. The samples will be weighted
so that the sum of weights in each dataset is the same, and the weights of all
samples in the same dataset are the same.

3.6.2 Training on two datasets

I will train different machine learning models on two datasets and try to predict
on a third dataset, and then compare the results to the results that are found by
training the model on only one of the datasets. The results will only be considered
if the three datasets have at least 10 miRNA-sequences in common, to ensure the
datasets are similar enough. The samples will be weighted so that the sum of
weights in each dataset is the same, and the weights of all samples in the same
dataset are the same.

3.7 Finding RPM threshold for sequencing data
More precisely, I will make cutoffs on 0, 1, 10, 100 and 1000 mean RPM (reads
per million) in the sequencing datasets, where all miRNA-sequences that have a
lower average read than the threshold are filtered out.

I will train on the sequencing datasets using leave-one-out cross validation,
i.e. using all datasets except one test set, and take the average AUC when the
different datasets are used as test datasets. This will be done for all the different
thresholds. I will use two different models. Firstly, I will train a logistic regression
model, using the miRNAs that the datasets have in common. Afterward, I will
train an XGBoost model using the union of the miRNAs in the different datasets,
and setting missing values to NaN.

3.8 Creating a web app for visualizing data
One goal of this project was to make data easily available for other researchers
to explore. Therefore, would make a web application where one can visualize
the data easily. The web application was made using the front-end framework



24 CHAPTER 3. METHODOLOGY

React10 for the main application and Plotly.js for graphs11.

3.8.1 Pairwise machine learning
The pairwise machine learning between two pairs of datasets is calculated as
follows: First, the intersection of miRNA-sequences between the two datasets is
computed. If the size of this intersection is smaller than four, then the pair is
skipped. Otherwise, the following AUCs are calculated:

• The mean AUC when using a min(5,#cases,#controls)-fold cross valida-
tion in the first dataset, only using the miRNAs that are in common for
the two datasets.

• The mean AUC when using a min(5,#cases,#controls)-fold cross valida-
tion in the second dataset, only using the miRNAs that are in common for
the two datasets.

• The AUC when you train on the first dataset and test on the second dataset.

• The AUC when you train on the second dataset and test on the first dataset.

This calculation is done once for each of these four different machine learning
models: logistic regression, SVM, random forest and XGBoost.

10https://reactjs.org/
11https://plotly.com/javascript/

https://reactjs.org/
https://plotly.com/javascript/


Chapter 4

Experiments and Results

The main goal of this work was to use machine learning algorithms to identify
individuals with lung cancer from their levels of circulating miRNA. This chapter
describes the experiments done toward this goal. Specifically, I present the stud-
ies included in the experiments (section 4.2), investigate pairwise correlation in
case-control differences between the studies (section 4.3), evaluate to what extent
there is evidence that individual miRNAs are consistently differentially expressed
across studies (section 4.4), find to what extent machine learning algorithms can
distinguish samples from different datasets (section 4.5), find a hierarchical clus-
tering of the datasets based on their differential expression in miRNAs between
cases and controls (section 4.6), do machine learning on case-control status in-
ternally in each dataset (section 4.7), find a single miRNA-sequence to use as
baseline across datasets (section 4.8), find if any principal components in the
biggest datasets have any association with case-control status (section 4.9), do
machine learning across different datasets (section 4.10), group datasets based on
characteristics and do machine learning in each group (section 4.11), find whether
the largest principal components are noise and whether their removal is benefi-
cial (section 4.12), find whether an RPM threshold for miRNAs in sequencing
datasets is beneficial (section 4.13), explore whether samples are contaminated
by red blood cells (section 4.14), create a web application for visualizing the data
(section 4.15) and do some further exploration based on the visualizations in the
web application (section 4.16).

4.1 Code and data availability
All code and results used in this project can be found on GitHub (https://
github.com/OleFredrik1/masterthesis). The normalized data is available at

25
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https://doi.org/10.5281/zenodo.6568981. The code and calculation for the
web application is available in the GitHub repository, and at time of publication a
live demo is available at https://mirna-visualizer.netlify.app/. A preprint
of an article based on this project is found in appendix A.

4.2 Studies included
Current literature is replete with studies investigating the potential of circulating
miRNAs for lung cancer diagnosis, but for such studies to be useful for machine
learning analyses and for replication purposes, the data from individual miR-
NAs and individuals should be available. To identify a large and unbiased set of
studies that had investigated and reported the blood expression profiles of mul-
tiple miRNAs in multiple individuals, including both lung cancer patients and
controls, I did a structured literature review (see section 3.1).

The review identified 123 studies. However, most datasets that were requested
by email were not received. The 26 studies whose datasets that were either
received or were publicly available are: Abdollahi et al. [2019], Asakura et al.
[2020], Bianchi et al. [2011], Boeri et al. [2011], Chen et al. [2019]1, Duan et al.
[2021], Fehlmann et al. [2020], Halvorsen et al. [2016], Jin et al. [2017], Keller et al.
[2009], Keller et al. [2014], Keller et al. [2020], Kryczka et al. [2021], Leidinger
et al. [2011], Leidinger et al. [2014], Leidinger et al. [2016], Li et al. [2017], Marzi
et al. [2016], Nigita et al. [2018], Patnaik et al. [2012], Patnaik et al. [2017],
Qu et al. [2017], Reis et al. [2020], Wozniak et al. [2015], Yao et al. [2019],
Zaporozhchenko et al. [2018]. A basic overview of the different studies is found
in Table 4.1. A more detailed overview of the studies is found in Berg [2021]2.

4.3 Log fold change correlation
Berg [2021] showed that there is little log fold change correlation in the data.
Furthermore, it showed that even though the correlation direction was arbitrary,
there was a significant correlation between the datasets. However, the significance
of the correlation was similar when randomizing the column corresponding to
case-control, which means that the correlation could partially be a result of the
covariance between different miRNA-sequences rather than due to case-control
characteristics. The lack of correlation could be due to the characteristics of the

1Chen et al. [2019] is not the study where the dataset originated from, but it is a study using
the dataset. The dataset is GSE71661 in the Gene Expression Omnibus, and has no citation
listed: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71661

2Abdollahi et al. [2019] is not described in Berg [2021] as the data was received too late for
it to be included.

https://doi.org/10.5281/zenodo.6568981
https://mirna-visualizer.netlify.app/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71661
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different studies, like what particular technology was used for measuring and what
blood fraction was measured. Therefore, a relevant experiment would be to see
whether there is a larger correlation between datasets using the same technology
and blood fraction, contrasted with the correlation when the datasets differ in
these characteristics.

Due to the limited amount of datasets in this project, grouping based on
both characteristics would give too low statistical power to make any conclusions.
Therefore, I will first group by technology, and group by blood fraction afterward.
I will use a t-test to compare the calculated correlations when both datasets are
in the same group to the correlation when only one of the datasets is in a certain
group. To avoid spurious correlations, only pairs of datasets with at least 10
miRNAs in common are considered. The correlation is calculated using Pearson’s
r.

The results from when checking the log fold change correlation where both
datasets are in the same category (the in-group), contrasted with when only one of
the datasets is in the category (the out-group), are shown in Table 4.2. There was
no significant change between the in-groups and the out-groups in any of the cases
if one adjust for multiple testing. This might be due to a lack of statistical power
as there are few datasets in this project. That said, regardless of the significance,
the mean correlation is low. One should also note that, according to Berg [2021],
the correlation seemed to be due to covariance between miRNA expressions rather
than due to case-control characteristics. Therefore, I will replicate the case-
control randomization done in Berg [2021], but only for the in-groups.

The results from randomly assigning case-control status, and then calculating
the pairwise log fold change correlation are shown in Table 4.3. As there is no
significant difference in the correlations, it seems that there was no significant
correlation that could be separated from the effect of covariance between the
miRNAs. There is a difference between the experiment done here and the exper-
iment in Berg [2021], namely that here I look at the direction of the correlation,
while Berg primarily looked at the significance of the correlation. It might be that
the case-control characteristics are the cause of the direction of the correlation,
whilst covariance between the miRNA-sequences is the cause of the significance
of the correlation.

It is hard to test the last hypothesis as the p-values do not have a known
distribution. They are not uniformly distributed as there is a significant corre-
lation between the datasets. They are also far from normally distributed, due
to a very strong left skew, which would make a t-test give misleading results.
One possibility might be to log transform the p-values. The results are shown in
Figure 4.1. Neither are normally distributed, but the distribution of the log trans-
formed p-values seems closer to a normal distribution than the non-transformed
p-values.
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Table 4.2: Pearson’s r of the log fold change between pairs of datasets. The
first column is what group of datasets is selected. The second column is the
mean log fold change correlation for pairs of datasets inside the group. The third
column is the mean log fold change correlation for pairs of datasets where one
of the datasets is inside the group and the other dataset is outside the group.
The fourth and the fifth columns are the result of a t-test where the correlation
coefficients in the in-group and the out-group were compared, with the t-statistic
and the corresponding two-sided p-value.
Note: IG = in-group, OG = out-group

Group Mean IG Mean OG t-value p-value
Microarray 0.049 −0.001 1.980 0.049
Sequencing 0.086 −0.033 1.650 0.103
qRT-PCR −0.007 0.024 −0.519 0.605

Plasma −0.072 0.007 −1.981 0.049
Whole blood 0.116 0.039 1.453 0.149

Serum 0.048 0.013 0.651 0.516

Table 4.3: Pearson’s r of the log fold change between pairs of datasets inside each
group when case-control status is shuffled and not shuffled. The first column is
what group of datasets is analyzed for the row. The second column is the mean
log fold change correlation coefficient when the case-control characteristics are
not shuffled. The third column is the mean log fold change correlation coefficient
when the case-control characteristics are shuffled. The fourth and fifth columns
are the result of a t-test where the correlation coefficients are compared when
shuffled and when not shuffled, with the corresponding t-value and a two-sided
p-value.

Group Mean Non-shuffled Mean Shuffled t-value p-value
Sequencing 0.086 −0.020 1.256 0.245
qRT-PCR −0.007 −0.049 0.492 0.627
Microarray 0.049 0.022 1.029 0.305

Serum 0.048 −0.044 0.875 0.390
Whole blood 0.116 0.029 1.333 0.193

Plasma −0.072 0.020 −1.582 0.119
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Figure 4.1: p-values of the log fold change correlation between each pair of studies
with the same technology or the same blood fraction

The experiment thus becomes to look at the log transformed p-values when
randomizing the case-control assignment and the log transformed p-values with-
out randomization. Then a t-test will be performed to check for a possible differ-
ence in the p-values between the randomized and the non-randomized case. The
t-test showed that the correlation was more significant when the case-control
assignment was not randomized (p = 0.015), which suggests that case-control
characteristics are the cause of some of the significance in the correlations, rather
than it being only due to covariance between miRNA expressions.

None of the differences in Table 4.2 were significant. It might be that some of
the differences would be significant with more statistical power. One possible test
is to test all correlations that are in in-groups to all correlations that are only in
out-groups. This would have more statistical power, with the disadvantage that
it does not say anything about which groups have more internal consistency, as
it seems like it varies between the groups.

The result was that there was still no significant difference between the in-
groups and the out-groups when aggregating over all categories (p = 0.287), which
suggests that the increased correlation in in-groups is either non-existent or too
small to be found with the current number of datasets. Either way, the mean
correlation in the in-group was r = 0.030, which is a very small correlation that
would suggest that case-control characteristics’ effect on log fold change is either
much smaller than the other effects, or the effects cannot be replicated across
datasets. Indeed, Berg [2021] shows using linear regression that the proportion
of variance in the miRNA expression that is due to case-control characteristics
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Table 4.4: Pearson’s r of the log fold change between pairs of datasets when
only stages 3 and 4 are considered compared to when only stages 1 and 2 are
considered, and the result from a t-test between the early and late stage log fold
change correlation coefficients, with a t-value and a two-sided p-value.

Mean Late Mean Early t-value p-value
−0.059 0.004 −0.651 0.521

varies and is generally quite small. The highest proportion is 0.446 in Duan
et al. [2021] and the smallest is 0.009 in Leidinger et al. [2014]. The proportion
found by linear regression is probably overstating the actual proportion due to
overfitting to the data, as the proportion of explained variance was smaller in
datasets with larger sample sizes [Berg, 2021].

4.3.1 Using stages
There is some evidence that suggests that the diagnostic accuracy of microRNA
is somewhat higher in later stages of lung cancer [Yu et al., 2019]. Thus, it might
be valuable to check whether there is a higher log fold change correlation when
only using cancer samples with advanced stages, in this case, stage 3 and 4. The
log fold change is in this case the difference between the mean expression in the
cancer samples in advanced stages and the controls. If the correlation is better
when considering later stages, that might suggest that later stages have more
consistent expression, and thus are easier to diagnose. The test will be a t-test
of the correlation coefficients when only stage 3 and 4 are considered, compared
to the correlation coefficients when only stage 1 and 2 are considered.

The datasets where stage is marked are Abdollahi et al. [2019]; Bianchi et al.
[2011]; Zaporozhchenko et al. [2018]; Duan et al. [2021]; Boeri et al. [2011]; Lei-
dinger et al. [2011]; Qu et al. [2017]; Li et al. [2017]; Nigita et al. [2018]. However,
Duan et al. [2021] only have samples in stages 1 and 2, and is therefore not used
in this analysis. The results when only using advanced stages or only using early
stages are shown in Table 4.4. This shows that there is no significant difference
in the log fold change correlation when only considering late stages compared
to when only considering early stages. The sample size is small, though, which
makes it hard to conclude anything with certainty. However, the results suggest
that there is no large improvement in log fold change correlation when using only
late stage cancer, and if anything the correlation is higher in earlier stages. In-
deed, Yu et al. [2019] suggested that the improvement in the diagnostic value of
miRNA in late stage cancer was relatively small.
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4.4 Evidence for consistently differentially expressed
miRNA-sequences

One question that has to be considered, especially given how Berg [2021] found
that sign of the log fold change correlation was virtually arbitrary, is whether
there is evidence that there exists any consistently differentially expressed miRNA-
sequences at all. By consistently, I mean that it is differentially expressed in the
same direction (up- or down-regulated) across studies. Section 4.8 shows that
some miRNA-sequences are often differentially expressed, but that the direction
is not consistent, which would make diagnosis hard and lead one to question
whether the differential expression was primarily due to case-control characteris-
tics. It is difficult to rule out that there exist any consistently differentially ex-
pressed miRNA-sequences, especially as many of the miRNA-sequences are only
present in a few datasets, which would mean that it would be hard to say whether
the differential expression is due to chance, study characteristics or case-control
characteristics.

4.4.1 Paired sign test
The calculated probabilities that a miRNA-sequence is differentially expressed in
the same way in two different studies are shown in Table 4.5, where the pairs
are filtered on whether the differential expression is statistically significant in the
different studies. The experiment is described in more detail in subsection 3.3.1.
None of the probabilities are higher than 0.50, which suggests that there is no
consistency in the differential expression of single miRNAs. However, there is
still a need to check if there is a confounder in the technology or blood fraction
used in the different studies.

4.4.1.1 Stratification of the datasets

If the differences are due to technology or blood fraction, one might assume
that the consistency is higher when only checking against datasets where these
characteristics are similar. The results from an analysis checking only significant
pairs where both studies share a characteristic are shown in Table 4.6. Whole
blood is the only group that gives significantly better than chance levels. Still, it
was only slightly better than chance level, which suggests that neither technology
nor blood fraction is the cause of the poor consistency.

4.4.1.2 Possible significance levels

One issue that remains is the significance level. I sat a significance level of
p = 0.05, but if the number of miRNAs that are differentially expressed due to
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Table 4.5: The results from an experiment where one takes a pair of datasets that
have measured the same miRNA. Then one checks whether the signs of the fold
change are equal or not equal. The first column is what pairs are used, where
significant means the log fold change was significantly different from zero using
a two-sided t-test and a significance level of 0.05. One or both refers to whether
the differential expression was significant in one or both datasets in the pair. The
second column is the portion of the pairs that have the same sign, or if you know
the sign of one of the datasets in the pair, then it is the probability that the other
dataset has the same sign. Finally, the last column contains a p-value, which is
the resulting p-value from a one-sided binomial test on whether the portion of
pairs with the same sign is larger than 0.50.

Pairs Probability p-value
All pairs 0.495 0.992

One significant 0.497 0.911
Both significant 0.494 0.862

Table 4.6: The results from an experiment where one takes pairs of datasets that
share a certain characteristic and that have measured the same miRNA. Then
one checks whether the signs of the fold change are equal or not equal, only
using pairs where the log fold change was significantly different from zero, using
a two-sided t-test. The first column is what characteristic the datasets in that
row share. The second column is the portion of the pairs that have the same
sign, or if you know the sign of one of the datasets in the pair, then it is the
probability that the other dataset has the same sign. Finally, the last column
contains a p-value, which is the resulting p-value from a one-sided binomial test
on whether the portion of pairs with the same sign is larger than 0.50.

Group Probability p-value
Microarray 0.495 0.912
Sequencing 0.521 0.357
qRT-PCR 0.527 0.164

Whole blood 0.528 0.009
Serum 0.292 1.000
Plasma 0.442 1.000
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Table 4.7: The results from an experiment where one takes a pair of datasets that
have measured the same miRNA. Then one checks whether the signs of the fold
change are equal or not equal, when there is significant differential expression in
both datasets using a two-sided t-test. The first column is the significance level
that is used for the t-test. The second column is the portion of the pairs that
have the same sign, or if you know the sign of one of the datasets in the pair,
then it is the probability that the other dataset has the same sign. Finally, the
last column contains a p-value, which is the resulting p-value from a one-sided
binomial test on whether the portion of pairs with the same sign is larger than
0.50.

Significance level Probability p-value
5× 10−2 0.494 0.862
5× 10−3 0.479 0.987
5× 10−4 0.488 0.796
5× 10−5 0.528 0.0855
5× 10−6 0.519 0.223
5× 10−7 0.529 0.161
5× 10−8 0.534 0.157
5× 10−9 0.543 0.112
5× 10−10 0.534 0.205
5× 10−11 0.516 0.376

case-control characteristics is low, this will lead to a large portion of false positives
among the miRNAs found to be significantly differentially expressed. Due to that,
I tried with different significance levels, and the results are shown in Table 4.7.
There seems to be a general upward trend where a more stringent significance level
results in a higher consistency. However, none of the significance levels result in
a consistency significantly better than chance levels, and the highest probability
is still only very slightly better than chance. Thus, the lack of consistency was
not due to a high significance level or similarly a high share of false positives.

