
ISBN 978-82-326-6083-4 (printed ver.)
ISBN 978-82-326-6669-0 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:354

Wouter Koch

Improving the citizen science
data corpus for science and
managementD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:354
W

outer Koch

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f B

io
lo

gy





Thesis for the Degree of Philosophiae Doctor

Trondheim, November 2022

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Biology

Wouter Koch

Improving the citizen science
data corpus for science and
management



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Natural Sciences
Department of Biology

© Wouter Koch

ISBN 978-82-326-6083-4 (printed ver.)
ISBN 978-82-326-6669-0 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:354

Printed by NTNU Grafisk senter



i

Summary
Citizen science, in which amateur volunteers report their observations, is becoming
an increasingly important source of biodiversity data. To understand and properly
manage natural resources, we need large amounts of observational data, and
contributions from citizens are crucial in obtaining that. All observational data,
but especially from citizen scientists, come with a number of challenges that we
need to be aware of, and where possible, address. These include the need for open
access to existing data, and the fact that some species are more popular and/or
easier to recognize so that they are reported more, especially when it comes to
pictures which are important for image recognition models. Additionally, correctly
identifying species requires expert knowledge which citizens do not always have
access to and which is becoming more rare in general, so such knowledge needs to
be stored in a systematic way.

In this thesis, the aim is to investigate how widespread these issues are in data
from citizen science, and what we can do to minimize them at the data collection
stage.
To do so, I have:

• reviewed how researchers that use open data also openly share the data they
add

• evaluated how pictures taken by citizen scientists help improve AI image
recognition, and how this relates to how popular the different species groups
are

• investigated how AI image recognition and the number of pictures that are
available relate to both the quality of pictures and how easy the species are
to recognize

• proposed a new data format for identification keys, so that experts can store
their knowledge and citizens (among others) can better identify species

A lot of effort goes into methods for how to deal with issues in citizen science
data in terms of coverage, quality and biases. Meanwhile, we should not be
complacent, and keep aiming for better collection methods that minimize these
issues to begin with, and look for other ways to improve the biodiversity data
needed for research and management.
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Sammendrag
Folkeforskning, hvor frivillige amatører rapporterer sine observasjoner, er en stadig
viktigere kilde for biodiversitetsdata. For å kunne forstå og forvalte naturressurser
trenger vi store mengder observasjonsdata, og bidrag fra folkeforskere er avgjørende
for å få tak i det. Alle observasjonsdata, men særlig fra folkeforskning, medfører en
del utfordringer som man må være oppmerksom på, og hvor mulig gjøre noe med.
Disse er blant annet behovet for åpen tilgang til eksisterende data, og faktumet at
noen arter er mer populære og/eller lettere å gjenkjenne slik at de blir rapportert
oftere, særlig når det gjelder bilder, som er viktige for automatisk gjenkjenning av
arter. I tillegg krever riktig artsbestemmelse ekspertkunnskap som folkeforskere
ikke alltid har tilgang til og som i utgangspunktet blir mer sjelden, så slik kunnskap
må lagres på en systematisk måte.

I denne avhandlingen er målet å undersøke hvor utbredt disse utfordringer er i
dataene vi får inn fra folkeforskning, og hva vi kan gjøre for å minimalisere de i
datainnsamlingsfasen.
For å gjøre det har jeg:

• kartlagt hvordan forskere som bruker åpne data også gjør dataene de legger
til åpent tilgjengelig

• evaluert hvordan bilder tatt av folkeforskere hjelper i å forbedre bildegjenkjen-
ning ved hjelp av kunstig intelligens, og hvordan dette forholder seg til hvor
populære de ulike artsgruppene er

• undersøkt hvordan bildegjenkjenning ved hjelp av kunstig intelligens, samt
hvor mange bilder som er tilgjengelige forholder seg til bildekvalitet og hvor
lett det er å gjenkjenne artene

• foreslått et nytt dataformat for bestemmelsesnøkler, slik at eksperter kan
lagre sin kunnskap og (blant annet) folkeforskere kan bli bedre til å bestemme
arter

Mye energi brukes på metoder for hvordan vi kan håndtere utfordringer i
folkeforskningsdata når det gjelder dekning, kvalitet og skjevhet i datagrunnlaget.
Samtidig bør vi ikke ta disse problemene for gitt, og fortsette å prøve å få til
bedre innsamlingsmetoder som minimaliserer disse utfordringer i utgangspunktet,
samt se etter andre måter for å forbedre biodiveritetsdataene som vi trenger for
forskning og forvaltning.
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Introduction
Nature, and with it humanity, faces multiple crises at once. Climate change, the
biodiversity crisis, mass extinction, habitat fragmentation and -loss, pollution,
overexploitation, invasive alien species, etc., are all existential threats that need
addressing3–5. While the effects on a larger scale are becoming painfully obvious,
trends and the effects of counter measurements need to be monitored on a much
more detailed scale, so conservation efforts can be guided and adjusted6–8. Such
analyses are quite data hungry, and large amounts of data across space, time and
taxonomy are needed to get a sufficiently fine grained view on status and trends in
nature. For this, we need new ways of collecting data, whilst ensuring its quality,
and to make sure that whatever data exists is available so it can be utilized to the
fullest.

Citizen science

Amateur volunteers have long played a role in biodiversity data collection, and
recently online repositories and collection platforms have begun to truly unlock the
potential such “citizen scientists” can provide9. Something similar has happened
before, when the invention of the steam powered printing press enabled a much
broader dissemination of scientific literature in the 19th century10. This brought
with it a rapid growth of commercial journals that were far more egalitarian
and open to what was then called “low science”, conducted by others than the
traditional scholarly elite. While certainly not to everyone’s taste, people like
Charles Darwin were enthused by the broader societal contribution to scientific
knowledge, with Darwin lamenting the absence of such contributions in the ‘foreign
periodicals’ of the time; “a great loss it has always appeared to me”10.

There are a great number of different definitions for what constitutes citizen
science11, which makes drawing direct historical parallels difficult. However, in the
field of biology, one may argue that citizen science has had a prominent role from
the start. Before biology or natural history were fields one could study in their
own right, they were often the domain of naturalists who had the time and means
to dedicate themselves to their interest in nature in their spare time. Many great
early biologists, as we would now call them, stem from this tradition of “gentleman
scientists” (those that were afforded this luxury were indeed almost exclusively
men). Carl Linnaeus12, regarded as the “father of taxonomy”, was the son of a
minister and amateur botanist. With young Carl being much more interested in
going out in the field to look at plants than studying, a scholarly life was seen as
an unlikely path, and he was sent on his way to be educated as a priest. Guided
by several tutors that shared his interest in botany, he studied medicine, a field
that included botany at the time and in which he ultimately became a professor.
Gregor Mendel13, the father of modern genetics, chose to become a monk at least
in part because it would grant him the time and means to study and conduct
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experiments. While educated and working as a priest and a teacher, he is mainly
remembered for his groundbreaking work on heredity. Charles Darwin14 came
from a wealthy family and was sent off to study medicine. He neglected his studies
which he found dull, instead spending time on taxidermy, beetle collecting and the
likes. Lacking progress in his studies in medicine, his father sent him to study to
become a clergyman instead. Charles again spent most of his time pursuing his
interest in nature, but studied enough to graduate. Soon after his graduation he
made his first voyage on the HMS Beagle, as an unpaid companion, and went on
to become a renowned naturalist with an immensely influential legacy that lasts
to this day.

Nowadays, having a hobby is no longer reserved for the wealthy and clerical.
Many people of all walks of life find leisure in nature, and those with an interest
in biology have the opportunity to privately study the taxa that interest them
and become knowledgeable botanists, ornithologists, entomologists, etc.9. With
this has come an extent of democratization of the study of biology. With a
broad awareness of the challenges that face biodiversity, many citizen scientists
wish to contribute to addressing conservational issues through their participation.
The necessity of better insight into biodiversity trends, taking place over large
geographical areas, comes with the need for large amounts of timely data from
many places simultaneously. The expertise and engagement of a large community
of amateur biologists provides an excellent fit for this, and citizen science as we
understand it today was born.

The first time the term “citizen science” was used in its current meaning was
in 198911,15. By measuring the acidity of rain, citizens were helping the Audubon
Society collect data that would be available as soon as possible, to better inform
the political process. “‘Speed is also crucial to the Audubon Society’s acid-rain
campaign. Government studies sometimes withhold data for years’, says Audubon
vice president Robert San George, but ‘the average citizen has trouble getting
worked up about rain that fell a year and a half ago.’ Audubon involves 225 society
members from all 50 states in a ‘citizen science’ program that gets information
out within five weeks. Volunteers collect rain samples, test their acidity levels, and
report the results to Audubon headquarters, which releases a monthly national map
of acid-rain levels. The information is used to lobby Congress.”15

It was thus the need for timely and openly accessible data that motivated the
modern incarnation of the citizen science movement. Nearly 35 years on, numerous
gaps in the existing data remain, and with it in our knowledge. Moreover, there is a
need for continued monitoring to keep improving our understanding into the future.
It is not feasible to have these data collected by scientists and environmental
professionals alone; we simply cannot obtain the geographic and temporal scope
one would ideally want with traditional methods. The engagement of citizen
scientists helps address this. In the realm of observational data, citizen science
now constitutes the vast majority of the data points, and this is only increasing. It
is important that such data are available to all that need them for their research
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or management task. Only in this way can existing data reach its potential and
allow for as informed management decisions as possible.

Open availability of data

Even if we were somehow to acquire all the data that we need regarding the
present, it takes a considerable temporal scope to detect changes in biodiversity
statuses and trends over time. As it is very difficult to gather more data from the
past, we need to do what we can to make sure such existing data are preserved,
lest they be lost forever, and that anyone can access the data so they can be used
wherever they are needed. Open access is also in line with the motivations of many
citizen scientists, who collectively provide the largest share of the data. To ensure
the maximum impact for management and research, access to observational data
should not be restricted by one’s budget, having the right affiliations or nationality,
nor possession of advanced computing skills.

A common and useful framework to assess if data are truly open is to regard
them within the framework of the FAIR concept; data need to be both Findable,
Accessible, Interoperable, and Reusable16. If any of these prerequisites are not
fulfilled, data reuse is hampered and its full societal potential is not achieved.
There are numerous ways in which data can fail to be fully FAIR, with obstacles
ranging from legal to practical in nature. There are licenses, platforms, data
standards and guides to help individuals and institutions to ensure their data
are ready and available for reuse, but there is still a need for added awareness
regarding this issue. From curricula to research funding, open data must be not
only required as an integral part of reproducible science, but be something for
which time and resources are made available, and acknowledged as fullworthy,
citable fruits of labor.

Once data is openly available, it is important to be aware of the fact that
collecting observational data, and citizen science data collection in particular,
brings with it a number of biases. Whenever observational data is collected by
human observers, there will be behavioral, cultural, logistical, etc. reasons for
taxa to either be observed and reported, or not. This has an effect on the nature
and amounts of data that are available, and with it their value for science and
management. When drawing conclusions from these data, it is vital to be aware
of the ways in which the collection process is favoring certain times, places, or
taxa over others, and account for these where possible. On the data collection end,
awareness of biases can help guide the design of new protocols and systems that
reduce them.

Taxonomic bias

Not all of the 1.8 million species currently described by science are reported
as much as others. There are valid reasons for this to be the case; not every
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species is as abundant, and if data were an unbiased representation of species’
abundances and distributions, it is reasonable to expect that common species are
more abundant in the data too. If this was the case, however, Antarctic krill
(Euphausia superba) would be one of the most frequently reported species, but
it is not17. There are many other factors that govern how likely individuals of a
species are to be reported, all contributing to taxonomic biases.

In order to be reported, a taxon has to occur within the vicinity of an observer,
who then has to spot it, recognize it, and report it. Each of these steps are
non-random events whose likelihoods contribute to the taxonomic bias of the
data. To use the example of the Antarctic krill, it occurs in deep, icy cold waters
around Antarctica, a region and habitat that few humans venture into, so there are
relatively few opportunities for humans and this species to cross paths. When this
does happen, it has to be spotted by the would-be observer. Being transparent and
only a few centimeters in size does not help in this regard. Then, once observed,
the observer has to possess some knowledge of which species it is, or have access to
the tools to do so. While most people would be able to recognize it as a shrimp-like
crustacean, it requires more knowledge to recognize it as a species of krill. In order
to identify it to the species level, one additionally has to be aware of the quite
subtle differences with other species such as Antarctic coastal krill (Euphausia
crystallorophias). Finally, the observer needs to be willing to put in the required
effort to record and report the occurrence as an observation if it is to become part
of the data corpus.

Thus, the geographic distribution, habitat, and biology of a species all impact
how likely it is to be encountered and observed by a human. From that point,
societal and individual preferences influence how likely a person is to know the
species and take the time to report it. Knowledge on groups like titmice and other
common garden birds is far greater than that on krill, as is the motivation to
report sightings, leading to their relative over-representation in the available data.
Such mechanisms are especially prevalent in citizen science, but not exclusive to it;
scientific research and funding also favors taxa with a greater societal popularity.

There are ways to try to address these biases, which are being employed in
citizen science and research more generally. Remotely operated vehicles, camera
traps, acoustic monitoring, drones, canopy fogging, malaise traps, light traps, etc.
can all help in encountering and detecting a more representative subset of species.
Funding and outreach can help create research opportunities and raise awareness
of the importance of reporting sightings. Tools like automated image recognition
are essential in many of the efforts where large amounts of data are managed.
They are also rapidly becoming more commonplace to aid in the identification
process among citizen scientists, allowing for the reporting of a broader range of
taxa than those that are typically known by the general public.
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Image recognition

Pictures of species contain a lot of information, in the form of pixels with different
red, green and blue values. For a person it can be trivial to recognize a depiction
of something sufficiently familiar and distinguishable, but automating this feat
has long proven to be an insurmountable challenge. One cannot define which
pixel values correspond to which species, for example, as no two pictures are the
same and any differences in subject placement, angle, lighting, etc. will result in a
completely different image on the pixel level. The key lies in pattern recognition,
a task for which the human brain is exceptionally well equipped.

In recent years, many technological improvements have been achieved that
allow computers to better detect patterns in data in general, and pictures more
specifically. In order to learn to distinguish meaningful patterns in the data from
those patterns that do not carry any information for the task at hand, a lot of
different examples in the form of training data are needed, and a lot of computing
power to examine these training data in enough detail to find the most informative
patterns. While new methods have contributed to the much improved capabilities
of automated image recognition, they are mostly due to the availability of large
amounts of data in the current information age, together with the rapid expansion
of computing power, most notably in graphics processing units.

Applying image recognition can be done by using a convolutional neural network
(CNN)18. In neural networks in general, the input forms a list or matrix of (input)
values (e.g. the pixel values in the image). Based on these values, a new set of
values is calculated. Each such calculation is the result of positive and negative
relationships with multiple input values, analogous to how neurons in the brain
inhibit or excite one another upon firing. Usually, many layers of newly calculated
values are chained, where each layer informs the next, until the last layer, the
output layer, produces a result. In a species recognition example, the output
value can represent a list of species, where the aim is to maximize the value of
the position corresponding to the correct species, and to minimize all others. A
CNN adds an operation of convolution to this process. Here, each calculation
is done on a block of values, so that pixels next to each other are considered in
context of one another, maintaining the 2D structure of a picture. The network
can then calculate to which degree a certain pattern, such as a diagonal line, is
present within that region. By systematically sliding (convoluting) the area of
focus over the entire picture, the result is a map of the entire picture of where that
pattern is present to which degree. This resulting map can again be used as input
for a convolutional layer, which then looks for patterns within the pattern from
the previous step. In each step, this process can be done for multiple patterns in
parallel, so each next layer is looking for more intricate combinations of patterns
based on the results of the layers that came before it. Ultimately, this allows the
CNN to recognize combinations of patterns that are complex enough to represent
entire species.
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It is not viable for anyone to program a CNN to look for the right combinations
of patterns, and draw sensible conclusions from this. Instead, a process of machine
learning is used, where patterns and links between patterns are randomized at
the beginning of the learning process. By running a picture of which the true
species is known through the network, it is possible to calculate how the links
between each layer can be adjusted to result in a slightly better result for this
example picture. Through doing this many times for many different examples, this
mechanism attempts to find the best possible configuration of values within the
CNN, giving the best answers. In essence, the model has learned to react only to
the patterns within pictures that are most informative for deciding which species
is depicted.

Code to create and train such models is widely available, and rapidly becoming
more powerful and user friendly. This has led to widespread adoption, in this
context especially within citizen science. Citizen science can provide the large
amounts of data machine learning models need, it has users that vary in their
species literacy and who can often benefit from these tools, and the large amounts
of data citizen science generates renders manual validation by experts of what is
reported nearly impossible. All this makes these two concepts great fits for one
another, so it is little surprising that more and more citizen science platforms now
provide image recognition tools in some form.

But pictures can only assist to a certain point. Even a world leading expert
(or perfect artificial recognition model) will not be able to tell what is depicted
in some cases. A picture will often lack the necessary information because the
characteristics one has to look at to reliably distinguish between species are simply
not visible in it19. It is therefore not plausible or desirable to try and classify every
observation using image recognition models alone, and there will always be a need
for the kind of deep taxonomic knowledge found in experts.

Taxonomic impediment

It takes years to become knowledgeable in the field of a sufficiently large or complex
taxon, and world leading authorities on taxa have often spent large portions of
their careers studying thousands of specimens in detail to gather the knowledge
needed. In modern careers and curricula, there is generally not enough financial
stability and time to make such investments in taxonomic expertise. As a result,
this knowledge is disappearing from the scientific community, leading to what has
been coined a “taxonomic impediment”20.

The traditional way to convey the skills needed to distinguish species is through
identification keys. While time consuming and demanding to make, and a necessar-
ily incomplete representation of the true breadth of expert knowledge, it remains
an invaluable tool for the aspiring taxonomist, allowing them to “stand on the
shoulders of giants” in their learning trajectory. To preserve this vital knowledge,
the availability of good, usable keys is paramount.
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Research objectives
There is a great need for large amounts of observational data, and citizen science
is proving crucial in obtaining it. Improving the data stemming from these efforts,
used by science and management, requires awareness of (and ideally solutions
for) improved open access to existing data, taxonomic bias and reporting bias
in pictures due to recognizability, especially when considered in the context of
automated image recognition, and finally the preservation and storage of expert
knowledge to help citizen scientists, as it is steadily becoming more rare.

A lot of effort goes into methods for working with citizen science data and how
to deal with its shortcomings in terms of coverage, quality and biases. Meanwhile,
we should not be complacent about these issues, and aim for improved methodology
that minimizes these issues at the collection stage, and in other ways aim to improve
the biodiversity data we increasingly base both research and management on.

The main objective of this thesis is to quantify the aspects in which
opportunistic citizen science data is lacking or biased, and to investigate
how this can be addressed at the collection end of the data life cycle.

This objective is subdivided into 4 sub-objectives:

• review the extent in which existing observational data are currently shared
openly by researchers that gather or otherwise obtain it

• evaluate how citizen science picture data of different orders contribute to im-
proving new recognition models, and how this relates to the well documented
taxonomic biases in data availability

• investigate how picture quality and general recognizability on a species level
relates to recognition model performance and data availability within citizen
science

• propose a data format that captures identification key knowledge, so that
citizen scientists (among others) can get easy access to the knowledge needed
to identify taxa that cannot be easily identified by other means

The value of data depends on its ability to be used. Data that are not available
cannot be used in analyses, and analyses building on data that is not also made
available cannot be scrutinized. It is therefore vital to publish data openly for
multiple reasons if it is to be part of a scientifically sound process. Many researchers
have discovered these data as a source of information in their work. In paper I, we
examine to which degree this increase in availability and use leads to an increased
tendency to share data.

One application with a strong interrelatedness to citizen science is automated
image recognition. Citizen scientists can benefit a lot from algorithms that can aid
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in identifying taxa from images. At the same time, the training of such algorithms
requires amounts of data that can only be provided by citizen science. In paper II,
we assess the unequal representation of taxa in Norwegian citizen science image
data, and whether we need more of what we have the least of, or if there is a
difference between the taxa, and thus the impact that a contribution by a citizen
scientist can have in this respect.

Not every species is easily recognizable from a photograph, if at all. There
may also be reasons for photographs to be of a different quality depending on
the species, depending on the behavior of the species and the interest it receives
from different parts of the citizen science community. These factors impact both
the likelihood of an observation being accompanied by a picture, as well as the
expected maximum recognition model performance. In paper III, we investigate
these mechanisms in the data corpus, as well the consequences for how we expect
future models to perform and the kind of data collection we aim for within citizen
science.

Given the limitations in machine learning, and the impossibility to reliably
identify many species from pictures in general, there will always be a need for
taxonomic knowledge. Such knowledge is becoming more scarce as we are facing a
taxonomic impediment, however. It is important to store such knowledge, as well
as share it in a user-friendly way. Digital keys are a logical way to do this, and
come with the added benefit of being able to represent knowledge that cannot be
represented in paper form in a practical way, greatly enhancing the educational
potential of digital keys. There is however no open format that takes advantage of
the full breadth of possibilities or modern standards. We address this in paper
IV, where we propose a data format for storing taxonomic knowledge in an open,
modern, and flexible manner.
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Summary of papers

Paper 1

Presence-only biodiversity data are increasingly relied on in biodiversity, ecology,
and conservation research, driven by growing digital infrastructures that support
open data sharing and reuse. Recent reviews of open biodiversity data have
clearly documented the value of data sharing and there is growing recognition
that this open sharing of biodiversity data is critical for advancing biodiversity
research21. Some of the primary benefits of open biodiversity data include enhanced
reproducibility of research22; making data available for reuse in new research
applications23; enabling researchers to receive credit, in the form of citations, for
their efforts producing and sharing data sets24,25; and minimizing the duplication
of research effort, enabling researchers to prioritize new data collection that fills
research gaps26.

Many aspects of the sharing and reuse of openly accessible biodiversity data in
the peer-reviewed literature have been characterized, including common research
applications of open data, taxonomic and spatial trends in open data, persistence
of data stored in open databases, and current citation practices for open data26–30.
These studies make it clear that openly shared presence-only biodiversity data
are foundational to a large body of biodiversity research. Still, many data go
unshared. Earlier in the open data movement, it was widely recognized that open
data formed just a small portion of the total biodiversity data known to exist31–33.
But the current volume of presence-only data that are not openly shared, despite
being presented and analyzed in the literature, is unknown.

Figure 1: Over time, more and more data are shared openly, but much remains inaccessible.

We address this question by examining a broad cross section of the traditional
peer-reviewed literature to assess the degree to which it promotes and implements
open presence-only biodiversity data. Our goal is to provide insight into the current
adoption of open data practices among users of presence-only biodiversity data in
journals drawn from a variety of sources beyond open databases, in the indexed
literature. We focus on how frequently researchers access open data relative to
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data from other sources, how often they share newly generated or collated data,
and trends in metadata documentation and data citation.

We find that the sharing of presence-only biodiversity data is overall increasing
but that there is ample room for improvement in adherence to many data sharing
best practices (figure 1). Biodiversity research commonly relies on presence-only
data that are not openly available and neglects to make such data available, still
limiting its value, reusability, and reproducibility.

Paper 2

Technological advances and data availability have enabled artificial intelligence-
driven tools that can increasingly successfully assist in identifying species from
images. Especially within citizen science, an emerging source of information filling
the knowledge gaps needed to solve the biodiversity crisis, such tools can allow
participants to recognize and report more poorly known species34–36. This can
be an important tool in addressing the substantial taxonomic bias in biodiversity
data, where broadly recognized, charismatic species are highly over-represented37.
Meanwhile, the recognition models are trained using the same biased data, so it is
important to consider what additional images are needed to improve recognition
models.

We use the Species Observation Service38, a large Norwegian citizen science
project, as an example to investigate the nature of the bias in citizen science image
data, and how this relates to the value of data for image recognition models. One
way to evaluate this is by using the concept of Value of Information (VoI); “the
increase in expected value that arises from making the best choice with the benefit
of a piece of information compared to the best choice without the benefit of that
same information”39.

Considering training data for image recognition models in the VoI framework
allows us to identify the most effective prioritization for improving recognition
models. This method allows for a more sophisticated approach to data collection
than simply adding more data for all taxa, or prioritizing taxa that are currently
the most under-represented. First, we evaluate whether the biases found in
observation data in general, regardless of source, are the same within citizen
science observations with images, or if there are different biases that need to be
taken into account. Then we train multiple image recognition models for different
taxa, with a gradually increasing number of images per species, allowing us to
quantify and compare the effects of adding more training data between taxa.
Using these changes in performance, we estimate the VoI of adding training data
for each taxon, relative to the amount of images that are currently available.
Finally, comparing this VoI to the amount of over- or under-representation of
these taxa, we demonstrate that mobilizing images with a higher VoI provides an
alternative, data-driven approach to simply prioritizing images of the currently
most under-represented taxa.
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Figure 2: Data selection and subdivision. Each run is generated by selecting 17 species per
order, using 200 images per species. For each subsequent model in a run, training and validation
data are reduced by 25% (or slightly less than 25% if not divisible by 4).

We selected 12 orders in such a way that each order contained at least selected 17
species, where each such species had a minimum of 220 citizen science observations
with at least one image. For each order, image recognition models were then
trained using 200, 150, 113, 85, 64, 48, 36, 27, 21, 16 and 12 observations for
training and validation, repeating this procedure 5 times with different subsets
of 17 species, training a total of 660 models (figure 2). This enabled us to see
how recognition performance increases per taxon as more images per species are
available. Taking the curve of the performance increase then let us calculate
the VoI of the taxon at any given point; the expected increase in recognition
performance when adding one extra observation with images for each species in
that taxon. Calculating the VoI for the current number of images available per
species in the taxon (on average) provides a way to compare orders by how much
a newly added observation with images to the currently available data would be
worth in terms of recognition model improvement.

We found that, as is known for other data sets, there is a substantial taxonomic
bias in the Norwegian citizen science data with images. The orders of “large
colorful flying animals” like butterflies, birds and dragonflies are the orders that
are most over represented in the data, with less conspicuous orders like flies, lichens
and beetles trailing the list. When we however consider the current expected VoI
per added observation with images for each order, we find that it is not strictly a
matter of the most underrepresented orders benefiting the most from an addition
to the data currently available. While there is a trend that such orders benefit
more on average, by far the largest increase is found within the plant orders (figure
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Figure 3: The over- (green) and under-representation (red) of species in citizen science image
data. The areas of the circles represent the expected benefit for a recognition model when adding
one more image to what is currently available.

3).
We thus demonstrate that a more informed decision is possible when choosing

to focus on certain taxa for data collection aimed at improved recognition models.
Prioritization of taxa for which to mobilize additional data can be informed by
considering its expected VoI, rather than simply prioritizing those that are currently
the most under-represented numerically. Note that this is no plea for deprioritizing
data collection for such taxa in the context of citizen science as a whole. There
are many areas of management and research that can benefit from additional data
on taxa we predict will benefit less from additional images for recognition models,
and ample reasons to mobilize data for other applications than image recognition.
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Paper 3

Occurrence data are typically subject to spatial, temporal and taxonomic bias37,40,
and traditional manual methods of data collection are insufficient to gather the
data volume needed, or address these biases.

Alternative methods9,41,42 are being deployed to gather large amounts of
data. With the increased output from initiatives like citizen science and camera-
traps automating insect monitoring, manual management and quality control
become infeasible. Automated image recognition tools for species identification
are increasingly used to alleviate this34–36,43. Training image recognition models,
however, also requires large amounts of pictures44. This creates a mutual reliance
between large scale image data collection and image recognition models45.

Figure 4: Example taxon where data availability is correlated with model performance for a
species (even though the same amount of data is used for all species). The best and poorest
performing species (highlighted and depicted) are examples where the former is much more
distinct and recogntizable than the latter.

Visual identification of species is a complex task; while some species are
unmistakable, many others are very challenging or even outright impossible to
identify, regardless of picture quality19. Models are trained using training data
reported and identified by humans, so species with low recognizability among
humans may be underreported and be underrepresented in the training data. This
means that recognition models are then being trained with data consisting mostly
of pictures of species that are easier to recognize. In that case, training models on
difficult species will be even harder, given their absence from the training data,
which comes in addition to their already more challenging nature in terms of
recognition.

To evaluate the existence of this possible reporting bias and its consequences,
we evaluated how data availability, picture quality, biological traits and citizen
science data collection differs across species, and how these differences relate to
recognition model performance. We find evidence for a “recognizability bias”,
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where species that are more readily identified by humans and recognition models
alike are more prevalent in the available image data (figure 4). This pattern is
present across multiple taxa, and does not appear to relate to a difference in picture
quality, biological traits, or data collection metrics other than recognizability.

Paper 4

Research and nature management are facing a “taxonomic impediment”, where
taxonomic knowledge is gradually disappearing from the scientific community20.
At the same time, it is clear that these skills are strongly needed in biodiversity
monitoring for management and conservation, especially when carried out by
citizen scientists.

Figure 5: The core structure of Clavis: taxa and their characteristics are connected to one
another through a collection of “statements”.

Formalizing the required knowledge in the form of digital identification keys is
one way of making such knowledge more available for professional and amateur
observers of biodiversity. In paper 4 we describe Clavis, a modern open format
for capturing knowledge required for taxon identification through digital keys,
allowing for a level of detail beyond that of any current key format46,47. The
core of a Clavis-compliant identification key are its statements which describe
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which values a taxon has for which characteristic (figure 5). The format allows
for many different types of metadata to support complicated logic, exceptions,
documentation, links, geography, multimedia, provenance, etc. We exemplify
each concept using Pokémon as a fictional taxonomic group48, to ensure that no
taxonomic disputes distract from the exemplified concepts while adhering to a
predefined taxonomy with sufficient complexity.
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Discussion
Open access to high quality biodiversity occurrence data is key to many themes
in biodiversity research and conservation49–51, and efforts to increase the open
sharing of biodiversity data will be critical. Recent trends toward increased
sharing of presence-only biodiversity data are a cause for optimism. There is
a recent increase in the proportion of articles that produce open data, authors
make the effort to credit original data providers as best they can, and citizen
science data is shared at above-average rates. Still, there is a great deal of work to
be done in normalizing the use of best practices in data access, documentation,
citation, and sharing. Researchers generally feel positively toward reusing and
sharing data, but are uncertain about best practices and concerned about credit
and incentives52–54. Addressing these issues will be essential to meet challenges
associated with the growing biodiversity crisis and to support a growing need for
biodiversity assessment, monitoring, and conservation.

In gathering new data, image recognition tools play an important role in
maintaining the quality of the large amounts of biodiversity data science and
management require. Training these models requires substantial amounts of data,
and as more images are collected through citizen science, recognition models can
be steadily improved. Meanwhile, we find evidence that both the data that are
currently available, and the potential informational value of added data are not
taxonomically neutral.

With the more widespread use of image recognition models as both a user tool
and a mechanism for quality control, it is time to view images as data in and of
themselves, rather than only documentation of occurrences. Such a shift calls not
only for conscious choices when it comes to the value of information in images, but
increased implementation of data practices such as persistent storage, metadata
standardization and the other FAIR data principles55 to enable more apt usage of
image data for current and novel applications.

Still, there are inherent limits to what can be identified from a picture, and
identification tools are needed that rely on more than just pixel information. Models
that take into account season, location, sound, etc. can be especially beneficial
for difficult species. But ultimately, there is no substitute for the taxonomic
knowledge of experts. Preserving this knowledge, and making it available in the
form of identification keys, is vital. The open exchange of taxonomic knowledge,
unambiguously captured with as much of the auxiliary details needed for its
application, is essential for the preservation of invaluable, increasingly elusive
knowledge. Such tools can help greatly to more reliably identify challenging species,
in tandem with automatic identification. The data quality benefits ultimately
feed back into the areas where such data are used, from research and spatial
distribution models to the decision making processes related to the biodiversity
crisis in a changing world.
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Abstract
Presence-only biodiversity data are increasingly relied on in biodiversity,
ecology, and conservation research, driven by growing digital infras-
tructures that support open data sharing and reuse. Recent reviews of
open biodiversity data have clearly documented the value of data shar-
ing, but the extent to which the biodiversity research community has
adopted open data practices remains unclear. We address this question
by reviewing applications of presence-only primary biodiversity data,
drawn from a variety of sources beyond open databases, in the indexed
literature. We characterize how frequently researchers access open
data relative to data from other sources, how often they share newly
generated or collated data, and trends in metadata documentation and
data citation. Our results indicate that biodiversity research commonly
relies on presence-only data that are not openly available and neglects
to make such data available. Improved data sharing and documentation
will increase the value, reusability, and reproducibility of biodiversity
research.
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Biodiversity data are increasingly made openly available, facilitated by extensive
digital infrastructures that support data standardization and publication1–3. There
is growing recognition that this open sharing of biodiversity data is critical for
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advancing biodiversity research1. Some of the primary benefits of open biodiversity
data include enhanced reproducibility of research4; making data available for
reuse in new research applications5; enabling researchers to receive credit, in
the form of citations, for their efforts producing and sharing data sets6,7; and
minimizing the duplication of research effort, enabling researchers to prioritize
new data collection that fills research gaps8. As data sharing continues to become
normalized, best practices have developed for the sharing of biodiversity data9.
The FAIR data principles, for instance, outline four key attributes of effectively
shared data: findable, accessible, interoperable, and reusable10. Specific practices
have been developed to implement biodiversity data sharing in accordance with
FAIR data principles. For example, global data aggregators such as the Global
Biodiversity Information Facility (GBIF) provide a central location for aggregated
data sets, ensuring that they will be findable and accessible11, and standardization
schemes such as Darwin Core provide a mechanism for researchers to improve
interoperability12. Such innovations support extensive data reuse; for example,
the GBIF currently enables integrated data searches of nearly 1.7 billion species
records from diverse sources around the world and has facilitated data reuse in
thousands of publications13.

Although any type of data can be openly shared, the biodiversity data type most
readily associated with open data sharing is presence-only occurrence data2,14–16.
Presence-only data consist of the taxonomic identification and location of an
organism, often with the time of observation but without further information
about species abundance, sampling design, or sites at which the species was not
observed. The quantity of presence-only data aggregated in open biodiversity data
repositories is immense and continuing to grow rapidly17,18. This growth has been
driven in large part by two simultaneous trends: the increasing popularity of citizen
science platforms through which the public submit opportunistic observations to
centralized databases19–21 and the digitization and aggregation of historical records
and museum specimens22–25. The growing volume of openly shared presence-
only data is also driven by characteristics of the data type itself: It is relatively
simple and is easily standardized within existing best practices for data sharing2.
Presence-only occurrence data now offer greater spatial, temporal, and taxonomic
coverage on a global scale than other biodiversity data types and are often less
costly and time intensive to collect26,27.

As presence-only biodiversity data have grown in volume and accessibility,
they have become increasingly common in biodiversity research13,17. The open
availability of massive modern and historical biodiversity data sets has contributed
to a wide range of research areas, including ecology, biogeography, global change,
and conservation13,18,28. But the analysis of presence-only data is not without
challenges; both historical and modern presence-only data are associated with
limitations and biases that are distinct from other data types, both because of
the lack of absence data and also because of the opportunistic collection process
frequently associated with presence-only data28–34. Further biases, errors, and
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limitations can be introduced in the processes of data preparation, publishing,
and long-term maintenance35,36, including the issues of data leakage17 and data
obsolescence37. In response to these challenges, the growing application of presence-
only data has been paralleled by an explosion of innovation in approaches to assess
and improve both data accessibility and quality18 and also analysis methods that
account for the specific limitations associated with this data type38,39. As the
development of analysis approaches for presence-only data continues, there is broad
consensus that the documentation of metadata that details the study protocol,
including information about sampling design or effort, allows for greater inference
and also greater data reuse and reproducibility of analyses39–42. Open biodiversity
data repositories commonly encourage the publishing of metadata43, but in practice
the quality and amount of documented metadata varies widely2,17,44.

Although presence-only biodiversity data are reported and analyzed exten-
sively in the traditional peer-reviewed literature, they are not restricted to it.
In particular, authors who publish or access openly accessible biodiversity data
may be more likely to seek out alternative outlets for research publication, such
as preprint servers and journals with novel publishing models, because of their
emphasis on free sharing of scientific information. Furthermore, biodiversity data
are likely reported and analyzed often in gray literature and conference proceedings.
Still, because a great deal of biodiversity data are reported and analyzed in the
traditional peer-reviewed literature, it is important to understand the role that this
literature plays in either facilitating or hindering the open sharing of biodiversity
data. In this review we consider the extent of and barriers to the adoption of open
data sharing practices within the traditional peer-reviewed literature, represented
by the set of journals indexed by the Web of Science Core Collection.

