
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Cristian Gil Morales

CCSDS-123 Issues 1 & 2
Implementation on FPGA

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
January 2022

M
as

te
r’s

 th
es

is

Cristian Gil Morales

CCSDS-123 Issues 1 & 2 Implementation
on FPGA

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
January 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Dedico mi mayor logro académico a mi aún amada Carolina.
Este ha sido el último paso de un camino que jamás debí haber tomado.

Abstract

The CCSDS-123 standard is a low-complex but efficient prediction-based (de)compression
algorithm for multispectral and hyperspectral imagers and sounders, that provides a
compacted data transmission via a communication link [11].

The present report proposes a full implementation of the Issues 1 & 2 algorithms in
VHDL-2008, with a fully-configurable nature by means of different package files. The
Issue 2 revision extends the capabilities of Issue 1 (but still backwards compatible),
providing the possibility to perform either lossless or near-lossless compression of the
image data [10].

Because of the performance and timing requirements that a space-related application
demands, this implementation must be accelerated by hardware, in this case a FPGA.
FPGAs are increasingly becoming the most suitable platforms in terms of performance,
energy efficiency and reconfigurability [13].

This paper covers every single aspect of the CCSDS-123 Issues 1 & 2 algorithms, except
the Block-Adaptive Entropy Coder (from Issue 1), so being by far the most complete
implementation to run on a FPGA, and the current state-of-the-art.

The presented implementation of (almost) one independent IP module per different op-
eration (exactly in the same way as the provided documentation structures it) ensures a
high grade of modularity, extendability, scalability, bug tracking and code readability.

A complete validation by simulation of the system, both by visually tracking all signals
and comparing with an already validated partial implementation in VHDL too, is per-
formed with successful results. The design requires around 10% of the hardware resources
from the FPGA, and it is currently capable to run at a speed of 40MHz (and with a huge
potential to easily accelerate it).

The performance tests define a specific number of total clock cycles to fully compress an
image (very closely related to the input image dimensions) and an image compression
ratio of between 40% and 60% the original input image size.

I would like to thank the Norwegian University of Science and Technology, for giving
me this great opportunity to work with them, and specially to my supervisor Milica
Orlandic, who has followed my development and assisted me when needed.

3

Contents

Acronyms 14

1 Introduction 16

2 Background 18
2.1 Input image . 18

2.1.1 Input samples order . 19
2.2 CCSDS-123 Issue 2 algorithm . 21
2.3 Predictor block . 21

2.3.1 Adder . 22
2.3.2 Quantizer . 22

2.3.2.1 Fidelity Control . 23
2.3.2.1.1 Periodic Error Limit Updating 24

2.3.3 Mapper . 24
2.3.3.1 Scaled Difference . 24

2.3.4 Sample Representative . 25
2.3.4.1 Clipped Quantizer Bin Center 26
2.3.4.2 Double-Resolution Sample Representative 26

2.3.5 Prediction . 26
2.3.5.1 Local Sum . 28
2.3.5.2 Local Differences . 30
2.3.5.3 Local Differences Vector 31
2.3.5.4 Weight values . 32
2.3.5.5 Weight Update Scaling Exponent 34
2.3.5.6 Double-Resolution Prediction Error 34
2.3.5.7 Weights Vector . 34
2.3.5.8 Predicted Central Local Difference 35
2.3.5.9 High-Resolution Predicted Sample 35
2.3.5.10 Double-Resolution Predicted Sample 36
2.3.5.11 Predicted Sample . 36

2.4 Encoder block . 37
2.4.1 Encoder Header . 38

2.4.1.1 Image Metadata . 38
2.4.1.1.1 Supplementary Information Tables 40

2.4.1.2 Predictor Metadata . 42
2.4.1.3 Encoder Metadata . 47

2.4.2 Encoder Body . 48
2.4.2.1 Sample-Adaptive Entropy Coder 49

2.4.2.1.1 Sample-Adaptive Statistic 49

4

2.4.2.1.2 Sample-Adaptive GPO2 Coder 50
2.4.2.2 Hybrid Entropy Coder . 51

2.4.2.2.1 Hybrid Statistic 51
2.4.2.2.2 Hybrid High-Entropy Coder 52
2.4.2.2.3 Hybrid Low-Entropy Coder 53
2.4.2.2.4 Hybrid Compressed Image Tail 54

2.4.3 Output packets generation . 54
2.5 Differences between Issues 1 and 2 . 55
2.6 VUnit framework . 57
2.7 Logic Synthesis . 58
2.8 Implementation . 58
2.9 HDL considerations . 59

2.9.1 VHDL signed vs unsigned signals 59
2.9.2 Synthesis design constraints . 60

3 Design 61
3.1 Overview . 61

3.1.1 Timing diagram . 62
3.2 Development tools . 63
3.3 Hardware platform . 63
3.4 Source code architecture . 65

3.4.1 Packages . 65
3.4.2 Block diagrams description . 66

3.5 CCSDS-123-Issue2 Top Entity IP . 68
3.5.1 Top Entity IP configuration . 69

3.6 Image Coordinates Control IP . 71
3.7 Predictor Top IP . 71

3.7.1 Adder IP . 73
3.7.2 Quantizer IP . 74

3.7.2.1 Fidelity Control IP . 74
3.7.2.1.1 Error Limit Values Table 76

3.7.3 Mapper IP . 77
3.7.3.1 Scaled Difference IP . 77

3.7.4 Sample Representative IP . 78
3.7.4.1 Clipped Quantizer Bin Center IP 78
3.7.4.2 Double-Resolution Sample Representative IP 79

3.7.5 Prediction IP . 79
3.7.5.1 Samples Store IP . 81

3.7.5.1.1 Shift Register IP 82
3.7.5.2 Local Sum IP . 83
3.7.5.3 Local Differences IP . 84
3.7.5.4 Local Differences Vector IP 85
3.7.5.5 Weight Update Scaling Exponent IP 86
3.7.5.6 Double-Resolution Prediction Error IP 86

5

3.7.5.7 Weights Vector IP . 86
3.7.5.8 Predicted Central Local Difference IP 87
3.7.5.9 High-Resolution Predicted Sample IP 88
3.7.5.10 Double-Resolution Predicted Sample IP 88
3.7.5.11 Predicted Sample IP . 88

3.8 Predictor-Encoder Interconnection IP . 89
3.8.1 Parallel Synchronous FIFOs IP . 90

3.9 Encoder Top IP . 91
3.9.1 Encoder Header IP . 92

3.9.1.1 Image Metadata IP . 93
3.9.1.1.1 Supplementary Information Tables 94

3.9.1.2 Predictor Metadata IP . 95
3.9.1.3 Encoder Metadata IP . 95

3.9.2 Encoder Body IP . 96
3.9.2.1 Sample-Adaptive Entropy Coder IP 97

3.9.2.1.1 Sample-Adaptive Statistic IP 97
3.9.2.1.2 Sample-Adaptive GPO2 Coder IP 98

3.9.2.2 Hybrid Entropy Coder IP 100
3.9.2.2.1 Hybrid Statistic IP 101
3.9.2.2.2 Hybrid High-Entropy Coder IP 102
3.9.2.2.3 Hybrid Low-Entropy Coder IP 103
3.9.2.2.4 Hybrid Compressed Image Tail IP 105

3.9.3 Packer IP . 106

4 Validation Plan 109
4.1 Validation scope . 109
4.2 Validation tools . 109

4.2.1 VUnit testbenches . 109
4.2.2 Vivado TCL framework . 112

4.3 Test-cases . 114

5 Results 115
5.1 Bitstream generation . 115
5.2 HW integration reports . 116

5.2.1 Power consumption report . 116
5.2.2 Utilization report . 117
5.2.3 Timing report . 118

5.3 Functionality outcome . 119
5.3.1 Image Coordinates Control IP block 119
5.3.2 Predictor IP block . 120

5.3.2.1 Adder IP sub-block . 120
5.3.2.2 Quantizer IP sub-block 120
5.3.2.3 Mapper IP sub-block . 121
5.3.2.4 Sample Representative IP sub-block 121

6

5.3.2.5 Prediction IP sub-block 122
5.3.2.6 Predictor Top IP integration test 122

5.3.3 Encoder IP block . 123
5.3.3.1 Encoder Header IP sub-block 123
5.3.3.2 Sample-Adaptive Entropy Coder IP sub-block 124
5.3.3.3 Hybrid Entropy Coder IP sub-block 124
5.3.3.4 Packer IP sub-block . 125
5.3.3.5 Encoder Top IP integration test 126

5.3.4 Top Entity IP integration test . 126
5.4 Performance & Final results . 127
5.5 Time planning . 128

6 Discussion 130

7 Related Work 132

8 Future Work 133

9 Conclusions 134

10 Appendix - List of codes 136
10.1 Mathematical conventions . 136
10.2 Image parameters . 137
10.3 Predictor parameters . 137
10.4 Encoder parameters . 138
10.5 VHDL Style Guide . 139
10.6 HDL Coding Guidelines . 140
10.7 SoC Package Pinout . 142
10.8 Extended Utilization Reports . 143
10.9 Signed/Unsigned signals handling . 144
10.10VHDL Package example . 145
10.11Image Coordinates Control IP source code 146
10.12Adder IP source code . 148
10.13Scaled Difference IP source code . 150
10.14Shift Register IP source code . 151
10.15Image Metadata IP source code . 152
10.16Parallel Synchronous FIFOs IP source code 154
10.17Sample-Adaptive GPO2 Code IP source code 156
10.18Adder IP Python script source code . 158
10.19Adder IP VUnit testbench source code . 159
10.20Simulations Bash source code . 161
10.21Xilinx Vivado TCL framework source code 162
10.22Vivado Project Bash source code . 164

11 Declaration of Authorship 168

7

List of Figures

1.1 HYPSO logo . 17

2.1 Hyper-spectral image cube [9, p.19] . 19
2.2 BSQ input order pseudo-code . 19
2.3 BI input order pseudo-code . 20
2.4 Illustration with all input sample orders [9, p.19] 20
2.5 CCSDS-123 block diagram [10] . 21
2.6 Typical prediction neighbourhood [10] . 27
2.7 Central and neighbour samples representation 28
2.8 Local sum options graphical representation 30
2.9 Compressed image structure . 37
2.10 Weight Init. pseudo-code . 43
2.11 Weight Exp. Off. pseudo-code . 43
2.12 BI input order pseudo-code with error limit values 48
2.13 Structural differences between Issue 1 and Issue 2 [29, p.3] 55
2.14 Non-synthesizable (left) and Synthesizable (right) writing operation 60
2.15 Non-synthesizable (left) and Synthesizable (right) For-loop 60

3.1 CCSDS-123 Top Entity IP timing diagram 62
3.2 Xilinx UltraScale MPSoC architecture . 64
3.3 Block diagram example . 67
3.4 Top entity IP block diagram . 68
3.5 Image coordinates IP block diagram . 71
3.6 Predictor IP block diagram . 72
3.7 Adder IP block diagram . 73
3.8 Quantizer IP block diagram . 74
3.9 Fidelity Control IP block diagram . 75
3.10 Mapper IP block diagram . 77
3.11 Sample Representative IP block diagram 78
3.12 Double-Resolution Sample Representative IP block diagram 79
3.13 Prediction IP block diagram . 79
3.14 Samples Store IP block diagram . 81
3.15 Shift register structure . 82
3.16 Local Sum IP block diagram . 83
3.17 Local Differences IP block diagram . 84

8

3.18 Local Differences Vector IP block diagram 85
3.19 Weights Vector IP block diagram . 86
3.20 Predicted Central Local Difference IP block diagram 88
3.21 Predictor-Encoder Interconnect IP block diagram 89
3.22 Parallel Synchronous FIFOs IP block diagram 90
3.23 Encoder Top IP block diagram . 91
3.24 Encoder Header IP block diagram . 92
3.25 Encoder Body IP block diagram . 96
3.26 Sample-Adaptive Entropy Coder IP block diagram 97
3.27 Hybrid Entropy Coder IP block diagram 98
3.28 Sample-Adaptive GPO2 Code IP block diagram 98
3.29 Hybrid Entropy Coder IP block diagram 100
3.30 Hybrid Low-Entropy Coder IP block diagram 103
3.31 Hybrid Compressed Image Tail IP block diagram 105
3.32 Packer IP block diagram . 106
3.33 Packing data timing diagram [17, p.9] . 107

4.1 GUI of testbenches bash file . 111
4.2 VUnit testbench report . 111
4.3 ModelSim Simulator Engine GUI . 112
4.4 GUI of Xilinx Vivado bash file . 113

5.1 Power consumption reports for Synthesis (left) and Implementation (right) 116
5.2 Reduced Utilization report for Synthesis 117
5.3 Reduced Utilization report for Implementation 117
5.4 Timing report for Synthesis . 118
5.5 Timing report for Implementation . 118
5.6 Image Coordinates Control IP waveform 119
5.7 Adder IP waveform . 120
5.8 Quantizer IP waveform . 120
5.9 Mapper IP waveform . 121
5.10 Sample Representative IP waveform . 121
5.11 Prediction IP waveform . 122
5.12 Predictor Top IP waveform . 123
5.13 Encoder Header IP waveform . 123
5.14 Sample-Adaptive Entropy Coder IP waveform 124
5.15 Hybrid Entropy Coder IP waveform . 124
5.16 Packer IP waveform . 125
5.17 Encoder Top IP waveform . 126
5.18 Top Entity IP waveform . 127
5.19 Gantt chart . 129

