
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Torbjørn Bratvold

Near Real-time Hyperspectral Image
Classification for In-orbit
Decissionmaking HYPSO-1

Near Real-time Hyperspectral Image
Classification

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Sivert Bakken
August 2022

M
as

te
r’s

 th
es

is

Torbjørn Bratvold

Near Real-time Hyperspectral Image
Classification for In-orbit
Decissionmaking HYPSO-1

Near Real-time Hyperspectral Image Classification

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Sivert Bakken
August 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Near Real-time Hyperspectral Image Classification

for In-orbit Decissionmaking HYPSO-1

Torbjørn Bratvold

August 1, 2022

Abstract

With the launch of the HYPSO-1 hyperspectral imaging research small satellite in

February of 2022. Improvements in processing technology has made on-board pro-

cessing of larger amount of data feasible on such small computational platforms.

For the HYPSO-1 satellite today the biggest bottleneck is how much data that can

be sent over the radio-link. This work aims to create a novel machine learning

model for near real-time classification of hyperspectral images. The model takes

advantage of the way the HYPSO-1 captures image cubes one spatial line at a time

to achieve near real-time classification. This way larger autonomy can be given to

the satellite to decide when image captures should be initiated and which images

should be prioritised for downlink.

An exprimentational approach lead to the building and training of a model cap-

able of achieving 95.0% accuracy when classifying land, clouds and water on a

chosen self labelled raw HYPSO-1 capture with no pre-processing or radiomet-

ric calibration. The model experiments with using graphical convolutional layers

instead of the more conventional convolutional neural network. The model was

built using the Python framework PyTorch and PyTorch Geometric. The model was

also tested with the standard hyperspectral datasets Indian pines and SalinasA to

gauge a more general performance of the model.

iii

Sammendrag

Småsatellitten HYPSO-1 ble skutt opp i februar 2022 for å brukes som en hypespek-

tral avbildningsplattform for havforskning. Utviklingen innen prosesseringstekno-

logi har gjort at også småsatellitter kan gjøre ombord prosessering av større meng-

der data. Den største flaskehalsen for HYPSO-1 er i dag mengden data som den

klarer å overføre over radiolinken. Denne oppgaven har som mål å utvikle en

ny maskinlæringsmodel for å oppnå nær sanntid klassifisering av hyperspektrale

bilder. For å oppnå dette utnytter modellen at HYPSO-1 tar bilder ved å skanne

de romlige linjene hver for seg. Målet er at modellen skal kunne gjøre det mulig å

gi satellitten større selvstendighet til å bestemme når billedtakning skal gjennom-

føres og hvilke bilder som burde prioriteres for nedlink til bakkestasjonen.

En eksperimentell tilnærming har ført til en modell i stand til å oppnå 95.0%

nøyaktighet på klassifisering av land, skyer og vann på et utvalgt bilde tatt av

HYPSO-1. Det utvalgte bildet inneholder hyperspektral rådata og har hverken

gjennomgått pre-prosessering, eller radiometrisk kalibrering for å oppnå denne

nøyaktigheten. Modellen eksperimenterer med å bruke et graph convolutional

network i stedet for det mer konvensjonelle convolutional neural networket. Mod-

ellen ble laget i Python rammeverket PYTorch og PyTorch Geometric. Modellen ble

også testet mot de hyperspktrale standard datasettene Indian Pines og SalinasA

for å få mer innsikt i ytelsen til modellen på mer generelt grunnlag

v

Preface

The work of this thesis was conducted during the spring of 2022 and concludes the

five year Master’s degree programme Electronics Systems Design and Innovation,

with a spe-cialization within communication and signal processing. The Master’s

thesis is submitted to the Departmentof Electronic Systems at the Norwegian Uni-

versity of Science and Technology.

I would like to thank my supervisor Milica Orlandic for giving me the needed

motivation for finishing this thesis. I would like to thank my co-supervisor Sivert

Bakken for all his help and support. I would like to thank my friends for giving

me needed breaks from the work. Especially I want to thank Simen and Simen for

giving me some final input and helping me proofread.

Lastly I would like to thank the amazing people in the Orbit NTNU and HYPSO

team. You have taught me so much, and without you I would never have dreamt

of working with space-technology and satellites.

vii

Contents

Abstract . iii

Sammendrag . v

Preface . vii

Contents . ix

Figures . xiii

Tables . xv

Code Listings . xvii

Acronyms . xix

Glossary . xxi

1 Introduction . 1

1.1 Motivation . 1

2 Background and theory . 3

2.1 Hyperspectral imaging . 3

2.1.1 Excitation of atoms . 3

2.1.2 Spectroscopy . 5

2.1.3 Hyperspectral images . 7

2.2 HYPSO mission . 8

2.3 In orbit processing . 9

2.3.1 Field Programmable Gate Array (FPGA) 9

2.4 Classification of Hyperspectral Images 10

2.4.1 Image segmentation . 10

2.4.2 Pixel based segmentation . 11

ix

x Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

2.4.3 Current methods . 11

2.4.4 On-board Classification . 13

2.4.5 Real-time Image Classification 13

2.5 Graph Neural Networks . 15

2.5.1 Graphs . 15

2.5.2 Node embedding . 16

2.5.3 Graph Convolutional Network 17

3 Implementation . 19

3.1 Representing HSI as graphs . 19

3.2 Datasets . 20

3.2.1 Indian Pines . 21

3.2.2 Salinas A . 22

3.2.3 HICO dataset . 22

3.2.4 HYPSO-1 dataset . 22

3.3 Building and training models . 23

3.3.1 Training and test data . 23

3.3.2 Pre-processing . 24

3.3.3 Graph convolutional layers . 24

3.3.4 Approaches . 25

3.3.5 Data Augmentation . 26

3.3.6 Final implementation . 26

4 Results . 29

4.1 Training . 29

4.1.1 Tunable model and data parameters 29

4.2 Indina Pines and SalinasA . 30

4.3 HICO and HYPSO-1 . 31

5 Discussion . 37

5.1 Model performance on Indian Pines and SalinasA dataset 37

5.1.1 Possible model improvements 38

5.2 Model performance on HICO and HYPSO-1 dataset 39

Contents xi

5.3 Practical model usage . 40

5.3.1 Segmentation for downlink decision making 41

5.3.2 Real time segmentation for capture initiating 42

6 Conclusion . 43

6.1 Further work . 43

Bibliography . 45

A Model code . 49

A.1 main.py . 49

A.2 train.py . 56

A.3 models.py . 64

A.4 confusion.py . 70

Figures

2.1 Hydrogen excitation. Figure obtained from [5] 4

2.2 Visible light spectrum, taken from [10] 6

2.3 Hydrogen Absorption Spectrum, taken from [11] 6

2.4 Hydrogen Emission Spectrum, taken from [12] 7

2.5 Comparison RGB and HSI data . 8

2.6 Internal structure of Xilinx FPGA [17] 10

2.7 Segmented image, taken from [18] . 11

2.8 Salinas Scene segmented, taken from [19] 12

2.9 The HYPSO-1 satellite performing an image capture 14

2.11 Directed Graph, take from [20] . 16

2.12 Vitamin A, taken from [21] . 16

2.13 Node embedding, taken from [23] . 17

2.14 Graph Convolutional Network, taken from [24] 18

3.4 Comparison of quasi true and generated ground truth of HICO im-

age H2011216003423, taken from [13] 23

3.5 Comparison of RGB composit and ground truth of HYPSO-1 image

20220623_CaptureDL_00_mjosaT09_42 24

3.6 ResNet residual block, taken from [30] 26

3.7 GCN Resnet implementation . 26

3.8 The final implemented model . 27

xiii

xiv Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

4.1 Training loss and accuracy, SalinasA and Indian pines 31

4.2 SalinasA model prediction . 32

4.3 SalinasA model prediction . 32

4.4 Confuse matrix SalinasA . 33

4.5 Indian pines prediction . 34

4.6 Indian pines ground truth . 34

4.7 Confuse matrix Indian Pines prediction 34

4.8 HICO prediction . 35

4.9 HICO ground truth . 35

4.10 Mjosa prediction . 35

4.11 Mjosa ground truth . 35

5.1 Indian Pines prediction with no GCN layers 38

Tables

3.1 Dataset overview . 21

4.1 Testing results from SalinasA and Indian pines datasets 30

4.2 Testing results from the HICO and HYPSO-1 dataset 32

xv

Code Listings

xvii

Acronyms

CNN Convelutional Neural Network. 15, 17, 18, 37

FPGA Field Programmable Gate Array. ix, 9, 10, 13, 15, 39

GCN Graph Convolutional Network. xiii, xiv, 17, 18, 24, 25, 37, 38

GNN Graph Neural Network. 15, 18, 19

GPU graphics processing unit. 9, 10

HDL hardware descriptive language. 9

HS Hyperspectral. 14

HSI Hyperspectral imaging. xiii, 7–9, 14, 19, 20, 40, 41, 43

HYPSO HYPer-spectral Smallsat for ocean Observatio. 8, 9

NTNU Norwegian University of Science and Technology. 8

xix

Glossary

HYPSO-1 The first operational nanosatellite built by NTNU launched in February

2022. x, xv, 8, 9, 13, 32, 37, 39–41, 43

in-situ The physcical place were an event happens. 1

nanosatellites Satellite between 1 and 10 kg. 1, 9

xxi

Chapter 1

Introduction

1.1 Motivation

The domain of satellite imaging has revolutionized the field of earth observations

[1]. With the advent of frequent and global coverage for remote sensing devices

given by satellite platforms we can now tell more about the globe and its condition

than ever before. The miniaturization of electronics has enabled smaller satellites

to be used in big research campaigns [1]. In addition to traditional monolithic

satellites, small CubeSats in the order of nanosatellites can contribute with valu-

able data whilst being cheaper and faster to develop, thus enabling innovative

technology to be tested [2].

While earth observation is today performed by many different sensors such as

radars or lasers, the most well-known form of earth observation is probably optical

imaging. nanosatellites have optical limitations due to their small size, making

trade-offs of capture configurations important [2]. In order to guide these trade-

offs, it is desirable to obtain information about the data in-situ. By processing

information about the data as it is happening, information can be converted to

knowledge in real-time instead of using valuable resources to downlink it and

process it on ground.