4.4.2 Signed-rank test with cross validation

Here are the results from the signed-rank test including when cross validation
was used, which is another method to check for consistent differential expression
in miRNA.
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Table 4.8: The proportion of pairs that had the same direction of differential
expression in the two excluded datasets, among the miRNAs that were shown to
be most and least consistently differentially expressed in the signed-rank test as
described in subsubsection 3.3.2.2. The t-value is the t-value for the difference
between the two proportions, and the p-value is the corresponding p-value.

Most significant Least significant t-value p-value
0.510 0.479 2.12 0.0337

4.4.2.1 Cross validation

This is an experiment where a signed-rank test is used to find the most and least
consistently differentially expressed miRNAs in a set of datasets, and then one
uses two external datasets to see whether the consistency generalizes. The exper-
iment is described in more detail in subsubsection 3.3.2.2. The results are shown
in Table 4.8. The results suggest that the miRNA-sequences that were the most
consistently differentially expressed in the signed-rank test were somewhat more
consistently differentially expressed in the two excluded datasets. The difference
is significant at a 0.05-level, but there have been done many statistical tests in
this chapter, and adjusted for this multiple testing it is not significant. What
causes this poor consistency? One hint may lay in subsection 4.4.1, which sug-
gests that the consistency in might be better if only looking at pairs where both
are significantly differentially expressed.

Only pairs with significantly differentially expressed miRNAs
Now I will only consider pairs where the miRNA is significantly differentially
expressed in the two excluded datasets using a t-test and a significance level
of p = 0.05. The results are shown Table 4.9. The results show that there is
no significant difference in the proportion of the pairs with the same direction
of differential expression. This suggests that the lack of improvement in the
proportion in subsubsection 4.4.2.1 was not the result of insignificance in the
differential expression in the pairs.

Using t-test results instead of log fold change in signed-rank test
One possible reason for the results in subsubsection 4.4.2.1 could be that small
studies have a big log fold change due to chance. Therefore, I will also try using
the p-value of a t-test in the signed-rank test as explained in subsubsection 3.3.2.1.
The results are shown in Table 4.10. Neither here were there any signs of external
validity in the results from the signed-rank test. Thus, either the signed-rank



36 CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.9: The proportion of pairs that had the same direction of differential
expression in the two excluded datasets, among the miRNAs that were shown to
be most and least consistently differentially expressed in the signed-rank test as
described in subsubsection 3.3.2.2. The miRNA-sequence had to be significantly
differentially expressed in the two excluded datasets in a t-test. The t-value in
the table is the t-value for the difference between the two proportions, and the
p-value is the corresponding p-value.

Most significant Least significant t-value p-value
0.502 0.534 −0.640 0.522

Table 4.10: The proportion of pairs that had the same direction of differential
expression in the two excluded datasets, among the miRNAs that were shown to
be most and least consistently differentially expressed in the signed-rank test as
described in subsubsection 3.3.2.2, with the difference that the p-value of a t-test
of the log fold change was used instead of the log fold change. The t-value in
the table is the t-value for the difference between the two proportions, and the
p-value is the corresponding p-value.

Most significant Least significant t-value p-value
0.486 0.467 1.24 0.215

test is a subpar way to find what miRNAs are the most consistently differentially
expressed, or there are no consistently differentially expressed miRNAs.

4.4.2.2 Signed-rank test

A signed-rank test was done using all datasets. The signed-rank test was done
both using log fold change and t-test results. Using t-test results is explained in
subsubsection 3.3.2.1, and this experiment is explained in more detail in subsub-
section 3.3.2.3. The results are in Table 4.11. As subsubsection 4.4.2.1 suggests
that this test has low external validity, one should be careful when using this
data for conclusions. None of the miRNA-sequences were significantly consis-
tently differentially expressed in the datasets when adjusted for multiple testing,
which could either be because there is no consistently differentially expressed
miRNA-sequence, or there are too few datasets included in this study to get
enough statistical power to find any.
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Table 4.11: The most consistently differentially expressed miRNA-sequences ac-
cording to a signed-rank test as described in subsubsection 3.3.2.3. p-values are
adjusted using Bonferroni correction. The direction is whether the miRNA is up-
or down-regulated in cancer. The headers of the subtables tell whether it is the
log fold change or the results from t-tests that is the input to the signed-rank
test.

(a) Using log fold change

MiRNA p-value Direction
miR-663a 0.891 Up

miR-17 1.06 Down
miR-625-3p 2.78 Up

miR-93 4.09 Down
miR-374a-5p 4.09 Down

miR-106b 5.51 Down
miR-20 6.32 Down

miR-202 7.57 Up
miR-106a-5p 8.24 Down

let-7d 8.24 Down

(b) Using t-test results

MiRNA p-value Direction
miR-663a 1.34 Up

miR-625-3p 3.67 Up
miR-425-3p 4.68 Up
miR-1224-5p 4.79 Up
miR-296-5p 5.68 Up

miR-211 6.23 Up
miR-17 6.98 Down

miR-205-5p 7.79 Up
miR-518f-3p 8.91 Up

miR-483 10.6 Up

4.5 Are datasets separable from each other?
One question arises when the consistency between the datasets is as poor as it
has been shown to be in Berg [2021], namely can one recognize what dataset
a sample is from? Given that there are differences between the datasets, can
one use these differences to recognize a dataset? The way I will test this is using
logistic regression on a pair of datasets where one-third of each dataset is used for
testing and two-thirds is used for training. The model will be trained to separate
samples from the two datasets from each other. Only pairs of datasets with at
least 10 miRNA-sequences in common are considered. The metric to evaluate
the separation is AUC.

Learning a logistic regression model to separate samples from two datasets
lead to a mean AUC of 0.229 and a standard deviation of 0.210. The results
were very poor, and somewhat suspicious, as a random separation would give
an AUC of 0.50. On the other hand, an AUC of 0.229 is good in some sense,
because it separates well, but it mixes up the two categories. I do not know
what caused this result, but there was strong evidence that the datasets could be
separated, and therefore I tried using XGBoost instead. XGBoost gave a mean
AUC of 0.934 with a standard deviation of 0.121. This suggests that the datasets
can be separated from each other, but far from perfectly in general. However,
looking at the AUC values, several had AUC > 0.99, which means that there were
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datasets that were easier to distinguish than others. One question that remains is
whether this knowledge can be used to adjust the datasets so that they are more
comparable. One possibility would be to use linear regression to find expression
patterns that are characteristic of that dataset and then adjust for it. However,
this would not work as the miRNA expressions are already standardized to a
mean of 0, so the linear regression would not find any mean effects of any dataset.
Furthermore, logistic regression performed poorly compared to XGBoost when
trying to separate datasets, which suggests that what distinguishes the datasets
are non-linear patterns, which are hard to adjust for.

4.6 Hierarchical clustering of datasets
Hierarchical clustering of miRNA expressions is a common analysis in this field.
As I want to find patterns in the comparability of the datasets, I will try to cluster
the datasets. This would not only give information about what datasets are more
comparable, but also whether there are clusters of datasets that are closer to each
other, and in that case, what characterizes them. This is somewhat similar to the
analysis in Berg [2021] where Berg created a graph of what datasets were similar.
The difference is that the hierarchical clustering will give clusters of datasets that
are similar to each other, rather than just comparing pairs of datasets.

The results from doing hierarchical clustering of the datasets are shown in
Figure 4.2. The clustering was based on the difference in log fold change as
described in section 3.4. There seem to be a close cluster that includes Wozniak
et al. [2015]; Leidinger et al. [2014]; Patnaik et al. [2017]; Leidinger et al. [2011];
Keller et al. [2014]. It might be that these datasets are close to each other, and
that models trained on one of the datasets would do well on the other datasets.
Testing this hypothesis by using pairs of datasets where one train on one dataset
and test on the other using logistic regression resulted in a mean AUC of 0.520
with a standard deviation of 0.144. Trying to test on one dataset while training on
the others using XGBoost resulted in AUCs with a mean of 0.594 and a standard
deviation of 0.171, which was not significantly higher than 0.500, plausibly due
to the low sample size. Overall, even though this is a cluster, the diagnostic
value across these datasets is relatively low, at least compared to the internal
diagnostic value found in section 3.5.

4.7 Machine learning on single datasets
One question that was asked in section 1.2 was whether more advanced machine
learning algorithms are better at diagnosing lung cancer based on miRNA-levels.
Therefore, I have chosen to do machine learning on single datasets. As seen
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Figure 4.2: Hierarchical clustering of the datasets, where the distance between
the datasets is equal to the mean squared difference in log fold change. Coloring
is for aesthetic reasons.

in Berg [2021], the results when doing machine learning across datasets were
mostly poor. Furthermore, if the connection between miRNA expression and
lung cancer is very sensitive to study characteristics, machine learning across
arbitrary different datasets might not be the best idea, compared to training on
data where the characteristics are known to be the same. I have chosen four
different types of machine learning algorithms to test.

• Logistic regression: It is natural to use as a baseline model to compare
against, as it has been used in many of the studies that are included in this
project.

• Support vector machine: If the data are nearly linearly separable (which
the PCA-plots in Berg [2021] suggest is often the case), this will find such
a separation.

• Random forest: It is a powerful algorithm that is able to generalize well
also on small datasets, as it is an ensemble method.

• XGBoost: Has had the most success in tabled data with limited samples
in Kaggle competitions (see subsection 2.2.12), and is thus a reasonable
algorithm to test.
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The results from machine learning on single datasets are shown in Table 4.12.
The results are from using cross validation on the datasets with the given machine
learning algorithms. A more detailed explanation is found in section 3.5. Random
forest performed best, while XGBoost performed worst. One question is whether
these differences are statistically significant or not. Therefore, I performed t-tests
on the differences in AUC values. The results are in Table 4.13, which shows that
none of the differences were significant. Thus one cannot say that one algorithm
performed better than another in general.

4.7.1 Using stages
Another question is whether there is any difference in AUC between early and
late stage cancer. Therefore, I will train and test a logistic regression classifier
on datasets where stage is labeled, using either only late stage cancer or only
early stage cancer. The training and testing will follow the same cross validation
strategy as in the experiment above. The resulting AUCs when training and
testing a logistic regression model on only late stage cancer or only on early stage
cancer are shown in Table 4.14. The results might suggest that there might be
a higher AUC when only using late stage cancer, however, the statistical power
here is too small to conclude with any certainty.

4.8 Baseline miRNA-sequence
One question, as asked in section 1.2, was what miRNA-sequences would be most
successful in diagnosing lung cancer. This has not only clinical relevance, but is
also important to have as a comparison for a machine learning model, as a compli-
cated machine learning model would be worthless if one single miRNA-sequence
had the same diagnostic value. In addition, there will always be additional costs
associated with measuring more miRNA-sequences in a blood test, therefore ide-
ally one would like to find the simplest model possible.

There are two main types of methods possible for finding such miRNA-
sequences, each with some pros and cons:

1. Look at meta-analyses for finding miRNA-sequences that are found to di-
agnose lung cancer well across studies.

Pros:

• The miRNA-sequences found would be based on more data, and thus
they are likely better.
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Table 4.12: The mean AUC when using cross validation on the given studies
with the given models, as described in section 3.5. The first column says which
dataset is used, and the rest of the columns have a column name that represents
the model used. LR = Logistic Regression, RF = Random Forest

Study LR SVM RF XGBoost
Abdollahi et al. [2019] 0.670 0.814 0.933 0.853
Asakura et al. [2020] 0.734 0.913 0.968 0.939
Bianchi et al. [2011] 0.795 0.852 0.823 0.843
Boeri et al. [2011] 0.783 0.950 0.950 0.575
Chen et al. [2019] 0.882 0.787 0.793 0.623
Duan et al. [2021] 0.900 0.900 0.900 0.800

Fehlmann et al. [2020] 0.977 0.980 0.960 0.980
Halvorsen et al. [2016] 0.985 0.993 0.983 0.933

Jin et al. [2017] 1.000 1.000 1.000 0.980
Keller et al. [2009] 0.950 0.900 0.931 0.800
Keller et al. [2014] 0.847 0.888 0.864 0.815
Keller et al. [2020] 0.956 0.944 0.925 0.967

Kryczka et al. [2021] 0.749 0.658 0.646 0.606
Leidinger et al. [2011] 0.162 0.752 0.705 0.411
Leidinger et al. [2014] 0.160 0.286 0.365 0.528
Leidinger et al. [2016] 0.916 0.903 0.948 0.936

Li et al. [2017] 0.333 0.167 0.833 0.500
Marzi et al. [2016] 0.976 0.969 0.950 0.968
Nigita et al. [2018] 0.700 0.300 0.183 0.233

Patnaik et al. [2012] 0.698 0.883 0.777 0.763
Patnaik et al. [2017] 0.573 0.481 0.476 0.543

Qu et al. [2017] 1.000 1.000 1.000 0.479
Reis et al. [2020] 1.000 1.000 0.957 0.943

Wozniak et al. [2015] 0.494 0.565 0.663 0.689
Yao et al. [2019] 0.800 0.600 1.000 0.400

Zaporozhchenko et al. [2018] 0.242 0.800 0.842 0.642
Mean 0.742 0.780 0.822 0.721
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Table 4.13: The p-values of the difference in mean AUC in Table 4.12 using a
two-sided t-test. The row and column labels represent what algorithms we are
comparing. LR = Logistic Regression, RF = Random Forest

LR SVM RF XGBoost
LR 0.585 0.227 0.761

SVM 0.585 0.503 0.357
RF 0.227 0.503 0.092

XGBoost 0.761 0.357 0.092

Table 4.14: The mean AUC when using cross validation on the given studies when
only using early stage cancer samples or only using late stage cancer samples.
Empty fields mean that there were less than two cancer samples in the dataset,
thus any inference would be impossible.

Study Mean early Mean late
Abdollahi et al. [2019] 0.586 0.726
Bianchi et al. [2011] 0.735 0.634

Zaporozhchenko et al. [2018] 0.500 0.250
Duan et al. [2021] 1.000 *
Boeri et al. [2011] 0.850 1.000

Leidinger et al. [2011] 0.083 0.525
Qu et al. [2017] * 1.000
Li et al. [2017] * 0.333

Nigita et al. [2018] 0.350 0.600
Mean 0.586 0.634
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• The miRNA-sequences are nearly3 independent of the datasets used
in this project, and are therefore mostly unbiased.

Cons:

• The miRNA-sequences that are reported in these meta-analyses are
often not in many of the datasets used in this project.

2. Look at the datasets used in this project to find miRNA-sequences that can
separate cases and controls across the different datasets.

Pros:

• It is easier to limit the search to miRNA-sequences that are found in
many of the datasets in this project.

Cons:

• The miRNA-sequences are biased, as the baseline is the ability of these
miRNA-sequences to diagnose cancer on the datasets, but the miRNA-
sequences were chosen because they diagnosed well on said datasets.

I want to try a hybrid strategy, in order to mitigate the cons of each method.
That is, I want to try to find an intersection between microRNA-sequences that
have been found in meta-analyses to be consistently good at diagnosing lung
cancer and microRNA-sequences that separate well in the studies used in this
project.

There are several ways to measure to which degree a miRNA-sequence can
be used to separate cases from controls. One possibility would be to use the
t-statistic. The advantage of the t-statistic is that it has a known distribution
(given the null hypothesis), and thus one could get to know whether a difference
is plausibly a result of chance or not. The disadvantage of the t-statistic is that
it does not only measure to which degree the miRNA-sequence separates well
in the dataset, but also the statistical power of each dataset. Therefore, large
datasets would be given more weight, and the value could hide to what degree
the miRNA-sequence diagnoses correctly in the dataset.

Another alternative is to use Cohen’s d. The advantage of Cohen’s d is that
it tells to what degree cases and controls are separated independently of the
number of samples in the dataset. The disadvantage of Cohen’s d is that it does
not consider the statistical power at all, and thus one might expect a number
of spurious results when using Cohen’s d. A final statistic is to use AUC. The
advantages and disadvantages are similar to Cohen’s d, with the difference that

3After all, the meta-analyses might be based on some datasets used in this project.
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AUC has the advantage that it is the metric that the results will be measured
against in the end. However, Cohen’s d has the advantage that it also looks at
the size of the difference in expression, and not just whether there is a separation
like AUC does.

After consideration of the different statistics, I found that Cohen’s d and AUC
would be the most appropriate statistics for this purpose, as the t-statistic would
give too much power to the large datasets (which might not be representative at
all) and not tell the actual degree of separation.

4.8.1 Meta-analyses
Meta-analyses gave an overview of the possible miRNA-sequences that can be
used as baselines in this project [Zhong et al., 2021; Huang et al., 2021; Jiang
et al., 2018; Yi et al., 2021], whereas Zhong et al. [2021] was the most thorough
of the meta-analyses. These meta-analyses suggest that the miRNA-sequences
that have been shown to be able to diagnose lung cancer in the most studies are
miR-21 and miR-210, with Zhong et al. [2021] suggesting that miR-182, miR-
155 and miR-17 are in third, fourth and fifth place, respectively. All of these
miRNA-sequences were reported to be up-regulated in cases compared to controls.
However, these results were not representative of the studies used in this project.

Zhong et al. [2021] found that of all studies that they went through miR-21
was significantly up-regulated in cases in 48 studies, and down-regulated in two
studies. However, among the studies used in this project, Patnaik et al. [2012];
Jin et al. [2017]; Leidinger et al. [2016]; Fehlmann et al. [2020] all reported that
miR-21 was down-regulated in cases compared to controls, which suggests that
miR-21 might not be as good of a biomarker for lung cancer as the meta-analyses
suggest. An overview of the reported up- and down-regulation of the aforemen-
tioned miRNA-sequences in the studies in this project is shown in Table 4.15.

Table 4.15 shows that none of the five miRNA-sequences were consistently
up-regulated. However, miR-17 was consistently down-regulated in the sample,
which contrasts with Zhong et al. [2021] which reported that miR-17 had been
up-regulated in 7 studies and down-regulated in one study, if one only looks
at the studies using circulating miRNA. Everything considered, this points to
very inconsistent results across datasets, which suggests that there might be
little consistency, and hard to replicate results. Indeed, Berg [2021] found little
consistency in the datasets that are considered in this study.

4.8.2 Using datasets
The meta-analyses gave some candidate miRNA-sequences that can be used as
baselines in this project, namely miR-21, miR-210, miR-182, miR-155 and miR-
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Table 4.15: Whether the miRNA-sequences were reported to be significantly up-
or down-regulated (p < 0.05) in the studies.
Note: Reis et al. [2020] only report miR-210 and miR-182 to be up-regulated in
adenocarcinoma. In Wozniak et al. [2015] and Keller et al. [2014] abu-miR-155
was measured instead of hsa-miR-155.