Many aspects of the sharing and reuse of openly accessible biodiversity data in
the peer-reviewed literature have been characterized, including common research
applications of open data, taxonomic and spatial trends in open data, persis-
tence of data stored in open databases, and current citation practices for open
data8,13,18,45,46. These studies make it clear that openly shared presence-only
biodiversity data are foundational to a large body of biodiversity research. Still,
many data go unshared. Earlier in the open data movement, it was widely recog-
nized that open data formed just a small portion of the total biodiversity data
known to exist17,20,47. But the current volume of presence-only data that are not
openly shared, despite being presented and analyzed in the literature, is unknown.
The concept of data sources and sinks can be helpful to conceptualize this issue;
publication approaches that generate or perpetuate openly shared data can act
as sources for continued data reuse, whereas publication approaches that entail a
single use of data with no means for open access or reuse can be thought of as
data sinks.

In the present article, we examine a broad cross section of the traditional
peer-reviewed literature to assess the degree to which it serves as a source or
sink for open presence-only biodiversity data. Our goal is to provide insight



28

into the current adoption of open data practices among users of presence-only
biodiversity data in journals indexed by the Web of Science Core Collection. To
our knowledge, this is the first review of open data practices to be broadly defined
by the presence-only data type, rather than by a particular type of data source,
such as open databases. We focus on the following questions: How commonly
does research published in articles indexed by the Web of Science Core Collection
rely on presence-only data from open sources, and how commonly does it rely on
data that are newly generated or compiled from other sources? To what extent
do articles indexed by the Web of Science Core Collection serve as a data source
for open presence-only biodiversity data; that is, are newly generated or compiled
data made openly available, and are open data analyzed, documented, and cited
in a way that supports continued reuse?

We identify both successes and challenges in the open sharing of presence-only
biodiversity data, finding that the sharing of presence-only biodiversity data is
overall increasing but that there is ample room for improvement in adherence to
many data sharing best practices. We compare these findings with those of other
recent reviews of the biodiversity literature, discussing trends that may be distinct
to the presence-only data type, as well as new patterns that may be emerging
within open data sharing practices. Because presence-only data are the biodiversity
data type most commonly associated with open data sharing, they can serve as
an early indicator to illustrate the developing state of data sharing more broadly
in the related fields of biodiversity, ecology, and conservation. Therefore, our
characterization of current practices in presence-only data sharing can illuminate
successes, challenges, and barriers to the adoption of data sharing practices that
may be of growing relevance to the greater biodiversity research community.

Review of the presence-only biodiversity data literature
We searched the Web of Science Core Collection to target all scholarly articles
that report on the application of presence-only biodiversity occurrence data. Our
search targeted articles whose titles, abstracts, or keywords contained any of 31
terms commonly used in the literature to indicate presence-only data as well as any
of 5 terms used to indicate biodiversity (box 6). We screened the abstracts of all
returned articles and retained those that demonstrated the analysis or reporting
of presence-only occurrence data. After screening, a total of 2151 articles were
included in the review (see the extended methods description in supplemental file
S1). Data management and bibliometric summary statistics were conducted in
part with the bibliometrix package in R48.

To identify broad trends in applications of presence-only data, we classified all
included articles into three topic clusters using latent dirichlet allocation (LDA)
topic modeling. LDA topic modeling uses word associations within a corpus to
identify topic clusters and assigns documents to the topic clusters on the basis of
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(((TS = ("presence-only" OR "presence only" OR "opportunistic
observation*" OR "opportunistic species observation*" OR
"opportunistic occurrence*" OR "opportunistic distribution*" OR
"opportunistic species occurrence*" OR "opportunistic species
distribution*" OR "pseudo-absence*" OR "pseudoabsence*" OR
"inferred absence*" OR "presence-background" OR "presence
background" OR "citizen science" OR "community science" OR
"participatory science" or "ad hoc data" OR "ad hoc collection"
OR "ad hoc method*" OR "incidental data" OR "incidental
sighting*" OR "incidentally collected" OR "geographic one-class
data" OR "incidental detection*" OR "opportunistic detection*" OR
"primary biodiversity data*" OR "occurrence record*" OR "atlas
data" OR "unstructured occurrence data" OR "unstructured species
observation" OR "unstructured biodiversity data")) AND (TS =
("distribution" OR "species" OR "biodiversity" OR "habitat*" OR
"niche*")))

AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan

= All years

Box 1: The search string used to query the Web of Science Core Collection to obtain literature.

word frequency within each document49. We classified each document on the basis
of the words in the abstract and title. LDA topic modeling requires the desired
number of clusters to be defined, so to select a number of topic clusters we conducted
LDA analysis six times, each time producing a different number of clusters ranging
from three to eight. We used two criteria to select the number of clusters in our
final topic model: First, we assessed the clusters for lack of redundancy in an
ordination of all articles by their highest rated topic classification, and, second, we
assessed the redundancy and interpretability of the sets of most highly weighted
words in each set of clusters49,50 (see supplemental file S2). The modeling iteration
that produced three topic clusters was least redundant and most interpretable.
The topic clusters were assigned descriptive names on the basis of the words most
characteristic of each cluster: methodological articles were characterized by terms
related to the application and assessment of analysis methods; applied articles
were characterized by terms related to topics in biodiversity science, conservation,
and related fields; and records articles were characterized by terms related to
the collection and reporting of occurrence data (figure 6). Topic modeling was
conducted with the revtools package in R49.

A subset of 300 articles randomly selected from the included articles was read
in full and coded according to a standardized data sheet (see supplemental files S3
and S4). The 300-article subset was representative of the full data set in terms
of publication year and topic area (figure 7). For each article read in full, we
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Figure 6: The articles were classified into three topic areas using latent dirichlet allocation
(LDA) topic modeling, which uses word frequencies to cluster articles by topic. The 30 most
heavily weighted words in (a) the methodological topic (n = 641), (b) the applied topic (n =
753), and (c) the records topic (n = 757) are shown in the present figure. Word size indicates
relative weight within each topic.

Figure 7: The number of articles published per year in each topic area within (a) the full set of
2151 articles and (b) the 300-article subset; the total citations per year since publication in each
topic area within (c) the full set of 2151 articles and (d) the 300-article subset. 2020 is indicated
with dashed lines because the results for 2020 may be less complete than those for other years;
although the set of articles was obtained with a search on 4 January 2021, some articles with a
2020 publication date may not yet have been indexed by journals or the Web of Science.

recorded information on 10 fields: taxa, study system, study and author region,
sample size, study scale, sampling design, analysis approach, data source, and data
publication (see supplemental file S3). For all data fields except for study region
and author region, the classifications were not mutually exclusive; each article was
tagged with all applicable responses. Such classification is a common approach
in descriptive literature reviews (e.g., Ball-Damerow et al. 2019, Hao et al. 2019).
All data management and analyses were conducted with R version 4.0.252, and
data and R scripts are available online53.
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Broad trends in the presence-only biodiversity
literature
The literature relying on presence-only biodiversity occurrence data has grown
steadily since the mid-2000s, maintaining an average annual growth rate that
exceeds that of the biodiversity literature as a whole54. This literature has seen a
shift in recent years from a focus on methodological research to data sharing and
applied analyses, as is evidenced by both the number of articles published and the
citations obtained by articles in each topic area (figure 7). The methodological
topic area was most common from the mid-2000s through 2015. From 2015 to
2020, the frequency of articles within the methodological topic area remained
relatively constant, whereas the frequency of applied and records articles increased
rapidly. Methodological articles are overall the most highly cited, but the relative
citation rate has declined since 2015 (figure 7). The shifting distribution of topic
areas suggests that there are two distinct eras in the presence-only data literature:
an era focused on methodological developments, which lasted from approximately
2005–2015 and an era with a greater focus on applications that began in 2015 and
continues today. A similar trend has been reported among articles that rely on
GBIF-mediated data13.

The increase in articles focused on simple reports of occurrence is likely due
to an increase in infrastructure and incentivization for data papers in recent
years5,18,55, and the parallel increase in applied research may indicate that presence-
only approaches are being used more frequently to address issues of relevance to
conservation and management27,56,57. The decline of methodological articles in
terms of relative frequency and citation rate might suggest that applied researchers
are using more established analysis methods more often than they are adopting
newer approaches.

As a whole, the literature relying on presence-only biodiversity data is relatively
decentralized and young. Its influence, as was measured by citations, is still growing;
just a small number of the reviewed articles were highly cited, with a median of six
citations per article. Unsurprisingly, methodological articles made up the majority
of the 89 articles cited more than 100 times (figure 7; see supplemental file S5).
The average author contributed to just 1.3 of the reviewed articles, which aligns
with trends reported in the biodiversity literature54 but is substantially lower than
authorship rates in the biological sciences overall58. Articles were published in a
wide range of outlets, with 482 distinct journals represented in our review. The
relative lack of common references is a further indicator of the varied scope of
the presence-only biodiversity literature (see supplemental file S5). This is likely
due to specialization among biodiversity researchers within many distinct research
areas, defined for example by taxon of interest, geographic region, or scientific
subdiscipline. Nevertheless, it may indicate a challenge to the efficient sharing of
information regarding best practices for biodiversity data sharing.
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Using complementary reviews to build a more
complete picture of the biodiversity literature
All efforts to systematically review literature contain trade-offs and biases intro-
duced by the strategy used to search the literature, including search terms, search
platform, and screening protocol. Therefore, efforts to characterize a body of liter-
ature are most informative when complementary reviews are considered alongside
one another to form a more complete picture of the literature as a whole. We
expect that this is particularly true for rapidly expanding research areas, including
the presence-only biodiversity data literature; reviews of presence-only biodiversity
data are complicated by the broad and rapidly developing variety of ways that
this data type is accessed, analyzed, and referred to in the literature. To this end,
we conducted a small test of the similarity of our search results to those of two
recently published complementary reviews: Ball-Damerow et al. (2019 and the
2019 GBIF Science Review (GBIF 2019). Each of these reviews used a search
strategy and platform that complements our own, targeting a distinct subset of
the literature on applications of presence-only biodiversity data (figure 8).

For this test, we identified the articles from our review that met the inclusion
criteria defined for each of the other two reviews, screened the abstracts of 50
articles randomly selected from each of the other reviews according to our own
inclusion criteria, and identified the percentage of articles that were common to our
review and each of the complementary reviews. There was relatively little overlap
between the articles in our review and the other two reviews (figure 8). The lack of
overlap illustrates the importance of considering complementary reviews alongside
one another. Although other recent reviews, including the two considered in the
present article, have focused largely on applications of presence-only biodiversity
data known to be accessed from open sources, our review fills a key knowledge gap
by characterizing a broad set of the traditional literature with an as yet unknown
reliance on open databases.

Comparison of basic study characteristics with trends
in biodiversity research
Our review joins several recent studies in identifying trends in basic characteristics
of the biodiversity literature, including taxonomic focus, study domain, and study
region13,18,60. We found that the articles in our review align some general trends
in the biodiversity literature, including an emphasis on terrestrial settings13,18,60

(figures 9 and 10). Still, there are some distinct trends associated with the articles
in our review: vertebrates—and, to a lesser extent, invertebrates—are (better
represented among our reviewed articles than in other reviews of the biodiversity
literature, whereas plants and the freshwater domain are underrepresented13,18,60

(figure 9)). The overrepresentation of vertebrates in our review is primarily due to
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Figure 8: The Venn diagram indicates the overlap between articles included in this review and
two complementary reviews. The circle size corresponds to review sample size; it should be noted
that only a portion of the analyses reported in Mandeville (2021) were conducted on the full
article set, whereas the remaining analyses were conducted on a subset of 300 samples chosen
randomly from the full set. The overlap between the circles indicates the overlap in articles
included in each review, and the dotted lines indicate the estimated overlap in targeted articles
according to the reviews’ described inclusion criteria. The inset table indicates the inclusion
criteria and search strategy of each review.
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their prevalence in reviewed articles that did not use data from open databases,
suggesting that the range of vertebrate data available from open databases may
not be as aligned with research needs as data from other taxonomic groups. On the
other hand, the relative underrepresentation of freshwater and marine studies in
our review was consistent between articles that did and did not rely on open data.
This suggests that the presence-only data type as a whole may be less common
in freshwater and marine domains, likely because many freshwater and marine
species are not as easily detected via opportunistic observation.

The global distribution of studies in our review aligns closely with trends in
the biodiversity literature13,60. The largest number of articles were authored by
researchers based in Europe, followed by North America (figure 9). Alignment
between study region and author region was uneven; articles that addressed Europe
and North America were written by first authors based at institutions in the same
region in respectively 98% and 95% of cases, whereas articles that addressed study
regions in other parts of the world were less likely to have been written by first
authors based in the focus region (figure 11). The uneven global distribution of
biodiversity research reflects the greater coverage of biodiversity data in North
America, Europe, and Australia relative to much of the rest of the world15,61,62 and
is also partially explained by the less frequent publication of ecological research
conducted in the Global South in journals that are indexed by major databases63.
It is critical that the field of biodiversity advances to better represent and sup-
port researchers based in underrepresented global regions in the international
academic literature63–65. It has been shown that international collaborations are
often inequitable, with European and North American researchers gaining more
benefits in terms of publications and reputation than collaborators in the Global
South13,60,66–68. This trend should prompt caution in the growing open data
movement; it will be essential to ensure that open sharing of data is supportive
rather than exploitative of Global South researchers65,69–71. One example of an
approach to this issue from within the biodiversity data community is the ongoing
effort to repatriate biodiversity data that have been collected within a historically
exploited region but stored and managed elsewhere, in order to transfer primary
data custody and decision-making power back to the communities from which the
data were collected13,70,72.

Presence-only data: A lens into current trends in the
access, analysis, and publishing of openly accessible
biodiversity data
As the biodiversity research literature continues to grow, the open sharing of
biodiversity data is increasingly recognized as necessary and is quickly becoming
normalized13,17,18. Presence-only biodiversity data are relatively representative of
broad taxonomic and geographic trends associated with the field of biodiversity as



35

Figure 9: A comparison of trends in taxonomic focus, study system, and geographic region of
the biodiversity literature identified by this review and three complementary reviews covering
different aspects of the biodiversity literature. See each cited paper for specific methods and
results, because the methods of defining and measuring each trend may differ slightly between
articles.
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Figure 10: The frequency of characteristics among the subset of 300 randomly selected articles:
(a) study taxa, (b) study system, (c) sampling design, (d) sample size, (e) study scale, (f) direct
data source, and (g) analysis approach. Characteristics are not mutually exclusive; multiple
responses per characteristic can apply to an article.
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Figure 11: The study regions of the subset of 300 articles are indicated on the y-axis and the
region of the first author of each article, defined by institutional affiliation, is indicated on the
x-axis. The number in each cell indicates the number of articles written about the region on the
y-axis by a first author based in the corresponding region on the x-axis.
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a whole, but they differ in the ease with which they can be shared in accordance
with currently recognized best practices2,14–16. Therefore, as practices continue to
be developed to facilitate the sharing of a wide range of data types2, presence-only
data can serve as an early indicator to illustrate the progress, challenges, and
limitations to the adoption of biodiversity data sharing practices. The work of
recent reviews focused on presence-only data from open databases (e.g., Ball-
Damerow et al. 2019 and the GBIF Science Review series) makes it clear that open
data infrastructure actively supports a large body of research. But to understand
the extent to which biodiversity research in the traditional peer-reviewed literature
serves to facilitate or slow the progress toward open data, it is necessary to consider
presence-only data from a wider range of sources.

In the sections that follow, we focus on three aspects of the presence-only
biodiversity data literature indexed in the Web of Science Core Collection, with
an emphasis on open data practices. We first consider the sources of presence-only
data in this body of literature. Next, we consider how presence-only data are
analyzed and whether these analyses are supported by well-documented metadata.
Finally, we characterize the data publication practices associated with the presence-
only biodiversity data in this set of literature. Our objective is to delineate the
current state of data sharing practices and to identify areas for growth, many of
which will apply to both presence-only data and also more generally to a range of
biodiversity data types.

Sources of presence-only biodiversity data
Openly accessible databases—that is, searchable online repositories in which
biodiversity data from many original sources are aggregated—make billions of bio-
diversity data points freely available for anyone to access and use17,18. Researchers
may choose to access data from openly accessible databases for many reasons: to
avoid duplicating research effort that has been undertaken in the past, to access
data on a larger temporal and spatial scale than could be collected through original
field work, to synthesize data from disparate sources, or to replicate or build on
a previous study. So it is unsurprising that openly accessible databases were the
most common direct data source in our review, accessed by 42% of the reviewed
articles. However, only 19% of the reviewed articles used data exclusively from
open databases; the vast majority accessed some or all of their data from sources
other than open databases. Other common data sources include original fieldwork,
the literature, and museums and herbaria (figure 10). Ball-Damerow et al. (2019
identified these same three sources of occurrence data as the most commonly
integrated with occurrence data accessed from open databases.

In many cases, it is likely that researchers choose to collect new data or compile
data from a variety of original sources because the data they need are not available
in an openly accessible database8,18. For instance, articles in our review were
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substantially more likely to address vertebrate species than in reviews in which
all articles rely at least partially on open data (figure 9). In particular, a large
percentage of the articles in our review addressed mammals (figure 10). Although
mammals are considered overrepresented in open databases on a per-species basis,
they make up a relatively small portion of the total volume of data available from
open databases, likely because of many mammal species’ lower detection probability,
wider-ranging distributions, and relatively lower dedicated citizen science interest
than some other taxa8,73. This may explain why articles that addressed mammal
species were relatively unlikely to obtain data from an open database and more
likely to obtain data from government agencies, private organizations, and through
original data collection. Overall, the relatively small percentage of articles based
on open presence-only data corroborates a growing sentiment from the literature:
Although the volume of openly accessible biodiversity data continues to grow,
there are substantial taxonomic and spatial gaps for which there is minimal open
data8,18,74–78. Our results corroborate the many studies that have identified gaps
in biodiversity data, making it clear that the majority of researchers who conduct
presence-only analyses do not find the data they need in open databases. This
highlights the need for the biodiversity research community to continue ongoing
efforts to identify and fill critical taxonomic and spatial knowledge gaps in open
databases.

Data gaps can be filled through both novel data collection and mobilization of
existing data that are not yet openly accessible. Many large pools of data exist
outside the open data infrastructure—for example, in government agencies and
private organizations77,79,80. Identifying these sources of data, supporting policies
and infrastructure that facilitate their access and reuse, and incentivizing data
sharing at an institutional level is needed to facilitate more open access to these
data81. This is critical for establishing the long-term records that are essential for
studying trends across space and time and informing conservation interventions
in the face of global change77. Opening existing data for reuse is also necessary
to avoid duplication of data collection effort and research waste, freeing research
resources to target true data gaps82. Consider, for example, that 13% of the articles
in our review accessed data from 10 or more nonopen sources, some accessing well
over one thousand distinct sources. The collation of data from multiple sources
represents an extensive research effort that will likely need to be repeated by future
researchers if the data are not made more openly accessible. Reducing inefficiencies
by supporting the access and reuse of data will allow researchers to prioritize
generation of data that will fill gaps in the available knowledge. To achieve this,
efforts to build relationships between data aggregators and the research community
will continue to be essential.

In other cases, openly accessible data may be available to replace or supplement
data from other sources but authors may neglect to use it, either because they
are not aware of it or because they do not trust its quality83. Even when data
are aggregated in an open database, some researchers may choose to access the
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data from their original sources rather than from the open database84. In some
cases, researchers may be aware of open data but believe they lack the skills to
access and use it effectively43. Indeed, a broad survey of researchers found that the
perceived value and efficiency of reusing open data were major factors in whether
researchers chose to access open data85. Finally, it is also important to note that
inequities in technological infrastructure, competence, and training mean that
access to digital platforms is also inequitable86. Finding solutions to the barriers
that keep researchers from accessing open biodiversity data should be a goal of
the biodiversity research community.

Practices for accessing and citing open data vary widely
Among open databases, data sources varied widely. We identified 117 open
databases that were used to access presence-only occurrence data (see supplemental
file S6). We classified nine of these as large open databases, defined as relatively well
known, established databases that contain data covering a very large geographic
range, a wide range of taxa, or both. The most commonly accessed was the GBIF,
which was accessed by 37 articles, followed by eBird (9 articles). The remaining
108 open databases, classified as small databases, had a narrower geographic or
disciplinary scope and were each accessed by an average of 1.2 articles. Of the
articles that accessed open data from at least one source, 55% accessed a large
database and 65% accessed a small database. Two thirds directly accessed just
one database, whereas the remaining third accessed between two and 10 distinct
open databases. Of course, because many open data sources serve to aggregate
many smaller databases, data users that accessed just one database may still have
obtained data from a wide range of original sources. These results are similar to
the findings of Ball-Damerow et al. (2019), who also found that a small number of
open data sources were cited by many articles, whereas a large number of open
data sources were cited very few times.

The frequent reliance on small open databases is probably due in large part to
the prevalence of small databases within specific research areas18,84,87 and may also
be partially explained by a lack of familiarity with or trust in large databases83.
We recognize many values of small databases, including responsiveness to specific
disciplinary requirements88 and the cultivation of strong relationships between
data curators and communities of data users89,90. However, small open databases
may lack the standardization and interoperability that are built into larger data
aggregators43, they may lack consistent leadership to maintain growing content
and keep up with developing best practices6, and they are more likely to become
technologically obsolete, rendering the data inaccessible18,35,89,91.

We attempted to access all of the databases referred to in our reviewed articles
and found that we could not locate or access 9% of the small databases from
which articles in our review had obtained data. In a few other cases, the database
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website could be accessed, but it was not clear that the data were still accessible;
for example, data could be visualized but the link to download data was broken,
or it was requested that visitors contact the database managers to request access.
Although still concerning, it is perhaps a cause for cautious optimism that the
proportion of inaccessible databases in our review is considerably lower than the
26% of databases found to be inaccessible by Ball-Damerow et al. (2019), who
reviewed articles published through April 2017. An additional 15% of the small
databases had been consolidated into a different database but were still accessible.
All nine large databases remained accessible. Because of the important role played
by small databases, we do not intend to suggest that authors avoid them; rather, we
caution the biodiversity data community to be cognizant that these small databases
are strongly relied on and to be proactive about supporting them over time87. The
true reliance on small databases is likely to be even higher than identified in our
study because small regional databases may be cited more frequently by articles
published in regional journals and gray literature, which may not be indexed by
the Web of Science and so may have been underrepresented in our search92.

The proliferation of open data aggregators, along with the rapidly evolving
best practices for their use, has resulted in an uneven landscape of how such data
are cited in the literature18,45,46. Citation of a digital object identifier (DOI) that
is uniquely connected to the full data set analyzed in an article has emerged as
the best practice in this area7,13; this practice enables the data set to be clearly
replicated and all original sources to be credited45,46. But not all researchers are
yet aware of this best practice, because it is relatively new. Furthermore, not all
open databases have a clear mechanism for producing a citable DOI93,94. We found
a great deal of variation in how open databases were cited among the articles in
our review. The vast majority of articles simply listed the names of the databases
from which they obtained data, sometimes accompanied by a brief description of
the type of original sources from which the data were aggregated. Only 4% of the
data sets accessed from an open database were cited with a DOI, and another 3%
were not cited but, instead, were described in the text of the article with a direct
link to the full data set or other thorough directions that would enable a reader to
replicate the data retrieval process. Interestingly, the proportion of articles in our
review that included a database citation with a URL or DOI was much lower than
the 34% observed by Ball-Damerow et al. (2019). This may reflect a difference in
search strategy; the search terms used by Ball-Damerow et al. (2019) ensured that
all reviewed articles at least mentioned the type of database accessed, whereas our
search terms required only that articles mentioned the type of data. The differing
results obtained by these two searches suggest that the use of appropriate citation
practices may be correlated with authors’ use of specific terminology to refer to
open databases, perhaps signaling their perception of their work as related to the
open data movement.

A small number of authors in our review found alternative ways to recognize
original providers of data even when there was no mechanism to do so through the
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open database—for example, by listing all original data sources in the supplemental
material. Giving credit to the original providers of open data is critical for
incentivizing data sharing to researchers, institutions, and funders18,45,95 and for
recognizing and supporting the diverse landscape of organizations and institutions
that engage in biodiversity monitoring9. This may be especially true when data
were collected through public involvement in citizen science. Thirty-four percent
of the articles in our review identified citizen science as the original source of some
or all of their data, although the true percentage of articles that derived data
from citizen science is likely higher because citizen science data are frequently
reused without their source being clearly described96. Citizen science plays an
important role in biodiversity data collection but long-term funding and support
for many citizen science programs may be dependent on the demonstrated impact,
so appropriate citation is critical97–100.

Analysis and reporting of presence-only biodiversity
data and associated metadata
The growth of interest in presence-only data in the mid-2000s was paralleled
by innovation in species distribution modeling approaches tailored to this data
type18,38,101, so it is unsurprising that species distribution modeling was the
dominant analysis approach in our review (figure 10). These methods have become
increasingly sophisticated and widely popular51,102,103. A large review of articles
that use GBIF data found a similar prevalence of species distribution modeling
and identified a recent transition in focus from methodological developments to
widespread application similar to that seen in our overall set of reviewed articles13.
Although the initial development of species distribution modeling approaches for
presence-only data was at least partially a response to the increased availability
of the data type, we suggest that their subsequent wide adoption has created
a positive feedback effect whereby researchers, driven by the growing ease of
analyzing presence-only data, have increasingly begun to seek out presence-only
data from a wider range of sources.

Despite its prevalence, however, species distribution modeling is far from the
only analysis method applicable to presence-only data. Our results illustrate a wide
range of analysis approaches, including both inferential statistics and a variety of
descriptive statistics. Presence-only data are also occasionally used indirectly—for
example, to validate the results of another analysis or to inform a sampling design.
Methodological innovation in inferential approaches is ongoing, and since 2012, a
number of articles have applied a variety of less common inferential approaches,
including phenology analyses, demography analyses, list length analysis, occupancy
modeling, and multivariate statistics (figure 10). In particular, the integration of
presence-only data with other types of biodiversity data is of growing interest in
the literature104–109. In our review, articles that integrated presence-only data
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with other types of biodiversity data were nearly three times as likely to employ an
uncommon inferential analysis approach as the articles that used only presence-only
data, indicating that data integration can open a wider range of analysis options
for presence-only data.

Clearly documented metadata, particularly an explicit description of the data
structure and original sampling design, also enable a wider range of analytical
approaches, including data integration38,41,110. This trend is reflected in our
results, with articles that employed more complex analysis approaches being
correspondingly more likely to describe the underlying data structure (figure 12).
Articles that employ species distribution modeling are the major exception to this
trend; despite the relative statistical complexity of species distribution modeling,
articles that modeled species distributions were the least likely to document data
structure (figure 12). This likely reflects the growing accessibility of species
distribution modeling approaches, which have become increasingly straightforward
to implement through user-friendly platforms that can be implemented as a
black box by researchers without a clear understanding of the method111–113.
Although the growing accessibility of species distribution modeling offers great
potential for research and conservation114,115, we caution that it is still essential
to share metadata whenever possible to aid in interpretation and evaluation of
results42,103,116–118. Relatedly, it is important to check for and correct data quality
errors in data and metadata, particularly when data are obtained from open
databases or collated from several sources18. In addition to supporting data
interpretation and analysis, the reporting of high quality metadata facilitates a
wide range of potential future data uses.

Reporting of metadata is inconsistent
Despite the value of clear metadata, around half of the articles that we reviewed
did not explicitly describe the structure or sampling design of all of their data,
corroborating previously reported trends119,120 (figure 10). Of course, researchers
can only report metadata if they have access to this information, and researchers
reusing data may simply not have information on the original data structure. For
instance, 118 articles obtained data from museums, herbaria, and the literature
and 77% of these did not report the structure of their data; in the vast majority
of these cases, metadata on the original sampling design were likely unavailable.
Users of open data also have inconsistent access to metadata, and around half
of the articles that obtained data exclusively from open sources did not describe
data structure (figure 12). Although many openly accessible databases enable and
encourage metadata standardization and sharing, most prominently through the
Darwin Core standard12, many data available through open databases have been
digitized from historical records, for which such metadata may be unavailable or
may have been lost over time121. Articles that rely on data collected by government
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Figure 12: The percentage of the 300-article subset that is associated with each type of data
structure, as a function of (a) analysis approach and (b) direct data source accessed by study
authors. In panel (a), the y-axis categories represent all articles for which the indicated analysis
approach was the most complex approach applied (with the exception of “user trends,” in which
case all articles using this approach are represented). The bar widths indicate the number of
articles in the 300-article subset within each category. In panel (b), the y-axis categories represent
all articles that use data from the indicated data source. The bar widths indicate the overall
proportion of the 300-article subset that used each data type. The gray portions of the bars
represent articles that integrated data from the indicated source with data from other sources;
because of the confounding effect of data integration on metadata reporting, metadata reporting
trends are not reported for these articles. The portions of the bars shaded according to the legend
represent articles for which the indicated source was the only source accessed by the article.
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agencies and private organizations describe data structure more frequently (figure
12). In the instances in which the structure of data from these sources is not
described, it may be due to the loss of information that occurs when complete
information was not passed from the data owners to the data users. Standardizing
the methods used by governmental and private institutions to share data with
researchers may reduce instances of data loss associated with more informal sharing
of data9. Unsurprisingly, articles exclusively based on original field work were
most consistent in documenting data structure (figure 12). The combination of
data from multiple sources is an additional barrier to describing presence-only
data because of practical challenges associated with describing a large number
of separate sampling schemes. For each additional source accessed by an article
in our review, the likelihood of data structure being described decreased by 12%.
Although authors may have little recourse when working with data sets for which
metadata are unavailable or with large data sets for which it may be impractical
to describe a large number of separate sampling schemes, improving data citation
practices may provide a partial solution by making it possible to trace data to its
original source to gather any available metadata.

Of articles that described the structure of their data, most described one or
more data source as opportunistic (i.e., collected with no predefined sampling
design), followed by semistructured (sensu Dobson et al. 2020), and finally a smaller
percentage used presence or absence data and discarded the absence records before
analysis. Of the articles that converted presence or absence data to presence-only
format before analysis, one third did this for the purpose of comparing different
modeling approaches. The remaining two thirds discarded the absence data and
conducted analyses exclusively in a presence-only framework. Previous authors
have cautioned that it is not advisable to analyze presence or absence data in a
presence-only framework122, so it is concerning that some articles in our review
took this approach. In some cases researchers may be motivated to convert presence
or absence data to presence-only to facilitate merging presence or absence and
presence-only data sets, but many recent studies suggest approaches for integrating
various data types without reducing data structure104–107,109.

The articles in our review were more consistent in reporting the scope of their
presence-only data set, in terms of both sample size and study scale. The sample
size varied considerably between articles, but the majority of studies were small
to mid-size (figure 10). The studies’ geographic scale followed a similar trend,
with the majority addressing a regional scale (figure 10). The small number of
articles that did not explicitly state a sample size tended to involve several separate
analyses of a large number of species and stated a total sample size and total
number of species rather than the sample size for each analysis. The tendency
toward mid-size studies has remained relatively consistent over time, with the
exception of studies with a sample size of over one hundred thousand occurrence
records. These very large studies were absent from our reviewed articles until 2014.
This recent increase in large studies likely reflects growing infrastructure for and
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interest in big data macroecology15,123. Such large studies are more likely to rely
on open data than studies with a smaller scope.

How often are presence-only data made available for
reuse?
Our results suggest that the majority of data used in presence-only analyses are
not made available after the analyses are published, although there is a recent
trend toward increased data sharing. To characterize trends in data sharing, we
excluded the 19% of articles that were based entirely on data accessed from open
sources. Of the remaining articles that used data from at least one source other
than an open database, just 21% made all data used in the study openly available
on publication of the article. Of these, 18% published their data in an openly
accessible online database, whereas the rest used a different form of publication,
such as supplementary material or an online repository (figure 13). The most
common means of sharing data was to directly include it in the article, either
the main text or the supplemental material. Data formats varied from those that
facilitate reuse relatively easily (e.g., CSV files, spatial data files) to those that
pose challenges for reuse (e.g., PDF files). Online repositories, including Dryad,
Figshare, and GitHub, were also used by a small number of articles to share data.
Only nine articles indicated that their data sets had been shared in an openly
accessible database, although it is possible that the authors of some articles in our
review published their data to an open database but neglected to mention this
in the article. Of course, the data analyzed in the 19% of reviewed articles that
obtained data exclusively from open databases remained openly available as long
as the databases from which the authors accessed their data were still accessible.

To maximize their research value, data must be published in a way that is
both searchable and persistent10,44. Therefore, publication of data in aggregated
databases is preferable to publication in supplemental material. In particular, larger
databases are more likely to have greater longevity, stability, and infrastructure to
maintain current best practices for data management in this rapidly developing
field43,87. Much like small open databases, it has been demonstrated that data in
supplementary material often become inaccessible over time91,124. We attempted
to access all data shared by our reviewed articles and found that it was largely, but
not entirely, still accessible: 7% of the data sets shared in journal supplementary
materials were no longer available, and 22% of the data sets shared in an open
database were no longer available. The inaccessible data from open databases were
exclusively shared in small databases.

Although the overall accessibility of openly available presence-only data has
increased dramatically in recent years, our results make it clear that the traditional
peer-reviewed literature still largely serves as a sink for presence-only biodiversity
data rather than facilitating its sharing and reuse. Making presence-only data
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Figure 13: The percentage of the 300-article subset that is associated with the three levels of
data availability as a function of (a) analysis approach and (b) direct data source accessed by
study authors. For all panels of this figure, articles based entirely on data accessed from open
databases have been excluded, leaving a subset of 242 articles that access data from at least one
source other than an open database. In panel (a), the y-axis categories represent all articles
for which the indicated analysis approach was the most complex approach applied (with the
exception of “user trends,” in which case all articles using this approach are represented). The
bar widths indicate the total number of articles within each category. In panel (b), the y-axis
categories represent all articles in which the indicated direct data source was accessed. The bar
widths indicate the overall proportion of the 242-article subset that used each data type. The
portions of the bars shaded according to the legend represent articles for which the indicated
source was the only source accessed by the article or which integrated the indicated source with
open data. The gray portions of the bars represent articles that integrated data from the indicated
source with data from other sources; because of the confounding effect of data integration on
data sharing, data sharing trends are not reported for these articles. Panel (c) indicates trends
in data availability over time. 2020 is indicated with dashed lines because the results for 2020
may be less complete than those for other years; although the set of articles was obtained with
a search on 4 January 2021, some articles with a 2020 publication date may not yet have been
indexed by journals or the Web of Science.
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more accessible should be a clear priority. Because strong infrastructure and clear
best practices already exist for sharing presence-only occurrence data2,17,87,125

this should be achievable. However, several barriers can stand in the way of data
sharing, including researchers’ lack of incentive and ability, data ownership, and
data set complexity. The strategies for overcoming these barriers will differ on the
basis of the original source, ownership, and structure of the data.

Data sharing considerations for different types of
presence-only data
The most straightforward type of presence-only data to target for increased data
sharing are likely those collected by the study authors. Our results do indicate
that original data are the most frequently shared, but the sharing rate is still
low, at just 27% (figure 13). The publishing rate of original data collected with
citizen science was somewhat higher than average, although still fewer than half
of the articles based on original citizen science published their data. This is
problematic, because studies have shown that citizen science participants generally
expect and want their data to be made available for research, conservation, and
policymaking97,126–129. Further integration of citizen science with open biodiversity
data aggregators should therefore be a priority.