Neural networks is today the state-of-the-art within image classification, and

1

2 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

the prospect of implementing machinelearning models on-board satellites is prom-

ising for achieving better on-board decision making. While conventional micro-

processors for the most part runs instructions in sequency and are thus inefficient

for running neural networks, the inclusion of field programmable hardware on

smallsatellites opens the door for parallelisation and implementation of on-board

neural networks.

By introducing on-board image classification the we open the door for giving

larger autonomy to satellites so that they can make independent decisions based

on the data they collect, thus improving operational performance and lowering

the need for human input during operations.

The questions this thesis wants to answer are:

• 1: Can we build a machine learning model capable of classifying an image line

as it is captured in near real-time?

• 2: How can on-board and near real-time hyperspectral image classification

improve satellite operations?

Chapter 2

Background and theory

The background and theory section contains the concepts needed for understand-

ing of hyperspectral imaging and graph neural networks. It outlines the HYPSO-1

mission and how near real-time classification has the potential to improve satellite

operations.

2.1 Hyperspectral imaging

2.1.1 Excitation of atoms

In quantum mechanics an excited state of an atom molecule or nucelus is de-

scribed as a state were the atom contains more energy than the absolute minimum

that the atom can contain, this minimum is called the ground state of the atom.

When an atom interacts with other particles or electromagnetic waves (photones)

it will be brought from its current energy state to a state of higher energy. This

can be from the ground state or a previously excited state [3].

To illustrate excitation we will consider the hydrogen atom which is one of the

simplest nuclear systems, figure 2.1. The hydrogen starts out in the stable ground

state with the minimal possible energy level, E1. The hydrogen then interacts with

an incoming photon exciting the electron to a higher energy stateE2 by absorbing

the energy of the photon. Further energy states are denoted as E3, E4, E5 ,etc. The

3

4 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.1: Hydrogen excitation. Figure obtained from [5]

atom will persist in this excited state for only a short time before returning to the

stable ground state, E1. To return to the ground state the atom will release energy

in the form of electromagnetic waves. These waves can sometimes be observed

as visible light detectable by the human eye. If too much energy is absorbed, the

electron can become unbound to the nuclear core creating an ionized atom [4].

The following sections on energy levels and their equations are taken from [4].

The energy required to reach an excited state is defined as the difference between

between the energy of excited state and the ground state. This energy is usually

measured in electron volt (eV) where

1eV = 1.6× 10(−19)J (2.1)

In the case of the hydrogen atom the ground state energy E1= −13.6eV and

the first excited state E2 = −3.4eV . The energy E needed to excite a hydrogen

atom from E1 to E2 is thus given by equation 2.2 [4]

E = E2− E1 (2.2)

All systems has a distinct set of energy levels meaning that the excitation from

one energy level to another will always require the same amount of energy for a

specific atom or molecule. In other words when a system de-excites it will release

Chapter 2: Background and theory 5

specific sets of electromagnetic radiation native to that system.

For example, we can consider a hydrogen atom de-exciting from E3 to E2. The

released energy E is given by

E = E2− E3 (2.3)

Here E2= −3.4eV and E3= −1.51eV . Inserted in the formula above we get

E = −1.51V − (−3.4eV) = −1.89eV = 3.028 113 838× 10−19J (2.4)

The frequency of the released electromagnetic radiation can then be calculated

by utilising the Planck-Einstein relation [6]

f =
h
E

(2.5)

Were f is the radiation frequency, h is Planck’s constant, equal to 6.62 607 015×

10−34J Hz−1 and E is the radiation energy.

The radiation wavelength can then be calculated by the equation [6]

λ=
c
f

(2.6)

Were λ is the radiation wavelength, c is the speed of light, 3.00×108m/s and

f is the radiation frequency. By rearranging equation 2.5 and 2.6 we get

λ=
h× c

E
(2.7)

By inputting the emitted energy between E2 and E3 we get a wavelength of

656nm which corresponds to the color dark red in the visible light spectrum.

2.1.2 Spectroscopy

Spectroscopy is a field within chemical science that studies the absorption and

emission of light and other radiation by matter. Spectroscopy is made up of many

6 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.2: Visible light spectrum, taken from [10]

Figure 2.3: Hydrogen Absorption Spectrum, taken from [11]

different methods for studying molecules and atoms. In the world of astrophysics

spectroscopy has been used to determine the composition of stars based on their

electromagnetic radiation. [7]

Although light visible to the human eye has no define cut-off the spectrum

of visible light is generally considered to contain wavelengths between 400nm

to 750nm with the distribution as can be seen in figure 2.2 [8]. Before inter-

acting with an atom or molecule, visible light will have the same intensity for all

wavelengths as seen in figure 2.2. When visible light interacts with an object some

of the energy contained in the light will be absorbed and cause excitation of the

objects atoms. By observing the light spectrum after the light has passed through

the material we can gain much insight of the composition of the material. In fig-

ure 2.3 we see the light spectrum again after passing through a hydrogen atom. In

the figure we can see four distinct black lines in the spectrum. The energy in these

bands correspond to the excitation energy of the hydrogen and are absorbed by

the hydrogen atom. Hence these kinds of spectrum’s are called absorption spec-

trum’s. [9]

Chapter 2: Background and theory 7

Figure 2.4: Hydrogen Emission Spectrum, taken from [12]

As mentioned in the previous subsection, the absorbed energy levels are the

same for all materials of the same instance. By equation 2.7 this means that the

corresponding absorbed wavelength will also be consistent with each material.

Thus the observed absorption spectrum can be used to identify the material which

the light has passed through.

The same can also be achieved by the opposite by looking at the spectrum of

the wavelengths emitted by the material after light has passed the material. In 2.4

we see the hydrogen emission spectrum. We see that the lines perfectly matches

the dark lines in the hydrogen absorption spectrum in figure 2.3

2.1.3 Hyperspectral images

Section taken from [13]. A standard RGB image has three values for each pixel,

namely red, green, and blue (RGB) captured from the visible light spectrum. Hy-

perspectral imaging (HSI) is a spectral imaging technique that can capture hun-

dreds of wavelength bands for each pixel in the image. HSI can thus extract many

times the spectral information than that of an RGB camera. Depending on the

image sensor characteristics HSI can also capture wavelengths outside the visible

spectrum for additional spectral information

An HSI captures several hundred bands that form an image data cube when

stacked together. In figure 2.5a and 2.5b we can see three dimensional repres-

entations that illustrates the difference between a traditional RGB image and a

hyperspectral image.

Objects have distinctive spectral signatures, which can be captured by an HSI.

These signatures act as fingerprints which can be used to identify the composition

8 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

(a) RGB Cube, taken from [14] (b) HSI Data Cube, taken from [15]

Figure 2.5: Comparison RGB and HSI data

of scanned objects. It is thus possible to extract information about materials that

would be all but impossible even with detailed spatial data from a classical RGB

image.

2.2 HYPSO mission

The HYPer-spectral Smallsat for ocean Observatio mission (HYPSO) is a series of

cubesat missions by the Norwegian University of Science and Technology (NTNU).

The satellites are 10x20x30 cm which host a novel hyperspectral pushbroom ima-

ging payload used for earth observation. Its specific mission is to detect and char-

acterize ocean color features such as algae blooms, phytoplankton, river plooms.

etc. The first satellite in this series is the HYPSO-1 which was launched in February

of 2022 [16].

In regards to the operation of the HYPSO-1 the power budget is less restrict-

ive than the downlink time, thus enabling the satellite to generate more data than

what is downlinkable. This means that knowing which captures contain interest-

ing data before downlink as well as finding methods for raising the chance of good

captures can greatly improve the efficiency and results of capture campaigns.

Chapter 2: Background and theory 9

2.3 In orbit processing

Advances in technology has lead to better and smaller processing technology, lead-

ing to the possibility of arming nanosatellites with processing tasks outside their

primary functionality. This opens up for a wide variety for new concepts of oper-

ations for satellite platforms. The more data that can be processed in orbit means

that less raw data needs to be downloaded from the satellite and one can save

power and contact time intended for downloads. This also increases overall sys-

tem responsiveness as the amount of data needed to be processed and analysed

on the ground decreases, which in turn also supports the satellite with more data

for autonomous decision making.

In context of the HYPSO mission the HYPSO-1 is envisioned as an early warn-

ing system for algae detection along the Norwegian coast. The more data that can

be processed rapidly on-board the HYPSO-1 the more responsive the rest of the

early warning system will become.

2.3.1 Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) is an integrated circuit device containing

logical elements organised in a matrix structure (array). These logical gates can

be reprogrammed in the field at any time using low level hardware descriptive

language (HDL). These devices are particularly useful for static tasks as they can

perform calculations in hardware much faster than a software implementation.

The HYPSO-1 satellite contains an on-board FPGA for hardware compression

of HSI images and other hardware acceleration tasks. The reprogram-ability of

the FPGA provides the flexibility for implementing additional functionality, such

as neural networks for image classification.

The basic structure of an FPGA is inherently parallel and is therefor well suited

for implementation of neural networks. In contrast to graphics processing units

FPGAs are generally smaller, requires far less power and produces less heat. These

are qualities very beneficial for space usage because of the limited power output

10 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.6: Internal structure of Xilinx FPGA [17]

of small-satellites and air cooling not being an option in space. These advantages

comes at the drawback of model implementation being more challenging on FPGA

than on a GPU, especially for very complex models.

2.4 Classification of Hyperspectral Images

2.4.1 Image segmentation

Image segmentation is an operation in image-processing were features in an im-

age are divided into different regions (segments) in the image. An example of

segmentation can be seen in figure 2.7. Here the image has color-coded regions

in the image depending on what they contain, people have been colored red,

vehicles are blue and vegetation is greenish. Segmentation is an effective method

for extracting information from an image.

Chapter 2: Background and theory 11

Figure 2.7: Segmented image, taken from [18]

2.4.2 Pixel based segmentation

In the context of hyperspectral images the standard segmentation method is pixel

based segmentation. Here each pixel in an hyperspectral image is assigned to one

of a pre-defined set of classes. In figure 2.8 we see the Salinas Scene which is a

hyperspectral data-set collected over Salinas Valley in California. The left image

2.8 shows an rgb composite of the hyperspectral data, while the right side contains

the segmented classes assigned to the image. The Salinas set contains 16 different

classes of crops as well as a "don’t care" class (noted in black) which is used as a

collection class for pixel types that are not interesting for classification.