Study miR-21 miR-210 miR-182 miR-155 miR-17
Abdollahi et al. [2019] Up
Asakura et al. [2020]
Bianchi et al. [2011] Down
Boeri et al. [2011] Up Up
Chen et al. [2019]
Duan et al. [2021]

Fehlmann et al. [2020] Down Up Down Down
Halvorsen et al. [2016] Down

Jin et al. [2017] Down Down
Keller et al. [2009] Up Up Down
Keller et al. [2014] Down Down
Keller et al. [2020]

Kryczka et al. [2021]
Leidinger et al. [2011] Down
Leidinger et al. [2014] Up
Leidinger et al. [2016] Down Down

Li et al. [2017]
Marzi et al. [2016]
Nigita et al. [2018]

Patnaik et al. [2012] Down Down Down
Patnaik et al. [2017]

Qu et al. [2017]
Reis et al. [2020] Up Up Up

Wozniak et al. [2015] Down Up
Yao et al. [2019]

Zaporozhchenko et al. [2018] Up
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Table 4.16: Cohen’s d of the different miRNAs in the different datasets. Differ-
ence in miRNA expression: case - controls

Study miR-21 miR-210 miR-182 miR-155 miR-17
Abdollahi et al. [2019] -0.784
Asakura et al. [2020] 0.496 0.719 0.427 0.592 0.690
Bianchi et al. [2011] -0.811
Boeri et al. [2011] 0.300 0.004 0.158
Chen et al. [2019] 0.165 0.610 0.147
Duan et al. [2021] -1.723 -0.976 -3.535 -1.631 -0.816

Fehlmann et al. [2020] -0.453 0.002 -0.290 -0.054 -0.542
Halvorsen et al. [2016] -0.311 0.499 0.007 -1.410

Jin et al. [2017] -0.128 -0.132 -1.536 -0.385
Keller et al. [2009] 0.321 1.499 0.617 -0.678
Keller et al. [2014] 0.067 0.208 -0.008 -1.303
Keller et al. [2020] -0.097

Kryczka et al. [2021]
Leidinger et al. [2011] 0.165 -0.102 0.221 -0.663
Leidinger et al. [2014] 0.140 -0.006 -0.035 -0.033 0.131
Leidinger et al. [2016] -0.804 -0.442 -0.756

Li et al. [2017] -0.318 -0.242
Marzi et al. [2016]
Nigita et al. [2018] -0.215 -0.341 -0.309

Patnaik et al. [2012] -1.009 -0.836 -1.044
Patnaik et al. [2017] -0.044 -0.070 0.217 0.254 -0.211

Qu et al. [2017] -1.183 -0.954
Reis et al. [2020] -0.374 1.436 1.265

Wozniak et al. [2015] 0.221 0.013 -0.357 0.429
Yao et al. [2019]

Zaporozhchenko et al. [2018] -0.404 -0.097 -0.456 -0.042 -0.503
Average -0.269 0.109 -0.135 -0.271 -0.454

17. The Cohen’s d and AUC of the miRNA-sequences in the different datasets
are shown in Table 4.16 and Table 4.17 respectively.

Interestingly, the average Cohen’s d of four of the miRNA-sequences was
negative, even though Zhong et al. [2021] found that they were consistently up-
regulated in cancer compared to healthy controls, which again suggests that these
miRNA-sequences are not as good biomarkers for cancer as Zhong et al. [2021]
suggest. Overall miR-210 was the only one that the datasets and the meta-
analyses agree on being up-regulated, which is why I chose that miRNA as my
baseline.
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Table 4.17: AUC when using the expression of the different miRNAs to diagnose
lung cancer in the different datasets

Study miR-21 miR-210 miR-182 miR-155 miR-17
Abdollahi et al. [2019] 0.345
Asakura et al. [2020] 0.630 0.742 0.601 0.660 0.690
Bianchi et al. [2011] 0.256
Boeri et al. [2011] 0.579 0.579 0.588
Chen et al. [2019] 0.506 0.608 0.443
Duan et al. [2021] 0.083 0.389 0.083 0.111 0.417

Fehlmann et al. [2020] 0.359 0.488 0.400 0.472 0.343
Halvorsen et al. [2016] 0.332 0.891 0.641 0.112

Jin et al. [2017] 0.417 0.554 0.141 0.399
Keller et al. [2009] 0.418 0.814 0.672 0.296
Keller et al. [2014] 0.509 0.554 0.499 0.167
Keller et al. [2020] 0.461

Kryczka et al. [2021]
Leidinger et al. [2011] 0.564 0.481 0.598 0.323
Leidinger et al. [2014] 0.548 0.501 0.518 0.479 0.541
Leidinger et al. [2016] 0.218 0.334 0.253

Li et al. [2017] 0.444 0.333
Marzi et al. [2016]
Nigita et al. [2018] 0.425 0.421 0.421

Patnaik et al. [2012] 0.217 0.260 0.230
Patnaik et al. [2017] 0.471 0.477 0.541 0.576 0.449

Qu et al. [2017] 0.194 0.250
Reis et al. [2020] 0.441 0.910 0.918

Wozniak et al. [2015] 0.541 0.533 0.421 0.639
Yao et al. [2019]

Zaporozhchenko et al. [2018] 0.388 0.359 0.256 0.324 0.224
Average 0.412 0.551 0.500 0.443 0.369
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4.9 PCA analysis across datasets

PCA-plots of all the datasets are found in Berg [2021]. However, a PCA analysis
with multiple datasets is still to be done. Doing a PCA-analysis, there might
be several principal components that separate cases and controls well, but they
might not be possible to replicate across datasets, as there are study-specific
reasons that the principal components separate well. For exploration purposes
and to get good statistical power, I will first do a study where I only look at
Asakura et al. [2020] and Fehlmann et al. [2020], as they have the most samples.
I will calculate the ten largest principal components in each dataset, using the
miRNA-sequences that are in both datasets. Then I will project every sample
along the ten principal components, and using a t-test I will find whether there is
a significant difference between cases and controls along the principal components
for each dataset.

The results when finding the 10 largest principal components in Asakura et al.
[2020] and projecting Asakura et al. [2020] and Fehlmann et al. [2020] onto the
principal components can be found in Table 4.18. The t-values and the p-values
are from the t-test of projecting cases and controls along the principal compo-
nent. Similarly, the results when finding the 10 largest principal components in
Fehlmann et al. [2020] are found in Table 4.19. Many of the components with sig-
nificant separation in one dataset also have good separation in the other dataset.
Interestingly, the components sometimes separate well, but in different directions
in the two datasets. One candidate principal component as a separator is the
third principal component in Asakura et al. [2020] which separates well in both
datasets, and it separates in the right direction in both datasets. What remains
is to test this principal component in other datasets to see whether it separates
well beyond Asakura et al. [2020] and Fehlmann et al. [2020].

Unfortunately, few datasets have all the miRNAs that are in the chosen prin-
cipal component. Therefore, I will use only datasets that have at least half of
the miRNAs in the principal component, and replace missing values with 0. The
results are shown in Table 4.20. Among the three other datasets, the t-test was
only significant in Duan et al. [2021], and the sign differs among the three. One
might ask why this component separates well in Asakura et al. [2020], Fehlmann
et al. [2020] and Duan et al. [2021], but not in any of the two other datasets? Of
course, there is selection bias at play, but it is still noticeable that the component
seemingly represents something that separates cases and controls well in three
datasets, but not in the two others. The fact that not all miRNAs are repre-
sented might be one factor, but as there is generally low consistency between
the datasets, one should be cautious about attributing all the lack of consistency
along this principal component to the lack of overlap in miRNAs.
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Table 4.18: The results from a PCA analysis looking at the 10 largest principal
components in Asakura et al. [2020]. The t-values are the result of a t-test along
the given principal component in the two datasets.
Note: A = Asakura et al. [2020], F = Fehlmann et al. [2020], PVE = proportion
of variance explained (i.e. the proportion of variance in Asakura et al. [2020] that
is explained by the principal component)

# PVE t-value A p-value A t-value F p-value F
1 0.292 51.894 0.0 0.381 7.03× 10−1

2 0.043 11.562 2.1× 10−30 −2.647 8.17× 10−3

3 0.031 −9.670 7.26× 10−22 −14.707 2.36× 10−47

4 0.030 −1.905 5.68× 10−2 10.430 4.74× 10−25

5 0.024 −9.919 6.61× 10−23 −10.136 9.10× 10−24

6 0.019 −5.869 4.76× 10−9 −4.925 8.88× 10−7

7 0.015 −3.955 7.80× 10−5 −0.909 3.63× 10−1

8 0.013 −8.427 4.99× 10−17 1.111 2.67× 10−1

9 0.011 3.554 3.84× 10−4 −7.662 2.44× 10−14

10 0.010 4.115 3.95× 10−5 12.563 2.51× 10−35

Table 4.19: The results from a PCA analysis looking at the 10 largest principal
components in Fehlmann et al. [2020]. The t-values are the result of a t-test along
the given principal component in the two datasets
Note: A = Asakura et al. [2020], F = Fehlmann et al. [2020], PVE = proportion
of variance explained (i.e. the proportion of variance in Fehlmann et al. [2020]
that is explained by the principal component)

# PVE t-value F p-value F t-value A p-value A
1 0.612 −42.075 3.98× 10−317 −2.453 1.42× 10−2

2 0.107 −30.224 9.56× 10−180 12.344 3.42× 10−34

3 0.063 16.724 1.32× 10−60 1.626 1.04× 10−1

4 0.043 40.553 2.34× 10−298 2.835 4.61× 10−3

5 0.025 −7.447 1.17× 10−13 −14.315 4.95× 10−45

6 0.017 17.219 5.24× 10−64 8.515 2.58× 10−17

7 0.012 −13.395 5.33× 10−40 3.394 6.99× 10−4

8 0.011 −14.752 6.49× 10−48 3.969 7.37× 10−5

9 0.009 −7.459 1.08× 10−13 −9.434 7.57× 10−21

10 0.007 −0.527 5.98× 10−1 −5.442 5.68× 10−8
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Table 4.20: The results from t-tests when projecting cases and controls along
the third largest principal component in Asakura et al. [2020]. The “proportion
miRNA” is the proportion of miRNA-sequences in the principal component that
was in the dataset.

Study t-value p-value Proportion miRNA
Asakura et al. [2020] −9.670 7.26× 10−22 1.000

Duan et al. [2021] −3.248 8.74× 10−3 0.740
Fehlmann et al. [2020] −14.707 2.36× 10−47 1.000
Leidinger et al. [2014] 0.438 0.663 0.560
Patnaik et al. [2017] 0.103 0.918 0.752

4.10 Machine learning based on several datasets

One interesting question is whether combining multiple datasets will result in
better diagnostic accuracy than using a single dataset. The result of training
on one dataset and predicting on another dataset was done in Berg [2021] with
subpar results. However, it is possible that training on multiple datasets will help
the machine learning algorithm to find case-control patterns that transcend the
patterns that are found internally in one dataset, leading to better generalizabil-
ity.

4.10.1 Using the most replicated miRNA-sequences from
the meta-analyses

One option is to take the miRNA-sequences that were found in the meta-analyses
to be the best biomarkers for lung cancer across studies, and then train a model
using these miRNA-sequences. The most replicated miRNA-sequences from the
meta-analyses were miR-21, miR-210, miR-182, miR-155 and miR-17 (see sub-
section 4.8.1). Furthermore, the datasets that have all these miRNA-sequences
are Asakura et al. [2020]; Fehlmann et al. [2020]; Leidinger et al. [2014]; Patnaik
et al. [2017]; Yao et al. [2019], which means that they are the studies that were
used in the leave-one-out cross validation using logistic regression. More details
are in subsection 3.6.1. The resulting AUC values are in Table 4.21. Seemingly,
the results are poor except when using Yao et al. [2019] as the test set. It should
be noted, however, that Yao et al. [2019] have only 10 samples, which means that
one should be careful about concluding based on that AUC value, especially as
it is an outlier.
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Table 4.21: AUC when training a logistic regression model on all the datasets in
this table except the test set, using only the most replicated miRNA-sequences
(miR-21, miR-210, miR-182, miR-155 and miR-17) as described in subsec-
tion 3.6.1

Test set AUC
Asakura et al. [2020] 0.502

Fehlmann et al. [2020] 0.468
Leidinger et al. [2014] 0.509
Patnaik et al. [2017] 0.471

Yao et al. [2019] 0.720

4.10.2 Training on two datasets
The results from training on one or two datasets and testing on a third. More
details are in subsection 3.6.2.

4.10.2.1 Logistic Regression

The first model I will try is logistic regression as it is a basic classification model.
It is often used in the studies that try to predict cancer based on miRNA, and
it therefore serves well as a baseline. The model will be trained on the miRNA-
sequences that all the three datasets have in common.

The AUC values from training on one of the datasets and testing on the
third dataset using logistic regression are shown in Figure 4.3a. The AUC values
from training on two datasets and testing on a third are shown in Figure 4.3b.
The histograms are very similar, and this can be confirmed by other statistical
measures. When training on just one of the datasets the mean AUC was 0.501
and the standard deviation was 0.168. When training on both datasets, the mean
AUC was 0.508 and the standard deviation was 0.169. This is worse than the
baseline miR-210, which had a mean AUC of 0.551 (see Table 4.17).

4.10.2.2 XGBoost

It is plausible that a model like XGBoost will perform better on the datasets, as it
has methods for handling missing data, and it can handle non-linear relationships
in the data. In addition, it is a boosting algorithm, which usually performs well
when data is sparse, as in this case. Here, I will make use of the way XGBoost
handles missing data and therefore train the model on all the miRNA-sequences
that the two training datasets have in common.
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(a) Histogram over AUC values when train-
ing a logistic regression model on one
dataset and test on another according to
subsection 3.6.2
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(b) Histogram over AUC values when
training a logistic regression model on two
datasets and test on a third dataset accord-
ing to subsection 3.6.2

Figure 4.3: AUC values when training on one or two datasets using logistic
regression

The AUC values from training on one of the datasets and testing on the
third dataset using XGBoost are shown in Figure 4.4a. The AUC values from
training on two datasets and testing on a third are shown in Figure 4.4b. The
mean and standard deviation in AUC values when training on one dataset were
0.504 and 0.162 respectively. The mean and standard deviation when training
on two datasets were 0.505 and 0.172 respectively. Again both the histograms
and statistics are similar in the two cases, which suggests that combining two
datasets have little to no effect. Furthermore, the results were very similar to the
ones achieved with logistic regression, which suggests that the problem is not the
model.

4.10.3 Merging all datasets
No miRNA-sequence is in all datasets. Thus, if one tries to merge all the datasets,
there would not be any miRNA-sequences in the intersection of miRNAs. This
would be a problem with logistic regression, but XGBoost has a way of handling
missing data, which means that it can handle this. However, merging all datasets
would not be useful, as one wants to see whether one can train on some collection
of datasets and test on another dataset to check external validity. Therefore, I
will have a strategy similar to subsection 3.6.1, where I leave one dataset out
which is used as a test set. Here, every sample will have the same weight, as
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Figure 4.4: AUC values when training on one or two datasets using XGBoost

there is not any problem with having one dataset dominating as there are many
datasets in the training set.

The AUC values from merging all datasets except one which is used for testing
are shown in Table 4.22. The mean of the AUC values is 0.518 and the standard
deviation of the AUC values is 0.205, which is lower than the AUC of miR-210
(0.551), which means that this was a poor way to learn a model to diagnose lung
cancer.

4.10.4 Maximal training sets
Unfortunately, trying to train a model on all possible subsets of datasets is
computationally infeasible. There are 26 datasets in this project, leading to
226 = 67108864 possible subsets of datasets. Thus, there has to be some sort of
selection of what subsets are interesting to look at. There are some pros and cons
associated with merging more datasets:

Pros:

• Having more datasets leads to more samples, which gives greater statistical
power.

• Having more datasets might lead to better generalizability for the algo-
rithm, as it has to learn what is common across more datasets.

Cons:
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Table 4.22: AUC when merging all datasets except one which is used for testing,
as described in subsection 4.10.3

Test set AUC
Abdollahi et al. [2019] 0.617
Asakura et al. [2020] 0.466
Bianchi et al. [2011] 0.688
Boeri et al. [2011] 0.404
Chen et al. [2019] 0.386
Duan et al. [2021] 0.083

Fehlmann et al. [2020] 0.588
Halvorsen et al. [2016] 0.783

Jin et al. [2017] 0.340
Keller et al. [2009] 0.632
Keller et al. [2014] 0.836
Keller et al. [2020] 0.258

Kryczka et al. [2021] 0.346
Leidinger et al. [2011] 0.865
Leidinger et al. [2014] 0.566
Leidinger et al. [2016] 0.794

Li et al. [2017] 0.389
Marzi et al. [2016] 0.629
Nigita et al. [2018] 0.429

Patnaik et al. [2012] 0.576
Patnaik et al. [2017] 0.515

Qu et al. [2017] 0.833
Reis et al. [2020] 0.441

Wozniak et al. [2015] 0.440
Yao et al. [2019] 0.320

Zaporozhchenko et al. [2018] 0.241
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• The more datasets are merged, the larger is the problem that the datasets
measure different miRNA-sequences. If one takes the intersection of miRNA-
sequences this intersection quickly becomes small, and if one takes the union
one would end up with many NaN-values.

• Using small groups of datasets can be used to find properties of that group,
e.g., one can try to find the level of consistency in sequencing datasets.

One way to balance these conflicting concerns would be to find a compromise.
I want the algorithm to be trained on at least 10 miRNA-sequences (similar to
subsection 3.6.2 and Berg [2021]) to ensure that the algorithm has some different
miRNA-sequences to consider. On the other hand, I want to merge as many
datasets as feasible. One possibility then is to generate all subsets that satisfy
the following two criteria:

1. The datasets have at least 10 different miRNA-sequences in common.

2. If you add another dataset to the subset, you would end up with less than
10 miRNA-sequences in common.

These subsets might be called maximal subsets. For each maximal subset,
there will be a leave-one-out cross validation where each of the datasets is left
out. The machine learning will be done using logistic regression. The resulting
mean AUC value was 0.525 and the standard deviation was 0.178, which is still
worse than the baseline of miR-210. A histogram of the AUC values is shown
in Figure 4.5. In short, there was little diagnostic accuracy achieved by using
maximal subsets.

