Fartein Lemjan Faergy

Expanding the Capabilities of Cyber
Range Attack Agents

Master’s thesis in 5-year MSc in Communication Technology and
Digital Security

Supervisor: Basel Katt

Co-supervisor: Muhammad Mudassar Yamin

July 2022

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

258
.59
082
£ cc
=]
c c O
o ErF
©
=)
=
5
(9]
Q
w
°
c
©
o
<)
c
<
o}
'_
c
S
=]
©
€
_
L
=
[
o
=]
(9]
©
[N

C
°
=]
[0}
-
c
=}
€
€
o
O
ie]
c
T
2
—_
=}
o
]
n
C
°
=]
40
€
—
K]
k=
Y
o
—
[N
9]
[a)

@ NTNU

Norwegian University of
Science and Technology

NTNU - Trondheim
Norwegian University of

Science and Technology

Expanding the Capabilities of Cyber Range
Attack Agents

Fartein Lemjan Faergy

Submission date: July 2022
Supervisor: Basel Katt, NTNU, IIK
Co-supervisor: Muhammad Mudassar Yamin, NTNU, [IK

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Expanding the Capabilities of Cyber Range Attack Agents
Student: Fartein Lemjan Feergy

Problem description:

Penetration testing describes the attempt of hacking a computer system in order
to uncover potential vulnerabilities, and thus asses its level of security. Because
a penetration test is mostly done manually, it is costly, time consuming, and the
results will depend on the incline and expertise of the tester. A fully automatic
penetration test would be fast, inexpensive and deterministic. In addition, it would
be highly useful for training purposes in a cyber range. However, research has proven
autonomous penetration testing to be a complex task, and especially challenging for
devices in the Internet of Things (IoT) domain.

Yamin and Katt! developed a new modelling plan to subdivide the task of
autonomously attacking and defending systems in a cyber range network. In the
study, they demonstrated how agents on both sides could employ the modelling plan
with a selected number of offensive and defensive tactics. This thesis will try to
expand the capabilites and usability of the attacking agent. This will be done by
employing the modelling plan on an exploit targeting a vulnerability in an IoT device.
Finally, the new attack agent will be tested on a running IoT device, and compared
to current automated vulnerability scanners and exploitation systems.

Date approved: 2022-02-23
Responsible professor: Basel Katt, NTNU, IIK
Supervisor(s): Muhammad Mudassar Yamin, NTNU, IIK

"Yamin, M. M., & Katt, B. (2022). Use of Cyber Attack and Defense Agents in Cyber
Ranges: A Case Study. NTNU.

Abstract

Internet of Things (IoT) devices are becoming a part of our daily life;
from health monitors to critical infrastructure, they are used everywhere.
This makes them ideal targets for malicious actors to exploit for nefarious
purposes. Recent attacks like the Mirai botnet are just examples in which
default credentials were used to exploit thousands of devices. This raises
a lot of questions about IoT device security. Keeping that in mind, we
aimed to investigate security of IoT devices in this thesis. A penetration
test is a way of ensuring the security of a system, but manually testing
the billions of IoT devices existing is infeasible at best.

This thesis has therefore examined autonomous penetration testing
on IoT devices. In a recent study, a method named Execution Plan (EP)
was developed for modelling automated attack agent decision making
in a cyber range. We have (1) investigated how the EP model can
be applied for modelling an autonomous IoT penetration testing agent.
Furthermore, we have (2) investigated if some well known and severe Wi-
Fi related vulnerabilities still exist in critical infrastructure. Through the
methodology of Design Science Research and a case study we have shown
that the EP model is sufficient for the purpose of modelling autonomous
penetration testing agents. In addition, we have demonstrated that the
vulnerabilities are in fact present in deployed and currently sold products
used in critical infrastructure, and that they can be both autonomously
revealed through a penetration test, and exploited.

Sammendrag

Enheter knyttet til Tingenes Internett (IoT)-domenet er i ferd med & bli
en del av vart daglige liv; fra kroppsmonitorer til kritisk infrastruktur
brukes de overalt. Dette gjor dem til ideelle mal for aktgrer som gnsker &
utnytte dem til ondsinnede formal. Nylige angrep som Mirai-botnettet
er bare eksempler der lett gjettbare passord og brukernavn ble brukt
til & utnytte tusenvis av enheter. Dette forer til mange spgrsmal om
ToT-enhetssikkerhet. Med det som utgangspunkt satte vi som maél &
undersgke sikkerheten til IoT-enheter. En penetrasjonstest er en mate a
undersgke sikkerheten til et system pa, men manuell testing av milliarder
av JoT-enheter som eksisterer er umulig a gjennomfere i praksis.

Denne oppgaven har derfor undersgkt autonom penetrasjonstesting
pa IoT-enheter. I en fersk studie ble en metode kalt Execution Plan (EP)
utviklet for & modellere automatisk beslutningstaking av programvare
for dataangrep i et en cyber range. Vi har (1) undersgkt hvordan EP-
modellen kan brukes for & modellere autonome IoT-penetrasjonstester.
Videre har vi (2) undersgkt om noen velkjente og alvorlige Wi-Fi-relaterte
sarbarheter fortsatt eksisterer i kritisk infrastruktur. Gjennom metodikken
til Design Science Research og en casestudie har vi vist at EP-modellen
er tilstrekkelig for formalet om & modellere autonome penetrasjonstester.
I tillegg har vi demonstrert at sarbarhetene er tilstede i produkter som
selges og brukes i kritisk infrastruktur, og at de bade kan avslgres gjennom
en autonom penetrasjonstest, og utnyttes.

Preface

This is the conclusion of a 5+ year MSc at NTNU.

Firstly, I would like to thank Muhammad Mudassar Yamin and
Basel Katt for continuous support throughout the last year. Their vast
knowledge and expertise within the topic has been inspiring and essential.
Without them, this project and thesis would not have been possible.

Secondly, my gratitude must be directed to Mujahid Islam Peal for the
great advice on the infamous topic of writing theses, and to Ahmed Walid
Amro for valuable and kind support during the case study development.

Lastly, I would like thank UKEkoret Pirum for all the fun, memories
and friends I have made there, and Milena for emotional support during
an existential crisis imposed by this masters thesis.

List of Figures
List of Acronyms

1 Introduction
1.1 Motivation

1.2 Problem Description and Research Objectives
1.3 Thesis Outline

2 Background and Related Work
2.1 Internet of Things and Cybersecurity
2.1.1 Threats and Risks
2.1.2 Threat Actors
2.1.3 Attack Surface and Security Issues
2.2 Penetration Testing
2.2.1 Testing of IoT Devices
2.2.2 Autonomous Penetration Testing
23 Wi-Fio
2.3.1 Encryption Standards and WPA2 Personal
2.3.2 The 4-Way Handshake
2.3.3 Deauthentication Frames
2.3.4 Evil Twin Attack
2.4 The EP Model and Formal Specification
2.4.1 Formal Specification and Verification
24.2 TLA+
2.5 Related Work

3 Methodology

3.1 DSR Life Cycle and Conditions
3.2 DSR Applied to the Project

4.1 Hardware

Case Study and Environment

Contents

vii

W N =

o 3 O ot ot G

4.2

4.3
4.4

Software
4.2.1 The Aircrack-ng Suite o000
4.2.2 Hostapd e
Target IoT Device
Physical setup L oo

System Design

5.1
5.2
5.3
5.4

The Attack Procedure
EP Models of Attacks
Formal Implementation and Verification
Implementation
5.4.1 Tool Interface
5.4.2 Agent Decision Making

Attack and Results

6.1 Attack 1: DoS

6.2 Attack 2: Evil Twin

Discussion

7.1 Authenticity of Attack
7.1.1 Network Interface Range
7.1.2 Time to Crack Network Password

7.2 Research Objectives L.
7.2.1 Research Objective 1
7.2.2 Research Objective 2

8 Conclusion and Future Work

References

27
27
28
29
35
35
36

39
39
39

41
41
41
41
43
43
43

45

47

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
9.5

5.6

5.7

5.8

6.1
6.2
6.3
6.4
6.5

7.1
7.2

List of Figures

The 4-way handshake 13
Warning issued when attempting connection to a rogue AP with no

encryption scheme L Lo 14
Steps in the DSR life cycle [24, p. 27] 20
Airodump-ng running in terminalo L0000 23
Aircrack-ng cracking a WPA2 key 23
The A200 connected to a battery and a VHF antenna 25
The Wi-Fi settings menu in A200. 25
Diagram of the case study setup 26
OpenCPN debug window with received NMEA packets 26
Sequence diagram of DoS and Evil Twin attack 28
EP model of the DoS attack 29
EP model of the Evil Twin attack 30
The formal specification of the DoS attack EP model written in TLA+ 32

State transition diagram showing all possible states of the DoS attack EP

model e 32
The formal specification of the Evil Twin attack EP model written in

TLA+ . . 33
State transition diagram showing all possible states of the Evil Twin

attack EP model Lo 34
Class diagram of the agent 35
YAML file for a DoS attack L. 39
Performing the DoS attack 40
DoS attack in OpenCPN debug window 40
Performing the Evil Twin attack 40
Debug view of Evil Twin connection 40
Aircrack-ng password cracking speed on Kali Linux machine 42
Aircrack-ng password cracking speed on the desktop computer 42

vii

List of Acronyms

AES Advanced Encryption Standard.
AT Artificial Intelligence.

AIS Automatic Identification System.
AP Access Point.

APT Advanced Persistent Threat.

BDI Belief-Desire-Intention.

BSSID Basic SSID.

CCMP Counter Mode with Cipher Block Chaining Message Authentication Code

Protocol.

DDoS Distributed Denial of Service.
DoS Denial of Service.

DSR Design Science Research.

EAPOL Extensible Authentication Protocol over LAN.

EP Execution Plan.

ESSID Extended SSID.

GPS Global Positioning System.

GTK Group Temporal Key.

IDS Intrusion Detection Systems.

IEEE Institute of Electrical and Electronics Engineers.

ix

IGTK Integrity Group Temporal Key.
IToT Industrial Internet of Things.
IoMT Internet of Medical Things.
IoT Internet of Things.

IPS Intrusion Protection Systems.
LAN Local Area Network.

MIC Message Integrity Code.

MitM Man-in-the-Middle.

NCR Norwegian Cyber Range.
NIC Network Interface Card.

NMEA National Marine Electronics Association.

PMK Pairwise Master Key.
PSK Pre-Shared Key.
PTES Penetration Testing Execution Standard.

PTK Pairwise Transient Key.
RL Reinforcement Learning.
SSID Service Set Identifier.

VHF Very High Frequency.

VTS Vessel Traffic Services.

WEP Wired Equivalent Privacy.
WLAN Wireless LAN.

WPA Wi-Fi Protected Access.

Introduction

There are many definitions of the Internet of Things (IoT). Oracle describes it as a
"network of physical objects—“things”—that are embedded with sensors, software,
and other technologies for the purpose of connecting and exchanging data with other
devices and systems over the internet" [48]. IoT devices are employed in anything from
refrigerators and health equipment, to sensors and actuators in industrial networks.
Some categorize them by the four subdomains Industrial Internet of Things (IIoT),
Internet of Medical Things (IoMT), Smart Cities and Smart Homes, but IoT is
applicable in many other fields and we can expect it to be an even more prevalent
term in the time to come [56]. It is estimated that more than 12 billion devices are
currently connected to the Internet, and by 2025, this number is expected to reach
beyond 27 billion [60]. We can safely conclude that IoT handle systems and data
that influence lives and economies all over the globe. Ensuring its security is a crucial
task for both manufacturers and consumers in the time to come.

1.1 Motivation

Devices that belong in the IoT domain are typically designed and used for a specific
application. Compared to a general purpose home computer, they are limited in terms
of hardware and computational power, but benefit from being cheaper to produce,
smaller in size and consuming less power. This ensures their broad applicability.
With IoT expanding in terms of number of devices and applications, its appeal among
cyber criminals increases accordingly. The physical presence and influence the devices
have on their environment make them valuable targets. Additionally, they are highly
suitable as pawns in botnets where they can be used for cryptomining or Distributed
Denial of Service (DDoS) attacks [34]. In 2021 an average IoT device was attacked
more than 5000 times each month according to Symantec [61]. This is a grave concern
in the industry. Through a survey among their customers, a cybersecurity firm found
that more than half of the organizations asked had discontinued a new project in
2021 because of security concerns [33]. Furthermore, three out of four organizations

2 1. INTRODUCTION

had been in one or more situations where they considered the level of security to be
inadequate, and 57% reported that cybersecurity breaches was their biggest concern
regarding IoT implementation.