10.1 SoC XCZU9EG-FFVB1156 package pinout 142
10.2 Extended Utilization report after Synthesis 143

9

10.3 Extended Utilization report after Implementation 143

List of Tables

2.1 Encoder Header top structure . 38
2.2 Image Metadata top . 38
2.3 Image Metadata - Essential part . 39
2.4 Supplementary Information Tables purposes 40
2.5 Supplementary Information Table Structure 41
2.6 Predictor Metadata top . 42
2.7 Predictor Metadata - Primary part (1/2) 42
2.8 Predictor Metadata - Primary part (2/2) 43
2.9 Predictor Metadata - Weight tables part 43
2.10 Predictor Metadata - Quantization part 44
2.11 Quantization part - Error Limit Update Period sub-part 44
2.12 Quantization part - Absolute Error Limit sub-part 44
2.13 Quantization part - Relative Error Limit sub-part 45
2.14 Predictor Metadata - Sample Representative part 46
2.15 Sample-Adaptive Entropy Coder Metadata Structure 47
2.16 Hybrid Entropy Coder Metadata Structure 47
2.17 Low-Entropy Code Input Symbol Limit and Threshold 53
2.18 Constraints to turn Issue 2 into Issue 1 [10] 56

3.1 Delay values to generate all neighbour samples 82

10.1 Image parameters [10, p.98] . 137
10.2 Predictor parameters (1/2) [10, p.98-100] 137
10.3 Predictor parameters (2/2) [10, p.98-100] 138
10.4 Encoder parameters [10, p.100-101] . 138

10

List of Equations

2.1 Image coordinates range NX , NY , NZ parameters 18
2.2 Image dynamic range D parameter . 18
2.3 Signed samples range . 18
2.4 Unsigned samples range . 18
2.5 Image sample identifier sz(t) value . 18
2.6 Image sample index t value . 18
2.7 Prediction residual ∆z(t) computation . 22
2.8 Signed quantizer index qz(t) computation 22
2.9 Maximum error mz(t) for lossless compression computation 23
2.10 Maximum error mz(t) for absolute error limit compression computation . 23
2.11 Absolute error limit az parameter . 23
2.12 Maximum error mz(t) for relative error limit compression computation . . 23
2.13 Relative error limit rz parameter . 23
2.14 Maximum error mz(t) for absolute and relative error limit compression

computation . 23
2.15 Absolute and Relative error limit constant values 23
2.16 Mapped quantizer index δz(t) computation 24
2.17 Scaled difference between ŝz(t) parameter 25
2.18 Sample representative s′′z (t) computation 25
2.19 Clipped version of the quantizer bin center s′z(t) computation 26
2.20 Double-resolution sample representative s̃z(t) computation 26
2.21 Sample representative resolution Θz parameter 26
2.22 Sample representative damping ϕz parameter 26
2.23 Sample representative offset ψz parameter 26
2.24 Wide neighbour-oriented local sum computation 29
2.25 Narrow neighbour-oriented local sum computation 29
2.26 Wide column-oriented local sum computation 29
2.27 Narrow column-oriented local sum computation 29
2.28 Central local difference dz(t) computation 30
2.29 North directional local differences dNz (t) computation 31
2.30 West directional local differences dWz (t) computation 31
2.31 North-West directional local differences dNWz (t) computation 31
2.32 Preceding spectral bands P ∗

z parameter 31
2.33 Local difference vector Uz(t) under Reduced prediction mode computation 31
2.34 Local difference vector Uz(t) under Full prediction mode computation . . 32

11

2.35 Weight resolution Ω parameter . 32
2.36 Minimum and maximum weight values ωmin and ωmax parameters 32
2.37 Default weight ωz initialization under Reduced prediction mode compu-

tation . 32
2.38 Default weight ωz initialization under Full prediction mode computation . 33
2.39 Custom weight ωz initialization computation 33
2.40 Weight initialization resolution Q parameter 33
2.41 Central weight ωz computation . 33
2.42 North directional weight ωNz (t) computation 33
2.43 West directional weight ωWz (t) computation 33
2.44 North-West directional weight ωNWz (t) computation 33
2.45 Intra-band exponent offset ς(i)z parameter 33
2.46 Inter-band weight exponent offset ς∗z parameter 33
2.47 Weight update scaling exponent p(t) computation 34
2.48 Weight update scaling exponent initial vmin and final vmax parameters . . 34
2.49 Weight update scaling exponent change interval tinc parameter 34
2.50 Double-resolution prediction error ez(t) computation 34
2.51 Weights vector Wz(t) in Reduced Prediction mode computation 34
2.52 Weights vector Wz(t) in Full Prediction mode computation 35
2.53 Predicted central local difference d̂z(t) computation 35
2.54 High-resolution predicted sample s̆z(t) computation 35
2.55 Register size R parameter . 35
2.56 Double-resolution predicted sample s̃z(t) computation 36
2.57 Predicted sample ŝz(t) computation . 36
2.58 Output word size B parameter . 37
2.59 Supl. Info. Table unsigned value . 40
2.60 Supl. Info. Table signed value . 40
2.61 Supl. Info. Table float 1 value . 40
2.62 Supl. Info. Table float 2 value . 40
2.63 Supl. Info. Table sign bit b value . 40
2.64 Supl. Info. Table exponent α value . 40
2.65 Supl. Info. Table significand j value . 40
2.66 Supl. Info. Table table bit depth DI parameter 40
2.67 Supl. Info. Table significand bit depth DF parameter 40
2.68 Supl. Info. Table exponent bit depth DE parameter 40
2.69 Supl. Info. Table exponent bias β parameter 40
2.70 Error Limit values update ratio . 48
2.71 Accumulator Σz(t) initial value . 49
2.72 Counter Γ(t) initial value . 49
2.73 Initial count exponent γ0 parameter . 49
2.74 Accumulator initialization table k′z parameter 49
2.75 Accumulator Σz(t) update value . 49
2.76 Counter Γ(t) update value . 50

12

2.77 Rescaling counter size γ∗ parameter . 50
2.78 Unary length limit Umax parameter . 50
2.79 Sample-Adaptive: Variable-length code kz(t) computation 50
2.80 Sample-Adaptive: Variable-length code kz(t) parameter 50
2.81 Counter Γ(t) initial value . 51
2.82 High-resolution accumulator Σ̃z(t) initial value 51
2.83 High-resolution accumulator Σ̃z(t) update value 51
2.84 Counter Γ(t) update value . 52
2.85 Hybrid High-Low Entropy selection computation 52
2.86 Hybrid: Variable-length code kz(t) computation 52
2.87 Hybrid: Variable-length code kz(t) parameter 52
2.88 Hybrid: Code index i computation . 53
2.89 Hybrid: Input symbol ιz(t) computation 54

5.1 Clock cycles for Predictor block to fully compute an incoming image . . . 127
5.2 Clock cycles for Encoder block to fully compute an incoming image 127
5.3 Total clock cycles to fully compress an incoming image 127

10.1 Round down function convention . 136
10.2 Round up function convention . 136
10.3 Modulus function convention . 136
10.4 Modulus*R function convention . 136
10.5 Clipping function convention . 136
10.6 Sign function convention . 136
10.7 Sign-plus function convention . 136

13

Acronyms

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BSQ Band-Sequential

BI Band-Interleaved

BIL Band-Interleaved-by-Line

BIP Band-Interleaved-by-Pixel

CCSDS Consultative Committee for Space Data Systems

CDC Clock Domain Crossing

DUT Device Under Test

ECTS European Credit Transfer System

FF Flip-Flop

FID Frame Interleaved by Diagonal

FIFO First In First Out

FPGA Field-Programmable Gate Array

GPO2 Golomb-Power-Of-2

GUI Graphical User Interface

HDL Hardware Description Language

HLS High Level Synthesis

HW Hardware

HYPSO Hyper-Spectral SmallSat for Ocean Observation

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

14

ILA Integrated Logic Analyzer

IP Intellectual Property

JTAG Joint Test Action Group

LSb Least Significant Bit

LSB Least Significant Byte

LUT LookUp Table

MSb Most Significant Bit

MSB Most Significant Byte

NTNU Norwegian University of Science and Technology

OOC Out-Of-Context

PL Programmable Logic

PS Processing System

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RTL Register-Transfer Level

SoC System On Chip

SW Software

TCL Tool Command Language

UART Universal Asynchronous Receiver-Transmitter

uC Micro-Controller

VHDL VHSIC-HDL

VHSIC Very High-Speed Integrated Circuit

VIO Virtual Input/Output

XPM Xilinx Parameterized Macro

15

1 Introduction

The space industry, slowed down since the 70’s, is again accelerating thanks to the incur-
sion of the private industry. In the recent years, companies such as SpaceX, determined
to discover more from the outer space, our own planet and to step in other planets, have
made the technology for the space sector to improve by leaps and bounds.
The key component for this purpose are the artificial satellites, placed in outer space

to observe the surroundings by using hyper-spectral imaging. This kind of imaging allow
researches to collect and process information from the electromagnetic spectrum of an
image, with the objective of finding objects or identifying materials.

One example is the HYPSO mission [7], aiming to observe oceanographic phenomena
by using a small satellite with a hyper-spectral camera on-board. Figure 1.1 is its logo.
This small satellite is the SmallSat project [8], developed at the Norwegian University

of Science and Technology (NTNU): A miniaturized satellite of cubic shape, with ’low-
cost’ and relatively fast to develop and launch.

Many different and demanding processing tasks are executed on-board in this satellite,
and due to the limited transmission speed from the antenna to the ground station (for the
radio link), one critical point in the system is the image compression, meant to improve
the usage of the limited data throughput and to transfer images at a reduced time [8].

From this specific issue arises the Consultative Committee for Space Data Systems
(CCSDS), a group that introduces the CCSDS-123 standard, an efficient prediction-
based algorithm for the compression of hyper-spectral images, characterized by its low
complexity [11][10].
Two revisions of this standard have been published so far by this group: CCSDS-

123.0-B-1 (Issue 1), published in 2015, designed for the lossless compression of hyper-
spectral images, and CCSDS-123.0-B-2 (Issue 2), published in 2019, an improvement
of the previous revision that offers higher compression rates by performing near-lossless
compression of hyper-spectral images.

Furthermore, the quite noticeable increase on the dimensions of hyper-spectral images
along the years to offer a better quality has turned out in the necessity of accelerating
such algorithm by hardware, offering a way faster performance and real-time capabilities.
The chosen hardware platform to run this algorithm is the FPGA, a configurable

hardware that has become the standard choice in small-satellite missions because of its
reconfigurable nature and the possibility to execute complex tasks in parallel [13].

16

The present thesis, a direct continuation from Specialization Project [24], introduces
a complete implementation of CCSDS-123 Issues 1 & 2 algorithms in the hardware de-
scription language VHDL, already synthesizable and prepared to run on a FPGA.

As of today, an implementation of this algorithm as complete as the present one has
not been released, so this report seeks to be a reference point to any developer going
into this topic. Thinking even further in the future, the source code has been designed
with the reusability and modularity principles as its core, so that it can be improved
or modified with a minimum effort, if needed (in case new bugs are discovered, or more
revisions are released in the future, for example).

Moreover, two more things are released together with the source code: A TCL frame-
work to automate the creation of a Xilinx Vivado project and the bitstream generation,
and an architecture of testbenches, done with the VUnit framework, to validate all IPs.

It is highly important to highlight that the document CCSDS-123.0-B-2 does not
explain/justify the mathematics behind the CCSDS-123 algorithm effectiveness (Green
Book), but only describes how to implement it (Blue Book). This is due to the fact that
CCSDS group has not released such information yet.

Hereafter the document presents the following structure: Background explains the
CCSDS-123 Issue 1 & 2 algorithms together with the differences with each other, input
image data characteristics, VUnit framework and some HDL considerations. Design
completely describes the implementation of all CCSDS-123 Issue 1 & 2 IPs and sub-IPs.
Validation Plan describes the scope, tools and test-cases to validate the code. Results
shows up the validation results and performance reports. Discussion, Related Work and
Future Work define the current status of the work, related projects to this one and what
actions to take next, respectively. Final chapters are Conclusions and Appendix.

Because of its size, all developed source code is submitted in parallel to this report,
and here only specific parts from it is included in the Appendix section with the aim to
support some explanations.

Figure 1.1: HYPSO logo

17

2 Background

Before continue reading any further below, check section 10.1 to see all mathematical
conventions used here.

2.1 Input image

The incoming data are hyper-spectral images [19], being each one of them a three-
dimensional array of data samples sz,y,x, where references x, y and z are the coordinates.
The indexes x and y define the spatial dimensions (sample and frame), and the index z
defines the spectral band [11][10].
These coordinates are integer values, and equation 2.1 shows their value ranges:

(2.1)

Where Nx, Ny and Nz values are defined between 1 and 216.

All data sample have the same dynamic range, which is a user-specified parameter with
the number of bits, limited by equation 2.2:

(2.2)

And this range already denotes the minimum, middle and maximum possible values.
The incoming samples can be either signed or unsigned values, and equations 2.3 and
2.4 show their limit values, respectively:

(2.3)

(2.4)

To make equations easier to understand, data samples and associated quantities can be
identified either by the complete reference (x, y and z indexes), or by the pair of indexes
t, z. Equation 2.5 is an example of it:

(2.5)

The new value t is the index of a sample inside the same spectral band, arranged in
raster-scan order and starting with t = 0. Its conversion to the original coordinates is
shown in equation 2.6:

(2.6)

18

2.1.1 Input samples order

Figure 2.1 shows a hyper-spectral image cube, along with its coordinates reference:

Figure 2.1: Hyper-spectral image cube [9, p.19]

When introducing an image into the system, there are two different and standard
order types to enter its samples, both of them on a serial way, sample by sample: Band-
Sequential (BSQ) and Band-Interleaved (BI).

Under BSQ, from the starting point, samples are introduced pixel by pixel from left
to right (x coordinate) until completing one frame and moving down (y coordinate),
and then again for the next frame below until completing one spectral band and moving
forward (z coordinate), and then again for the next spectral band in front until the cube
is fully sent out.
Figure 2.2 shows the pseudo-code associated with this order:

Figure 2.2: BSQ input order pseudo-code

Under BI, the samples sequence is configurable to some extent, controlled by the user-
specified parameter sub-frame interleaving depth M, whose range is 1 ≤M ≤ NZ .