2.4.3 Current methods

The amount of standard pre-prepared hyperspectral images data sets are more

limited than many other image classification tasks. To name some of the most

popular data sets:

• Pavia University

• Indian Pines

12 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.8: Salinas Scene segmented, taken from [19]

• Salinas Scene

One inherent disadvantage of these data sets are that they do not have over-

lapping classes, as such one can’t use one image for training and others for testing.

The standard training and testing method is thus separating each individual image

into training and testing sections.

The training data is typically extracted as a subset of the whole cube in the

form of patches. Considering a HSI cube with dimensions MxNxB (width x height

x number of bands) subsets of SxSxB would be extracted for model training and

testing.

Typically the data set is split into either 10% or 30% training data and the

rest is used for testing. The lack of volume in hyperspectral training data makes

it harder to train good models for practical usage, but provides an interesting

challenge for innovation in this field.

Chapter 2: Background and theory 13

2.4.4 On-board Classification

Analysis of the data gathered from the HYPSO-1 satellite is the most vital part

of utilizing the satellite for practical purposes. As operational effectiveness and

the amount of data generated by the satellite increases. The need for more rapid

and accurate data-analysis will be needed. An initial step could be utilizing data

processing on the ground were the researchers and operators would have direct

opportunity for analysis and decision making based on the satellite data. This step

will greatly decrease the time needed for in-person decision making as the data

processing tools could notify ground personnel of the most promising data. Gen-

eral on-board classification of the data could potentially be performed by current

state of the art models available to the public. Such models could potentially be

implemented directly on the FPGA of HYPSO-1.

2.4.5 Real-time Image Classification

While on-board classification has the potential for improving analysis and decision

making time it will not improve the satellite data acquisition process in itself. As

of now the image acquisition is decided by the ground operators with no on-board

decision making by the satellite. When the satellite performs image capture it will

capture the image line for line while passing overhead. An illustration of this can

be seen in figure 2.9

By utilizing the push-broom capturing method of the HYPSO-1 it is possible to

increase satellite capture autonomy by implementing near real-time classification

as the satellite passes over the Earth. As the satellite captures images line by line

it can also be made to classify these lines the moment they are captured. Doing

this can allow for several interesting concepts of operations for the satellite. By

having the satellite classify while continuously scanning an area of interest it can

wait with activating a slew maneuver until algae or other objects of interest has

been detected by the classification algorithm. This can allow for more dynamic

operations with higher satellite autonomy while conducting captures.

14 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.9: The HYPSO-1 satellite performing an image capture

Additionally by continuously classifying, the satellite can avoid capturing areas

with cloud cover by performing a capture maneuver first when the camera is clear

of the clouds.

Real-time classification is illustrated in 2.10a and 2.10b were we can see a

representation of the spatial dimension of a HS image. Here each circle represent

a pixel in the HSI cube. With the push broom method the full image is composed

by scanning each x dimensions individually while moving down the y dimension.

The HS cube can then be classified near real-time by classifying each x dimension

individually as seen in figure 2.10b

Performing real-time classification by classifying a single x dimension at a time

has the inherent weakness of providing a very limited amount of contextual data

for the classification model and is thus expected to perform worse than models

with access to a full data cube. Line by line classification is thus not expected to

directly compete with general state of the art HSI classification models, but rather

be tailored for this specific scenario.

Chapter 2: Background and theory 15

(a) HSI spatial dimension representation, y

= scan direction, x= slit size, each circle rep-

resent one pixel

(b) HSI spatial dimension representation, y

= scan direction, x= slit size, each circle rep-

resent one pixel

2.5 Graph Neural Networks

While the most popular and well known artificial neural network for image clas-

sification is the Convelutional Neural Network (CNN). In this thesis the use of

Graph Neural Network (GNN) are proposed. GNNs generaly uses fewer convolu-

tional layers and thus leads to generally less complex models. This is advantageous

as a too complex model might be very hard to convert to run on an FPGA.

2.5.1 Graphs

Graphs are the fundamental part of a GNN. Graphs are a data structure consisting

of two components: nodes (verticies) and edges. A graph G can be defined as

G = (V, E) were V is a set of nodes and E are the edges between the nodes. These

edges can be directional or uni-direct if dependencies between edges goes both

16 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.11: Directed Graph, take from [20]

Figure 2.12: Vitamin A, taken from [21]

ways. Figure 2.11 shows a simple graph structure with two directional and one

uni-direct edge. [20]

In today’s world graphs are all around us, and this simple data structure can

be used to describe many complex relationships between objects and people. An

example is molecules which can form extremely complex structures e.g Vitamin

A in figure 2.12. Each atom can be modelled as nodes while the bonds between

them can be represented as edges.

2.5.2 Node embedding

Node embedding refers to mapping the input graph to N-dimensional space. For

a computer it is easier to calculate how close nodes are in N-dimensional space

than from a graph. The closeness of the embedded nodes can then be calculated

by various means [22].

Chapter 2: Background and theory 17

Figure 2.13: Node embedding, taken from [23]

Node Encoding

The following section is taken from [23]. As shown in 2.13 node embedding is

done via an Encoder. To illustrate how an encoder works we consider "Shallow"

encoding which is the simplest encoding approach. Here the encoder is just an

embedding-lookup represented via the equation:

ENC(v) = Zv (2.8)

Here the encoder is denoted by ENC which encodes the node v to the N-

dimensional space. Z is a matrix where each column indicates a node embedding,

the number of rows in Z equals the dimension of the embedding. v is the indicator

vector which is a vector consisting of all zeroes except in the column indicating

the node v, were it is a one. Thus all nodes are assigned an unique embedding

vector in "shallow" encoding.

2.5.3 Graph Convolutional Network

In figure 2.14 an illustartion of a Graph Convolutional Network (GCN) is shown.

GCNs were introduced as a method for applying neural networks to graph-structured

data. The generic structure of GCNs are in many ways similar to the more well

known Convelutional Neural Network (CNN)s. They start with graph convolu-

18 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 2.14: Graph Convolutional Network, taken from [24]

tional layers which passes the convulated data to a fully connected network of

linear layers which ends with a nonlinear activation layer.

The convolutions in the GCN performs in a similar way to the CNN were data

features are learned by inspecting neighboring nodes. While CNNs are specially

built to operate on regular (Euclidean) structured data, GNNs is a more general-

ized version were the number of nodes and connections between them may vary

and nodes can be ordered in non-Euclidean ways. [24]

Chapter 3

Implementation

This section starts by outlining the way data has been modelled as graphs for

training and testing. It then presents the datasets, attempted approaches that did

not improve model performance and the final model implementation.

3.1 Representing HSI as graphs

To be able to utilise GNNs for HSI classification the HSI data must first be modeled

as a graph structure. As explained in 2.5.1 the graphs contains nodes and edges.

Here the nodes represent a certain data point and the edges represent the correl-

ation between these points.

In the way of HSI or any normal RGB image one can represent the image itself

as a graph were each pixel is represented as a node and the edges between the

nodes corresponds to the correlation between any two pixels. In terms of correl-

ation between nodes in an image this correlation can be seen as how likely the

pixel next to a given pixel will be of the same class. This correlation will be the

strongest with pixels right next to eachother. In other words if a specific pixel

has been classified as grass the pixels right next to it will have a greater chance

of also being grass. This probability will shrink the further in the spatial domain

you remove yourself from the pixel, as such the edge relation will become weaker

19

20 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

between far away pixels.

The basic representation would thus be showing an image as a grid were each

pixel has an edge to the neighbouring pixels

(a) Graph representation of a hyperspectral

image

(b) Graph representation of real-time HSI

classification

In the case of real-time classification were the spatial dimension is classified

line by line the whole image cube will not be available to the model. Thus the

edges between each line in the y direction is not implemented. The graph repres-

entation will thus bee what is shown in figure 3.1b. Meaning that each data point

only share edge with two adjacent nodes.

3.2 Datasets

Four different data-sets have been used for training and testing on the model

• Indian Pines

• Salinas A

• Self labeled HICO dataset

• Self labeled HYPSO-1 dataset

A general overview of the datasets can be seen in table 3.1.

Chapter 3: Implementation 21

Dataset Indian Pines SalinasA HICO HYPSO-1

Capture type Reflectance Reflectance Reflectance Reflectance

Spectral range 400-2500 nm 400-2500 nm 404-896 nm 387-801 nm

Spatial dimensions

(pixels)
145 x 145 86 x 83 506 x 1996 684 x 956

Number of bands 200 224 128 120

Number of labelled classes 17 6 3 3

Table 3.1: Dataset overview

3.2.1 Indian Pines

This dataset is gathered from North-western Indiana by an AVRIS sensor. This data

is gathered aerially with a spatial dimension of 145x145 pixels and 200 reflectance

bands. The bands vary from 400 to 2500 nm. The datasaet originaly has 220

bands, but they have been reduced to 200 by removing bands covering water

absorption. The data set consists of 16 different classes and can be seen in 3.2a

and 4.6 [25].

(a) Sample band of Indians Pines dataset,

taken from [25]

(b) Indian Pines Ground truth, taken from

[25]

22 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

3.2.2 Salinas A

The Selinas A data set is a subset of the Salinas scene. It was collected by a 224

band AVIRIS sensor. The scene contains different vegetables soil and vineyards.

The spatial dimensions are 86x83 and consists of six classes figure 3.3a and 3.3b

[25].

(a) Sample band of Salinas A dataset, taken

from [25]

(b) Indian Pines Ground truth, taken from

[25]

3.2.3 HICO dataset

Taken from [26]. This dataset is gathered from the HICO sensor mounted on the

International Space Station. It consists of 128 different bands ranging from 352

to 1080 nm. It consists of 512 x 2000 pixels. The data was self labeled semi su-

pervised and consists of three classes (land, water and clouds). The bands in the

range 1-9 and 87-128 were removed as they are considered less accurate. As such

wavelengths between 404-896nm are present in the data. The dimension has also

been reduced to 506 x 1996 because the sensors viewing slit was visible in parts

of the image, figure 3.4 [27].

3.2.4 HYPSO-1 dataset

This dataset is gathered from the HYPSO-1 satellite, figure 3.5. It consists of 956

x 684 pixels and 120 spectral bands. The data was self labeled semi supervised

Chapter 3: Implementation 23

Figure 3.4: Comparison of quasi true and generated ground truth of HICO image

H2011216003423, taken from [13]

and consists of three classes (land, water and clouds). The data is raw from the

satellite without radiometric calibration. The scene contains the Norwegian lake

Mjosa.