A way of testing and assuring the security of a device is through a process called
penetration testing. This is an audit that attempts to reveal the potential security
flaws and vulnerabilities of a device by attacking it in any way a hacker, bot or
malware would [64]. The test is usually performed manually by one or more security
experts with the help of hardware and software hacking tools. These tools can scan
for services, ports and vulnerabilities, and some are able to exploit the systems,
extract data or navigate within a breached target. Even though many tools automate
large parts of the penetration test, most tools require human interaction and expertise
which can be time consuming and costly. A team of security experts may be required
to work many hours to sufficiently test all attack vectors of a system. This makes the
penetration test an expensive and tedious process with an end result that depends
on the competence and incline of the tester. Consequently, the test may not be
considered worth the time and resources invested for certain products - especially in
the case of low-priced IoT devices.

Fully automated penetration tests would be fast and inexpensive, improving cyber-
security by ensuring audits are viable for more manufacturers and their products. The
tests could be performed at any stage during the development without obstructing the
process, while the results of each would be more deterministic, and thus quantifiable
and comparable. Furthermore, they would be valuable for educational purposes when
training students and security personnel within a learning environment. Moreover,
autonomous penetration tests could assist during development and testing Intrusion
Detection Systems (IDS) and Intrusion Protection Systems (IPS).

1.2 Problem Description and Research Objectives

With the aforementioned situation in mind, we established the initial goal of re-
searching autonomous penetration testing of IoT devices. Recently, Yamin & Katt
conducted experiments involving autonomous attack and defense agents in a cyber
range [76]. A cyber range is an isolated environment for cyber security testing and
learning. Within this environment, both students and software agents operated.
For the agent decision making, the researchers developed a model named Execution
Plan (EP). This model was described and verified using the logic programming
language Datalog before the agent was developed. While their use case was emulated
and educational, the cyber range emulates realistic scenarios, implying that the
agents could operate outside the isolated environment as well. Because the actions
of the attack agent can be interpreted as an automated penetration test, the work
of Yamin & Katt lays an interesting foundation for further research within the field

1.3. THESIS OUTLINE 3

of automated penetration testing. As we will discuss in Section 2.5, most current
research within this field focus on Artificial Intelligence (AI) and machine learning
which has some issues. The EP model is a novel approach to solving these issues
which is worth further investigation.

Preliminary research on IoT devices encouraged further inquiry into the technolo-
gies in which they communicate and connect to the Internet. Wireless connection
is often the most convenient option because it is inexpensive, mobile, and requires
little to no setup. In homes and offices, Wi-Fi becomes a quick and simple solution
because its coverage is close to everywhere. However, a notable caveat with Wi-Fi
networks comes with its issues regarding security and availability. As we will discuss
in Section 2.3.1, a substantial majority of these networks are still encrypted using
a vulnerable generation of the Wi-Fi encryption scheme Wi-Fi Protected Access
(WPA), even though a more secure solution has been available since 2018 [4]. It
seems that neither producers nor consumers are able or willing to make a quick
transition. This puts the network and its connected devices at risk, and should be a
concern in the growing IoT market [36].

This project and thesis will involve a case study in which the EP model will
be used to create an autonomous attack agent. We will follow the Design Science
Research (DSR) methodology with the case study as a foundation. Using the artifacts
developed for the case study, we will attempt to expand on existing knowledge within
the concepts of autonomous penetration testing of loT devices, IoT security in relation
to Wi-Fi networks, and the EP model. Following are the two research objectives we
are aiming to realize in this project:

— Research objective 1: Investigate the use of the EP model to design
an autonomous penetration test for an IoT device
By expanding on the work of Yamin & Katt, we will examine how the EP model
can be utilized in real world scenarios, how the autonomous agent behaves in
accordance to the model, and what potential results we can expect from it.

— Research objective 2: Investigate and highlight Wi-Fi related vulner-
abilities in IoT devices
In the case study, we will identify and focus on one or more vulnerabilities
present in currently produced and employed IoT devices. From the results, we
will discuss the severity of these vulnerabilities.

1.3 Thesis Outline

Chapter 1 has discussed the motivation behind this thesis and formulated the research
goals. Chapter 2 will explain the concepts behind IoT and Wi-Fi security, penetration

4 1. INTRODUCTION

testing, and the EP model, to support the artifact and the research goals. The
DSR methodology and its implications on the project is described in Chapter 3.
Software and hardware tools and devices used in the case study will be accounted
for in Chapter 4. The system design and implementation are presented in Chapter
5. Chapter 6 will show the results, which will be discussed in Chapter 7. A final
summary and conclusion will be given in Chapter 8.

Background and Related Work

2.1 Internet of Things and Cybersecurity

One may think that the security breach of a smart light bulb would be inconsequential,
but there are numerous risks associated with the successful attack on an IoT device.
This section will address the importance of IoT security and why it is difficult, along
with potential attack vectors, threat actors and existing counter measures.

2.1.1 Threats and Risks

If an IoT device is compromised, the perhaps most evident issue comes from the
potential loss of availability as defined in the CIA Triad [55]. As mentioned, IoT
devices are used for an extensive number of applications. In the case of smart homes,
a breached device can imply a broken refrigerator, unknown access to home security
cameras, or an open smart lock on a front door or a safe. A broken sensor or actuator
in a factory can halt production or endanger workers and end-users. In terms of the
TIoMT, the negative implications on availability in equipment like modern pacemakers
and insulin pumps can have fatal consequences [38].

Many IoT devices handle sensitive information. When used in commerce, this
could be customer information, physical security information or industry secrets
that could be valuable to criminals or competitors. Devices sold to consumers may
handle and store sensitive information about the owner. For instance, data processed
by a smart thermostat may reveal when a house is vacant [23], workout devices
may handle sensitive health data about the owner, and home surveillance cameras
may record continually, even when the owners are home. Stolen data from such
devices may be used in profiling for criminal purposes, identity theft, blackmailing,
spear-phishing, or weakening the security of a physical place of residence or business.

A security researcher also revealed that a smart light bulb stored network access
keys in plaintext, which were retrievable even after the light bulb was disconnected

6 2. BACKGROUND AND RELATED WORK

[44]. Similarly, a compromised device can act as an entry point into a system or
network [23].

The IoT has also been the main target for different types of malware. In 2016, the
largest DDoS attack ever recorded at the time was delivered by a botnet named Mirai
[3]. It consisted of over 300’000 infected IoT devices, and the attack brought down
several global services including GitHub, PayPal, Amazon.com, BBC, PlayStation
Network and Spotify. Following the attack, the source code of the botnet malware
was published on Hack Forums and GitHub allowing anyone to recreate the Mirai
malware or use parts of it in their own malware [1, 22]. Bacause IoT devices are
continually operative and connected to the Internet while often requiring minimal
human interaction, they are highly suitable for botnets and the malware will rarely be
revealed [34]. Botnet devices can be used for DDoS attacks, cryptomining, password
hash cracking or other types of distributed computing. While it is unlikely that the
owner is persecuted for the malicious acts of an infected device, the device itself may
become slow, malfunction or take damage from overheating. In addition, the botnet
administrator may extract sensitive information or in other ways misuse the device.

2.1.2 Threat Actors

As ToT devices are used in many different fields, from smart homes to billion dollar
industries and government projects, the potential threat actors are similarly diverse.
Background, funding, motivation, skills, target and scope will vary between different
types which we can categorize under groups described below [35]. They are loosely
sorted in ascending order based on their cyber security threat level for companies,
governments and other high-value targets. The last two groups are the most likely
to act as an Advanced Persistent Threat (APT) once compromising a device, posing
as a major threat unbeknownst to the victim over weeks, months or even years [28].

Cyber-criminals is a term used for individuals that conduct illegal activities on
the web that does not involve hacking. This includes drug dealing, human trafficking,
sharing or downloading child pornography, and conducting financial fraud. While
they are not directly a cyber security threat, they are criminals within the cyber
realm and included in this list for the sake of completeness.

Script kiddies and cyber-punks have limited knowledge and skills, and use
existing tools to exploit low hanging fruit. Fame among peers, small gains or simply
entertainment are usually their motives.

Hacktivists are the digital equivalent to activists. They consist of anonymous
groups that target private organisations and governments to publicize a political
agenda.

2.1. INTERNET OF THINGS AND CYBERSECURITY 7

Cyber-terrorists are terrorists using the web to recruit new members and share
information. They may also conduct attacks in the cyber domain with the same
motives as terrorist attacks in the physical world.

Black hat hackers are mostly individual hackers with knowledge and expertise
in hacking and the tools used. Their targets may be specific companies or individuals,
or arbitrary devices found by means like the search engine Shodan. Their motives
are usually reputation or financial gains.

Malware- and hacking tools coders are highly skilled adversaries that create
tools and malware used to target different types of systems. They may work alone or
in a criminal organization. The may sell the tools, use them in ransomware attacks
or to create botnets. This is one of the most prevalent threats for IoT devices [17].

State-sponsored attackers are groups with extensive expertise and resources.
They target corporations or governments in order to reveal trade or state secrets,
plans or ideas, or in other ways harm the victim. Their attacks are sophisticated
and may utilize zero-days, making them difficult to avert.

Knowing where the threats come from is important in order to understand how
the security of a system should be adequately tested. The motivation and skill of
an adversary will determine its targets and attack vectors. Due to the diverse set
of threat actors, it is important that security audits test the breadth of potential
attacks as they may come from any of these adversaries.

2.1.3 Attack Surface and Security Issues

To map the attack surface of a system, one should consider the various parts of the
system, and how it operates. Due to the numerous applications and heterogeneous
environments of IoT, researchers and developers have not been able to universally
agree on a single architecture for describing IoT devices [29]. The approach described
in this thesis is a 3-layer model which differentiates between the perception, network
and application layer [53, 13]. The model can be applied to most IoT systems due to
its high generality. Because the attack vectors used on each of the three layers are
highly different from each other, the model is especially useful when investigating
topics related to penetration testing [13].

Perception Layer

The physical part of the device is represented by the perception layer. The layer
gathers information from and interacts with the physical world around it. To achieve
this, the device can use sensors, actuators, GPS, RFIDs, or other similar techonologies.

8 2. BACKGROUND AND RELATED WORK

IoT devices may often have limited computing powers, storage and battery ca-
pacity. This limits the complexity of its encryption schemes and key lengths [26].
Furthermore, the devices may need to be small and lightweight which limits the pos-
sible physical hardening options. In IIoT the devices may be situated in places where
maintenance is difficult, or neglected because they rarely receive human interaction.
Such devices may be left untouched simply because they work, contributing to the
growing concern of orphaned devices [54].

Network Layer

To control the actuators or process the information gathered in the perception layer,
data must be transmitted between the physical and the application layer. The
network layer connects the end nodes to network devices, servers or other IoT objects,
and handles the corresponding data flow. The connection is often wireless due of
cost, coverage and mobility. Examples of wireless technologies used within this layer
include ZigBee, Bluetooth, WiFi, 4G, 5G, satellites, and combinations of them.

The network layer is prone to jamming attacks, access point spoofing, data sniffing,
Man-in-the-Middle (MitM) attacks and more [26]. The devices may be used as an
entry point into their connected networks which makes their security increasingly
important. The various technologies used, and especially the combinations of them,
presents a notable cyber security risk [13].

Application Layer

The application layer provides user interaction and management of the service
provided by the IoT device. This may be presented as a smart home hub, a web
or mobile application, or a machine-to-machine interface. Depending on the field,
service and user, there are numerous technologies and applications which can be used
on this layer.

Because the application layer often presents an interface to the Internet, it has
the same security issues as most other computing devices with an Internet connection.
While this layer can be harder to exploit, it will often be accessible from anywhere
in the world, substantially increasing the potential threat actors. Examples of
common attacks include credential guessing, SQL injection, buffer overflow and social
engineering attacks [5].

2.2 Penetration Testing

A penetration test is a form of security audit which can be performed to ensure an
appropriate level of security of a system [45, 64]. It is a form of stress test which
usually attempts to bypass or break the authentication mechanism of the device,

2.2. PENETRATION TESTING 9

or in other ways compromise its integrity, availability or confidentiality. This is
accomplished by discovering vulnerabilities in hardware, software or communication
protocols. A penetration tester may exploit the discovered vulnerabilities as a proof
of concept, or elevate its privileges within the system to reveal more vulnerabilities.
The test can be defined as either black box or white box [45]. The former suggests the
tester knows nothing about the underlying systems and acts as an external attacker.
In a white box penetration test, the attacker has some kind of inside knowledge or
access, like a software source code. Within this thesis, we will only consider black
box penetration testing because this method emulates hacking attempts as they are
realistically performed.