4.11 Stratification of the datasets

There are several possibilities as to why the datasets are incompatible. One
possibility is that some factors like what technology was used for measuring
miRNA-levels play a role. There are other factors as well that differ between
the datasets, like cancer stage and what blood fraction was measured (plasma,
serum, whole blood, etc.). If these factors play a role, one would expect to see
more consistency in datasets that are similar in these characteristics. One way
to test this hypothesis is to stratify the datasets based on these characteristics,
and see if one sees a larger consistency between the datasets when the datasets
are stratified in this way.
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Figure 4.5: Histogram over AUC values when training maximal datasets in a
leave-one-out cross validation using logistic regression

4.11.1 Training and testing on pairs of datasets, in-group
vs. out-group

Here I will use pairs of datasets and train a model on one of the datasets and
test on the other dataset, only that the AUC will be compared when the datasets
have the same characteristics to when they have different characteristics. E.g.,
I will compare the AUC when two datasets are using qRT-PCR to when one
is using qRT-PCR and the other study is using a different technology. I will
do this stratification for technology and for the type of blood fraction. Here I
will use logistic regression and only do pairs of datasets that have at least 10
miRNA-sequences in common.

4.11.1.1 Technology

The results from training on one dataset and testing on another dataset when
stratifying using technology are shown in Table 4.23. The in-group is when both
datasets use the given technology, and the out-group is when only one of the
datasets uses the given technology. As the table shows, the AUC was generally
somewhat better in in-groups than out-groups. However, the improvement in
AUC was only significant for microarrays. Still, the category “microarray” is
hiding heterogeneity, as the microarrays in the studies varied a lot.
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Table 4.23: The results when training a logistic regression model on one dataset
and testing on another, when stratifying by technology. The in-group is when
both datasets have the technology that is listed in the first column. The out-
group is when exactly one of the two datasets has the technology that is listed
in the first column.
Note: IG = in-group, OG = out-group, mean and standard deviation are of
AUC values, t-values are in-group minus out-group and p-values correspond to
the t-values

Technology Mean IG Std. IG Mean OG Std. OG t-value p-value
Sequencing 0.535 0.180 0.452 0.165 1.545 0.124
qRT-PCR 0.512 0.153 0.500 0.155 0.416 0.678
Microarray 0.529 0.208 0.477 0.162 2.967 0.003

To check the hypothesis that the problems are due to heterogeneity in the
microarray technology, I wanted to do an experiment with a finer stratification of
the microarray technology. Of the microarray technologies that have been used
multiple times, there were three that used Exiqon microarrays (Duan et al. [2021];
Patnaik et al. [2012, 2017]), three that used Agilent microarrays (Fehlmann et al.
[2020]; Qu et al. [2017]; Li et al. [2017]), three that used Geniom microarrays
(Keller et al. [2009]; Leidinger et al. [2011]; Keller et al. [2014]) and two that
used SurePrint microarrays (Leidinger et al. [2014]; Keller et al. [2020]). This
experiment will only consider pair of studies where both use microarrays. The
in-group here is when the pair of studies have the same type of microarray, and
the out-group is when they use different types of microarrays. The results were
that the in-group had a mean AUC of 0.612 while the out-group had a mean of
0.518. The difference was not significant using a t-test (p = 0.056). It might be
that this is due to a low sample size, but even in the in-group the consistency
is relatively low compared to the internal consistency in the datasets found in
Table 4.12.

4.11.1.2 Blood fraction

The results from training on one dataset and testing on another dataset when
stratifying using blood fraction are shown in Table 4.24. The in-group is when
both datasets measure the given blood fraction, and the out-group is when only
one of the datasets measures the given blood fraction. In contrast to when strati-
fying by technology, it seems that there is no use in stratifying by blood fraction.
None of the changes in AUC are significant, and one of the changes is even
negative. It might suggest that technology contributes to more variance in the
resulting data than what blood fraction does.



58 CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.24: The results when training a logistic regression model on one dataset
and testing on another, when stratifying by blood fraction. The in-group is when
both datasets have the blood fraction that is listed in the first column. The
out-group is when exactly one of the two datasets has the blood fraction that is
listed in the first column.
Note: IG = in-group, OG = out-group, mean and standard deviation are of AUC
values, and t-values are in-group minus out-group and p-values correspond to the
t-values

Blood fraction Mean IG Std. IG Mean OG Std. OG t-value p-value
Plasma 0.451 0.178 0.497 0.176 −1.766 0.078

Whole blood 0.538 0.109 0.517 0.166 0.659 0.511
Serum 0.549 0.228 0.494 0.185 1.386 0.167

Table 4.25: The AUC values when training a logistic regression model on one
dataset and testing on another, when using only late or only early stage cancer
samples from datasets where stage is labeled.
Note: mean and standard deviation are of AUC values, the t-value is late minus
early and the p-value correspond to the t-value

Mean Late Std. Late Mean Early Std. Early t-value p-value
0.528 0.187 0.460 0.140 1.291 0.205

4.11.1.3 Using stages

Cancer stage might be a covariate that hinders the replicability of the datasets.
To check this hypothesis, I will do an analysis where I only use the datasets where
samples are labeled, and compare the results when only using the early stages to
when only using the late stages. If there is higher consistency in the late stages,
it would suggest that some of the lack of replicability is due to cancer stage. The
results from training on one dataset and testing on another dataset, when only
using late or only using early stage cancer from datasets where stage is labeled,
are in Table 4.25. There is no significant difference between the AUCs in the two
cases, and both are close to 0.50, which suggests that stage does not explain the
low AUC scores in the previous results.

4.11.2 Combining all except one
Another attempt will be to take all datasets with a certain characteristic, like
technology or blood fraction, and then train on all datasets except one that will
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Table 4.26: The results when training an XGBoost model on all datasets except
one in a certain category and doing testing on the last dataset, when stratifying by
technology. The t-value and the corresponding p-value is for the t-test checking
whether the expected AUC is larger than 0.50.

Technology Mean AUC Std. AUC t-value p-value
Sequencing 0.625 0.089 2.797 0.034
Microarray 0.505 0.262 0.077 0.470
qRT-PCR 0.493 0.219 −0.086 0.533

be used for testing, and use AUC as the metric. For checking whether the AUC
values are better than chance levels I checked a one-sided hypothesis of AUC
> 0.50 using a t-test. This is similar to subsection 4.10.3, only with stratification
of the datasets. I will use the union of the miRNAs in the datasets in each
category to train on. To ensure that missing values will not be a problem, I will
use XGBoost as the model as it handles missing values by default. I will also try
to do this using datasets where cancer stage is labeled, and try both using only
early cancer samples and using only late cancer samples.

4.11.2.1 Technology

The results from stratifying by technology are shown in Table 4.26. Sequencing
is an outlier where the AUC was better than the other categories. Notably, an
AUC of 0.625 is higher than any of the other AUCs achieved so far when testing
on a different dataset than training on, but it might be due to chance as the AUC
is not significantly higher than 0.50 when adjusting for multiple testing. It does
not seem like technology is the main reason for the low consistency between the
datasets.

Also, here I want to see whether stratifying by subtypes of microarrays will be
beneficial. The training will be done on maximally two datasets, as the subcate-
gories are small with the largest ones having three datasets. The resulting mean
AUC was 0.567 and the resulting standard deviation was 0.282, which was not
significantly better than 0.50 (p = 0.225). This suggests that neither here hetero-
geneity in the microarray technology was the reason for the poor results for the
microarrays. Even an AUC of 0.567 is much lower than the internal consistency
found in Table 4.12.
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Table 4.27: The results when training an XGBoost model on all datasets except
one in a certain category and doing testing on the last dataset, when stratifying
by blood fraction. The t-value and the corresponding p-value are for the t-test
checking whether the expected AUC is larger than 0.50.

Blood fraction Mean AUC Std. AUC t-value p-value
Serum 0.531 0.222 0.337 0.375

Whole blood 0.583 0.079 2.773 0.016
Plasma 0.376 0.184 −1.908 0.951

4.11.2.2 Blood fraction

The results from stratifying by blood fraction are shown in Table 4.27. None of
the AUCs were significantly larger than 0.50 when adjusted for multiple testing.
This suggests that the lack of consistency is not due to blood fraction either.

4.11.2.3 Distribution of AUC values

In the subsections above, only summary statistics were reported. However, mean
and variance can hide a lot of information about the distribution, e.g. whether
the distribution is unimodal or bimodal. As t-values have been used to check for
statistical significance, there has been an implicit assumption that AUC values
have been approximately normally distributed. To be sure, some checks have
been done. I am not including the results from stratifying by cancer stage here
as those values do not use full datasets, and are thus less comparable. Histograms
of the AUCs are shown in Figure 4.6. It is hard to judge the normality of the
plots due to the low sample sizes. Therefore, I have also plotted a histogram and
a Q-Q plot combining all the AUC values from the different categories. Those are
in Figure 4.7. The Q-Q plot shows that the distribution of AUC values follows
the normal distribution quite nicely, except for slight deviations in the tails of
the distribution. Thus, the normality assumption seems to hold.

4.11.2.4 Using stages

The results from stratifying using cancer stages can be found in Table 4.28. The
mean AUCs, both when only using early stage cancer and only using late stage
cancer, were only slightly higher than 0.50 and the differences were not significant,
which suggests that there is no improvement in AUC by stratifying by stage.
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(a) Histogram over AUC
values when training on
all datasets except one
in the qRT-PCR category
and testing on the last
dataset.
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(b) Histogram over AUC
values when training on
all datasets except one in
the sequencing category
and testing on the last
dataset.
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(c) Histogram over AUC
values when training on
all datasets except one in
the microarray category
and testing on the last
dataset.
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(d) Histogram over AUC
values when training on
all datasets except one in
the whole blood category
and testing on the last
dataset.
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(e) Histogram over AUC
values when training on
all datasets except one in
the serum category and
testing on the last dataset.
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(f) Histogram over AUC
values when training on
all datasets except one in
the plasma category and
testing on the last dataset.

Figure 4.6: Histogram over AUC values when training on all datasets except one
in a category and testing on the last dataset

Table 4.28: The results when training on all datasets except one, using datasets
where cancer stage is labeled, when stratifying by cancer stage. The mean and
standard deviation are of AUC values, and the t-values and the corresponding
p-values correspond to a two-sided t-test with a null hypothesis of AUC = 0.50.

Cancer stage Mean Std. t-value p-value
Early 0.523 0.171 0.354 0.736
Late 0.509 0.194 0.125 0.904
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(a) Histogram over AUC values when train-
ing on all datasets except one in one cate-
gory and testing on the last dataset, aggre-
gated over all categories.
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(b) Q-Q plot over AUC values when train-
ing on all datasets except one in one cate-
gory and testing on the last dataset, aggre-
gated over all categories.

Figure 4.7: Histogram and Q-Q plot over AUC values when training on all
datasets except one in a category and testing on the last dataset

4.12 PCA for removing artifacts
The measured miRNA-levels will have some noise that is due to the technology
that is used for measurement. One possible way to remove technical noise is to
remove the first two principal components from the data, with an assumption
that the removed principal components correspond to technical noise rather than
biology. It is difficult to say whether this is the case or not. If the datasets are
more comparable when the principal components are removed than when they
are not, then it would seem plausible that these principal components correspond
to technical noise, or at least have little to no connection with lung cancer.

4.12.1 Check comparability using PCA
One way to check if the datasets are more comparable is to check their joint PCA-
plot. There are some problems with that. For once, the miRNA-sequences are not
the same in the different datasets, which means that the principal components
will not represent the datasets fully. Another problem is that there are many
datasets. The more datasets that are plotted in one PCA-plot, the more chaotic
the plot becomes, the fewer miRNA-sequences there are in common, and the less
weight each dataset would have on the PCA on the joint dataset. Furthermore,
I cannot plot all datasets against all datasets, as that would lead to too many
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PCA-plots. Therefore, I will plot two and two datasets in PCA-plots and see
whether they became more comparable, using only the largest datasets.

The resulting PCA-plots when the two first principal components are removed
are shown in Figure 4.8. It is hard to say whether the PCA adjustments made
the datasets more similar using these PCA-plots, but it seems like the spreads
are more equal after the removal of the principal components, with the exception
of Asakura et al. [2020] and Fehlmann et al. [2020].

4.12.2 Using machine learning models

The results from combining all datasets using sequencing were relatively good
(see subsubsection 4.11.2.1), and will therefore be used to check if removing the
principal components lead to better comparability, as you would assume that a
dataset where noise is removed would be a dataset that would be more comparable
to the sequencing datasets, as the sequencing datasets seem to have some external
validity when compared to other sequencing datasets.

The way this will be done is for each dataset that is not using sequencing, I
will find the miRNAs that they have in common with all the sequencing datasets.
Thereafter, using these miRNAs I will do a leave-one-out cross validation on the
sequencing datasets, similarly to subsection 4.11.2. I will also do a cross validation
on the other dataset, similar to section 4.7. Finally, I will train a model on the
other dataset and test on the sequencing datasets, and vice versa. All the machine
learning will be done using XGBoost, as it was that model that performed well
in subsubsection 4.11.2.1.

The resulting AUC-values from doing the experiment are shown in Table 4.29
and Table 4.30. The internal results were poorer both in the sequencing datasets
and in the non-sequencing datasets, which means that some information about
case-control was lost when removing the two first principal components. This
does not mean that these principal components were due to biological factors
connected to cancer, as it might be technical artifacts like batch effects or be due
to demographic differences between cases and controls. The external validity, here
represented by to which degree it is possible to get good results when training or
testing on sequence data, was low in both cases. Everything considered, the data
suggest that removing the two first principal components did not have any effect
on the comparability. However, it is important to recognize that this was a one-
size-fits-all solution, and that it is possible that the two first principal components
correspond to technical noise in some datasets, but not in others, and that this
effect did not show up in aggregate. Indeed, looking at the PCA plots in Berg
[2021] it seems that some datasets have clustering that looks like batch effects,
while other datasets have not.
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(a) PCA of Asakura et al. [2020] and
Fehlmann et al. [2020] using the two first
principal components of the joint dataset,
without any principal components removed
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(b) PCA of Asakura et al. [2020] and
Fehlmann et al. [2020] using the two first
principal components of the joint dataset,
after the two first principal components of
each dataset are removed
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(c) PCA of Asakura et al. [2020] and Keller
et al. [2014] using the two first principal
components of the joint dataset, without
any principal components removed
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pal components of the joint dataset, after
the two first principal components of each
dataset are removed
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(e) PCA of Asakura et al. [2020] and Pat-
naik et al. [2017] using the two first princi-
pal components of the joint dataset, with-
out any principal components removed
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(f) PCA of Asakura et al. [2020] and Pat-
naik et al. [2017] using the two first princi-
pal components of the joint dataset, after
the two first principal components of each
dataset are removed
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(g) PCA of Fehlmann et al. [2020] and
Keller et al. [2014] using the two first prin-
cipal components of the joint dataset, with-
out any principal components removed
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(h) PCA of Fehlmann et al. [2020] and
Keller et al. [2014] using the two first prin-
cipal components of the joint dataset, after
the two first principal components of each
dataset are removed
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(i) PCA of Fehlmann et al. [2020] and Pat-
naik et al. [2017] using the two first princi-
pal components of the joint dataset, with-
out any principal components removed
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(j) PCA of Fehlmann et al. [2020] and Pat-
naik et al. [2017] using the two first princi-
pal components of the joint dataset, after
the two first principal components of each
dataset are removed
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(k) PCA of Patnaik et al. [2017] and Keller
et al. [2014] using the two first principal
components of the joint dataset, without
any principal components removed
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(l) PCA of Patnaik et al. [2017] and Keller
et al. [2014] using the two first princi-
pal components of the joint dataset, after
the two first principal components of each
dataset are removed

Figure 4.8: PCA of datasets with and without removing the two first principal
components in each individual dataset. OBS: the axes differ between the plots.
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Table 4.29: The resulting AUC-values when using XGBoost and doing cross val-
idation internally in the given study, doing cross validation inside the sequencing
datasets, doing training on the given study and testing in the sequencing datasets,
and doing training on the sequencing datasets and testing in the given study, all
without removing the two first principal components.
Note: I. = internal, Seq = sequencing, To seq = training model on the study and
testing on the sequencing datasets, From seq = training model on the sequencing
datasets and testing on the study

Study I. study I. seq To seq From seq
Wozniak et al. [2015] 0.597 0.719 0.514 0.554
Bianchi et al. [2011] 0.779 0.716 0.541 0.497

Zaporozhchenko et al. [2018] 0.808 0.401 0.335 0.555
Leidinger et al. [2016] 0.950 0.699 0.287 0.506

Reis et al. [2020] 0.943 0.715 0.661 0.553
Asakura et al. [2020] 0.926 0.736 0.536 0.563

Duan et al. [2021] 0.650 0.550 0.750 0.560
Leidinger et al. [2014] 0.468 0.736 0.521 0.466

Keller et al. [2009] 0.942 0.735 0.350 0.509
Patnaik et al. [2017] 0.549 0.736 0.366 0.292
Patnaik et al. [2012] 0.684 0.718 0.523 0.513

Fehlmann et al. [2020] 0.974 0.743 0.410 0.505
Marzi et al. [2016] 0.892 0.610 0.250 0.440

Halvorsen et al. [2016] 0.967 0.698 0.461 0.524
Boeri et al. [2011] 0.500 0.649 0.088 0.542

Leidinger et al. [2011] 0.604 0.741 0.479 0.417
Qu et al. [2017] 0.854 0.642 0.611 0.606
Li et al. [2017] 0.500 0.711 0.222 0.525

Keller et al. [2014] 0.852 0.708 0.330 0.543
Keller et al. [2020] 0.535 0.555 0.686 0.663

Kryczka et al. [2021] 0.625 0.684 0.320 0.365
Abdollahi et al. [2019] 0.851 0.516 0.382 0.433

Average 0.748 0.669 0.437 0.506
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Table 4.30: The resulting AUC-values when using XGBoost and doing cross val-
idation internally in the given study, doing cross validation inside the sequencing
datasets, doing training on the given study and testing in the sequencing datasets,
and doing training on the sequencing datasets and testing in the given study, all
while removing the two first principal components.
Note: I. = internal, Seq = sequencing, To seq = training model on the study and
testing on the sequencing datasets, From seq = training model on the sequencing
datasets and testing on the study

Study I. study I. seq To seq From seq
Wozniak et al. [2015] 0.621 0.530 0.552 0.613
Bianchi et al. [2011] 0.716 0.512 0.446 0.570

Zaporozhchenko et al. [2018] 0.542 0.625 0.447 0.617
Leidinger et al. [2016] 0.803 0.620 0.404 0.353

Reis et al. [2020] 0.586 0.516 0.514 0.595
Asakura et al. [2020] 0.931 0.511 0.403 0.453

Duan et al. [2021] 0.250 0.535 0.500 0.584
Leidinger et al. [2014] 0.559 0.511 0.540 0.598

Keller et al. [2009] 0.800 0.483 0.759 0.531
Patnaik et al. [2017] 0.522 0.511 0.373 0.321
Patnaik et al. [2012] 0.360 0.483 0.485 0.442

Fehlmann et al. [2020] 0.961 0.504 0.367 0.508
Marzi et al. [2016] 0.828 0.530 0.493 0.425

Halvorsen et al. [2016] 0.914 0.633 0.559 0.481
Boeri et al. [2011] 0.683 0.624 0.430 0.417

Leidinger et al. [2011] 0.541 0.494 0.586 0.534
Qu et al. [2017] 0.583 0.538 0.528 0.598
Li et al. [2017] 0.500 0.557 0.611 0.367

Keller et al. [2014] 0.564 0.500 0.559 0.552
Keller et al. [2020] 0.600 0.391 0.581 0.560

Kryczka et al. [2021] 0.564 0.590 0.488 0.641
Abdollahi et al. [2019] 0.715 0.441 0.443 0.606

Average 0.643 0.529 0.503 0.517
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Table 4.31: The resulting AUC-values when doing the experiment as described
in section 3.7. The threshold is the mean RPM needed for a miRNA-sequence
to be included in the dataset. Intersection (I) and union (U) represent whether
the model was trained on the intersection of the miRNAs (logistic regression)
or the union of the miRNAs (XGBoost). # miRNA is the number of miRNAs
in the intersection or the union of the datasets, when filtered according to the
thresholds.