3.3 Building and training models

The models were built and trained using the machine-learning framework Pyt-

orch. In addition to the PytorchGeometric library which integrates support for

GNNs. This section will talk about how the models were trained and constructed

as well as the training data construction and augmentation.

3.3.1 Training and test data

The training data consists of a subset of the whole dataset. The training data was

built by extracting spatial lines along the x axis from the datasets.

The training data could then be divided further into smaller subsets by util-

ising a self built function make_training_dataset() the function allows to specify

the length of the subset and the amount of overlapping pixels between each sub-

24 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 3.5: Comparison of RGB composit and ground truth of HYPSO-1 image

20220623_CaptureDL_00_mjosaT09_42

set. Finally the edge connections between the nodes were were established. The

amount of edge connections between pixels could also be specified.

3.3.2 Pre-processing

Principal component analysis (PCA) [28] was used as preprocessing to lower the

amount of image bands and increase the accuracy of the model prediction.

3.3.3 Graph convolutional layers

The first part of the models are the Graph Convolutional Layers. The trained mod-

ules utilize a Graph Convolutional Network (GCN). The mathematical definition

can be seen in 3.1, which is taken from [29].

x (k)i =
∑

j∈N(i)∪{i}

1
p

deg(i) ·
p

deg(j)
· (W T · xk−1

j) + b (3.1)

Chapter 3: Implementation 25

i and j represent neighbouring node features. Here W is the weight matrix,

which is used for transforming the node features. The features are then normalised

by their degree (the degree of a node is the number of edges it has to other nodes

in the network. b is the bias vector.

3.3.4 Approaches

During the work on this thesis many different network structures and data aug-

mentations were tried. This subsection will go through the different failed ap-

proaches that were tried.

Deep GCN

Regular convolutional networks receives great boosts in accuracy when employ-

ing deeper networks. As such experimenting with deeper graph convolutional net-

works were attempted. Here stacking five to six convolutional layers with descend-

ing spectral resolution was attempted. The results from stacking multiple GCN

performed worse than when using only a few layers. This is in line with [29] the

findings in the initial paper. Implementing batch normalisation between the layers

improved performance, but the deep GCN still performed subpar in comparison

to a more shallow version.

Residual Network

Another successful network structure is the ResNet and its variants [30]. One of

the main challenges when training very deep networks is the vanishing gradient

problem [31]. By utilising skip connections the network combats the vanishing

gradient problem by passing information through the layers. In figure 3.6 we see

the original resnet block implementation and in figure 3.7 we can see the corres-

ponding GCN implementation. Expriments with residual blocks did not lead to

any improvement in network performance an did thus not find its way into the

final implementation.

26 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 3.6: ResNet residual

block, taken from [30]

Figure 3.7: GCN Resnet im-

plementation

3.3.5 Data Augmentation

When training data is limited, data augmentation is an effective method for en-

larging training data in sparse datasets. Since training data is extracted as a sub-

sample lines of the whole image cube augmentation methods are more limited

than in classical RGB images. Augmentation attempts was thus limited to two of

the more standard augmentation methods flipping and noise.

Flipping was implemented by flipping the data around the y axis ref. Gaussian

noise was added randomly to each pixel.

Neither of the augmentation methods provided any improved results for the

model. This was somewhat unexpected because basic image transforms usually

yield better results for basic image classification tasks. In the case of using GCN

this most likely stems from the fact that the GCN works in non-euclidean space

and thus is not affected by spatial rotations.

3.3.6 Final implementation

The final model can be seen in figure 3.8. The input dimensions are a HSI line with

dimensions MxN. The input first pases through a Factor analysis which reduces

Chapter 3: Implementation 27

Figure 3.8: The final implemented model

the amount of bands from N to B. The output is then fed to a series of two graph

convoloutional layers with batch normalisation [32], ReLU activation and dropout

layers. No dimensional reduction is performed by the graph convolutional layers.

The output is then applied to a series of linear layers with batch normalisation and

ReLU activation. The output layer is linear with a logarithmic softmax activation.

The Adam optimiser is used as the model optimiser.

Chapter 4

Results

This chapter presents how the model was trained, tunable parameters, the final

training results and the factors which impacted the results the most. A model pre-

diction as well as confusion matrices are presented for each dataset. The chapter

is split in two main sections between the two standard datasets Indian Pines and

SalinasAm, and the self labeled HICO and HYPSO-1 datasets. The reason for this

being the large difference in training data and class complexity.

4.1 Training

This section presents how the final model was trained and the tunable training

parameters. The parameters were tuned to achieve the maximal accuracy. All

training of the model was done with 30% training data and 70% test data.

4.1.1 Tunable model and data parameters

This subsection lists the final model and data parameters that were tuned during

training.

Model parameters

• Learning rate: 0.01

29

30 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

• Weight decay: 5e-4

• Dropout ratio: 0.5

• Batch size: 15

• Momentum: 0.9

Data parameters

• Shuffle data when training: Yes

• Amount of pixels in input lines: 30

• Max distance between edge connected pixels: 2

• Pixel overlap between input lines: 2

4.2 Indina Pines and SalinasA

The spectral resolution of the images were down scaled to 100 bands through the

pre-processing PCA before being sent through the model. The model was trained

for 400 epochs on each image. The model was trained 10 times for each dataset

to get the average accuracy and standard deviation. The models were trained

multiple times to assess which model features affected the model the most. The

final results can be seen in table 4.1.

SalinasA Indian pines

Average accuracy Average accuracy

Final model 89.04%+/-0.66 75.64%+/-0.72

Only one edge between nodes 88.58%+/-0.37 72.61%+/-1.94

No dropout layers 87.19%+/- 1.03 71.23%+/- 0.67

No batch normalisation 88.32%+/- 0.57 75.6%+/- 0.45

Learning rate of 0.01 89.08%+/- 0.47 73.14%+/- 0.20

No graph convolutional layers 86.00%+/- 0.37 73.05%+/- 0.88

Table 4.1: Testing results from SalinasA and Indian pines datasets

Chapter 4: Results 31

Figure 4.1: Training loss and accuracy, SalinasA and Indian pines

The final model has an average accuracy of 89.04% on the Salinas dataset and

75.64% on the Indian pines dataset. The model predicted images can be seen in

figure 4.2 and 4.3. Figure 4.4 and 4.7 shows sample confuse matrices from the

testing the model. The SalinasA matrix goes from 0 to 16 because it is a subset of

a larger dataset with 16 classes.

When predicting the Indian pines dataset the confusion matrix shows no cor-

rect guesses for class 7 and 9, it should here be noted that these classes have under

10 samples each.

4.3 HICO and HYPSO-1

Testing was done both with and without pre-processing with PCA. The model was

trained for only 10 epochs on each image because of the large datasize. The model

war trained 10 times for each image to get average accuracy and standardeviation.

32 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 4.2: SalinasA model

prediction

Figure 4.3: SalinasA model

prediction

Mjosa HICO

Average accuracy Average accuracy

Final model 97.87%+/- 0.65 99.37%+/- 0.08

No PCA 95.0%+/- 0.14 98.97%+/- 0.003

Table 4.2: Testing results from the HICO and HYPSO-1 dataset

The final results can be seen in table 4.2.

Chapter 4: Results 33

Figure 4.4: Confuse matrix SalinasA

34 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 4.5: Indian pines

prediction

Figure 4.6: Indian pines

ground truth

Figure 4.7: Confuse matrix Indian Pines prediction

Chapter 4: Results 35

Figure 4.8: HICO predic-

tion

Figure 4.9: HICO ground

truth

Figure 4.10: Mjosa predic-

tion

Figure 4.11: Mjosa ground

truth

Chapter 5

Discussion

This section will focus on discussion of the model performance and suitability for

increasing operational autonomy of the HYPSO-1 satellite. The chapter is divided

between the two standard datasets Indian Pines and SalinasA and the two satellite

datasets HYPSO-1 and HICO.

5.1 Model performance on Indian Pines and SalinasA data-

set

State of the art models predicting on the Indian Pines and SalinasA datasets can

reach high 90%s accuracy’s [33]. Compared to the models performance on the

Indian Pines dataset with a top accuracy of 75.6% it is clear that the model cannot

compete with state of the art. This was expected as the model can only utilize

spatial information along a single axis. The use of GCN has also lead to an overall

less complex model than what would be implemented with a conventional CNN.

As such the model will be evaluated based on general its standalone performance

and suitability for its intended use instead of a direct comparison with state-of-the

art models.

The performance on the SalinasA dataset is good with 89.08% average accur-

acy while the accuracy on the Indian Pines set is on the weaker side with 75.64%

37

38 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

Figure 5.1: Indian Pines prediction with no GCN layers

average accuracy. The Indian Pines dataset is more complex with 16 vs 10 classes

and the classes in the SalinasA dataset is more continuous than in the Indian Pines.

From the testing results we can see how the learning-rate impacts the training

on each dataset. With a learning rate of 0.01 the Indian Pines average accuracy

drops by 2.5% while the SalinasA performance actualy increases by 0.04%. The

reason for this most likely comes from the mentioned complexity of the Indian

Pines dataset. As such the model will benefit from a lower learning rate for being

able to fine-tune the difference between them. This low learning rate is a double-

edged sword. On the one hand you will better be able to differentiate between

classes on the other hand it can lead to over-fitting the model. This is evident

from the results were dropout layers were removed, here the Indian Pines average

accuracy fell by 4.41% and the SalinasA average accuracy fell by 1.85%. Here the

Indian Pines accuracy was actually worse than without any GCN layers.

5.1.1 Possible model improvements

From the predicted image on the Indian Pines dataset in figure 4.5 there are very

distinct horizontal lines of misclassification. These lines can also be found in the

SalinasA prediction 4.2, but they are not as prevalent.

In figure 5.1 the model has been trained without the GCN layers. Here the pre-

diction is more noisy with misclassfied pixels scattered around the image. On the

positive this means that the final model is actually using the edge connections and

correlating samples along the inputted spatial line. On the flip-side the drawback

Chapter 5: Discussion 39

is that the model is also causing multiple wrong classifications in a row.