19

Here, from the starting point, samples are introduced pixel by pixel forwards (z coordi-
nate) until reaching M number of spectral bands and moving to the right (x coordinate),
and then again for the same number of spectral bands until completing one frame and
moving down (y coordinate), and then again for the next frame below until the cube is
fully sent out.
Figure 2.3 shows the pseudo-code associated with this order:

Figure 2.3: BI input order pseudo-code

As one can see in this pseudo-code, playing with the user-specified parameter sub-
frame interleaving depth M, it is possible from sending samples from all spectral bands
before moving to the right (M = 1, special case called Band-Interleaved-by-Pixel (BIP))
to sending all samples from one spectral band before moving to the next one (M = NZ ,
special case called Band-Interleaved-by-Line (BIL)).

Figure 2.4 is an illustration of the 3 sample orderings for hyper-spectral images:

Figure 2.4: Illustration with all input sample orders [9, p.19]

20

2.2 CCSDS-123 Issue 2 algorithm

The CCSDS-123 Issue 2 algorithm is basically composed of two blocks: the Predictor
block and the Encoder block. The first one takes over of predicting the new samples
(based on the nearby ones), and the second one takes over the compression and codifi-
cation of the image [11][10].
The two of them are placed in series, and the Predictor IP is the first one, in other

words, this one receives the original image sample values sz(t).

Figure 2.5 shows the very top structure of this algorithm:

Figure 2.5: CCSDS-123 block diagram [10]

All information below about the Predictor and Encoder blocks as well as their sub-
modules has been mostly extracted from [11][10].

2.3 Predictor block

The Predictor block uses an adaptive linear prediction method to predict the value of
each image sample based on the nearby sample values in a small three dimensional
neighborhood. This operation is computed sequentially in a single pass.

This block is composed of 5 major components or sub-blocks. The major block from
the left on Figure 2.5 shows the block diagram of the Predictor block, together with all
its interconnections.

Looking at this block from left to right and top to down: the Adder (top-left box,
section 2.3.1) computes the prediction residual ∆z(t), which is the difference between
the predicted sample ŝz(t) and original sample sz(t) values, and then it is quantized
using a uniform Quantizer (top-center box, section 2.3.2). The quantizer step size can
be controlled via an absolute error limit (samples are reconstructed with a user specified
error bound), relative error limit (samples predicted to be smaller are reconstructed with
lower error), absolute and relative error limits together, or totally lossless (obtained by
setting the absolute error limit to zero).

21

To offer the near-lossless compression capability, an adaptively updated weighted Pre-
diction algorithm (left-down box, section 2.3.5) is implemented in a close-loop, generating
the predicted sample ŝz(t).

Unlike Issue 1 [11, p.18], the Predictor block cannot use the exact original sample
sz(t) values here because they are not available to the decompressor at the time of
reconstruction, when compression is not lossless. Instead, Prediction calculations are
computed using sample representative s′′z (t) values in place of original sample sz(t) values,
using a Sample Representative algorithm (right-down box, section 2.3.4), also placed in
the the close-loop branch. This is required to let decompressor duplicate the prediction
calculation later.

Finally, the quantized prediction residual qz(t) values go through a Mapper (top-right
box, section 2.3.3) to be mapped into unsigned mapped quantizer index δz(t) values, which
makes up the output of the Predictor block.

2.3.1 Adder

The module Adder is in charge of computing the very first element in the chain: the
prediction residual ∆z(t).

As the equation 2.7 shows, the prediction residual ∆z(t) is computed as the difference
between the predicted sample ŝz(t) and original sample sz(t) values:

(2.7)

2.3.2 Quantizer

The module Quantizer gets the prediction residual ∆z(t) and the predicted sample ŝz(t)
values, from modules Adder and Prediction respectively, and it produces the maximum
error value mz(t) and the signed quantizer index qz(t) values, to use them later into
modules Mapper and Sample Representative.

First, the maximum error value mz(t) is computed by the sub-module Fidelity Control
by means of the predicted sample ŝz(t) value, as explained in section 2.3.2.1.

The prediction residual ∆z(t) is quantized using a uniform quantizer with step size of
2 ∗mz(t) + 1 (so controlled via the maximum error value mz(t)), generating the signed
quantizer index qz(t) as equation 2.8 states:

(2.8)

22

2.3.2.1 Fidelity Control

The module Fidelity Control calculates the allowed maximum error mz(t) value, based
on the user settings, with the incoming predicted sample ŝz(t).

For its computation, one option is to define a lossless compression, and that means
fixing this error to 0, as equation 2.9 shows:

(2.9)

A second option is to define an absolute error limit (so samples can be reconstructed
with a user-specified error bound). This threshold is defined in equation 2.10 and con-
strained in equation 2.11:

(2.10)

(2.11)

Another option is to define a relative error limit (so samples with small magnitude can
be reconstructed with a preconfigured low error). This threshold is defined in equation
2.12 and constrained in equation 2.13:

(2.12)

(2.13)

Last option is to define both absolute and relative error limits at a time. In such case,
previous constraints from equations 2.11 and 2.13 apply here again, but the equation
2.14 is the one that defines the new way to compute the maximum error mz(t) value:

(2.14)

For any absolute or relative error limits are used, they can be either band-dependent,
in which case the user must specify a value per spectral band z, or band-independent, in
which case az = A∗ and rz = R∗ for all spectral bands z.

User-specified parameters absolute error limit constant A∗ and relative error limit con-
stant R∗ are constrained as equation 2.15 details:

(2.15)

23

2.3.2.1.1 Periodic Error Limit Updating .

The previous absolute and relative error limit values configuration can be either fixed
for a complete image, or the user might choose to use Periodic Error Limit Updating
option, in which case the error limit values would be periodically updated.

• This feature can only be enabled with BIP and BIL input orders, but never with
BSQ input order.

With such option enabled, the user needs to provide new Error limit values every 2U

frames, being U the user-specified parameter error limit update period exponent, and
with range 0 ≤ U ≤ 9.

Even though the Error limit values might change over time, the other quantizer fidelity
settings, such as absolute and/or relative error limits (see equations 2.11 and 2.13), band-
dependent or band-independent (see equation 2.15) or error limit bit depth, must always
be fixed for the entire image.

2.3.3 Mapper

The module Mapper receives the predicted sample ŝz(t), maximum error mz(t) and quan-
tizer index qz(t) values, from modules Prediction and Quantizer respectively, and it com-
putes the mapped quantizer index δz(t) value: the output of Predictor block itself.

First, the scaled difference between ŝz(t) and nearest endpoint smin, smax, θz(t), is
computed by the sub-module Scaled Difference by means of the predicted sample ŝz(t)
and maximum error mz(t) values, as explained in section 2.3.3.1.

Then, the scaled difference θz(t) value is used along with the quantizer residual qz(t)
to compute the mapped quantizer index δz(t), as equation 2.16 states:

(2.16)

This mapping process can be inverted, so that the decompressor can reconstruct the
quantizer index qz(t) with no error later on, is desired.

2.3.3.1 Scaled Difference

The module Scaled Difference computes the scaled difference between ŝz(t) and nearest
endpoint smin, smax, θz(t), value, calculated based in the predicted sample ŝz(t) and the
maximum error mz(t) values.

24

Equation 2.17 defines the calculation of this value:

(2.17)

2.3.4 Sample Representative

As already said on section 2.3, the Predictor block in Issue 2 cannot work with the
exact values of the original sample sz(t) signal, because they are not available to the
decompressor for reconstruction when the compression is not lossless. Instead, Prediction
calculations must be performed using a sample representative s′′z (t) in place of the original
sample sz(t) values.

The module Sample Representative receives the original sample sz(t) (from outside),
predicted sample ŝz(t), high-resolution predicted sample s̆z(t) (from module Prediction),
maximum error mz(t) and quantizer index qz(t) (from module Mapper) values, producing
the sample representative s′′z (t) and clipped quantizer bin center s′z(t) values, both of them
sent to the module Prediction.

To begin with, the clipped version of the quantizer bin center s′z(t) is computed by
means of the predicted sample ŝz(t), quantizer index qz(t) and maximum error mz(t)
values, as explained on section 2.3.4.1 below.

The next step is to compute the double-resolution sample representative s̃z(t) by means
of the clipped version of the quantizer bin center s′z(t), quantizer index qz(t), maximum
error mz(t) and high-resolution predicted sample s̆z(t) values, as explained on section
2.3.4.2 below.

Finally, the double-resolution sample representative s̃z(t) is used along with the orig-
inal sample sz(t) to produce the sample representative s′′z (t) value (which has the same
resolution as the original sample sz(t)), as equation 2.18 states:

(2.18)

25

2.3.4.1 Clipped Quantizer Bin Center

This module computes the clipped version of the quantizer bin center s′z(t) value, based
on the predicted sample ŝz(t), quantizer index qz(t) and maximum error mz(t) values.

Equation 2.19 states how to calculate the clipped quantizer bin center s′z(t):

(2.19)

In point of fact, the reconstruction of the original sample sz(t) by the decompressor
using the clipped quantizer bin center s′z(t) value ensures that the error during such
process will be at most mz(t). That is to say, if decompression is chosen to be lossless
(equation 2.9), it means that these two values will always be the same (s′z(t) = sz(t)).
Refer to section 2.5 to see more information about this particular configuration.

2.3.4.2 Double-Resolution Sample Representative

This module calculates the double-resolution sample representative s̃z(t) value, based on
the clipped version of the quantizer bin center s′z(t), quantizer index qz(t), maximum
error mz(t) and high-resolution predicted sample s̆z(t) values, as equation 2.20 shows:

(2.20)

Moreover, equations 2.21, 2.22 and 2.23 show the user-specified parameters involved in
previous equation 2.20: sample representative resolution (Θz), damping (ϕz) and offset
(ψz), and their constraints:

(2.21) (2.22) (2.23)

If lossless compression is used, ψz is directly fixed to 0. Besides, as one can appreciate
from equations 2.19 and 2.20 show, setting ϕz=ψz=0 causes that s′′z (t) = s

′
z(t).

2.3.5 Prediction

The module Prediction receives the clipped quantizer bin center s′z(t) and sample rep-
resentative s′′z (t) values from the Sample Representative, and the original sample sz(t)
value from the external sensor, and it computes the high-resolution predicted sample s̆z(t)
value for the Sample Representative, and the predicted sample ŝz(t) value, used by all the
other modules.

The user can choose to execute this algorithm in either reduced or full prediction mode,
except when the image has a width of one (NX = 1), when only the reduced prediction
mode shall be used.

26

Under both prediction modes, module Prediction makes use of the central local differ-
ences, only from the parameter preceding spectral bands P ∗

z (see equation 2.32). But for
full prediction mode, it additionally uses the three directional (neighbour) local differences
as well (see sections 2.3.5.2, 2.3.5.3 and 2.3.5.7).

Figure 2.6 illustrates the typical neighbourhood in the module Prediction:

Figure 2.6: Typical prediction neighbourhood [10]

Prediction can be performed causally in a single pass through the image, broken down
into the following sorted out steps:

1. Inside each spectral band, a local sum σz(t) of neighboring sample representative
s
′′
z (t) values are computed (see section 2.3.5.1), and these two signals are then
taken to compute the central plus directional, if configured so, local difference dz(t)
values (see section 2.3.5.2).

2. The clipped quantizer bin center s′z(t) and double-resolution predicted sample s̃z(t)
values are used to produce the double-resolution prediction error ez(t) value (see
section 2.3.5.6), and together with the weight update scaling exponent p(t) (see
section 2.3.5.5), so the central (plus directional, if configured so) weight ωz values
are computed (see section 2.3.5.4).

27

3. The central and directional local difference dz(t) and weight ωz values are put to-
gether into vectors Uz(t) and Wz(t) (see sections 2.3.5.3 and 2.3.5.7, respectively)
to compute the predicted central local difference d̂z(t) value, as described on section
2.3.5.8.

4. With the resulting predicted central local difference d̂z(t) value and the previous
local sum σz(t) value, the high-resolution predicted sample s̆z(t) value is computed
(see section 2.3.5.9), being one of the outputs of the module Prediction.

5. The high-resolution predicted sample s̆z(t) value is, by means of the previous original
sample sz(t) value, upgraded to the double-resolution predicted sample s̃z(t) value
(see section 2.3.5.10), the second output of the module Prediction.

6. Finally, the previous double-resolution predicted sample s̃z(t) value is upgraded once
more to compute the final predicted sample ŝz(t) value (see section 2.3.5.11), being
this one the third and last output of the module Prediction.

It is quite interesting to highlight steps 2 & 5, where the double-resolution predicted
sample s̃z(t) value turns out to be a backwards-dependency in order to update the central
and directional weight ωz values. That means the module Prediction, in the same way as
the Predictor block, has a close-loop design.

2.3.5.1 Local Sum

The local sum σz(t) is a weighted sum of some previous sample representative s′′z (t) values
in spectral band z that are neighbours to the current one.
More specifically, such required neighbour samples are: North-West (NW), North (N),

North-East (NE) andWest (N). Figure 2.7 shows a graphical representation of the current
(central) and these neighbour samples:

Figure 2.7: Central and neighbour samples representation

There are 4 different possibilities to compute this sum, each one of them with specific
neighbour dependencies, and it is configurable by the user:

28

• Wide neighbour-oriented local sum option (equation 2.24):

(2.24)

• Narrow neighbour-oriented local sum option (equation 2.25):

(2.25)

• Wide column-oriented local sum option (equation 2.26):

(2.26)

• Narrow column-oriented local sum option (equation 2.27):

(2.27)

For a better understanding of the equations listed above, Figure 2.8 shows the neighbour
sample representative s′′z (t) values dependencies, depending on the selected sum option
(only applicable when both X and Y coordinates are bigger than 0):

29

Figure 2.8: Local sum options graphical representation

The use of reduced prediction mode in combination with column-oriented local sums
offers smaller compressed image data volumes for raw (uncalibrated) input images from
push-broom imagers that exhibit significant along-track streaking artifacts [10, p.27].
On the other side, the use of full prediction mode in combination with neighbor-oriented
local sums offers smaller compressed image data volumes for whisk-broom imagers, frame
imagers, and calibrated imagery [10, p.27].