We anticipated lower rates of data publication from articles that compiled data
from third party data owners, including the literature and museums and herbaria,
and our results indicated rates of data publication that were just slightly lower than
that of original data (figure 13). We suggest two major reasons why authors may
not share data they have collated from other data owners. First, they may lack (or
perceive that they lack) the permission to do so. And second, they may perceive
that data sharing is unnecessary, assuming that readers wishing to reproduce their
data set could retrace the data acquisition methods described in the paper to
reassemble the data set from its original sources. Although this may sometimes
be true, collating data from multiple sources takes a great deal of time and effort,
so it is not a trivial process for a reader to reassemble a data set following a
process described in the literature. And even if original data sources are well
documented and still accessible, it cannot be assumed that a reader will be able to
replicate the steps taken to collect data; literature is often behind paywalls, and
access to institutional databases may be limited. Therefore, researchers working
with data compiled from museums, herbaria, and journal articles should strive to
provide as thorough a description as possible of their exact process of compiling
their data set or, better yet, publish their complete data set whenever possible130.
Widespread progress on this issue will depend in part on the support of institutions:
Institutions that host data should institute mechanisms to generate citations when
data are accessed, making data easier to cite131–133, and journals that publish
research should outline clear policies that support and facilitate data sharing and
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citation134.
Finally, there are circumstances in which researchers may be unable to share

data because of its proprietary or sensitive nature. We expect that this issue is
most relevant to data obtained from private organizations or government agencies;
in the present review, articles that accessed data primarily from one of these
sources were characterized by low rates of data publication (figure 13). This is a
complex issue, but we would encourage owners of sensitive data to use existing
decision tools and prioritization schemes to consider whether there is a suitable
way to make these data available for reuse, even in a more limited format57,135,136.
Because 37% of reviewed articles derive at least a portion of their data from sources
that are assumed to generally be nonopen (e.g., data provided by government
agencies, private organizations, or personal communications), and 41% derive some
or all of their data from sources that are potentially accessible but cannot be
assumed to be available to all readers (e.g., museums, literature, media), it is clear
that a large portion of the presence-only biodiversity literature relies on data that
are not accessible, hampering the replicability of these studies and the reusability
of the data on which they are based.

A separate but related issue concerns data ethics and ownership. Issues of
data ownership and governance are inherently related to social governance, and it
is essential that the ethics of data sharing be held in the forefront at all stages
of data management71,137,138. Data relevant to local communities must be made
accessible to community members and must not be used in ways that are counter to
community priorities86. This is particularly essential when it comes to Indigenous
data; the CARE Principles for Indigenous Data Governance are a critical framework
for ensuring Indigenous peoples’ rights to the control of Indigenous data137,139. In
addition, when data are collected by community members, as with citizen science,
it is important to understand and respect volunteers’ motivations for and concerns
about the use of data they have contributed126,140,141. The continued normalization
of open data sharing must center scholarship and practice that respects ethical
data governance, stewardship, and access.

The future of presence-only biodiversity data sharing
Data sharing practices in the presence-only biodiversity literature have until re-
cently remained relatively constant over time, but the proportion of reviewed
articles that publish their data has increased somewhat since 2016 (figure 13).
This is cause for optimism and continued efforts to normalize open sharing of
biodiversity data. Recent studies document overwhelmingly positive attitudes
to data sharing142,143, so if practical barriers can be overcome, there is a high
likelihood that data sharing will continue to increase. Increased sharing of bio-
diversity data may even produce a ripple effect across disciplines; biodiversity
research has historically exhibited a higher rate of open data sharing than closely
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related scientific disciplines such as ecology and conservation science144–146, but
given the broad and growing application of presence-only biodiversity data across
many related scientific disciplines13,18, continued improvements in open sharing
of presence-only biodiversity data may serve to spread awareness of open data
practices across disciplines.

Past studies have indicated that the majority of biodiversity researchers support
data sharing but may be held back by lack of sufficient incentive, lack of familiarity
with data aggregators, lack of information on data set structure or ownership, and
lack of trust in public databases142,147. We compared articles that did and did
not publish their data to examine the relative impact of some potential barriers
to data sharing. First, we anticipated that two measures of data set complexity
might negatively correlate with data sharing: first, the number of data sources
accessed to compile a data set and, second, whether the original sampling design
was reported. We expected that authors might be held back from sharing data
by the complexity of crediting multiple original sources or by their own lack of
complete information on data structure. However, we did not find either of these
relationships in our results. This finding suggests that data set complexity may
not be the primary factor prohibiting researchers from publishing their data sets.
It is a concern but is more likely secondary to other barriers. Because lack of
familiarity with open databases has also been cited as a barrier to data sharing,
we expected that authors’ familiarity with open data, as has been demonstrated
by the integration of data from open databases with presence-only data from other
sources, would correlate with greater rates of data publication. This was not the
case: Of the articles that integrated data from open databases and other sources,
76% did not publish the data that were not already open.

These findings suggest that other concerns, including lack of researcher in-
centive and concern about receiving appropriate credit for shared data, may be
more serious barriers to data sharing45,142. Some developments have begun to
address the issue of researcher incentive: Data sharing is increasingly incentivized
through journal policies, funding agency requirements, and the promotion of data
citations148–150. Continuing to normalize these incentives may help overcome ex-
isting barriers to data sharing, especially in situations in which data users are the
original data owners45,131,151,152. Furthermore, researchers are increasingly taking
ownership over the process of data sharing, establishing grassroots collaborations
that organize specific research communities to engage with open data infrastructure
and practices153. This integration of open data practices into local networks of
biodiversity researchers has great potential to incentivize open data sharing by
establishing it as a key component of network building and collaboration within
specific research areas. As open data sharing becomes increasingly normalized, it
will be essential that practitioners of open science maintain a supportive, rather
than critical, approach to encouraging researchers who are taking their first steps
into open data sharing. Researchers do not all have equal access to the resources,
training, technical capacity, and institutional support to fully engage in open data
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practices, and small steps toward open data sharing must be welcomed while
the field as a whole shifts to become more equitably supportive of open data
practices5,133,143,154.

Conclusions
Open access to high quality biodiversity occurrence data is key to many emerging
themes in biodiversity research and conservation, including development and
implementation of international biodiversity assessments and targets78, research
synthesis for conservation decision-making155, and near-term ecological forecasting
of species abundance in space and time156, so continued efforts to increase the
open sharing of biodiversity data will be critical. This will require increased
incentivization, institutional support, ongoing shifts in cultural norms, and a
growing emphasis on an ethical, equitable framework for data sharing. Recent
trends toward increased sharing of presence-only biodiversity data are a cause for
optimism, but there is still a great deal of work to be done in normalizing the use
of best practices in data access, documentation, citation, and sharing. Still, we
see evidence in the trends reported in the present article for an often-reported
survey result: Researchers generally feel positively toward reusing and sharing data,
despite persistent uncertainty about best practices and concern about credit and
incentives142,143,157. Such evidence includes the recent increase in the proportion
of articles that produce open data, the efforts taken by some authors to credit
original data providers even when no clear mechanism had yet been developed to
do so, and the above-average sharing rate for citizen science data.

For researchers looking to begin or continue their journey into reuse and sharing
of open biodiversity data, there are many excellent resources that offer an entry
point into accessing and sharing open data; we particularly point such researchers
to Hampton et al. (2015), Wilkinson et al. (2016), Boland et al. (2017), Alston &
Rick (2021), and to guides such as the FAIR Principles160, the CARE Principles of
Indigenous Data Governance139, and the Quick Guide to Publishing Data Through
GBIF.orggbif2021quick. To those beginning to engage with open data, we echo the
wisdom of Bahlai et al. (2019), Alston & Rick (2021), and others in encouraging
researchers to begin with any first steps, however small, that are feasible given
their circumstances. Increased open data sharing will rely on both the progressive
adoption of data sharing practices by individual researchers and ultimately on
broad cultural shifts within biodiversity and related fields5. This shift to a culture
of ethical open data sharing will be essential to meet challenges associated with
the growing biodiversity crisis and to support a growing need for biodiversity
assessment, monitoring, and conservation.
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Open data practices among users of primary biodiversity data

SUPPLEMENTARY MATERIALS

S1. Extended methods for literature search and
screening.
We searched the Web of Science Core Collection to target all scholarly articles that
report on the application of presence-only biodiversity occurrence data, targeting
articles whose titles, abstracts, or keywords contained any of 31 terms commonly
used in the literature to indicate presence-only data as well as any of five terms
used to indicate biodiversity:

(((TS=("presence-only" OR "presence only" OR "opportunistic
observation*" OR "opportunistic species observation*" OR
"opportunistic occurrence*" OR "opportunistic distribution*" OR
"opportunistic species occurrence*" OR "opportunistic species
distribution*" OR "pseudo-absence*" OR "pseudoabsence*" OR "inferred
absence*" OR "presence-background" OR "presence background" OR
"citizen science" OR "community science" OR "participatory science"
or "ad hoc data" OR "ad hoc collection" OR "ad hoc method*" OR
"incidental data" OR "incidental sighting*" OR "incidentally
collected" OR "geographic one-class data" OR "incidental detection*"
OR "opportunistic detection*" OR "primary biodiversity data*" OR
"occurrence record*" OR "atlas data" OR "unstructured occurrence
data" OR "unstructured species observation" OR "unstructured
biodiversity data"))

AND (TS=("distribution" OR "species" OR "biodiversity" OR "habitat*" OR
"niche*")))

AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All

years

The search, conducted on January 4, 2021, returned 4021 peer-reviewed English-
language articles.

We screened the abstracts of all returned articles and retained those that
demonstrated the analysis or reporting of presence-only occurrence data. in the
following categories were excluded: 1) articles unrelated to use of presence-only



68

biodiversity occurrence data; 2) review or conceptual articles that did not perform
data analysis or reporting; 3) articles that focused on the storage or management,
rather than analysis or reporting, of occurrence data; and 4) articles that used
exclusively simulated data. The article screening process is report in the following
diagram, modified from the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) scheme1. After screening, a total of 2151 articles were
included in the review. Data management and bibliometric summary statistics
were conducted in part with the bibliometrix package in R2.
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S2. Sets of topic clusters produced by LDA topic
modeling.

We ran Latent Dirichlet Allocation (LDA) topic modeling six times to produce
sets of clusters ranging from three through eight clusters per set. We assessed
each set of results for redundancy and interpretability and selected the set of three
clusters as the most interpretable and least redundant. All six sets of modeling
results are shown here. All topic modeling was conducted and LDA figures were
produced using the revtools package in R3.

For each set of clusters, the biplot indicates the arrangement of articles relative
to each other in terms of topic similarity. Each point represents an article and
proximity indicates topical similarity. Colors indicate clusters. The topic bar
charts represent the number of articles classified into each topic cluster. The word
bar charts indicate the words most strongly associated with each cluster; these
word associations were used to assign interpretations to each cluster.
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S3. Data sheet categories used to categorize the set of
300 papers read in full.
All variable categories, except for study region, were not mutually exclusive; that
is, an article could be coded with as many variable responses as applicable.

Variable category Variable (True/False Response)
Topic categories
mentioned in
abstract
[True/false]

Invasive species
Land use change
Climate change
Overexploitation
Pollution
Other conservation issues
Other basic ecology topics
New methods development
Comparing multiple presence-only approaches
Comparing presence-only with more structured ap-
proaches
Testing methodological choices within one presence-
only approach
Testing new technology for analyzing/reporting
presence-only data

Taxa
[True/false]

Bird
Mammal
Amphibian/reptile
Fish
Invertebrate
Virus/bacteria/similar
Plant/similar

Study system
[True/false]

Terrestrial
Marine
Freshwater

Study region
[True/false]

Africa
Asia
Europe
Latin America
North America
Oceania
Oceans
Polar regions
Multiple/global

Author region
[True/false]1

Africa
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Asia
Europe
Latin America
North America
Oceania

Study scale
[True/false]

Local (upper size limit defined as municipality)
Regional (upper size limit defined as large
state/province and/or small nation)
Large (defined as large national to continental scale)
Global (defined as multiple continents)

Sample size
[True/false]

1-10
11-100
101-1,000
1,001-10,000
10,001-100,000
100,001-1,000,000
> 1,000,000
Not described

Sampling design
[True/false]

Explicitly described as opportunistic
Semi-structured sampling design
Structured presence/absence data
Not described

Direct data source
[Number of each
type of source,
unless otherwise
noted]

Original data
Large openly accessible database
Small openly accessible database
Literature
Social media
Unpublished data/personal communication
Private organization/nonprofit
Government agency
Museum/herbarium/collections
[For open databases] Name of database [open-ended
response field]
[For open databases] Is open database still available?
[True/false]

Original data source
[True/false]

Citizen science

Data availability
[True/false, unless
otherwise noted]

All data shared after publication – in an open database
All data shared after publication – other method
Location/format of shared data [open-ended response
field]
Is shared data still accessible?
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Analysis approach
[True/false]

Report of occurrence
Spatial summary statistics
Analysis of user trends
Species distribution/ecological niche modeling
Occupancy modeling
List length analysis
Species richness/diversity measures
Phenology
Population dynamics/demographic modeling
Multivariate analyses

Other analysis
information
[True/false]

Comparison with more structured analysis types
Integration with more structured data types
Presence-only data used to evaluate a different type
of analysis
Presence-only data used to design a different type of
analysis
Biases associated with presence-only data discussed

1 Study and author region categories were derived from the GBIF Regions4.

S4. Data collected from the set of 300 articles.
Data are available at https://doi.org/10.17605/OSF.IO/JUEQC.

S5. Ten most cited articles and most commonly cited
references among included articles.
Table S5a. The ten most cited articles from within the articles included in our
review.

Article Times cited
Phillips et al. 2006. Maximum entropy modeling of species
geographic distributions. Ecological Modelling.

7546

Phillips and Dudík 2008. Modeling of species distributions
with Maxent. Ecography.

3063

https://doi.org/10.17605/OSF.IO/JUEQC
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Elith et al. 2011. A statistical explanation of MaxEnt for
ecologists. Diversity and Distributions.

2658

Pearson et al. 2007. Predicting species distributions from
small numbers of occurrence records: a test case using
cryptic geckos in Madagascar. Journal of Biogeography.

1540

Hernandez et al. 2006. The effect of sample size and
species characteristics on performance of different species
distribution modeling methods. Ecography.

1258

Phillips et al. 2009. Sample selection bias and presence-
only distribution models: implications for background and
pseudo-absence data. Ecological Applications.

1251

Merow et al. 2013. A practical guide to MaxEnt for
modeling species’ distributions: what it does, and why
inputs and settings matter. Ecography.

1129

Anderson et al. 2003. Evaluating predictive models of
species’ distributions: criteria for selecting optimal models
Ecological Modelling.

712

Engler et al. 2004. An improved approach for predict-
ing the distribution of rare and endangered species from
occurrence and pseudo-absence data. Journal of Applied
Ecology.

576

Pearson et al. 2006. Model-based uncertainty in species
range prediction. Journal of Biogeography.

556

Table S5b. The most common references cited by articles included in our
review. These references are not necessarily within the set of articles included in
our review.

Article Times referenced
Phillips et al. 2006. Maximum entropy modeling of species
geographic distributions. Ecological Modelling.

695
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Elith et al. 2006. Novel methods improve prediction of
species’ distributions from occurrence data. Ecography.

509

Hijmans et al. 2005. Very high resolution interpolated cli-
mate surfaces for global land areas. International Journal
of Climatology.

429

Phillips and Dudík 2008. Modeling of species distributions
with Maxent. Ecography.

347

Fielding and Bell 1997. A review of methods for the assess-
ment of prediction errors in conservation presence/absence
models. Environmental Conservation.

322

Elith et al. 2011. A statistical explanation of MaxEnt for
ecologists. Diversity and Distributions.

306

Guisan and Zimmermann 2000. Predictive habitat distri-
bution models in ecology. Ecological Modelling.

291

Phillips et al. 2009. Sample selection bias and presence-
only distribution models: implications for background and
pseudo-absence data. Ecological Applications.

289

Elith and Leathwick 2009. Species Distribution Models:
Ecological Explanation and Prediction Across Space and
Time. Annual Review of Ecology, Evolution, and System-
atics.

263

Guisan and Thuiller 2005. Predicting species distribution:
offering more than simple habitat models. Ecology Let-
ters.

261
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S6. Openly accessible databases used by articles in the
set of 300.
Asterisk indicates databases considered ‘large’ for the purpose of this review.

Database Times used
* Global Biodiversity Information Facility (GBIF) 37
* eBird 9
* Atlas of Living Australia 8
* iNaturalist 8
* Tropicos 8
* OBIS 4
* speciesLink 4
Butterflies for the New Millenium 3
* FishBase 3
Victorian Biodiversity Atlas 3
Birdlife Australia 2
Biodiversity Information Serving Our Nation (US) (BISON) 2
BugGuide.net 2
Butterfly Conservation 2
Chinese Virtual Herbarium 2
Dutch National Database Flora and Fauna 2
EDDMaps 2
* iDigBio 2
Joint Nature Conservancy Council Seabird Censuses 2
ManisNet.org 2
National Specimen Information Infrastructure (China) 2
SEINet Portal Network 2
Swedish Lifewatch 2
Taiwan Roadkill Observation Network 2
UK Biological Records Centre 2
VertNet 2
WikiAves 2
AK Libellen NRW 1
AquaNIS 1
ArtDatabanken (Swedish Species Observation System) 1
Artsdatabanken (Norwegian Biodiversity Information Centre) 1
Atlas of New South Wales Wildlife 1
Aves de Chile 1
Base de Datos sobre Scarabaeidae (BANDASCA) 1
Basking Shark Watch (UK Marine Conservation Society) 1
Biodiversity Databank of Catalonia 1
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BioObs 1
Bird Conservation Society of Thailand (BCST) 1
BirdLife Finland Tiira database 1
Birdlife International 1
BOLD (Barcode of Life) 1
British Dragonfly Society Recording Scheme 1
British Trust for Ornithology 1
Butterflies and Moths of North America 1
CalOdes 1
CardObs 1
Centre for Agriculture and Biosciences International (CABI) 1
Centre of Environmental Data and Recording (CEDaR)
(North Ireland)

1

Centre Suisse de la Faune 1
cloudbirders.com 1
COL (National Colombian Herbarium of the Instituto de
Ciencias Naturales)

1

Comisión Nacional para el Conocimiento y Uso de la Biodi-
versidad (CONABIO)

1

Database for Ecosystems and Ecosystem Service Zoning in
China

1

Datenbank Artenschutzkartierung 1
Données d’Observations pour la Reconnaissance et
l’Identification de la faune et la flore Subaquatiques
(DORIS)

1

Dutch Butterfly Monitoring Scheme 1
Dutch Dragonfly Monitoring Scheme 1
eButterfly 1
EPPO Global Database (European and Mediterranean Plant
Protection Organization)

1

EUFORGEN (European Forest Genetic Resources Pro-
gramme)

1

European Environment Agency (http://eunis.eea.europa.eu) 1
falterfunde.de (science4you) 1
Faune-Aquitaine 1
Flora of Cyprus 1
Flora-On 1
Flotrop 1
Global Ant Biodiversity Informatics (GABI) 1
Global Mammal Parasite Database 1
HOLOS Ecoinformatics Engine 1
http://magicicada.org/ 1
http://mammiferimarini.unipv.it/ Strandings Database 1
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https://www.geocetus.it/ Stranding Information System 1
https://www.ornitho.at/ 1
https://www.ornitho.ch/ 1
https://www.ornitho.it/ 1
Influenza Research Database (FluDB) 1
INPN Espèces 1
Insect Database (Finnish Museum of Natural History) 1
insecte.org 1
iSeahorse 1
JABOT (Rio de Janeiro Botanical Garden) 1
Jaguar GIS (http://www.savethejaguar.org) 1
JellyWatch (http://www.jellywatch.org) 1
JSTOR 1
LANDFIRE reference data base 2010, v1.2.0 1
Malaysian Nature Society Bird i-Witness database 1
Massachusetts Audubon Butterfly Atlas 1
MosquitoMap 1
Natagora 1
National Biodiversity Data Centre (Ireland) 1
National Indigenous Vegetation Survey Database (New
Zealand)

1

National Institute of Invasive Species Science (NIISS) database
(US)

1

NeoTropTree 1
New Zealand Herpetofauna Database 1
North American Breeding Bird Survey 1
OBIS-SEAMAP 1
Observadores del Mar 1
Odonata Central 1
PERSEUS (Policy-oriented marine Environmental Research
in the Southern European Seas)

1

REBIOMA (Réseau de la Biodiversité de Madagascar) 1
Red de Observadores de Libélulas de Andalucía 1
Redmap 1
Reef Life Survey 1
Seaquest Southwest, Cornwall Wildlife Trust 1
SIG-Ivoire 1
Société française d‘Odonatologie 1
SOMBASE (Southern Ocean Mollusc Database) 1
SWEMP (Southwest Exotic Mapping Program) 1
The Database on Taxonomy of Drosophilidae 1
Tokyo Butterfly Monitoring 1
UK National Biodiversity Network 1
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University of British Columbia E-fauna 1
USGS Nonindigenous Aquatic Species database (US) 1
VectorMap 1
West African Vegetation database of the Senckenberg Research
Institute

1

www.naturbeobachtung.at 1
xeno-canto 1

S7. Bibliography of the subset of 300 articles that were
randomly selected from the full set of 2151 articles to
be read in full and coded for analysis.
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Abstract
Technological advances and data availability have enabled artificial
intelligence-driven tools that can increasingly successfully assist in
identifying species from images. Especially within citizen science, an
emerging source of information filling the knowledge gaps needed to
solve the biodiversity crisis, such tools can allow participants to recognize
and report more poorly known species. This can be an important tool
in addressing the substantial taxonomic bias in biodiversity data, where
broadly recognized, charismatic species are highly over-represented.
Meanwhile, the recognition models are trained using the same biased
data, so it is important to consider what additional images are needed
to improve recognition models. In this study, we investigated how
the amount of training data influenced the performance of species
recognition models for various taxa. We utilized a large citizen science
dataset collected in Norway, where images are added independently from
identification. We demonstrate that while adding images of currently
under-represented taxa will generally improve recognition models more,
there are important deviations from this general pattern. Thus, a more
focused prioritization of data collection beyond the basic paradigm that
“more is better” is likely to significantly improve species recognition
models and advance the representativeness of biodiversity data.
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Introduction
Addressing the current crisis related to biodiversity loss necessarily involves ad-
dressing several fundamental knowledge gaps1,2. Currently there are vast spatial,
temporal and especially taxonomic gaps and biases in global primary biodiver-
sity data sets, limiting our understanding of the earth’s biosphere3–6. Several
observation methods based on image recognition, ranging from remotely operated
vessels to camera traps and citizen science programs7–9, hold great promise in
solving some of the taxonomic biases currently experienced10. Citizen science
(observations made by non-professional volunteers11) has emerged as a very large
source of biodiversity data. It has the potential to fill gaps in our current knowledge
about the occurrence of species in time and space12–14. Several citizen science
programs, e.g. iNaturalist, eBird, iSpot15 contribute data on vast scales and in
amounts that cannot feasibly be acquired in any other way. Such programs come
with the added benefit of educating and engaging the general public16–18. Some
of the main concerns related to citizen science data are reliability of the taxon
identifications reported19,20, and the over-representation of more charismatic taxa
such as birds and flowering plants21–23. Improving the quality of citizen science
data is a vital step in addressing the knowledge gaps in our understanding of the
earth’s biosphere.

Image recognition models can help citizen scientists recognize more species
and provide a quality control mechanism that helps to reduce the risk of species
misidentification10. Their performance is however inherently linked to the quality
of the data used to train them. By increasingly helping citizen scientists identify
species from images24–26, such tools help address the aforementioned issues in citizen
science data, adding to the quality, quantity and taxonomic scope of observations.
Image recognition models can warn the citizen scientist and validators of potential
misclassifications. Output of citizen scientists is increased as automating parts
of the reporting process makes reporting less time consuming. Image recognition
models also allow citizen scientists to report more of what they encounter by
enabling them to report taxa they could not have identified independently. The
taxonomic scope of the citizen scientist is expanded when tools enable them
to identify and report within taxa they would otherwise not be familiar with27.
Observations accompanied by images can be used for training an image recognition
model for use in the field. Generally one aims to keep training data as similar as
possible to the intended classification task of the model28. By using images from
citizen scientists when training a model intended for use within citizen science, one
is more likely to capture the variability in the kind of images provided by citizen
scientists. Images from other sources may be more standardized, depict close-
ups of relevant features, and/or depict preserved and prepared specimens. Deep
neural networks are designed to draw inferences from novel data by generalized
patterns observed in training data28, requiring substantial amounts of data. The
Computer Vision model by iNaturalist, for example, only includes taxa for which
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at least 100 images are available29. This criterion excludes 89% of the taxa with
at least one image in the dataset used in this study, illustrating how heavily the
training of models depends on the amounts of data citizen science provides. In
this manner, citizen science and automated image recognition are increasingly
interdependent. Image recognition models help citizen scientists collect data to
expand our knowledge base, whilst training of the next generation of recognition
models depends on the collection of more images.

While some species are readily recognized with limited experience, others require
extensive experience with many specimens to obtain the necessary knowledge. The
distinct colorations of butterflies may allow any interested observer with some
experience to reliably identify the majority of species in certain areas, while a
taxon like Diptera remains notoriously difficult even after years of study. Machine
learning is no different from human learning in this respect; different amounts of
training data are required depending on the distinctness of species’ characteristics.
Therefore, there can be substantial differences between taxa in the number of
images required per species for the best achievable model performance. This can
depend on factors like species’ distinctiveness, the variation in appearance, the
various angles and contexts in which photos are taken, and the extent to which
a species’ behavior is suited for high quality documentation.27,30,31 As a result,
the value of adding a new image to the training set is not equal across taxa, but
varies both because the size of the existing training set is different, and the fact
that some species are more distinct than others. Thus it is important to consider
the informational value of adding images to the training data.

In this study, we use the Species Observation Service, a large Norwegian citizen
science project, as an example to investigate the nature of the bias in citizen science
image data, and how this relates to the value of data for image recognition models.
One way to evaluate this is by using the concept of Value of Information (VoI); “the
increase in expected value that arises from making the best choice with the benefit of
a piece of information compared to the best choice without the benefit of that same
information”32. Considering training data for image recognition models in the
VoI framework allows us to identify the most effective prioritization for improving
recognition models. This method allows for a more sophisticated approach to
data collection than simply adding more data for all taxa, or even for taxa that
are currently the most under-represented. First, we evaluate whether the biases
generally found in all observation data, regardless of source, are the same within
citizen science observations with images, or if there are different biases that need
to be taken into account. Then we train multiple image recognition models for
different taxa, with a gradually increasing number of images per species, allowing
us to quantify and compare the effects of adding more training data between
taxa. Using these changes in performance, we estimate the VoI of adding training
data for each taxon, relative to the amount of images that are currently available.
Finally, comparing this VoI to the amount of over- or under-representation of
these taxa, we demonstrate that mobilizing images with a higher VoI provides an
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alternative, data-driven and efficient approach compared to simply prioritizing
images of the currently most under-represented taxa.

Results

Taxonomic bias in citizen science observations with or without
images

It has been well documented in a global context that particularly charismatic tax-
onomic classes have many times more reported observations per species than those
that are considered less charismatic5. We find the same pattern when considering
classes within the totality of GBIF mediated observations for Norway from all
sources (figure 1a). When limiting this analysis to only observations with images
that originate from the citizen science platform Species Observation Service33, a
different pattern emerges (figure 1b). Perhaps most eye-catchingly, Insecta are
the most under-represented taxon in the totality of Norwegian observations, but
the 3rd most over-represented when limiting the analysis to citizen science images.
We performed a similar analysis for the 12 taxonomic orders used in the machine
learning part of this study. This provides the biases in relative representation per
species in the data available for training our recognition models.

Image recognition performance and the Value of Information

When training image recognition models, the amount of training data provided
to the model determines how well the model is able to recognize species in the
test images. For all orders, as models are provided with more images per species,
their performance (as measured by the F1 scores) increases. Comparing the
performances for each order at the lowest and highest number of training images
per species, as well as the gradual performance increase over intermediate numbers
of training images, it is clear that the 12 orders have distinct performance curves
(figure 2). From this it follows that the increase in performance at any given
point on these curves - the Value of Information (VoI) of adding observations with
images at that point - also differs between orders. Combined with substantially
different amounts of currently available observations between orders, the estimated
VoI of adding an observation with at least one image to those currently available
for that order also varies widely (figure 3).

Combining Value of Information and taxonomic bias

After obtaining the per-species over- and under-representations, as well as the
current expected VoI of additional observations with images, we can compare the
two values for each order in the experiment. Plotting the taxonomic bias of the
orders used in this experiment together with their estimates for their respective
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(a) (b)

Figure 1: The per-species representation of observations in Norway per class, using all GBIF
data (a) or only GBIF mediated citizen science data with images (b). The 0-line is where the
values would be if the average number of observations per species in that class was equal to the
average number of observations per species over all classes combined. Plotted here on an inverse
hyperbolic sine-transformed scale, sorted by the per-species representation in subplot (a).
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Figure 2: The performance (F1 score) vs the training set size. Lines are the fitted Von Bertalanffy
Growth Function-curves per order. See the Supplementary Information for an interpretation of
such curves.
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Figure 3: The VoI (F1 increase) for each order as the result of adding a single observation with
at least one image for a single species, versus the average number of observations with images
available per species. Dotted lines mark the average number of observations with images per
species currently available for the respective order, from which the current expected VoI (marked
with x) is derived.

estimated VoI, it is clear that current under- or over-representation of the order
is not the determining factor for the expected value of additional observations.
While the VoI of under-represented orders is generally higher, differences between
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orders in their learning curves cause some orders to have a higher or lower VoI
than just their overall over- or under-representation would indicate (figure 4).

Figure 4: The relative per-species representation in Norwegian citizen science observations with
images, and their Value of Information. The areas of the circles are relative to their respective
VoI, defined as the current expected performance increase (in F1 score) for one added observation
with images for that order. If the VoI of adding data was mainly determined by the current
relative over- or under-representation of a taxon, one would expect circles to gradually increase
for more under-represented orders in the lower part of the graph. Numerical values provided in
the Supplementary Information.

Discussion
We set out to investigate the taxonomic bias in citizen science data, in particular
when accompanied by images, using a large Norwegian citizen science project
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as an example case. Such images can be used to train deep neural networks for
image recognition, helping citizen scientists by verifying species identifications and
addressing some of the inherent taxonomic bias as they then can report within taxa
they are not able to identify independently. By examining how the performance
of recognition models increases as they are provided with more images in an
experimental setup, we can estimate how much we expect models to improve when
adding more images to those currently available for each taxon. Comparing this
Value of Information (VoI) to the taxonomic bias within citizen science image data,
we propose data prioritization strategies based on what additional data would
improve recognition models the most. Such strategies would be more efficient than
merely focusing more on taxa for which there are currently fewer images available.

Taxonomic bias

The taxonomic biases within citizen science observations considered in the current
study follow a similar pattern to what has been found across biodiversity data
in general5. However, when only considering citizen science observations with
images, these trends are less pronounced; plants and fungi have relatively higher
percentages of observations with images than for example birds (figure 1b). This
indicates that while birds are still the most reported group also within citizen
science observations with images, bird observations are generally less commonly
documented with images. The reverse is true for the Insecta, which are so abundant
in the citizen science image data as to be the 3rd most overrepresented class in
that context. This is in stark contrast to what has been found for the totality of
GBIF mediated observations globally5 and in the Norwegian context we examined
here, where the Insecta are the single most under-represented class.

Analyzing the taxonomic biases for the orders used in the machine learning
part of this study sheds some light on the underlying mechanisms. While all
orders within Aves are over-represented regardless of the nature of the observations
considered, the Insecta are more diverse in their bias, as illustrated by Lepidoptera
being the most over-represented order but Diptera the most under-represented.

We hypothesize that this disparity between taxonomic bias in all data versus
that in citizen science data with images is most likely a combination of the behavior
of the species and the kind of citizen scientists reporting the observations. There
are distinctly different types of citizen scientists, with their own contribution
patterns34. For casual reporters lacking specialized equipment, charismatic butter-
flies and flowering plants are more readily photographed opportunistically than
birds. Meanwhile, a group of quite persistent ornithologists report the bulk of the
bird observations in the dataset. This is typically a group reporting in a structured
manner, more often based on local inventories and checklists, where reporting with
images is less common than with opportunistic observations.
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Image recognition and Value of Information

There are clearly differences between orders in the rates at which image recogni-
tion improves as more images are made available per species (figure 2). These
differences between orders manifest in both initial performances, the rate at which
performances change, and the maximum performance achieved. This indicates
that, as is the case for humans, it requires more experience to learn to identify
species within certain taxa than others, while the reliability with which species are
correctly identified once the necessary knowledge has been acquired also differs.
The differences between orders in this regard is not necessarily directly linked to
the taxon’s characteristics alone, however. Image quality and composition can vary
between taxa depending on factors such as specimens’ behavior or lack thereof,
physical size, and the kind of citizen scientist generally photographing the species.
A stationary flower is easier to photograph with a lot of detail than a centipede
running for cover. A mite that can only be photographed with a macro lens will
be photographed by a citizen scientist who has invested in such equipment. This
type of citizen scientist is also more likely to invest time in taking a high quality
picture than a casual citizen scientist snapping a squirrel with their mobile phone.

The VoI estimates for each of the orders provides equally diverse results. For
any given number of images per species, orders differ in the expected performance
increase at that point, as do the relative rates at which these performances change
as data is added. As a consequence, there is a range of varying estimates for the
VoI for each order, depending on both the number of images currently available
per species, and the way the VoI per additional observation with images declines
as more images are already available to the model.

Combining taxonomic biases and the Value of Information

We now have an estimate of how over- or under-represented the orders with which
the recognition models have been trained are relative to one another, as well as a
per-order estimate of the VoI per added observation with images. This means that
we can address the question whether models are best improved by adding more
image data equally across orders, if one should ideally prioritize under-represented
orders, or if there is a prioritization to be made based on order-specific differences.
As shown in figure 4, there are distinct differences in the VoI per order, and these
do not merely correlate with their respective over- or under-representation. The
plant orders of Asparagales and Lamiales clearly have a higher VoI despite their
slight over-representation when compared to the other orders in this experiment.
The fungi order Polyporales also gains more than twice the VoI per additional
observation with images in comparison to the fourth-most valuable order, the
Lecanorales. We conclude that, from a VoI perspective, these are the orders for
which a recognition model would benefit the most per observation with images
added, despite the fact that other orders are numerically more under-represented.
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Conclusions

Based on the Value of Information (VoI) for image recognition models, a citizen
scientist or citizen science project manager aiming to maximize their impact in this
regard might want to focus on orders with the highest expected VoI per observation
with images added, rather than simply on the order with the lowest number of
images per species. Observations with images of other orders, while in some cases
less well-represented in the available image data, appear to provide less VoI per
additional observation. As citizen scientists are in large part motivated by a desire
to advance scientific knowledge35, communicating such considerations can be an
important part of community engagement.

In generalizing these findings, the following has to be noted:

• The taxa identified here as having the highest expected VoI per observation
with images added are examples from the limited subset of orders used
within this experiment. As illustrated by the observed variation in per-
species representation and VoI between orders that belong to the same class,
it is evident that generalization of a class like Insecta fails to give insight into
intra-class variation. It is likely that a similar principle applies to orders,
where for example a taxonomic group like Norwegian warblers likely has
a different VoI curve than the more readily distinguished titmice. Such
differences will remain hidden from view when analyzing passerine birds as
a single taxonomic group.

• Our findings are derived from Norwegian species reported on a single Norwe-
gian citizen science portal. The diversity of species within the same orders
can differ in other regions, affecting the VoI curves. Different portals will
also differ in the way they accommodate reporting observations with images,
and in general attract different types of users23. All of these factors are
likely to have an effect on the proportion of observations accompanied by
photographic evidence and the quality thereof. Such factors also affect the
nature of newly added data, including its expected VoI.

• Models were trained on species for which at least 220 observations with images
were available. This is not a random subset of all the species within an order,
and likely to be biased towards charismatic species and those that are more
readily identifiable from an image. This can lead to an overestimation in
terms of learning rate and thus the VoI curve, especially within orders in
which relatively few species have the data availability we selected for here.
Then again, future observations to be added to the data will be prone to the
same biases, in which case the VoI of such an addition will be lower than it
would be for a truly random species.

• Current and future (deep) learning methods alternative to Convolutional
Neural Networks (CNN) may be able to utilize more information in an image
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and generalize more rapidly, using less data. This could have implications
for the importance of VoI relative to the overall bias. We expect that the
demonstrated differences in VoI between species are not unique to CNN
however, and in part inherent to the visual information available in each
picture. Either way, awareness of the potential differences in VoI between
taxa is warranted, and an interesting consideration to evaluate in future
studies.