Penetration tests are commonly performed by one or more experienced penetration
testers who employ a broad set of hardware and software tools depending on the
target system [64]. The software tools are used to scan the target in order to both
map the system and discover potential vulnerabilities. Some tools are capable of
exploiting vulnerabilities. Essentially, the software tools are automating parts of the
process, but they require interaction to both run and interpret the output.

A penetration test on a system will have a large number of potential attack
vectors and surfaces to test. The action space of possible steps to scan and exploit is
vast, while the outcomes may have severe implications for the system and people
compromised by the test. Because of this, a structured procedure should be followed to
ensure the outcomes are correct and the interests of all afflicted parties are accounted
for. To standardize the procedure, several methodologies have been suggested [59].
A commonly acknowledged and utilized methodology is the Penetration Testing
Execution Standard (PTES) [49]. This standard describes the penetration test in
seven steps:

1. Pre-Engagement Interactions
This step involves and emphasises the importance of clearly defining the target,
scope and potential boundaries before interacting with a system.

2. Intelligence Gathering
Before attacking the system, the tester must know how it functions, is structured
and can be interacted with. As mentioned above, automated software tools
can often be used for this purpose.

3. Threat Modelling
To properly analyze the security of a system, the tester should know who could
attack it and why. Thus, PTES threat modelling focuses on the assets that
can be targeted and the liable threat actors.

10 2. BACKGROUND AND RELATED WORK

4. Vulnerability Analysis
This step is where potential vulnerabilities, from misconfigurations to faulty
designs, are uncovered. Many software tools, but also human interaction with
the system is important to properly examine it.

5. Exploitation
To analyze the discovered vulnerabilities, the tester will attempt to exploit
them. This should reveal their potential implications and may be used to
uncover more vulnerabilities.

6. Post-Exploitation
If a component of the system has been successfully compromised, the value of
the component should be evaluated with regards to its usefulness in further
exploitation of the system.

7. Reporting
The value of the penetration test comes from reporting the discovered and
exploited vulnerabilities. These should be evaluated according to their severity
and risk.

2.2.1 Testing of IoT Devices

Penetration testing IoT devices is not much different from penetration testing of
larger computer systems. The audit must inquire all three layers described in Section
2.1.3 which would be the case regardless of the target system. However, the tests
performed on the network layer and particularly the perception layer may be different
depending on the device tested. Due to the vast number of different applications
and utilities provided by the IoT, there is a corresponding diversity in the various
technologies utilized. The devices may have particular vulnerabilities related to their
services, location, sensors, communication protocol, and so on.

The steps of the PTES discussed above can be applied to the penetration testing
of IoT systems as well. The threat actors described in Section 2.1.2 are an important
part of the threat modeling step, while the IoT architecture and security issues from
Section 2.1.3 are essential when evaluating step 2, 3 and 5 of the PTES model. Other
models and methodologies designed specifically for penetration testing within the
domain of IoT have recently been proposed [13, 12, 31, 51].

2.2.2 Autonomous Penetration Testing

As discussed, penetration tests are traditionally performed manually which makes
them time consuming, expensive and potentially unreliable results. Autonomous
penetration tests would solve these issues and be beneficial for development, produc-
tion, certification, education and research. While autonomous tools exist, they are

2.3. WI-FT 11

either used for a specific purpose within penetration testing, require some level of
human expert interaction or are not as capable as a human penetration tester. The
main reason for automated penetration testing still being an open challenge comes
from the large action space in which such an agent would operate [75]. The task
becomes even more difficult when accounting for IoT devices due to their different
applications and heterogeneous environments. The current state of art and related
work will be discussed in more detail in Section 2.5.

2.3 Wi-Fi

Wireless Fidelity, commonly abbreviated to Wi-Fi, is a wireless communication
technology based on the IEEE 802.11 standards for Local Area Network (LAN) [14].
Wi-Fi allows devices equipped with a wireless Network Interface Card (NIC) to act
as clients, connecting to a local Access Point (AP) over the air interface. The AP
will often provide Internet access to its clients, but it may also simply create a local
network in which the stations can communicate. The clients and APs in a LAN are
called stations.

To distinguish individual networks in a Wireless LAN (WLAN), the term Service
Set Identifier (SSID) is often used [32]. This describes the network name which is
usually how a Wi-Fi user will address and identify networks. In this thesis we will
refer to the term Extended SSID (ESSID) for a network name to clearly separate
it from the Basic SSID (BSSID) which describes individual APs MAC addresses.
ESSID technically describes the set of all BSSIDs in a network, but for the practical
context of this thesis, the terms SSID and ESSID can be considered equivalent. The
term ESSID is also employed by the case study software tools discussed in Chapter 4.

Some IoT devices are connected to the Internet through a Wi-Fi connection.
Other devices may run their own Wi-Fi network to provide Internet access, like
wireless routers, mobile hotspots, or to transmit data to its clients, like the IoT
device that will be used in this project.

2.3.1 Encryption Standards and WPA2 Personal

There are several generations of encryption schemes which can be employed on a
Wi-Fi connection. WPA version 3 is the most recent and secure [52]. Still, many APs
run on WPA2 which has several vulnerabilities associated to it [42, 69, 62]. WPA2 is
based on Institute of Electrical and Electronics Engineers (IEEE) 802.11i and was
ratified in 2004 [41, 16]. It can be further differentiated between its modes Personal
and Enterprise, where the latter has a few additional security features. Enterprise
mode utilizes an authentication server which administers individual session keys, and
is designed for larger networks of upwards of 10 stations [50]. The WPA2 Personal is

12 2. BACKGROUND AND RELATED WORK

sometimes referred to as Pre-Shared Key (PSK) mode because the AP authenticates
the user and encrypts the connection based on a single key known by all stations in
the network [42].

A 2022 study suggested that private WLANs are predominantly encrypted using
WPA2 or less secure protocols, four years after the publication of WPA3 [20]. When
probing 21,345 WLANs in Cyprus, they found that only 13 networks employed
WPA3. 74.7% used WPA2 or WPA2/WPA in mixed mode meaning that devices
will choose WPA2 if they support it. Only a 0.2% used WPA or the older Wired
Equivalent Privacy (WEP), while 25.1% had no encryption. Similar studies from
2019 show comparable results in Romania and Bulgaria where WPA2 was distinctly
the most popular protocol [40, 71]. While these results may be slightly different in
other countries, they show that WPA2 is still very common and that we can expect
millions of devices to communicate over this encryption scheme for several years
forward.

2.3.2 The 4-Way Handshake

WPA2 Personal encryption is based on Counter Mode with Cipher Block Chaining
Message Authentication Code Protocol (CCMP) with the Advanced Encryption
Standard (AES) block cipher [42, 41]. Unicast messages are encrypted using a
Pairwise Transient Key (PTK) while a Group Temporal Key (GTK) is used for
multicast and broadcast messages on the network. The process of authenticating
and negotiating these keys is known as the 4-way handshake. Its name comes from
the four Extensible Authentication Protocol over LAN (EAPOL) messages which
constitute the process, transmitted between the client and AP as seen in 2.1. The
roles are often labeled supplicant and authenticator during the handshake [41], but
we will stick to the terms client and AP as they are used throughout the context of
this project.

Upon finishing the initial connection process, the handshake authentication is
begun. Both parties derive the Pairwise Master Key (PMK) from the PSK which
is distributed out of band. The first message of the handshake contains a random
128-bit value called ANonce which is sent from the AP to the client. The client
generates its own random value called SNonce. The client now knows the two random
values, the PMK and the BSSIDs which are the MAC addresses of the two stations.
With this information, the client can calculate the PTK. The client then transmits
the SNonce with a Message Integrity Code (MIC) created using the PTK. The AP
can now also calculate the PTK, and then utilize it to verify the MIC. If validated,
a third EAPOL message is sent from the AP. This contains a confirmation of the
PTK, a GTK encrypted with the PTK, along with a MIC. Finally, the client replies
with a MIC, completing the 4-way handshake.

2.3. WI-FT 13

Bl e

. ‘.

)

— - . Access
Client " Out of paqd pgssword . Point
PPN distribution < _ _

L7 e A
PSK PSK
PMK PMK

................ 4_WayHandshake

PTK confirmation,
GTK, MIC

4/4 :
v \ 4

Figure 2.1: The 4-way handshake

2.3.3 Deauthentication Frames

A type of management frames called the deauthentication frame is used to instruct a
station to drop its network connection [36]. Usually, the station will automatically
attempt reconnect which initiates a new handshake process. However, if a client
continuously receives deauthentication frames from the AP, it will not be able to
establish a new connection. This constitutes a serious concern because in the IEEE
802.11i standard, which WPA2 is based on, the stations do not authenticate or
encrypt management and control frames [16]. The frames are sent in plain-text,
meaning that an adversary can forge a deauthentication frame which appears to
be from an AP in order to kill the connection to a client [36]. The adversary can
then capture the handshake process upon reconnection, or continue to send the
deauthentication frames. The latter would act as a Denial of Service (DoS) attack
by withholding the client from reconnecting.

In 2009, the IEEE published the 802.11w version which addressed the lacking
protection of management frames [15]. With these changes, management frames

14 2. BACKGROUND AND RELATED WORK

“A1S200" was previously joined as WPA2/WPA3
Personal, not Open.

Are you sure you want to join this network?

Cancel

Figure 2.2: Warning issued when attempting connection to a rogue AP with no
encryption scheme

should be protected if possible. To facilitate these security aspects, the third messages
of the WPA handshake would contain an encrypted Integrity Group Temporal Key
(IGTK) along with the GTK. The changes to the 802.11 version allows a station, i.e.
a client, to drop the deauthentication frame if an IGTK check fails. Essentially, this
means that an adversary that does not know the IGTK can not deauthenticate a
station by simply spoofing the BSSID of the other connected station.

2.3.4 Evil Twin Attack

If a client is disconnected from its AP, it will usually attempt to reconnect auto-
matically. Originally, the client would only check if the ESSID of the network it
disconnected from matches any networks within range, and attempt to reconnect
if it finds a match[6]. If there are more than one network with the same ESSID,
it will connect to the one with the strongest signal. This is a severe vulnerability
because the ESSID is visible to anyone within range, making it trivial to create a
matching Wi-Fi network. Impersonating an AP to target unaware clients is called an
Evil Twin attack and it can be classified under the serious category of MitM attacks.

Because of severity of this attack, many new devices will now examine the
encryption scheme of the AP. If the ESSID of the network matches a previously
associated network, but the encryption scheme is different or removed, it will not
connect automatically. Furthermore, if attempted to connect manually, the device
will issue a warning as shown in Figure 2.2. Because of this, a successful Evil Twin
attack on an encrypted network will usually require knowledge of the encryption key
used.

2.4 The EP Model and Formal Specification

The Execution Plan model was developed by Yamin & Katt to specify and describe
the decision making process of autonomous agents within a cyber range [76]. The
model has a tree structure with three levels. The tree translates the high-level
goals of the agent into concrete commands for the agent to perform. The results

2.4. THE EP MODEL AND FORMAL SPECIFICATION 15

when running EP model are either plan fulfilled, plan not fulfilled, or plan maybe
impractical.

Level 1 contains the root node of the tree. This describes the main goal of the
agent. Connected to the main goal and within the first level are one or more branches
describing sub-goals. These are separated by the logical operators A (and) and Vv
(or), which determine whether one or all sub-goals must be achieved in order for its
parent goal to succeed.

Level 2 describes actions and conditions which will eventually decide what
commands will be executed. These conditions are Boolean, meaning they can only
be answered with yes/true or no/false. As a consequence, the V operator is the only
allowed operator within this level. Each root node in the second level has its own
sub tree which corresponds to a sub-goal in the upper level. Each of the second level
leaf nodes are either a "Not fulfilled"-node or an actions-node. The former has no
children and implies that the conditions to fulfill the plan have not been met, while
the latter has one or more children in the next level.

Level 3 contains a single layer of nodes which describes concrete commands.
These commands execute the actions described by the parent nodes in the layer
above. The siblings within the third layer are separated by either the A operator,
which implies that all commands must be executed for the plan to be fulfilled, or the
V operator, implying that either of them is sufficient. If a command is not executed
successfully, the model indicates that the plan may be impractical.