Threshold AUC (I) # miRNA (I) AUC (U) # miRNA (U)
0 0.625 68 0.742 1042
1 0.626 68 0.734 839

10 0.640 68 0.643 608
100 0.536 33 0.684 326
1000 0.718 7 0.716 148

4.13 Finding RPM threshold for sequencing data
Not all miRNA-sequences have been found in all samples in the sequencing
datasets. One question is what to do when a sequence is barely read in a dataset.
One might remove it or not, depending on whether one considers the levels of
the miRNA-sequence relevant or not. As these sequences are barely read, they
might be a source of noise rather than a source of information about case-control
characteristics. One way to analyze whether they are noise or they have relevant
information is to check the consistency across the sequencing datasets when they
are removed and when they are not removed.

Here I have taken leave-one-out cross validation on the sequencing datasets,
filtering out low expressed miRNAs at different thresholds for mean RPM, as
described in section 3.7. The results are shown in Table 4.31. There are a
few things to note. The first thing is that the 0, 1 and 10 thresholds give the
same number of miRNAs in the intersection, but still the results differ. This is
because the normalization of the data was done after filtering out miRNAs based
on RPM. When setting the mean variance to 1 in a dataset, this will lead to a
different denominator depending on which miRNAs were filtered out. Thus, the
numerical values differ slightly at the different thresholds, even if the miRNAs in
the intersection are the same. Secondly, it is interesting to see that one gets a
mean AUC of 0.718 with only 7 different miRNAs.

To check whether these 7 miRNAs actually predict case-control status, I
did an experiment where I trained logistic regression models on the 1000 RPM
thresholded sequencing datasets using intersection between the 7 miRNAs and
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Table 4.32: The resulting AUC-values when doing logistic regression training on
either the 1000 RPM thresholded or the non-thresholded sequencing datasets,
using all miRNAs that the datasets have in common in the respective cases

Study AUC no threshold AUC threshold
Asakura et al. [2020] 0.564 0.769

Boeri et al. [2011] 0.281 0.316
Fehlmann et al. [2020] 0.386 0.426
Halvorsen et al. [2016] 0.408 0.424

Keller et al. [2009] 0.582 0.548
Keller et al. [2014] 0.338 0.331

Leidinger et al. [2011] 0.372 0.434
Leidinger et al. [2014] 0.365 0.357
Patnaik et al. [2012] 0.414 0.293
Patnaik et al. [2017] 0.434 0.458

Qu et al. [2017] 0.639 0.583
Reis et al. [2020] 0.922 0.898

Wozniak et al. [2015] 0.510 0.530
Average 0.478 0.490

the miRNAs in the different other datasets if there were at least 4 miRNAs in
common. I compared that to the same experiment using the non-thresholded
sequencing datasets and all miRNAs that were in common between the sequenc-
ing datasets and the other datasets, where the models thus generally could use
more miRNA-sequences. The other datasets were used as test sets. The results
are shown in Table 4.32. There was no significant difference between the exper-
iment when using the thresholded datasets and when using the non-thresholded
datasets (p = 0.864). This suggests that either the non-sequencing datasets gen-
erally have poor quality or these miRNAs are not as predictive of case-control
characteristics as it would seem from looking at results only from the sequencing
datasets.

4.14 Checking for red blood cells
One thing that can go wrong when doing experiments where serum and plasma
are extracted (see: subsection 2.1.5) is that red blood cells might burst, and their
contents will then be spread into the serum and plasma. Then one can end up
with different miRNA-levels in this serum or plasma, in a way that would make
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the resulting sample more similar to a typical whole blood sample rather than a
plasma or serum sample.

There are ways to trace whether red blood cells appear in the sample or not,
as they have a known footprint in miRNA-levels. According to Sun et al. [2020],
two of the most characteristic miRNAs for red blood cells are miR-486-5p and
miR-451a. Thus, high levels of these miRNAs would suggest that miRNA from
red blood cells are found in the sample.

Till now, all comparison of data between datasets has been done on stan-
dardized data. However, this standardization sets the mean expression for each
miRNA to zero, which removes any differences in mean expression between
datasets. As I want to compare levels of the miRNA between datasets I have
to use raw values, but they are hard to compare directly as the raw values are
found using different technologies and thus are on different scales.

The way to come around these issues is to find some miRNA-sequences to use
as controls that one can calculate the expression of miR-486-5p and miR-451a
relative to. In the studies reviewed by Donati et al. [2019] miR-16 and miR-93
were the most common ones. Thus, they are the ones I will use here. The reason
I chose to use two different miRNA-sequences both for footprint and control is
that it will hopefully paint a more accurate picture, and not all datasets have
all sequences, therefore having more sequences lead to the possibility of getting
more information on more datasets.

The relative expression of miR-486-5p and miR-451a is in Table 4.33. There
is a lot of variation between the datasets. One interesting experiment is to group
them by what blood fraction is used and then take the average, to see whether
blood fraction actually matters. As miR-451a with miR-93 as control is the one
with the most values, it is the one that will be used. A table of the mean for each
blood fraction group is found in Table 4.34. Surprisingly, whole blood seemingly
has less miR-451a than either the serum or the plasma group. This renders this
experiment somewhat meaningless, as miR-451a was meant to find samples with
a high level of red blood cells.

Another way to look at it is to see to which degree miR-486-5p and miR-451a
vary internally in a dataset. Intuitively, if there are many red blood cells in the
dataset, there will be more variance in these miRNAs, as the red blood cells are
a main contributor to the level of expression of these miRNAs. A table with
the relative variances is in Table 4.35. Whole blood datasets had the highest
relative variance in miR-486-5p but not in miR-451a according to Table 4.36.
Furthermore, the high relative variance in miR-486-5p in whole blood is largely
driven by Leidinger et al. [2014], which was a big outlier in Table 4.35. Excluding
Leidinger et al. [2014] gives a mean relative variance in the whole blood datasets
of 1.103 in miR-486-5p and 2.295 in miR-451a, which are lower even though it
is still the highest for miR-486-5p. Given the earlier results and the uncertainty
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Table 4.33: The relative expression of miR-486-5p and miR-451a to miR-
16 and miR-93 in the different datasets. The values are calculated as
footprint expression−control expression

control expression . C = control

Studies miR-486-5p
C: miR-16

miR-486-5p
C: miR-93

miR-451a
C: miR-16

miR-451a
C: miR-93

Asakura et al. [2020] -36.403% 143.096% 232.049% 1169.239%
Boeri et al. [2011] -35.767% 162.134% 19.454% 387.492%
Chen et al. [2019] -15.134% 38.145% 99.049% 224.012%
Duan et al. [2021] -75.000% -108.333% 300.000% -233.333%

Fehlmann et al. [2020] -136.022% -139.201% -107.105% -107.732%
Halvorsen et al. [2016] -1096.492%

Jin et al. [2017] 490.574% -266.217% 681.561% -319.970%
Keller et al. [2009] -62.340% 3.987% 16.361% 221.294%
Keller et al. [2014] -121.880% -110.952% -40.278% -70.108%
Keller et al. [2020] -4587.592% -8524.127%

Leidinger et al. [2011] -218.204% -63.009% -83.217% -105.252%
Leidinger et al. [2014] 413.936% -1103.786% 823.077% -1902.894%
Leidinger et al. [2016] -32.045%

Nigita et al. [2018] -188.699%
Patnaik et al. [2012] -89.745% -90.109% -52.739% -54.417%
Patnaik et al. [2017] -238.871% -109.828% -1638.338% -208.875%

Qu et al. [2017] -128.963% -121.686% -85.323% -89.010%
Reis et al. [2020] 25.021% 312.228%

Wozniak et al. [2015] -286.667% 33.333%
Zaporozhchenko et al. [2018] -98.858% -98.623% 19.444% 43.960%

Table 4.34: The mean relative expression of miR-451a to miR-93 (with similar
formula as in Table 4.33) when grouped by blood fraction. P. Blood = Peripheral
blood, Ex = exosomal

Blood fraction Mean
Serum 467.953%
Plasma 84.578%

Whole blood -401.869%
Blood cells 221.294%
P. Blood -70.108%

Plasma Ex -188.699%
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Table 4.35: The relative variance of miR-486-5p and miR-451a in the different
datasets. The relative variance is the variance in the expression of these miRNAs,
divided by the mean variance among all miRNAs.

Study miR-486-5p miR-451a
Asakura et al. [2020] 0.964 2.998

Boeri et al. [2011] 0.989 0.730
Chen et al. [2019] 0.819 1.047
Duan et al. [2021] 0.894 2.486

Fehlmann et al. [2020] 0.851 0.955
Halvorsen et al. [2016] 0.299

Jin et al. [2017] 1.150 1.617
Keller et al. [2009] 0.609 1.157
Keller et al. [2014] 0.595 1.461
Keller et al. [2020] 0.984 2.601

Leidinger et al. [2011] 0.673 1.294
Leidinger et al. [2014] 6.141 5.183
Leidinger et al. [2016] 0.500

Li et al. [2017] 2.866
Nigita et al. [2018] 1.027

Patnaik et al. [2012] 1.607 3.425
Patnaik et al. [2017] 1.280 3.507

Qu et al. [2017] 1.177 3.849
Reis et al. [2020] 3.357

Wozniak et al. [2015] 0.625 0.463
Zaporozhchenko et al. [2018] 0.224 0.634

around the current results, it is hard to say whether relative variance has any
external validity when it comes to whether samples are contaminated.

A final way to look at it is to see whether there are many outliers in miR-
486-5p or miR-541a expression. One might assume that the expressions of the
miRNAs are normally distributed. In that case, one can fit a t-distribution to
the data and see whether 95% of the data is inside the interval where 95% of
the data should lie given by the mean and the standard deviation of the data
(see subsection 2.2.8 for how to compute such an interval). The portion in each
dataset that is inside such an interval is shown in Table 4.37. The dataset with
the lowest portion of samples inside the interval was Leidinger et al. [2014], which
also had the highest relative variance of these miRNAs in Table 4.35. However,
Leidinger et al. [2014] is a whole blood-dataset, so neither the high variance nor
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Table 4.36: The mean relative variance of miR-486-5p and miR-451a in the
datasets in the different groups. The relative variance is the variance in the
expression of these miRNAs, divided by the mean variance among all miRNAs.
Note: P. blood = Peripheral blood, Ex = exosomal

Group miR-486-5p miR-451a
Serum 0.785 2.695
Plasma 0.831 1.820

Whole blood 2.110 2.477
Blood cells 0.609 1.157
P. Blood 0.595 1.461

Plasma Ex 1.027

the relatively high portions of outliers are due to contamination of red blood cells.

4.15 Web application for visualizing data
A web application was made in this project in order to make it possible to visualize
the data that has been collected. A live demo of the web application is available
at https://mirna-visualizer.netlify.app/, and code and computations are
available at https://github.com/OleFredrik1/masterthesis.

4.15.1 Some considerations that were made during the project
How should computations, especially computationally expensive computations
like PCA, be done? There were three main options:

1. Precompute all possible computations

2. Do computations server-side on demand

3. Do computations client-side on demand

All three options had their advantages and disadvantages. The main advantage of
precomputing all possible computations was to save computation time during the
use of the application. One disadvantage was that very many computations had
to be done despite the results might not being used. There is also a large amount
of resulting data that has to be stored. Another disadvantage that it shares with
the “compute server-side on demand” is that new data has to be fetched when the
user wants to visualize a new result. Finally, one disadvantage of the “client-side

https://mirna-visualizer.netlify.app/
https://github.com/OleFredrik1/masterthesis
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Table 4.37: The portion of the samples which has an expression of the given
miRNAs inside a 95% interval given by the sample mean and standard deviation,
calculated as in subsection 2.2.8.

Study miR-486-5p miR-451a
Asakura et al. [2020] 0.966 0.940

Boeri et al. [2011] 0.920 1.000
Chen et al. [2019] 0.926 0.981
Duan et al. [2021] 0.917 1.000

Fehlmann et al. [2020] 0.947 0.950
Halvorsen et al. [2016] 0.944

Jin et al. [2017] 0.921 0.921
Keller et al. [2009] 0.944 0.917
Keller et al. [2014] 0.940 0.928
Keller et al. [2020] 0.950 0.970

Leidinger et al. [2011] 0.936 0.979
Leidinger et al. [2014] 0.825 0.938
Leidinger et al. [2016] 0.950

Li et al. [2017] 1.000
Nigita et al. [2018] 1.000

Patnaik et al. [2012] 0.978 0.956
Patnaik et al. [2017] 0.957 0.957

Qu et al. [2017] 0.923 0.923
Reis et al. [2020] 0.952

Wozniak et al. [2015] 0.960 0.960
Zaporozhchenko et al. [2018] 0.926 0.926
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on demand” is that the raw data files (especially of Asakura et al. [2020]) are
quite large. Thus, having to load those before the application can start leads to
a long loading time for the application. I tried both the “precompute” and the
“client-side” options, and decided in favor of the “precompute”-option as it had
a low loading time when one visits the web application, and empirically it was
on average faster to fetch new results than to compute them client-side, with the
biggest difference when doing heavy computations (like PCA) on large datasets
(like Asakura et al. [2020]).

All results shown in the dashboard have been precomputed using Python
scripts and stored in JSON-files that are loaded into the application on demand.

4.15.2 PCA Single Dataset
The first module that was made for this web application was a module for visual-
izing the PCA plot for a single dataset. The possible options are (1) to select the
dataset whose PCA plot is shown, (2) the principal component for the x-axis, (3)
the principal component for the y-axis, (4) the size of the markers (i.e. the dots
in the chart representing each sample), (5) the opacity of the markers and (6)
whether to color cancer samples differently from control samples. The proportion
of variance explained by the principal components is shown in the axis labels.

4.15.3 PCA Two Datasets
Similar to PCA Single Dataset with the difference that you also select a second
dataset to be plotted. You can also select whether the principal components are
computed using only the first dataset, only the second dataset or both datasets.
In any way, all the computations only use the miRNAs that are in both datasets.

4.15.4 PCA Two Datasets (Matrix)
Here, there are several rows and several columns, where each row and each column
represents a single dataset. In the intersection between a row and a column, there
is a PCA plot similar to PCA Two Datasets using the pair of datasets represented
by the row and the column. The options are similar to PCA Two Dataset, with
the difference that here one selects subsets of datasets to be represented by the
rows and the columns respectively. In addition, one selects whether the principal
components are calculated based on the row-dataset, the column-dataset or both.
Similarly to PCA Two Datasets, all computations only use the miRNAs that
are in both datasets (here: both the column-dataset and the row-dataset). A
screenshot is shown in Figure 4.9.
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Figure 4.9: Screenshot of PCA Two Datasets (Matrix)

4.15.5 Boxplot
The boxplot is a plot that shows the expression of a certain miRNA in the dif-
ferent datasets in cases and controls. In addition, a p-value is computed for the
separation between cases and controls using a t-test. The p-value is adjusted
using Bonferroni, where the p-value for a miRNA-sequence is multiplied by the
number of miRNA-sequences and the p-value for a single combination of miRNA
and dataset is multiplied by the number of miRNA and dataset combinations.
There are three options here: (1) the ordering of the datasets in the boxplot,
where one can sort the datasets alphabetically or on either the size or p-value of
the separation between cases and controls, (2) the ordering of the miRNA selec-
tor (i.e. (3)), where one can either sort the miRNAs alphabetically or based on
the p-value of the separation when using all datasets, and finally (3) a selector
where one can choose what miRNA will be shown in the boxplot. A screenshot
of the boxplot is shown in Figure 4.10.

4.15.6 Log Fold Change correlation
The log fold change correlation plot is a plot where each data point in a scat-
terplot is the log fold change of a miRNA-sequence in two datasets, where the
x-coordinate is the log fold change in the first dataset and the y-coordinate is
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Figure 4.10: Screenshot of Boxplot

Figure 4.11: Screenshot of Log Fold Change correlation plot
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the log fold change in the second dataset. Each data point is labeled with the
miRNA-sequence of the data point and the p-value of the separation between
cases and controls in the two datasets using a t-test. There is also a regression
line, which is labeled with the correlation in log fold change and the p-value of
the correlation. The options here are (1) to select the two datasets for the plot
and (2) the size of the markers. A screenshot of the log fold change correlation
plot is shown in Figure 4.11.

4.15.7 Log Fold Change correlation (Matrix)
This is a matrix of Log Fold Change correlation plots, made in a similar manner
to PCA Two Datasets (Matrix) as shown in Figure 4.9. Here the options are
similar to Log Fold Change correlation, with the difference that here one can
select two subsets of the datasets to be represented by the columns and by the
rows respectively.

4.15.8 Pairwise machine learning
The point of this page is to show how well a machine learning algorithm can gen-
eralize across two datasets. However, one needs a baseline to compare a model
to when assessing how well a machine learning model performs on a task. Sec-
tion 4.7 shows that a machine learning model generally performs well internally
in a dataset, whilst section 4.10 shows that a machine learning model generally
performs poorly across datasets.