Regardless of the specific taxa and derived values, our findings demonstrate
that a more informed decision is possible when choosing to focus on certain taxa
for data collection aimed at improved recognition models. Prioritization of taxa for
which to mobilize additional data can be informed by considering its expected VoI,
rather than simply prioritizing those that are currently the most under-represented
numerically. Note that this is no plea for deprioritizing data collection for such taxa
in the context of citizen science as a whole. There are many areas of management
and research that can benefit from additional data on taxa we predict will benefit
less from additional images for recognition models, and ample reasons to mobilize
data for other applications than image recognition.

Training machine learning models requires substantial amounts of data, cer-
tainly when context, morphology and phenology vary, such as when classifying in
situ images. Data collection in machine learning generally is a matter of harvesting
whatever one can to provide the model with more data. Within (citizen) science,
the collection of images mainly serves as secondary data, providing documentation
for the occurrence it accompanies. With the more widespread use of image recog-
nition models as both a user tool and a mechanism for quality control, it is time to
view images as data in and of themselves. Such a shift calls not only for conscious
choices when it comes to the VoI in images, but increased implementation of data
practices such as persistent storage, metadata standardization and the other FAIR
data principles36 to enable more apt usage of image data for current and novel
applications.

Methods
In the current study we utilize an extensive network and data from citizen science
in order to test for among taxa variation in biases and Value of Information (VoI)
in image recognition training data. We use data from the Norwegian Species
Observation Service as an example dataset due to the generic nature of this citizen
science platform, where all multicellular taxa from any Norwegian region can be
reported both with and without images. The platform is open to anyone willing to
report under their full real name, and does not record users’ expertise or profession.
The platform had 6,205 active contributors in 2021 out of its 17,655 registered users,
and currently publishes almost 27 million observations through GBIF, of which 1.08
million with one or more images. Observations have been bulk-verified by experts
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appointed by biological societies receiving funding for this task, with particular
focus on red listed species, invasive alien species, and observations out of range
or season. Observations containing pictures receive additional scrutiny, as other
users can alert reporters and validators to possible mistaken identifications. An
advantage of this particular platform is that no image recognition model has been
integrated. This ensures that the models trained in this experiment are not trained
on the output resulting from the use of any model, but with identifications and
taxonomic biases springing from the knowledge and interest of human observers.
Moreover, the platform’s compliance with the authoritative Norwegian taxonomy
allows for analyses on taxonomic coverage.

In an exploration procedure we determined the taxonomic level of orders to be
suitable examples of taxa with a sufficiently wide taxonomic diversity, and enough
data in the dataset to be evaluated for models in this experiment. Data collection
was done by acquiring taxon statistics and observation data from the Global
Biodiversity Information Facility (GBIF), the largest aggregator of biodiversity
observations in the world37 for the selected orders, as well as the classes used by
Troudet et al.5. The authoritative taxonomy for Norway was downloaded from
the Norwegian Biodiversity Information Centre38. In the experimental procedure,
models were trained for 12 distinct orders (listed in figure 4), artificially restricting
these models to different amounts of data. In the data analysis stage, model
performances relative to the amount of training data were fitted for each order,
allowing the estimation of a VoI. Using the number of observations per species
on GBIF, and the number of species known to be present in Norway from the
Norwegian Species Nomenclature Database, we calculated relative taxonomic
biases.

Exploration

Initial pilot runs were done on 8 taxa (see Supplementary Information), using
different subset sizes of observations for each species, and training using both an
Inception-ResNet-v239 as well as an EfficientNetB340 architecture for each of these
subsets. These initial results indicated that the Inception-ResNet-v2 performance
(F1) varied less between replicate runs and was generally higher, so subsequent
experiments were done using this architecture. The number of observations which
still improved the accuracy of the model was found to be between 150 and 200 in
the most extreme cases, so the availability of at least 220 observations with images
per species was chosen as an inclusion criteria for the further experiment. This
enabled us to set aside at least 20 observations per species as a test dataset for
independent model analysis.

From a Darwin Core Archive file of Norwegian citizen science observations
from the Species Observation Service with at least one image33, a tally of the
number of such observations per species was generated. We then calculated how
many species, with a minimum of 220 such observations, would, at a minimum, be
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available per taxon if a grouping was made based on each taxon rank level with the
constraint of resulting in at least 12 distinct taxa. For each taxonomic level, we
calculated how many species having at least 220 such observations were available
per taxon when dividing species based on that taxon level. When deciding on the
appropriate taxon level to use, we limited the options to taxon levels resulting in
at least 12 different taxa.

A division by order was found to provide the highest minimum number of
species (17) per order within these constraints, covering 12 of the 96 eligible orders.
The next best alternative was the family level, which would contain 15 species per
family, covering 12 of the 267 eligible families.

Data collection

We retrieved the number of species represented in the Norwegian data through
the GBIF API, for all observations, all citizen science observations, and all citizen
science observations with images for the 12 selected orders and the classes used
by Troudet et al.5. We also downloaded the Norwegian Species Nomenclature
Database38 for all kingdoms containing taxa included in these datasets. Observa-
tions with images were collected from the Darwin Core Archive file used in the
exploration phase, filtering on the selected orders. For these orders, all images were
downloaded and stored locally. The average number of images per observation in
this dataset was 1.44, with a maximum of 17 and a median of 1.

Experimental procedure

For each selected order, a list of all species with at least 220 observations with
images was generated from the Darwin Core Archive file33. Then, runs were
generated according to the following protocol (figure 5):

1. From a list sorted alphabetically by the full taxonomy of the species, a subset
of 17 consecutive species starting from a random index was selected. If the
end of the list was reached with fewer than 17 species selected, selection
continued from the start of the list. The taxonomic sorting ensures that
closely related species (belonging to the same family or genus), bearing more
similarity, are more likely to be part of the same experimental set. This
ensures that the classification task is not simplified for taxa with many
eligible species.

2. Each of the 220+ observations for each species were tagged as being either
test, training or validation data. A random subset of all but 200 were
assigned to the test set. The remaining 200 observations were, in a 9:1 ratio,
randomly designated as training or validation data, respectively. In all cases,
images from the same observation were assigned to the same subset, to keep
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Figure 5: Data selection and subdivision. Each run is generated by selecting 17 taxonomically
adjacent species per order, and randomly assigning all available images of each selected species to
that run’s test-, train- or validation set. Training data are used as input during training, using
the validation data to evaluate performance after each training round in order to adjust training
parameters during training. The test set is used to measure model performance independently
after the model is finalized28. For each subsequent model in that run, training and validation
data are reduced by 25% (or slightly less than 25% if not divisible by 4). The test set is not
reduced, and used for all models within a run.

the information in each subset independent from the others. The resulting
lists of images are stored as the test set and 200-observation task.

3. The 200 observations in the training and validation sets were then repeatedly
reduced by discarding a random subset of 25% of both, maintaining a
validation data proportion of ≤10%. The resulting set was saved as the next
task, and this step was repeated as long as the resulting task contained a
minimum of 10 observations per species. The test set remained unaltered
throughout.

Following this protocol results in a single run of related training tasks with
200, 150, 113, 85, 64, 48, 36, 27, 21, 16 and 12 observations for training and
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validation per species. The seeds for the randomization for both the selection
of the species and for the subsetting of training- and validation datasets were
stored for reproducibility. The generation of runs was repeated 5 times per order
to generate runs containing tasks with different species subsets and different
observation subsetting.

Then, a Convolutional Neural Network based on Inception-ResNet-v239 (see
the Supplementary Information for model configuration) was trained using each
predesignated training/validation split. When the learning rate had reached its
minimum and accuracy no longer improved on the validation data, training was
stopped and the best performing model was saved. Following this protocol, each
of the 12 orders were trained in 5 separate runs containing 11 training tasks each,
thus producing a total of 660 recognition models. After training, each model was
tested on all available test images for the relevant run.

Data analysis

The relative representation of species within different taxa were generated using
the number of species present in the GBIF data for Norway within each taxon and
the number of accepted species within that taxon present in the Norwegian Species
Nomenclature Database38, in line with Troudet et al.5: Rx = nx − (n sx

s ) where
Rx is the relative representation for taxon x, nx is the number of observations for
taxon x, n is the total number of observations for all taxa, sx is the number of
species within taxon x, and s is the total number of species within all taxa.

As a measure of model performance, we use the F1 score, the harmonic mean
of the model’s precision and recall, given by

F1 = tp

tp + 1
2(fp + fn)

where tp, fp and fn stand for true positives, false positives and false negatives,
respectively. The F1 score is a commonly used metric for model evaluation, as it
is less susceptible to data imbalance than model accuracy28.

The Value of Information (VoI) can be generically defined as “the increase
in expected value that arises from making the best choice with the benefit of a
piece of information compared to the best choice without the benefit of that same
information”32. In the current context, we define the VoI as the expected increase
in model performance (F1 score) when adding one observation with at least one
image. To estimate this, for every order included in the experiment, the increase
in average F1 score over increasing training task sizes were fitted using the Von
Bertalanffy Growth Function, given by

L = L∞(1 − e−k(t−t0)).

where L is the average F1 score, L∞ is the asymptotic maximum F1 score, k is
the growth rate, t is the number of observations per species, and t0 is a hypothetical
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number of observations at which the F1 score is 0. The Von Bertalanffy curve
was chosen as it contains a limited number of parameters which are intuitive to
interpret, and fits the growth of model performance well.

The estimated increase in performance at any given point is then given by the
slope of this function, i.e. the result of the differentiation of the Von Bertalanffy
Growth Curve, given41 by

dL

dt
= bke−kt

where
b = L∞ekt0 .

Using this derivative function, we can estimate the expected performance
increase stemming from one additional observation with images for each of the
species within the order. Filling in the average number of citizen science obser-
vations with images per Norwegian species in that order for t, and dividing the
result by the total number of Norwegian species within the order, provides the VoI
of one additional observation with images for that order, expressed as an average
expected F1 increase.
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Maximizing citizen scientists’ contribution to automated species
recognition

SUPPLEMENTARY MATERIALS

Pilot run taxa
Initial pilot runs were done on Bombus, Cetoniidae, Coccinellidae, Coleoptera,
Lepidoptera, Odonata, Rodentia, and Zygaenidae. These taxa were chosen in
order to test the machine learning pipeline on taxa with different levels of difficulty
of identification. Rodentia were added to include a taxon outside of the Insecta.

Image recognition model configuration

Models were trained in Python 3.91, using TensorFlow2 and Keras3 to train a
new recognition model based on the Inception-ResNet-v2 architecture4 for every
dataset. A dense classification layer using softmax activation replaced the top layer
of the Inception-ResNet-v2 model as a new top layer, with 17 nodes to classify
each of the 17 species. For the loss function we used standard categorical cross
entropy loss.

Color channels of input images were normalized between -1 and 1, and were
scaled to 256×256 pixels, cropping the image to become square if needed. Training
data were augmented by shearing up to a factor of 0.2, zooming up to a factor of 0.2,
rotating up to 90 degrees, and randomly flipping horizontally or not. Validation
and test images were only normalized and squared, not augmented.

In the first training stage, the weights of the original Inception-ResNet-v2
layers were frozen, training only the newly added top layer. This was done for 2
epochs with a learning rate of 1 · 10−3. This has an equivalent effect as learning
rate warm-up.

In the second training stage, all layers were trained. This was done for a
maximum of 200 epochs, with an initial learning rate of 1 · 10−4. The learning rate
was multiplied by 0.1 when the validation loss did not improve for 3 consecutive
epochs. The minimum of the learning rate was set to 1 · 10−8.
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After each epoch, model performance was evaluated using the validation set,
saving the weights of the current model to disk as the latest checkpoint if the
accuracy for the validation set had improved since the last saved checkpoint.
Finally, when the model did not reduce its loss for 8 consecutive epochs, training
was stopped. The most recently stored checkpoint was then used as the final
recognition model for that dataset, and its performance measured using the test
data.

Taxonomic order result metrics

Order Bias in cs data with img VoI (F1 increase ·106)
Asparagales 5259 13.05

Lamiales 3879 9.36
Polyporales -11060 4.11
Lecanorales -106853 1.72

Agaricales -22932 1.52
Diptera -110248 1.42

Coleoptera -51782 1.09
Passeriformes 28630 0.73

Odonata 13075 0.32
Lepidoptera 145110 0.17

Charadriiformes 57421 0.13
Anseriformes 49501 0.02

Table S1: Orders used in the machine learning experiment, their over- or under-representation
among citizen science observations with images (relative to all orders having an equal average
amount of such observations per species), and the Value of Information as measured by the
expected F1 increase for adding one observation with images to the number of observations with
images currently available. Sorted by VoI (descending). These are the numerical values for figure
4.
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Von Bertalanffy Growth Curves
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Figure S1: Visualization of the Von Bertalanffy Growth Curve parameters. Curves were fitted
using the Levenberg-Marquardt (Least Squares) algorithm. Residuals were plotted for each taxon
and not found to be heterogeneous in their distribution.
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Abstract
Citizen science initiatives and automated collection methods increas-
ingly depend on image recognition in order to provide the amounts of
observational data research and management needs. Training recogni-
tion models, meanwhile, also requires large amounts of data from these
sources, creating a feedback loop between the methods and the tools.
Species that are harder to recognize, both for humans and machine
learning algorithms, are likely to be underreported, and thus be less
prevalent in the training data. As a result, the feedback loop may
hamper training mostly for species that already pose the greatest chal-
lenge. In this study, we trained recognition models for various taxa, and
found evidence for a “recognizability bias”, where species that models
struggle with are also generally underreported. This has implications
for the kind of performance one can expect from future models that are
trained with more data, including such challenging species. We consider
identification methods that rely on more than photographs alone to be
important in improving future identification tools.

Introduction
There is an ever growing need for large amounts of biodiversity observation
data. With an increasing awareness of the multiple crises biodiversity faces1–3,
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substantial amounts of such data are essential if humanity is to monitor trends and
address these issues4–6. Occurrence data are typically subject to spatial, temporal
and taxonomic bias7,8, and traditional manual methods of data collection are
insufficient to gather the data volume needed, or address these biases. Alternative
data collection methods, ranging from citizen science (non-professional volunteers
reporting observations9) to camera-traps automating insect monitoring10,11 are
being deployed to gather large amounts of data. With the increased output
from such initiatives, manual management and quality control become infeasible.
Automated image recognition tools for species identification are increasingly used
to facilitate this12–15. Training image recognition models, however, also requires
large amounts of pictures16. This creates a mutual reliance between large scale
image data collection and image recognition models17.

Visual identification of species is a complex task, and taxa vary in their recog-
nizability; while some species are unmistakable, many others are very challenging
or even outright impossible to identify, regardless of picture quality18. As models
are trained using training data reported and identified by humans, species with low
recognizability among humans will be underreported and be underrepresented in
the training data. This affects recognition models, as these are then being trained
with data biased towards higher recognizability, consisting mostly of pictures of
species that are easier to recognize. If this is the case, training models will be
hampered not only by the lower recognizability of particularly challenging species,
but also by their higher absence from the training data.

To evaluate the existence of this possible bias and its consequences, we eval-
uated how data availability, picture quality, biological traits and data collection
differs across species within 3 orders of birds, and how these differences relate to
recognition model performance. All data came from a large Norwegian citizen
science project, where recognition tools are not a part of the reporting or validation
process. Birds are the most well-represented orders per species, allowing for the
most detailed analysis. We also trained models for 9 other orders of plants, animals
and fungi, to test for a general correlation between data availability and model
performance, and to evaluate what this means for future recognition models.

We find evidence for a “recognizability bias”, where species that are more
readily identified by humans and recognition models alike are more prevalent in
the available image data. This pattern is present across multiple taxa, and does
not appear to relate to a difference in picture quality, biological traits, or data
collection metrics other than recognizability.

Methods
We trained image recognition models using convolutional neural networks on
pictures retrieved from the Norwegian citizen science platform Species Observation
Service19 for 12 orders: Agaricales, Anseriformes, Asparagales, Asterales, Charadri-



157

iformes, Coleoptera, Diptera, Lecanorales, Lepidoptera, Odonata, Passeriformes,
and Polyporales20. A separate model was trained for each order, using 200 docu-
mented observations per species for training and validation, and a minimum of
20 for the test set. See Koch et al.21 for details. From these models and various
external datasets, several relevant metrics were collected (table 1).

Metric Definition
Data availability The total number of citizen science observations from the

Norwegian citizen science platform Species Observation
Service19 for a species, containing one or more pictures.
This is a more meaningful measure than simply the total
number of pictures, as multiple pictures within an observa-
tion are not independent from one another and therefore
do not add as much information as unique observations.

F1-score The performance obtained for a species in a recognition
model, defined as the harmonic mean of the precision and
recall16

Species in Norway The number of species within an order that are present in
Norway, according to the Norwegian Species Nomenclature
Database22.

Table 1: Metrics collected for species within all orders

More detailed analyses were done on the included bird orders; waterfowl
(Anseriformes), shorebirds (Charadriiformes), and passerines (Passeriformes), as
bird orders have the highest proportion of species in Norway represented in the
dataset, and ample standardized available data on a range of biological traits
allowing for a deeper analysis. For these analyses, a number of additional metrics
were collected for the included bird species (table 2).

Metric Definition
Picture quality Using Label Studio v1.423, ≥50 pictures per species were

annotated by drawing rectangles approximately equal in
surface area to the visible part of each individual bird.
From this, we took the percentage of the picture occupied
by the largest depiction of an individual of the target
species, minus the percentage of the picture occupied
by all individuals of other bird species. Per species, the
median log value was used as a proxy for picture quality.

Urbanness The proportion of 100 documented observations from the
Species Observation Service with a location within a cell
tagged as “urban” in the ESA CCI landcover dataset24.
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Hand-wing index Wing length minus wing width, a measure positively cor-
related with flight efficiency and dispersal ability of a
species. Retrieved from the Global-HWI dataset25.

Body mass The average log-transformed body mass of a species, re-
trieved from the Global-HWI dataset25.

Habitat openness A three-step scale of the openness of the habitat of a
species, retrieved from the Global-HWI dataset25.

Documentation rate The proportion, per species, of observations in the Species
Observation Service that have one or more pictures.

Picture density The average number of pictures per observation from the
Species Observation Service, from those with at least one
picture.

Observation rate The number of observations in the Species Observation
Service dataset per observation in the TOV-e bird moni-
toring scheme26

Table 2: Metrics collected for species within the bird orders

LASSO multiple regression models were trained using Scikit-learn27 to evaluate
the effect of the biological traits, picture quality measurement, and data collection
process from table 2 on the F1-scores for birds. All LASSO models have the order
as a factor. The full model for biological traits is given by

F1 = β0 + β1HWI + β2BM + β3H + β4U + β5DA + ϵ + (1|Order)

where HWI is the hand-wing index, BM is the body mass, H is the habitat
openness, U is the urbanness, and DA is the log data availability. The full model
for picture quality is given by

F1 = β0 + β1Q + β2DA + ϵ + (1|Order)

where Q is the picture quality, and DA is the log data availability. The full
model for data collection parameters is given by

F1 = β0 + β1OR + β2DR + β3PD + β4DA + ϵ + (1|Order)

where OR is the observation rate, DR is the documentation rate, PD is the
picture density, and DA is the log data availability.

Results
There is a strong positive linear correlation between log data availability and the F1-
score for bird species (figure 1). Note that data availability does not affect training,
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as all models were trained and evaluated using 220 documented observations
per species, regardless of the total availability. A positive linear correlation
was also evident in 7 of the 9 other orders (figure 2), in particular Asterales
and Odonata. The beetles (Coleoptera) and lichens (Lecanorales) exhibited no
apparent correlation, with an R2 of 0.06 and 0.12, and P-values of 0.27 and 0.18,
respectively.

In each bird order, there is a linear relationship between species’ picture density
and documentation rate (R2 ≥ 0.52, p ≤ 1.51×10−7, see table S2). We also
find a negative linear correlation between picture density and F1-scores (R2 ≥
0.23, p ≤ 2.1×10−4, see table S2), and some negative linear correlation between
documentation rate and F1-scores (R2 ≥ 0.11, p ≤ 4.64×10−3, see table S2). For
passerines, there is a negative linear relationship between habitat openness and
picture quality (R2 = 0.26, p = 3.53×10−8, see table S2). Waterfowl and shorebirds
could not be evaluated as they only occur in open habitats.

LASSO models trained on biological traits, collection process parameters, and
picture quality, all having and log data availability as an additional parameter
and order as a factor, had R2 values of 0.60, 0.57 and 0.63, respectively. With
that, none of the full model performances were substantial improvements from a
LASSO model with log data availability as its only parameter (R2 = 0.57).

Discussion
We find a conspicuous pattern where recognition models attain higher performances
for species that are reported with pictures more frequently. It is probable that
the recognizability of the species influences both their likelihood of being reported
with pictures, as well as recognition model performances. The citizen science
project used as a data source here does not include any recognition tools in
its reporting or validation process, allowing a distinction between human and
algorithm recognition biases. Unmistakable species can be recognized and reported
by more citizen scientists, resulting in greater data availability for such species. A
recognition model, dealing with the same information as human observers, is also
proportionally more likely to reliably recognize these species.

This is supported by a qualitative comparison between species with the highest
and lowest recognition model performances, where easy to recognize, characteristic
species are reported more often than hard to recognize species (e.g. nondescript
species or species similar to other related species) (see figure 1 and table S1).
Further support comes from the fact that most of the correlation is explained
by the data availability for a species, rather than the documentation rate or the
picture density. Thus, there is more data available mainly when a species is
recognized and reported more, rather than it being disproportionately more likely
to be reported with pictures, or with many pictures when reported with pictures.

An alternative explanation to recognizability for increased model performance
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Figure 1: Effect of the total data availability per species on their F1-scores, in models trained
with 200 documented observations, for three bird orders. The top- and bottom-performing species
per order (highlighted dots) are depicted, see table S1. Regressions are Ordinary Least Squares
with 95% confidence intervals.
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Figure 2: The slopes of the correlations between total data availability per species and their
F1-scores, in models trained with 200 documented observations, for non-bird orders with a
correlation p<0.05. Regressions are Ordinary Least Squares, lines indicate the 95% confidence
intervals.

might be a difference in the kind of pictures, but we find no evidence for this.
Species traits, habitat use, and image quality could affect recognition model
performance if pictures of more photographed birds are taken more up close,
with higher zoom, or were cropped more. We found no evidence, however, for a
link between model performance and either picture quality or biological traits in
birds. For the passerines, where habitat openness varies among species, we do find
that picture quality decreases for species associated with more open habitats. It
makes intuitive sense that birds in open habitats are photographed from a greater
distance than their forest dwelling counterparts, which will be hidden from view
unless in close proximity. While this intercorrelation supports the validity of the
picture quality metric, neither habitat nor picture quality affect recognition model
performance. We conclude that differences in model performance are caused by
the recognizability of the species, rather than by how, or how large species are
generally depicted.

Since multiple pictures connected to a single observation are not truly indepen-
dent, training data are generated based on the number of documented observations,
rather than the total number of pictures. One might expect that species with a
higher picture density will perform better, as observations with more pictures can
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provide some additional information in the training process. We find a reverse
effect however, where performance for such species is substantially lower. A likely
explanation is that species with high picture densities are rarities in Norway (e.g.
the top 3 species being Caspian gull, Blyth’s reed warbler, and Pine bunting).
Species with the lowest picture density, meanwhile, are typical common, well-
known species such as corvids and titmice. Rarities are reported not because
they are easy to find or identify by casual observers, but due to their popularity
among avid birdwatchers, who are likely to document their observations. A strong
correlation between picture density and documentation rate supports this; rarities
are more often reported with pictures, and in such cases relatively often with
several pictures.

While we investigated the bird orders in detail, the link between data availability
and model performance is present in other orders too (figure 2). Some orders are
notoriously difficult to identify to species level, e.g. flies (Diptera) and beetles
(Coleoptera), but our models for these perform surprisingly well. The list of species
with sufficient observations with pictures for inclusion in the experiment reveals
that only relatively easy to recognize species, often with distinct colorations (e.g.
ladybugs for beetles) are represented in this subset.

More generally, the requirement that species must have at least 220 citizen
science observations with pictures generates a non-random subset of species, and
it differs greatly per order how selective this criterion is. Bird species are most
frequently reported; 48% of the species present in Norway22 within the bird orders
examined here meet the selection criterion. One of the other orders for which
the pattern was found, the dragonflies and damselflies (Odonata), have only 52
species in Norway, of which 44% met the criteria for inclusion. This is in stark
contrast to the beetles (1% inclusion), and lichens (2% inclusion), where no clear
correlation is found. It is reasonable to assume that for these taxa, the experiment
only considers the most recognizable species. If observations were thousandfold,
more challenging species could be included, giving a broader range in performances
and possibly a similar positive correlation between model performance and data
availability.

The consequence of the recognizability bias found here is that as more data is
collected, ultimately providing the numbers of pictures needed to train models also
on less reported, harder to recognize species, current performance of recognition
models cannot be extrapolated to these expanded models. In other words, data
that are lacking now are in part lacking because such species are harder to recognize.
When such data is added in the future, the performance increase will not be as
great as in the past. Besides citizen science, even methods that have no inherent
reporting bias, such as automated insect camera traps and trail cameras, can still
be subject to recognizability bias. There too, species that are less readily identified
will result in more unidentifiable pictures, providing relatively less training data.

Image recognition tools play an important role in maintaining the quality of
the large amounts of biodiversity data science and management require. There are
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limits to what can be identified from a picture however, and identification tools
are needed that rely on more than just pixel information. Models that take into
account season, location, sound, etc. can be especially beneficial for difficult species.
Still, there is no substitute for the taxonomic knowledge of experts. Preserving this
knowledge, and making it available in the form of identification keys is vital. These
can be powerful tools to more reliably identify challenging species, in tandem with
automatic identification.
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Recognizability bias in citizen science photographs

SUPPLEMENTARY MATERIALS

Order Species F1-score
Passeriformes Perisoreus infaustus 0.901
Passeriformes Cinclus cinclus 0.886
Passeriformes Periparus ater 0.88
Passeriformes Bombycilla garrulus 0.876
Anseriformes Aix galericulata 0.876
Passeriformes Certhia familiaris 0.874
Passeriformes Aegithalos caudatus 0.873
Charadriiformes Charadrius morinellus 0.872
Passeriformes Regulus regulus 0.87
Passeriformes Lophophanes cristatus 0.868
Passeriformes Emberiza citrinella 0.867
Passeriformes Garrulus glandarius 0.865
Passeriformes Pyrrhula pyrrhula 0.863
Passeriformes Pinicola enucleator 0.863
Passeriformes Cyanistes caeruleus 0.86
Passeriformes Sitta europaea 0.856
Passeriformes Turdus merula 0.855
Passeriformes Phylloscopus sibilatrix 0.854
Passeriformes Coccothraustes coccothraustes 0.85
Passeriformes Carduelis carduelis 0.845
Passeriformes Motacilla cinerea 0.839
Passeriformes Erithacus rubecula 0.838
Passeriformes Parus major 0.837
Charadriiformes Haematopus ostralegus 0.837
Passeriformes Motacilla alba 0.837
Passeriformes Prunella modularis 0.836
Passeriformes Lanius collurio 0.835
Charadriiformes Phalaropus lobatus 0.834
Charadriiformes Calidris maritima 0.83
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Charadriiformes Arenaria interpres 0.829
Passeriformes Phylloscopus inornatus 0.824
Passeriformes Saxicola rubicola 0.823
Charadriiformes Charadrius hiaticula 0.82
Passeriformes Sylvia atricapilla 0.82
Passeriformes Turdus philomelos 0.819
Charadriiformes Gallinago gallinago 0.819
Passeriformes Luscinia svecica 0.818
Passeriformes Plectrophenax nivalis 0.816
Charadriiformes Tringa totanus 0.815
Passeriformes Lanius excubitor 0.813
Passeriformes Turdus viscivorus 0.812
Passeriformes Fringilla coelebs 0.812
Passeriformes Nucifraga caryocatactes 0.812
Passeriformes Passer montanus 0.808
Passeriformes Turdus iliacus 0.808
Passeriformes Emberiza schoeniclus 0.808
Passeriformes Oenanthe oenanthe 0.807
Passeriformes Saxicola rubetra 0.807
Passeriformes Chloris chloris 0.802
Charadriiformes Calidris alpina 0.8
Passeriformes Anthus petrosus 0.8
Passeriformes Motacilla flava 0.798
Charadriiformes Cepphus grylle 0.795
Passeriformes Fringilla montifringilla 0.794
Passeriformes Troglodytes troglodytes 0.794
Charadriiformes Vanellus vanellus 0.793
Passeriformes Carpodacus erythrinus 0.793
Passeriformes Turdus torquatus 0.793
Passeriformes Eremophila alpestris 0.792
Charadriiformes Actitis hypoleucos 0.788
Charadriiformes Pluvialis apricaria 0.773
Charadriiformes Tringa glareola 0.773
Charadriiformes Limosa lapponica 0.767
Passeriformes Ficedula hypoleuca 0.766
Charadriiformes Charadrius dubius 0.762
Anseriformes Cygnus olor 0.761
Anseriformes Mergellus albellus 0.758
Anseriformes Clangula hyemalis 0.757
Passeriformes Muscicapa striata 0.756
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Charadriiformes Calidris pugnax 0.755
Passeriformes Phoenicurus ochruros 0.754
Charadriiformes Tringa nebularia 0.754
Passeriformes Acrocephalus schoenobaenus 0.751
Anseriformes Branta leucopsis 0.747
Passeriformes Sturnus vulgaris 0.746
Charadriiformes Limosa limosa 0.745
Passeriformes Calcarius lapponicus 0.745
Passeriformes Phoenicurus phoenicurus 0.744
Anseriformes Mergus merganser 0.742
Anseriformes Bucephala clangula 0.738
Passeriformes Curruca communis 0.737
Anseriformes Tadorna tadorna 0.734
Passeriformes Poecile montanus 0.732
Anseriformes Melanitta fusca 0.73
Charadriiformes Tringa erythropus 0.729
Anseriformes Anas acuta 0.728
Charadriiformes Calidris minuta 0.727
Passeriformes Poecile palustris 0.725
Passeriformes Passer domesticus 0.723
Charadriiformes Calidris temminckii 0.719
Passeriformes Hirundo rustica 0.718
Charadriiformes Numenius arquata 0.716
Anseriformes Mareca penelope 0.715
Passeriformes Corvus frugilegus 0.714
Anseriformes Mergus serrator 0.71
Passeriformes Sylvia curruca 0.708
Passeriformes Turdus pilaris 0.703
Passeriformes Pica pica 0.702
Charadriiformes Uria aalge 0.699
Charadriiformes Chroicocephalus ridibundus 0.697
Passeriformes Hippolais icterina 0.696
Passeriformes Loxia leucoptera 0.696
Charadriiformes Calidris canutus 0.693
Passeriformes Emberiza pusilla 0.688
Anseriformes Cygnus cygnus 0.683
Passeriformes Panurus biarmicus 0.677
Anseriformes Somateria spectabilis 0.676
Charadriiformes Alca torda 0.675
Charadriiformes Rissa tridactyla 0.674
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Anseriformes Branta canadensis 0.671
Anseriformes Aythya fuligula 0.67
Anseriformes Anas platyrhynchos 0.668
Charadriiformes Alle alle 0.663
Charadriiformes Calidris alba 0.652
Passeriformes Alauda arvensis 0.651
Passeriformes Corvus monedula 0.648
Anseriformes Anas crecca 0.644
Passeriformes Phylloscopus collybita 0.643
Charadriiformes Pluvialis squatarola 0.64
Charadriiformes Fratercula arctica 0.64
Anseriformes Somateria mollissima 0.639
Anseriformes Anser anser 0.639
Anseriformes Anser indicus 0.635
Passeriformes Acanthis flammea 0.628
Passeriformes Anthus pratensis 0.627
Charadriiformes Sterna hirundo 0.618
Passeriformes Corvus cornix 0.618
Charadriiformes Stercorarius parasiticus 0.616
Passeriformes Phylloscopus trochilus 0.613
Charadriiformes Larus hyperboreus 0.613
Anseriformes Anser brachyrhynchus 0.608
Anseriformes Aythya marila 0.605
Charadriiformes Calidris ferruginea 0.605
Anseriformes Aythya ferina 0.605
Passeriformes Corvus corax 0.596
Charadriiformes Larus fuscus 0.592
Charadriiformes Tringa ochropus 0.58
Passeriformes Locustella naevia 0.579
Passeriformes Carduelis spinus 0.577
Charadriiformes Numenius phaeopus 0.575
Charadriiformes Larus canus 0.574
Passeriformes Carduelis flavirostris 0.565
Charadriiformes Larus glaucoides 0.564
Charadriiformes Larus marinus 0.559
Passeriformes Anthus trivialis 0.554
Passeriformes Regulus ignicapilla 0.55
Charadriiformes Larus argentatus 0.542
Passeriformes Riparia riparia 0.534
Charadriiformes Scolopax rusticola 0.532
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Charadriiformes Phalaropus fulicarius 0.526
Passeriformes Sylvia nisoria 0.523
Anseriformes Polysticta stelleri 0.517
Passeriformes Acanthis hornemanni 0.516
Charadriiformes Stercorarius skua 0.516
Anseriformes Melanitta nigra 0.509
Passeriformes Sylvia borin 0.506
Passeriformes Loxia pytyopsittacus 0.498
Charadriiformes Calidris falcinellus 0.495
Charadriiformes Sterna paradisaea 0.493
Passeriformes Lullula arborea 0.493
Charadriiformes Hydrocoloeus minutus 0.485
Passeriformes Pastor roseus 0.478
Passeriformes Loxia curvirostra 0.477
Passeriformes Acanthis cabaret 0.471
Passeriformes Turdus atrogularis 0.46
Passeriformes Ficedula parva 0.445
Charadriiformes Stercorarius longicaudus 0.442
Passeriformes Corvus corone 0.428
Anseriformes Anas clypeata 0.428
Passeriformes Carduelis cannabina 0.426
Anseriformes Anser albifrons 0.399
Passeriformes Acrocephalus dumetorum 0.397
Charadriiformes Calidris melanotos 0.394
Passeriformes Acrocephalus palustris 0.389
Anseriformes Anas strepera 0.375
Passeriformes Delichon urbicum 0.37
Anseriformes Mareca strepera 0.364
Anseriformes Anser fabalis 0.359
Charadriiformes Thalasseus sandvicensis 0.356
Anseriformes Branta bernicla 0.354
Charadriiformes Larus melanocephalus 0.352
Passeriformes Acrocephalus scirpaceus 0.347
Passeriformes Motacilla citreola 0.318
Passeriformes Luscinia luscinia 0.307
Anseriformes Aythya collaris 0.303
Charadriiformes Lymnocryptes minimus 0.276
Anseriformes Spatula clypeata 0.271
Passeriformes Emberiza leucocephalos 0.244
Charadriiformes Larus cachinnans 0.244
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Anseriformes Anas querquedula 0.241
Anseriformes Anas carolinensis 0.215
Anseriformes Tadorna ferruginea 0.215
Anseriformes Cygnus columbianus 0.184
Passeriformes Anthus richardi 0.174
Passeriformes Spinus spinus 0.164
Passeriformes Anthus hodgsoni 0.15
Anseriformes Spatula querquedula 0.149
Passeriformes Anthus cervinus 0.136
Passeriformes Linaria cannabina 0.133
Passeriformes Linaria flavirostris 0.113
Anseriformes Anser serrirostris 0.076

Table S1: Model performances (F1-scores) for species within the bird orders

Dependent
variable

Parameters Slope Intercept R2 P-value

Agaricales
F1-score

Data availability
(log)

0.21 0.27 0.15 2.15×10−3

Anseriformes
documentation
rate

Picture density 0.38 -0.47 0.52 1.51×10−7

Anseriformes F1-
score

Data availability
(log)

0.48 -0.97 0.69 4.18×10−11

Anseriformes F1-
score

Documentation
rate

-1.52 0.63 0.19 4.64×10−3

Anseriformes F1-
score

Picture density -1.02 1.95 0.31 2.10×10−4

Asparagales F1-
score

Data availability
(log)

0.31 0.01 0.34 0.0117

Asterales F1-
score

Data availability
(log)

0.59 -0.71 0.51 5.92×10−4

Charadriiformes
documentation
rate

Picture density 0.34 -0.43 0.76 5.51×10−18

Charadriiformes
F1-score

Data availability
(log)

0.32 -0.34 0.4 2.49×10−7

Charadriiformes
F1-score

Documentation
rate

-0.9 0.7 0.28 3.45×10−5
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Charadriiformes
F1-score

Picture density -0.42 1.25 0.39 3.52×10−7

Coleoptera F1-
score

Data availability
(log)

0.13 0.57 0.06 0.273

Diptera F1-score Data availability
(log)

0.53 -0.63 0.19 0.0326

Lecanorales F1-
score

Data availability
(log)

0.2 0.31 0.12 0.118

Lepidoptera F1-
score

Data availability
(log)

0.14 0.49 0.05 9.50×10−5

Odonata F1-
score

Data availability
(log)

0.46 -0.53 0.49 2.02×10−4

Passeriformes
documentation
rate

Picture density 0.3 -0.36 0.55 1.59×10−19

Passeriformes
F1-score

Data availability
(log)

0.54 -1 0.63 4.31×10−24

Passeriformes
F1-score

Documentation
rate

-0.85 0.71 0.11 5.19×10−4

Passeriformes
F1-score

Picture density -0.5 1.37 0.23 1.68×10−7

Passeriformes
picture quality

Habitat open-
ness

-0.12 5.93 0.26 5.53×10−8

Polyporales F1-
score

Data availability
(log)

0.31 -0.11 0.28 2.18×10−3

Table S2: Metrics collected for species within the bird orders
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Abstract
The skills and knowledge needed to recognize and classify taxa is becom-
ing increasingly scarce in the scientific community. At the same time, it
is clear that these skills are strongly needed in biodiversity monitoring
for management and conservation, especially when carried out by citizen
scientists. Formalizing the required knowledge in the form of digital
identification keys is one way of making such knowledge more available
for professional and amateur observers of biodiversity. In this paper
we describe Clavis, a modern open format for capturing knowledge
required for taxon identification through digital keys, allowing for a
level of detail beyond that of any current key format. We exemplify
each concept using Pokémon as a fictional taxonomic group.