Interestingly it can be observed that the majority of misclassified lines are one

to two pixels in width along the vertical axis. This suggests that if only an extra

one to two lines of spatial information is introduced to the model when predicting,

it can potentially give strong improvements to the model prediction.

The first potential improvement is inputting another 1-2 adjacent lines with

additional edge connections. This is a relatively simple way to adjust the model

and could potentially give very good improvements to accuracy. While the model

would no longer scan line by line it could still be usable for near real-time classi-

fication.

Using a Recurrent neural-network layer is another possible way to introduce

more information for model prediction. This would work by introducing more in-

formation over the time domain, rather than in the spatial domain. When predict-

ing a line such a model would take into account the previously predicted pixels.

This approach would allow the model to still only process a single line at a time.

The drawback of using RNN is that the added complexity of the implementation

and processing speed which could make it less suitable for directly porting to

FPGA.

5.2 Model performance on HICO and HYPSO-1 dataset

While testing models on standard datasets such as Indian Pines and SalinasA is

a good way for benchmarking and comparing state-of-the art models, it is more

interesting to see how the model performs on actual satellite data. The self labeled

data differs from the standard datasets in three major ways:

• Over 30 times as many pixels in each dataset

• Only three classes

• No class 0 in the datasets

Additionally the HYPSO-1 dataset has no radiometric calibration and is raw

40 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

data from the HSI sensor. The results from the model is thus directly transferable

to how the model would perform in-orbit.

As can be seen from table 4.2 the test results on the satellite data the results are

close to 100%. Noticeably the results from the HYPSO-1 dataset is a few % lower

than the HICO data. The most likely reasons for this is either the lack of data

calibration or inaccuracy in the labelling. In the project thesis [13] the process

of the semi supervised labelling of hyper spectral images is discussed. With this

method much of the labelling process is left to a computer and by side by side

comparison there can be seen that some pixels can be argued to belong to another

class. While fully hand labelling the data might give a bit better results this is not

feasible as hand labelling such a large amount of data is extremely time consuming

and could take days.

When comparing the predicted image with the RGB representation it can be

argued that the trained model is actually has a better classification of the image

than the generated groundtruth. Were some smaller bodies of water not present

in the groundtruth are present in the predicted image.

In comparison with the prediction of the Indian Pines dataset the predicted

HYPSO-1 and HICO images are much smoother and does not contain the mis-

classified horizontal lines. Fewer classes might be the reason for this as a similar

trend could be seen with the SalinasA prediction. It should also be accounted for

the high amount of training data which allows for more accurate predictions.

5.3 Practical model usage

Currently the amount of hyperspectral images that can be acquired from the

HYPSO-1 satellite is limited by the downlink capacity. The HYPSO-1 uses image

compression which compresses the image cubes down to approximately 80Mb

each. This compression allows for the downlink of 5 6 image cubes per day [34].

As such the ability to ascertain and optimise the quality of image captures before

downlinking is necessary to get the most out of the limited downlink capacity.

Chapter 5: Discussion 41

From the results it is clear that classifying line by line for near real-time clas-

sification is feasible for segmentation tasks. The predicted images provide smooth

class segmentation’s which makes it easy for a human operator or a computer to

check the initial features of the image, either by the amount of cloud cover or the

amount of water bodies present in the capture.

5.3.1 Segmentation for downlink decision making

Giving a preview of the HSI in the form of a basic three class segmentation as in

this thesis is in it self not inherently useful, since the operator can downlink an

RGB composite of the capture in a similar time frame as a segmented preview. This

basic segmentation task is more interesting as a tool for autonomous downlink

decisions by the satellite. The segmentation task gives an accurate estimations of

the ratio between clouds, water and land in the image. Class thresholds can thus

be set by the operator for which images should be discarded and which should

be prioritised for downlink. An image full of clouds or an image with no major

bodies of water will be less interesting for the detection of algae.

The unpublished paper [34] proposes using the rate of cube compression to

estimate if the capture contains large amounts of clouds or over/under exposure.

The weakness of this approach is that it can only give an estimate of the general

image quality and can not give the satellite or operator any insight in what inform-

ation the capture actually contains. Utilising on-board segmentation can thus give

an even better estimate of the image quality than the compression rate, but at the

cost of some extra on-board processing.

While the above mentioned methods can only serve to de-prioritise the down-

link of certain captures. By training the model to recognise algae or more com-

plex/segmented waters such images could be prioritised for downlink and pro-

cessing on the ground.

Currently there exists no additional labelled HYPSO-1 data outside the one

presented in this thesis, new data must thus be labelled for the model to recognise

42 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

such features. While this will be a more advanced classification task, the results

on the Indian Pines and SalinasA datasets indicates that this should be within the

models abilities with sufficient data-grounds.

5.3.2 Real time segmentation for capture initiating

The near real-time classification functionality of the model allows for further ex-

ploiting the advantages outlined in the previous section. The current performance

of the model allows for extended satellite autonomy during image captures. If

cloud cover is present over the capture target area. The satellite can attempt to

avoid capturing the clouds by not initiating capture before a desired amount of

land or water is in view of the satellite.

If new training data enables the detection of algae waters the satellite can

continuously scan the environment below, either initiating capture maneuver as

algae are detected or alert the ground operators of the coordinates of the detected

algae.

Chapter 6

Conclusion

This thesis serves as a starting point for an on-board implementation of a near real-

time classification algorithm for hypespectral images for the HYPSO-1 satellite.

A baseline algorithm has been developed that was able to achieve an average

accuracy of 95.0% on a self labelled HYPSO-1 HSI dataset with three classes. The

dataset consisted of raw HSI data directly from the satellite with no calibration or

pre-processing. The results on standard datasets such as Indian pines and Salinas

A were 75.64% and 89.04% respectively. The model is thus not suitable to com-

pete with state-of-the-art models, but its simple structure and support for near

real-time classification show promise for rapid on-board deployment and in-orbit

decision making that can improve captures and allow for higher automisation of

which HSI captures that should be prioritised for downlink. Further the near real-

time classification functionality of the model opens up the possibility of avoiding

capturing during clouds or continuously scanning the terrain bellow for algae.

6.1 Further work

Further work will consist of taking the necessary steps to train and implement the

model on-board the HYPSO-1 satellite. Work must be done to transfer the model

to FPGA and how the model should best be integrated in the on-board pipeline.

43

44 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

More HYPSO-1 data must be labelled to give the model sufficient dataground

for consistent predictions over a wide variety of captures and the possibility of

predicting new classes.

The proposed model alterations in 5.1.1 should be explored in an attempt to

improve the average accuracy of the model.

Bibliography

[1] P. Mhangara, ‘The emerging role of cubesats for earth observation applic-

ations in south africa photogrammetric engineering remote sensing,’ Pho-

togrammetric Engineering and Remote Sensing, vol. 86, pp. 333–340, Jun.

2020. DOI: 10.14358/PERS.86.6.333.

[2] M. H. Azami, N. Örger, V. Schulz, T. Oshiro and M. Cho, ‘Earth observa-

tion mission of a 6u cubesat with a 5-meter resolution for wildfire image

classification using convolution neural network approach,’ Remote Sensing,

vol. 14, p. 1874, Apr. 2022. DOI: 10.3390/rs14081874.

[3] J. Linder, ‘Eksitere (fysikk),’ Aug. 2020. [Online]. Available: https://snl.

no/eksitere_-_fysikk.

[4] S. D. S. Survey, ‘Energy levels of electrons,’ [Online]. Available: https://

skyserver.sdss.org/dr1/en/proj/advanced/spectraltypes/energylevels.

asp.

[5] ‘Hydrogen excitation.’ (Jun. 2022), [Online]. Available: https://commons.

wikimedia.org/wiki/File:Atom_excitation.jpg.

[6] I. Wikipedia, ‘Planck relation,’ Jan. 2022. [Online]. Available: https://en.

wikipedia.org/wiki/Planck_relation.

[7] D. A. Smale, ‘Spectra and what they can tell us,’ Aug. 2013. [Online]. Avail-

able: https://imagine.gsfc.nasa.gov/science/toolbox/spectra1.

html.

[8] J. Skaar, ‘Lys,’ Nov. 2020. [Online]. Available: https://snl.no/lys.

45

https://doi.org/10.14358/PERS.86.6.333
https://doi.org/10.3390/rs14081874
https://snl.no/eksitere_-_fysikk
https://snl.no/eksitere_-_fysikk
https://skyserver.sdss.org/dr1/en/proj/advanced/spectraltypes/energylevels.asp
https://skyserver.sdss.org/dr1/en/proj/advanced/spectraltypes/energylevels.asp
https://skyserver.sdss.org/dr1/en/proj/advanced/spectraltypes/energylevels.asp
https://commons.wikimedia.org/wiki/File:Atom_excitation.jpg
https://commons.wikimedia.org/wiki/File:Atom_excitation.jpg
https://en.wikipedia.org/wiki/Planck_relation
https://en.wikipedia.org/wiki/Planck_relation
https://imagine.gsfc.nasa.gov/science/toolbox/spectra1.html
https://imagine.gsfc.nasa.gov/science/toolbox/spectra1.html
https://snl.no/lys

46 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

[9] R. K. Jostein and H. Trygve, ‘Lys,’ Dec. 2020. [Online]. Available: https:

//snl.no/lys.

[10] ‘Visible ligth spectrum.’ (Jun. 2022), [Online]. Available: http://ch301.

cm.utexas.edu/atomic/#H-atom/line-spectra.html.

[11] ‘Hydrogen absorption spectrum.’ (Jun. 2022), [Online]. Available: http:

//ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html.

[12] ‘Hydrogen emission spectrum.’ (Jun. 2022), [Online]. Available: http://

ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html.

[13] T. Bratvold, ‘Exploration of machine learning techniques for classification

in hypespectral images,’ Dec. 2021.

[14] ‘Rgb cube.’ (Dec. 2021), [Online]. Available: https://www.researchgate.

net/figure/Data-cube-representation-of-the-RGB-components-of-

a-digital-image_fig2_252986131.

[15] ‘Hsi data cube.’ (Dec. 2021), [Online]. Available: https://www.esa.int/

ESA_Multimedia/Images/2014/04/Hyperspectral_image_data_cube.

[16] H. J. Kramer, ‘Hypso (hyperspectral smallsat for ocean observation),’ Jul.

2022. [Online]. Available: https://directory.eoportal.org/web/eoportal/

satellite-missions/h/hypso.