Comparing an internal machine learning model with a machine learning model
across studies might be a good comparison. This is because the internal machine
learning model gives a lower bound on how well it is possible to separate cases
and controls in a dataset. However, it is not in any way a perfect bound as (1)
the internal model might use miRNA expression patterns that are correlated with
case-control characteristics in the dataset, but are due to other factors than case-
control characteristics and are thus impossible to replicate in other datasets and
(2) there might be other patterns of case-control characteristics that an internal
model might not recognize due to low sample size, but if these patterns are
also present in larger datasets, then a model trained on a larger dataset might
outperform the internal model. Anyway, a suboptimal baseline was considered
better than none in this case.

The plot is a bar plot of AUC values resulting from training a machine learning
algorithm on one of the datasets in a pair of datasets, and then either testing
on the same dataset or the other dataset in the pair. The calculation and the
meaning of the AUC values in this plot are explained in detail in subsection 3.8.1.
The options here are (1) which pair of datasets to use and (2) what machine



80 CHAPTER 4. EXPERIMENTS AND RESULTS

learning algorithm to use (with the options: logistic regression, SVM, random
forest and XGBoost).

4.15.9 Pairwise machine learning (Matrix)

This is a plot with a matrix of Pairwise machine learning plots, made in a similar
manner to PCA Two Datasets (Matrix). The options are similar to Pairwise
machine learning, with the difference that one selects two subsets of the dataset to
be represented by the rows and the columns respectively instead of only selecting
a pair of datasets.

4.15.10 Sample p-value PCA (single)

One important question is how to identify outlier samples, as outlier samples
might be the result of e.g. technical issues, which would mean that removal of
these samples would lead to better results. One way is to see how the models
classify a certain sample. If the sample has a similar classification pattern to
other samples it would be reasonable to assume that the sample is not an outlier.
The way I am going to do this is by first taking a dataset as a test set. Then
I would find all datasets that have at least four miRNA in common with the
test dataset. These datasets would be used as training sets. Each training set
is then used for training a machine learning model. The model will then give a
probability that each sample in the test set is a cancer sample.

After the probability is calculated for each sample in a test set using each of
the training datasets, PCA is conducted on these probabilities.

The machine learning models used here are logistic regression, SVM, random
forest and XGBoost; and the whole experiment is conducted once with each of
these models.

The proportion of variance explained by the principal components is shown
in the axis labels. One can choose to see the PCA loadings, which in this case are
the eigenvectors of the PCA. There have been no adjustments on the eigenvectors
based on the variance explained. The options are (1) whose test dataset’s PCA
is shown, (2) whose datasets’ loadings are shown, (3) which machine learning
algorithm is used, (4) which principal components are plotted along the axes, (5)
a scaling for the loadings (as the loadings are unadjusted one might want some
scalar scaling as it would change the vector lengths in the plot), (6) marker size,
(7) marker opacity, (8) option of whether samples should be shown in the plot
and (9) whether to color case and control samples differently. A screenshot of
this plot is shown in Figure 4.12.
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4.15.11 Sample p-value PCA (combined)
This is similar to Sample p-value PCA (single) with the difference that here the
PCA is calculated over all samples in all studies. This results in some issues.
First of all, the set of training sets can be different for each test set, as it varies
which datasets a certain dataset has at least four miRNAs in common with.
This is solved by naively setting all probabilities to 0.50 if the training set does
not have at least four miRNAs in common with the test set. Another issue is
that the test set also has to be a part of the training sets, as all samples across
the datasets are supposed to have the same types of probabilities. This is also
naively solved by training and testing on the same dataset. The disadvantage
here is that the sample is tested on a model that the sample did also train. Other
methods would be to set the prediction probabilities to 0.50 in that case, with
the disadvantage of information getting lost. A last method would be to use
some kind of internal cross validation to find a probability, but the disadvantage
is that the probability would be calculated in a different way, which would make
the numbers less comparable across the datasets.

The plot and the options are similar to Sample p-value PCA (single), with
some differences. One difference is that several datasets can be plotted at once
(as here the PCA values are comparable across test datasets). Thus, one se-
lects a subset of datasets to be plotted instead of a single dataset. Selecting no
datasets is an option, which means that the “show cases”-option is removed as it
is redundant.

4.15.12 AUC PCA
One final question is whether there are any patterns in model performance in a
certain test set. One way to check this is to do PCA on the AUC values from
testing on a certain dataset while training on all other datasets. Here also, I
only train on a dataset if it has at least four miRNAs in common with the test
dataset. Thus, the same problem arose as in Sample p-value PCA (combined),
with the solution here that I sat 0.50 as the AUC if the datasets did not have
four miRNAs in common. If the training and test datasets were the same I did
a min(5,#cases,#controls)-fold cross validation and used the mean AUC.

The plot is similar to Sample p-value PCA (combined), with the difference
that the markers represent different datasets rather than samples. In addition,
there is an option for choosing a color coding for the markers. The options
are no color coding, color the datasets based on technology used (e.g. qRT-PCR,
microarray or sequencing) or color the datasets based on the blood fraction where
the miRNA-levels were measured (e.g. whole blood, serum or plasma). There
is also an option that toggles whether there is a label with the corresponding
dataset name near each marker. A screenshot is shown in Figure 4.13.
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4.15.13 Pairwise Multi Plot
In some cases, it might be an advantage to be able to compare two datasets. There
are three different ways to compare two datasets in this web application, namely:
PCA Two Datasets, Log Fold Change correlation and Pairwise Machine Learning.
This plot is a 2x2-matrix with those three plots as subplots. The options here
are (1) the pair of datasets; (2) the machine learning algorithm (for Pairwise
Machine Learning); (3) whether the PCA is based on the first, the second or
both datasets; (4) which principal components are plotted; (5) marker size; (6)
marker opacity (for PCA Two Datasets) and (7) whether to have different colors
for cases and controls (for PCA Two Datasets).

4.16 Results from web application
The web application allowed for doing analysis with less effort than would oth-
erwise be required. As such, there were also some results from using the web
application.

4.16.1 Sample p-values PCA (single)
In general, the models performed poorly when trying to predict across studies,
with mean AUCs close to 0.5. However, by doing PCA on the prediction proba-
bilities one found that the cases and controls differed in how they were predicted
by the different models. Here, I want to focus on one example, Asakura et al.
[2020], but other datasets show similar patterns.

The plot is shown in Figure 4.12. Two immediate observations would be:

1. The cases and controls are separable in the PCA plot.

2. The loadings are going in very different directions.

The first point is somewhat surprising, because as the mean AUC is around
0.50 one would assume that the models would not be able to separate cases from
controls, but the plot suggests that the first principal component (which explains
the plurality of the variance in the prediction probability) is at least partially due
to case-control characteristics. In other words, despite the models doing no better
than chance at predicting cancer status, cancer status is a main contributor to
the variance in the predictions of the models.

The second point explains how this can be the case. We see in the plot that
giving a high prediction probability from e.g. Yao et al. [2019] or Reis et al.
[2020] leads to a high value along PC 1. On the other hand, a high prediction
probability from e.g. Leidinger et al. [2016] or Fehlmann et al. [2020] leads to
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Figure 4.12: Screenshot of Sample p-value PCA (single) using Asakura et al.
[2020] and logistic regression
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a low value along PC 1. As cases are generally high along PC 1, this means
that one would believe that Yao et al. [2019] and Reis et al. [2020] are predicting
well, while Leidinger et al. [2016] and Fehlmann et al. [2020] are predicting very
poorly as they give high probabilities to controls along PC 1. In aggregate these
differences even out as there is little bias for loadings along PC 1, which lead to a
mean AUC of 0.50. Thus the poor results in aggregate hide differences in how the
models predict when trained on different datasets. One interesting result would
be the correlations in prediction probabilities across studies.

The correlations are plotted in Table 4.38. There is little correlation between
the predictions from the models trained on Reis et al. [2020] and Yao et al.
[2019]. And while Reis et al. [2020] had a large positive correlation with case-
characteristics, Yao et al. [2019] had a slight negative correlation. There was
a slight negative correlation between the predictions of Leidinger et al. [2016]
and Fehlmann et al. [2020], and while Leidinger et al. [2016] had a slight nega-
tive correlation with case status, Fehlmann et al. [2020] had a moderate positive
correlation. Thus, even though cases and controls separate well along PC 1,
it is important to remember that PC 1 only explains 22.6% of the variance in
predictions. The results from the correlation table indeed show that other fac-
tors dominate as e.g. Fehlmann et al. [2020] performed moderately well in its
predictions overall, even though it predicts in the wrong direction along PC 1.
Thus, even though cases and controls separate well along PC 1, this effect almost
disappears on an aggregate level as other sources of variance dominate.

Another interesting observation from the table is that of all the datasets that
have been used for training, only Boeri et al. [2011], Jin et al. [2017], Keller et al.
[2020] and Patnaik et al. [2012] did not have significant correlation with case
status. It is interesting because as the mean AUC was around 0.50 one might
think that predictions were in general independent of case-control characteristics,
but this shows that that was not the case. Many datasets have a significant
negative correlation with case-control characteristics, which means that there are
features in the data that separate cases and controls to some degree, but those
features lead the models to predict wrongly. It is difficult to say what is the
reason for this. One hypothesis would be that some confounding variables are
correlated with case characteristics in one dataset, but are correlated with control
characteristics in other datasets. As the Asakura dataset was adjusted for sex
and age, either the adjustment using a linear predictor was not sufficient, or the
confounding variables are due to other characteristics.

4.16.2 AUC PCA
The AUC PCA-plot gave some insight into what created the difference between
the datasets. A screenshot is shown in Figure 4.13, when coloring is based on
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Figure 4.13: Screenshot of AUC PCA when coloring based on technology
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technology. There is some clustering in the plot based on what technology is used
for measuring miRNA-levels. Thus, there is more evidence that heterogeneity in
technology is one reason for low consistency across datasets. However, to be
sure, it would be useful to do a statistical test to see whether there actually are
any differences. In particular, taking a t-test along the first principal component
would show whether there actually are any significant differences along that axis.

The mean value along the first principal component was −0.389 for the se-
quencing datasets, −0.052 for the qRT-PCR datasets and 0.141 for the microar-
ray datasets. The difference between qRT-PCR and microarrays was not signif-
icant (p = 0.391). Likewise, the difference between sequencing and microarrays
(p = 0.097), and the difference between qRT-PCR and sequencing (p = 0.174)
were not significant.
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Chapter 5

Evaluation and Conclusion

This chapter contains the conclusions inferred from the results of this project.
Parts of the conclusions are taken directly from Berg [2021] as there has been an
overlap in questions that are discussed.

5.1 Evaluation
Overall, this project has been a success as the research questions have been
thoroughly examined. The results have been mixed with some positive results
and many null results. The overall conclusion is that if there are any patterns in
differential case-control expression of miRNA, these patterns have to be relatively
small compared to other sources of variance in the dataset. As a result, the
patterns are hard to find, and results that are found in one dataset would not
replicate in other datasets in general.

There are issues with data availability in research. It is important that data
is available in order for third parties to be able to replicate the statistical findings
in papers. Despite, out of 97 datasets requested by email I only received 2, which
suggests that the data is not as available as it should be. This is especially
worrisome as this field seems to have trouble with findings not replicating across
different datasets, as found in this project. Furthermore, Walters et al. [2019]
have also found a lack of transparency and data availability in oncology, and
list some problems with this. The first one is that the cost of data collection
is typically high in cancer research, and in some cases, the data collection can
be affecting cancer patients negatively, which means that one would like to not
have to collect more data than necessary. Thus, having data available allows
one to do cancer research more cost-effectively. One example could be that one
could use data from a study and do an analysis of certain subsets of patients

89
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based on e.g. age, sex etc. Another point is that having data available leads to
the possibility for researchers to replicate the statistical findings in the studies.
There could be problems with p-hacking, spurious results etc. that would be
hard for independent researchers to find without having the dataset available.

This project also shows the value of trying to replicate findings, as the results
show that there was a vast difference in the diagnostic accuracy you could get
internally in a dataset and the accuracy you could get across datasets.

5.2 Discussion
Despite vast resources invested into cancer research globally, the field suffers
from a low replication rate. Errington et al. [2021] looked at 50 experiments
from 23 high-impact papers in cancer biology with a total of 158 effects. They
found that positive effects could only be replicated in 43% of the cases, while
49% yielded null results and 7% resulted in significant results in the opposite
direction. The correlation between the original and the new effect sizes was
r = 0.47 using Spearman’s r. For positive results, the median effect size was 85%
smaller in the replication than in the original research. According to one survey,
around 50% of cancer researchers have been unable to reproduce a published
result [Mobley et al., 2013]. As a result, it is important to check what findings
do replicate across studies and what findings do not. There have been many
studies on circulating miRNA and lung cancer, but none has collected all available
datasets for comparison.

There was an inconsistency between what was reported in the meta-analyses
and what was found in the studies and the datasets in this project regarding
what miRNAs had a consistent expression across studies. This suggests that
the consistency found in other meta-analyses might not be universal, and some
skepticism is warranted. On one hand, these meta-analyses had more studies
in their analyses than this project had, which should point to one having more
trust in their results than in the results of this project. On the other hand,
there might be a publication bias where one is more likely to publish, note or
report results that are consistent with the existing literature. In addition, in
e.g. Zhong et al. [2021] only studies showing significant differential expression
in a miRNA-sequence were noted, meaning that studies finding no differential
expression were not taken into account. In this project, I tried to find whether
there was a differential expression in the miRNAs in the datasets regardless of
whether the authors had reported them as a result, which might paint a more
representative picture.

Indeed, trying to find significant patterns in differential case-control expres-
sion was futile as the distribution of pairwise log fold correlations using Pearson’s
r had a mean close to zero. If there were linear effects of case-control expres-
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sion, one would expect that it would result in a higher correlation coefficient. As
there were many datasets that were tested against each other, one can assume
that there indeed was no large correlation in log fold change in general. The
small correlations that were indeed found seem to be partially due to covariance
between different miRNAs that was unrelated to case-control status.

The datasets have different structures as a machine learning algorithm is able
to distinguish between samples from different datasets quite well. This means
that each study has some kind of footprint in the miRNA expressions that can
be used for a machine learning algorithm to recognize a certain dataset. It would
be hard to adjust for these effects that depend on which dataset is used, as effects
that are linear on single miRNAs are already adjusted for. Effects thus have to
be on a multi-miRNA level, but to find if such an effect is only in one dataset, one
has to look at multiple datasets, and thus remove the independence between the
datasets. As shown in section 4.12, removing the first two principal components
is not sufficient to ensure consistency between datasets.

It is still an open question what causes the lack of reproducibility in the
datasets. This project tried to check for some obvious answers like technology,
blood fraction or cancer stage. However, none seemed to explain the lack of
reproducibility completely, as there was still a lack of reproducibility when ad-
justing for these differences or when only considering different subgroups. There
is a limitation here, as it was not possible to group on a finer level due to having
few datasets.

5.2.1 Is there consistent differential expression?
As there was little to no consistency in the differential expression of the miRNA
between cases and controls, one might ask whether there exists a consistent differ-
ential expression at all? On one hand, there was limited consistency between the
datasets in this study, and one might wonder to what degree the positive results
in this project are statistical artifacts rather than valid results, as there seemed
not to be a general pattern in the positive results. It might seem like most of the
evidence in this field is based on single studies that look at one specific dataset.
As shown in this project, one might not extrapolate the results from these kinds
of studies and conclude that the results are valid in general.

On the other hand, there often seemed to be a significant correlation between
whether a machine learning model predicted that a certain sample was a cancer
sample and whether it was an actual cancer sample (see Table 4.38). There also
seems to be a clear pattern in the AUC PCA-plot in Figure 4.13, however, there
were no significant differences along the first principal component. In addition,
one should note that this is a project with only 26 datasets, while other meta-
analyses like Zhong et al. [2021] have a larger sample size of studies they are
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based on. However, these results have issues as explained above including that
the degree of consistency in the differential expression of the miRNAs that was
reported seems unlikely given the results in this project.

Anyhow, I think the results from this project make a good case to actually
compare the data between studies, and not only the results, when doing meta-
analyses in this field.

5.2.2 Limitation
There are limitations to this report. For once, there was heterogeneity in how
miRNAs were measured, which is a source of noise in the data. It is plausible
that a similar report as this that had available datasets that were homogenous
in technology and blood fraction would indeed have more consistent patterns
and more significant results. There were no adjustments for different handling of
samples or different lung cancer types, which might explain some of the lack of
consistency.

There was also a limitation in that few of the requested datasets were received,
which means that the analysis is less thorough than it would otherwise have been.

Another limitation is on the machine learning. This project looked at some
possible machine learning models, but there are more available that might lead
to better results, but that is out of the scope of this project and would be future
work.

5.3 Contributions
The main contribution of this project has been to collect all the available datasets
on circulating miRNAs and lung cancer. I converted all the datasets into a
common format, thus making it easier for other researchers to use them if they
want to compare different datasets or show that their findings replicate across
studies.

I have done a simplified meta-analysis where I looked at different meta-
analyses and saw what miRNAs were reported to be consistently differentially
expressed in the meta-analyses and saw whether these results replicated in the
datasets that I collected.

Furthermore, I tried to compare the different datasets in different ways to find
what patterns in case-control characteristics can be replicated across datasets. I
have also tried different methods to find the effect technology, blood fraction and
cancer stage had on the comparability of the datasets.

I have tried to group different datasets and use different machine learning
algorithms to try to find subsets of datasets where there are patterns in case-
control characteristics that a machine learning algorithm can find across studies.
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Finally, I made a visualization tool for the data so that other researchers can
explore the data easily.

5.4 Future Work
The main goal should be to try to find the reason for the lack of reproducibility,
as it might lead to methods that would adjust for these problems, thus making
circulating miRNAs a valid diagnostic marker for lung cancer that is not very
sensitive to study design.

The process of data collection in this project can be built on by finding more
datasets to add to the collection, or by using the already collected datasets to do
analysis. Furthermore, the data visualization tool is available if someone wants
a high-level exploration of the data without having to deal with the raw files.

There are methods that might lead to higher reproducibility. One way would
be to try to manipulate the raw data differently in hope that it would result in
more consistent case-control patterns. However, I would argue that it would be
hard to find such a data manipulation. That is because the log fold change cor-
relation is close to zero, and many types data manipulations would keep relative
rank across the miRNAs, thus making it unlikely these data manipulations would
lead to higher correlations. Of course, other types of data manipulations that
do not preserve rank might work, e.g. by using principal components. Another
way to try to get more consistency between datasets would be to collect datasets
using the same technology and blood fraction, as there were some cases in this
project where datasets had a higher consistency when using the same technology
or the same blood fraction.