Introduction
Distinguishing biological taxa from one another is a necessity in biodiversity
monitoring. As species are going extinct at an unprecedented rate1,2, we need
to monitor as much of nature as we can to identify population statuses and
trends. Meanwhile, research and management is currently facing a “taxonomic
impediment”, where taxonomic knowledge is gradually disappearing from the
scientific community3.

Paradoxically, while taxonomic expertise is becoming scarce, species observa-
tions are being reported like never before. The bulk of the observational data
currently available originates from citizen science, however, in which observations
are made by non-professional volunteers4. There are large taxonomic biases in the
data collected from these sources. For example, of publicly available data from

https://orcid.org/0000-0001-9025-9486
https://orcid.org/0000-0002-6001-0839
https://orcid.org/0000-0003-4529-6266
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the Global Biodiversity Information Facility (the largest aggregator of biodiversity
observations in the world5), some 67% of over 2 billion observations pertain to
birds6. This means that less charismatic species, and species that are more difficult
to identify, generally remain severely under-reported7. Many such species play
important ecological roles or can serve as indicators of broader ecosystem health,
but the fact that few observers are able to reliably identify these species leads to
their underreporting, thus obscuring important trends from the view of science
and management8.

The knowledge needed to identify species resides in large part in the heads
of taxonomic experts. This invaluable experience is slowly disappearing as newly
educated biologists are, to an increasing extent, trained with focus on skills in
genetics, data management, and biodiversity informatics rather than traditional
taxonomy. This training, and an academic reality of shorter periods with funding
and more temporary contracts, gives fewer researchers the opportunity to invest
the years of experience needed to become truly knowledgeable with regards to any
substantial taxon, as was more commonplace in the past9.

Identification keys are one of the most important tools used by taxonomists
to identify taxa, as well as to share with others the information needed for
distinguishing taxa. No taxonomist studying a large taxon in depth can get around
identification keys, and keys are often the starting point when trying to learn a
new organism group. Identification keys can, however, be quite challenging to
use, especially for novel users, and their use often represents a significant barrier
for the prospective learner. For this and other reasons, the use of identification
keys is receiving less focus in most current biology curricula. Furthermore, as
taxonomic knowledge is becoming increasingly fragmented, existing identification
keys in literature are gradually becoming outdated as taxonomies are changing
according to new insights.

These issues are exacerbated in the context of citizen science. Whereas prospec-
tive taxonomists have a professional incentive to learn to use a key, a steep learning
curve can quickly put off the more casual citizen scientist. Citizen science, with
its unrivaled amounts of data, but also added concerns regarding the reliability
of the taxon identifications10,11 and the pronounced over-representation of more
charismatic taxa12–14, stands especially much to gain from good identification keys
with a low user threshold.

Digital identification keys address these challenges in a number of ways. The
formalized and machine-readable way in which the data are stored allows for easier
revision, as well as multiple options for their display to the end user, tailored
to their level of experience. Digital keys allow for the representation of more
complex relationships between species’ characteristics and identifications inherent
to biological complexity. These relationships cannot as easily be represented in a
linear form as is used in traditional, paper-based keys. With a suitable interface,
digital keys open up the cumulative experience from taxonomic experts to a broader
public like citizen scientists, while potentially being more reliable and educational
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than other identification methods such as automated image recognition. In contrast
to paper-based keys, digital keys can also be combined with one another, integrating
the information from several separate keys into one seamless user experience. And
conversely, a digital key can easily be limited to just a subset of the taxa in it, for
instance only taxa belonging to a certain habitat or geographic range. Another
benefit is the possibility of saving the user input and the key together with the
observational data, as a means of transparent identification that can be reviewed
at any time in the future for quality control or in the case of new taxonomical
insights.

Having a fully open and well-defined, platform-independent format is essential
in ensuring that identification keys and the tools needed to display and create them
remain both interoperable, interpretable across platforms, and freely available to
all. A number of digital identification key formats exist15,16, but these come with
a number of limitations in what they can represent, their ease of use, openness, etc.
A well-defined format addressing this alleviates the technical burden in capturing
taxonomic knowledge for future use.

In this manuscript we document Clavis; an open format for identification
keys, aiming to cover the aforementioned requirements in an open and lightweight
manner, serving as a way to store and exchange crucial taxonomic knowledge.
Clavis is intended to capture all the requirements of traditional keys while adding
the flexibility and complexity possible with digital keys. This means that the format
is well suited for representing most, if not all, existing keys, both paper-based and
digital, as well as for designing new keys. The name Clavis means “key” in Latin,
and is a recursive acronym for Clavis Lightweight And Versatile Identification
Schema. This article describes the Clavis format itself, example code handling
the business logic of keys described using Clavis will be published separately at
a later time. Descriptions of each of Clavis’ data types and emerging properties
are illustrated here using fictional taxa that are discretely defined and not subject
to taxonomic debate or change, while exhibiting the required complexity for a
demonstration of the more intricate features of the format. Our fictional creatures
of choice for these examples are a selection of Pokémon17.

Material and methods
Identification keys exist in many forms, but all are built on the same basic principle.
The user is asked a number of questions about the entity being identified, and
by answering these questions, taxa are excluded from consideration until (ideally)
only one taxon remains, which is the result of the identification process.

Traditional single access keys consist of a decision tree with a single fixed path
from beginning to end for each possible outcome. On choosing an answer from
the alternatives for each of the questions, the user is directed to the next question
to be answered, until they end up with a result taxon. Such keys can be either
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dichotomous, meaning that each question always has only two alternatives, leading
to a bifurcating decision tree, or they can be multichotomous, meaning that each
question may have more than two alternatives. One upside of single access keys
is that they are easy to represent on paper. A drawback is that a user has to
go through all questions in a specific order, having one and only one question to
answer at any given time. This means that one cannot use only part of the key
for any subset of taxa, nor easily go back and redo a question. Also, if a question
cannot be answered, there is no way to proceed.

An alternative approach is the multiple access key. Such keys are typically
stored as matrices where taxa and questions (characters) are stored as rows and
columns in a tabular format, with cell values linking the taxa to their characters.
Each character may have two or more possible answers (states). In a fully populated
matrix key, every character is assigned a value (i.e. is scored) for every taxon. The
user then has access to all the questions/characters at once and is not required
to answer them in any particular order. Choosing any alternative for any of the
questions will exclude from consideration all taxa that are not compatible with
that alternative, bringing the user a step closer to the answer. The upside of this
approach is that the user has several paths to the answer, and can choose to avoid
questions that are difficult or impossible to answer. The downside is that the
number of choices can easily be overwhelming, and it is in large part left to the
user to try to choose the best path. Also, in real life situations it is very rare to
find a set of characters that are both possible to score in a meaningful way for all
the taxa in the key, and sufficient for distinguishing between them. More often,
only some characters will be possible to score for all taxa, whereas others may be
essential for distinguishing certain taxa in the key, yet be inapplicable to others.

To address this, a matrix can be filled out sparsely instead, meaning that not
all characters are scored for all taxa. The interface can then display only those
characters that are in fact scored for all the taxa currently under consideration.
As taxa are being excluded by the user’s choices, further characters that are scored
for all the remaining taxa will become available for answering. With this approach,
it is possible to make a matrix key that behaves equivalently to a single access key.
But the key can also be made to contain several distinguishing characters for any
set of taxa, so that the user has more than one choice at each step and is thus not
restricted to having to answer only one question at a time in a specific order.

The sparse matrix approach is more powerful than both the single access
and the full matrix approach, in that both of these approaches are subsets of
what the sparse matrix can represent. An important advantage of either matrix
approach over the single access key is that the key can easily be restricted to
only a subset of the taxa. This means that the user will not need to traverse
the whole key if they wish to exclude one or more taxa a priori. Still, there is
much additional information one would ideally like to store about taxa, characters,
and the relationships between the two, which cannot be easily represented in a
tabular format. For instance, the tabular format is not well suited for dealing
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with polymorphism in a straightforward way, i.e. the situation where a taxon
can have more than one possible value for a given character. Also, it may often
be desirable to treat taxa hierarchically rather than as a simple list of equally
ranked entities, something which is difficult to do in the matrix format. Thus,
representing taxonomic knowledge in this tabular format restricts the complexity
of the information that can be stored.

The method of storing and exchanging taxonomic knowledge described here, is
developed as a non-tabular multiple access key. The core of any Clavis key is a
collection of statements. A statement links a taxon to a character, and specifies a
state or numerical value the taxon has for that character (see Fig. 1). E.g. the
color (character) of species x (taxon) is red (state), or the length in millimeters
(character) of genus x (taxon) is 4-11 (numerical range).

6 - 8 mm

9 - 13 mm

Figure 1: The core concepts of any Clavis key. Taxa (left) and characters (right) are
connected through statements (center). Each statement refers to one taxon and one character,
linking the two by a value, usually one of the possible states of the character, or a numerical
value or range.

Additional information can be linked to taxa, characters, states, and statements
in a number of ways, capturing knowledge and relationships that cannot be
represented in a tabular form in a practical way. Such information includes media
elements, textual descriptions, and contextual information such as geographic scope.
The Clavis format incorporates all the possibilities of the previously described
approaches, so that any single access or matrix key can be transcribed to it.

Clavis compliant keys are written in JSON (JavaScript Object Notation)18,
which has become the de facto standard for data exchange over the internet, as it
is an open, flexible format with widespread use and support within all modern
programming languages. Clavis itself is a JSON-schema19, a formal definition of
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the structure and content of a valid Clavis JSON file. JSON-schemas are machine
readable and can be used to automatically validate the compliance of a JSON file
in modern code editors, highlighting any issues that need to be solved. While it
is possible to manually write the JSON of a Clavis-compliant key, it is generally
not practical. In order to facilitate key creation and editing, one would generally
provide taxonomists with a key editing interface that lets them easily record their
knowledge, and let the key editor generate the corresponding JSON.

Implementation

As an exchange and storage format, Clavis does not dictate how it is to be
implemented. Different interfaces can implement it differently, depending on the
purpose of the interface and the intended user group. To this end, interfaces
serving to edit or display keys may disregard certain non-essential functionality
supported by Clavis. One could for example create a key editor not supporting
media files or multilingualism. Other aspects of the format are crucial however,
and require support and unambiguous interpretation.

Identification is a matter of excluding taxa, and is done by letting the user
select a state or numerical value for characters. Each time the user provides a new
fact in this way, all taxa with conflicting statements are excluded (see Fig. 2). The
user can also be given the option to exclude a state rather than affirm one if there
are more than two states to choose from.

Whenever taxa are excluded, characters that were previously hidden may now
have become relevant if all the remaining taxa have a statement pertaining to it,
as illustrated in Fig. 2. These characters should then be made visible to the user.
The act of excluding taxa will also affect which of the possible states of a given
character are relevant, even if it has not been answered directly by the user. If
all the remaining taxa are known not to have a certain state, that state can be
disabled. In such cases, the state still needs to be visible to the user as it provides
context to the remaining alternatives, but it should not be possible for the user
to select it. Characters that have not been answered, but that only have a single
possible answer for all remaining taxa, can be hidden. In all cases, only characters
that are linked by statements to all the currently non-excluded taxa should be
shown to the user. Clavis also allows for the inclusion of explicit dependencies,
where the relevance of a character is determined by the answers given on one or
more other characters.

Things become more complicated when allowing the user to undo previous
answers. Undoing an answer might render a character that was subsequently
answered irrelevant again. To avoid answers to this now irrelevant character from
eliminating taxa as possibilities, an implementation needs to be able to remove or
ignore answers on characters that have been rendered irrelevant.

The provided schema ensures that a key adheres to the Clavis format in a
technical sense, but it does not ensure that any compliant key is logically complete
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Input Statements ResultTaxa Statements Character relevance

9 - 13 mm

7 - 10 mm

4 - 7 mm

Taxa Statements Character relevance

9 - 13 mm

7 - 10 mm

4 - 7 mm

8 mm

9 - 13 mm

7 - 10 mm

4 - 7 mm

Input Statements Result

a

c d

b

Figure 2: The identification of a specimen. When considering all taxa, the character about
size is not relevant, as one of the taxa has no statement for size, so only the character about
colors is relevant (a). The user gives an input, which is compared to the related statements, upon
which 2 taxa are eliminated (b). Considering the now remaining taxa, the character about size
has become relevant (c). The user gives another input, and based on the related statements, one
additional taxon is eliminated, leaving one result (d).

and consistent. One can make a valid key that contradicts itself or that does not
contain sufficient information to reliably distinguish between certain taxa. It is
advisable to implement checks for this in any key-editor, and when keys by third
parties are to be displayed, to also ensure such cases are handled by the end-user
interface.

To illustrate the features supported by the Clavis format, we here describe
features and give some example uses. The examples relate to fictional creatures
that are not subject to taxonomic debate or change. For this we have chosen
Pokémon as they appear in the mobile game Pokémon Go, as these are clearly
defined, yet exhibit the complexity required to demonstrate the various features
of the format. Keys for natural taxa would rarely use as much of the possible
functionality as we demonstrate here in a single key. The key is valid in accordance
with the JSON-schema, but it does not contain all the information needed to
distinguish between all of the Pokémon mentioned in it. We also provide an
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example of a non-artificial key that does identify all taxa in it, but that does not
aim to demonstrate all possible features that Clavis supports. This key covers all
the species of titmice in Norway and can be found in the S3 Appendix.

Results
The main components of the Clavis JSON-schema are the taxa that the key is
designed to distinguish between, the characters describing relevant properties,
and statements connecting taxa to characters through states or numerical values.
Additionally, the schema defines a number of metadata fields, as well as custom
data types, that can be referred to in various places in the key, such as when
referring to a person as a creator of a picture or linking a picture to a taxon.

Format overview

An overview of the elements in an identification key defined by Clavis. Elements
with an asterisk (*) are mandatory.

Key metadata

Title* The name of the key
Schema* The url of the version of Clavis that the key adheres to

Media A media element for the key, such as a logo or icon
Description A short, extended, and/or external description of the key

Audience A description of the intended audience
Source Name and/or link to the source the key is based upon

Geography Polygon and/or name of the region where the key is valid
Roles Primary contact, creators*, contributors, publishers of the

key, as references to persons and/or organizations
License* An url to the license text the key is licensed under

Language* The language(s) the key supports
Dates* The dates the key was created and last modified (the

version)
Identifier* An id for the key, that remains stable over versions

Url Where the key is hosted, so that new versions can be
retrieved
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Key content

Taxa* A flat or hierarchical list of taxa the key is able to distin-
guish between. The goal of the interface is to eliminate
all but one taxon.

Characters* A list of characters used to distinguish between taxa.
These are the questions that are presented to the user. A
character can be categorical or numerical. When categori-
cal, it has a list of states that are the relevant alternatives
for this character.

Statements* Elements connecting a taxon to a character through a state
or numeric value. This is the core knowledge captured by
the key: which taxa have which states or numerical values
for which characters, thus distinguishing them from one
another.

Data types

Person The name*, contacts, media elements, and affiliations of
a person.

Organization The name*, contacts, and media elements of an organiza-
tion.

Taxon The scientific name, author, vernacular name, label, media
elements, rank of a taxon. Info on whether it serves
as an end-point or not. It can have a set of children,
which are the underlying taxa. An external reference can
define where info is to be retrieved from. It may have a
geographic distribution as an object or external service,
to assess where it occurs. A follow-up key as a url or
external service reference can provide info on where a
more detailed identification can be done.
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Character The name* and states describing a property a taxon can
have. It can have media elements and descriptions clar-
ifying the character, and a user requirement. A logical
premise can specify what other user input has to be given
before the character may be presented. A character can
be of the types “exclusive” (default, multiple choice where
options exclude one another), “non-exclusive” (multiple
choice with multiple answers possible), and “numerical”
(the answer is a number). A character has states defining
the possible answers if it is not numerical, and a min, max,
unit and step size if it is numerical.

State A possible answer for a non-numerical character. Has a
title and can have multiple media elements and descrip-
tions clarifying the state.

Statement A connection between a taxon and a character through a
value (either a state or a numerical range). It defines how
frequently and in which context the taxon has this value
for that character. A statement can have any frequency
from 0 to 1, to indicate that the taxon always (1), never
(0) or in some cases (values between 0 and 1) has this
value for the character. A numerical value can be a single
value or a range. Statements can contain references to
a geographic distribution (or a service providing one),
defining where this statement is valid. Media elements
and descriptions can be added describing the relationship
between the taxon and character in more detail.

User requirement A user requirement can have a title, media elements and
descriptions describing certain skills, equipment or other
requirements needed to evaluate a character. It can also
have a warning text to alert the user of these requirements.
It can be used to guide a user where necessary, or help the
user decide whether to skip more challenging characters.

External service A reference to an external service and its documentation.
The creator of an interface can then choose to implement
this external service so that e.g. taxon names are retrieved
from an up to date repository by the provided stable
identifier.
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Media element A media element contains the data needed to display mul-
timedia files. It can refer to different versions for different
languages, and can have different versions for different
media dimensions. It contains the required metadata such
as width and height (images and video), length (sound and
video), as well as creators, contributors, publishers and
a license. Files can be urls to where the correct version
of the file is to be found, or directly contain a base64 or
svg encoded file. It supports external services to retrieve
data from elsewhere.

Statements

The core element of any key is the statement. It defines a property of a taxon,
separating it from other taxa that have conflicting statements. In JSON code, a
single statement takes the following form, in this case stating that Pikachu is an
electric type Pokémon.

{
"id": "statement:pikachu_is_electric",
"taxon": "taxon:pokemon_025",
"character": "character:type_of_pokemon",
"value": "state:pokemon_type_electric",
"frequency": 1

}

While all core concepts are described with examples, not every combination of
concepts are exemplified here. So while both multilingualism and descriptions are
demonstrated, there is no example of multilingual descriptions. Such features do
follow the same logic as the examples provided, and are all specified in the JSON
schema.

Key metadata

Very few parameters are required on the top level of the key. Apart from the
content of the key (taxa, characters, and statements linking the two), a key is
expected to refer to the version of the schema with which it complies, a title,
language, license, a creator, the date at which it was last modified and an identifier
that is to be kept stable across versions. As the creator has to be a reference to a
person entity, at least one person needs to be defined as well.

Example: See lines 2 - 10 in the S2 Appendix for the corresponding JSON.
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Taxa

Eliminating all but one taxon is the goal of the user, and taxa are the units that
all characteristics are connected to. Taxa can be provided as a flat list, but they
can also be structured hierarchically, commonly, but not necessarily, adhering to
their phylogeny. Statements can in such a hierarchy be connected to higher taxa,
reducing a lot of the repetition of traits shared within a taxon that one would
get when using a flat list of taxa. If a statement is tied to a higher taxon in the
hierarchy, it is implied that all the underlying taxa share the same statement.

In addition to biological taxonomic units, one can also define sub-groups within
a taxon. Examples can be different sexes, morphs, or species complexes. Contrary
to regular taxa, such subdivisions of taxa are not standalone taxonomic units.
As such, they do not have their own scientific name but rather a label that adds
specificity to their parent taxon. For example, the label of a sub-group specifying
the sex of Pikachu would simply be “~” rather than “Pikachu ~” as it already
relates to the parent taxon “Pikachu”. For a default form of a taxon, the label can
be an empty string.

The goal of the key is to provide a way to eliminate all but one taxon; the result
of the identification process. The key should stop asking questions once the user
has narrowed down the possible outcomes to a single endpoint. In a flat list of taxa,
every taxon in the list will be an endpoint. In a hierarchical list, the lowermost
taxa in the hierarchy will be the endpoints by default. This can be overridden,
however, by explicitly tagging a taxon higher up the tree as an endpoint. In this
case, information on lower taxa may be displayed if identified while using the key,
but no additional questions are asked once the endpoint has been determined.
This can be used, for instance, to display an image of the relevant sub-group for a
taxon, so that the taxon images reflect the input from the user.

Example: Clavicula, Clavis and Clavissima are all species within the Clavidae.
They each have a default and a “Shiny” morph, and in this key, the morph is the
endpoint. The default Clavissima morph also has a subdivision into the sexes, but
as the morph is tagged as an endpoint, the user will not be asked further questions
to determine the sex once the morph has been determined. See lines 25 - 94 in the
S2 Appendix for the corresponding JSON, and Fig. 3 for a graphical representation.

Characters, statements and frequencies

One of the possible values for a statement (the relationship between a taxon and
a character) is the id of a state. A statement also may have a frequency: the
proportion of cases where individuals of this taxon have this state for this character.
It can be set to 0 or 1 or any value in between.

In the default setting, the states of a character are interpreted as being mutually
exclusive. If there is a character with states “blue” and “red”, a specimen may be
either blue or red, but not both at the same time. This means that a taxon that is
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Clavidae
Taxon

*

Taxon

Label (morph)

Label (sex)

Shiny Shiny Shiny

Figure 3: A taxon tree of the Clavidae-line: Taxa tagged as endpoints are indicated with an
asterisk (*). This key continues until the correct morph (“Shiny” or default) is known. As the
morph of Clavissima (the species to the right) is defined as an endpoint, no questions regarding
the sexes of Clavissima will be asked once the correct species and its morph have been determined.

noted as always being blue is known never to be red, and vice versa. This default
behavior can be overridden, however, by defining the character as non-exclusive.
In this case, stating that a specimen is blue does not exclude the possibility that
it is also red.

Example: Pikachu is always an electric type. See lines 261 - 267 in the S2
Appendix for the corresponding JSON.

Example: Pikachu is never blue. See lines 268 - 274 in the S2 Appendix for
the corresponding JSON.

Example: Pikachu has a double-lobed tail in 50% of the cases. See lines 275 -
281 in the S2 Appendix for the corresponding JSON.

Example: Pikachu contains the colors yellow, black and red. The closely
related Raichu contains yellow, brown, white and red. Setting the color character
to be of non-exclusive type allows the user to indicate all the colors that each of
them has. See lines 177 - 203 in the S2 Appendix for the corresponding JSON,
and Fig. 4 for a graphical representation using Clavidae.
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Figure 4: The colors of Clavis and Clavissima: Clavis and Clavissima both have several
colors. In its default setting, the color character will allow the user to select only one color,
which will imply that the species does not have the other colors. By defining the character as
non-exclusive, the user can pick and/or exclude freely from the list of possible colors.

Multilingualism

Rather than specifying the language of the key by referring to a single ISO 639-1
code, one can make a key multilingual by specifying an array of language codes
that are supported. When doing so, strings within the key that differ between
languages have to be given as localizedStrings; objects containing a version of each
of the supported languages. To support different script types, also strings like
people’s names support localizedStrings.

Not only strings can have different versions for different languages. Links to
external online resources can refer to separate language versions (localizedUrls),
and images (e.g. containing text) can have different versions for different languages
too (localizedMediaElements).

Example: A creator name requiring different transcriptions within a multilin-
gual English/Ukrainian key

"language": ["en", "uk"],
"creator": "person:wouterkoch",
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"persons": [
{

"id": "person:wouterkoch",
"name": {

"en": "Wouter Koch",
"uk": "Ваутер Кох"

}
}

]

Example: A creator name that needs no translation, and a character that
does, within a multilingual English/Dutch key

"language": ["en", "nl"],
"creator": "person:wouterkoch",
"persons": [

{
"id": "person:wouterkoch",
"name": "Wouter Koch"

}
],
"characters": [

{
"id": "character:eye_color",
"title": {

"en": "Color of the eyes",
"nl": "Kleur van de ogen"

},
"states": [

{
"id": "state:blue_eyes",
"title": {"en": "Blue", "nl": "Blauw"}

},
{

"id": "state:red_eyes",
"title": {"en": "Red", "nl": "Rood"}

}
]

}
]

Example: An organization with names and urls within a multilingual Norwe-
gian/English key

"language": ["no", "en"],
"publisher": "organization:ntnu",
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"organizations": [
{

"id": "organization:ntnu",
"name": {

"no": "Norges teknisk-naturvitenskapelige universitet",
"en": "Norwegian University of Science and Technology"

},
"url": {

"no": "https://www.ntnu.no",
"en": "https://www.ntnu.edu"

}
}

]

Persons and organizations

Persons and organizations can have multiple roles in different contexts. A person
can be a contact person for a key, and one or more persons can be creators or
contributors to a key. Persons can also be creators or contributors to media files.
A person can have one or more organizations as their affiliation, and organizations
can have a person as a primary contact. An organization can be the publisher of a
key or media file, and the primary contact for a key can also be an organization
instead of a person. Persons and institutions can have resources such as urls and
mediaFiles connected to them, e.g. institutional websites, portraits and logos.

Example: Definition of a person and an organization. See lines 11 - 23 in
the S2 Appendix for the corresponding JSON.

Geographic and taxonomic scope

Geographic regions can be defined using a name and/or GeoJSON MultiPolygon.
On the top level, a “geography” field can be specified to indicate what geographic
region the key covers. One can also define a geography at the taxon or statement
level, to provide information on where the taxon occurs, and in which region a
taxon has that particular relationship to a character. Within a region specified as
the geography of a statement, the statement with a geography takes precedence
over the conflicting statement without a stated geography.

Example: Kangaskhan only occurs in Australia. See lines 95 - 146 in the S2
Appendix for the corresponding JSON.

Example: The rain form of Castform has a higher frequency in the notoriously
rainy Norwegian city of Bergen. See lines 299 - 344 in the S2 Appendix for the
corresponding JSON.
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Logical premises

Not all characters are meaningful in every context, and it is sometimes desirable
to be able to specify conditions that must be met before a character is shown to
the user. Such a condition may be that the user has given a certain answer to
some other character in the key first. To this end, characters can have a logical
premise, specifying which facts have to be established for it to be relevant. Logical
premises can also relate several facts combined, including numerical values, and
consist of strings using unary and binary operators in JavaScript notation.

Logical premises are seldomly required to make a key work, but can be used
to ease the identification process. If characters are scored only for those taxa that
they are relevant for distinguishing, this in itself will normally ensure that such
characters stay hidden from the user until they are relevant to show. However, a
situation may arise in which some of the taxa in the key are polymorphic, i.e. if
they either may or may not have a certain property. In this situation, a character
referring to this property would normally become visible to the user because all the
remaining taxa can have it, which will likely cause confusion if the actual specimen
being identified does not have it, or if it is not observable. By introducing a logical
premise, such a character may be hidden until the user has explicitly indicated
that the specimen does in fact have the property.

Example: Pikachu caught during special events have hats, in contrast to those
caught outside of such events. Other Pokémon (e.g. Honchkrow) always have hats.
This allows for the characteristics of the hat to be used in identification, but not
before it has been established that one is not only left solely with Pokémon that
can have hats, but when it has been established that the target Pokémon in fact is
wearing one. See lines 220 - 248 in the S2 Appendix for the corresponding JSON.

Numerical values

The possible values that a character can have can take the form of a set of discrete
states, such as “present”/“absent”, or “red”/“blue”. They may, however, also come
in the form of numerical values, such as counts or measurements. In a key this can
be implemented with a character of the type “numerical”. Numerical characters
specify a minimum and maximum that the value can have, a step size and its
unit. Statements specifying values for numerical characters to taxa can define a
range, or a single value. If more advanced metrics are needed for the key, such as
a probability function over the numerical values for use in Bayesian analysis, this
can be implemented through a call to an external service (see below).

Example: The weight of a Pokémon varies, both between individuals within a
species and between species. To distinguish Pokémon based on their weight, this is
added as a numerical character, where weights can be specified in whole kilograms
within a given range. A statement can then be included to register the possible
weight range of a given taxon. See lines 249 - 258 (character) and lines 289 - 298
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(statement) in the S2 Appendix for the corresponding JSON.

External services

Various units in a key may be subject to changes that are ideally managed outside
the key, in designated centralized systems. Taxon names can change, as can urls
to supplemental information, media files, geographic ranges etc. Other parameters,
such as the probability distribution of a numerical character for a given taxon, may
be too detailed for direct inclusion in a key. It is best practice to not duplicate
such resources, but to harvest these via an Application Programming Interface
(API) or other service interface. To facilitate this, Clavis allows the specification
of external services, where documentation for use of the service can be linked.
Various units in the key, such as taxa, can refer to such external services through
one or more externalResources, connecting the service and the relevant external id
to the taxon at hand.

External services should not contain information critical to the workings of
the key, as not every implementation can be expected to contain the necessary
code to retrieve the information the service provides. External services are useful,
however, for features steering presentation, and can provide complex information
that depends on various user inputs and other contextual information. To sort
taxa by probability, for example, an external service may provide probability scores
for taxa based on the geographic location of the user, the season, and properties
like coloration and size of the specimen. An interface that does not implement
calling this service will simply not sort the taxa by probability, but will still be
fully functional.

Example: To allow for features such as the retrieval of the name of a Pokémon
in different languages, one can use a Wikidata query. See lines 432 - 436 (service)
and lines 47 - 50 (externalResource) in the S2 Appendix for the corresponding
JSON.

Example: A hypothetical API returns the probability for a provided taxon, given
its location and size. See lines 437 - 443 in the S2 Appendix for the corresponding
JSON.

Required expertise

Some characters are harder to evaluate than others, and may even require spe-
cial equipment. To warn and assist users, a key can contain userRequirements,
describing such required skills or tools. These requirements can be connected to
characters so that the user might filter out characters requiring skills or equipment
they do not have, be presented with additional info to complete the task, or simply
be warned.

Example: the weight of a Pokémon can be a useful characteristic as their
weights vary between types. One can only weigh a Pokémon once it has been
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caught, however. The user needs to be aware of this so that in situations where
a Pokémon cannot be caught (e.g. when identifying from a picture or being out
of Pokéballs) such questions can be ignored. One can also add a guide on how to
catch a Pokémon in order to weigh it. See lines 249 - 258 (character) and lines
417 - 429 (userRequirement) in the S2 Appendix for the corresponding JSON.

Media elements

Illustrations greatly improve the usability and aesthetics of any key. Most entities
in a Clavis key can contain a reference to an image; taxa, characters and states,
but also persons, organizations, userRequirements, statements, etc. To facilitate
this, Clavis defines mediaElements, containing one or more mediaFiles. These
mediaFiles can contain and/or link to image, sound, or video files, using an array
of mediaFiles to allow different sizes of the same file to be included.

Example: The states in the tail character of Pikachu refer to images illus-
trating the different tail shapes. See lines 207 - 218 (states) and lines 446 - 496
(mediaElements) in the S2 Appendix for the corresponding JSON.

Descriptions

There are many aspects of an identification key where a more elaborate description
is desirable or even required. To this end, many elements can have a short and/or
extended description in valid markdown notation, as well as a url to an online
description.

Example: A description can be used to explain to the user how to catch a
Pokémon where relevant, by including a short description and a link to a page with
more information. See lines 422 - 429 in the S2 Appendix for the corresponding
JSON.

Followup keys

Once a key has identified a taxon as far as it is intended to, i.e. when it has
narrowed it down to an endpoint taxon, the user is presented with the result. It
may however be possible to further determine the result. If a key exists somewhere
that can help with this, it can be referred to as a followup key from the relevant
taxon. It can be either a url, or a reference to an (external) service. This feature
can also be used to split keys into several smaller keys that refer to one another
through this mechanism.

Example: Once the Pokémon is determined to be a Pikachu, the user can be
advised that there is a key to determine which of its many possible costumes the
Pikachu is wearing. See line 56 in the S2 Appendix for the corresponding JSON.
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Discussion
The examples provided here illustrate the versatility of Clavis as a key format.
Several of its features are, to our knowledge, not supported by any other format,
nor is the totality of its features.

A crucial aspect in identifying any taxon is the geographic origin of the target
specimen. Primarily, it dictates which taxa are candidates for its identity, and
thus which key(s) can be used for it and which taxa within the keys are to
be considered. Secondarily, it dictates the possible traits of the taxa, insofar
as these vary geographically. By referring to external services for geographical
information, keys can be made to directly benefit from Species Distribution Models
hosted elsewhere, ever improving as more data and improved methodology become
available.

Figure 5: An example implementation of a Clavis key graphical user interface. Based
on a working Odonata key previously published by the Norwegian Biodiversity Information
Centre. A hierarchical list of taxa (left) is reduced by providing input on characters (right). Only
characters relevant for all remaining taxa are shown.

It is important to realize that keys are designed to function as a whole, and that
its contents need to be regarded in context of the key. Characteristics defined and
scored in the context of distinguishing between taxa within a limited taxonomic
and geographical scope can be misleading when put in contexts other than that of
the key. It may in some cases be possible to extract traits from a key for use in a
different context, such as for a taxon diagnosis or a trait database. Taxonomic
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knowledge is required to assess the relevance of such traits outside of the key’s
context, however.

A particularly potent application of the Clavis format will be an implementation
in tandem with automated image recognition. Since statements are stored as
separate entities, there is no fixed path through the key requiring that taxa are
evaluated against their characteristics in any particular order. This means that
the key can be applied to any subset of the taxa as easily as to the full taxon set.
Which characters are displayed to the user will automatically adjust according to
the subset of taxa. This allows for a reduction of the probable identifications by
a machine learning algorithm as a first step, followed by keying of the relevant
subset of taxa to make a final determination. This mechanism potentially reduces
the need for much of the user input of a full key, thus saving the user considerable
effort and reducing the possibility of the user providing incorrect input that is
inherent each time user input is provided. Conversely, it reduces the reliability
solely on machine learning for identification, providing a mechanism of quality
control of the algorithm output, and an opportunity for the end user to learn a
great deal more than they would with only a recognition model prediction.

The development of Clavis has been done in close collaboration with taxonomic
experts. While this has enabled us to include many diverse features covering
needs that have arisen in the past, no such endeavor can expect to produce a final
version covering all needs. Further adoption may also bring to light ambiguities or
shortcomings that will need to be addressed. Our aim is to continue to update the
format, releasing new iterations with improvements. Use of previous versions will
remain possible, and we aim to maintain backwards compatibility wherever possible.
We invite the community to contribute to the development of Clavis, through
submitting issues on GitHub, and resolving issues by answering questions or
proposing code changes through pull requests. We hope that solutions supporting
Clavis, be it key building software or end-user interfaces, both of which we plan to
create examples of, will be shared openly as part of a broader ecosystem of use
and re-use.

Our aim is for Clavis to be a relevant tool for storing the taxonomic knowledge
needed for identification in a way that allows for the representation of the com-
plexity and nuances inherent to such knowledge. The open exchange of taxonomic
knowledge, unambiguously captured with as much of the auxiliary details needed
for its application, is essential for the preservation of invaluable, increasingly elusive
knowledge.