2.4.1 Formal Specification and Verification

Formal specification within computer science is used to describe system requirements
and function through abstraction and mathematics [25]. This is useful to aid with the
design and testing of the system before, during or even after development. Formal
specification can reduce redundant and ambiguous specifications and facilitate the
development of more effective code with less errors [9]. While code verification
like unit tests can demonstrate that code modules work as intended, the tests may
not detect logical flaws in the system design. By abstracting the software and its
elements, developers can verify that the proposed design works as intended before
writing the code and its details. The EP model can and should be formally verified to
ensure that its logic is correct and the final states can be reached. For the purpose of
verifying the EP model within this project, the formal specification language called
TLA+ will be used.

16 2. BACKGROUND AND RELATED WORK

2.4.2 TLA+

A formal model written in TLA+ is called a specification [37]. The specification is
a mathematical interpretation and abstraction of the discrete events of a system,
which in this case will be the decision making process of the agent. The fundamental
elements of a specification are the states. A state describes the variables of a system
at a specific point in time during system operation. The transition from one state
to the next is often what would be described as a program event. In TLA+, this
transition is called a step. The full system execution will be represented by a specific
sequence of states where the first state is the init state. The init state represents the
initial condition, and all successive steps must adhere to the rules described by the
next-state relation. By verifying a specification, the TLC Model Checker evaluates all
possible states that can be reached beginning in the init state. The state transition
diagram displays all reachable states as nodes, while their sequence is described by
directed edges between them.

2.5 Related Work

As mentioned in Section 2.2, a number of tools which automates parts or most
of the penetration testing already exists. Examples of partial automation tools
include Nmap which can be used to scan open ports and identify services on a given
system [39], and SQLmap which can test for SQL injection vulnerabilities and more
[19]. Proprietary tools like Metasploit Pro [43] and Nessus [65] have automated
vulnerability scanning and exploitation capabilities. However, these tools require
some level of interaction with a human penetration tester.

Numerous attempts have been made at fully automating penetration testing. In
the current state of research, many are attempting to solve the issue by employing
AT and specifically machine learning techniques. The first hurdle to overcome when
developing such solutions is the vast action space in which the agents must train and
operate.

In 2021, a cyber security researcher and former penetration tester developed and
trained an autonomous penetration testing agent using deep Reinforcement Learning
(RL) algorithms [10]. Modules within a penetration testing software called Metasploit
were used to create an abstraction of the action space. Within a test bed containing
a highly vulnerable machine, the agent was able to acquire root privileges in all test
runs. However, a control agent using the same modules were able to reach this access
level in more than 20% of the test runs when randomly selecting attack vectors.

Similar work has been done by Schwartz & Kurniawati [57], Zennaro & Erdod
[77] and Hu et al. [27], which involved various Q-learning algorithms to train RL
penetration testing agents. Another suggestion proposed by Tran et al. investigates

2.5. RELATED WORK 17

an algebraic approach to structure the action space hierarchically [68]. Within this
abstraction, they trained the penetration testing agent using deep RL algorithms.
Their experiments showed positive results when compared to the deep Q-learning
approach.

While the machine learning methods have shown positive results, even in large
action spaces, the environments in which they have been trained and tested are still
limited in scope of all computing systems. Especially, when accounting for all the
various IoT devices and their applications. Moreover, new services and vulnerabilities
are discovered every day. Limited research has been done on how these agents adapt
and perform in volatile environments.

Another issue comes from the risk of damaging systems as penetration tests are
often performed on live services and systems. A human penetration tester would
both consider the implications of an exploit, and only execute it on a single device
as a proof of concept if it is considered safe to perform. An autonomous agent will
have less understanding of potential consequences. When a RL agent learns that
exploiting a certain vulnerability provides a reward, it will attempt to perform this
exploitation whenever possible.

Some work has been done related to the automated penetration testing of IoT
devices specifically. Chu & Lisitsa proposed the use of a Belief-Desire-Intention
(BDI) model to map the goals and plans of a penetration test to concrete actions
and perceptions of the target system [13]. An autonomous agent will then make
the decisions based on an Al framework called procedural reasoning system. Rak et
al. developed an automatic threat modeling system which would describe concrete
actions to manually perform the penetration test [51]. The actions and instructions
were intended to be easy enough for a smart home owner without training to test the
vulnerabilities. Considering IoT devices often are part of a larger network, Yadav et
al. developed a penetration testing framework for analyzing both the IoT devices
and the their connected network in its entirety [75].

There have been several studies related to WLAN and IoT security. Hossain et al.
presented and discussed various security issues and challenges in the IoT, including
WLAN connectivity [26]. In 2020, Kristiyanto et al. analyzed a deauthentication
attack on a Wi-Fi connected IoT camera [36] equivalent to the DoS attack presented
in Section 5.1. Verma et al. demonstrated several serious security risks for IoT
devices on connected to IEEE 802.11ah WLAN networks [74]. Vanhoef & Piessens
demonstrated that an adversary can force a reinstallation of the key generated during
the handshake process, effectively resetting the nonce and replay counters [73]. In
WPA2 PSK-CCMP, this would allow the adversary to decrypt and replay frames, but
not forge new ones. In 2021, Vanhoef discovered more vulnerabilities in both design

18 2. BACKGROUND AND RELATED WORK

and common implementations of all WPA versions [72]. With user interaction, an
adversary uses the design vulnerability to steal sensitive data. Furthermore, Vanhoef
demonstrated how the vulnerabilities could be exploited to attack IoT devices.

Over the last years, some tools that automate attacks on the Wi-Fi related
vulnerabilities have been developed. Specifically, we know of the "WiFi Exploitation
Framework - WEF" [18], "Airgeddon" [70] and "Wifiphisher" [63]. These are all
capable of running several attacks on WPA2 including versions of the Evil Twin
attack. Yet, to the best of our knowledge, we do not think they are able to fully
automate the process of the second attack presented in Section 5.1.

Methodology

Hevner & Chatterjee explains DSR as the invention and creation of artifacts in order
to provide knowledge concerning human issues [24, p. 5]. Furthermore, the artifacts
themselves should provide value when attempting to solve the issues at hand. This
project has followed the DSR principles and methodology. In this chapter, we will
explain DSR methodology and how it is applied to our project.

3.1 DSR Life Cycle and Conditions

Any design follows a cyclic life cycle, and DSR is no exception. Each DSR cycle can
be described by a set of steps as displayed in Figure 3.1 [24, p. 26-27]. Firstly, one has
to be aware of the problem that should be solved. The problem itself, its reasoning,
stakeholders and circumstances constitute what Hevner & Chatterjee define as the
environment condition. The concerning theoretical aspect, related work and research
significance depicts the knowledge base.

From the first step, a proposal should have been formed. The proposal should
be worked with and refined in the second step called suggestion. This is where the
proposed idea is described by a concrete, yet tentative design which presents the
output of the suggestion step. Then, the tentative design is created or implemented
in the development step which results in an artifact. The next step is evaluating
the artifact based on the original problem and predefined requirements. The output
is performance measures which is used in the conclusion step to produce the final
results.

The results answer or solve some issue related the original problem described by
the environment, while conforming to the scientific rigors and related theory within
the knowledge base. Without the latter, the designed artifact does not contribute
to research, and without the environment, it provides no value to human concerns.
If this is not the case, the method should not reach the conclusion step, but rather

19

20 3. METHODOLOGY

Design Science Research Framework

Knowledge Process Outputs
Flows Steps
——— > Awareness Proposal
—— of problem
. Tentative
Suggestion Design
Circumscription ﬂ .
| Development Artifact
Operational
And Goal . Perf
Knowledge Evaluation erformance measures
Conclusion Results

Figure 3.1: Steps in the DSR life cycle [24, p. 27]

reiterate which is cited as a circumscription. As implied by the nature of a cycle, the
steps should be repeated until an adequate artifact is produced.

3.2 DSR Applied to the Project

This project has been through several iterations of the DSR life cycle. Regarding
the research objectives, we have addressed both of the aforementioned conditions in
the previous two chapters. The environment is the main topic of Chapter 1, while
Chapter 2 has a greater focus on the knowledge base. From this, we first proposed
an attack on the WPA2 encryption used by the IoT device provided in the case
study. Through the suggestion and development steps we eventually defined the
attack process as described in section 5.1. In the next iterations we developed the
EP model and formal verification artifacts described in sections 5.2 and 5.3. Based
on these, the agent and final artifact was implemented as described in Section 5.4.
The evaluation according to the research objectives is discussed in Chapter 7, while
a conclusion is found in the final chapter.

Case Study and Environment

A laptop with the Kali Linux operating system was used as a basis of the attacks.
Kali Linux is an open-source Debian based distribution of Linux, made as a platform
which can facilitate advanced security audits and penetration tests [58]. Several
software tools, including those used in the final python script, come pre-installed
with Kali Linux. In addition, the distribution has a number of word lists containing
commonly used passwords, which were employed to crack the WiFi keys.

4.1 Hardware

In addition to the hardware presented by a regular laptop itself, a few additional
requirements must be satisfied for the attack to succeed. Most importantly a wireless
NIC capable of being set to "monitor" mode is required. This NIC will serve as an
interface from which most of the steps in the python script will be launched. In the
final step of the client-takeover, another NIC is required to run the rogue AP. While
this could be run on the wireless card with monitoring capabilities, this card is used
to kill the connection between the original AP and the client while the rogue AP is
running.

The laptop used was a "Lenovo ThinkPad T430 2349-EH9" with a Intel Core
i5-3320M 2.60GHz CPU, and an Intel Centrino Advanced-N 6205 Dual Band NIC.
The additional external USB NIC was a Linksys AE1200.

4.2 Software

All software used in the Python program, including the Python libraries which
were mostly from the Python Standard library, comes pre-installed with Kali Linux.
Following is an overview of the software tools used.

21

22 4. CASE STUDY AND ENVIRONMENT

4.2.1 The Aircrack-ng Suite

Aircrack-ng is a suite of programs written in shell code that can be used to test
the security of the most common encryption methods used in Wi-Fi today. The
suite is a free, open-source, terminal run set of tools that is continuously maintained
and utilized. The suite consists of several tools including Airmon-ng, Airodump-ng,
Aireplay-ng, Aircrack-ng and more.

The tools can be used together to perform various actions including hardware
analysis, packet monitoring and injection on the wireless interface, and performing
brute-force and dictionary attacks against WEP and WPA-PSK encryption keys. It
can also spoof an AP, and trick a client computer into connecting to its own rogue
AP imitating the target Wi-Fi. The specific tools mentioned above were those of the
Aircrack suite used in this project. Below is a description of their applications in the
scope of this project.

Airmon-ng

This tool gathers and displays information about the computer network cards,
interfaces and network processes. It can change the mode of the computer wireless
cards to "monitor" mode which enables them to read and inject packets on the air,
regardless of their source and destination. It can also kill the running network process
that may interfere with the wireless interfaces while they are used by other tools.
While it is not essential to run for most of the other tools to work, it creates a more
stable foundation for them to operate on.

Airodump-ng

When wireless cards are operating in monitor mode, Airodump-ng is capable of sniffing
any packets transmitted within range over the air interface. As a baseline, this can
be used to get an overview over all APs and probes in the area. The information
gathered on each node will include the ESSID, the BSSID, the encryption scheme, the
channel on which it operates, its relative signal strength and its connected stations.
Airodump can also be configured to narrow its scope to a single AP and its clients,
for instance to capture initialization vectors or WPA handshakes. The captured data
is displayed in the terminal as shown in Figure 4.1, or can be written to files.

Aireplay-ng

Aireplay-ng can be used to inject packets and spoof their source. One particular
useful application in the scope of our project is to transmit deauthentication packets
to clients. These packets claims to be from their connected AP, resulting in the
clients dropping their connection. By continuously transmitting these packets, the
client will not be able to reconnect with the AP, effectively executing a DoS attack.

4.2. SOFTWARE 23

wlan@mon

MB ENC CIPHER

k-ng 1.6

seconds

KEY FOUND!

EAPOL HMAC 90 A2 7 D7 @E DD @9 98 AC 5C

Figure 4.2: Aircrack-ng cracking a WPA2 key

If no further deauthentication packets are transmitted, the clients will attempt to
reestablish their connection through a new authentication process. During this
process, a wireless sniffer like Airodump-ng may capture the handshake.

Alircrack-ng

With the same name as the tool suite itself, Aircrack-ng is used to crack WEP and
WPA-PSK encryption keys. To retrieve WEP keys, several methods can be used.
In terms of cracking a WPA-PSK key, Aircrack can use information captured from
the four-way handshake, along with the BSSID of the AP. With this data, the tool
performs a dictionary attack, testing several thousand keys each second, and outputs
its result in the terminal or to a file. When a WPAZ2 is cracked, the output will look
similar to the screenshot shown in Figure 4.2.