[17] ‘Internal structure of xilinx fpga.’ (Jun. 2022), [Online]. Available: https:

//www.researchgate.net/figure/1-Internal-structure-of-Xilinx-

FPGA-3_fig1_290929451.

[18] ‘Image segmentation.’ (Jun. 2022), [Online]. Available: https://medium.

com/syncedreview/facebook-pointrend-rendering-image-segmentation-

f3936d50e7f1.

[19] ‘Salinas dataset.’ (Jul. 2022), [Online]. Available: https://www.researchgate.

net/figure/Salinas- dataset- a- false- color- composite- image-

bands-29-19-and-9-b-ground-truth_fig7_330747101.

https://snl.no/lys
https://snl.no/lys
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
http://ch301.cm.utexas.edu/atomic/#H-atom/line-spectra.html
https://www.researchgate.net/figure/Data-cube-representation-of-the-RGB-components-of-a-digital-image_fig2_252986131
https://www.researchgate.net/figure/Data-cube-representation-of-the-RGB-components-of-a-digital-image_fig2_252986131
https://www.researchgate.net/figure/Data-cube-representation-of-the-RGB-components-of-a-digital-image_fig2_252986131
https://www.esa.int/ESA_Multimedia/Images/2014/04/Hyperspectral_image_data_cube
https://www.esa.int/ESA_Multimedia/Images/2014/04/Hyperspectral_image_data_cube
https://directory.eoportal.org/web/eoportal/satellite-missions/h/hypso
https://directory.eoportal.org/web/eoportal/satellite-missions/h/hypso
https://www.researchgate.net/figure/1-Internal-structure-of-Xilinx-FPGA-3_fig1_290929451
https://www.researchgate.net/figure/1-Internal-structure-of-Xilinx-FPGA-3_fig1_290929451
https://www.researchgate.net/figure/1-Internal-structure-of-Xilinx-FPGA-3_fig1_290929451
https://medium.com/syncedreview/facebook-pointrend-rendering-image-segmentation-f3936d50e7f1
https://medium.com/syncedreview/facebook-pointrend-rendering-image-segmentation-f3936d50e7f1
https://medium.com/syncedreview/facebook-pointrend-rendering-image-segmentation-f3936d50e7f1
https://www.researchgate.net/figure/Salinas-dataset-a-false-color-composite-image-bands-29-19-and-9-b-ground-truth_fig7_330747101
https://www.researchgate.net/figure/Salinas-dataset-a-false-color-composite-image-bands-29-19-and-9-b-ground-truth_fig7_330747101
https://www.researchgate.net/figure/Salinas-dataset-a-false-color-composite-image-bands-29-19-and-9-b-ground-truth_fig7_330747101

Bibliography 47

[20] A. Menzli, ‘Graph neural network and some of gnn applications: Everything

you need to know,’ Jul. 2022. [Online]. Available: https://neptune.ai/

blog/graph-neural-network-and-some-of-gnn-applications.

[21] ‘Vitamin-a.’ (Jul. 2022), [Online]. Available: https://chem.libretexts.

org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_

Chemistry)/Fundamentals/Structure_of_Organic_Molecules.

[22] A. Filipovic, ‘Introduction to node embedding,’ Dec. 2021. [Online]. Avail-

able: https://memgraph.com/blog/introduction-to-node-embedding.

[23] S. Stanford, ‘Node representation learning,’ Jul. 2022. [Online]. Available:

https://snap-stanford.github.io/cs224w-notes/machine-learning-

with-networks/node-representation-learning.

[24] I. Mayachita, ‘Understanding graph convolutional networks for node clas-

sification,’ Jun. 2020. [Online]. Available: https://towardsdatascience.

com/understanding-graph-convolutional-networks-for-node-classification-

a2bfdb7aba7b.

[25] ‘Hyperspectral remote sensing scenes.’ (), [Online]. Available: https://

www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes.

[26] G. C. Feldman. ‘Sensor and data characteristics.’ (Dec. 2021), [Online].

Available: https://oceancolor.gsfc.nasa.gov/hico/instrument/

dataset-characteristics/.

[27] G. C. Feldman. ‘Spectral angle mapper.’ (Dec. 2021), [Online]. Available:

https://oceandata.sci.gsfc.nasa.gov/directaccess/HICO/L1/.

[28] I. Wikipedia, ‘Principal component analysis,’ Jul. 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Principal_component_analysis.

[29] T. N. Kipf and M. Welling, ‘Semi-supervised classification with graph con-

volutional networks,’ Feb. 2017. [Online]. Available: https://arxiv.org/

pdf/1609.02907.pdf.

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Structure_of_Organic_Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Structure_of_Organic_Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Structure_of_Organic_Molecules
https://memgraph.com/blog/introduction-to-node-embedding
https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/node-representation-learning
https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/node-representation-learning
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://oceancolor.gsfc.nasa.gov/hico/instrument/dataset-characteristics/
https://oceancolor.gsfc.nasa.gov/hico/instrument/dataset-characteristics/
https://oceandata.sci.gsfc.nasa.gov/directaccess/HICO/L1/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/pdf/1609.02907.pdf

48 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

[30] V. Feng, ‘An overview of resnet and its variants,’ Jul. 2017. [Online]. Avail-

able: https://towardsdatascience.com/an-overview-of-resnet-and-

its-variants-5281e2f56035.

[31] C.-F. Wang, ‘The vanishing gradient problem,’ Jan. 2019. [Online]. Avail-

able: https://towardsdatascience.com/the- vanishing- gradient-

problem-69bf08b15484.

[32] J. Brownlee, ‘A gentle introduction to batch normalization for deep neural

networks,’ Dec. 2019. [Online]. Available: https://machinelearningmastery.

com/batch-normalization-for-training-of-deep-neural-networks/.

[33] R. Stojnic. ‘Paperswithcode.’ (Dec. 2021), [Online]. Available: https://

paperswithcode.com/task/hyperspectral-image-classification.

[34] B. S. Birkeland R. and G. J. L, ‘Prioritizing hyperspectral image downlink

by compression ratio,’ Jul. 2022.

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://paperswithcode.com/task/hyperspectral-image-classification
https://paperswithcode.com/task/hyperspectral-image-classification

Appendix A

Model code

A.1 main.py

from cProfile import label

from operator import mod

from select import select

from statistics import mode

from this import d

import time

from scipy import rand

import torch

import scipy.io

import matplotlib.pyplot as plt

import matplotlib as mpl

import numpy as np

from torch import batch_norm, double, nn

from torch.utils.data import TensorDataset

from torch_geometric.data import Data

from torch.nn import BatchNorm1d

import torch.nn.functional as F

from torch_geometric.loader import DataLoader, DenseDataLoader

from torch_geometric.nn import GCNConv, ChebConv, GraphNorm, MessageNorm,

from torch_geometric.data import InMemoryDataset, download_url

from tqdm import tqdm

import random

49

50 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

from sklearn.decomposition import FactorAnalysis

from sklearn.decomposition import PCA

from tqdm import tqdm

from models import DGC, GCN

import torchvision

from confusion import *

from train import *

class AddGaussianNoise(object):

def __init__(self, mean=0., std=1.):

self.std = std

self.mean = mean

def __call__(self, tensor):

return tensor + torch.randn(tensor.size()) * self.std + self.mean

def __repr__(self):

return self.__class__.__name__ + ’(mean={0}, std={1})’.format(self.mean, self.std)

def applyPCA(X, numComponents=100):

newX = np.reshape(X, (-1, X.shape[2]))

pca = PCA(n_components=numComponents, whiten=True)

newX = pca.fit_transform(newX)

newX = np.reshape(newX, (X.shape[0],X.shape[1], numComponents))

return newX, pca

dataset_list = ["H2011216003423_3"]

loss_list_salinas = []

accuracy_list_salinas = []

val_loss_list_salinas = []

val_acc_list_salinas = []

final_salinas_accuracy = 0

loss_list_indian = []

accuracy_list_indian = []

val_loss_list_indian = []

Chapter A: Model code 51

val_acc_list_indian = []

final_indian_accuracy = 0

for dataset in dataset_list:

std_list = []

print("Making dataset")

data, targets = load_dataset(dataset)

class AddGaussianNoise(object):

def __init__(self, mean=0, std=1.):

self.std = std

self.mean = mean

def __call__(self, tensor):

return tensor + torch.randn(tensor.size()) * self.std + self.mean

def __repr__(self):

return self.__class__.__name__ + ’(mean={12.69}, std={1})’.format(self.mean, self.std)

#data, pca = applyPCA(data)

print(np.amax(data))

print(np.amin(data))

print(data.shape)

transform = torchvision.transforms.Compose([AddGaussianNoise()])

augment = False

train_data, train_targets, val_data, val_targets = split_training_data(data, targets, 0.3)

52 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

train_data_fliped = np.flip(train_data, 1)

train_targets_fliped = np.flip(train_targets, 1)

if augment:

train_data = torch.FloatTensor(train_data)

train_data_augmented = transform(train_data)

train_data = torch.cat((train_data, train_data_augmented))

train_data = train_data.numpy()

train_targets = np.concatenate((train_targets, train_targets))

"""train_data_avg = avrage_pixels(train_data, train_targets)

train_data = np.concatenate((train_data, train_data_avg))

train_targets = np.concatenate((train_targets, train_targets))"""

train_data = np.concatenate((train_data, train_data_fliped))

train_targets = np.concatenate((train_targets, train_targets_fliped))

train_data = make_training_data(train_data, train_targets, 30, 2)

val_data = make_test_data(val_data, val_targets)

train_dataloader = DataLoader(train_data, batch_size=15, shuffle=True)

"""train_dataloader.transform = torchvision.transforms.Compose([

AddGaussianNoise(0., 1.)])"""

val_dataloader = DataLoader(val_data)

#plt.imshow(targets)

Chapter A: Model code 53

#plt.show()

print("Initiating training")

#dataloader_iterator = iter(train_dataloader)

#data, target = next(dataloader_iterator)

#convert to graph

#loader = DataLoader(datalist, shuffle=False)

m = 0.8

number_of_loops = 10

temp = 0

loss_list = []

for loop in range(number_of_loops):

################################

#Training section

model_name = "dc"

device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

if model_name == "dgc":

model = DGC().to(device)

else:

model = GCN().to(device)