Another idea would be to try different machine learning tools to find consis-
tent patterns. There are still many possible models to choose from that might
find patterns in the datasets that are replicable, and one might try to explore
other possible models to see if they give any improvement in diagnostic accuracy.
However, given that it was hard to find consistent patterns here, it would be
unlikely that other models work. It is also important to ensure that the model
actually performs better when testing different models, rather than concluding
based on some statistical coincidence. This is especially important as the results
from this project suggest a low prior for having a model perform well across
datasets and one would like to avoid the problem described by Ioannidis [2005].

Finally, I would request people working in this area to make sure that one’s
findings replicate across different datasets. This would ensure that the findings
are general and not spurious, which this project shows is rare.
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Abstract

Background: There have been many studies on circulating miRNA and lung
cancer, but few studies have compared datasets from different studies. In this
paper, we collected all available datasets in the field in order to compare them
and try to find whether patterns in case-control characteristics could replicate
across different datasets.
Results: A machine learning model could separate cases and controls well
internally in one dataset. However, in general there was little consistency in
case-control patterns across datasets.

Keywords: miRNA; lung cancer; machine learning; NSCLC; circulating miRNA;
serum; plasma; whole blood

Background
Lung cancer is the second most common type of cancer worldwide, and the type of
cancer with the highest total mortality worldwide, causing about 1.8 million deaths
per year [1]. The most important risk factor related to lung cancer is smoking.
Smoking is estimated to explain about 90% of the risk of lung cancer in men, and
70% to 80% of the risk of lung cancer in women [2]. Furthermore, about 90% of
lung cancer deaths in men, and 79% of lung cancer deaths in women are caused by
smoking [3].

There are two main types of lung cancer, Small Cell Lung Cancers (SCLC) and
Non-Small Cell Lung Cancers (NSCLC) [4]. Of lung cancer cases, about 80-85% are
NSCLC, whilst 10-15% of the cases are SCLC, and a few percent are minor types of
lung cancer [5]. NSCLC cancers tend to grow slower than the SCLC cancer types,
and thus SCLC has usually already spread when it is diagnosed [5]. The NSCLC
has three major subtypes: adenocarcinoma (30-40% of NSCLC cases), squamous
cell (30%) and large-cell undifferentiated carcinoma (10-15%) [4]. The treatment
and prognosis for the different NSCLC subtypes are similar [5].

The main advantage of diagnosing lung cancer early is that the cancer has not
yet spread to other parts of the body, which means that it can be removed by
surgery [6]. In contrast, later stages might require chemotherapy, radiation therapy
or immunotherapy, but as the cancer has spread widely, this cure will likely not
remove the cancer completely [6].

MicroRNAs (miRNAs) are short sequences of RNA, about 22 nucleotides each,
that regulate the expression of mRNA by binding to the target mRNA-sequence
and thus stopping it from being translated. Circulating miRNA has been found to
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be a biomarker for many diseases, including cancer, infectious diseases and mental
illnesses [7, 8, 9, 10].

The overall roles of miRNAs in relation to lung cancer are not fully understood
[11]. MicroRNAs are thought to function both as tumor suppressor genes and as
oncogenes, and tumor miRNA expression profiles can distinguish tumors from nor-
mal tissue, distinguish tumor subtypes, and predict survival [12]. Moreover, multiple
studies report differential expression of circulating miRNA-sequences in cancer pa-
tients compared to healthy controls, which suggests expression of circulating miR-
NAs is a promising method for diagnosing lung cancer [11].

Statement of the problem
We want to collect all available datasets on circulating miRNA and lung cancer in
order to be able to do machine learning on a larger combined dataset to see whether
that leads to better diagnostic results. We also want to see to what degree machine
learning algorithms can generalize across different datasets.

Methods
The methods section includes a description of the literature review, how machine
learning was done on single datasets and how training was done when using two
datasets as the training set. This paper contains a subcollection of results from [13]
and [14].

Structured Literature Review Protocol
The point of the literature search was to find studies relevant to circulating miRNA
and lung cancer. The main search engine used was PubMed, which is a commonly
used search engine for medical literature. The search term used was:
(lung OR pulmonary OR NSCLC) and
(tumor OR cancer OR carcinoma) and
(microRNA* OR miRNA* OR miR*) and
(diagnosis OR biomarker OR detection) and
(serum or plasma or "whole blood")
In addition, I searched databases that have public gene expression data, as described
in Table 1.

The inclusion criteria were based on what datasets I thought were relevant to this
project:

• The paper is an experiment where circulating miRNA is measured.
Some of the studies measured miRNA-levels in the lung tissue or in sputum, rather
than measuring circulating miRNA. As the values are somewhat different between
lung tissue miRNA and circulating miRNA [15], only the circulating miRNA ones
were selected in order to have a consistent dataset. In addition, the research question
was to look at the diagnostic value of circulating miRNA, which makes it reasonable
to only use circulating miRNA data.

• The study both has people diagnosed with lung cancer and controls not diag-
nosed with lung cancer.

The controls in some of the studies are not healthy, but suffer from other kinds
of lung diseases. Other studies have both healthy controls and controls with other
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lung illnesses. Both are relevant, as on one hand, one would like to see the difference
between healthy controls and patients with lung cancer in order to find what miRNA
changes are due to the lung cancer. On the other hand, people who are getting
checked for lung cancer often have lung issues, which is the reason for their checkup,
so distinguishing lung cancer from other illnesses is important.

Some studies were excluded as they did not have a control group like [16].
• At least four different miRNA-sequences were measured.

The point of this project is to combine and compare datasets. Having few miRNA-
sequences measured makes it hard to combine datasets, as there is a high likelihood
that there are no overlapping miRNA-sequences between the datasets.

• Meta-analyses were used as a source of relevant studies
Some of the studies found were meta-analyses. In that case, relevant studies were

retrieved from the references of the meta-analysis.

Machine learning on single datasets
We will train four different models on each dataset using logistic regression, SVM,
random forest and XGBoost. The models will be tested using AUC, and the
AUC will be calculated using cross validation where the dataset is split into
c = min(5,#Cases,#Controls) equal parts and for each of the c parts, there will
be a round where the model is trained on the c− 1 other parts of the dataset and
tested on the last part. The resulting AUC will be the average over the c rounds.

Training on two datasets
We will train different machine learning models on two datasets and try to predict
on a third dataset, and then compare the results to the results that are found by
training the model on only one of the datasets. The results will only be considered
if the three datasets have at least 10 miRNA-sequences in common, to ensure the
datasets are similar enough. The samples will be weighted so that the sum of weights
in each dataset is the same, and the weights of all samples in the same dataset are
the same.

Results
Studies included
Current literature is replete with studies investigating the potential of circulating
miRNAs for lung cancer diagnosis, but for such studies to be useful for machine
learning analyses and replication purposes, the data from individual miRNAs and
individuals should be available. To identify a large and unbiased set of studies that
had investigated and reported the blood expression profiles of multiple miRNAs
in multiple individuals, including both lung cancer patients and controls, we did a
structured literature review (see the section on literature review in the methodol-
ogy).

The review identified 123 studies. However, most datasets that were requested by
email were not received. The 26 studies whose datasets that were either received
or were publicly available are: [17], [18], [19], [20], [21][1], [22], [23], [24], [25], [26],
[1][21] is not the study where the dataset originated from, but it is a study using
the dataset. The dataset is GSE71661 in the Gene Expression Omnibus, and has
no citation listed: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71661
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[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41] and [42].
A basic overview of the different studies is found in Table 2.

Machine learning on single datasets
One important question is whether more advanced machine learning algorithms are
better at diagnosing lung cancer based on miRNA-levels. Therefore, I have chosen
to do machine learning on single datasets. As seen in [13], the results when doing
machine learning across datasets were mostly poor. Furthermore, if the connection
between miRNA expression and lung cancer is very sensitive to study characteristics,
machine learning across different datasets might not be the best idea, compared to
training on data where the characteristics are known to be the same. I have chosen
four different types of machine learning algorithms to test.

• Logistic regression: Is natural to use as a baseline model to compare against,
as it has been used in many of the studies that are included in this project

• Support vector machine: If the data is nearly linearly separable, this will find
such a separation.

• Random forest: It is a powerful algorithm that is able to generalize well also
on small datasets, as it is an ensemble method.

• XGBoost: Has had the success in tabled data with limited samples in Kaggle
competitions [43], and is thus a natural algorithm to test.

The results from machine learning on single datasets are shown in Table 3. The
results are from using cross validation on the datasets with the given machine learn-
ing algorithms. A more detailed explanation is found under methodology. Random
forest performed best while XGBoost performed worst. One question is whether
these differences are statistically significant or not. Therefore I performed t-tests
on the differences in AUC values, which showed that none of the differences were
significant. Thus one cannot say that one algorithm performed better than another
in general.

Baseline miRNA-sequence
One important question is what miRNA-sequences would be most successful in
diagnosing lung cancer. This has not only clinical relevance, but is also important
to note as a machine learning model would be more powerful than using one single
miRNA-sequence. There will always be additional costs associated with measuring
more miRNA-sequences, and therefore I need to show that a machine learning model
will perform better than a model based on a single miRNA-sequence.

There are two main types of methods possible for finding such miRNA-sequences,
each with some pros and cons:

1 Look at meta-analyses for finding miRNA-sequences that are found to diag-
nose lung cancer well across studies.
Pros:

• The miRNA-sequences found would be based on more data, and thus
they are likely better.

• The miRNA-sequences are nearly[2] independent of the datasets used in
this project and are therefore mostly unbiased.

[2]After all, the meta-analyses might be based on some datasets used in this project.
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Cons:
• The miRNA-sequences that are reported in these meta-analyses are often

not in many of the datasets used in this project.
2 Look at the datasets used in this project to find miRNA-sequences that can

separate cases and controls across the different datasets.
Pros:

• It is easier to limit the search to miRNA-sequences that are found in
many of the datasets in this project.

Cons:
• The miRNA-sequences are biased, as the baseline is the ability of these

miRNA-sequences to diagnose cancer on the datasets, but the miRNA-
sequences were chosen because they diagnosed well on said datasets.

I want to try a hybrid strategy, in order to mitigate the cons of each method.
That is, I want to try to find an intersection between microRNA-sequences that
have been found in meta-analyses to be consistently good at diagnosing lung cancer
and microRNA-sequences that separate well in the studies used in this project.

There are several ways to measure to which degree a miRNA-sequence can be
used to separate cases from controls. One possibility would be to use the t-statistic.
The advantage of the t-statistic is that it has a known distribution (given the null
hypothesis), and thus one could get to know whether a difference is plausibly a
result of chance or not. The disadvantage of the t-statistic is that it does not only
measure to which degree the miRNA-sequence separates well in the dataset, but also
the statistical power of each dataset. Therefore, large datasets would be given more
weight, and the value could hide to what degree the miRNA-sequence diagnoses
correctly in the dataset.

Another alternative is to use Cohen’s d. The advantage of Cohen’s d is that it
tells to what degree cases and controls are separated independently of the number
of samples in the dataset. The disadvantage of Cohen’s d is that it does not consider
the statistical power at all, and thus one might expect many spurious results when
using Cohen’s d. A final statistic is to use AUC. The advantages and disadvantages
are similar to Cohen’s d, with the difference that AUC has the advantage that it is
the metric that the results will be measured against in the end. However, Cohen’s d
has the advantage that it also looks at the size of the difference in expression, and
not just whether there is a separation like AUC does.

After a consideration of the different statistics, I found that Cohen’s d and AUC
would be the most appropriate statistic for this purpose, as the t-statistic would
give too much power to the large datasets (which might not be representative at
all), and not tell the actual degree of separation.

Meta-analyses
Meta-analyses gave an overview of the possible miRNA-sequences that can be used
as baselines in this project [44, 45, 46, 47], where [44] was the most thorough of
the meta-analyses. These meta-analyses suggest that the miRNA-sequences that
have been shown to be able to diagnose lung cancer in most studies are miR-21
and miR-210, with [44] suggesting that miR-182, miR-155 and miR-17 are in third,
fourth and fifth place, respectively. All of these miRNA-sequences were reported
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to be up-regulated in cases compared to controls. However, these results were not
representative of the studies used in this project.

[44] found that of all studies that they went through miR-21 was significantly up-
regulated in cases in 48 studies, and down-regulated in two studies. However, among
the studies used in this project, [36, 25, 32, 23] all reported that miR-21 was down-
regulated in cases compared to controls, which suggests that miR-21 might not be
as good of a biomarker for lung cancer as the meta-analyses suggest. An overview
of the reported up- and down-regulation of the aforementioned miRNA-sequences
in the studies in this project is shown in Table 4.

Table 4 shows that none of the five miRNA-sequences were consistently up-
regulated. However, miR-17 was consistently down-regulated in the sample, which
contrasts with [44] which reported that miR-17 had been up-regulated in 7 studies
and down-regulated in one study, if one only looks at the studies using circulat-
ing miRNA. Everything considered, this points to very inconsistent results across
datasets, which suggests that there might be little consistency, and hard to replicate
results.

Using datasets
The meta-analyses gave some candidate miRNA-sequences that can be used as
baselines in this project, namely miR-21, miR-210, miR-182, miR-155 and miR-
17. The Cohen’s d and AUC of the miRNA-sequences in the different datasets are
shown in Table 5 and Table 6 respectively.

Interestingly, the average Cohen’s d of four of the miRNA-sequences was negative,
even though [44] found that they were consistently up-regulated in cancer compared
to healthy controls, which again suggests that these miRNA-sequences are not as
good biomarkers for cancer as [44] suggests. Overall miR-210 was the only one that
my datasets and the meta-analyses agree on being up-regulated, which is why we
chose that miRNA as our baseline.

Training on two datasets
One of the goals of this project is to find whether combining multiple datasets will
result in better diagnostic accuracy than using a single dataset. The result of train-
ing on one dataset and predicting on another dataset was done in the exploratory
phase of this project with subpar results. However, it is possible that training on
multiple datasets will help the machine learning algorithm to find case-control pat-
terns that transcend the patterns that are found internally in one dataset, leading to
better generalizability. In this experiment, we will find sets of three datasets, where
one of them is a test set, and the two others are training sets. We will compare
results when only training on one of the training sets to when training on both the
data sets. More details are in the methodology.

Logistic Regression
The first model we will try is logistic regression as it is a basic classification model,
and it is often used in the studies that try to predict cancer based on miRNA,
it therefore serves well as a baseline. The model will be trained on the miRNA-
sequences that all the three datasets have in common.
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When training on just one of the datasets the mean AUC was 0.501 and the
standard deviation was 0.168. When training on both datasets, the mean AUC
was 0.508 and the standard deviation was 0.169. This is worse than the baseline
miR-210, which had a mean AUC of 0.551 (see Table 6).

XGBoost
It is plausible that a model like XGBoost will perform better on the datasets, as it
has methods for handling missing data, and it can handle non-linear relationships in
the data. In addition, it is a boosting algorithm, which usually performs well when
data is sparse, as in this case. Here, we will make use of the way XGBoost handles
missing data and therefore train the model on all the miRNA-sequences that the
two training datasets have in common.

The mean and standard deviation in AUC values when training on one dataset
were 0.504 and 0.162 respectively. The mean and standard deviation when training
on two datasets were 0.505 and 0.172 respectively. The results suggest that combin-
ing two datasets have little to no effect. Furthermore, the results were very similar
to the ones achieved with logistic regression, which suggests that the problem is not
the model.

Stratification of the datasets
There are several possibilities as to why the datasets are incompatible. One possibil-
ity is that some factors like what technology was used for measuring miRNA-levels
play a role. There are other factors as well that differ between the datasets, like can-
cer stage and what blood fraction was measured (plasma, serum, whole blood, etc.).
If these factors play a role one would expect to see more consistency in datasets that
are similar in these characteristics. One way to test this hypothesis is to stratify
the datasets based on these characteristics, and see if one sees a larger consistency
between the datasets when the datasets are stratified in this way.

Training and testing on pairs of datasets, in-group vs. out-group
Here we will use pairs of datasets and train a model on one of the datasets and
test on the other dataset, only that the AUC will be compared when the datasets
have the same characteristics to when they have different characteristics. E.g., we
will compare the AUC when two datasets are using qRT-PCR to when one is using
qRT-PCR and the other study is using a different technology. We will do this
stratification for technology and for type of blood fraction. Here we will use logistic
regression and only do pairs of datasets that have at least 10 miRNA-sequences in
common.

Stratifying by technology: The results when training on one dataset and testing
on another dataset when stratifying using technology are shown in Table 7. The
in-group is when both datasets use the given technology, and the out-group is when
only one of the datasets uses the given technology. As the table shows, the AUC was
generally somewhat better in in-group than out-groups. However, the improvement
in AUC was only significant for microarrays. Still, the category “microarray” is
hiding heterogeneity, as the microarrays in the studies varied a lot.
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To check the hypothesis that the problems are due to heterogeneity in the
microarray-technology, we wanted to do an experiment with a finer stratification
of the microarray technology. Of the microarray-technologies that have been used
multiple times, there were three that used Exiqon microarrays ([22, 36, 37]), three
that used Agilent microarrays ([23, 38, 33]), three that used Geniom microarrays
([26, 30, 27]) and two that used SurePrint microarrays ([31, 28]). This experiment
will only consider pair of studies where both use microarrays. The in-group here is
when the pair of studies have the same type of microarray, and the out-group is
when they use different types of microarrays. The results were that the in-group
had a mean AUC of 0.612 while the out-group had a mean of 0.518. The difference
was not significant using a t-test (p = 0.056). It might be that this is due to the low
sample size, but even in the in-group, the consistency is relatively low compared to
the internal consistency in the datasets found in Table 3.

Stratifying by blood fraction: The results when training on one dataset and testing
on another dataset when stratifying using blood fraction are shown in Table 8.
The in-group is when both datasets measure the given blood fraction, and the out-
group is when only one of the datasets uses the given blood fraction. In contrast
to when stratifying by technology, it seems that there is no use in stratifying by
blood fraction. None of the changes in AUC are significant, and one of the changes
is even negative. It might suggest that technology contributes to more variance in
the resulting data than what blood fraction does.

Stratifying by cancer stage: Cancer stage may be a covariate that hinders the
replicability of the datasets. To check this hypothesis, I will do an analysis where
I only use the datasets where samples are labeled, and compare the results when
only using the early stages to when only using the late stages. If there is higher
consistency in the late stages, it would suggest that some of the lack of replicability
is due to cancer stages. The result from training on one dataset and testing on
another dataset, when only using late stage cancer was a mean AUC of 0.528 with
a standard deviation of 0.187. Using only early stage cancer gave a mean AUC of
0.460 with a standard deviation of 0.140. There is no significant difference between
the AUCs in the two cases given by a t-test (p = 0.204), and both mean AUCs are
close to 0.50, which suggests that stage does not explain the low AUC scores in the
previous results.