24 4. CASE STUDY AND ENVIRONMENT

4.2.2 Hostapd

Hostapd, or "Host Access Point Daemon", enables communication between various
802.11 wireless access points when operating in Host AP mode [46]. It allows us to
run our own AP from a wireless NIC with the name, encryption scheme and password
that we specify, in addition to numerous other parameters'. The daemon reads its
configuration from a text file specified upon launch. This tool allows us to create
a rogue AP that resembles the target AP enough that the client will unknowingly
reconnect to it if the original connection is temporarily lost.

4.3 Target IoT Device

The IoT device used in the project is the Automatic Identification System (AIS)
displayed in Figure 4.3. It is the A200 AIS Class A produced by Em-Trak [67]. An
AIS is a autonomous monitoring and tracking system that communicates positional
data and vessel information with nearby harbors and ships [8]. The AIS makes an
operator able to see the location of other vessels in vicinity, aiding with navigation and
collision avoidance. It is used on larger ships and utilities ashore like Vessel Traffic
Services (VTS) for tracking, monitoring and identification. The AIS transmits data
continuously and is required by international treaties to be installed and operational
for larger vessels.

When mounted on a ship, the A200 AIS is connected to several sensors on the
ship along with a Very High Frequency (VHF) antenna for communication with other
AIS systems. It has a wireless NIC which it uses to run its own Wi-Fi AP. The Wi-Fi
configuration menu is displayed in Figure 4.4. From there, the user can set the ESSID,
choose internet protocol, select channel, and more. A ship operator can access and
read data from the device by connecting to it with a laptop, tablet or similar device.
The data is transmitted using National Marine Electronics Association (NMEA)
0183 messages which are continuously sent to all clients on the network. To read the
NMEA messages, the client needs some kind of chart plotter software. There are
many alternatives, but OpenCPN was used for this project [47]. The connection is
protected with WPA2 Personal by default, which is the highest level of encryption
the device supports. There is no password complexity validation.

L Airbase-ng may seem to be a sufficient tool for this purpose. Unfortunately, it is unable to
host a functional WPA2 encrypted AP.

4.4. PHYSICAL SETUP 25

Figure 4.3: The A200 connected to Figure 4.4: The Wi-Fi settings menu
a battery and a VHF antenna in A200

The Em-Trak A200 AIS Class A is an expensive AIS device used for larger vessels
like freight and passenger ships, and is priced at almost £2,000 [67]. The tested
device is the current version in production and market, shipped with a three year
global warranty. Thus, we can expect this model to be operative in its current state
in many years to come.

4.4 Physical setup

In the facilities of the Norwegian Cyber Range (NCR) we set up the testing environ-
ment. The A200 device was enabled in Wi-Fi mode with an Apple MacBook running
the operating system MacOS Monterey as the client. They were located one meter
apart from each other, with no physical objects between them. The laptop with Kali
Linux was placed about one meter away from both the A200 and the MacBook. The
AP options were left as displayed in Figure 4.4, which are the default values.

Because the AIS was not connected to all of its sensors, the messages it transmitted
had no geographical data which could be displayed in the chart plotter. However,
the debug window within OpenCPN displays all received NMEA messages, which
was sufficient to prove the wireless connection and possible interruptions. Figure 4.5
displays a diagram of the case study setup, while Figure 4.6 shows the debug window
of OpenCPN while receiving packets over a Wi-Fi connection.

26 4. CASE STUDY AND ENVIRONMENT

(1)

= A
WPA2 PSK-CCMP
e [
Cnt A200
/"\

Target AP

Attacker

Figure 4.5: Diagram of the case study setup

NMEA Debug Window

Filter

Figure 4.6: OpenCPN debug window with received NMEA packets

System Design

Two similar attacks on the A200 IoT device were designed and implemented. Both are
based on vulnerabilities in the WPA2 encryption scheme, targeting the network layer
of the device. We have chosen these attacks because they affect all implementations
of Wi-Fi using WPA2, and can be performed without extensive knowledge, expertise
or equipment. This chapter will describe the attacks, define their EP models, and
verify them using TLA+ and the TLC Model Checker. Finally, the verified design is
implemented in Python.

5.1 The Attack Procedure

The first attack is a DoS attack using deauthentication frames, and the second is
an Evil Twin attack. Figure 5.1 displays a sequence diagram of the two attacks. As
evident from the diagram, the first two steps in both procedures are equal.

Attack 1: DoS

1. Capture APs
Firstly, the agent will capture all APs within range. This can be done within a
couple of seconds using Airodump-ng, but should be performed on a monitoring
network interface. To change the mode of NIC, the agent will use Airmon-ng.

2. Capture clients
If the target AP is found in previous step, the agent will capture the clients
connected to the AP using Airodump-ng. Depending on the traffic on the
network, this may take few more seconds than capturing the APs.

3. Launch attack
Provided that there are clients on the network, the agent should perform the
DoS-attack. Each client will continuously receive deauthentication frames that
appear to be from the AP, withholding them from the reconnecting.

27

28 5. SYSTEM DESIGN

I AP l IAttackerI

B —————1CL) requeslt (broadcast}——m—————————

Probe respon:

}1) Capture APs

NMEA 0183 (Eavesdrop 2) Capture clients

alt loop

[€—Deauthenticate:

3) Launch attack

[<—Deauthenticate 3 Capture
Handshak (Eavesdrop) handshake
—
Crack 4 Find
pw password
L>|
start |
AE}; 5) Launch
Ls| attack
[S—Deauthenticate

Association request

Figure 5.1: Sequence diagram of DoS and Evil Twin attack

Attack 2: Evil Twin

3. Capture handshake
This step involves capturing the handshake process between a client and the
AP. By deauthenticating the client using Aireplay-ng, the agent can capture
the handshake upon reconnection using Airodump-ng.

4. Find password
The password can be cracked using a dictionary attack if the nonces of the
handshake was captured in the previous step. To perform the dictionary attack,
Aircrack-ng will be used.

5. Launch attack
If the password is cracked the agent will spoof the network of the target AP
using Hostapd. When deauthenticating the client again using Aireplay-ng, the
client should automatically reconnect to the Evil Twin AP if its signal strength
is stronger than that of the true AP.

5.2 EP Models of Attacks

The agent was designed based on the EP modeling discussed in Section 2.4. The
diagrams displaying the high level abstraction of the DoS and Evil Twin attack
models are shown in Figures 5.2 and 5.3 respectively. When running the attack,

5.3. FORMAL IMPLEMENTATION AND VERIFICATION 29

Level 1 R
Run DoS Attack

C ()
/AN

A A

’@ure APs ≀@ | Launch attack |

Level 2

Does target AP
Is target AP have connected
reachable? clients?

I

v

l
WXL

Continuously
deauthenticate
target

Scan target AP

Scan APs
connected clients

Level 3 ¢ ¢ ¢
/\
aireplay-r
‘ amzp | e | [wianomon ——bss\d ‘ deaulhﬂ) e
\ start wIanO \ ‘wilanOmon $ap_bssid --

Figure 5.2: EP model of the DoS attack

the agent should analyze the main goal which is either Evil Twin or DoS, and then
attempt to fulfill the sub-goals subsequently read from left to right in the model.
Because both attacks involve sequential tasks where either a plan is fulfilled or the
program terminates, this specific EP model is relatively simple with a single condition
in the second level of each sub-goal.

5.3 Formal Implementation and Verification

In the work of Yamin & Katt, Datalog was used for formal modeling and verification
of the EP. In this project, TLA+ were chosen as the formal language because it
presents an approach which is based on theoretical mathematics, and thus more
expressive. While Datalog is a language mainly used for database querying capable
of verifying models, TLA+ was designed for modeling hardware and software at an
abstract level [11, 37]. Furthermore, a software called TLA+ Toolbox provides both
the TLC Model Checker which can verify the formal model, as well the possibility to
create state transition diagram of the results.

30 5. SYSTEM DESIGN

Level 1
Run
w

/ \ X / \
@nalssance \’1 Exp\mtaliy
N

))
@‘urep Capture chen/ts nandshy Find Dassword Launch any

Level 2
Is target AP '??les “’:‘?‘e‘ ’:z Is handshake Is password
reachable? ‘ave connecte captured? found?
dlients?
v v v v
Not mmK Not ’mﬁ"e% \ Not M‘K \ Not mmK
Capture Create rogue AP
Scan APs Scan target AP handshake after Pa"‘;"’;gg's"aw and
connected clients deauthenticating e deauthenticate
client client
vy ¥ ' \ !
A
[amonng | “ airodump-ng \ waanon —bss\d [wianomon - bssld oot 10 ‘ (s Shandshake) [Jospd) deamhw a ‘
| startwano /| wianomon $ap_bssid Swordist ~bssid | conf file \

‘ $ap bssid -c / $ap_bssid -c
/ \\ / *@"e‘ $CW w"e' scw Sc. bssy == bss'd/ / sc bssy

Figure 5.3: EP model of the Evil Twin attack

The model complexity for a single Evil Twin attack in this setup is trivial to the
point where the formal model verification is practically unnecessary. However, its
value becomes evident in complex systems where one or more agents are capable of
performing many different attacks and intelligently choosing between them based on
the reconnaissance phase. The formal models of the attacks written in TLA+ are
presented in Figure 5.4 and Figure 5.6. Each next-state relation definition within
the specification translates to a sub-goal branch of the EP model. The actions
represented by the bottom node within the second layer of the model defines the
variable changes of the state. For instance, the "Capture clients" sub-goal node
in Figure 5.3 is described by the next-state relation "Capture_ clients" in Figure
5.6. Within this relation definition, the condition "Is target AP reachable" of the
EP model is tested by the operation "IF found_ap = TRUE". If this is found true,
the action "Scan target AP connected clients" is performed by giving the variable
"clients" an integer from 0 to 2, indicating the number of captured connected clients!.

1The max limit of clients should in theory be equal to the maximum number of possible clients

5.3. FORMAL IMPLEMENTATION AND VERIFICATION 31

The level three commands of the EP model is not described by the specification,
but by the abstraction defined in the action node of the level above. This corresponds
to the TLA-+ concept of abstracting the functionality, and conforms to explaining
whats of the system, and leaving the hows to the lower level code implementation. In
the final state of an EP where the last plan and sub-goal was fulfilled, the specification
prints 'Launching attack..." to illustrate a successful run. In the cases where the plan
was successful until the very last state, but failed the last condition, the specification
prints either "Not able to crack password" or "Not able to capture any clients" to
indicate that the plan was not fulfilled.

Firstly, we wanted to formally verify that the logic of the TLA+ specifications,
and consequently the EP models and agent decision making processes, were not
flawed. This includes situations were the program terminates without reached a
"Done" state, or where it enters an infinite loop. Secondly, we wanted to verify
that the final states of the models could be theoretically reached. For verification,
we used the TLC Model Checker. The model checker was able to compile and
run the specifications without errors which ensures there are no logical flaw in the
specifications. We could see from both the printed output of the model and generated
state transition diagrams that the final states were reachable. The state transition
diagrams for the DoS and Evil Twin attacks are displayed in Figures 5.5 and 5.7
respectively. When running model checker for the DoS attack, the following output
was produced:

<<"Launching attack...">>
<<"Not able to capture any clients">>
<<"Launching attack...">>

These strings represent the final three possible states seen in the corresponding
state diagram where the agent found the target AP. There are three of them because
there are three possible values for the number of clients found in the previous state.
The states in which the model found one or two clients were able to launch the attack,
while the third did not. Thus, the specifications and EP models were verified.

connected to the AP, but was set to 2 because it would limit the state diagram to where it was
possible to display within the thesis. During testing we also set the limit to 100 devices to ensure
the validity of the model did not change.