#lr = 0.0005

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

loss = 100

best_loss = 100

times_no_new_best_loss = 0

number_of_epochs = 25

54 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

for i in tqdm(range(number_of_epochs)):

avg_train_loss, avg_train_accuracy = train_loop(train_dataloader, model, optimizer, device)

#val_loss, val_accuracy = val_loop(val_dataloader, model, device)

avg_train_loss = avg_train_loss.data.cpu().numpy()

if dataset == "Indian_pines_corrected":

loss_list_indian.append(avg_train_loss)

accuracy_list_indian.append(avg_train_accuracy)

#val_loss_list_indian.append(val_loss)

#val_acc_list_indian.append(val_accuracy)

elif dataset == "SalinasA":

loss_list_salinas.append(avg_train_loss)

accuracy_list_salinas.append(avg_train_accuracy)

#val_loss_list_salinas.append(val_loss)

#val_acc_list_salinas.append(val_accuracy)

#print(avg_loss)

if avg_train_loss < best_loss:

times_no_new_best_loss = 0

best_loss = avg_train_loss

#print("Saving model")

torch.save(model.state_dict(), "best_model")

else:

times_no_new_best_loss += 1

#if times_no_new_best_loss == 60:

break

################################

print(best_loss)

"""plt.plot(loss_list)

plt.show()

loss_list = []"""

if model_name == "dgc":

model = DGC().to(device)

else:

model = GCN().to(device)

accuracy, predicted_image = test_loop(val_dataloader, model, device)

class_numbers = [’1’ ,’2’, ’3’]

confusion_matrix = get_confusion_matrix(predicted_image, val_targets, class_numbers)

Chapter A: Model code 55

plot_confusion_matrix(confusion_matrix, dataset)

std_list.append(accuracy)

temp += accuracy

avg_accuracy = temp/number_of_loops

print("Avg test accuracy: ", avg_accuracy)

print("Standard deviation: ", np.std(std_list))

#predicted_image = predicted_image.cpu()

if dataset == "Indian_pines_corrected":

final_indian_accuracy = accuracy

elif dataset == "SalinasA":

final_salinas_accuracy = accuracy

test_data = make_test_data(data, targets)

test_dataloader = DataLoader(test_data)

accuracy, predicted_image = test_loop(test_dataloader, model, device)

#f, axarr = plt.subplots(1,2)

colors = [’green’, ’blue’]

cmap = mpl.colors.ListedColormap(colors)

#plt.imshow(predicted_image, interpolation=’none’, cmap=cmap)

plt.imsave(dataset + ’_prediction.png’, predicted_image)

plt.imsave(dataset + ’_ground_truth.png’, targets)

"""axarr[0].imshow(predicted_image)

axarr[1].imshow(targets)"""

#plt.show()

56 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

f, axarr = plt.subplots(1,2)

axarr[0].plot(loss_list_indian, label=’Indian pines’)

axarr[0].plot(loss_list_salinas, label=’SalinasA’)

axarr[0].legend(loc=’upper right’)

axarr[0].title.set_text(’Training loss’)

axarr[1].plot(accuracy_list_indian, label=’Indian pines’)

axarr[1].plot(accuracy_list_salinas, label=’SalinasA’)

axarr[1].legend(loc=’lower right’)

axarr[1].title.set_text(’Training accuracy’)

plt.show()

A.2 train.py

from audioop import avg

from select import select

from this import d

from tkinter import N

from matplotlib import transforms

from scipy import rand

import torch

import scipy.io

import matplotlib.pyplot as plt

import numpy as np

from torch import batch_norm, double, nn

from torch.utils.data import TensorDataset

from torch_geometric.data import Data

import torch.nn.functional as F

from torch_geometric.nn import GCNConv, BatchNorm, ChebConv, TransformerConv, AGNNConv, TAGConv

from torch_geometric.data import InMemoryDataset, download_url

from tqdm import tqdm

import random

Chapter A: Model code 57

def load_dataset(name):

datapath = ’data/’ + name + ’.mat’

ground_truth_path = ’data/’ + name + ’_gt.mat’

raw_data = scipy.io.loadmat(datapath)

if name == "Indian_pines_corrected":

#name = name.lower()

ground_truth = scipy.io.loadmat("data/Indian_pines_gt.mat")

dataset = raw_data["indian_pines_corrected"] # use the key for data here

gt_key = name + ’_gt’

target = ground_truth["indian_pines_gt"] # use the key for target here

dataset = dataset.astype(int)

target = target.astype(int)

elif name == "H2011216003423_3":

ground_truth = scipy.io.loadmat("data/H2011216003423_3_class.mat")

dataset = raw_data["H2011216003423"] # use the key for data here

gt_key = name + ’_gt’

target = ground_truth["H2011216003423_class"] # use the key for target here

dataset = dataset.astype(int)

target = target.astype(int).reshape(1996, 506)

print(target.shape)

elif name == "mjosa":

ground_truth = scipy.io.loadmat("data/mjosa_class.mat")

dataset = raw_data["mjosa"] # use the key for data here

gt_key = name + ’_gt’

target = ground_truth["mjosa_class"] # use the key for target here

58 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

dataset = dataset.astype(int)

print(target.shape)

target = target.astype(int).reshape(956, 684)

else:

#name = name.lower()

ground_truth = scipy.io.loadmat("data/SalinasA_gt.mat")

dataset = raw_data["salinasA"] # use the key for data here

gt_key = name + ’_gt’

target = ground_truth["salinasA_gt"] # use the key for target here

dataset = dataset.astype(int)

target = target.astype(int)

print(target.shape)

return dataset, target

def avrage_pixels(train_data, train_target):

for line_number in range(len(train_data)):

for i in range(len(train_data[line_number])-1):

pixel_1_t = train_target[line_number][i]

pixel_2_t = train_target[line_number][i+1]

if pixel_1_t == pixel_2_t:

avg_pixel = (train_data[line_number][i] + train_data[line_number][i+1])/2

train_data[line_number][i] = avg_pixel

train_data[line_number][i+1] = avg_pixel

i += 1

return train_data

def split_training_data(data, targets, training_size, number_of_connected_lines=0):

number_of_training_samples = np.round(training_size*len(data)).astype(int)

train_indexes = np.round(np.linspace(0, len(data) - 1, number_of_training_samples)).astype(int)

if number_of_connected_lines > 0:

print(train_indexes)

train_data = []

Chapter A: Model code 59

train_targets = []

val_data = []

val_targets = []

print(train_indexes)

for index in range(len(data)):

if index in train_indexes:

train_data.append(data[index])

train_targets.append(targets[index])

else:

val_data.append(data[index])

val_targets.append(targets[index])

return train_data, train_targets, val_data, val_targets

def make_edge_indexes(number_of_nodes):

edge_index = []

for node in range(number_of_nodes - 1):

edge_to_1 = [node, node+1]

edge_back_1 = [node+1, node]

edge_index.append(edge_to_1)

edge_index.append(edge_back_1)

if node +2 < number_of_nodes:

edge_to_2 = [node, node+2]

edge_back_2 = [node+2, node]

edge_index.append(edge_to_2)

edge_index.append(edge_back_2)

"""if node +3 < number_of_nodes:

edge_to_3 = [node, node+3]

60 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

edge_back_3 = [node+3, node]

edge_index.append(edge_to_3)

edge_index.append(edge_back_3)"""

return torch.tensor(edge_index, dtype=torch.long)

def make_training_data(raw_data, target, nodes_in_data, node_overlap):

edge_indexes = make_edge_indexes(nodes_in_data)

datalist = []

for i in range(len(raw_data)):

spectra = torch.from_numpy(raw_data[i]).float()

spectra_target = torch.from_numpy(target[i]).long()# change type to your use case

n = 0

break_loop = False

while(not break_loop):

if n == len(spectra):

break

while n + nodes_in_data >= len(spectra):

n -= 1

break_loop = True

mini_spectra = spectra[n:n+nodes_in_data]

mini_spectra_target = spectra_target [n:n+nodes_in_data]

data = Data(x=mini_spectra, edge_index=edge_indexes.t().contiguous(), y=mini_spectra_target)

datalist.append(data)

n += nodes_in_data

n -= node_overlap

Chapter A: Model code 61

return datalist

def make_test_data(raw_data, targets):

nodes_in_data = len(raw_data[0])

edge_indexes = make_edge_indexes(nodes_in_data)

data_list = []

for i in range(len(raw_data)):

spectra = torch.from_numpy(raw_data[i]).float()

spectra_target = torch.from_numpy(targets[i]).long()# change type to your use case

data = Data(x=spectra, edge_index=edge_indexes.t().contiguous(), y=spectra_target)

data_list.append(data)

return data_list

def train_loop(data_loader, model, optimizer, device):

model.train()

size = len(data_loader.dataset)

summed_loss = 0

summed_acc = 0.0

correct = 0

n = 0

for batch, data in enumerate(data_loader):

data = data.to(device)

#pbar.set_description("Loss: %f" % loss)

out = model(data)

#out = out.view(4, 100)

#print(out.size())

#print(data.y.size())

#print(data.y.size())

pred = out.argmax(dim=1)

correct = (pred == data.y).sum()

summed_acc += int(correct) /len(data.y)

62 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

#print("out ", out.size())

#print("y ",data.y.size())

loss = F.nll_loss(out, data.y)

summed_loss += loss

"""if loss < best_loss:

torch.save(model.state_dict(), "best_model")

best_loss = loss"""

optimizer.zero_grad()

loss.backward()

optimizer.step()

n += 1

avg_loss = summed_loss/n

avg_acc = summed_acc / n

return avg_loss, avg_acc

def val_loop(data_loader, model, device):

size = len(data_loader.dataset)

model.eval()

summed_loss = 0

summed_acc = 0.0

correct = 0

n = 0

for batch, data in enumerate(data_loader):

data.to(device)

out = model(data)

#pred = pred.view(145, 100)

#print(pred.size())

#print(data.y.size())

#dim_1 = pred.size()[0] * pred.size()[1]

#pred = pred.view(dim_1,17)

pred = out.argmax(dim=1)

correct = (pred == data.y).sum()