We believe that the storage of taxonomic knowledge with the level of detail
exemplified here, combined with user interfaces making it accessible, is vital
in enabling observers to gather the data needed for apt nature management.
Particularly within citizen science, the potential of tools built on an identification
key format such as Clavis is considerable. The more accessible this expert knowledge
is, the more accurate the identifications made by the user will be, and keys on
generally less well-known taxa can aid in closing the taxonomic gaps in the
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data corpus. The possibility of storing the user input together with a reported
observation, can provide important metadata on the identification and its quality.
The results of these projected advances in data collection quality feed back into
the areas where these data are used, from research and spatial distribution models
to the decision making processes related to the biodiversity crisis in a changing
world.

Data availability and licensing
The latest formal definition of Clavis can be found at https://github.com/
Artsdatabanken/Clavis. All files related to this manuscript can be found at
https://doi.org/10.5281/zenodo.6585092.

Figures 1-4 are all made by Wouter Koch and licensed under a CC BY 4.0
license. In Fig. 5, character illustrations are made by Hallvard Elven and licensed
under a CC BY 4.0 license, while taxon images are made by Göran Liljeberg and
licensed under a CC BY-SA 4.0 license.
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Supporting information
S1 Appendix. Clavis JSON-schema. The formal definition of what consti-
tutes a Clavis-compliant key.

S2 Appendix. Pokémon key example. A Clavis-compliant key to a number
of Pokémon. Serves to illustrate all the different aspects that Clavis supports,
rather than to provide a fully functional and complete key.

S3 Appendix. Titmice key example. A Clavis-compliant key to Norway’s
titmice (Paridae). Serves as a real life example of a fully functional and complete
key, using only a selection of Clavis’ capabilities.



Clavis: an open and versatile identification key format

SUPPLEMENTARY MATERIALS

S1 Appendix. Clavis JSON-schema
{1

"$schema": "http://json-schema.org/draft-07/schema#",2

"title": "Clavis identification key schema",3

"description": "Clavis-compliant keys contain knowledge that may be4

used to distinguish taxa from each other.",5

"type": "object",6

"required": [7

"$schema",8

"title",9

"language",10

"license",11

"creator",12

"lastModified",13

"identifier",14

"taxa",15

"characters",16

"statements",17

"persons"18

],19

"properties": {20

"$schema": {21

"description": "The schema url of (this) schema defining the22

format of the key.",23

"$ref": "#/definitions/url"24

},25

"title": {26

"description": "The name of the key",27

"comment": "Accepts array for multilingual support.",28

"$ref": "#/definitions/localizedString",29

"examples": [30

"Birds of Norway"31

]32

},33
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"media": {34

"description": "The logo/illustration image of the key.",35

"$ref": "#/definitions/mediaID"36

},37

"description": {38

"description": "Short description of the key (valid39

markdown).",40

"comment": "Accepts array for multilingual support.",41

"$ref": "#/definitions/localizedString",42

"contentMediaType": "text/markdown"43

},44

"descriptionDetails": {45

"description": "Extended description of the key that supplements46

the description (valid markdown).",47

"comment": "Accepts array for multilingual support.",48

"$ref": "#/definitions/localizedString",49

"contentMediaType": "text/markdown"50

},51

"descriptionUrl": {52

"description": "Hyperlink to more information on the key (valid53

url).",54

"comment": "Accepts array for multilingual support.",55

"$ref": "#/definitions/localizedUrl"56

},57

"audience": {58

"description": "Description of the intended audience for the59

key.",60

"comment": "Accepts array for multilingual support.",61

"$ref": "#/definitions/localizedString",62

"examples": [63

"Undergraduate students and up."64

]65

},66

"source": {67

"description": "Source of the key.",68

"comment": "Accepts array for multilingual support.",69

"$ref": "#/definitions/localizedString",70

"examples": [71

"Koch, Wouter (2019). Birds of Norway. ISBN 1234567890"72

]73

},74

"sourceUrl": {75

"description": "Hyperlink to the source of the key (valid76

url).",77

"comment": "Accepts array for multilingual support.",78

"$ref": "#/definitions/localizedUrl",79

"examples": [80

"https://doi.org/10.1126/science.1251554"81
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]82

},83

"geography": {84

"description": "The region for which the key is valid (e.g.85

covers all subtaxa), represented as a geography object.",86

"$ref": "#/definitions/geography"87

},88

"primaryContact": {89

"description": "The organization- or person-id that is the main90

contact point for the key.",91

"oneOf": [92

{93

"$ref": "#/definitions/personID"94

},95

{96

"$ref": "#/definitions/organizationID"97

}98

]99

},100

"creator": {101

"description": "The id(s) of the creator(s) of the key",102

"oneOf": [103

{104

"$ref": "#/definitions/personID"105

},106

{107

"type": "array",108

"items": {109

"$ref": "#/definitions/personID"110

}111

}112

]113

},114

"contributor": {115

"description": "The id(s) of the contributor(s) of the key",116

"oneOf": [117

{118

"$ref": "#/definitions/personID"119

},120

{121

"type": "array",122

"items": {123

"$ref": "#/definitions/personID"124

}125

}126

]127

},128

"publisher": {129
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"description": "The id(s) of the publishing institutions of the130

key.",131

"oneOf": [132

{133

"$ref": "#/definitions/organizationID"134

},135

{136

"type": "array",137

"items": {138

"$ref": "#/definitions/organizationID"139

}140

}141

]142

},143

"license": {144

"description": "The url to the license under which the key145

falls.",146

"$ref": "#/definitions/url",147

"examples": [148

"https://creativecommons.org/licenses/by/4.0/"149

]150

},151

"language": {152

"description": "The ISO 639-1 code(s) of the key language(s).",153

"comment": "String for a single language, array of strings for154

multilingual support. If used as an array, be sure to use the155

localizedString and localizedUrl as arrays too.",156

"oneOf": [157

{158

"type": "string",159

"pattern": "^[a-z]{2}$"160

},161

{162

"type": "array",163

"items": {164

"type": "string",165

"pattern": "^[a-z]{2}$"166

}167

}168

],169

"examples": [170

"en",171

"nb",172

[173

"en",174

"nb"175

]176

]177
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},178

"created": {179

"description": "The moment the key was made or first published,180

as ’YYYY-MM-DD hh:mm:ss’.",181

"type": "string",182

"pattern": "^20\d\d-(0[1-9]|1[0-2])-([012]\d|3[01])183

([01]\d|2[0-3]):([0-5]\d):([0-5]\d)$",184

"examples": [185

"2019-05-21 22:51:55"186

]187

},188

"lastModified": {189

"description": "The most recent moment the key was modified, as190

’YYYY-MM-DD hh:mm:ss’.",191

"type": "string",192

"pattern": "^20\d\d-(0[1-9]|1[0-2])-([012]\d|3[01])193

([01]\d|2[0-3]):([0-5]\d):([0-5]\d)$",194

"examples": [195

"2019-05-21 22:51:55"196

]197

},198

"identifier": {199

"description": "The GUID of this key (persistent regardless of200

version).",201

"type": "string"202

},203

"url": {204

"description": "The url of where the key lives (to check for205

newer versions).",206

"$ref": "#/definitions/url"207

},208

"externalServices": {209

"description": "Services used by the key for lookups of images,210

taxa, etc.",211

"type": "array",212

"items": {213

"$ref": "#/definitions/externalService"214

}215

},216

"userRequirements": {217

"description": "Requirements to the users of the various218

characters, so that the user can be warned, helped, etc.",219

"type": "array",220

"items": {221

"$ref": "#/definitions/userRequirement"222

}223

},224

"taxa": {225
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"description": "Taxa (e.g. species) the key can resolve to. Do226

not have to be exclusively taxonomic units.",227

"comment": "Taxa to which the key can resolve (either the taxa228

directly or their children).",229

"type": "array",230

"items": {231

"$ref": "#/definitions/taxon"232

}233

},234

"characters": {235

"description": "Characters (questions, e.g. ’Wing color’ or236

’Number of spots’) used to distinguish between two or more taxa.",237

"type": "array",238

"items": {239

"$ref": "#/definitions/character"240

}241

},242

"statements": {243

"description": "Relationships between taxa and character states244

(or lack thereof) that define those taxa.",245

"type": "array",246

"items": {247

"$ref": "#/definitions/statement"248

}249

},250

"persons": {251

"description": "Persons that are connected to (parts of) the252

key, such as creators.",253

"type": "array",254

"items": {255

"$ref": "#/definitions/person"256

}257

},258

"organizations": {259

"description": "Organizations that are connected to (parts of)260

the key or persons, such as employers and publishers.",261

"type": "array",262

"items": {263

"$ref": "#/definitions/organization"264

}265

},266

"mediaElements": {267

"description": "Media elements that are used in the key.",268

"type": "array",269

"items": {270

"$ref": "#/definitions/localizedMediaElement"271

}272

}273
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},274

"additionalProperties": false,275

"definitions": {276

"localizedString": {277

"description": "Language-dependent string or object of strings,278

with keys corresponding to the languages supported by the key.",279

"oneOf": [280

{281

"type": "string"282

},283

{284

"type": "object",285

"propertyNames": {286

"pattern": "^[a-z]{2}$"287

},288

"properties": {},289

"additionalProperties": {290

"type": "string"291

}292

}293

]294

},295

"localizedUrl": {296

"description": "Language-dependent urls or object of urls,297

corresponding to the languages supported by the key.",298

"oneOf": [299

{300

"$ref": "#/definitions/url"301

},302

{303

"type": "object",304

"propertyNames": {305

"pattern": "^[a-z]{2}$"306

},307

"properties": {},308

"additionalProperties": {309

"$ref": "#/definitions/url"310

}311

}312

]313

},314

"localizedMediaElement": {315

"type": "object",316

"description": "Language-dependent media element or object of317

media elements, corresponding to the languages supported by the318

key.",319

"properties": {320

"id": {321
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"description": "Internally unique id of the localized media322

element.",323

"$ref": "#/definitions/mediaID"324

},325

"mediaElement": {326

"description": "The media element or media elements (one for327

each language).",328

"oneOf": [329

{330

"$ref": "#/definitions/mediaElement"331

},332

{333

"type": "object",334

"propertyNames": {335

"pattern": "^[a-z]{2}$"336

},337

"properties": {},338

"additionalProperties": {339

"$ref": "#/definitions/mediaElement"340

}341

}342

]343

}344

},345

"additionalProperties": false346

},347

"url": {348

"description": "String formed as a url, or an external349

resource.",350

"oneOf": [351

{352

"type": "string",353

"format": "uri"354

},355

{356

"$ref": "#/definitions/externalResource"357

}358

]359

},360

"taxonID": {361

"description": "String used as an internal ID for a taxon.362

Lowercase alphanumeric and underscores are allowed.",363

"type": "string",364

"pattern": "^taxon:[a-z0-9_]+$"365

},366

"characterID": {367

"description": "String used as an internal ID for a character.368

Lowercase alphanumeric and underscores are allowed.",369
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"type": "string",370

"pattern": "^character:[a-z0-9_]+$"371

},372

"stateID": {373

"description": "String used as an internal ID for a state.374

Lowercase alphanumeric and underscores are allowed.",375

"type": "string",376

"pattern": "^state:[a-z0-9_]+$"377

},378

"personID": {379

"description": "String used as an internal ID for a person.380

Lowercase alphanumeric and underscores are allowed.",381

"type": "string",382

"pattern": "^person:[a-z0-9_]+$"383

},384

"organizationID": {385

"description": "String used as an internal ID for an386

organization. Lowercase alphanumeric and underscores are allowed.",387

"type": "string",388

"pattern": "^organization:[a-z0-9_]+$"389

},390

"serviceID": {391

"description": "String used as an internal ID for a service.392

Lowercase alphanumeric and underscores are allowed.",393

"type": "string",394

"pattern": "^service:[a-z0-9_]+$"395

},396

"statementID": {397

"description": "String used as an internal ID for a statement.398

Lowercase alphanumeric and underscores are allowed.",399

"type": "string",400

"pattern": "^statement:[a-z0-9_]+$"401

},402

"userRequirementID": {403

"description": "String used as an internal ID for a user404

requirement. Lowercase alphanumeric and underscores are allowed.",405

"type": "string",406

"pattern": "^requirement:[a-z0-9_]+$"407

},408

"mediaID": {409

"description": "String used as an internal ID for a media410

element. Lowercase alphanumeric and underscores are allowed.",411

"type": "string",412

"pattern": "^media:[a-z0-9_]+$"413

},414

"mediaFile": {415

"type": "object",416

"properties": {417



210

"title": {418

"description": "The title of the media file.",419

"$ref": "#/definitions/localizedString"420

},421

"url": {422

"description": "The reference to the media file (url or423

resource).",424

"$ref": "#/definitions/url"425

},426

"file": {427

"description": "The actual media file (base64 or svg) as a428

data URI scheme.",429

"oneOf": [430

{431

"type": "string",432

"pattern":433

"^data:([a-z0-9/]+);base64,([a-zA-Z0-9+/=]+)$"434

},435

{436

"type": "string",437

"pattern": "^data:image/svg\+xml;utf8,(.*)$"438

}439

]440

},441

"width": {442

"description": "The number of pixels horizontally (if a443

bitmap image or video).",444

"type": "integer"445

},446

"height": {447

"description": "The number of pixels vertically (if a bitmap448

image or video).",449

"type": "integer"450

},451

"length": {452

"description": "The length in seconds of an audio or video453

file.",454

"type": "integer"455

},456

"placeholder": {457

"description": "Image file that can be shown instead of the458

video or audio file.",459

"$ref": "#/definitions/mediaID"460

},461

"creator": {462

"description": "The id(s) of the creator(s) of the media463

file",464

"oneOf": [465
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{466

"$ref": "#/definitions/personID"467

},468

{469

"type": "array",470

"items": {471

"$ref": "#/definitions/personID"472

}473

}474

]475

},476

"contributor": {477

"description": "The id(s) of the contributor(s) of the media478

file",479

"oneOf": [480

{481

"$ref": "#/definitions/personID"482

},483

{484

"type": "array",485

"items": {486

"$ref": "#/definitions/personID"487

}488

}489

]490

},491

"publisher": {492

"description": "The id(s) of the publishing institutions of493

the media file.",494

"oneOf": [495

{496

"$ref": "#/definitions/organizationID"497

},498

{499

"type": "array",500

"items": {501

"$ref": "#/definitions/organizationID"502

}503

}504

]505

},506

"license": {507

"description": "The url to the license under which the media508

file falls.",509

"$ref": "#/definitions/url",510

"examples": [511

"https://creativecommons.org/licenses/by/4.0/"512

]513
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}514

},515

"additionalProperties": false516

},517

"mediaElement": {518

"description": "A media element (collection of various formats519

of the same media object).",520

"type": "object",521

"properties": {522

"file": {523

"description": "The various formats of the same media524

object.",525

"oneOf": [526

{527

"$ref": "#/definitions/mediaFile"528

},529

{530

"type": "array",531

"items": {532

"$ref": "#/definitions/mediaFile"533

}534

}535

]536

}537

},538

"additionalProperties": false539

},540

"multiPolygon": {541

"description": "The coordinates array of a GeoJSON542

MultiPolygon.",543

"type": "array",544

"items": {545

"type": "array",546

"items": {547

"type": "array",548

"items": {549

"type": "array",550

"items": {551

"type": "number"552

}553

}554

}555

}556

},557

"geography": {558

"description": "A geographic element (name, polygon, and/or559

external service).",560

"type": "object",561
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"properties": {562

"name": {563

"description": "The name of the area(s).",564

"comment": "Accepts array for multilingual support.",565

"$ref": "#/definitions/localizedString",566

"examples": [567

"Norway",568

"Europe",569

"Trøndelag",570

[571

"Norge",572

"Norway"573

]574

]575

},576

"polygon": {577

"description": "The geographical area(s), represented as the578

coordinates array of a GeoJSON MultiPolygon.",579

"$ref": "#/definitions/multiPolygon"580

},581

"service": {582

"description": "An url or external service that returns583

geographical information.",584

"$ref": "#/definitions/url"585

}586

},587

"additionalProperties": false588

},589

"externalResource": {590

"description": "A resource managed elsewhere.",591

"type": "object",592

"properties": {593

"serviceId": {594

"description": "The id to one of the externalServices595

defined.",596

"$ref": "#/definitions/serviceID"597

},598

"externalId": {599

"description": "The id of the resource at the600

externalService.",601

"type": "string"602

}603

},604

"additionalProperties": false605

},606

"externalService": {607

"description": "Service used by the key, for media files,608

taxonomy and/or nomenclature, species distributions, etc.",609



214

"type": "object",610

"required": [611

"id"612

],613

"properties": {614

"id": {615

"description": "Internally unique id to the service.",616

"$ref": "#/definitions/serviceID"617

},618

"title": {619

"description": "Name of the service.",620

"type": "string"621

},622

"description": {623

"description": "Description of the service.",624

"type": "string"625

},626

"provider": {627

"description": "Provider of the service.",628

"type": "string"629

},630

"url": {631

"description": "Url for the service documentation.",632

"$ref": "#/definitions/url"633

}634

},635

"additionalProperties": false636

},637

"person": {638

"type": "object",639

"required": [640

"id",641

"name"642

],643

"properties": {644

"id": {645

"$ref": "#/definitions/personID"646

},647

"name": {648

"description": "Full name of the person",649

"comment": "Accepts object for multilingual support.",650

"$ref": "#/definitions/localizedString"651

},652

"email": {653

"description": "Email address of the person",654

"type": "string",655

"format": "email"656

},657
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"url": {658

"description": "Hyperlink to more information on the person659

(valid url).",660

"comment": "Accepts object for multilingual support.",661

"$ref": "#/definitions/localizedUrl"662

},663

"media": {664

"description": "A media file (image) representing the665

person.",666

"$ref": "#/definitions/mediaID"667

},668

"affiliation": {669

"description": "Organization id(s) the person is affiliated670

with.",671

"oneOf": [672

{673

"$ref": "#/definitions/organizationID"674

},675

{676

"type": "array",677

"items": {678

"$ref": "#/definitions/organizationID"679

}680

}681

]682

}683

},684

"additionalProperties": false685

},686

"organization": {687

"type": "object",688

"required": [689

"id",690

"name"691

],692

"properties": {693

"id": {694

"$ref": "#/definitions/organizationID"695

},696

"name": {697

"description": "Name of the organization",698

"comment": "Accepts object for multilingual support.",699

"$ref": "#/definitions/localizedString"700

},701

"url": {702

"description": "Hyperlink to more information on the703

organization (valid url).",704

"comment": "Accepts object for multilingual support.",705
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"$ref": "#/definitions/localizedUrl"706

},707

"primaryContact": {708

"description": "The person-id that is the main contact point709

for the organization.",710

"$ref": "#/definitions/personID"711

},712

"media": {713

"description": "A media file (image) representing the714

organization, such as a logo.",715

"$ref": "#/definitions/mediaID"716

}717

},718

"additionalProperties": false719

},720

"userRequirement": {721

"type": "object",722

"required": [723

"id"724

],725

"properties": {726

"id": {727

"$ref": "#/definitions/userRequirementID"728

},729

"title": {730

"comment": "Accepts array for multilingual support.",731

"$ref": "#/definitions/localizedString"732

},733

"warning": {734

"comment": "Accepts array for multilingual support.",735

"$ref": "#/definitions/localizedString"736

},737

"description": {738

"description": "Short description of the requirements to the739

user (valid markdown).",740

"comment": "Accepts object for multilingual support.",741

"$ref": "#/definitions/localizedString",742

"contentMediaType": "text/markdown"743

},744

"descriptionDetails": {745

"description": "Extended description of the requirements to746

the user that supplements the description (valid markdown).",747

"comment": "Accepts object for multilingual support.",748

"$ref": "#/definitions/localizedString",749

"contentMediaType": "text/markdown"750

},751

"descriptionUrl": {752

"description": "Hyperlink to more information on the753
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requirements to the user (valid url).",754

"comment": "Accepts object for multilingual support.",755

"$ref": "#/definitions/localizedUrl"756

},757

"media": {758

"description": "Media or illustration that informs the user759

on the requirements to the user.",760

"comment": "Accepts object for multilingual support.",761

"$ref": "#/definitions/mediaID"762

}763

},764

"additionalProperties": false765

},766

"taxon": {767

"type": "object",768

"oneOf": [769

{770

"required": [771

"id",772

"scientificName"773

]774

},775

{776

"required": [777

"id",778

"externalReference"779

]780

},781

{782

"required": [783

"id",784

"label"785

]786

}787

],788

"properties": {789

"id": {790

"description": "Internally unique id to the taxon.",791

"$ref": "#/definitions/taxonID"792

},793

"scientificName": {794

"description": "Scientific name of the taxon.",795

"minLength": 5,796

"type": "string",797

"examples": [798

"Vulpes lagopus"799

]800

},801



218

"scientificNameAuthor": {802

"description": "Author string of the scientific name of the803

taxon.",804

"type": "string",805

"examples": [806

"Koch, 1888"807

]808

},809

"placeholderName": {810

"description": "Name that can be shown while fetching the811

name externally. Also useful for editing the key.",812

"comment": "Accepts object for multilingual support.",813

"$ref": "#/definitions/localizedString",814

"examples": [815

"B. hortorum (melanistic queen)"816

]817

},818

"vernacularName": {819

"description": "Vernacular name of the taxon.",820

"comment": "Accepts object for multilingual support.",821

"$ref": "#/definitions/localizedString",822

"examples": [823

"fjellrev",824

{825

"no": "fjellrev",826

"en": "Arctic Fox"827

}828

]829

},830

"media": {831

"description": "Media elements of the taxon.",832

"oneOf": [833

{834

"$ref": "#/definitions/mediaID"835

},836

{837

"type": "array",838

"items": {839

"$ref": "#/definitions/mediaID"840

}841

}842

]843

},844

"description": {845

"description": "Short description of the taxon (valid846

markdown).",847

"comment": "Accepts object for multilingual support.",848

"$ref": "#/definitions/localizedString",849



219

"contentMediaType": "text/markdown"850

},851

"descriptionDetails": {852

"description": "Extended description of the taxon that853

supplements the description (valid markdown).",854

"comment": "Accepts object for multilingual support.",855

"$ref": "#/definitions/localizedString",856

"contentMediaType": "text/markdown"857

},858

"descriptionUrl": {859

"description": "Hyperlink or resource to more information on860

the taxon.",861

"comment": "Accepts object for multilingual support.",862

"$ref": "#/definitions/localizedUrl"863

},864

"rank": {865

"description": "Name of the level of the taxon.",866

"comment": "Accepts object for multilingual support.",867

"$ref": "#/definitions/localizedString",868

"examples": [869

"slekt",870

{871

"no": "slekt",872

"en": "genus"873

}874

]875

},876

"label": {877

"description": "Type of morph of the taxon.",878

"type": "string",879

"minLength": 0,880

"examples": [881

"male",882

"~",883

"larva"884

]885

},886

"isEndPoint": {887

"description": "Whether the key should stop when this taxon888

is the only remaining possibility, even when it has multiple children889

remaining.",890

"comment": "Default is FALSE (if not specified). A taxon891

without children is alway an endpoint by definition, unless one of its892

ancestors overrides this by being specified as an endpoint.",893

"type": "boolean"894

},895

"children": {896

"type": "array",897
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"items": {898

"$ref": "#/definitions/taxon"899

}900

},901

"externalReference": {902

"description": "Reference to a taxon at one or more903

providers, each as an object with a provider id and a taxon id at that904

provider.",905

"comment": "Accepts an array for multiple sources. Each906

element accepts an object for multilingual support.",907

"oneOf": [908

{909

"$ref": "#/definitions/localizedUrl"910

},911

{912

"type": "array",913

"items": {914

"$ref": "#/definitions/localizedUrl"915

}916

}917

]918

},919

"followUp": {920

"description": "Url or reference to instance at external921

service for a key for this taxon, that for instance can be used to922

identify to a lower rank than the current key can.",923

"comment": "Accepts array for multilingual support.",924

"$ref": "#/definitions/localizedUrl"925

},926

"geography": {927

"description": "The area(s) in which the taxon occurs,928

represented as a geography object.",929

"$ref": "#/definitions/geography"930

}931

},932

"additionalProperties": false933

},934

"character": {935

"type": "object",936

"oneOf": [937

{938

"required": [939

"id",940

"title",941

"states"942

]943

},944

{945
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"required": [946

"id",947

"title",948

"type",949

"min",950

"max",951

"stepSize",952

"unit"953

]954

}955

],956

"properties": {957

"id": {958

"description": "Internally unique id to the character.",959

"$ref": "#/definitions/characterID"960

},961

"title": {962

"description": "Name of the character.",963

"comment": "Accepts array for multilingual support.",964

"$ref": "#/definitions/localizedString",965

"examples": [966

"Color of the wings"967

]968

},969

"media": {970

"description": "The media element(s) of the character. Can971

be used to inform user of relevant structures etc.",972

"oneOf": [973

{974

"$ref": "#/definitions/mediaID"975

},976

{977

"type": "array",978

"items": {979

"$ref": "#/definitions/mediaID"980

}981

}982

]983

},984

"description": {985

"description": "Short description of the character (valid986

markdown).",987

"comment": "Accepts object for multilingual support.",988

"$ref": "#/definitions/localizedString",989

"contentMediaType": "text/markdown"990

},991

"descriptionDetails": {992

"description": "Extended description of the character that993
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supplements the description (valid markdown).",994

"comment": "Accepts object for multilingual support.",995

"$ref": "#/definitions/localizedString",996

"contentMediaType": "text/markdown"997

},998

"descriptionUrl": {999

"description": "Hyperlink or resource to more information on1000

the character.",1001

"comment": "Accepts object for multilingual support.",1002

"$ref": "#/definitions/localizedUrl"1003

},1004

"type": {1005

"description": "Type of the character (exclusive when states1006

are categorical and mutually exclusive, non-exclusive when these are1007

non-exclusive, or numerical when the state is numerical).",1008

"comment": "Default is exclusive (if not specified).",1009

"type": "string",1010

"enum": [1011

"exclusive",1012

"non-exclusive",1013

"numerical"1014

]1015

},1016

"userRequirement": {1017

"description": "Id to the userRequirement required to answer1018

this character.",1019

"comment": "Has to be one of the userRequirement defined on1020

the key level.",1021

"$ref": "#/definitions/userRequirementID"1022

},1023

"logicalPremise": {1024

"description": "Logical requirement that has to be fulfilled1025

for this question to be asked.",1026

"comment": "Has to refer to stateIds, that have to be fully1027

true (either answered or all alternatives ruled out). Can use !, &&,1028

||, (, ), <, >, =.",1029

"type": "string",1030

"pattern": "^(( && )|( \|\|1031

)|(&&)|(\|\|)|[a-z0-9_:()!<>=])+$"1032

},1033

"min": {1034

"type": "number",1035

"description": "The minimum numerical value for the1036

character."1037

},1038

"max": {1039

"type": "number",1040

"description": "The maximum numerical value for the1041
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character."1042

},1043

"stepSize": {1044

"type": "number",1045

"description": "The increments with which the numerical1046

value of the character can be specified."1047

},1048

"unit": {1049

"description": "The unit of the numerical value.",1050

"$ref": "#/definitions/localizedString",1051

"examples": [1052

"mm",1053

"meters below the surface",1054

"spots",1055

"legs",1056

"kg"1057

]1058

},1059

"states": {1060

"oneOf": [1061

{1062

"type": "array",1063

"items": {1064

"$ref": "#/definitions/state"1065

}1066

},1067

{1068

"$ref": "#/definitions/state"1069

}1070

]1071

}1072

},1073

"additionalProperties": false1074

},1075

"state": {1076

"description": "The value a character can have.",1077

"type": "object",1078

"required": [1079

"id",1080

"title"1081

],1082

"properties": {1083

"id": {1084

"description": "Internally unique id of the state.",1085

"$ref": "#/definitions/stateID"1086

},1087

"title": {1088

"description": "Content of the state.",1089
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"comment": "Only to be used for categorical characters.1090

Accepts object for multilingual support.",1091

"$ref": "#/definitions/localizedString"1092

},1093

"media": {1094

"description": "Media element(s) that illustrate the1095

state.",1096

"oneOf": [1097

{1098

"$ref": "#/definitions/mediaID"1099

},1100

{1101

"type": "array",1102

"items": {1103

"$ref": "#/definitions/mediaID"1104

}1105

}1106

]1107

},1108

"description": {1109

"description": "Short description of the state (valid1110

markdown).",1111

"comment": "Accepts object for multilingual support.",1112

"$ref": "#/definitions/localizedString",1113

"contentMediaType": "text/markdown"1114

},1115

"descriptionDetails": {1116

"description": "Extended description of the state that1117

supplements the description (valid markdown).",1118

"comment": "Accepts object for multilingual support.",1119

"$ref": "#/definitions/localizedString",1120

"contentMediaType": "text/markdown"1121

},1122

"descriptionUrl": {1123

"description": "Hyperlink or resource to more information on1124

the state.",1125

"comment": "Accepts object for multilingual support.",1126

"$ref": "#/definitions/localizedUrl"1127

}1128

},1129

"additionalProperties": false1130

},1131

"statement": {1132

"description": "A fact connecting a taxon and a character1133

through a certain value.",1134

"type": "object",1135

"required": [1136

"id",1137
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"taxon",1138

"character",1139

"value",1140

"frequency"1141

],1142

"properties": {1143

"id": {1144

"description": "Internally unique id of the statement.",1145

"$ref": "#/definitions/statementID"1146

},1147

"taxon": {1148

"description": "Id of the taxon this statement is about.",1149

"$ref": "#/definitions/taxonID"1150

},1151

"character": {1152

"description": "Id of the character this statement is1153

about.",1154

"$ref": "#/definitions/characterID"1155

},1156

"value": {1157

"description": "A value for this character for this taxon.1158

Must be either the id of a state, or an array of floats [min, max] for1159

a numerical range.",1160

"oneOf": [1161

{1162

"$ref": "#/definitions/stateID"1163

},1164

{1165

"type": "array",1166

"items": {1167

"type": "number"1168

},1169

"minItems": 2,1170

"maxItems": 21171

}1172

]1173

},1174

"frequency": {1175

"description": "The frequency with which the taxon has this1176

value for this character.",1177

"type": "number",1178

"minimum": 0,1179

"maximum": 11180

},1181

"geography": {1182

"description": "The area(s) in which the taxon can have this1183

property, represented as a geography object.",1184

"$ref": "#/definitions/geography"1185
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},1186

"media": {1187

"description": "Illustration(s) of this particular taxon1188

having this particular property (this value for this character).",1189

"oneOf": [1190

{1191

"$ref": "#/definitions/mediaID"1192

},1193

{1194

"type": "array",1195

"items": {1196

"$ref": "#/definitions/mediaID"1197

}1198

}1199

]1200

},1201

"description": {1202

"description": "Short description of the taxon having this1203

property (valid markdown).",1204

"comment": "Accepts array for multilingual support.",1205

"$ref": "#/definitions/localizedString",1206

"contentMediaType": "text/markdown"1207

},1208

"descriptionDetails": {1209

"description": "Extended description of the taxon having1210

this property that supplements the description (valid markdown).",1211

"comment": "Accepts array for multilingual support.",1212

"$ref": "#/definitions/localizedString",1213

"contentMediaType": "text/markdown"1214

},1215

"descriptionUrl": {1216

"description": "Hyperlink or resource to more information on1217

the taxon having this property.",1218

"comment": "Accepts array for multilingual support.",1219

"$ref": "#/definitions/localizedUrl"1220

}1221

},1222

"additionalProperties": false1223

}1224

}1225

}1226
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S2 Appendix. Pokémon key example
{1

"$schema":2

"https://raw.githubusercontent.com/WouterKoch/Clavis/main/Schema/Clavi3

s.json",4

"title": "A key to a selection of Pokémon",5

"language": "en",6

"license": "https://creativecommons.org/licenses/by/4.0/",7

"creator": "person:wouterkoch",8

"lastModified": "2022-03-19 21:35:25",9

"identifier": "26b57071-15ca-4b44-92a4-b61181f15373",10

"persons": [11

{12

"id": "person:wouterkoch",13

"name": "Wouter Koch"14

}15

],16

"organizations": [17

{18

"id": "organization:ntnu",19

"name": "Norwegian University of Science and Technology",20

"url": "https://www.ntnu.no"21

}22

],23

"taxa": [24

{25

"id": "taxon:pikachuidae",26

"scientificName": "Pikachuidae",27

"children": [28

{29

"id": "taxon:pokemon_172",30

"scientificName": "Pichu",31

"children": [32

{33

"id": "taxon:pokemon_172_standard",34

"label": ""35

},36

{37

"id": "taxon:pokemon_172_shiny",38

"label": "Shiny"39

}40

]41

},42

{43

"id": "taxon:pokemon_025",44

"scientificName": "Pikachu",45

"externalReference": [46
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{47

"serviceId": "service:wikidata",48

"externalId": "Q9351"49

},50

{51

"serviceId": "service:example_api",52

"externalId": "Pikachu"53

}54

],55

"followUp": "https://example.com/pikachu_costumes",56

"children": [57

{58

"id": "taxon:pokemon_025_standard",59

"isEndPoint": true,60

"label": "",61

"children": [62

{63

"id": "taxon:pokemon_025_standard_male",64

"label": "|"65

},66

{67

"id": "taxon:pokemon_025_standard_female",68

"label": "~"69

}70

]71

},72

{73

"id": "taxon:pokemon_025_shiny",74

"label": "Shiny"75

}76

]77

},78

{79

"id": "taxon:pokemon_026",80

"scientificName": "Raichu",81

"children": [82

{83

"id": "taxon:pokemon_026_standard",84

"label": ""85

},86

{87

"id": "taxon:pokemon_026_shiny",88

"label": "Shiny"89

}90

]91

}92

]93

},94
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{95

"id": "taxon:pokemon_115",96

"scientificName": "Kangaskhan",97

"geography": {98

"polygon": [99

[100

[101

[102

130.0341796875,103

-10.228437266155943104

],105

[106

111.97265625,107

-21.779905342529634108

],109

[110

115.09277343749999,111

-36.91476428895593112

],113

[114

131.2646484375,115

-32.916485347314385116

],117

[118

141.8994140625,119

-40.44694705960048120

],121

[122

150.82031249999997,123

-38.8225909761771124

],125

[126

154.95117187499997,127

-26.15543796871355128

],129

[130

142.3388671875,131

-10.09867012060338132

],133

[134

138.69140625,135

-12.382928338487396136

],137

[138

130.0341796875,139

-10.228437266155943140

]141

]142
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]143

]144

}145

},146

{147

"id": "taxon:castform",148

"scientificName": "Castform"149

}150

],151

"characters": [152

{153

"id": "character:type_of_pokemon",154

"title": "Pokémon type",155

"states": [156

{157

"id": "state:pokemon_type_electric",158

"title": "Electric"159

}160

]161

},162

{163

"id": "character:color",164

"title": "Color of body",165

"states": [166

{167

"id": "state:color_blue",168

"title": "Blue"169

},170

{171

"id": "state:color_red",172

"title": "Red"173

}174

]175

},176

{177

"id": "character:all_colors",178

"title": "Colors on body of the Pokémon",179

"type": "non-exclusive",180

"states": [181

{182

"id": "state:colors_yellow",183

"title": "Yellow"184

},185

{186

"id": "state:colors_red",187

"title": "Red"188

},189

{190
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"id": "state:colors_black",191