32 5. SYSTEM DESIGN

MODULE DoSFormal

[
EXTENDS Naturals, TLC
VARIABLES found_ap, clients, pc

Init 2 A found_ap — BOOLEAN
Noclients =0
A pe = "Capture_aps”

Capture_aps = A pe = “Capture_aps”
AW found_ap’ = TRUE
Y found_ap’ = FALSE
Aope’ = “Capture_clients”
AUNCHANGED {clients)

Capture_clients = A pe = “Capture_clients”
AP found_ap = TRUE
THEN Aclients’' € 0..2
A ope’ = “Launch_attack”
ELSE A UNCHANGED clients
Mope” = “Done”
A UNCHANGED {found_ap)

Launch_attack = A pe = “Launch_attack”
MIF clients = 0
THEN M PrintT'({ "Launching attack.."})
ELsE A PrintT'({ “Not able to capture any clients"})
Mope” = “Done”
AUNCHANGED {found_ap, clients)

Next = Capture_aps V Capture_clients v Launch_attack

Y * Modification History
% * Last modified Thu Jul 21 13:52:08 CEST 2022 by farfein
Y * Created Thu May 19 13:48:07 CEST 222 by farfein

Figure 5.4: The formal specification of the DoS attack EP model written in TLA+

Next State Actions

| [[

A clients = 0

A found ap = TRUE
A pc = "Capture_clients"
A clients = 0

A found ap = FALSE
A\ pc = "Capture_clients"
A clients = 0

A found ap = TRUE
A pc = "Launch_attack"
Aclients = 0

A found ap = TRUE
A pc = "Launch_attack"
A clients = 1

A found ap = TRUE
A pc = "Launch_attack"
A clients = 2

N found ap = FALSE
A pc = "Done"
Nclients = 0

A found ap = TRUE
A pc = "Done"
A clients = 0

A found ap = TRUE
A pc = "Done"
Nclients = 1

A found ap = TRUE
A pc = "Done"
Nclients = 2

Figure 5.5: State transition diagram showing all possible states of the DoS attack
EP model

5.3. FORMAL IMPLEMENTATION AND VERIFICATION

MODULE Euvil TwinFormal

[
EXTENDS Naturals, TLC
VARIABLES found_ap, clients, handshake, found_pw, pc

Init £ A found_ap = BOOLEAN
A clients = 0
A handshake = BOOLEAN
A found_pw = BOOLEAN
A pc = “Capture_aps”’

Capture_aps = A pc = “Capture_aps”
AV found_ap’ = TRUE
V found_ap’ = FALSE
A pc’ = “Capture_clients”
A UNCHANGED (clients, handshake, found_pw)

Capture_clients = A pc = "Capture_clients”
ATF found_ap = TRUE
THEN A clients’ € 0..2
A pe’ = “Capture_handshake”
ELSE A UNCHANGED clients
A pc’ = “Done”
A UNCHANGED (found_ap, handshake, found_pw)

Capture_handshake = A pc = “Capture_handshake”
NIF clients > 0
THEN A V handshake’ = TRUE
V handshake’ = FALSE
A pc’ = “Find_password”
ELSE A UNCHANGED handshake
A pc’ = “Done”
A UNCHANGED (found_ap, clients, found_pw)

Find_password E A pe = “Find_password"
AIF handshake = TRUE
THEN A V found_pw’ = TRUE
V found_pw’ = FALSE
A pe’ = “Launch_attack”
ELSE A UNCHANGED found_pw
A pc’ = “Done”
A UNCHANGED (found_ap, clients, handshake)

Launch_attack = A pc = “Launch_attack”
AIF found_pw = TRUE
THEN A PrintT((“Launching attack...”))
ELSE A PrintT({"Not able to crack password”))
A pe! = “Done”
A UNCHANGED {found_ap, clients, handshake, found_pw)

Neat = Capture_aps V' Capture_clients vV Capture_handshake
V Find_password VV Launch_attack

\ * Modification History
\ * Last modified Wed Jul 20 17:37:51 CEST 2022 by fartein
\ * Created Wed May 18 18:06:29 CEST 2022 by fartein

33

Figure 5.6: The formal specification of the Evil Twin attack EP model written in

TLA+

34 5. SYSTEM DESIGN

N found_ap = {FALSE, TRUE}
A pc = "Capture_aps"
A clients = 0
A found pw = {FALSE, TRUE}
N handshake = {FALSE, TRUE}

Next State Actions

N found ap = TRUE
A pc = "Capture_clients"

A found ap = FALSE
N pc = "Capture_clients"

Aclients = 0 Aclients = 0
A found pw = {FALSE, TRUE} A found pw = {FALSE, TRUE}
N handshake = {FALSE, TRUE} A\ handshake = {FALSE, TRUE}

A found ap = TRUE
A pc = "Capture_handshake"
Aclients = 0
A found pw = {FALSE, TRUE }
A handshake = {FALSE, TRUE}

A found ap = TRUE
A pc = "Capture_handshake"
Aclients = 1
A found pw = {FALSE, TRUE }
A handshake = {FALSE, TRUE}

A found_ap = TRUE
A pc = "Capture_handshake"
Aclients = 2
A found pw = {FALSE, TRUE}
A handshake = {FALSE, TRUE}

A found_ap = FALSE
Apc = "Done"
A clients = 0
A found pw = {FALSE, TRUE }
A handshake = {FALSE, TRUE }

A found_ap = TRUE
A pc = "Done"
Aclients = 0

A found pw = {FALSE, TRUE}

A\ handshake = {FALSE, TRUE}

A found ap = TRUE
A pc = "Find_password"
Aclients = 1
A found_pw = {FALSE, TRUE}
A handshake = TRUE

A found ap = TRUE
Apc = "Find_password"
Aclients = 1
A found pw = {FALSE, TRUE}
N handshake = FALSE

A found ap = TRUE
A pc = "Find_password"
Aclients = 2
A found_pw = {FALSE, TRUE}
N handshake = TRUE

A found ap = TRUE

Apec= ..T._:nn_ummmSo_d._
Aclients =

A found_pw = :E.wm TRUE}

A handshake = FALSE

A found ap = TRUE
Apc = "Launch_attack"

A found ap = TRUE

A found ap = ._.ow
Ape = "Launch_attack"

A found ap = TRUE
A'pc = "Launch attack"

A found ap = TRUE
Apc = "Launch_attack"

A found ap = TRUE

A moe:..a\ui = :ualmm TRUE}
A handshake = FALSE

>mo==uLui = Cu.almm TRUE}

A handshake = TRUE A handshake = TRUE A handshake = TRUE A handshake = TRUE A handshake = FALSE

A found ap = TRUE A found_ap = TRUE A found ap = TRUE A found_ap = TRUE

A found pw = TRUE

A handshake = TRUE N handshake = TRUE A handshake = TRUE Ahandshake = TRUE

ible states of the Evil Twin

State transition diagram showing all poss

attack EP model

Figure 5.7

5.4. IMPLEMENTATION 35

Agent
Paircrack ToolExecutor
A
Airmon Airodump Aireplay Aircrack HostETd
A A A A A
wpa2attacker [TTTTTTTTT CTTTTTTTTTTTssmsssooomoomommmmmsoosooooooooees '

Figure 5.8: Class diagram of the agent

5.4 Implementation

The agent was implemented in Python 3.10. An essential part of the program is the
Subprocess module from the Python Standard library [2]. The module was used to
create and communicate with the processes running the software tools presented in
Chapter 4.2. To ensure modifiability and applicability in other implementations, the
program was written with high modularity following an object oriented approach.
Figure 5.8 shows a simple class diagram of the program.

5.4.1 Tool Interface

A custom package named Paircrack was created and used as an interface between
the agent decision making process and the software tools used. Each class within
the package corresponds to a tool from the Aircrack-Ng suite or HostAPd. Because
of common functionality between the package classes, an abstract class named
ToolEzxecutor was created. Most importantly, this class runs and interprets the
outputs of the individual tool processes. In Figure 5.1, the function for scanning
" _capture"
which calls the "run" function of the ToolExecutor class. All classes in the Paircrack
package call the "run" function to start its processes. A part of this function which
uses the Subprocess module is displayed in Figure 5.2. Because some processes run
until they are manually interrupted, like those started by Airodump-Ng, a process
timeout ensures their eventual termination.

and capturing APs is presented. This function uses the helper function

There already exists a Python package for running Aircrack-Ng programs named
Pyrerack [21], and it serves many of the purposes we have implemented in Paircrack.
While originally intended to be used as the tool interface and foundation for the
agent, the package was discarded due to limited documentation and difficulties of
use. Pyrcrack is still under development, which may make it applicable in future

36 5. SYSTEM DESIGN

Source code 5.1 The function for capturing all APs within range

def capture_aps(self, interface : str, proc_timeout=2) -> str:
"""Captures all access points within range

Parameters
interface : str
Interface to capture packets on
proc_timeout : int, optional
Amount of seconds to run the capture, by default 2

Returns

filepath to xml file containing AP data

self.logger.debug(’Capturing all APs...’)

fsuffix = []
flags = {
’--write-interval’: ’1°,
’-—output-format’: ’netxml’}
return self._capture(interface, fsuffix, flags, proc_timeout)

generations of the agent. The custom Paircrack package used in this project has
some features inspired by Pyrcrack.

5.4.2 Agent Decision Making

The agent decision making process discussed in Chapter 5.2 was implemented in the
class wpaZattacker. This class creates instances of the classes within the Paircrack
package, and use their functionality to execute the actions described in the EP model.
To determine what type of attack to run, i.e. DoS or Evil Twin, the attack type
is given as program input in a YAML file. This file also contains a string which
can be either the BSSID or the ESSID of the target AP. The YAML file is the only
input required for the agent to run either attack. Providing the initial configuration
data in a YAML file is for compatibility reasons with the framework and setup first
created in the work of Yamin & Katt. By matching the interface with that of the
autonomous agents on which this thesis is based, the developed agent can be used to
expand on their research and work.

5.4. IMPLEMENTATION

37

Source code 5.2 Part of the "run' function within the abstract ToolExecutor class

self.logger.debug(f’Running command: <{command}>’)
if self.verbose:
self.logger.debug(f’\tkeywords: <{proc_flags}>’)

try:
output = subprocess.run(command, **proc_flags)
except subprocess.TimeoutExpired as e:
self.logger.debug(f’Process timout’)
return True
else:
if self.verbose:

self.logger.debug(f’Captured stdout: <{output.stdout[:-1]}>’)

self.logger.debug(f’Captured stderr: <{output.stderr}>’)

return output

Attack and Results

To launch an attack, the agent must know the ESSID or BSSID of the target AP.
This information is provided using a YAML file. Figure 6.1 displays the contents of
a YAML file for launching a DoS attack on a network named "AIS200". Below are
the results of each attack.

6.1 Attack 1: DoS

The MacBook was connected to the A200 AP as described in Section 4.4, continuously
receiving NMEA 0183 packets every second which were interpreted using OpenCPN.
The ESSID of the network was "AIS200" which is the default setting, and the client
had the BSSID "86:32:FC:1A:7C:25". The DoS attack was launched and sustained
for 45 seconds, with the terminal output displayed in Figure 6.2. The agent used
18 seconds to gather the information required to launch the attack, resulting in a
complete program run time of 1 minute and 3 seconds. In Figure 6.3, we can see a
sudden time gap between received NMEA packets of 53 seconds. The additional 8
seconds comes from the time it took for the client to reestablish its connection.

6.2 Attack 2: Evil Twin

Again, we followed the setup previously described. The network ESSID remained
unchanged, but the client BSSID was "8C:85:90:61:1F:1A" for this experiment.
"12345678" was used as the network encryption password. As seen in Figure 6.4, the
agent was able to successfully impersonate the A200 AP and trick the client into

wpa2attack.yml

: 'AIS200'
i 1

Figure 6.1: YAML file for a DoS attack

39

40 6. ATTACK AND RESULTS

aster/code]
wpa2attack.yml
automated WPA2 atta

clients for 10 seconds ...
1

g
:Attacker:1 connected clients fou
tAtta r: DoS 86 FC:1A:
tAt v
iAtta =3

Figure 6.2: Performing the DoS attack

Figure 6.3: DoS attack in OpenCPN debug window

File Actions Edit View Help

-[~/master/code]
wpa2attack.yml
nning automated W
r for tar
found!

ce reconnection. Attempt 1/

Figure 6.4: Performing the Evil Twin attack

connecting to it. The reconnection was done automatically and transparently by the
client MacBook operating system without interaction from the user. When running
the attack in verbose mode, we can see the client connection in the debug logging
messages as displayed in Figure 6.5. The command for deauthenticating the client
using Aireplay-ng is also visible in the screenshot. The run time from start to client

connection takeover was 39 seconds. A notable variable considering the result is
the time it took to crack the password. Aircrack-ng used less than one second to
find "12345678" in the provided wordlist. This due to the size of the wordlist which
contained less than 200 words. A discussion of this matter is found in Section 7.1.

Figure 6.5: Debug view of Evil Twin connection

Discussion

This chapter will discuss the results of the case study experiment, both in terms of
realism and authenticity, and in terms of the research objectives.

7.1 Authenticity of Attack

The case study was performed in a controlled environment. Because of this, we will
address some important factors the could change the results of the Evil Twin attack
if performed in a realistic scenario.

7.1.1 Network Interface Range

A potential limitation of the attack efficiency comes from the distance between
attacker, client and AP. The client will only connect to the rogue AP if the AP
signal strength is stronger than that of the authentic AP. If the signal strength of
the impersonated network is weaker, the client will simply reconnect its original AP.
Unless the attacking device is onboard the ship, it is likely to be further away from
the client than the AIS is.