Nevertheless, there are a couple of constraints when selecting one of these 4 possible
operations:

• If the image has a width of 1 (NX = 1), which also involves using reduced prediction
mode, column-oriented (either wide or narrow) local sums should be used.

• Under full prediction mode, neighbour-oriented (either wide or narrow) local sums
should be used.

Narrow local sums are defined to eliminate the dependency on sample representative
s
′′
z,y,x−1 value when calculating the local sum σz(t) value, which may facilitate pipelining
in a hardware implementation [10, p.26].

2.3.5.2 Local Differences

The local sum σz(t) together with the current and neighbour sample representative s′′z (t)
values are used to produce the central and directional local difference dz(t) values.
Hereafter, only directions North (N), West (W) and North-West (NW) are required.

The central local difference dz(t) value is the difference between local sum σz(t) and
four times the current sample representative s′′z (t) values, as equation 2.28 shows 1.

(2.28)

1Only applicable when t > 0.

30

The three directional local differences dNz (t), dWz (t) and dNWz (t) values are the dif-
ferences between local sum σz(t) and four times the corresponding neighbour sample
representative s′′z (t) values, just as equations 2.29, 2.30 and 2.31 show 1:

(2.29)

(2.30)

(2.31)

The graphical representation from Figure 2.7 helps understand the location of all neigh-
bour sample representative s′′z (t) values.

As already said on section 2.3.5, the central local difference dz(t) value is always used,
regardless of the system configuration, but the directional local difference dNz (t), dWz (t)
and dNWz (t) values are only used under full prediction mode.

2.3.5.3 Local Differences Vector

The local difference vector Uz(t) is composed of the central local difference dz(t) values
from the preceding spectral bands P ∗

z and directional local differences dNz (t), dWz (t) and
dNWz (t) values.
The parameter P ∗

z directly depends on the the user-specified parameter number of
prediction bands P (range 0 ≤ P ≤ 15), as the equation 2.32 defines:

(2.32)

When working under reduced prediction mode, the local difference vector Uz(t) includes
only the central local difference dz(t) values, as equation 2.33 indicates:

(2.33)

31

But if working under full prediction mode, the local difference vector Uz(t) will also
include the directional local differences dNz (t), dWz (t) and dNWz (t) values, placed at the
beginning of it, as equation 2.34 indicates:

(2.34)

2.3.5.4 Weight values

Each central/directional local difference dz(t) value from the local difference vector Uz(t)
is multiplied by a weight ωz value, and both operands are adaptively updated following
the calculation of each predicted sample ŝz(t) value.

All weight ωz values are signed, whose resolution is within the range Ω + 3 bits, being
this user-specified parameter constrained as equation 2.35 shows:

(2.35)

Of course, an increase in the number of bits for representing the weight ωz values also
provides an increased resolution in the Prediction calculation.

This resolution means that each weight ωz value has a minimum and maximum possible
value ωmin and ωmax values, respectively, shown on equation 2.36:

(2.36)

In order to initialize the central and directional weight ωz values, the user can decide
by either default or custom weight initialization, and such option shall be applied on each
spectral band z.

For a default weight initialization, the central weight ωz values from the preceding
spectral bands P ∗

z are calculated according to equation 2.37:

(2.37)

32

Moreover, in case full prediction mode is selected, the directional weight ωNz (t), ωWz (t)
and ωNWz (t) values are set to 0, as equation 2.38 states:

(2.38)

On the other hand, in case custom weight initialization is chosen, and regardless of
the selected prediction mode, both the central weight ωz values from the preceding spec-
tral bands P ∗

z and directional weight ωNz (t), ωWz (t) and ωNWz (t) values are calculated
according to the equation 2.39:

(2.39)

The symbol 1 denotes a vector of all ‘ones’, and equation 2.40 indicates the constraints
of the user-specified parameter weight initialization resolution Q (in bits):

(2.40)

After (any of) these initializations, the weight ωz values must be updated every clock
cycle. Thus, they are computed following equation 2.41 for central weight ωz values, and
equations for 2.42, 2.43 and 2.44 for directional weight ωNz (t), ωWz (t) and ωNWz (t) values:

(2.41)

(2.42)

(2.43)

(2.44)

Equations 2.45 and 2.46 show the constraints of two user-specified parameters used
above: the Intra-band exponent offset ς(i)z and Inter-band weight exponent offset ς∗z .
Be aware that the second parameter is just a value, but the first one is an array, with

a different value per spectral band z :

(2.45) (2.46)

Last but not least, see sections 2.3.5.5 and 2.3.5.6 for the computation of weight update
scaling exponent p(t) and double-resolution prediction error ez(t) values, respectively, also
used in the previous equations.

33

2.3.5.5 Weight Update Scaling Exponent

The weight update scaling exponent p(t) value is computed simply by using the image
coordinates (t component) and some user-specified parameters defined below, as equation
2.47 shows:

(2.47)

A small value of p(t) produces a big weight increment, giving a faster adaptation to
source statistics as a result, but worse steady-state compression performance [10, p.37].

The user-specified parameters weight update scaling exponent initial vmin, weight update
scaling exponent final vmax and weight update scaling exponent change interval tinc are
constrained according to equations 2.48 and 2.49:

(2.48) (2.49)

These parameters define the ratio at which the weight ωz values adapt to the image
data statistics.

2.3.5.6 Double-Resolution Prediction Error

The double-resolution prediction error ez(t) value is computed as the difference between
two times the clipped quantizer bin center s′z(t) and double-resolution predicted sample
s̃z(t) values, as equation 2.50 shows:

(2.50)

2.3.5.7 Weights Vector

The weights vector Wz(t) is made of the central weight ωz values from the preceding
spectral bands P ∗

z and directional weight ωNz (t), ωWz (t) and ωNWz (t) values.

When working under reduced prediction mode, the weights vector Wz(t) includes only
the central weight ωz(t) values, as equation 2.51 indicates:

(2.51)

34

But if working under full prediction mode, the weights vector Wz(t) will also include
the directional weights ωNz (t), ωWz (t) and ωNWz (t) values, located at the beginning of it,
as equation 2.52 indicates:

(2.52)

2.3.5.8 Predicted Central Local Difference

The predicted central local difference d̂z(t) value is the inner product between the local
difference vector Uz(t) and weight vector Wz(t). In other words, each central/directional
local difference sample d̂z(t) component is multiplied by the corresponding central/direc-
tional weight ωz component, and then all of them are summed.

The result is just one single value per vectors multiplication, as equation 2.53 shows:

(2.53)

This equation is always applied, except when being under reduced prediction mode and
working with the first spectral band (z = 0). In such case: d̂z(t) = 0.

2.3.5.9 High-Resolution Predicted Sample

The high-resolution predicted sample s̆z(t) value is computed with the predicted central
local difference d̂z(t) and local sum σz(t) values, as equation 2.54 states:

(2.54)

where the user-specified parameter register size R is constrained as equation 2.55 shows:

(2.55)

Note that increasing the register size R reduces the chance of an overflow during the
high-resolution predicted sample s̆z(t) value computation [10, p.33].

35

2.3.5.10 Double-Resolution Predicted Sample

The double-resolution predicted sample s̃z(t) value is computed by means of the original
sample sz(t) from the previous spectral band z and high-resolution predicted sample s̆z(t)
values, as equation 2.56 states:

(2.56)

2.3.5.11 Predicted Sample

Finally, the double-resolution predicted sample s̃z(t) value is upgraded with a simple
operation to produce the predicted sample ŝz(t), just as equation 2.57 indicates:

(2.57)

36

2.4 Encoder block

The Encoder block losslessly encodes an input image, by compressing the incoming
mapped quantizer index δz(t) values from the Predictor block, along with some input
image and compression parameters on the top of it as a header.

The major block on the right side from Figure 2.5 is the block diagram of the Encoder
block, and it is composed of 2 major components or sub-blocks: the Encoder Header and
the Encoder Body.

A compressed image consists of a variable-length header followed by a variable-length
body. Its simple structure is defined on Figure 2.9:

Figure 2.9: Compressed image structure

The variable-length Encoder Header (see section 2.4.1) encodes the image and com-
pression parameters. These entropy coder parameters are adaptively adjusted along the
way to adapt to changes in the statistics of the mapped quantizer index δz(t) values.

After that, the variable-length Encoder Body (see section 2.4.2) losslessly encodes
mapped quantizer index δz(t) values. Additionally, if the Periodic Error Limit Updating
option is enabled (see section 2.3.2.1.1), then Error limit values are periodically encoded
as part of the body too. In such case, the samples input order BIP/BIL (because this
option is not allowed under BSQ) is updated as shown in Figure 2.12.
For the encoding process, the user can choose to perform it using the Sample-Adaptive

Entropy Coder (see section 2.4.2.1), Hybrid Entropy Coder (see section 2.4.2.2) or Block-
Adaptive Entropy Coder (which could not be added for the present work).

The Sample-Adaptive Entropy Coder and Block-Adaptive Entropy Coder approaches
are inherited from Issue 1 [11], and so, they are effective for lossless compression.
Nevertheless, the feature of near-lossless compression, introduced in Issue 2 [10], tends

to yieldmapped quantizer index δz(t) values having a lower-entropy distribution. For such
configuration, the new Hybrid Entropy Coder approach tends to provide more effective
encoding for lower-entropy distributions [10, p.39].

With the data successfully encoded, the output signal width is the user-specified pa-
rameter output word size B, measured in bytes, constrained according to equation 2.58:

(2.58)

If necessary, 0-padding bits should be included in the body to ensure that the size of
the output compressed image is the proper one.

37

2.4.1 Encoder Header

The header of a compressed image always have the same structure (but different config-
uration), and it is sorted out as follows:

1. Image Metadata (see section 2.4.1.1).

2. Predictor Metadata (see section 2.4.1.2).

3. Entropy Coder Metadata (see section 2.4.1.3).

Table 2.1: Encoder Header top structure

Starting with Table 2.1, all the header metadata must be structured with the same
order as the tables below list their different fields.

The size of each header part depends on the selected compression options, and it is
not necessarily a multiple of the output word size B, but in case fill bits are required at
any place, 0-padding bits should be used.

2.4.1.1 Image Metadata

Table 2.2 shows the top structure of the Image Metadata:

Table 2.2: Image Metadata top

It can be seen that this metadata is divided into 2 groups:

1. Essential: General information about the incoming image, with a fixed size of 12-
bytes. Its structure is depicted on Table 2.3.

2. Supplementary Information Tables: Optional table(s) that provide(s) auxiliary in-
formation of the image, and with a variable size, depending on the user configura-
tion (see section 2.4.1.1.1).

38

Table 2.3: Image Metadata - Essential part

39

2.4.1.1.1 Supplementary Information Tables .

The CCSDS-123 algorithm allows to define up to 15 (user-specified parameter τ) Sup-
plementary Information Tables in order to encode them as part of the Image Metadata,
offering auxiliary image information to an end user.
The user must configure each table with a specific purpose, structure and data type.

For the table purpose, the possibilities are listed on Table 2.4:

Table 2.4: Supplementary Information Tables purposes

Regarding the table structure, it can be:

• Zero-dimensional table, so just a single element.

• One-dimensional table, having NZ elements (one for each spectral band z).

• Two-dimensional table, having NZ ∗NX elements (one for each [z, x] component).

• Two-dimensional table, having NY ∗NX elements (one for each [y, x] component).

Finally for the table data type, expected possibilities are:

• Unsigned value i, with the configurable range defined on equation 2.59:

• Signed value i, with the configurable range defined on equation 2.60:

(2.59) (2.60)

• Float values composed of sign bit b, α and significand j, with a configurable range
defined on equation 2.61 when α = 0, or on equation 2.62 when α > 0:

(2.61) (2.62)

Equations 2.63 to 2.69 show the constraints for user-specified parameters table bit depth
DI , significand bit depth DF , exponent bit depth DE , exponent bias β, sign bit b, exponent
α and significand j :

(2.63) (2.64) (2.65)

(2.66) (2.67) (2.68) (2.69)

40

With all Supplementary Information Tables already defined, Table 2.5 shows how each
one of them are integrated within the Image Metadata:

Table 2.5: Supplementary Information Table Structure

The Table Data Subblock depends on the user configuration, so its size is variable:

• If the table data type is signed or unsigned:

1. User-specified parameter table bit depth DI encoded modulo 25 (so 5 bits).

2. All elements of each table encoded, with DI bits each, always in increasing
index order (nested loops for the two-dimensional cases).

3. If necessary, 0-bits padding to reach the next word boundary.

• If the table data type is float:

1. User-specified parameter significand bit depth DF encoded modulo 25 (5 bits).

2. User-specified parameter exponent bit depth DE encoded modulo 23 (3 bits).

3. User-specified parameter exponent bias β encoded modulo 2DE (DE bits).

4. All elements of each table encoded, with 1 + DF + DE bits each, always in
increasing index order (nested loops for the two-dimensional cases).

5. For every single element encoded, its associated parameters sign bit b (1 bit),
exponent α (DE bits) and significand j (DF bits) are encoded too.