Chapter A: Model code 63

summed_acc += int(correct) /len(data.y)

loss = F.nll_loss(out, data.y)

summed_loss += loss

n += 1

avg_loss = summed_loss/n

avg_acc = summed_acc / n

return avg_loss, avg_acc

def test_loop(data_loader, model, device):

size = len(data_loader.dataset)

model.load_state_dict(torch.load("best_model"))

model.eval()

correct = 0

predicted_image = []

summed_loss = 0

n = 0

for batch, data in tqdm(enumerate(data_loader)):

data.to(device)

pred = model(data)

#pred = pred.view(145, 100)

#print(pred.size())

#print(data.y.size())

#dim_1 = pred.size()[0] * pred.size()[1]

#pred = pred.view(dim_1,17)

loss = F.nll_loss(pred, data.y)

64 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

summed_loss += loss

n += 1

pred = pred.argmax(dim=1)

correct += (pred == data.y).sum()

pred = pred.tolist()

predicted_image.append(pred)

avg_loss = summed_loss/n

print("Loss: ", avg_loss)

print("wrongs: ", len(data.y)*size - int(correct))

acc = int(correct) / int((len(data.y)*size))

print(f’Accuracy: {acc:.4f}’)

return acc, predicted_image

A.3 models.py

from operator import mod

from select import select

from statistics import mode

from this import d

import time

from scipy import rand

import torch

import scipy.io

import matplotlib.pyplot as plt

import numpy as np

from torch import batch_norm, double, nn

from torch.utils.data import TensorDataset

from torch_geometric.data import Data

from torch.nn import BatchNorm1d

import torch.nn.functional as F

from torch_geometric.loader import DataLoader, DenseDataLoader

from torch_geometric.nn import GCNConv, ChebConv, GraphNorm, MessageNorm, TAGConv, GINConv ,GINEConv, ARMAConv, SGConv, APPNP, EdgePooling

Chapter A: Model code 65

from torch_geometric.data import InMemoryDataset, download_url

from tqdm import tqdm

import random

from sklearn.decomposition import FactorAnalysis

from sklearn.decomposition import PCA

import torchvision

from train import *

def make_conv_layer(inputs, outputs):

return GCNConv(inputs, outputs)

class DGC(torch.nn.Module):

def __init__(self):

super().__init__()

self.linear1 = nn.Linear(100, 80)

self.linear1_2 = nn.Linear(40,100)

self.linear2 = nn.Linear(80, 50)

self.linear3 = nn.Linear(50, 25)

self.batch_norm3_1 = BatchNorm(25, eps=1e-5, momentum=0.9)

self.linear3_2 = nn.Linear(25, 50)

self.batch_norm3_2 = BatchNorm(50, eps=1e-5, momentum=0.9)

self.linear4 = nn.Linear(25, 23)

self.linear5 = nn.Linear(23, 17)

self.conv1 = make_conv_layer(100, 100)

self.batch_norm1 = BatchNorm(100, eps=1e-5, momentum=0.9)

self.conv2 = make_conv_layer(100, 50)

self.conv2_2 = make_conv_layer(50, 100)

self.batch_norm2 = BatchNorm(50, eps=1e-5, momentum=0.9)

self.conv3 = make_conv_layer(100, 50)

self.conv3_2 = make_conv_layer(50, 100)

self.batch_norm3 = BatchNorm(50, eps=1e-5, momentum=0.9)

self.conv4 = make_conv_layer(80, 60)

self.msg_norm1 = MessageNorm()

66 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

self.batch_norm3 = BatchNorm(50, eps=1e-5, momentum=0.9)

self.batch_norm4 = BatchNorm(100, eps=1e-5, momentum=0.9)

self.batch_norm6 = BatchNorm(40, eps=1e-5, momentum=0.9)

self.batch_norm5 = BatchNorm(50, eps=1e-5, momentum=0.9)

def forward(self, data):

x, edge_index = data.x, data.edge_index

x = self.conv1(x, edge_index)

x = self.batch_norm1(x)

msg = x

#x = F.dropout(x, training=self.training)

x = self.conv2(x, edge_index)

x = self.batch_norm2(x)

x = F.relu(x)

x = self.conv2_2(x, edge_index)

x = self.batch_norm1(x)

x += msg

x = F.relu(x)

x = self.conv3(x, edge_index)

x = self.batch_norm3(x)

x = F.relu(x)

x = self.conv3_2(x, edge_index)

x = self.batch_norm1(x)

x += msg

#x = self.conv4(x, edge_index)

#x = self.msg_norm1(x, msg)

#x = self.batch_norm4(x)

#x = F.relu(x)

###

Chapter A: Model code 67

###

msg = x

###

x = self.linear1(x)

x = self.batch_norm6(x)

x = F.relu(x)

#x = self.linear1_2(x)

#x = self.batch_norm4(x)

####

x += msg

x = F.relu(x)

x = self.linear2(x)

x = self.batch_norm5(x)

x = F.relu(x)

#msg = x

####

x = self.linear3(x)

x = self.batch_norm3_1(x)

x = F.relu(x)

x = self.linear3_2(x)

x = self.batch_norm3_2(x)

###

x += msg

x = F.relu(x)

x = self.linear4(x)

x = F.relu(x)

x = self.linear5(x)

return F.log_softmax(x, dim=1)

class GCN(torch.nn.Module):

def __init__(self):

super().__init__()

68 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

"""super(GCN, self).__init__()"""

self.inpu_size = 100

self.num_layers = 1

self.rnn = nn.RNN(self.inpu_size, self.hidden_size, self.num_layers, batch_first=True)

self.input_layer_size = 87

self.linear1 = nn.Linear(self.input_layer_size, 80)

self.linear1_2 = nn.Linear(80, 80)

self.linear2 = nn.Linear(80, 50)

self.linear2_2 = nn.Linear(50, 50)

self.linear3 = nn.Linear(50, 30)

self.linear4 = nn.Linear(30, 4)

self.conv1 = make_conv_layer(self.input_layer_size, self.input_layer_size)

self.conv2 = make_conv_layer(self.input_layer_size, self.input_layer_size)

self.conv3 = make_conv_layer(60, 30)

self.dropout1 = nn.Dropout2d(0.0)

self.batch_norm1 = BatchNorm1d(self.input_layer_size, eps=1e-5, momentum=0.9)

self.batch_norm2 = BatchNorm1d(self.input_layer_size, eps=1e-5, momentum=0.9)

self.batch_norm3 = BatchNorm1d(80, eps=1e-5, momentum=0.9)

self.batch_norm4 = BatchNorm1d(50, eps=1e-5, momentum=0.9)

self.batch_norm5 = BatchNorm1d(30, eps=1e-5, momentum=0.9)

def forward(self, data, test=False):

x, edge_index = data.x, data.edge_index

msg = x

edge_index = edge_index[0]

#print(edge_index.size())

#edge_index = edge_index[0]

batch_size = 24

if test:

batch_size = 1

hidden = self.init_hidden(batch_size)

Chapter A: Model code 69

x = self.conv1(x, edge_index)

#x = self.msg_norm1(x, msg)

#x = self.graph_norm1(x)

x = self.batch_norm1(x)

x = F.relu(x)

x = self.dropout1(x)

#x = F.dropout(x, training=self.training)

#print(x.size())

#print(hidden.size())

x = self.conv2(x, edge_index)

#x = self.msg_norm1(x, msg)

#x = self.graph_norm1(x)

x = self.batch_norm2(x)

x = F.relu(x)

x = self.dropout1(x)

x = self.linear1(x)

x = self.batch_norm3(x)

x = F.relu(x)

x = self.dropout1(x)

x = self.linear2(x)

x = self.batch_norm4(x)

x = F.relu(x)

x = self.dropout1(x)

x = self.linear3(x)

x = self.batch_norm5(x)

x = F.relu(x)

x = self.linear4(x)

70 Department of Electronic Systems: Near Real-time Hyperspectral Image Classification

return F.log_softmax(x, dim=1)

A.4 confusion.py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sn

def get_confusion_matrix(labels_predicted, labels_true, classes):

confusion_matrix = []

labels_predicted = np.uint8(labels_predicted)

labels_true = np.uint8(labels_true)

labels_predicted = labels_predicted.flatten()

labels_true = labels_true.flatten()

print(labels_true.shape)

print(labels_predicted.shape)

for predicted_class in classes:

row = []

for true_class in classes:

All occurences of current true_class in labels_true:

true_indices = np.where(labels_true == np.uint8(true_class))[0]

All occurences of current predicted_class in labels_predicted:

predicted_indices = np.where(labels_predicted == np.uint8(predicted_class))[0]

We want to find the number of elements where these two matches:

num_occurences = len(np.intersect1d(true_indices, predicted_indices))

row.append(num_occurences)

Chapter A: Model code 71

confusion_matrix.append(row)

return np.array(confusion_matrix)

def plot_confusion_matrix(confusion_matrix, name):

class_numbers = [’1’ ,’2’, ’3’]

df_cm = pd.DataFrame(confusion_matrix, index = [i for i in class_numbers],

columns = [i for i in class_numbers])

fig = plt.figure(figsize = (10,7))

fig.suptitle(name, fontsize=16)

sn.heatmap(df_cm, annot=True)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Torbjørn Bratvold

Near Real-time Hyperspectral Image
Classification for In-orbit
Decissionmaking HYPSO-1

Near Real-time Hyperspectral Image
Classification

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Sivert Bakken
August 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Motivation

	Background and theory
	Hyperspectral imaging
	Excitation of atoms
	Spectroscopy
	Hyperspectral images

	HYPSO mission
	In orbit processing
	fpga

	Classification of Hyperspectral Images
	Image segmentation
	Pixel based segmentation
	Current methods
	On-board Classification
	Real-time Image Classification

	Graph Neural Networks
	Graphs
	Node embedding
	Graph Convolutional Network

	Implementation
	Representing HSI as graphs
	Datasets
	Indian Pines
	Salinas A
	HICO dataset
	HYPSO-1 dataset

	Building and training models
	Training and test data
	Pre-processing
	Graph convolutional layers
	Approaches
	Data Augmentation
	Final implementation

	Results
	Training
	Tunable model and data parameters

	Indina Pines and SalinasA
	HICO and HYPSO-1

	Discussion
	Model performance on Indian Pines and SalinasA dataset
	Possible model improvements

	Model performance on HICO and hypso-1 dataset
	Practical model usage
	Segmentation for downlink decision making
	Real time segmentation for capture initiating

	Conclusion
	Further work

	Bibliography
	Model code
	main.py
	train.py
	models.py
	confusion.py