Combining all except one
Another attempt will be to take all datasets with a certain characteristic, like tech-
nology or blood fraction, and then train on all datasets except one that will be used
for testing, and using AUC as the metric. For checking whether the AUC values are
better than chance levels we took a one-sided hypothesis of AUC > 0.50 using a
t-test. We will use the union of the miRNAs in the datasets in each category to train
on. To ensure that missing values will not be a problem, we will use XGBoost as
the model as it handles missing values by default. We will also try to do this using
the datasets where cancer stage is labeled, and try both using only early cancer
samples and using only late cancer samples.
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Stratifying by technology: The results from stratifying by technology are shown
in Table 9. Sequencing is an outlier where the AUC was better than the other
categories. Notably, an AUC of 0.625 is higher than any of the other AUCs achieved
so far when testing on a different dataset than testing on, but it might be due to
chance as the AUC is not significantly higher than 0.50 when adjusting for multiple
testing. It does not seem like technology is the main reason for the low consistency
between the datasets.

Also here I want to see whether stratifying by subtypes of microarrays will be
beneficial. The subcategories are small, with the largest ones having three datasets,
meaning that training will be done on maximally two datasets. The resulting mean
AUC was 0.567 and the resulting standard deviation was 0.282, which was not
significantly better than 0.50 (p = 0.225). This suggests that neither here hetero-
geneity in the microarray-technology was the reason for the poor results for the
microarrays. Even an AUC of 0.567 is much lower than the internal consistency
found in Table 3.

Stratifying by blood fraction: The results from stratifying by blood fraction are
shown in Table 10. None of the AUCs were significantly larger than 0.50 when
adjusted for multiple testing. This suggests that the lack of consistency is not due
to blood fraction either.

Distribution of AUC values: In the subsections above, only summary statistics
were reported. However, mean and variance can hide a lot of information about the
distribution, e.g. whether the distribution is unimodal or bimodal. As t-values have
been used to check for statistical significance, there has been an implicit assumption
that AUC values have been approximately normally distributed. I have plotted a
histogram and a Q-Q plot combining all the AUC values from the different categories
(Figure 1), as it is too few values to do inference based on any of these categories
alone. I am not including the results from stratifying by cancer stage here as those
values do not use full datasets, and are thus less comparable. The Q-Q plot shows
that the distribution of AUC values follows the normal distribution quite nicely,
except for a slight deviation in the tails of the distribution. Thus, the normality
assumption seems to hold.

Stratifying by cancer stage: Here all datasets with labeled cancer stages are used.
The training on all datasets except one using only early stage cancer samples and
controls with leave-one-out cross validation results in a mean AUC of 0.523 with
a standard deviation of 0.171. A t-test shows that this is not significantly better
than 0.50 (p = 0.738). The same experiment using late stage cancer results in a
mean AUC of 0.509 with a standard deviation of 0.194. Neither this is significantly
better than 0.50 (p = 0.904). As the mean AUCs, both when only using early stage
cancer and only using late stage cancer, were only slightly higher than 0.50 and the
differences were not significant, it seems like there is no improvement in AUC by
stratifying by stage.

Conclusions
In short, the results from this project suggest that there is low consistency between
different datasets on circulating miRNA and lung cancer.
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Evaluation
Overall, this project has been a success as we have done what we intended in the
statement of this problem. The results have been mixed with some positive results,
but mostly null results. The overall conclusion is that if there is any pattern in
differential case-control expression of miRNA, this pattern has to be relatively small
compared to other sources of variance in the dataset. As a result, the patterns are
hard to find, and results that are found in one dataset do not replicate in other
datasets in general.

There are issues with data availability in research. It is important that data is
available in order for third parties to be able to replicate the statistical findings
in papers. Despite, out of 97 datasets requested by email, I only received 2, which
suggests that the data is not as available as it should be. This is especially worri-
some as this field seems to have trouble with findings not replicating across different
datasets, as found in this project. Furthermore, [48] have also found a lack of trans-
parency and data availability in oncology, and list some problems with this. The
first one is that the cost of data collecting is typically high in cancer research, and in
some cases can be affecting cancer patients negatively, which means that one would
like to not have to collect more data than necessary. Thus, having data available
allows one to do cancer research more cost-effectively. One example could be that
one could use data from a study and do an analysis of certain subsets of patients
based on e.g. age, sex etc. Another point is that having data available leads to the
possibility for researchers to replicate the statistical findings in the studies. There
could be problems with p-hacking, spurious results etc. that would be hard for
independent researchers to find without having the dataset available.

This project also shows the value of trying to replicate findings, as the results show
that there was a vast difference in the diagnostic accuracy you could get internally
in a dataset and the accuracy you could get across datasets.

Discussion
Despite vast resources invested into cancer research globally, the field suffers from
a low replication rate. [49] looked at 50 experiments from 23 high-impact papers in
cancer biology with a total of 158 effects. They found that positive effects could only
be replicated in 43% of the cases, while 49% yielded null results and 7% resulted
in significant results in the opposite direction. The correlation between the original
and the new effect sizes was r = 0.47 using Spearman’s r. For positive results, the
median effect size was 85% smaller in the replication than in the original research.
Around 50% of cancer researchers have been unable to reproduce a published result,
according to one survey [50]. As a result, it is important to check what findings do
replicate across studies and what findings do not. There have been many studies on
circulating miRNA and lung cancer, but none has collected all available datasets
for comparison.

There was an inconsistency between what was reported in the meta-analyses and
what was found in the studies and the datasets in this project, regarding what
miRNAs had a consistent expression across studies. This suggests that the consis-
tency found in other meta-analyses might not be universal, and some skepticism is
warranted. On one hand, these meta-analyses had more studies in their analyses
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than this project had, which should point to one having more trust in their results
than in the results of this project. On the other hand, there might be a publication
bias where one is more likely to publish, note or report results that are consistent
with the existing literature. In addition, in e.g. [44] only studies showing significant
differential expression in a miRNA-sequence were noted, meaning that studies find-
ing no differential expression were not taken into account. In this project, I tried
to find whether there was differential expression of these miRNAs in the datasets
regardless of whether the authors had reported them as a result, which might paint
a more representative picture.

It is still an open question what causes the lack of reproducibility in the datasets.
This project tried to check for some obvious answers like technology, blood frac-
tion or cancer stage. However, none seemed to explain the lack of reproducibility
completely, as there was still a lack of reproducibility when adjusting for these dif-
ferences or when only considering different subgroups. There is a limitation here, as
it was not possible to group on a finer level, due to having few datasets and a finer
grouping would have too low statistical power when looking at the accuracy inside
a subgroup.

Limitations
There are limitations to this report. For once, there was heterogeneity in how miR-
NAs were measured, which is a source of noise in the data. It is plausible that a
similar report as this that had available datasets that were homogenous in tech-
nology and blood fraction would indeed have higher consistency patterns and more
significant results. There were no adjustments for different handling of samples or
different lung cancer types, which might explain some of the lack of consistency.
There was also a limitation in that few of the requested datasets were received,
which means that the analysis is less thorough than it would otherwise have been.

Another limitation is on the machine learning. This project looked at some possi-
ble machine learning models, but there are more available that might lead to better
results, but that is out of the scope of this project and would be future work.

Contributions
The main contribution of this project has been to collect all the available datasets
on circulating miRNAs and lung cancer and doing an analysis where all datasets
are used and compared to each other.

We have done a simplified meta-analysis where we looked at different meta-
analyses and saw what miRNAs were reported to be consistently differentially ex-
pressed in the meta-analyses and saw whether these results replicated in the datasets
that we collected.

We have tried to group different datasets and use different machine learning al-
gorithms to try to find subsets of datasets where the pattern in case-control char-
acteristics is such that a machine learning algorithm can find it across studies.

Future Work
The main goal should be to try to find the reason for the lack of reproducibility, as it
might lead to methods that would adjust for these problems, thus making circulating
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miRNAs a valid diagnostic marker for lung cancer that is not very sensitive to study
design.

The process of data collection in this project can be built on by finding more
datasets to add to the collection, or by using the already collected datasets to do
analysis.

There are methods that might lead to higher reproducibility. One way would be
to try to manipulate the raw data differently in hope that it would result in more
consistent case-control patterns. However, I would argue that such data manipula-
tion probably does not exist. That is because the log fold change correlation is close
to zero, and most reasonable data manipulations would keep relative rank across
the miRNAs, thus making it unlikely that another data manipulation would lead to
higher correlations. Another way to try to get more consistency between datasets
would be to collect datasets using the same technology and blood fraction, as there
are several cases in this project where datasets had a higher consistency when using
the same technology or the same blood fraction.

Another idea would be to try different machine learning tools to find consistent
patterns. There are still many possible models to choose from that might find pat-
terns in the datasets that are replicable, and one might try to explore other possible
models to see if they give any improvement in diagnostic accuracy.

Finally, I would request people working in this area to make sure that one’s
findings replicate across different datasets. This would ensure that the findings are
general and not spurious, which this project shows is rare.
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Figures

Figure 1 Histogram and QQ-plot over AUC values when training on all datasets except one in
one category, and test on the last dataset, aggregated over all categories.

Table 1 Search in public gene expression databases. The first column is the name of the database.
The second column is the search term that was used to search the database.

Database name Search term
ArrayExpress microrna lung cancer
Gene Expression Omnibus
(GEO)

(mirna OR microrna) AND "lung cancer"
AND (diagnosis OR detection)

OmicsDI "lung cancer" AND TAXONOMY: 9606
AND -"breast cancer" AND (mirna OR microrna)
AND (serum OR plasma OR "whole blood")
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Table 2 Characteristics of the studies in this project. The columns are as follows: Study : The study
the row is describing, Technology : The technology used to measure miRNA in that study, Blood
fraction: What fluid is used for measuring miRNAs, # miRNAs: The number of different
miRNA-sequences that are measured in the study, # Cases: The number of samples from cancer
patients in the study, # Controls: The number of healthy controls in the study, Total : The total
number of samples in the study. EV = Extracellular Vehicle, Ex = Exosomal

Study Technology Blood fraction # miRNAs # Cases # Controls Total
[17] qRT-PCR Whole blood 4 43 43 86
[18] Microarray Serum 2565 1566 2178 3744
[19] qRT-PCR Serum 29 95 69 164
[20] Microarray Plasma 131 19 6 25
[21] Sequencing Plasma 253 30 24 54
[22] Microarray Serum 1998 6 6 12
[23] Microarray Whole blood 689 606 2440 3046
[24] qRT-PCR Serum 254 38 16 54
[25] Sequencing Plasma 527 26 12 38
[26] Microarray Blood cells 386 17 19 36
[27] Microarray P. Blood 722 73 94 167
[28] Microarray Serum 435 10 90 100
[29] qRT-PCR Serum EV 4 31 21 52
[30] Microarray Whole blood 852 28 19 47
[31] Microarray Whole blood 1186 42 38 80
[32] qRT-PCR Whole blood 205 74 46 120
[33] Microarray Plasma 165 6 3 9
[34] qRT-PCR Serum 13 48 984 1032
[35] Sequencing Plasma Ex 102 19 7 26
[36] Microarray Whole blood 1396 33 12 45
[37] Microarray Whole blood 3036 86 77 163
[38] Microarray Plasma 184 9 4 13
[39] Microarray Plasma 795 35 7 42
[40] qRT-PCR Plasma 342 100 100 200
[41] Sequencing Plasma EV 569 5 5 10
[42] qRT-PCR Plasma 175 17 10 27

Table 3 The mean AUC when using cross validation on the given studies with the given models. The
first column says which dataset is used, and the rest of the columns have a column name that
represents the model used. LR = Logistic Regression, RF = Random Forest

Study LR SVM RF XGBoost
[17] 0.670 0.814 0.933 0.853
[18] 0.734 0.913 0.968 0.939
[19] 0.795 0.852 0.823 0.843
[20] 0.783 0.950 0.950 0.575
[21] 0.882 0.787 0.793 0.623
[22] 0.900 0.900 0.900 0.800
[23] 0.977 0.980 0.960 0.980
[24] 0.985 0.993 0.983 0.933
[25] 1.000 1.000 1.000 0.980
[26] 0.950 0.900 0.931 0.800
[27] 0.847 0.888 0.864 0.815
[28] 0.956 0.944 0.925 0.967
[29] 0.749 0.658 0.646 0.606
[30] 0.162 0.752 0.705 0.411
[31] 0.160 0.286 0.365 0.528
[32] 0.916 0.903 0.948 0.936
[33] 0.333 0.167 0.833 0.500
[34] 0.976 0.969 0.950 0.968
[35] 0.700 0.300 0.183 0.233
[36] 0.698 0.883 0.777 0.763
[37] 0.573 0.481 0.476 0.543
[38] 1.000 1.000 1.000 0.479
[39] 1.000 1.000 0.957 0.943
[40] 0.494 0.565 0.663 0.689
[41] 0.800 0.600 1.000 0.400
[42] 0.242 0.800 0.842 0.642

Mean 0.742 0.780 0.822 0.721
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Table 4 Whether the miRNA-sequences were reported to be significantly up- or down-regulated
(p < 0.05) in the studies.
Note: [39] only reports miR-210 and miR-182 to be up-regulated in adenocarcinoma. In [40] and [27]
abu-miR-155 was measured instead of hsa-miR-155.

Study miR-21 miR-210 miR-182 miR-155 miR-17
[17] Up
[18]
[19] Down
[20] Up Up
[21]
[22]
[23] Down Up Down Down
[24] Down
[25] Down Down
[26] Up Up Down
[27] Down Down
[28]
[29]
[30] Down
[31] Up
[32] Down Down
[33]
[34]
[35]
[36] Down Down Down
[37]
[38]
[39] Up Up Up
[40] Down Up
[41]
[42] Up

Table 5 Cohen’s d of the different miRNAs in the different datasets. Difference in miRNA expression:
case - controls

Study miR-21 miR-210 miR-182 miR-155 miR-17
[17] -0.784
[18] 0.496 0.719 0.427 0.592 0.690
[19] -0.811
[20] 0.300 0.004 0.158
[21] 0.165 0.610 0.147
[22] -1.723 -0.976 -3.535 -1.631 -0.816
[23] -0.453 0.002 -0.290 -0.054 -0.542
[24] -0.311 0.499 0.007 -1.410
[25] -0.128 -0.132 -1.536 -0.385
[26] 0.321 1.499 0.617 -0.678
[27] 0.067 0.208 -0.008 -1.303
[28] -0.097
[29]
[30] 0.165 -0.102 0.221 -0.663
[31] 0.140 -0.006 -0.035 -0.033 0.131
[32] -0.804 -0.442 -0.756
[33] -0.318 -0.242
[34]
[35] -0.215 -0.341 -0.309
[36] -1.009 -0.836 -1.044
[37] -0.044 -0.070 0.217 0.254 -0.211
[38] -1.183 -0.954
[39] -0.374 1.436 1.265
[40] 0.221 0.013 -0.357 0.429
[41]
[42] -0.404 -0.097 -0.456 -0.042 -0.503

Mean -0.269 0.109 -0.135 -0.271 -0.454

122 APPENDIX



Berg and Sætrom Page 18 of 18

Table 6 AUC of when using the expression of the different miRNAs to diagnose lung cancer in the
different datasets

Study miR-21 miR-210 miR-182 miR-155 miR-17
[17] 0.345
[18] 0.630 0.742 0.601 0.660 0.690
[19] 0.256
[20] 0.579 0.579 0.588
[21] 0.506 0.608 0.443
[22] 0.083 0.389 0.083 0.111 0.417
[23] 0.359 0.488 0.400 0.472 0.343
[24] 0.332 0.891 0.641 0.112
[25] 0.417 0.554 0.141 0.399
[26] 0.418 0.814 0.672 0.296
[27] 0.509 0.554 0.499 0.167
[28] 0.461
[29]
[30] 0.564 0.481 0.598 0.323
[31] 0.548 0.501 0.518 0.479 0.541
[32] 0.218 0.334 0.253
[33] 0.444 0.333
[34]
[35] 0.425 0.421 0.421
[36] 0.217 0.260 0.230
[37] 0.471 0.477 0.541 0.576 0.449
[38] 0.194 0.250
[39] 0.441 0.910 0.918
[40] 0.541 0.533 0.421 0.639
[41]
[42] 0.388 0.359 0.256 0.324 0.224

Mean 0.412 0.551 0.500 0.443 0.369

Table 7 The results when training a logistic regression model on one dataset and testing on another,
when stratifying by technology. The in-group is when both datasets have the technology that is listed
in the first column. The out-group is when exactly one of the two datasets has the technology that is
listed in the first column.
Note: IG = in-group, OG = out-group, mean and standard deviation are of AUC values, t-values are
in-group minus out-group and p-values correspond to the t-values

Technology Mean IG Std. IG Mean OG Std. OG t-value p-value
Sequencing 0.535 0.180 0.452 0.165 1.545 0.124
qRT-PCR 0.512 0.153 0.500 0.155 0.416 0.678

Microarray 0.529 0.208 0.477 0.162 2.967 0.003

Table 8 The results when training a logistic regression model on one dataset and testing on another,
when stratifying by blood fraction. The in-group is when both datasets have the blood fraction that is
listed in the first column. The out-group is when exactly one of the two datasets has the blood
fraction that is listed in the first column.
Note: IG = in-group, OG = out-group, mean and standard deviation are of AUC values, t-values are
in-group minus out-group and p-values correspond to the t-values

Blood fraction Mean IG Std. IG Mean OG Std. OG t-value p-value
Plasma 0.451 0.178 0.497 0.176 -1.766 0.078

Whole blood 0.538 0.109 0.517 0.166 0.659 0.511
Serum 0.549 0.228 0.494 0.185 1.386 0.167

Table 9 The results when training an XGBoost model on all datasets except one in a certain
category and doing testing on the last dataset, when stratifying by technology. The t-value and the
corresponding p-value are for the t-test checking whether the expected AUC is larger than 0.50

Technology Mean AUC Std. AUC t-value p-value
Sequencing 0.625 0.089 2.797 0.034
Microarray 0.505 0.262 0.077 0.470
qRT-PCR 0.493 0.219 -0.086 0.533

Table 10 The results when training an XGBoost model on all datasets except one in a certain
category and doing testing on the last dataset, when stratifying by blood fraction. The t-value and
the corresponding p-value are for the t-test checking whether the expected AUC is larger than 0.50

Technology Mean AUC Std. AUC t-value p-value
Serum 0.531 0.222 0.337 0.375

Whole blood 0.583 0.079 2.773 0.016
Plasma 0.376 0.184 -1.908 0.951
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