6. If necessary, 0-bits padding to reach the next word boundary.

41

2.4.1.2 Predictor Metadata

Table 2.6 shows the top structure of the Predictor Metadata:

Table 2.6: Predictor Metadata top

The first group of the Predictor Metadata is the Primary part, which is mandatory
and it has a fixed size of 5 bytes. Tables 2.7 and 2.8 show its structure:

Table 2.7: Predictor Metadata - Primary part (1/2)

42

Table 2.8: Predictor Metadata - Primary part (2/2)

The next group is the Weight Tables part, which is divided into 2 sub-groups, both of
them optional and with a variable size, just as Table 2.9 shows:

Table 2.9: Predictor Metadata - Weight tables part

The sub-group Weight Initialization Table is only instantiated when Weight Initializa-
tion Table Flag is asserted. If so, it consists on encoding each component from the custom
weight initialization vector Λz (see equation 2.39) as two’s component signed value, and
using Q-bits for each, nesting loops in increasing index order as Figure 2.10 shows.

The sub-group Weight Exponent Offset Table is only instantiated when Weight Expo-
nent Offset Table Flag is asserted. If so, it consists on encoding each component from
the Intra-band weight exponent offsets ς(i)z and Inter-band weight exponent offsets ς∗z (see
equations 2.45 and 2.46) as two’s component signed value, and using 4-bits for each,
nesting loops in increasing index order as Figure 2.11 shows.

Figure 2.10: Weight Init. pseudo-code Figure 2.11: Weight Exp. Off. pseudo-code

43

Another group is the Quantization part, divided into 3 sub-groups. All of them are
conditional, and even though the first chunk has a fixed size of 1 byte, the others have
variable size. Table 2.10 shows its structure:

Table 2.10: Predictor Metadata - Quantization part

The sub-group Error Limit Update Period must be integrated only if the Periodic
Error Limit Updating option is enabled (see section 2.3.2.1.1). Its structure is depicted
on Table 2.11, with a fixed size of 1 byte:

Table 2.11: Quantization part - Error Limit Update Period sub-part

The sub-group Absolute Error Limit must be integrated only in case the Absolute Error
Limit option is enable for compression (see section 2.3.2.1). Its structure is shown on
Table 2.12:

Table 2.12: Quantization part - Absolute Error Limit sub-part

44

The field Absolute Error Limit Values Subblock is included only if the Periodic Error
Limit Updating option is disabled. Its structure is (see section 2.3.2.1):

• If band-independent configured, it consists of user-specified parameter absolute error
limit constant A∗ encoded with DA-bits.

• If band-dependent configured, it consists of the sequence of az values, in order of
increasing band index z, each encoded with DA-bits.

If necessary, 0-padding bits shall be appended until reaching the next word boundary.

The sub-group Relative Error Limit must be integrated only in case the Relative Error
Limit option is enable for compression (see section 2.3.2.1). Its structure is shown on
Table 2.13:

Table 2.13: Quantization part - Relative Error Limit sub-part

The field Relative Error Limit Values Subblock is included only if the Periodic Error
Limit Updating option is disabled. Its structure is (see section 2.3.2.1):

• If band-independent configured, it consists of user-specified parameter relative error
limit constant R∗ encoded with DR-bits.

• If band-dependent configured, it consists of the sequence of rz values, in order of
increasing band index z, each encoded with DR-bits.

If necessary, 0-padding bits shall be appended until reaching the next word boundary.

Last group is the Sample Representative part, with no sub-divisions on it. Table 2.14
depicts its structure:

45

Table 2.14: Predictor Metadata - Sample Representative part

The field Damping Table Subblock must be included only if the Damping Table Flag
is asserted. In such case, it consists of the sequence of damping ϕz values, in order of
increasing band index z, with Θz-bits each (see section 2.3.4.2).

The field Offset Table Subblock must be included only if the Offset Table Flag is
asserted. In such case, it consists of the sequence of offset ψz values, in order of increasing
band index z, with Θz-bits each (see section 2.3.4.2).

46

2.4.1.3 Encoder Metadata

The Encoder Metadata just consists on adding the configuration of the selected Entropy
Coder, and that means data from Table 2.15 is appended in case the Sample-Adaptive
Entropy Coder has been enabled, or data from Table 2.16 is appended in case the Hybrid
Entropy Coder has been enabled 2.

Table 2.15: Sample-Adaptive Entropy Coder Metadata Structure

Table 2.16: Hybrid Entropy Coder Metadata Structure

Both encoder metadata options have a static number of data bits to include, except
the Accumulator Initialization Table from the Sample-Adaptive Entropy Coder, which is
conditional to the Accumulator Initialization Table Flag. If such flag is asserted, this field
is added into the metadata, and it consists of the concatenated sequence of k′′z values
(see equation 2.74), each one of them encoded as 4-bits unsigned.

2Block-Adaptive Entropy Coder metadata table not included here, because it was not implemented.

47

2.4.2 Encoder Body

As mentioned on section 2.4, the module Encoder Body is in charge of losslessly encoding
the incoming mapped quantizer index δz(t) values, together with the Error limit values,
in case the Periodic Error Limit Updating option is enabled.
The encoding process is performed by using either the Sample-Adaptive Entropy Coder

(see section 2.4.2.1) or Hybrid Entropy Coder (see section 2.4.2.2) 3.

The image samples come into the module as shown in Figures 2.2 and 2.3, but in case
the Periodic Error Limit Updating option is enabled, something that is only possible
under BI input order (see section 2.3.2.1.1), Figure 2.3 is upgraded into Figure 2.12:

Figure 2.12: BI input order pseudo-code with error limit values

The upgrade consists in, apart from the mapped quantizer index δz(t) values, providing
also new absolute and/or relative error limit value(s) once every U frames (y coordinate),
as equation 2.70 details:

(2.70)

Regardless of the selected entropy coder, each absolute and relative error limit value
is encoded as DA-bit and DR-bit unsigned respectively, remaining the selection statistics
(see sections 2.4.2.1.1 and 2.4.2.2.1) unaffected while these are processed.

3Block-Adaptive Entropy Coder is not mentioned here, because it was not implemented.

48

2.4.2.1 Sample-Adaptive Entropy Coder

The module Sample-Adaptive Entropy Coder encodes each incoming mapped quantizer
index δz(t) and Error Limit Values using a variable-length binary codeword Rkz(t)(j)
from a family of codes (see section 2.4.2.1.2).

The chosen member of this family is adaptively selected based on statistics that are
updated after each encoding, keeping one for every spectral band (see section 2.4.2.1.1).

2.4.2.1.1 Sample-Adaptive Statistic .

The module Sample-Adaptive Statistics receives both the mapped quantizer index δz(t)
and Error Limit Values and it computes the accumulator Σz(t) and counter Γ(t) values.
They are adaptively updated along the way, and its ratio Σz(t)/Γ(t) is an estimation
of the mean mapped quantizer index δz(t) value in the current spectral band, which
determines the variable-length codeword to use next.

Equations 2.71 and 2.72 define the initial values of the accumulator Σz(t) and counter
Γ(t), respectively:

(2.71) (2.72)

The user-specified parameters initial count exponent γ0 and accumulator initialization
table k′z from above are constrained here in equations 2.73 and 2.74:

(2.73)

(2.74)

Moreover, the user-specified parameter Accumulator Initialization Constant K is used
as the initial value of k′′z , ensuring this initial value for the parameter variable-length
codeword kz(t).

After initialization, and for t > 1, equations 2.75 and 2.76 define the next values of
the accumulator Σz(t) and counter Γ(t), rescaling based on condition:

(2.75)

49

(2.76)

Both equations from above show that the accumulator Σz(t) and counter Γ(t) re-
scaling is controlled by the user-specified parameter rescaling counter size γ∗, constrained
according to equation 2.77:

(2.77)

2.4.2.1.2 Sample-Adaptive GPO2 Coder .

The module Sample-Adaptive GPO2 Coder generates length-limited binary codewords
Rkz(t)(j) by means of the mapped quantizer index δz(t), Error Limit Values, accumulator
Σz(t) and counter Γ(t) values.

This codeword is a length-limited Golomb-Power-Of-2 (GPO2) codeword, denoted
Rkz(t)(j) and being j the mapped quantizer index δz(t). It is defined as follows:

• If bj/2kv(t)c < Umax, then Rkz(t)(j) is bj/2kv(t)c ’zeros’, followed by a ‘one’, and
finally the kv(t) least significant bits of the j value.

• Otherwise, Rkz(t)(j) consists of Umax ‘zeros’, followed by the D-bits of j value.

The user-specified parameter unary length limit Umax is limited as equation 2.78 says:

(2.78)

When t > 0, the output codeword is Rkz(t)(δz(t)) as shown above, but for the first
mapped quantizer index in each spectral band z (t = 0→ δz(0)), the output is uncoded.

The parameter variable-length code kz(t) is computed by using the accumulator Σz(t)
and counter Γ(t) values within equation 2.79, and constrained according to equation 2.80:

(2.79)

(2.80)

In case the very last codeword in the compressed image does not fully reach the output
word B boundary, 0-padding bits shall be appended as needed.

50

2.4.2.2 Hybrid Entropy Coder

Similar to the Sample-Adaptive Entropy Coder, the module Hybrid Entropy Coder en-
codes the incoming mapped quantizer index δz(t) with a variable-length family of codes,
but in this case there are more possibilities.
The codewords can be either ’high-entropy’, equivalent to those used by the Sample-

Adaptive Entropy Coder (see section 2.4.2.2.2), or ’low-entropy’, additional 16 variable-
to-variable length codewords (see section 2.4.2.2.3).

When a ’high-entropy’ code is selected, it immediately produces an output codeword to
the bitstream, but if ’low-entropy’ code is selected, it waits until enough data has arrived
to determine the next output codeword. This possibility of encoding multiple mapped
quantizer index δz(t) values with just a single output codeword, makes ’low-entropy’ code
reach lower compressed datarates compared to ’high-entropy’ code [10, p.39].

Like the Sample-Adaptive Entropy Coder again, the Hybrid Entropy Coder also uses
adaptive code selection statistics in order to assign each mapped quantizer index δz(t) to
either the ‘high-entropy’ or ‘low-entropy’ coding method (see section 2.4.2.2.1).

Once compression is finished, the image body ends with a image ‘tail’, which encodes
the final state of each ’low-entropy’ flush code and the final high-resolution accumulator
Σ̃z(t) value for each spectral band (see section 2.4.2.2.4).

2.4.2.2.1 Hybrid Statistic .

The module Hybrid Statistics receives both the mapped quantizer index δz(t) and Er-
ror Limit Values and computes the high-resolution accumulator Σ̃z(t) and counter Γ(t)
values. They are adaptively updated along the way, and its ratio Σ̃z(t)/Γ(t) is an es-
timation of the mean mapped quantizer index δz(t) value in the current spectral band,
which determines how δz(t) is encoded next.
Equation 2.81 defines the initial value of the counter Γ(t):

(2.81)

Regarding the high-resolution accumulator Σ̃z(t), its initial value should be within the
range 0 ≤ Σ̃z(0) < 2D+γ0 , but there is no specific initial value for it, unless there is
already an estimation of δz(t) (coming from preceding compressed images), in which case
equation 2.82 defines a reasonable starting point:

(2.82)

After initialization, and for t ≥ 1, equations 2.83 and 2.84 define the updated values
of the high-resolution accumulator Σ̃z(t) and counter Γ(t):

(2.83)

51

(2.84)

When Γ(t− 1) = 2γ
∗ − 1 (or code statistics are rescaled, as seen on equations 2.83 and

2.84), the least-significant bit of Σ̃z(t − 1) is encoded in the bitstream, right before the
output codeword defined in sections 2.4.2.2.2 and 2.4.2.2.3. Such bit allows the decoder
to reconstruct the sequence of high-resolution accumulator Σ̃z(t) values [10, p.63].

The first mapped quantizer index in each spectral band z (t = 0 → δz(0)) is always
uncoded, but when t > 0, the current high-resolution accumulator Σ̃z(t) and counter Γ(t)
values are applied into the following equation 2.85:

(2.85)

If this mathematical condition holds true, then δz(t) is a ‘high-entropy’ mapped quan-
tizer index and it is encoded according to section 2.4.2.2.2. Otherwise, or when D = 2
too, δz(t) is a ‘low-entropy’ mapped quantizer index and it is encoded according to section
2.4.2.2.3.

2.4.2.2.2 Hybrid High-Entropy Coder .

Quite similar to Sample-Adaptive GPO2 Coder, the module Hybrid High-Entropy Coder
generates length-limited binary codewords by means of the mapped quantizer index δz(t),
Error Limit Values, high-resolution accumulator Σ̃z(t) and counter Γ(t) values.

This codeword is a reversed length-limited Golomb-Power-Of-2 (GPO2) codeword,
denoted R′kz(t)(j) and being j the mapped quantizer index δz(t). It is defined as follows:

• If bj/2kv(t)c < Umax, then R
′

kz(t)
(j) is the kv(t) least significant bits of the j value,

followed by a ‘one’, and finally bj/2kv(t)c ’zeros’.

• Otherwise, R′kz(t)(j) consists of the D-bits of j value, followed by Umax ‘zeros’.

The parameter variable-length code kz(t) is computed by using the high-resolution ac-
cumulator Σ̃z(t) and counter Γ(t) values within equation 2.86, and constrained according
to equation 2.87:

(2.86)

(2.87)

In case the very last codeword in the compressed image does not fully reach the output
word B boundary, 0-padding bits shall be appended as needed.

52

2.4.2.2.3 Hybrid Low-Entropy Coder .

The module Hybrid Low-Entropy Coder generates one of 16 variable-to-variable length
codewords by means of the mapped quantizer index δz(t), Error Limit Values, high-
resolution accumulator Σ̃z(t) and counter Γ(t) values.
A single low-entropy codeword can encode multiple mapped quantizer index δz(t) val-

ues, allowing lower compressed data rates compared to the high-entropy codes.

Each low-entropy codeword consists of:

• A threshold value Ti and input symbol limit Li, given on Table 2.17.