On the other hand, this issue can be addressed by either jamming the authentic
AP [7], or increasing the strength of the wireless signal [30]. In this project, an old
and simple network adapter was used to host the rogue AP. Even in its default signal
strength configuration the client connected to it. With a new and better adapter
the wireless signal strength would be stronger, which could be further increased by
modifying the signal strength.

7.1.2 Time to Crack Network Password

In the case study, we used a wordlist with 200 words where we knew the AP password
was one of them. Because of this, the time it took to crack the password was less than
one second, which would certainly not be the case in a real scenario. The number of

41

42 7. DISCUSSION

Table 7.1: Comparison of key test speeds on different wordlists using Aircrack-ng
and Hashcat

Aircrack-ng, | Aircrack-ng,

. . Hashcat
Kali machine | Desktop
Crack speed (k/s) 2300 22500 1.1 million

Dictionary attack on

] 10m 6s 62 seconds 1 second

1.4M key wordlist (s)
Brute-force 8 integers 13 hours 75 minutes 2 minutes
Brute fi 8

rute torce 3 years 4 months 53 hours
lowercase letters
Brute fi 8 int

rute force © lntegers 40 years 5 years 30 days

and lowercase letters

Brute fi 12 int
rute foree 12 MLOEEIS | 66234755 years | 6770664 years | 138491 years
and lowercase letters

keys tested per second on the case study computer using Aircrack-ng amounts to
approximately 2300. Testing the cracking speed on desktop computer with an AMD
Ryzen 5 3600 6-Core processor, we saw an increase to about 22500 keys per second.
However, these numbers could be outperformed by software tool for hash cracking
called Hashcat using GPU acceleration. According to a speed test on Hashcat using
GPU services provided by Google Cloud, the tool can test 1.1 million WPA2 keys
per second when running on Nvidia-Tesla-a100 [66].

Using these password cracking speeds to calculate the time it takes to exhaust
different wordlists, we get the results as presented in Table 7.1. By using the
Aircrack-ng on the Kali Linux machine, a wordlist with the same size as the famous
"rockyou.txt", can be exhausted within minutes. Even a random eight integer
password is feasible to crack. However, Aircrack-ng would not be able to crack
a random password of integers and letters of eight characters. By using Hashcat,
attacks on wordlists with millions of passwords or even random letter passwords
would be possible.

B288.683 k/s

Figure 7.2: Aircrack-ng password
Figure 7.1: Aircrack-ng password cracking speed on the desktop com-
cracking speed on Kali Linux machine puter

7.2. RESEARCH OBJECTIVES 43

7.2 Research Objectives

In this work we investigated vulnerabilities in IoT devices, we identified Wi-Fi related
vulnerabilities present in critical infrastructure. We developed an autonomous agent
to test and verify them. This work will help to automatically detect Wi-Fi related
vulnerabilities and crate a more secure IoT empowered world. Below is a discussion
of the specific research objectives based on the developed DSR artifacts and case
study results.

7.2.1 Research Objective 1

We designed an autonomous agent whose decision making process was based on
the EP model described. The design and model were verified using the formal
language TLA+. By successfully launching the two attacks in a case study involving
a currently employed IoT device, we have demonstrated that the EP model can be
used to automate penetration testing. Furthermore, the script can and will be used
to expand the capabilities autonomous attack agents used in the NCR cyber range.

7.2.2 Research Objective 2

The results show that we were not only able to put the target device out of service,
but also spoof the connection to the client. Only considering the fact that we could
easily and automatically kill all wireless connections to the device proves its security
to be inadequate. As mentioned, the device is used on large vessels like yachts, cruise
ships and freight ships, and international maritime law requires it to be operative at
all times. Hourly docking fees, labour and maintenance costs are high for these kinds
of ships. If the navigational device is put out of service for only a few hours, the
associated extra costs can amount to thousands of pounds, not to mention that many
of these ships are considered critical infrastructure. The particular device tested is a
high end, off-the-shelf product with three year warranty, and may be employed for
many more years as discussed in Section 2.1.3.

Furthermore, by being able to make the client automatically and transparently
connect to a rogue AP, the issue increases in severity. In the case of AIS devices,
sending fake Global Positioning System (GPS) data can lead to collisions with
harbors, underwater reefs or other ships. The connection can also be misused to send
malware or in other ways attack the client. In the case of routers or other devices
providing Internet access, the connection can be used for MitM attacks. As IoT
devices are used in anything from private homes to critical infrastructure, the fact
that many of them are using insecure methods of communication and may continue
to do so for several years to come, should be an alarming conclusion.

44 7. DISCUSSION

As we have discussed and seen, WPA2 is inherently vulnerable. To mitigate the
vulnerabilities presented in this thesis, Wi-Fi networks should utilize the more secure
WPA3. If WPA2 must be used for compatibility or other reasons, strong password
policies should be employed. As displayed in Table 7.1, if the password length is
sufficiently long and hard to guess, it is infeasible to crack, even with cloud provided
GPU accelerated hash cracking tools.

Conclusion and Future Work

This research aimed to expand and investigate the capabilities of autonomous attack
agents created in the work of Yamin & Katt by both introducing new types of attacks,
and using the agents to automate penetration testing on IoT devices. Based on
the results of a case study following the DSR methodology, it can be concluded
that the attack agents following the EP model can indeed be used for autonomous
IoT penetration testing. Furthermore, we have shown that old and insecure Wi-Fi
encryption protocols are still used critical infrastructure today, and likely will be for
several years to come.

The agent is developed in a modular form which allows future work to easily
integrate new attacks like those discussed in Section 2.5. This will make the agent
able detect more vulnerabilities, increasing its usefulness for testing and verifying IoT
and Wi-Fi security. Moreover it can be used in teaching and training activities in
the Norwegian Cyber Range for raising awareness about IoT related attack vectors.

45

(1]

2l

(4]

5]

(6]

(10]

(1]

References

“Anna-senpai”. Mirai forum post. https://hackforums.net /showthread.php?tid=
5420472. 2016.

Python 3.10. subprocess - Subprocess management. 2022. URL: https://docs.python.
org/3/library /subprocess.html (last visited: July 20, 2022).

Manos Antonakakis, Tim April, et al. «Understanding the Mirai Botnet». In: 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX As-
sociation, Aug. 2017, pp. 1093-1110. URL: https://www.usenix.org/conference /
usenixsecurity17/technical-sessions/presentation/antonakakis.

Maximilian Appel and Ing Stephan Guenther. « WPA 3-Improvements over WPA 2
or broken again?» In: Network 7 (2020).

Aileen G Bacudio, Xiaohong Yuan, et al. «An overview of penetration testing». In:
International Journal of Network Security € Its Applications 3.6 (2011), p. 19.

Kevin Bauer, Harold Gonzales, and Damon McCoy. «Mitigating evil twin attacks in
802.11». In: 2008 IEEE International Performance, Computing and Communications
Conference. IEEE. 2008, pp. 513-516.

John Bellardo and Stefan Savage. «802.11 {Denial-of-Service} Attacks: Real Vulnera-
bilities and Practical Solutions». In: 12th USENIX Security Symposium (USENIX
Security 03). 2003.

Shilavadra Bhattacharjee. Automatic Identification System (AIS): Integrating and
Identifying Marine Communication Channels. 2021. URL: https://www.marineinsight.
com / marine- navigation / automatic - identification - system - ais- integrating - and -
identifying-marine-communication-channels/ (last visited: June 12, 2022).

Marc Bourgois. « Advantages of Formal Specifications: A Case Study of Replication in
Lotus Notes». In: Formal Methods for Open Object-based Distributed Systems. Ed. by
Elie Najm and Jean-Bernard Stefani. Boston, MA: Springer US, 1997, pp. 231-244.
URL: https://doi.org/10.1007/978-0-387-35082-0_17.

Sharon Caldwell. «Training an Autonomous Pentester with Deep RL». In: Strange
Loop Conference 2021. St. Louis, MO: Strange Loop, Oct. 2021. URL: https://www.
youtube.com/watch?v=Eil69BdWKPs&t.

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. « What you always wanted to know
about Datalog(and never dared to ask)». In: IEEE transactions on knowledge and
data engineering 1.1 (1989), pp. 146-166.

47

https://hackforums.net/showthread.php?tid=5420472
https://hackforums.net/showthread.php?tid=5420472
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.marineinsight.com/marine-navigation/automatic-identification-system-ais-integrating-and-identifying-marine-communication-channels/
https://www.marineinsight.com/marine-navigation/automatic-identification-system-ais-integrating-and-identifying-marine-communication-channels/
https://www.marineinsight.com/marine-navigation/automatic-identification-system-ais-integrating-and-identifying-marine-communication-channels/
https://doi.org/10.1007/978-0-387-35082-0_17
https://www.youtube.com/watch?v=EiI69BdWKPs&t
https://www.youtube.com/watch?v=EiI69BdWKPs&t

48 REFERENCES

(12]

(13]

(14]

(15]

[16]

(17]

(18]
(19]
(20]

(21]

(22]

23]

(24]

[25]

[26]

Chung-Kuan Chen, Zhi-Kai Zhang, et al. «Penetration testing in the iot age». In:
computer 51.4 (2018), pp. 82-85.

Ge Chu and Alexei Lisitsa. «Penetration testing for internet of things and its automa-
tiony». In: 2018 IEEE 20th International Conference on High Performance Computing
and Communications; IEEE 16th International Conference on Smart City; IEEE
4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE. 2018, pp. 1479-1484.

Cisco. What is Wi-Fi. 2022. URL: https://www.cisco.com/c/en/us/products/wireless/
what-is-wifi.html (last visited: June 4, 2022).

IEEE Computer Society LAN/MAN Standards Committee et al. «IEEE Standard
for Information technology-Telecommunications and information exchange between
systems-Local and metropolitan area networks-Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications». In:
IEEE Std 802.11" (2007).

IEEE Computer Society LAN/MAN Standards Committee et al. «<IEEE Standard
for information technology-Telecommunications and information exchange between
systems-Local and metropolitan area networks-Specific requirements-Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications:
Amendment 6: Medium Access Control (MAC) Security Enhancements». In: IEEE
Std 802.11i-2004 (2004), pp. 1-190.

Andrei Costin and Jonas Zaddach. «Iot malware: Comprehensive survey, analysis
framework and case studies». In: BlackHat USA 1.1 (2018), pp. 1-9.

D3Ext. WiFi Exploitation Framework. https://github.com/D3Ext/WEF. 2022.
Bernardo Damele and Miroslav Stampar. SQLmap. 2006. URL: https://sqlmap.org/.

Victor Ojong Etta, Arif Sari, et al. « Assessment and Test-case Study of Wi-Fi Security
through the Wardriving Technique». In: Mobile Information Systems 2022 (2022).

David Francos. Pyrcrack Python package. https://github.com /XayOn/pyrcrack.
2020.

Jerry Gamblin. Mirai GitHub upload. https://github.com/jgamblin/Mirai-Source-
Code. 2016.

Grant Hernandez, Orlando Arias, et al. «Smart nest thermostat: A smart spy in your
home». In: Black Hat Briefings USA 2015. Las Vegas, NV: Black Hat, Aug. 2014.
URL: https://blackhat.com/docs/us-14/materials/us-14- Jin- Smart- Nest- Thermostat-
A-Smart-Spy-In-Your-Home- WP.pdf.

Alan Hevner and Samir Chatterjee. «Design science research in information systems»y.
In: Design research in information systems. Springer, 2010, pp. 9-22.

Robert M Hierons, Kirill Bogdanov, et al. «Using formal specifications to support
testing». In: ACM Computing Surveys (CSUR) 41.2 (2009), pp. 1-76.

Md Mahmud Hossain, Maziar Fotouhi, and Ragib Hasan. «Towards an analysis of
security issues, challenges, and open problems in the internet of thingsy. In: 2015 iece
world congress on services. IEEE. 2015, pp. 21-28.

https://www.cisco.com/c/en/us/products/wireless/what-is-wifi.html
https://www.cisco.com/c/en/us/products/wireless/what-is-wifi.html
https://github.com/D3Ext/WEF
https://sqlmap.org/
https://github.com/XayOn/pyrcrack
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf
https://blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

39]
(40]

(41]

42]

REFERENCES 49

Zhenguo Hu, Razvan Beuran, and Yasuo Tan. «Automated penetration testing using
deep reinforcement learningy». In: 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE. 2020, pp. 2-10.