"title": "Black"192

},193

{194

"id": "state:colors_brown",195

"title": "Brown"196

},197

{198

"id": "state:colors_white",199

"title": "White"200

}201

]202

},203

{204

"id": "character:tail_shape",205

"title": "Shape of the tail end",206

"states": [207

{208

"id": "state:pointy_tail",209

"title": "Pointy",210

"media": "media:pointy_tail"211

},212

{213

"id": "state:lobed_tail",214

"title": "Double-lobed",215

"media": "media:lobed_tail"216

}217

]218

},219

{220

"id": "character:wearing_hat",221

"title": "Is the Pokémon wearing a hat?",222

"states": [223

{224

"id": "state:hat",225

"title": "Yes"226

},227

{228

"id": "state:no_hat",229

"title": "No"230

}231

]232

},233

{234

"id": "character:hat_shape",235

"title": "What is the style of the hat?",236

"logicalPremise": "state:hat",237

"states": [238
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{239

"id": "state:bowler_hat",240

"title": "Bowler hat"241

},242

{243

"id": "state:top_hat",244

"title": "Top hat"245

}246

]247

},248

{249

"id": "character:weight",250

"title": "How much does the Pokémon weigh?",251

"userRequirement": "requirement:catch",252

"type": "numerical",253

"min": 1,254

"max": 125,255

"stepSize": 1,256

"unit": "kg"257

}258

],259

"statements": [260

{261

"id": "statement:pikachu_is_electric",262

"taxon": "taxon:pokemon_025",263

"character": "character:type_of_pokemon",264

"value": "state:pokemon_type_electric",265

"frequency": 1266

},267

{268

"id": "statement:pikachu_is_never_blue",269

"taxon": "taxon:pokemon_025",270

"character": "character:color",271

"value": "state:color_blue",272

"frequency": 0273

},274

{275

"id": "statement:pikachu_lobed_tail",276

"taxon": "taxon:pokemon_025",277

"character": "character:tail_shape",278

"value": "state:lobed_tail",279

"frequency": 0.5280

},281

{282

"id": "statement:pikachu_pointy_tail",283

"taxon": "taxon:pokemon_025",284

"character": "character:tail_shape",285

"value": "state:pointy_tail",286
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"frequency": 0.5287

},288

{289

"id": "statement:pikachu_weight",290

"taxon": "taxon:pokemon_025",291

"character": "character:weight",292

"value": [293

2.98,294

10.1295

],296

"frequency": 1297

},298

{299

"id": "statement:castform_rain_type",300

"taxon": "taxon:castform",301

"character": "character:castform_type",302

"value": "state:rainy_castform",303

"frequency": 0.2304

},305

{306

"id": "statement:castform_rain_type_bergen",307

"taxon": "taxon:castform",308

"character": "character:castform_type",309

"value": "state:rainy_castform",310

"frequency": 0.9,311

"geography": {312

"polygon": [313

[314

[315

[316

5.27618408203125,317

60.44976847885747318

],319

[320

5.218505859375,321

60.4233434866285322

],323

[324

5.27618408203125,325

60.36160157353732326

],327

[328

5.395660400390625,329

60.36839212633114330

],331

[332

5.4052734375,333

60.421309904895715334
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],335

[336

5.27618408203125,337

60.44976847885747338

]339

]340

]341

]342

}343

},344

{345

"id": "statement:pikachu_contains_yellow",346

"taxon": "taxon:pokemon_025",347

"character": "character:all_colors",348

"value": "state:colors_yellow",349

"frequency": 1350

},351

{352

"id": "statement:pikachu_contains_black",353

"taxon": "taxon:pokemon_025",354

"character": "character:all_colors",355

"value": "state:colors_black",356

"frequency": 1357

},358

{359

"id": "statement:pikachu_contains_red",360

"taxon": "taxon:pokemon_025",361

"character": "character:all_colors",362

"value": "state:colors_red",363

"frequency": 1364

},365

{366

"id": "statement:pikachu_contains_no_brown",367

"taxon": "taxon:pokemon_025",368

"character": "character:all_colors",369

"value": "state:colors_brown",370

"frequency": 0371

},372

{373

"id": "statement:pikachu_contains_no_white",374

"taxon": "taxon:pokemon_025",375

"character": "character:all_colors",376

"value": "state:colors_white",377

"frequency": 0378

},379

{380

"id": "statement:raichu_contains_yellow",381

"taxon": "taxon:pokemon_026",382
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"character": "character:all_colors",383

"value": "state:colors_yellow",384

"frequency": 1385

},386

{387

"id": "statement:raichu_contains_no_black",388

"taxon": "taxon:pokemon_026",389

"character": "character:all_colors",390

"value": "state:colors_black",391

"frequency": 0392

},393

{394

"id": "statement:raichu_contains_no_red",395

"taxon": "taxon:pokemon_026",396

"character": "character:all_colors",397

"value": "state:colors_red",398

"frequency": 0399

},400

{401

"id": "statement:raichu_contain_brown",402

"taxon": "taxon:pokemon_026",403

"character": "character:all_colors",404

"value": "state:colors_brown",405

"frequency": 1406

},407

{408

"id": "statement:raichu_contains_white",409

"taxon": "taxon:pokemon_026",410

"character": "character:all_colors",411

"value": "state:colors_white",412

"frequency": 1413

}414

],415

"userRequirements": [416

{417

"id": "requirement:catch",418

"title": "Catching required",419

"warning": "To answer this, you have to catch the Pokémon420

first.",421

"description": "1. Select a pokéball color.\n2. Hold the ball,422

spinning it a few times.\n3. Fling the pokéball towards the423

Pokémon, adjusting for the curveball generated from spinning the424

ball.\n4. Try to hit the circle when it is at its smallest.",425

"descriptionUrl":426

"https://niantic.helpshift.com/hc/en/6-pokemon-go/faq/102-finding-catc427

hing-wild-pokemon/"428

}429

],430
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"externalServices": [431

{432

"id": "service:wikidata",433

"title": "Wikidata",434

"url": "https://www.wikidata.org/w/api.php"435

},436

{437

"id": "service:example_api",438

"title": "Example",439

"description": "Gives the probability for a taxon, given its440

weight and location.",441

"url": "https://api.example.com"442

}443

],444

"mediaElements": [445

{446

"id": "media:pointy_tail",447

"mediaElement": {448

"file": [449

{450

"url":451

"https://github.com/WouterKoch/Clavis/raw/main/Keys/Images/pointy_100.452

png",453

"width": 100,454

"height": 100,455

"license":456

"https://creativecommons.org/licenses/by/4.0/",457

"creator": "person:wouterkoch"458

},459

{460

"url":461

"https://github.com/WouterKoch/Clavis/raw/main/Keys/Images/pointy_250.462

png",463

"width": 250,464

"height": 250,465

"license":466

"https://creativecommons.org/licenses/by/4.0/",467

"creator": "person:wouterkoch"468

}469

]470

}471

},472

{473

"id": "media:lobed_tail",474

"mediaElement": {475

"file": [476

{477

"url":478
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"https://github.com/WouterKoch/Clavis/raw/main/Keys/Images/lobed_100.p479

ng",480

"width": 100,481

"height": 100,482

"license":483

"https://creativecommons.org/licenses/by/4.0/",484

"creator": "person:wouterkoch"485

},486

{487

"url":488

"https://github.com/WouterKoch/Clavis/raw/main/Keys/Images/lobed_250.p489

ng",490

"width": 250,491

"height": 250,492

"license":493

"https://creativecommons.org/licenses/by/4.0/",494

"creator": "person:wouterkoch"495

}496

]497

}498

}499

]500

}501
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S3 Appendix. Titmice key example
{1

"$schema":2

"https://raw.githubusercontent.com/WouterKoch/Clavis/main/Schema/Clavi3

s.json",4

"title": "A key to titmice in Norway",5

"language": "en",6

"license": "https://creativecommons.org/licenses/by/4.0/",7

"creator": "person:wouterkoch",8

"lastModified": "2022-03-19 21:41:00",9

"identifier": "9be11d7e-c147-400a-899e-b3d5e4bcc6a1",10

"geography": {11

"name": "Norway",12

"polygon": [13

[14

[15

[16

33.22265625,17

69.5652259014909918

],19

[20

29.267578125,21

71.1593914168144322

],23

[24

23.5546875,25

71.2866989354587726

],27

[28

17.2265625,29

69.9754925361616430

],31

[32

12.392578125,33

68.36680109391434

],35

[36

11.2939453125,37

65.9106233419789338

],39

[40

3.8671874999999996,41

62.10388252289785542

],43

[44

4.7021484375,45

58.51665179936378546
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],47

[48

7.119140625,49

57.7041472343419350

],51

[52

11.953125,53

58.8364900939213654

],55

[56

13.3154296875,57

61.3967188731041158

],59

[60

12.8759765625,61

63.626744644753362

],63

[64

14.94140625,65

64.0721995786728266

],67

[68

15.2490234375,69

66.0537162206792270

],71

[72

18.852539062499996,73

68.0240219869344774

],75

[76

25.048828125,77

68.5121433185807378

],79

[80

26.894531249999996,81

69.5498772832779582

],83

[84

29.003906249999996,85

68.815927133360786

],87

[88

33.22265625,89

69.5652259014909990

]91

]92

]93

]94
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},95

"persons": [96

{97

"id": "person:wouterkoch",98

"name": "Wouter Koch"99

}100

],101

"externalServices": [102

{103

"id": "service:nbic_taxa",104

"title": "NBIC taxonomy scientificNameId",105

"description": "To retrieve taxon information based on the106

NBIC scientificNameId, e.g. through107

https://www.artsdatabanken.no/api/Taxon/ByScientificNameId/4362",108

"provider": "Norwegian Biodiversity Information Centre",109

"url": "https://www.artsdatabanken.no/help"110

}111

],112

"taxa": [113

{114

"id": "taxon:paridae",115

"scientificName": "Paridae",116

"rank": "family",117

"vernacularName": "titmice",118

"externalReference": {119

"serviceId": "service:nbic_taxa",120

"externalId": "4362"121

},122

"children": [123

{124

"id": "taxon:cyanistes",125

"scientificName": "Cyanistes",126

"rank": "genus",127

"externalReference": {128

"serviceId": "service:nbic_taxa",129

"externalId": "4364"130

},131

"children": [132

{133

"id": "taxon:cyanistes_caeruleus",134

"scientificName": "Cyanistes caeruleus",135

"vernacularName": "blue tit",136

"rank": "species",137

"externalReference": {138

"serviceId": "service:nbic_taxa",139

"externalId": "4365"140

}141

}142
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]143

},144

{145

"id": "taxon:lophophanes",146

"scientificName": "Lophophanes",147

"rank": "genus",148

"externalReference": {149

"serviceId": "service:nbic_taxa",150

"externalId": "4368"151

},152

"children": [153

{154

"id": "taxon:lophophanes_cristatus",155

"scientificName": "Lophophanes cristatus",156

"vernacularName": "crested tit",157

"rank": "species",158

"externalReference": {159

"serviceId": "service:nbic_taxa",160

"externalId": "4369"161

},162

"geography": {163

"polygon": [164

[165

[166

[167

11.997070312499998,168

58.74540696858028169

],170

[171

13.0517578125,172

59.977005492196173

],174

[175

12.8759765625,176

63.31268278043484177

],178

[179

19.2041015625,180

68.57644086491786181

],182

[183

13.4912109375,184

68.78414378041504185

],186

[187

9.7119140625,188

64.47279382008166189

],190



242

[191

4.21875,192

62.2679226294176193

],194

[195

3.69140625,196

59.40036514079251197

],198

[199

6.723632812499999,200

57.70414723434193201

],202

[203

11.997070312499998,204

58.74540696858028205

]206

]207

]208

]209

}210

}211

]212

},213

{214

"id": "taxon:parus",215

"scientificName": "Parus",216

"rank": "genus",217

"externalReference": {218

"serviceId": "service:nbic_taxa",219

"externalId": "4363"220

},221

"children": [222

{223

"id": "taxon:parus_major",224

"scientificName": "Parus major",225

"vernacularName": "great tit",226

"rank": "species",227

"externalReference": {228

"serviceId": "service:nbic_taxa",229

"externalId": "4372"230

}231

}232

]233

},234

{235

"id": "taxon:periparus",236

"scientificName": "Periparus",237

"rank": "genus",238
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"externalReference": {239

"serviceId": "service:nbic_taxa",240

"externalId": "4374"241

},242

"children": [243

{244

"id": "taxon:periparus_ater",245

"scientificName": "Periparus ater",246

"vernacularName": "coal tit",247

"rank": "species",248

"externalReference": {249

"serviceId": "service:nbic_taxa",250

"externalId": "4375"251

}252

}253

]254

},255

{256

"id": "taxon:poecile",257

"scientificName": "Poecile",258

"rank": "genus",259

"externalReference": {260

"serviceId": "service:nbic_taxa",261

"externalId": "4378"262

},263

"children": [264

{265

"id": "taxon:poecile_palustris",266

"scientificName": "Poecile palustris",267

"vernacularName": "marsh tit",268

"rank": "species",269

"externalReference": {270

"serviceId": "service:nbic_taxa",271

"externalId": "4385"272

},273

"geography": {274

"polygon": [275

[276

[277

[278

11.997070312499998,279

58.74540696858028280

],281

[282

13.0517578125,283

59.977005492196284

],285

[286
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12.8759765625,287

63.31268278043484288

],289

[290

19.2041015625,291

68.57644086491786292

],293

[294

13.4912109375,295

68.78414378041504296

],297

[298

9.7119140625,299

64.47279382008166300

],301

[302

4.21875,303

62.2679226294176304

],305

[306

3.69140625,307

59.40036514079251308

],309

[310

6.723632812499999,311

57.70414723434193312

],313

[314

11.997070312499998,315

58.74540696858028316

]317

]318

]319

]320

}321

},322

{323

"id": "taxon:poecile_montanus",324

"scientificName": "Poecile montanus",325

"vernacularName": "willow tit",326

"rank": "species",327

"externalReference": {328

"serviceId": "service:nbic_taxa",329

"externalId": "4382"330

}331

},332

{333

"id": "taxon:poecile_cinctus",334
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"scientificName": "Poecile cinctus",335

"vernacularName": "Siberian tit",336

"rank": "species",337

"externalReference": {338

"serviceId": "service:nbic_taxa",339

"externalId": "4379"340

}341

}342

]343

}344

]345

}346

],347

"characters": [348

{349

"id": "character:head_top",350

"title": "Top of the head",351

"states": [352

{353

"id": "state:black_or_dark_grey",354

"title": "Black or dark grey"355

},356

{357

"id": "state:blue",358

"title": "Blue"359

},360

{361

"id": "state:speckled_crest",362

"title": "Speckled black and white, with a crest"363

}364

]365

},366

{367

"id": "character:head_top",368

"title": "Top of the head",369

"states": [370

{371

"id": "state:black_or_dark_grey",372

"title": "Black or dark grey"373

},374

{375

"id": "state:brown",376

"title": "Brown"377

},378

{379

"id": "state:blue",380

"title": "Blue"381

},382
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{383

"id": "state:speckled_crest",384

"title": "Speckled black and white, with a crest"385

}386

]387

},388

{389

"id": "character:chest_color",390

"title": "Color of the chest",391

"states": [392

{393

"id": "state:yellow",394

"title": "Yellow"395

},396

{397

"id": "state:grey_brown",398

"title": "Grey to brown"399

}400

]401

},402

{403

"id": "character:wing_bar",404

"title": "White bar on the wing",405

"states": [406

{407

"id": "state:wing_bar",408

"title": "Present"409

},410

{411

"id": "state:no_wing_bar",412

"title": "Absent"413

}414

]415

},416

{417

"id": "character:black_of_cheek",418

"title": "Color of the cheek at the back",419

"states": [420

{421

"id": "state:white_cheek_back",422

"title": "Entire cheek white"423

},424

{425

"id": "state:brown_cheek_back",426

"title": "Sullied brown"427

}428

]429

},430
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{431

"id": "character:wing_secondaries_color",432

"title": "Color of secondary wing feathers",433

"states": [434

{435

"id": "state:secondaries_pale",436

"title": "Paler than rest of the wing"437

},438

{439

"id": "state:secondaries_not_pale",440

"title": "No clear different from rest of the wing"441

}442

]443

}444

],445

"statements": [446

{447

"id": "statement:crested_tit_head",448

"taxon": "taxon:lophophanes_cristatus",449

"character": "character:head_top",450

"value": "state:speckled_crest",451

"frequency": 1452

},453

{454

"id": "statement:blue_tit_head",455

"taxon": "taxon:cyanistes_caeruleus",456

"character": "character:head_top",457

"value": "state:blue",458

"frequency": 1459

},460

{461

"id": "statement:poecile_palustris_head",462

"taxon": "taxon:poecile_palustris",463

"character": "character:head_top",464

"value": "state:black_or_dark_grey",465

"frequency": 1466

},467

{468

"id": "statement:poecile_montanus_head",469

"taxon": "taxon:poecile_montanus",470

"character": "character:head_top",471

"value": "state:black_or_dark_grey",472

"frequency": 1473

},474

{475

"id": "statement:poecile_cinctus_head",476

"taxon": "taxon:poecile_cinctus",477

"character": "character:head_top",478
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"value": "state:brown",479

"frequency": 1480

},481

{482

"id": "statement:great_tit_head",483

"taxon": "taxon:parus_major",484

"character": "character:head_top",485

"value": "state:black_or_dark_grey",486

"frequency": 1487

},488

{489

"id": "statement:coal_tit_head",490

"taxon": "taxon:periparus_ater",491

"character": "character:head_top",492

"value": "state:black_or_dark_grey",493

"frequency": 1494

},495

{496

"id": "statement:crested_tit_chest",497

"taxon": "taxon:lophophanes_cristatus",498

"character": "character:chest_color",499

"value": "state:grey_brown",500

"frequency": 1501

},502

{503

"id": "statement:blue_tit_chest",504

"taxon": "taxon:cyanistes_caeruleus",505

"character": "character:chest_color",506

"value": "state:yellow",507

"frequency": 1508

},509

{510

"id": "statement:poecile_chest",511

"taxon": "taxon:poecile",512

"character": "character:chest_color",513

"value": "state:grey_brown",514

"frequency": 1515

},516

{517

"id": "statement:great_tit_chest",518

"taxon": "taxon:parus_major",519

"character": "character:chest_color",520

"value": "state:yellow",521

"frequency": 1522

},523

{524

"id": "statement:coal_tit_chest",525

"taxon": "taxon:periparus_ater",526
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"character": "character:chest_color",527

"value": "state:grey_brown",528

"frequency": 1529

},530

{531

"id": "statement:crested_tit_bar",532

"taxon": "taxon:lophophanes_cristatus",533

"character": "character:wing_bar",534

"value": "state:no_wing_bar",535

"frequency": 1536

},537

{538

"id": "statement:blue_tit_bar",539

"taxon": "taxon:cyanistes_caeruleus",540

"character": "character:wing_bar",541

"value": "state:wing_bar",542

"frequency": 1543

},544

{545

"id": "statement:poecile_bar",546

"taxon": "taxon:poecile",547

"character": "character:wing_bar",548

"value": "state:no_wing_bar",549

"frequency": 1550

},551

{552

"id": "statement:great_tit_bar",553

"taxon": "taxon:parus_major",554

"character": "character:wing_bar",555

"value": "state:wing_bar",556

"frequency": 1557

},558

{559

"id": "statement:coal_tit_bar",560

"taxon": "taxon:periparus_ater",561

"character": "character:wing_bar",562

"value": "state:wing_bar",563

"frequency": 1564

},565

{566

"id": "statement:poecile_palustris_cheek_back",567

"taxon": "taxon:poecile_palustris",568

"character": "character:black_of_cheek",569

"value": "state:brown_cheek_back",570

"frequency": 1571

},572

{573

"id": "statement:poecile_montanus_cheek_back",574
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"taxon": "taxon:poecile_montanus",575

"character": "character:black_of_cheek",576

"value": "state:white_cheek_back",577

"frequency": 1578

},579

{580

"id": "statement:poecile_palustris_wing_secondaries_color",581

"taxon": "taxon:poecile_palustris",582

"character": "character:wing_secondaries_color",583

"value": "state:secondaries_not_pale",584

"frequency": 1585

},586

{587

"id": "statement:poecile_montanus_wing_secondaries_color",588

"taxon": "taxon:poecile_montanus",589

"character": "character:wing_secondaries_color",590

"value": "state:secondaries_pale",591

"frequency": 1592

}593

]594

}595

596



Doctoral theses in Biology
Norwegian University of Science and Technology

Department of Biology

Year Name Degree Title
1974 Tor-Henning Iversen Dr. philos

Botany
The roles of statholiths, auxin transport, and auxin
metabolism in root gravitropism

1978 Tore Slagsvold Dr. philos
Zoology

Breeding events of birds in relation to spring
temperature and environmental phenology

1978 Egil Sakshaug Dr. philos
Botany

The influence of environmental factors on the
chemical composition of cultivated and natural
populations of marine phytoplankton

1980 Arnfinn Langeland Dr. philos
Zoology

Interaction between fish and zooplankton
populations and their effects on the material
utilization in a freshwater lake

1980 Helge Reinertsen Dr. philos
Botany

The effect of lake fertilization on the dynamics and
stability of a limnetic ecosystem with special
reference to the phytoplankton

1982 Gunn Mari Olsen Dr. scient
Botany

Gravitropism in roots of Pisum sativum and
Arabidopsis thaliana

1982 Dag Dolmen Dr. philos
Zoology

Life aspects of two sympartic species of newts
(Triturus, Amphibia) in Norway, with special
emphasis on their ecological niche segregation

1984 Eivin Røskaft Dr. philos
Zoology

Sociobiological studies of the rook Corvus frugilegus

1984 Anne Margrethe
Cameron

Dr. scient
Botany

Effects of alcohol inhalation on levels of circulating
testosterone, follicle stimulating hormone and
luteinzing hormone in male mature rats

1984 Asbjørn Magne
Nilsen

Dr. scient
Botany

Alveolar macrophages from expectorates – Biological
monitoring of workers exposed to occupational air
pollution. An evaluation of the AM-test

1985 Jarle Mork Dr. philos
Zoology

Biochemical genetic studies in fish

1985 John Solem Dr. philos
Zoology

Taxonomy, distribution and ecology of caddisflies
(Trichoptera) in the Dovrefjell mountains

1985 Randi E. Reinertsen Dr. philos
Zoology

Energy strategies in the cold: Metabolic and
thermoregulatory adaptations in small northern
birds

1986 Bernt-Erik Sæther Dr. philos
Zoology

Ecological and evolutionary basis for variation in
reproductive traits of some vertebrates: A
comparative approach

1986 Torleif Holthe Dr. philos
Zoology

Evolution, systematics, nomenclature, and
zoogeography in the polychaete orders
Oweniimorpha and Terebellomorpha, with special
reference to the Arctic and Scandinavian fauna

1987 Helene Lampe Dr. scient
Zoology

The function of bird song in mate attraction and
territorial defence, and the importance of song
repertoires

1987 Olav Hogstad Dr. philos
Zoology

Winter survival strategies of the Willow tit Parus
montanus

1987 Jarle Inge Holten Dr. philos
Botany

Autecological investigations along a coust-inland
transect at Nord-Møre, Central Norway

1987 Rita Kumar Dr. scient
Botany

Somaclonal variation in plants regenerated from cell
cultures of Nicotiana sanderae and Chrysanthemum
morifolium

1987 Bjørn Åge Tømmerås Dr. scient
Zoology

Olfaction in bark beetle communities: Interspecific
interactions in regulation of colonization density,
predator - prey relationship and host attraction
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1988 Hans Christian
Pedersen

Dr. philos
Zoology

Reproductive behaviour in willow ptarmigan with
special emphasis on territoriality and parental care

1988 Tor G. Heggberget Dr. philos
Zoology

Reproduction in Atlantic Salmon (Salmo salar):
Aspects of spawning, incubation, early life history
and population structure

1988 Marianne V. Nielsen Dr. scient
Zoology

The effects of selected environmental factors on
carbon allocation/growth of larval and juvenile
mussels (Mytilus edulis)

1988 Ole Kristian Berg Dr. scient
Zoology

The formation of landlocked Atlantic salmon (Salmo
salar L.)

1989 John W. Jensen Dr. philos
Zoology

Crustacean plankton and fish during the first decade
of the manmade Nesjø reservoir, with special
emphasis on the effects of gill nets and salmonid
growth

1989 Helga J. Vivås Dr. scient
Zoology

Theoretical models of activity pattern and optimal
foraging: Predictions for the Moose Alces alces

1989 Reidar Andersen Dr. scient
Zoology

Interactions between a generalist herbivore, the
moose Alces alces, and its winter food resources: a
study of behavioural variation

1989 Kurt Ingar Draget Dr. scient
Botany

Alginate gel media for plant tissue culture

1990 Bengt Finstad Dr. scient
Zoology

Osmotic and ionic regulation in Atlantic salmon,
rainbow trout and Arctic charr: Effect of
temperature, salinity and season

1990 Hege Johannesen Dr. scient
Zoology

Respiration and temperature regulation in birds
with special emphasis on the oxygen extraction by
the lung

1990 Åse Krøkje Dr. scient
Botany

The mutagenic load from air pollution at two
work-places with PAH-exposure measured with
Ames Salmonella/microsome test

1990 Arne Johan Jensen Dr. philos
Zoology

Effects of water temperature on early life history,
juvenile growth and prespawning migrations of
Atlantic salmon (Salmo salar) and brown trout
(Salmo trutta): A summary of studies in Norwegian
streams

1990 Tor Jørgen Almaas Dr. scient
Zoology

Pheromone reception in moths: Response
characteristics of olfactory receptor neurons to intra-
and interspecific chemical cues

1990 Magne Husby Dr. scient
Zoology

Breeding strategies in birds: Experiments with the
Magpie Pica pica

1991 Tor Kvam Dr. scient
Zoology

Population biology of the European lynx (Lynx lynx)
in Norway

1991 Jan Henning L’Abêe
Lund

Dr. philos
Zoology

Reproductive biology in freshwater fish, brown trout
Salmo trutta and roach Rutilus rutilus in particular

1991 Asbjørn Moen Dr. philos
Botany

The plant cover of the boreal uplands of Central
Norway. I. Vegetation ecology of Sølendet nature
reserve; haymaking fens and birch woodlands

1991 Else Marie Løbersli Dr. scient
Botany

Soil acidification and metal uptake in plants

1991 Trond Nordtug Dr. scient
Zoology

Reflectometric studies of photomechanical
adaptation in superposition eyes of arthropods

1991 Thyra Solem Dr. scient
Botany

Age, origin and development of blanket mires in
Central Norway

1991 Odd Terje Sandlund Dr. philos
Zoology

The dynamics of habitat use in the salmonid genera
Coregonus and Salvelinus: Ontogenic niche shifts
and polymorphism

1991 Nina Jonsson Dr. philos
Zoology

Aspects of migration and spawning in salmonids

1991 Atle Bones Dr. scient
Botany

Compartmentation and molecular properties of
thioglucoside glucohydrolase (myrosinase)
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1992 Torgrim Breiehagen Dr. scient
Zoology

Mating behaviour and evolutionary aspects of the
breeding system of two bird species: the Temminck’s
stint and the Pied flycatcher

1992 Anne Kjersti Bakken Dr. scient
Botany

The influence of photoperiod on nitrate assimilation
and nitrogen status in timothy (Phleum pratense L.)

1992 Tycho Anker-Nilssen Dr. scient
Zoology

Food supply as a determinant of reproduction and
population development in Norwegian Puffins
Fratercula arctica

1992 Bjørn Munro Jenssen Dr. philos
Zoology

Thermoregulation in aquatic birds in air and water:
With special emphasis on the effects of crude oil,
chemically treated oil and cleaning on the thermal
balance of ducks

1992 Arne Vollan Aarset Dr. philos
Zoology

The ecophysiology of under-ice fauna: Osmotic
regulation, low temperature tolerance and
metabolism in polar crustaceans.

1993 Geir Slupphaug Dr. scient
Botany

Regulation and expression of uracil-DNA glycosylase
and O6-methylguanine-DNA methyltransferase in
mammalian cells

1993 Tor Fredrik Næsje Dr. scient
Zoology

Habitat shifts in coregonids.

1993 Yngvar Asbjørn
Olsen

Dr. scient
Zoology

Cortisol dynamics in Atlantic salmon, Salmo salar
L.: Basal and stressor-induced variations in plasma
levels and some secondary effects.

1993 Bård Pedersen Dr. scient
Botany

Theoretical studies of life history evolution in
modular and clonal organisms

1993 Ole Petter
Thangstad

Dr. scient
Botany

Molecular studies of myrosinase in Brassicaceae

1993 Thrine L. M.
Heggberget

Dr. scient
Zoology

Reproductive strategy and feeding ecology of the
Eurasian otter Lutra lutra.

1993 Kjetil Bevanger Dr. scient
Zoology

Avian interactions with utility structures, a
biological approach.

1993 Kåre Haugan Dr. scient
Botany

Mutations in the replication control gene trfA of the
broad host-range plasmid RK2

1994 Peder Fiske Dr. scient
Zoology

Sexual selection in the lekking great snipe
(Gallinago media): Male mating success and female
behaviour at the lek

1994 Kjell Inge Reitan Dr. scient
Botany

Nutritional effects of algae in first-feeding of marine
fish larvae

1994 Nils Røv Dr. scient
Zoology

Breeding distribution, population status and
regulation of breeding numbers in the
northeast-Atlantic Great Cormorant Phalacrocorax
carbo carbo

1994 Annette-Susanne
Hoepfner

Dr. scient
Botany

Tissue culture techniques in propagation and
breeding of Red Raspberry (Rubus idaeus L.)

1994 Inga Elise Bruteig Dr. scient
Botany

Distribution, ecology and biomonitoring studies of
epiphytic lichens on conifers

1994 Geir Johnsen Dr. scient
Botany

Light harvesting and utilization in marine
phytoplankton: Species-specific and photoadaptive
responses

1994 Morten Bakken Dr. scient
Zoology

Infanticidal behaviour and reproductive performance
in relation to competition capacity among farmed
silver fox vixens, Vulpes vulpes

1994 Arne Moksnes Dr. philos
Zoology

Host adaptations towards brood parasitism by the
Cockoo

1994 Solveig Bakken Dr. scient
Botany

Growth and nitrogen status in the moss Dicranum
majus Sm. as influenced by nitrogen supply

1994 Torbjørn Forseth Dr. scient
Zoology

Bioenergetics in ecological and life history studies of
fishes.
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1995 Olav Vadstein Dr. philos
Botany

The role of heterotrophic planktonic bacteria in the
cycling of phosphorus in lakes: Phosphorus
requirement, competitive ability and food web
interactions

1995 Hanne Christensen Dr. scient
Zoology

Determinants of Otter Lutra lutra distribution in
Norway: Effects of harvest, polychlorinated
biphenyls (PCBs), human population density and
competition with mink Mustela vision

1995 Svein Håkon
Lorentsen

Dr. scient
Zoology

Reproductive effort in the Antarctic Petrel
Thalassoica antarctica; the effect of parental body
size and condition

1995 Chris Jørgen Jensen Dr. scient
Zoology

The surface electromyographic (EMG) amplitude as
an estimate of upper trapezius muscle activity

1995 Martha Kold
Bakkevig

Dr. scient
Zoology

The impact of clothing textiles and construction in a
clothing system on thermoregulatory responses,
sweat accumulation and heat transport

1995 Vidar Moen Dr. scient
Zoology

Distribution patterns and adaptations to light in
newly introduced populations of Mysis relicta and
constraints on Cladoceran and Char populations

1995 Hans Haavardsholm
Blom

Dr. philos
Botany

A revision of the Schistidium apocarpum complex in
Norway and Sweden

1996 Jorun Skjærmo Dr. scient
Botany

Microbial ecology of early stages of cultivated
marine fish; inpact fish-bacterial interactions on
growth and survival of larvae

1996 Ola Ugedal Dr. scient
Zoology

Radiocesium turnover in freshwater fishes

1996 Ingibjørg
Einarsdottir

Dr. scient
Zoology

Production of Atlantic salmon (Salmo salar) and
Arctic charr (Salvelinus alpinus): A study of some
physiological and immunological responses to rearing
routines

1996 Christina M. S.
Pereira

Dr. scient
Zoology

Glucose metabolism in salmonids: Dietary effects
and hormonal regulation

1996 Jan Fredrik Børseth Dr. scient
Zoology

The sodium energy gradients in muscle cells of
Mytilus edulis and the effects of organic xenobiotics

1996 Gunnar Henriksen Dr. scient
Zoology

Status of Grey seal Halichoerus grypus and Harbour
seal Phoca vitulina in the Barents sea region

1997 Gunvor Øie Dr. scient
Botany

Eevalution of rotifer Brachionus plicatilis quality in
early first feeding of turbot Scophtalmus maximus L.
larvae

1997 Håkon Holien Dr. scient
Botany

Studies of lichens in spruce forest of Central Norway.
Diversity, old growth species and the relationship to
site and stand parameters

1997 Ole Reitan Dr. scient
Zoology

Responses of birds to habitat disturbance due to
damming

1997 Jon Arne Grøttum Dr. scient
Zoology

Physiological effects of reduced water quality on fish
in aquaculture

1997 Per Gustav
Thingstad

Dr. scient
Zoology

Birds as indicators for studying natural and
human-induced variations in the environment, with
special emphasis on the suitability of the Pied
Flycatcher

1997 Torgeir Nygård Dr. scient
Zoology

Temporal and spatial trends of pollutants in birds in
Norway: Birds of prey and Willow Grouse used as

1997 Signe Nybø Dr. scient
Zoology

Impacts of long-range transported air pollution on
birds with particular reference to the dipper Cinclus
cinclus in southern Norway

1997 Atle Wibe Dr. scient
Zoology

Identification of conifer volatiles detected by
receptor neurons in the pine weevil (Hylobius
abietis), analysed by gas chromatography linked to
electrophysiology and to mass spectrometry

1997 Rolv Lundheim Dr. scient
Zoology

Adaptive and incidental biological ice nucleators
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1997 Arild Magne Landa Dr. scient
Zoology

Wolverines in Scandinavia: ecology, sheep
depredation and conservation

1997 Kåre Magne Nielsen Dr. scient
Botany

An evolution of possible horizontal gene transfer
from plants to sail bacteria by studies of natural
transformation in Acinetobacter calcoacetius

1997 Jarle Tufto Dr. scient
Zoology

Gene flow and genetic drift in geographically
structured populations: Ecological, population
genetic, and statistical models

1997 Trygve Hesthagen Dr. philos
Zoology

Population responses of Arctic charr (Salvelinus
alpinus (L.)) and brown trout (Salmo trutta L.) to
acidification in Norwegian inland waters

1997 Trygve Sigholt Dr. philos
Zoology

Control of Parr-smolt transformation and seawater
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual
seawater acclimation, NaCl and betaine in the diet

1997 Jan Østnes Dr. scient
Zoology

Cold sensation in adult and neonate birds

1998 Seethaledsumy
Visvalingam

Dr. scient
Botany

Influence of environmental factors on myrosinases
and myrosinase-binding proteins

1998 Thor Harald Ringsby Dr. scient
Zoology

Variation in space and time: The biology of a House
sparrow metapopulation

1998 Erling Johan Solberg Dr. scient
Zoology

Variation in population dynamics and life history in
a Norwegian moose (Alces alces) population:
consequences of harvesting in a variable environment

1998 Sigurd Mjøen
Saastad

Dr. scient
Botany

Species delimitation and phylogenetic relationships
between the Sphagnum recurvum complex
(Bryophyta): genetic variation and phenotypic
plasticity

1998 Bjarte Mortensen Dr. scient
Botany

Metabolism of volatile organic chemicals (VOCs) in
a head liver S9 vial equilibration system in vitro

1998 Gunnar Austrheim Dr. scient
Botany

Plant biodiversity and land use in subalpine
grasslands. – A conservation biological approach

1998 Bente Gunnveig
Berg

Dr. scient
Zoology

Encoding of pheromone information in two related
moth species

1999 Kristian Overskaug Dr. scient
Zoology

Behavioural and morphological characteristics in
Northern Tawny Owls Strix aluco: An intra- and
interspecific comparative approach

1999 Hans Kristen
Stenøien

Dr. scient
Botany

Genetic studies of evolutionary processes in various
populations of nonvascular plants (mosses, liverworts
and hornworts)

1999 Trond Arnesen Dr. scient
Botany

Vegetation dynamics following trampling and
burning in the outlying haylands at Sølendet,
Central Norway

1999 Ingvar Stenberg Dr. scient
Zoology

Habitat selection, reproduction and survival in the
White-backed Woodpecker Dendrocopos leucotos

1999 Stein Olle Johansen Dr. scient
Botany

A study of driftwood dispersal to the Nordic Seas by
dendrochronology and wood anatomical analysis

1999 Trina Falck Galloway Dr. scient
Zoology

Muscle development and growth in early life stages
of the Atlantic cod (Gadus morhua L.) and Halibut
(Hippoglossus hippoglossus L.)