• 16 tables with a prefix-free set of non-binary variable-length input codewords, with
a mapping onto a set of variable-length binary output codewords [10, p.78-94].

• 16 flush tables that give a mapping from the set of all proper prefixes of input
codewords onto a set of output flush words [10, p.78-94].

Table 2.17: Low-Entropy Code Input Symbol Limit and Threshold

If a mapped quantizer index δz(t) value is already defined to be ’low-entropy’ (see
equation 2.85), then it shall be encoded using the ’low-entropy’ codeword with the largest
code index i satisfying the following equation 2.88:

(2.88)

53

To start encoding, each ’low-entropy’ code has an active prefix, which is a sequence of
input symbols, and initially it is the null (empty) sequence.
Using the previous code index i and its corresponding input symbol limit Li (see Table

2.17), equation 2.89 defines every new incoming input symbol ιz(t):

(2.89)

Then, the active prefix for the ith low-entropy code is updated by appending the new
input symbol ιz(t) into the active prefix. At this moment, if the active prefix matches
a complete input codeword from the ith table [10, p.78-94], the corresponding output
codeword shall be appended to the bitstream, and the active prefix shall be set back to
the null sequence one more time.

Moreover, in the specific case that ιz(t) = X, the residual codeword R′0(δz(t)−Li− 1)
will be appended to the bitstream as well.

2.4.2.2.4 Hybrid Compressed Image Tail .

Only when the compression of the image with the Hybrid Entropy Coder has completely
finished, then the module Hybrid Compressed Image Tail attaches an image tail at its
very end.

This image tail consists of:

• 16 flush codewords, in order of increasing code index i, generated from the 16 re-
maining active prefixes of the ’low-entropy’ code.

• The final high-resolution accumulator Σ̃z(t) value from every spectral band z (so NZ

values), in order of increasing spectral band index, with 2 +D + γ∗ bits for each.

• A single ’1’ bit at the end, to let the decoder identify the padding bits added after
to fill the output word size B.

• 0-padding bits are appended as needed to reach the next output word boundary.

2.4.3 Output packets generation

Once the input is successfully encoded, [10] says nothing about how to output it, but
only that it should be put into packets, whose size is a number of bytes controlled by the
user-specified parameter output word size B.

Due to the fact that all entropy coders output a variable-length payload, a complex
logic is expected to handle not only this packing requirement, but also to make it flexible
enough to accept all possible configuration permutations.

This topic is addressed on section 3.9.3.

54

2.5 Differences between Issues 1 and 2

So far only the newer Issue 2 has been described, which is an update of the Issue 1, but
not the Issue 1 itself. To have a graphical idea of their structural differences, Figure 2.5
is upgraded into Figure 2.13:

Figure 2.13: Structural differences between Issue 1 and Issue 2 [29, p.3]

White boxes are logic that remain unchanged from Issue 1 to Issue 2, blue boxes are
new logic introduced into Issue 2, and green boxes are logic that were upgraded from
Issue 1 to Issue 2.

Overall, the Issue 2 upgrades and extends the Issue 1 to provide not only an effective
method for lossless (no error in reconstruction) compression as Issue 1 does, but also near-
lossless (a controlled maximum error in reconstruction) compression of hyper-spectral
images [11][10].

Therefore, as Figure 2.13 shows, this near-lossless capability is possible by means of
the incorporation of a close-loop quantization scheme in the Predictor block, adding
the modules Quantizer and Sample Representative. Moreover, the module Prediction is
updated to work with the new sample representative s′′z (t) signal.

On the contrary, there are no structural modifications in the Encoder part. Modules
Sample-Adaptive Entropy Coder and Block-Adaptive Entropy Coder remain untouched,
but instead, a new entropy coding method is included: the Hybrid Entropy Coder, which
has been designed in order to provide a better compression rate of the low-entropy data
under near-lossless compression [10, p.17].
Anyway, this addition also demands an update of the Encoder Header [10, p.54].

The logic to pack and output the encoded data (see section 2.4.3) does not change
either, as regardless of the chosen entropy coder, all of them output a variable-length
signal that must be packed into chunks according to the user configuration.

55

Fortunately, Issue 2 has been designed to ensure backwards compatibility with Issue
1. In fact, Issue 1 becomes now a restricted case of the Issue 2 [10], in other words,
Issue 2 can be configured to be fully compliant with Issue 1.

This statement means:

• An image compressed with Issue 1 can be decompressed with Issue 2, only if the
second one uses the Issue 1 configuration.

• An image compressed with Issue 2 cannot be decompressed with Issue 1, unless
the first one uses the Issue 1 configuration.

In terms of the source code structure, the Issue 1 configuration applied on the Issue 2
means that the Predictor block will work using an open-loop equivalent (being s′′z (t) =
sz(t)) and the Encoder block shall simply not use the Hybrid Entropy Coder.

Table 2.18 enumerates all constraints to impose on Issue 2 implementation to produce
a compressor compliant with Issue 1 :

Section Constraint
2.1 Limit dynamic range to D ≤ 16 bits.

2.4.1.1.1 Do not use supplementary information tables (τ = 0).
2.3.5.1 Do not use narrow local sums.
2.3.2.1 Set the fidelity control method to be lossless.
2.3.4.2 Parameters ϕz = ψz = 0 for all z (so always s′′z (t) = sz(t)).
2.3.4 Parameter Θ = 0 (so Sample Repr. subpart on Pred. header not added).
2.3.5.4 All weight exponent offsets ζ(i)z = ζ∗z = 0.
2.3.5.4 Weight Exp. Offset Flag = ’0’ (so Weight Exp. Offset Table not added).
2.4.2.1.1 If Sample-Adaptive Entropy Coder used, parameter γ∗ should not be >9.
2.4.2.2 Do not use the new Hybrid Entropy Coder.

Table 2.18: Constraints to turn Issue 2 into Issue 1 [10]

56

2.6 VUnit framework

VUnit is an open-source unit-testing framework for VHDL and SystemVerilog. It offers
the capability to perform continuous and automated testing of HDL code. A biggest point
of VUnit is its complementation (not replacement) with traditional testing methodologies
by supporting a “test early and often” approach through automation [6].

It supports automatic discovery of test-benches and compilation order to reduce the
overhead of testing, and it adds some interesting libraries for common verification tasks.
Moreover, it improves the speed of development by supporting incremental compilation
and allowing to split up big test-benches into smaller independent tests. It also increases
the project’s quality by enabling large regression suites to be run on a continuous inte-
gration server too [6].

VUnit is invoked by a user-defined Python script. This file serves as entry point for
compiling and running all tests. The framework also provides automatic scanning for all
test-benches, automatic determination of compilation order and incremental recompila-
tion of modified sources [4].

The top-level Python script, by default named run.py, defines the location for each
HDL source file in the project, their associated libraries, external (pre-compiled) libraries
and other settings that could be required to compile or simulate the source files [4].

VUnit offers different libraries to simplify the elaboration of test-benches and exchange
of data between the DUT and other modules. The most important ones are:

• Run library [3]: Main library of the framework, which allows to execute a VU-
nit testbench (main process called VHDL test runner) together with the Python-
based test runner. It includes a bunch of procedures to start and end such process
(test_runner_setup and test_runner_cleanup, respectively), to define the different
test cases (run) and establish a timeout (test_runner_watchdog), among others.

• Check library [1]: A library that provides different assertions for VHDL in form of
check procedures and functions, quite similar to the VHDL assert statement.

• Communication library [2]: It provides a high-level asynchronous communication
mechanism based on a mathematical model, where actors perform all computation
in concurrency with the rest of the system. These actors communicate each other
in real time by sending/receiving/replying messages.

• Verification Components library [5]: A collection of entities that implement Rx/Tx
standard communication interfaces (UART/AXI/I2C...) to interact with the DUT,
and which are controlled from an external process by VUnit messages (back to
Communication library).

57

2.7 Logic Synthesis

The Synthesis process turns the RTL design (an abstraction of the desired circuit be-
haviour) into a design made of logic gates and flip flops, totally independent from the
hardware target device where the design will run [35].

For a maximum optimization of the Synthesis process (which means avoiding sub-
design isolation), two main options must be taken into account:

1. Parameter ’flatten_hierarchy’ set to ’rebuilt’: It makes to flat the design, perform
Synthesis and rebuild the original hierarchy again.

2. Disable the Synthesis Out-Of-Context (OOC): This option configures the Synthesis
with a bottom-up approach, transforming all different Xilinx and CCSDS-123 IPs
in an independent way, to put them together at the end.

These two options are enabled by default on the Xilinx Vivado IDE, so the Synthesis
OOC needs to be manually disabled (see section 4.2.2).

As a result, the Synthesis process generates a schematic and netlist of the design,
along with the power, resources, timing reports. Nevertheless, since this process is totally
independent from the hardware platform, these results are estimations that could slightly
change in further steps, depending on the FPGA to run the design (see section 2.8).

2.8 Implementation

After passing the Synthesis process (see section 2.7), the next step is the Implementation
process, encompassing the following operations [34]:

1. Translate: Merges input netlists and design constraints. The output file describes
the logical design reduced to Xilinx primitives (components native to target device).

2. Map: Fits the logic defined from the previous file into FPGA elements. The output
file physically represents the design mapped to the components in the Xilinx FPGA.

3. Place and Route: Places and routes the mapped design to the timing constraints.
The output file is used as input for the bitstream generation.

4. Generate Programming File: Produces a bitstream file (extension .bit) to be down-
loaded into the FPGA device.

This bitstream file integrates the design, already optimized to fit into the selected
target FPGA, and so, now the updated schematic and power/resources/timing reports
can be seen. Unlike in the Synthesis process, these files are no longer estimations, but
the final versions of them, associated to the specific FPGA to run the design [34].

58

2.9 HDL considerations

This section details some considerations to keep in mind before developing the source
code using VHDL, so that no data is lost while being processed (see section 2.9.1) and
the source code is indeed synthesizable (see section 2.9.2).

2.9.1 VHDL signed vs unsigned signals

As the title of this work already suggests, the implementation of the CCSDS-123 standard
here introduced has been carried out with a HDL, more concretely in VHDL. Working
with HDLs is noticeably different from programming languages such as C or Java to say
some [23], and the present report assumes that the reader is already familiar with both
type of languages.

Nonetheless, due to the fact that the algorithm requires to be configurable in terms of
data width and data type (signed/unsigned), there are a couple of concepts about VHDL
signals that are worth mentioning.

First of all, negative numbers can be handled only under signed signals, and they use
two’s complement for that [27], so its dynamic range becomes the half than unsigned
signals, if speaking in absolute values. That is to say that the same value in bits will be
read/interpret as a different number, depending on the chosen data type to work with.
Another major point applies when performing mathematical operations with such sig-

nals, and their widths must be controlled all the time, even in intermediate operations.
In the worst case (biggest possible numbers), a sum would generate a new value whose
width is one more bit than the biggest operand, and in a similar way, a multiplication
would generate a new value whose width is the sum of all operand widths.

To overcome these eventualities, so that no data is lost in the process, two different
actions must be performed before any mathematical computation:

• All operands are within the same data type (either signed or unsigned, as no com-
putation can be done under std_logic_vector).

• All operands, not only the resulting signal, should be resized to the largest possible
size first, according to the above-mentioned cases (not more to save resources).

VHDL itself takes care of the sign extension while resizing the signals [27], so no need
to worry at all whether working with negative numbers (MSb to ’1’) or not.

Additionally, the integer type is not always a good candidate because in VHDL it is
limited to 32-bits, so data would be lost when working with bigger numbers. Instead,
std_logic_vector, signed or unsigned types should be used.

Not following these statements would suppose losing data along the computation chain,
and even still having a synthesizable code, so a bug quite difficult to detect later.
Section 10.9 shows several source code examples addressing mathematical equations

with this approach.

59

2.9.2 Synthesis design constraints

As already mentioned on section 2.9.1, working with HDLs is a bit different than working
with conventional programming languages, so in order to achieve the same result with
the same algorithm, a different implementation shall be done when working with either
VHDL or C, for instance. Section 2.9.1 is a good example of this.

When a logic has been implemented using HDLs, it must be translated into a physical
netlist: a bunch of logic gates, flip flops and other primitives that are used to set a FPGA.
This process is called Synthesis [35].
This approach of configuring a hardware might limit the implementation of an algo-

rithm if a software approach is used while working. This is indeed not a limitation at all,
but simply that a change of mentality is required to implement the algorithm.

Because of the full-configurable nature of the CCSDS-123 standard, two very recurrent
problems raised while developing the source code.

The first one is about writing in and reading out a different range of bits of the same
signal, depending on the real-time conditions given at a specific moment. Reading out
a different range of bits within a signal is not problematic for HDLs, but this is not the
case when writing in them. This is not synthesizable, so a workaround must be found.
In such case, a solution is to write in the least significant bits of the signal, and then

shifting the data to the left as many positions as needed. And if the signal has other bits
that shall not be modified, a XOR gate can be used to keep that data untouched.

In the same way, there are also problems when declaring for-loops (static declarations)
with conditions that might change over time (dynamic conditions), which the Synthesis
process will certainly fail. To fix it, it requires a static declaration and an if-statement.

Fortunately, these ’problems’ are quite easy to fix. Figures 2.14 and 2.15 show these
situations (left) and how to correct them (right), for both cases:

Figure 2.14: Non-synthesizable (left) and Synthesizable (right) writing operation

Figure 2.15: Non-synthesizable (left) and Synthesizable (right) For-loop

60

3 Design

3.1 Overview

Hereafter a proposal for the CCSDS-123 Issues 1 & 2 algorithm is introduced, covering
the fully configurable nature that its parameters offers.
The goal of this Master Thesis is to provide a fully configurable implementation of

the CCSDS-123 standard, to run on a FPGA being the current state-of-the-art (to the
author’s knowledge), and seeking to be a reference point to any future work related to
this standard. Such implementation is a pure PL design, designed using VHDL-2008, in
order to take benefit of its configurability features [27].