Imperva. Advanced Persistent Threat (APT). 2022. URL: https://www.imperva.com/
learn /application-security /apt-advanced- persistent-threat/ (last visited: May 10,
2022).

Jabraeil Jamali, Bahareh Bahrami, et al. Towards the internet of things. Springer,
2020.

JavaRockstar. What is Wi-Fi. 2017. URL: https://hackingvision.com/2017/02/18/
increasing-wifi- tx-power-signal-strength-in-linux,/ (last visited: July 23, 2022).

Rahul Johari, Ishveen Kaur, et al. «Penetration Testing in IoT Network». In: 2020
5th International Conference on Computing, Communication and Security (ICCCS).
IEEE. 2020, pp. 1-7.

Juniper. Understanding the Network Terms SSID, BSSID, and ESSID. 2018. URL:
https://www . juniper.net /documentation /en_ US/junos- space- apps / network-
director4.0/topics/concept/wireless-ssid-bssid-essid.html (last visited: June 17, 2022).

Kaspersky. Pushing the limits: How to address specific cybersecurity demands and
protect IoT. 2022. URL: https://www.kaspersky.com /blog/iot-report-2022/ (last
visited: May 29, 2022).

Constantinos Kolias, Georgios Kambourakis, et al. « DDoS in the IoT: Mirai and other
botnets». In: Computer 50.7 (2017), pp. 80-84.

Nicholas Kolokotronis and Stavros Shiaeles. « Cyber-Security Threats, Actors, and
Dynamic Mitigationy». In: (2021).

Yogi Kristiyanto and Ernastuti Ernastuti. « Analysis of deauthentication attack on
ieee 802.11 connectivity based on iot technology using external penetration test».
In: CommlIT (Communication and Information Technology) Journal 14.1 (2020),
pp. 45-51.

Leslie Lamport. A High-Level View of TLA+. 2021. URL: http://lamport.azurewebsites.
net/tla/high-level-view.html (last visited: June 28, 2022).

Neal Leavitt. «Researchers fight to keep implanted medical devices safe from hackersy.
In: Computer 43.8 (2010), pp. 11-14.

Gordeon Lyon. Nmap. 1997. URL: https://nmap.org/.

Maté Maréaczi. « Wardriving in Eger». In: 2019 IEEE 13th International Symposium on
Applied Computational Intelligence and Informatics (SACI). IEEE. 2019, pp. 000127—
000130.

Moffat Mathews and Ray Hunt. «Evolution of wireless LAN security architecture to
IEEE 802.11 i (WPA2)». In: Proceedings of the Fourth IASTED Asian Conference on
Communication Systems and Networks, Asia CSN. Vol. 7. 2007, pp. 292—297.

Kyle Moissinac, David Ramos, et al. « Wireless encryption and WPA2 weaknesses». In:
2021 IEEFE 11th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE. 2021, pp. 1007-1015.

https://www.imperva.com/learn/application-security/apt-advanced-persistent-threat/
https://www.imperva.com/learn/application-security/apt-advanced-persistent-threat/
https://hackingvision.com/2017/02/18/increasing-wifi-tx-power-signal-strength-in-linux/
https://hackingvision.com/2017/02/18/increasing-wifi-tx-power-signal-strength-in-linux/
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-ssid-bssid-essid.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-ssid-bssid-essid.html
https://www.kaspersky.com/blog/iot-report-2022/
http://lamport.azurewebsites.net/tla/high-level-view.html
http://lamport.azurewebsites.net/tla/high-level-view.html
https://nmap.org/

50 REFERENCES

(43]
(44]

(45]

[46]

(47]

(48]

(49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

H. D. Moore. Metasploit. 2003. URL: https://www.metasploit.com/.

Daniel Oberhaus. This Hacker Showed How a Smart Lightbulb Could Leak Your
Wi-Fi Password. 2019. URL: https://www.vice.com/en/article/kzdwp9/this-hacker-
showed-how-a-smart-lightbulb-could-leak-your-wi-fi-password (last visited: Oct. 13,
2021).

US Department of the Interior Office of Chief Information Officer. Penetration Testing.
2022. URL: https://www.doi.gov/ocio/customers/penetration-testing (last visited:
May 20, 2022).

OpenBSD. Hostapd. 2022. URL: https://man.openbsd.org/hostapd.8 (last visited:
July 12, 2022).

OpenCPN. OpenCPN Official Webstie. 2022. URL: https://www.opencpn.org/ (last
visited: July 10, 2022).

Oracle. What is IoT? 2022. URL: https://www.oracle.com/in/internet-of-things/what-
is-iot/ (last visited: Mar. 26, 2022).

Penetration Testing Execution Standard. 2009. URL: http://www.pentest-standard.
org/index.php/Main_ Page (last visited: Nov. 10, 2021).

Tamara Radivilova and Hassan Ali Hassan. «Test for penetration in Wi-Fi network:
Attacks on WPA2-PSK and WPA2-enterprise». In: 2017 International Conference on
Information and Telecommunication Technologies and Radio Electronics (UkrMiCo).
IEEE. 2017, pp. 1-4.

Massimiliano Rak, Giovanni Salzillo, and Claudia Romeo. «Systematic IoT Penetration
Testing: Alexa Case Study.» In: ITASEC. 2020, pp. 190-200.

B Indira Reddy and V Srikanth. «Review on wireless security protocols (WEP, WPA,
WPA2 & WPA3)». In: International Journal of Scientific Research in Computer
Science, Engineering and Information Technology (2019), pp. 28-35.

Ian J.H. Reynolds. IoT Architecture. 2020. URL: https://www.zibtek.com/blog/iot-
architecture/ (last visited: Mar. 5, 2022).

Chris Rose et al. «The Security Implications Of The Internet Of Things». In: Journal
of Cybersecurity Research (JCR) 2.1 (2017), pp. 1-4.

Spyridon Samonas and David Coss. «The CIA strikes back: Redefining confidentiality,
integrity and availability in security.» In: Journal of Information System Security
10.3 (2014).

Eryk Schiller, Andy Aidoo, et al. «Landscape of IoT security». In: Computer Science
Review 44 (2022), p. 100467.

Jonathon Schwartz and Hanna Kurniawati. « Autonomous penetration testing using
reinforcement learning». In: arXiv preprint arXiv:1905.05965 (2019).

Offensive Security. What is Kali Linux. 2022. URL: https://www.kali.org/docs/
introduction/what-is-kali-linux/ (last visited: June 10, 2022).

Aleatha Shanley and Michael N Johnstone. «Selection of penetration testing method-
ologies: A comparison and evaluation». In: (2015).

https://www.metasploit.com/
https://www.vice.com/en/article/kzdwp9/this-hacker-showed-how-a-smart-lightbulb-could-leak-your-wi-fi-password
https://www.vice.com/en/article/kzdwp9/this-hacker-showed-how-a-smart-lightbulb-could-leak-your-wi-fi-password
https://www.doi.gov/ocio/customers/penetration-testing
https://man.openbsd.org/hostapd.8
https://www.opencpn.org/
https://www.oracle.com/in/internet-of-things/what-is-iot/
https://www.oracle.com/in/internet-of-things/what-is-iot/
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
https://www.zibtek.com/blog/iot-architecture/
https://www.zibtek.com/blog/iot-architecture/
https://www.kali.org/docs/introduction/what-is-kali-linux/
https://www.kali.org/docs/introduction/what-is-kali-linux/

[60]

[61]

(62]

(63]

[64]

[65]
(66]

(67]

(68]

(69]

[70]
(71]

[72]

(73]

(74]

[75]

[76]

REFERENCES 51

Satyajit Sinha. State of IoT 2021. 2021. URL: https://iot-analytics.com /number-
connected-iot-devices/ (last visited: Sept. 29, 2021).

Rob Sobers. 134 Cybersecurity Statistics and Trends for 2021. 2021. URL: https:
//www.varonis.com/blog/cybersecurity-statistics (last visited: May 22, 2022).

Mukhtar Ahmad Sofi. «Bluetooth Protocol in Internet of Things (IoT), Security
Challenges and a Comparison with Wi-Fi Protocol: A Review». In: International
Journal of Engineering and Technical Research 5 (2016).

Open source. Wifiphisher. 2017. URL: https://wifiphisher.org/ (last visited: July 1,
2022).

Deris Stiawan, Mohd Yazid Idris, et al. «Cyber-Attack Penetration Test and Vulnera-
bility Analysis». In: International Journal of Online Engineering 13.1 (2017).

Inc. Tenable. Nessus. 2005. URL: https://www.tenable.com/products/nessus.

David Tomaschik. GPU Accelerated Password Cracking in the Cloud: Speed and Cost-
Effectiveness. 2021. URL: https://systemoverlord.com/2021/06/05/gpu-accelerated-
password-cracking-in-the-cloud.html (last visited: July 14, 2022).

Em-Trak. A200 AIS Class A. 2022. URL: https://em-trak.com/products-a200/ (last
visited: July 7, 2022).

Khuong Tran, Ashlesha Akella, et al. Deep hierarchical reinforcement agents for
automated penetration testing. 2021.

Achilleas Tsitroulis, Dimitris Lampoudis, and Emmanuel Tsekleves. « Exposing WPA2
security protocol vulnerabilities.» In: Int. J. Inf. Comput. Secur. 6.1 (2014), pp. 93—
107.

v1s1tOr. Airgeddon. https://github.com/v1s1t0rlsh3r3/airgeddon. 2022.

H Valchanov, J Edikyan, and V Aleksieva. «A study of Wi-Fi security in city environ-
ment». In: IOP Conference Series: Materials Science and Engineering. Vol. 618. 1.
IOP Publishing. 2019, p. 012031.

Mathy Vanhoef. «Fragment and Forge: Breaking Wi-Fi Through Frame Aggrega-
tion and Fragmentation». In: Proceedings of the 80th USENIX Security Symposium.
USENIX Association, Aug. 2021.

Mathy Vanhoef and Frank Piessens. «Key reinstallation attacks: Forcing nonce reuse
in WPA2». In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017, pp. 1313-1328.

Shikhar Verma, Yuichi Kawamoto, and Nei Kato. « A network-aware Internet-wide
scan for security maximization of IPV6-enabled WLAN IoT devices». In: IEEE
Internet of Things Journal 8.10 (2020), pp. 8411-8422.

Geeta Yadav, Kolin Paul, et al. «IoT-PEN: an E2E penetration testing framework for
IoT». In: Journal of Information Processing 28 (2020), pp. 633-642.

M. Mudassar Yamin and Bass Katt. «FUse of Cyber Attack and Defense Agents in
Cyber Ranges: A Case Study.» In: NTNU, 2022.

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://www.varonis.com/blog/cybersecurity-statistics
https://www.varonis.com/blog/cybersecurity-statistics
https://wifiphisher.org/
https://www.tenable.com/products/nessus
https://systemoverlord.com/2021/06/05/gpu-accelerated-password-cracking-in-the-cloud.html
https://systemoverlord.com/2021/06/05/gpu-accelerated-password-cracking-in-the-cloud.html
https://em-trak.com/products-a200/
https://github.com/v1s1t0r1sh3r3/airgeddon

52 REFERENCES

[77] Fabio Massimo Zennaro and Laszlo Erdodi. «Modeling penetration testing with
reinforcement learning using capture-the-flag challenges: trade-offs between model-free
learning and a priori knowledge». In: arXiv preprint arXiv:2005.12632 (2020).

@ NTNU

Norwegian University of
Science and Technology

	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Problem Description and Research Objectives
	Thesis Outline

	Background and Related Work
	Internet of Things and Cybersecurity
	Threats and Risks
	Threat Actors
	Attack Surface and Security Issues

	Penetration Testing
	Testing of IoT Devices
	Autonomous Penetration Testing

	Wi-Fi
	Encryption Standards and WPA2 Personal
	The 4-Way Handshake
	Deauthentication Frames
	Evil Twin Attack

	The EP Model and Formal Specification
	Formal Specification and Verification
	TLA+

	Related Work

	Methodology
	DSR Life Cycle and Conditions
	DSR Applied to the Project

	Case Study and Environment
	Hardware
	Software
	The Aircrack-ng Suite
	Hostapd

	Target IoT Device
	Physical setup

	System Design
	The Attack Procedure
	EP Models of Attacks
	Formal Implementation and Verification
	Implementation
	Tool Interface
	Agent Decision Making

	Attack and Results
	Attack 1: DoS
	Attack 2: Evil Twin

	Discussion
	Authenticity of Attack
	Network Interface Range
	Time to Crack Network Password

	Research Objectives
	Research Objective 1
	Research Objective 2

	Conclusion and Future Work
	References