1999 Marianne Giæver Dr. scient
Zoology

Population genetic studies in three gadoid species:
blue whiting (Micromisistius poutassou), haddock
(Melanogrammus aeglefinus) and cod (Gadus
morhua) in the North-East Atlantic

1999 Hans Martin Hanslin Dr. scient
Botany

The impact of environmental conditions of density
dependent performance in the boreal forest
bryophytes Dicranum majus, Hylocomium splendens,
Plagiochila asplenigides, Ptilium crista-castrensis
and Rhytidiadelphus lokeus
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1999 Ingrid Bysveen
Mjølnerød

Dr. scient
Zoology

Aspects of population genetics, behaviour and
performance of wild and farmed Atlantic salmon
(Salmo salar) revealed by molecular genetic
techniques

1999 Else Berit Skagen Dr. scient
Botany

The early regeneration process in protoplasts from
Brassica napus hypocotyls cultivated under various
g-forces

1999 Stein-Are Sæther Dr. philos
Zoology

Mate choice, competition for mates, and conflicts of
interest in the Lekking Great Snipe

1999 Katrine Wangen
Rustad

Dr. scient
Zoology

Modulation of glutamatergic neurotransmission
related to cognitive dysfunctions and Alzheimer’s
disease

1999 Per Terje Smiseth Dr. scient
Zoology

Social evolution in monogamous families:

1999 Gunnbjørn Bremset Dr. scient
Zoology

Young Atlantic salmon (Salmo salar L.) and Brown
trout (Salmo trutta L.) inhabiting the deep pool
habitat, with special reference to their habitat use,
habitat preferences and competitive interactions

1999 Frode Ødegaard Dr. scient
Zoology

Host specificity as a parameter in estimates of
arthropod species richness

1999 Sonja Andersen Dr. scient
Zoology

Expressional and functional analyses of human,
secretory phospholipase A2

2000 Ingrid Salvesen Dr. scient
Botany

Microbial ecology in early stages of marine fish:
Development and evaluation of methods for
microbial management in intensive larviculture

2000 Ingar Jostein Øien Dr. scient
Zoology

The Cuckoo (Cuculus canorus) and its host:
adaptions and counteradaptions in a coevolutionary
arms race

2000 Pavlos Makridis Dr. scient
Botany

Methods for the microbial control of live food used
for the rearing of marine fish larvae

2000 Sigbjørn Stokke Dr. scient
Zoology

Sexual segregation in the African elephant
(Loxodonta africana)

2000 Odd A. Gulseth Dr. philos
Zoology

Seawater tolerance, migratory behaviour and growth
of Charr, (Salvelinus alpinus), with emphasis on the
high Arctic Dieset charr on Spitsbergen, Svalbard

2000 Pål A. Olsvik Dr. scient
Zoology

Biochemical impacts of Cd, Cu and Zn on brown
trout (Salmo trutta) in two mining-contaminated
rivers in Central Norway

2000 Sigurd Einum Dr. scient
Zoology

Maternal effects in fish: Implications for the
evolution of breeding time and egg size

2001 Jan Ove Evjemo Dr. scient
Zoology

Production and nutritional adaptation of the brine
shrimp Artemia sp. as live food organism for larvae
of marine cold water fish species

2001 Olga Hilmo Dr. scient
Botany

Lichen response to environmental changes in the
managed boreal forest systems

2001 Ingebrigt Uglem Dr. scient
Zoology

Male dimorphism and reproductive biology in
corkwing wrasse (Symphodus melops L.)

2001 Bård Gunnar Stokke Dr. scient
Zoology

Coevolutionary adaptations in avian brood parasites
and their hosts

2002 Ronny Aanes Dr. scient
Zoology

Spatio-temporal dynamics in Svalbard reindeer
(Rangifer tarandus platyrhynchus)

2002 Mariann Sandsund Dr. scient
Zoology

Exercise- and cold-induced asthma. Respiratory and
thermoregulatory responses

2002 Dag-Inge Øien Dr. scient
Botany

Dynamics of plant communities and populations in
boreal vegetation influenced by scything at Sølendet,
Central Norway

2002 Frank Rosell Dr. scient
Zoology

The function of scent marking in beaver (Castor
fiber)

2002 Janne Østvang Dr. scient
Botany

The Role and Regulation of Phospholipase A2 in
Monocytes During Atherosclerosis Development
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2002 Terje Thun Dr. philos
Biology

Dendrochronological constructions of Norwegian
conifer chronologies providing dating of historical
material

2002 Birgit Hafjeld
Borgen

Dr. scient
Biology

Functional analysis of plant idioblasts (Myrosin cells)
and their role in defense, development and growth

2002 Bård Øyvind Solberg Dr. scient
Biology

Effects of climatic change on the growth of
dominating tree species along major environmental
gradients

2002 Per Winge Dr. scient
Biology

The evolution of small GTP binding proteins in
cellular organisms. Studies of RAC GTPases in
Arabidopsis thaliana and the Ral GTPase from
Drosophila melanogaster

2002 Henrik Jensen Dr. scient
Biology

Causes and consequences of individual variation in
fitness-related traits in house sparrows

2003 Jens Rohloff Dr. philos
Biology

Cultivation of herbs and medicinal plants in Norway
– Essential oil production and quality control

2003 Åsa Maria O.
Espmark Wibe

Dr. scient
Biology

Behavioural effects of environmental pollution in
threespine stickleback Gasterosteus aculeatur L.

2003 Dagmar Hagen Dr. scient
Biology

Assisted recovery of disturbed arctic and alpine
vegetation – an integrated approach

2003 Bjørn Dahle Dr. scient
Biology

Reproductive strategies in Scandinavian brown bears

2003 Cyril Lebogang
Taolo

Dr. scient
Biology

Population ecology, seasonal movement and habitat
use of the African buffalo (Syncerus caffer) in Chobe
National Park, Botswana

2003 Marit Stranden Dr. scient
Biology

Olfactory receptor neurones specified for the same
odorants in three related Heliothine species
(Helicoverpa armigera, Helicoverpa assulta and
Heliothis virescens)

2003 Kristian Hassel Dr. scient
Biology

Life history characteristics and genetic variation in
an expanding species, Pogonatum dentatum

2003 David Alexander
Rae

Dr. scient
Biology

Plant- and invertebrate-community responses to
species interaction and microclimatic gradients in
alpine and Artic environments

2003 Åsa A Borg Dr. scient
Biology

Sex roles and reproductive behaviour in gobies and
guppies: a female perspective

2003 Eldar Åsgard
Bendiksen

Dr. scient
Biology

Environmental effects on lipid nutrition of farmed
Atlantic salmon (Salmo salar L.) parr and smolt

2004 Torkild Bakken Dr. scient
Biology

A revision of Nereidinae (Polychaeta, Nereididae)

2004 Ingar Pareliussen Dr. scient
Biology

Natural and Experimental Tree Establishment in a
Fragmented Forest, Ambohitantely Forest Reserve,
Madagascar

2004 Tore Brembu Dr. scient
Biology

Genetic, molecular and functional studies of RAC
GTPases and the WAVE-like regulatory protein
complex in Arabidopsis thaliana

2004 Liv S. Nilsen Dr. scient
Biology

Coastal heath vegetation on central Norway; recent
past, present state and future possibilities

2004 Hanne T. Skiri Dr. scient
Biology

Olfactory coding and olfactory learning of plant
odours in heliothine moths. An anatomical,
physiological and behavioural study of three related
species (Heliothis virescens, Helicoverpa armigera
and Helicoverpa assulta)

2004 Lene Østby Dr. scient
Biology

Cytochrome P4501A (CYP1A) induction and DNA
adducts as biomarkers for organic pollution in the
natural environment

2004 Emmanuel J.
Gerreta

Dr. philos
Biology

The Importance of Water Quality and Quantity in
the Tropical Ecosystems, Tanzania

2004 Linda Dalen Dr. scient
Biology

Dynamics of Mountain Birch Treelines in the
Scandes Mountain Chain, and Effects of Climate
Warming
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2004 Lisbeth Mehli Dr. scient
Biology

Polygalacturonase-inhibiting protein (PGIP) in
cultivated strawberry (Fragaria x ananassa):
characterisation and induction of the gene following
fruit infection by Botrytis cinerea

2004 Børge Moe Dr. scient
Biology

Energy-Allocation in Avian Nestlings Facing
Short-Term Food Shortage

2005 Matilde Skogen
Chauton

Dr. scient
Biology

Metabolic profiling and species discrimination from
High-Resolution Magic Angle Spinning NMR
analysis of whole-cell samples

2005 Sten Karlsson Dr. scient
Biology

Dynamics of Genetic Polymorphisms

2005 Terje Bongard Dr. scient
Biology

Life History strategies, mate choice, and parental
investment among Norwegians over a 300-year period

2005 Tonette Røstelien PhD Biology Functional characterisation of olfactory receptor
neurone types in heliothine moths

2005 Erlend Kristiansen Dr. scient
Biology

Studies on antifreeze proteins

2005 Eugen G. Sørmo Dr. scient
Biology

Organochlorine pollutants in grey seal (Halichoerus
grypus) pups and their impact on plasma thyroid
hormone and vitamin A concentrations

2005 Christian Westad Dr. scient
Biology

Motor control of the upper trapezius

2005 Lasse Mork Olsen PhD Biology Interactions between marine osmo- and phagotrophs
in different physicochemical environments

2005 Åslaug Viken PhD Biology Implications of mate choice for the management of
small populations

2005 Ariaya Hymete Sahle
Dingle

PhD Biology Investigation of the biological activities and chemical
constituents of selected Echinops spp. growing in
Ethiopia

2005 Anders Gravbrøt
Finstad

PhD Biology Salmonid fishes in a changing climate: The winter
challenge

2005 Shimane Washington
Makabu

PhD Biology Interactions between woody plants, elephants and
other browsers in the Chobe Riverfront, Botswana

2005 Kjartan Østbye Dr. scient
Biology

The European whitefish Coregonus lavaretus (L.)
species complex: historical contingency and adaptive
radiation

2006 Kari Mette Murvoll PhD Biology Levels and effects of persistent organic pollutans
(POPs) in seabirds, Retinoids and α-tocopherol –
potential biomakers of POPs in birds?

2006 Ivar Herfindal Dr. scient
Biology

Life history consequences of environmental variation
along ecological gradients in northern ungulates

2006 Nils Egil Tokle PhD Biology Are the ubiquitous marine copepods limited by food
or predation? Experimental and field-based studies
with main focus on Calanus finmarchicus

2006 Jan Ove Gjershaug Dr. philos
Biology

Taxonomy and conservation status of some booted
eagles in south-east Asia

2006 Jon Kristian Skei Dr. scient
Biology

Conservation biology and acidification problems in
the breeding habitat of amphibians in Norway

2006 Johanna Järnegren PhD Biology Acesta oophaga and Acesta excavata – a study of
hidden biodiversity

2006 Bjørn Henrik Hansen PhD Biology Metal-mediated oxidative stress responses in brown
trout (Salmo trutta) from mining contaminated
rivers in Central Norway

2006 Vidar Grøtan PhD Biology Temporal and spatial effects of climate fluctuations
on population dynamics of vertebrates

2006 Jafari R Kideghesho PhD Biology Wildlife conservation and local land use conflicts in
Western Serengeti Corridor, Tanzania

2006 Anna Maria Billing PhD Biology Reproductive decisions in the sex role reversed
pipefish Syngnathus typhle: when and how to invest
in reproduction
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2006 Henrik Pärn PhD Biology Female ornaments and reproductive biology in the
bluethroat

2006 Anders J. Fjellheim PhD Biology Selection and administration of probiotic bacteria to
marine fish larvae

2006 P. Andreas Svensson PhD Biology Female coloration, egg carotenoids and reproductive
success: gobies as a model system

2007 Sindre A. Pedersen PhD Biology Metal binding proteins and antifreeze proteins in the
beetle Tenebrio molitor - a study on possible
competition for the semi-essential amino acid
cysteine

2007 Kasper Hancke PhD Biology Photosynthetic responses as a function of light and
temperature: Field and laboratory studies on marine
microalgae

2007 Tomas Holmern PhD Biology Bushmeat hunting in the western Serengeti:
Implications for community-based conservation

2007 Kari Jørgensen PhD Biology Functional tracing of gustatory receptor neurons in
the CNS and chemosensory learning in the moth
Heliothis virescens

2007 Stig Ulland PhD Biology Functional Characterisation of Olfactory Receptor
Neurons in the Cabbage Moth, (Mamestra brassicae
L.) (Lepidoptera, Noctuidae). Gas Chromatography
Linked to Single Cell Recordings and Mass
Spectrometry

2007 Snorre Henriksen PhD Biology Spatial and temporal variation in herbivore resources
at northern latitudes

2007 Roelof Frans May PhD Biology Spatial Ecology of Wolverines in Scandinavia
2007 Vedasto Gabriel

Ndibalema
PhD Biology Demographic variation, distribution and habitat use

between wildebeest sub-populations in the Serengeti
National Park, Tanzania

2007 Julius William
Nyahongo

PhD Biology Depredation of Livestock by wild Carnivores and
Illegal Utilization of Natural Resources by Humans
in the Western Serengeti, Tanzania

2007 Shombe Ntaraluka
Hassan

PhD Biology Effects of fire on large herbivores and their forage
resources in Serengeti, Tanzania

2007 Per-Arvid Wold PhD Biology Functional development and response to dietary
treatment in larval Atlantic cod (Gadus morhua L.)
Focus on formulated diets and early weaning

2007 Anne Skjetne
Mortensen

PhD Biology Toxicogenomics of Aryl Hydrocarbon- and Estrogen
Receptor Interactions in Fish: Mechanisms and
Profiling of Gene Expression Patterns in Chemical
Mixture Exposure Scenarios

2008 Brage Bremset
Hansen

PhD Biology The Svalbard reindeer (Rangifer tarandus
platyrhynchus) and its food base: plant-herbivore
interactions in a high-arctic ecosystem

2008 Jiska van Dijk PhD Biology Wolverine foraging strategies in a multiple-use
landscape

2008 Flora John Magige PhD Biology The ecology and behaviour of the Masai Ostrich
(Struthio camelus massaicus) in the Serengeti
Ecosystem, Tanzania

2008 Bernt Rønning PhD Biology Sources of inter- and intra-individual variation in
basal metabolic rate in the zebra finch, Taeniopygia
guttata

2008 Sølvi Wehn PhD Biology Biodiversity dynamics in semi-natural mountain
landscapes - A study of consequences of changed
agricultural practices in Eastern Jotunheimen

2008 Trond Moxness
Kortner

PhD Biology The Role of Androgens on previtellogenic oocyte
growth in Atlantic cod (Gadus morhua):
Identification and patterns of differentially expressed
genes in relation to Stereological Evaluations

2008 Katarina Mariann
Jørgensen

Dr. scient
Biology

The role of platelet activating factor in activation of
growth arrested keratinocytes and re-epithelialisation
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2008 Tommy Jørstad PhD Biology Statistical Modelling of Gene Expression Data
2008 Anna Kusnierczyk PhD Biology Arabidopsis thaliana Responses to Aphid Infestation
2008 Jussi Evertsen PhD Biology Herbivore sacoglossans with photosynthetic

chloroplasts
2008 John Eilif

Hermansen
PhD Biology Mediating ecological interests between locals and

globals by means of indicators. A study attributed
to the asymmetry between stakeholders of tropical
forest at Mt. Kilimanjaro, Tanzania

2008 Ragnhild Lyngved PhD Biology Somatic embryogenesis in Cyclamen persicum.
Biological investigations and educational aspects of
cloning

2008 Line Elisabeth
Sundt-Hansen

PhD Biology Cost of rapid growth in salmonid fishes

2008 Line Johansen PhD Biology Exploring factors underlying fluctuations in white
clover populations – clonal growth, population
structure and spatial distribution

2009 Astrid Jullumstrø
Feuerherm

PhD Biology Elucidation of molecular mechanisms for
pro-inflammatory phospholipase A2 in chronic
disease

2009 Pål Kvello PhD Biology Neurons forming the network involved in gustatory
coding and learning in the moth Heliothis virescens:
Physiological and morphological characterisation,
and integration into a standard brain atlas

2009 Trygve Devold
Kjellsen

PhD Biology Extreme Frost Tolerance in Boreal Conifers

2009 Johan Reinert Vikan PhD Biology Coevolutionary interactions between common
cuckoos Cuculus canorus and Fringilla finches

2009 Zsolt Volent PhD Biology Remote sensing of marine environment: Applied
surveillance with focus on optical properties of
phytoplankton, coloured organic matter and
suspended matter

2009 Lester Rocha PhD Biology Functional responses of perennial grasses to
simulated grazing and resource availability

2009 Dennis Ikanda PhD Biology Dimensions of a Human-lion conflict: Ecology of
human predation and persecution of African lions
(Panthera leo) in Tanzania

2010 Huy Quang Nguyen PhD Biology Egg characteristics and development of larval
digestive function of cobia (Rachycentron canadum)
in response to dietary treatments - Focus on
formulated diets

2010 Eli Kvingedal PhD Biology Intraspecific competition in stream salmonids: the
impact of environment and phenotype

2010 Sverre Lundemo PhD Biology Molecular studies of genetic structuring and
demography in Arabidopsis from Northern Europe

2010 Iddi Mihijai Mfunda PhD Biology Wildlife Conservation and People’s livelihoods:
Lessons Learnt and Considerations for Improvements.
The Case of Serengeti Ecosystem, Tanzania

2010 Anton Tinchov
Antonov

PhD Biology Why do cuckoos lay strong-shelled eggs? Tests of the
puncture resistance hypothesis

2010 Anders Lyngstad PhD Biology Population Ecology of Eriophorum latifolium, a
Clonal Species in Rich Fen Vegetation

2010 Hilde Færevik PhD Biology Impact of protective clothing on thermal and
cognitive responses

2010 Ingerid Brænne Arbo PhD Medical
technology

Nutritional lifestyle changes – effects of dietary
carbohydrate restriction in healthy obese and
overweight humans

2010 Yngvild Vindenes PhD Biology Stochastic modeling of finite populations with
individual heterogeneity in vital parameters

2010 Hans-Richard
Brattbakk

PhD Medical
technology

The effect of macronutrient composition, insulin
stimulation, and genetic variation on leukocyte gene
expression and possible health benefits
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2011 Geir Hysing Bolstad PhD Biology Evolution of Signals: Genetic Architecture, Natural
Selection and Adaptive Accuracy

2011 Karen de Jong PhD Biology Operational sex ratio and reproductive behaviour in
the two-spotted goby (Gobiusculus flavescens)

2011 Ann-Iren Kittang PhD Biology Arabidopsis thaliana L. adaptation mechanisms to
microgravity through the EMCS MULTIGEN-2
experiment on the ISS: The science of space
experiment integration and adaptation to simulated
microgravity

2011 Aline Magdalena Lee PhD Biology Stochastic modeling of mating systems and their
effect on population dynamics and genetics

2011 Christopher
Gravningen Sørmo

PhD Biology Rho GTPases in Plants: Structural analysis of ROP
GTPases; genetic and functional studies of MIRO
GTPases in Arabidopsis thaliana

2011 Grethe Robertsen PhD Biology Relative performance of salmonid phenotypes across
environments and competitive intensities

2011 Line-Kristin Larsen PhD Biology Life-history trait dynamics in experimental
populations of guppy (Poecilia reticulata): the role
of breeding regime and captive environment

2011 Maxim A. K.
Teichert

PhD Biology Regulation in Atlantic salmon (Salmo salar): The
interaction between habitat and density

2011 Torunn Beate
Hancke

PhD Biology Use of Pulse Amplitude Modulated (PAM)
Fluorescence and Bio-optics for Assessing Microalgal
Photosynthesis and Physiology

2011 Sajeda Begum PhD Biology Brood Parasitism in Asian Cuckoos: Different
Aspects of Interactions between Cuckoos and their
Hosts in Bangladesh

2011 Kari J. K.
Attramadal

PhD Biology Water treatment as an approach to increase
microbial control in the culture of cold water marine
larvae

2011 Camilla Kalvatn
Egset

PhD Biology The Evolvability of Static Allometry: A Case Study

2011 AHM Raihan Sarker PhD Biology Conflict over the conservation of the Asian elephant
(Elephas maximus) in Bangladesh

2011 Gro Dehli Villanger PhD Biology Effects of complex organohalogen contaminant
mixtures on thyroid hormone homeostasis in selected
arctic marine mammals

2011 Kari Bjørneraas PhD Biology Spatiotemporal variation in resource utilisation by a
large herbivore, the moose

2011 John Odden PhD Biology The ecology of a conflict: Eurasian lynx depredation
on domestic sheep

2011 Simen Pedersen PhD Biology Effects of native and introduced cervids on small
mammals and birds

2011 Mohsen
Falahati-Anbaran

PhD Biology Evolutionary consequences of seed banks and seed
dispersal in Arabidopsis

2012 Jakob Hønborg
Hansen

PhD Biology Shift work in the offshore vessel fleet: circadian
rhythms and cognitive performance

2012 Elin Noreen PhD Biology Consequences of diet quality and age on life-history
traits in a small passerine bird

2012 Irja Ida Ratikainen PhD Biology Foraging in a variable world: adaptations to
stochasticity

2012 Aleksander Handå PhD Biology Cultivation of mussels (Mytilus edulis): Feed
requirements, storage and integration with salmon
(Salmo salar) farming

2012 Morten Kraabøl PhD Biology Reproductive and migratory challenges inflicted on
migrant brown trout (Salmo trutta L.) in a heavily
modified river

2012 Jisca Huisman PhD Biology Gene flow and natural selection in Atlantic salmon
2012 Maria Bergvik PhD Biology Lipid and astaxanthin contents and biochemical

post-harvest stability in Calanus finmarchicus
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2012 Bjarte Bye Løfaldli PhD Biology Functional and morphological characterization of
central olfactory neurons in the model insect
Heliothis virescens.

2012 Karen Marie
Hammer

PhD Biology Acid-base regulation and metabolite responses in
shallow- and deep-living marine invertebrates during
environmental hypercapnia

2012 Øystein Nordrum
Wiggen

PhD Biology Optimal performance in the cold

2012 Robert Dominikus
Fyumagwa

Dr. Philos
Biology

Anthropogenic and natural influence on disease
prevalence at the human –livestock-wildlife interface
in the Serengeti ecosystem, Tanzania

2012 Jenny Bytingsvik PhD Biology Organohalogenated contaminants (OHCs) in polar
bear mother-cub pairs from Svalbard, Norway.
Maternal transfer, exposure assessment and thyroid
hormone disruptive effects in polar bear cubs

2012 Christer Moe
Rolandsen

PhD Biology The ecological significance of space use and
movement patterns of moose in a variable
environment

2012 Erlend Kjeldsberg
Hovland

PhD Biology Bio-optics and Ecology in Emiliania huxleyi Blooms:
Field and Remote Sensing Studies in Norwegian
Waters

2012 Lise Cats Myhre PhD Biology Effects of the social and physical environment on
mating behaviour in a marine fish

2012 Tonje Aronsen PhD Biology Demographic, environmental and evolutionary
aspects of sexual selection

2012 Bin Liu PhD Biology Molecular genetic investigation of cell separation and
cell death regulation in Arabidopsis thaliana

2013 Jørgen Rosvold PhD Biology Ungulates in a dynamic and increasingly human
dominated landscape – A millennia-scale perspective

2013 Pankaj Barah PhD Biology Integrated Systems Approaches to Study Plant
Stress Responses

2013 Marit Linnerud PhD Biology Patterns in spatial and temporal variation in
population abundances of vertebrates

2013 Xinxin Wang PhD Biology Integrated multi-trophic aquaculture driven by
nutrient wastes released from Atlantic salmon
(Salmo salar) farming

2013 Ingrid Ertshus
Mathisen

PhD Biology Structure, dynamics, and regeneration capacity at
the sub-arctic forest-tundra ecotone of northern
Norway and Kola Peninsula, NW Russia

2013 Anders Foldvik PhD Biology Spatial distributions and productivity in salmonid
populations

2013 Anna Marie Holand PhD Biology Statistical methods for estimating intra- and
inter-population variation in genetic diversity

2013 Anna Solvang
Båtnes

PhD Biology Light in the dark – the role of irradiance in the high
Arctic marine ecosystem during polar night

2013 Sebastian Wacker PhD Biology The dynamics of sexual selection: effects of OSR,
density and resource competition in a fish

2013 Cecilie Miljeteig PhD Biology Phototaxis in Calanus finmarchicus – light
sensitivity and the influence of energy reserves and
oil exposure

2013 Ane Kjersti Vie PhD Biology Molecular and functional characterisation of the IDA
family of signalling peptides in Arabidopsis thaliana

2013 Marianne Nymark PhD Biology Light responses in the marine diatom Phaeodactylum
tricornutum

2014 Jannik Schultner PhD Biology Resource Allocation under Stress - Mechanisms and
Strategies in a Long-Lived Bird

2014 Craig Ryan Jackson PhD Biology Factors influencing African wild dog (Lycaon pictus)
habitat selection and ranging behaviour:
conservation and management implications
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2014 Aravind Venkatesan PhD Biology Application of Semantic Web Technology to
establish knowledge management and discovery in
the Life Sciences

2014 Kristin Collier Valle PhD Biology Photoacclimation mechanisms and light responses in
marine micro- and macroalgae

2014 Michael Puffer PhD Biology Effects of rapidly fluctuating water levels on juvenile
Atlantic salmon (Salmo salar L.)

2014 Gundula S. Bartzke PhD Biology Effects of power lines on moose (Alces alces) habitat
selection, movements and feeding activity

2014 Eirin Marie
Bjørkvoll

PhD Biology Life-history variation and stochastic population
dynamics in vertebrates

2014 Håkon Holand PhD Biology The parasite Syngamus trachea in a metapopulation
of house sparrows

2014 Randi Magnus
Sommerfelt

PhD Biology Molecular mechanisms of inflammation – a central
role for cytosolic phospholiphase A2

2014 Espen Lie Dahl PhD Biology Population demographics in white-tailed eagle at an
on-shore wind farm area in coastal Norway

2014 Anders Øverby PhD Biology Functional analysis of the action of plant
isothiocyanates: cellular mechanisms and in vivo role
in plants, and anticancer activity

2014 Kamal Prasad
Acharya

PhD Biology Invasive species: Genetics, characteristics and trait
variation along a latitudinal gradient.

2014 Ida Beathe
Øverjordet

PhD Biology Element accumulation and oxidative stress variables
in Arctic pelagic food chains: Calanus, little auks
(Alle alle) and black-legged kittiwakes (Rissa
tridactyla)

2014 Kristin Møller
Gabrielsen

PhD Biology Target tissue toxicity of the thyroid hormone system
in two species of arctic mammals carrying high loads
of organohalogen contaminants

2015 Gine Roll Skjervø Dr. philos
Biology

Testing behavioral ecology models with historical
individual-based human demographic data from
Norway

2015 Nils Erik Gustaf
Forsberg

PhD Biology Spatial and Temporal Genetic Structure in Landrace
Cereals

2015 Leila Alipanah PhD Biology Integrated analyses of nitrogen and phosphorus
deprivation in the diatoms Phaeodactylum
tricornutum and Seminavis robusta

2015 Javad Najafi PhD Biology Molecular investigation of signaling components in
sugar sensing and defense in Arabidopsis thaliana

2015 Bjørnar Sporsheim PhD Biology Quantitative confocal laser scanning microscopy:
optimization of in vivo and in vitro analysis of
intracellular transport

2015 Magni Olsen
Kyrkjeeide

PhD Biology Genetic variation and structure in peatmosses
(Sphagnum)

2015 Keshuai Li PhD Biology Phospholipids in Atlantic cod (Gadus morhua L.)
larvae rearing: Incorporation of DHA in live feed
and larval phospholipids and the metabolic
capabilities of larvae for the de novo synthesis

2015 Ingvild Fladvad
Størdal

PhD Biology The role of the copepod Calanus finmarchicus in
affecting the fate of marine oil spills

2016 Thomas Kvalnes PhD Biology Evolution by natural selection in age-structured
populations in fluctuating environments

2016 Øystein Leiknes PhD Biology The effect of nutrition on important life-history
traits in the marine copepod Calanus finmarchicus

2016 Johan Henrik
Hårdensson Berntsen

PhD Biology Individual variation in survival: The effect of
incubation temperature on the rate of physiological
ageing in a small passerine bird

2016 Marianne Opsahl
Olufsen

PhD Biology Multiple environmental stressors: Biological
interactions between parameters of climate change
and perfluorinated alkyl substances in fish



264

2016 Rebekka Varne PhD Biology Tracing the fate of escaped cod (Gadus morhua L.)
in a Norwegian fjord system

2016 Anette Antonsen
Fenstad

PhD Biology Pollutant Levels, Antioxidants and Potential
Genotoxic Effects in Incubating Female Common
Eiders (Somateria mollissima)

2016 Wilfred Njama
Marealle

PhD Biology Ecology, Behaviour and Conservation Status of
Masai Giraffe (Giraffa camelopardalis tippelskirchi)
in Tanzania

2016 Ingunn Nilssen PhD Biology Integrated Enviromental Mapping and Monitoring:
A Methodological approach for end users.

2017 Konika Chawla PhD Biology Discovering, analysing and taking care of knowledge.
2017 Øystein Hjorthol

Opedal
PhD Biology The Evolution of Herkogamy: Pollinator Reliability,

Natural Selection, and Trait Evolvability.
2017 Ane Marlene Myhre PhD Biology Effective size of density dependent populations in

fluctuating environments
2017 Emmanuel Hosiana

Masenga
PhD Biology Behavioural Ecology of Free-ranging and

Reintroduced African Wild Dog (Lycaon pictus)
Packs in the Serengeti Ecosystem, Tanzania

2017 Xiaolong Lin PhD Biology Systematics and evolutionary history of Tanytarsus
van der Wulp, 1874 (Diptera: Chironomidae)

2017 Emmanuel Clamsen
Mmassy

PhD Biology Ecology and Conservation Challenges of the Kori
bustard in the Serengeti National Park

2017 Richard Daniel
Lyamuya

PhD Biology Depredation of Livestock by Wild Carnivores in the
Eastern Serengeti Ecosystem, Tanzania

2017 Katrin Hoydal PhD Biology Levels and endocrine disruptive effects of legacy
POPs and their metabolites in long-finned pilot
whales of the Faroe Islands

2017 Berit Glomstad PhD Biology Adsorption of phenanthrene to carbon nanotubes
and its influence on phenanthrene
bioavailability/toxicity in aquatic organism

2017 Øystein Nordeide
Kielland

PhD Biology Sources of variation in metabolism of an aquatic
ectotherm

2017 Narjes Yousefi PhD Biology Genetic divergence and speciation in northern
peatmosses (Sphagnum)

2018 Signe Christensen-
Dalgaard

PhD Biology Drivers of seabird spatial ecology - implications for
development of offshore wind-power in Norway

2018 Janos Urbancsok PhD Biology Endogenous biological effects induced by externally
supplemented glucosinolate hydrolysis products
(GHPs) on Arabidopsis thaliana

2018 Alice Mühlroth PhD Biology The influence of phosphate depletion on lipid
metabolism of microalgae

2018 Franco Peniel Mbise PhD Biology Human-Carnivore Coexistence and Conflict in the
Eastern Serengeti, Tanzania

2018 Stine Svalheim
Markussen

PhD Biology Causes and consequences of intersexual life history
variation in a harvested herbivore population

2018 Mia Vedel Sørensen PhD Biology Carbon budget consequences of deciduous shrub
expansion in alpine tundra ecosystems

2018 Hanna Maria Kauko PhD Biology Light response and acclimation of microalgae in a
changing Arctic

2018 Erlend I. F. Fossen PhD Biology Trait evolvability: effects of thermal plasticity and
genetic correlations among traits

2019 Peter Sjolte Ranke PhD Biology Demographic and genetic and consequences of
dispersal in house sparrows

2019 Mathilde Le Moullec PhD Biology Spatiotemporal variation in abundance of key tundra
species: from local heterogeneity to large-scale
synchrony

2019 Endre Grüner Ofstad PhD Biology Causes and consequences of variation in resource use
and social structure in ungulates

2019 Yang Jin PhD Biology Development of lipid metabolism in early life stage
of Atlantic salmon (Salmo salar)
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2019 Elena Albertsen PhD Biology Evolution of floral traits: from ecological contex to
functional integration

2019 Mominul Islam
Nahid

PhD Biology Interaction between two Asian cuckoos and their
hosts in Bangladesh

2019 Knut Jørgen Egelie PhD Biology Management of intellectual property in
university-industry collaborations – public access to
and control of knowledge

2019 Thomas Ray
Haaland

PhD Biology Adaptive responses to enviromental stochasticity on
different evolutionary time-scales

2019 Kwaslema Malle
Hariohay

PhD Biology Human wildlife interactions in the Ruaha-Rungwa
Ecosystem, Central Tanzania

2019 Mari Engvig Løseth PhD Biology Exposure and effects of emerging and legacy organic
pollutants in white-tailed eagle (Haliaeetis albicilla)
nestlings

2019 Joseph Mbyati
Mukeka

PhD Biology Human-Wildlife Conflicts and Compensation for
Losses in Kenya: Dynamics, Characteristics and
Correlates

2019 Helene Løvstrand
Svarva

PhD Biology Dendroclimatology in southern Norway: tree rings,
demography and climate

2019 Nathalie Briels PhD Biology Exposure and effects of legacy and emerging organic
pollutants in developing birds – Laboratory and field
studies

2019 Anders L.Kolstad PhD Biology Moose browsing effects on boreal production forests
– implications for ecosystems and human society

2019 Bart Peeters PhD Biology Population dynamics under climate change ad
harvesting: Results from the high Arctic Svalbard
reindeer

2019 Emma-Liina
Marjakangas

PhD Biology Understanding species interactions in the tropics:
dynamics within and between trophic levels

2019 Alex Kojo Datsomor PhD Biology The molecular basis of long chain polyunsaturated
fatty acid (LC-PUFA) biosynthesis in Atlantic
salmon (Salmo salar L): In vivo functions,
functional redundancy and transcriptional regulation
of LC-PUFA biosynthetic enzymes

2020 Ingun Næve PhD Biology Development of non-invasive methods using
ultrasound technology in monitoring of Atlantic
salmon (Salmo salar) production and reproduction

2020 Rachael Morgan PhD Biology Physiological plasticity and evolution of thermal
performance in zebrafish

2020 Mahsa Jalili PhD Biology Effects of different dietary ingredients on the immune
responses and antioxidant status in Atlantic salmon
(Salmo salar L.): possible nutriomics approaches

2020 Haiqing Wang PhD Biology Utilization of the polychaete Hediste diversicolor
(O.F. Millier, 1776) in recycling waste nutrients from
land-based fish farms for value adding applications’

2020 Louis Hunninck PhD Biology Physiological and behavioral adaptations of impala
to anthropogenic disturbances in the Serengeti
ecosystems

2020 Kate
Layton-Matthews

PhD Biology Demographic consequences of rapid climate change
and density dependence in migratory Arctic geese

2020 Amit Kumar Sharma PhD Biology Genome editing of marine algae: Technology
development and use of the CRISPR/Cas9 system
for studies of light harvesting complexes and
regulation of phosphate homeostasis

2020 Lars Rød-Eriksen PhD Biology Drivers of change in meso-carnivore distributions in
a northern ecosystem

2020 Lone Sunniva Jevne PhD Biology Development and dispersal of salmon lice
(Lepeophtheirus salmonis Krøyer, 1837) in
commercial salmon farming localities
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2020 Sindre Håvarstein
Eldøy

PhD Biology The influence of physiology, life history and
environmental conditions on the marine migration
patters of sea trout

2020 Vasundra Touré PhD Biology Improving the FAIRness of causal interactions in
systems biology: data curation and standardisation
to support systems modelling applications

2020 Silje Forbord PhD Biology Cultivation of Saccharina latissima (Phaeophyceae)
in temperate marine waters; nitrogen uptake kinetics,
growth characteristics and chemical composition

2020 Jørn Olav Løkken PhD Biology Change in vegetation composition and growth in the
forest-tundra ecotone – effects of climate warming
and herbivory

2020 Kristin Odden
Nystuen

PhD Biology Drivers of plant recruitment in alpine vegetation

2021 Sam Perrin PhD Biology Freshwater Fish Community Responses to Climate
Change and Invasive Species

2021 Lara Veylit PhD Biology Causes and consequences of body growth variation
in hunted wild boar populations
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