To begin with, the source code architecture has been designed with the principles of
Modularity, Reusability and Readability as its core, so that the design, validation and
maintenance phases of the project can be accelerated. Thus, respectively, it is assumed
that this source code would need new features or bug fixes over time, some parts of it
would be reused in other places, and several engineers would want to have a look at it.
In other words, a design already prepared for the future, and thought to invest a

minimum effort to generate maximum results.

Using a top-down approach [12], almost every mathematical equation has been imple-
mented into an individual IP, most of them just requiring a single clock cycle to generate
a valid output, given a valid input. To ensure a proper synchronization among all IPs,
all of them receive in (and forward out too) an enable signal and the current image coor-
dinates of the incoming hyperspectral image, so that the complete design can be stopped
at any moment if desired so, and every IP knows with which particular pixel of the image
is working at any moment.
Moreover, every signal within the design has a default value at a declaration time as

well as when the reset condition is met. This makes the design more robust since no
unexpected values can be generated, avoiding open-circuit and short-circuit states.

Finally, this design comes together with a TCL framework that automates the creation
of a Xilinx Vivado IDE project, the definition of the target device, the addition of source
code and constraint files, and the bitstream generation. This makes the design be just a
couple of clicks away to flash it into a FPGA and work with it in the real world.

Overall, a functional implementation of the CCSDS-123 standard designed to be very
efficient from the very beginning, automating all its side-work, and prepared to the
unknowns of the future.

Section 3.1.1 shows the timing diagram of the complete implementation.

61

3.1.1 Timing diagram

Figure 3.1: CCSDS-123 Top Entity IP timing diagram

62

3.2 Development tools

The algorithm here presented has been fully developed with the software tool Xilinx
Vivado Design Suite 2019.1: used for RTL design, synthesis, implementation, constraints
definition, bitstream and power/utilization/timing reports generation. No Vivado IP
integrator option was used for code design, but simply plain text HDL files, so that the
source code could easily be exported to other ASIC vendor tools, if necessary.
For simulation and debugging instead, the software tool ModelSim Starter Edition

2020.1 Engine has been used because of a higher compatibility with HDLs and way
better performance [22].

The chosen HDL has been VHDL-2008 (the last compatible revision with most ASIC
tools). Unlike Verilog, VHDL is a strongly typed HDL (and more verbose), and it is
taught and used way more in Europe rather than Verilog, so it is easier to find information
about this HDL as well as to consult with other developers.

Moreover, with the aim of a smoother design flow and better code management, the
complete project workspace is controlled through a TCL-script based framework, which
mixes both Vivado-specific and general TCL commands (which means it is executed inside
the Vivado IDE TCL interpreter). This framework automates all steps involved in the
project development: Vivado project creation and configuration, sources/constraint files
and libraries association, Xilinx’s IPs integration, bitstream/HW description file/reports
generation, etc.
Refer to section 4.2 to see more information about this TCL framework and the rest

of the tools.

The knowledge of how to use all these tools and HW/SW programming languages are
assumed to be familiar for the reader.

3.3 Hardware platform

As described on chapter 1, the NTNU SmallSat project integrates a SoC (uC + FPGA)
as the current standard choice in small-satellite missions because of its reconfigurable
nature and the possibility to execute complex tasks in parallel, so a tight integration
between hardware and software. More concretely for this work, the Zynq UltraScale+
MPSoC ZCU102 Evaluation Board is the chosen one.

The Zynq UltraScale+ MPSoC family is based on the Xilinx UltraScale MPSoC archi-
tecture, whose block diagram is depicted on Figure 3.2. This architecture combines uC
Processing System (PS) (quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5F)
and a FPGA Programmable Logic (PL) UltraScale architecture in a single device:
The Zynq UltraScale+ XCZU9EG-2FFVB1156E MPSoC.

63

Figure 3.2: Xilinx UltraScale MPSoC architecture

The algorithm here introduced is a pure 100% FPGA (PL) design, so there is no
need to go into more details with this hardware platform. Anyway, if desired, check out
references [33] and [37] for more information about it.

Section 5.2.2 details the primitive resources (basic components) that this FPGA in-
clude, compared with how many of them were used to implement the presented design.
Additionally, Figure 10.1 shows the package pinout of this SoC, where the pins to use

for the constraint files were extracted.

64

3.4 Source code architecture

The source code development is carried out with 3 clearly differentiated principles:

1. Modularity: The possibility to add and/or remove IPs into/from the design with a
minimum effort.

2. Reusability: Each IP shall implement the minimum necessary logic, so they can be
used on many places, and the union of ’simple’ IPs can create more complex IPs.

3. Readability: The source code should be simply enough to understand it (ideally)
at first glance and to have a 1:1 match with the provided documentation.

The aforementioned points offer a bunch of advantages, already thinking in the near
and distant-future (after the presentation of the current paper), and indeed they are
totally independent from the algorithm itself to implement.

To begin with, these principles ensure a resulting source code with a high-level of
scalability and maintainability, something mandatory due to the fact that the CCSDS-
123 algorithm might be updated in the future once more with new issues. Additionally,
being the source code quite understandable for other developers, they could easily help to
fix/improve it as well. Finally, this approach accelerates the development and verification
phases of the source code, which means much more time can be invested in the algorithm
itself, rather than the architecture framework, for example.
To sum up, all this is translated into a big project where potentially all interested

engineers can take part on helping improve the outcome.

Finally, it must be mentioned that every signal and variable in the design has been
given a default value, not only when declared, but also when the reset condition is met,
and that they are written from one unique place at a time. This point ensures there will
be neither open- nor short-circuits at any place under any condition in the whole design

Sections 10.5 and 10.6 detail more specifically all guidelines (VHDL style guide and
coding guidelines) used for creating the source code.

3.4.1 Packages

According to the guidelines stated on section 3.4, some VHDL packages have been created
to integrate constants and other static declarations together, so that there is no need
anymore to constantly see duplicated elements in the code that make it dirty.
Thanks to these packages, the different IPs will only include dynamic code, or func-

tional statements.

In order to make them modular as well, there is a group of packages for every main
block of the algorithm: Image coordinates block or general (section 3.6), Predictor block
(section 3.7) and Encoder block (section 3.9).
Section 10.10 shows one example of VHDL package used.

65

Every ’main-block’ group of packages include:

• Parameters: Static configuration of every block. Such parameters are listed on
sections 10.2, 10.3 and 10.4.

• Types: General and custom VHDL types/records/arrays declaration. Most of them
are unconstrained (VHDL 2008 feature [27]), so that the same declaration can be
used with any parameters configuration, being the array widths the most palpable
case.

• Utils: General and specific functions declarations and their implementations. Simi-
lar to the Types packages, these functions are also implemented using unconstrained
vectors, to ensure they will work for any parameters configuration.

• Components: Component declaration of every IP, letting all IPs access their neigh-
bours, if required.

• Others: Very specific constants (basically tables) that are fairly long and not easy
to read. Examples are the Supplementary Information Tables (section 3.9.1.1.1)
and Hybrid Code/Flush Tables [10, p.78-94].

Thus, isolating all this code into independent packages makes the source code way more
readable, and saves hundreds (if not thousands) lines of code within the IPs themselves
by simply calling these packages instead. Thus, and as said before, with this approach the
IPs will contain only the specific part of the algorithm they are pretending to implement.
In the same way, it also ensures that no code is duplicated, which avoids confusion and

saves tons of time while developing and debugging.

3.4.2 Block diagrams description

Sections 3.5 to 3.9 explain the design of the complete CCSDS-123 Issues 1 & 2, and
several block diagrams are used as support for the most complex ones. Therefore, they
have been standardized to give as much information as possible on a very small and
minimalist drawing.

Figure 3.3 is an example block diagram, and the following statements can be extracted
from reading it:

1. Data-flow always moves from left side (input signals) to right side (output signals).

2. Signals have an identification name near them, with the same colour as its arrow.

3. All blocks also have their specific colour:

• Light grey boxes are the (relative speaking) top IPs, with a short identification
name on their top-center part.

• Black boxes are sub-IPs, with a short identification name inside.

• Golden boxes are processes, regardless of its identification name inside.

66

Figure 3.3: Block diagram example

• Maroon boxes are record types (custom arrays), where a signal is either com-
pressed or uncompressed, always with name ’Record’ inside.

• Green boxes are array types, where a signal is either compressed or uncom-
pressed, always with name ’Array’ inside.

• Blue trapezoids (not displayed in Figure 3.3) are either multiplexers or de-
multiplexers, with their selection signals always connected on one side.

4. All boxes (even the top IP) have a yellow label on their right-bottom corner, show-
ing the required clock cycles to produce a valid output, given a valid input.

• Value ’0’ means that such box only implements conditional logic.

• Value ’>0’ means that such box at least implements sequential logic.

5. All boxes (except the top IP) have a white label on their right-up corner, showing
its execution order from top IP perspective.

• Different boxes with the same white label number means that they are exe-
cuted in parallel.

• Different boxes with different white label numbers means that they are exe-
cuted in series.

Apart from this, it is important to highlight that there are two things not represented
in these diagrams, simply for the sake of readability:

• ’Enable’ and ’Image coordinates’ signals are not displayed here. Exceptions are the
Top Entity IP, Image Coordinates IP and Encoder Header IP.

• Signals that require a relative delay (inputs connecting directly to an intermediate
IP/process) do not show such delay, but it is understood from the connection itself.

67

3.5 CCSDS-123-Issue2 Top Entity IP

The very top entity of the CCSDS-123 algorithm (called Issue 2 for simplicity, but it also
covers the Issue 1) shows its architecture on Figure 3.4:

Figure 3.4: Top entity IP block diagram

There are 4 major sub-IPs connected on cascade, with same execution order as listed
hereafter:

1. Image Coordinates Control IP: It keeps track of the incoming samples by counting
them, taking into consideration if they come in with a BSQ, BIL or BIP order: See
section 3.6.

2. Predictor IP: It computes prediction of the next samples by reading neighbour
samples, and it applies an acceptable error on it, if configured so: See section 3.7.

3. Predictor-Encoder Interconnection IP: Only instantiated if Periodic Error Limit
Updating option is enabled (see section 3.7.2.1.1), it fetches Predictor IP’s result
and outputs it, or the Error Limit Values, to the Encoder IP: See section 3.8.

4. Encoder IP: It encodes the incoming data with the selected Entropy coder (Sample
adaptive coder [section 3.9.2.1] or Hybrid coder [section 3.9.2.2] 1): See section 3.9.

This very top IP integrates all defined configuration constraints too:

• Local sum config. moves to column-oriented if image has width NX = 1, or to
neighbour-oriented if working under full prediction mode (see section 2.3.5.1).

• Full prediction mode cannot be used if image has width NX = 1 (see section 2.3.5).

• Periodic Error Limit updating cannot be used with BSQ order (see section 2.3.2.1.1)

The execution order of these blocks is from left to right, just as the numbered white
labels list (see section 3.4.2). In the same way, as its numbered yellow label shows, the
Top entity IP needs a total of 12 clock cycles (basically the sum of all blocks execution
time) to produce a valid output, given a valid input.

1Block-Adaptive Entropy Coder is not mentioned here, because it was not implemented.

68

Nevertheless, the previous number does not match with the quantity of clock cycles to
(de)compress an input image. See section 5.4 for more detailed information.

As explained on section 2.1, the source code shows that each original sample sz(t)
value has a range or number of bits defined by equation 2.2, but some IPs here below use
signals with more bits than that. Unless the documentation says explicitly to use another
quantity, this is done to ensure no data is lost when intermediate computed values are
bigger than expected (see section 2.9.1).

3.5.1 Top Entity IP configuration

Apart from the VHDL packages created to hold the parameters of the system (see sec-
tion 3.4.1), the declaration of the very Top Entity IP also includes a bunch of extra
configuration elements in its Generic part [16].

The difference between the parameters from the packages and the elements from the
Generic part is, that the first group configures the mathematical operations themselves to
be executed along the whole algorithm, and the second group are conditional statements
defining which parts of the algorithm should be whether enabled or disabled.

These configuration elements are listed below:

• SMPL_TYPE_G: It defines the input samples data type (0: signed type sam-
ples, 1: unsigned type samples).

• SMPL_ORDER_G: : It declares the order type of the input samples (00: BSQ
order, 01: BIP order, 10: BIL order).

• HEADER_EN_G: It defines whether the Encoder Header is enabled or not (0:
Disabled, 1: Enabled).

• PREDICT_MODE_G It defines the working Prediction mode (1: Full predic-
tion mode, 0: Reduced prediction mode).

• LSUM_TYPE_G: It declares the local sum calculation type (00: Wide neigh-
bour, 01: Narrow neighbour, 10: Wide column, 11: Narrow column).

• W_INIT_TYPE_G: It declares the weights initialization type (1: Custom
weights initialization, 0: Default weights initialization).

• PER_ERR_LIM_UPD_G: It defines whether the Periodic Error Limit Up-
dating option is enabled or not (0: Disabled, 1: Enabled).

• FIDEL_CTRL_TYPE_G: It declares the accepting maximum error during
compression (00: lossless, 01: absolute error limit only, 10: relative error limit
only, 11: both absolute and relative error limits).

69

• ABS_ERR_BAND_TYPE_G: It defines the absolute error limit values type
(1: band-dependent, 0: band-independent).

• REL_ERR_BAND_TYPE_G: It defines the relative error limit values type
(1: band-dependent, 0: band-independent).

• ENCODER_TYPE_G: It selects the Entropy Coder type (00: Sample-Adaptive
Entropy, 01: Hybrid Entropy).

• W_INIT_TABL_FLAG_G: It defines whether theWeight Initialization Table
is enabled or not inside the Encoder Header (0: Disabled, 1: Enabled).

• W_EXP_OFF_TABL_FLAG_G: It defines whether the Weight Exponent
Offset Table is enabled or not inside the Encoder Header (0: Disabled, 1: Enabled).

• DAMP_TABLE_FLAG_G: It defines whether the Damping Table is enabled
or not inside the Encoder Header (0: Disabled, 1: Enabled).

• OFFSET_TABLE_FLAG_G: It defines whether the Offset Table is enabled
or not inside the Encoder Header (0: Disabled, 1: Enabled).

• ACCU_INIT_TABLE_FLAG_G: It defines whether the Accumulator Ini-
tialization Table is enabled or not inside the Encoder Header (0: Disabled, 1:
Enabled).

• RESTRICT_CODE_G: It defines whether the Restricted set of code options is
used or not (0: NOT used, 1: used).

• UDEF_DATA_G: It declares the User Defined Data field for the Supplementary
Information Tables (any number of 8-bits accepted).

• SUPL_TABLE_TYPE_G: It defines the elements Data Type within the 15
Supplementary Information Tables (00: unsigned integer, 01: signed integer, 10:
float).

• SUPL_TABLE_PURPOSE_G: It defines the Purpose of the 15 Supplemen-
tary Information Tables (from 0 to 15, defined on Table 2.4).

• SUPL_TABLE_STRUCT_G: It defines the Structure of the 15 Supplemen-
tary Information Tables (00: zero-dimensional, 01: one-dimensional, 10: two-
dimensional-zx, 11: two-dimensional-yx).

• SUPL_TABLE_UDATA_G: It defines the Supplementary User-Defined Data
of the 15 Supplementary Information Tables (any number of 4-bits is accepted).

• ENDIANNESS_G: It defines the Endianness of the output packets with the
compressed data (0: Little Endian order, 1: Big Endian order).

All these elements are also discussed in the sections below, appearing when required
to support some explanations.

70

3.6 Image Coordinates Control IP

Figure 3.5 is the block diagram of the Image Coordinates Control IP, the first one in the
chain. This IP is not defined on the documentation itself, but anyway implemented as
a solution to control the coordinates of the incoming image, sample by sample, through
the complete design.

Figure 3.5: Image coordinates IP block diagram

When the incoming enable signal is asserted for the first time, an internal counter is
increased ’+1’ on every clock cycle.

Such increase depends on the configured samples input order, which instantiates either
a clocked process for the BSQ order (Figure 2.2), or another clocked process for BIL/BIP
order (Figure 2.3), together with a multiplexer and demultiplexer (combinational logic)
to do the proper connections of the selected process to the outside world.
Moreover, there is another process that prevents the IP processing a new image (or

counting from the beginning again) until the the current one has been successfully
(de)compressed, using the end flag input signal (see section 3.9.3).

The outputs are the image counter, with x, y, z and t components (equations 2.1 and
2.6) and enable signal, delayed one clock cycle to be used for the next IPs in the chain.

This IP just needs one clock cycle to produce a valid output, given a valid input.
Section 10.11 shows part of its source code.

3.7 Predictor Top IP

The Predictor IP uses an adaptive linear prediction method to predict the value of each
image sample based on the nearby samples in a small neighborhood. Figure 3.6 shows
its block diagram, the most complex one if sub-blocks are taken into account:

71

Figure 3.6: Predictor IP block diagram

It is interesting to realize that the Predictor block diagram from Figure 3.6 shows
more dependencies among its sub-IPs than in Figure 2.5, provided on documentation
[10, p.18], fruit of analyzing all involved equations.

As one can see on Figure 3.4, the Predictor IP is essentially an interconnection point
of its sub-IPs, without adding any extra logic.
The execution starts with the Adder IP, producing the prediction residual ∆z(t) and

forwarding the predicted sample ŝz(t) values. These values are taken by the Quantizer
IP to compute the quantized prediction residual qz(t) and maximum error mz(t) values,
feeding the Mapper IP and the Sample Representative IP at a time.
On one side, the Mapper IP uses these signals to produce the mapped quantizer index

δz(t) value, the final output of the Predictor block. On the other side, the close-loop
starts with the Sample Representative IP, using the same signals to compute the sample
representative s′′z (t) and clipped quantizer bin center s′z(t) values, which stimulate the
Prediction IP to compute the predicted sample ŝz(t), high-resolution predicted sample
s̆z(t) and double-resolution sample representative s̃z(t) values, and back again to the
Adder IP to finish the close-loop.

The enable and image coordinates signals are forwarded to every single component in
the design, so that all IPs know which image sample are working with at any moment,
but they are not displayed in Figure 3.4 for the sake of readability. Indeed, they are used
in a clocked process to keep track of the preceding spectral bands P ∗

z (equation 2.32) too

Taking into account the open-loop branch, the Predictor IP just needs 5 clock cycles
to generate a valid output given a valid input.
Nevertheless, this is different from the number of clock cycles to produce the final

mapped quantizer index δz(t) values. See section 5.4 for more detailed information.

72

3.7.1 Adder IP

Although the Adder IP is not complex, but it is very important to understand what it
does, as its identification name just states half of it. Figure 3.7 is its block diagram:

Figure 3.7: Adder IP block diagram

The main task is a clocked process to compute the prediction residual ∆z(t): the
difference between the predicted sample ŝz(t) and original sample sz(t) values, according
to equation 2.7. The same process also forwards the predicted sample ŝz(t) and double-
resolution sample representative s̃z(t) values for further calculations in the next IPs.

Apart from that, this IP is also in charge of merging the close-loop branch back to
the main line, but as such loop obviously generates the predicted sample ŝz(t) value at
a certain time later than when the original sample sz(t) value was received, a second
clocked process is required to take care of the synchronization of these two signals.
At the very beginning, the prediction residual ∆z(t) is computed to stimulate the

system and to generate the predicted sample ŝz(t) values, and at the same time, the
predicted sample ŝz(t) and original sample sz(t) values are being stored within FFs.
When all original sample sz(t) values are forwarded, the image flag is asserted, and

once all predicted sample ŝz(t) values are received, the prediction flag is asserted too. At
this very moment, the prediction residual ∆z(t) is computed once again, but now the
Adder IP can compute it synchronized, as equation 2.7 defines.

Additionally, this IP also includes a configurable parameter to define if the incoming
original sample sz(t) is either signed or unsigned, so that values are properly read.
This sign configuration applies only to this very IP, as any other signal inside the

Predictor IP block can potentially assume negative values, being this is the reason why
the other signals must be signed and with a bigger number of bits than original sample
sz(t) value, so that no data is lost.

Thus, although these 2 clocked processes in parallel make Adder IP require just 1 clock
cycle to produce a valid output, given an input, the real prediction residual ∆z(t) is not
generated after forwarding the whole input image once (NX ∗ NY ∗ NZ samples). See
section 5.4 for more detailed information. Section 10.12 shows part of its source code.

73

3.7.2 Quantizer IP

Figure 3.8 shows the block diagram of the Quantizer IP:

Figure 3.8: Quantizer IP block diagram

The Quantizer IP is responsible for the following operations, described in the same
order as executed:

1. First, the Fidelity Control IP uses the incoming predicted sample ŝz(t) value to
generate the maximum error mz(t) value, determined via the Error limit values
and user-specified settings to know the error type (refer to section 3.7.2.1).

2. Then, on a clocked process, the prediction residual ∆z(t) (delayed one clock cycle
to be synchronized with the previous operation), is quantized using a uniform
quantizer with a step size 2mz(t) + 1 to generate the signed quantizer index qz(t),
as equation 2.8 shows. This single task is separated into several variables to make
it easier to understand and debug.

These two clocked operations take one clock cycle each to execute, and they are ex-
ecuted sequentially, so a total of 2 clock cycles are required for the Quantizer IP to
produce a valid output, given a valid input.

3.7.2.1 Fidelity Control IP

The Fidelity Control IP, shown in Figure 3.8, computes the maximum error mz(t) value,
based on the incoming predicted sample ŝz(t) and Error limit values. Its operations are:

1. Combinational logic is used to read both absolute and relative error limit values
and to pass them to the next process, extracted from the Error limit values table
(see section 3.7.2.1.1). The different possibilities are:

• Lossless compression: Both absolute and relative error limit values are fixed
to zero.

74

• No lossless compression and Periodic Error Limit Updating option disabled:
The first position of both absolute and relative error limit values arrays are
always taken.

• No lossless compression and Periodic Error Limit Updating option enabled:
The arrays position are continuously monitored, and the right absolute and
relative error limit values are extracted from the arrays.

2. The maximum error mz(t) value is computed on a clocked process by means of
the predicted sample ŝz(t) value and the user-specified error configuration. The
different possibilities are:

• Lossless compression: maximum error mz(t) value is simply fixed to 0 (see
equation 2.9).

• Absolute error limit: maximum error mz(t) value is computed according to
equation 2.10.

• Relative error limit: maximum error mz(t) value is computed according to
equation 2.12).

• Both absolute and relative error limits together: maximum error mz(t) value is
the minimum one between absolute and relative error limit cases (see equation
2.14).

Figure 3.9 shows the block diagram of the Fidelity Control IP:

Figure 3.9: Fidelity Control IP block diagram

Just as this figure shows, the mix of combination logic and sequential logic in parallel
defines a total of 1 clock cycle to produce a valid output, given a valid input.

75

3.7.2.1.1 Error Limit Values Table .

User-specified absolute and/or relative error limit values are used to control themaximum
error mz(t) value for each sample (see section 3.7.2.1), and they are not computed at all,
but just defined by the user itself.

Depending on the errors configuration, absolute and relative error limit values can be
given in two different formats:

• Band-independent : A unique value for all spectral bands. Applicable to both abso-
lute and relative error limit values.

• Band-dependent : A different value for each spectral band (NZ-long array). Appli-
cable to both absolute and relative error limit values.

Moreover, there is the ’Periodic Error Limit updating ’ option (disabled for BSQ input
order), which offers the possibility to update the Error limit values after a configurable
number of image frames (see section 2.3.2.1.1). In order words, an array of the previous
Error limit values types.

To implement such requirements, a VHDL package that covers all possibilities is defined
here: a custom array of size U that includes inside:

• Absolute error limit constant A∗ (when absolute band-independent configured).

• Absolute error limit array az, with size Nz (when absolute band-dependent config-
ured).

• Relative error limit constant R∗ (when relative band-independent configured).

• Relative error limit array rz, with size Nz (when relative band-dependent config-
ured).

By default, such big array is initialized on every position with the same values for
every sub-type. The user can modify them as desired/required.

As explained on section 3.7.2.1, the size U depends on the image coordinates, and as
all IPs have access to these coordinates, the Fidelity Control IP is able to take the proper
array position at any time.

This VHDL package is static data, so there is no delay to generate it, and the output
values can be used immediately.

76

3.7.3 Mapper IP

Figure 3.10 shows the block diagram of the Mapper IP:

Figure 3.10: Mapper IP block diagram

This IP is in charge of mapping the signed quantizer index qz(t) values with a configured
step size. Its operations, executed in the same order as explained, are:

1. The Scaled difference IP uses the incoming predicted sample ŝz(t) and maximum
error mz(t) values to compute the scaled difference θz(t) value (see section 3.7.3.1).

2. The quantizer residual qz(t) and double-resolution predicted sample s̃z(t) values,
delayed both of them one clock cycle to be synchronized, are used along with the
scaled difference θz(t) value on a clocked process to compute the mapped quantizer
index δz(t) value, just as equation 2.16 shows.

The equation is computed with different variables for the sake of readability and de-
bugging purposes.

The sequential sub-IP and clocked process define a total of 2 clock cycles to produce
a valid output, given a valid input.

3.7.3.1 Scaled Difference IP

The Scaled Difference IP, shown in Figure 3.10, uses the incoming predicted sample ŝz(t)
and maximum error mz(t) values on a clocked process to generate the scaled difference
θz(t) value, according to equation 2.17.
This operation is broken down with different variables for the sake of readability and

debugging purposes.

This single task just requires 1 clock cycle to generate a valid output, given a valid
input. Section 10.13 shows part of its source code.

77

3.7.4 Sample Representative IP

Figure 3.11 shows the block diagram of the Sample Representative IP:

Figure 3.11: Sample Representative IP block diagram

This IP implements the following operations, executed in the same order as explained:

1. First action is the computation of the clipped quantizer bin center s′z(t) value (see
section 3.7.4.1). Even though this value is used by the next IP here, it is also
delayed two clock cycles to be outputted for other IPs as well.

2. Using the previous output value along with the maximum error mz(t), quantizer
index qz(t) and high-resolution predicted sample s̆z(t) values (the three of them
delayed one clock cycle to synchronize with s

′
z(t)), the double-resolution sample

representative s̃z(t) value is computed (see section 3.7.4.2).

3. Last but not least, the double-resolution sample representative s̃z(t) is used along
with the original sample sz(t) (in this case delayed two clock cycles to be syn-
chronized with the previous operation output) on a clocked process to produce the
sample representative s′′z (t) value, just as equation 2.18 states.

These three tasks are executed in series, so a total of 3 clock cycles are required to
produce a valid output, given a valid input.

3.7.4.1 Clipped Quantizer Bin Center IP

The Clipped Quantizer Bin Center IP, shown in Figure 3.11, uses a clocked process
to compute the clipped quantizer bin center s′z(t) value by using the maximum error
mz(t), quantizer index qz(t) and high-resolution predicted sample s̆z(t) values, according
to equation 2.19.
This operation is broken down with different variables for the sake of readability and

debugging purposes.

This IP requires only 1 clock cycle to produce a valid output, given a valid input.

78

3.7.4.2 Double-Resolution Sample Representative IP

Figure 3.12 is the block diagram of the Double-Resolution Sample Representative IP:

Figure 3.12: Double-Resolution Sample Representative IP block diagram

This IP uses a clocked process to compute the double-resolution sample representa-
tive s̃z(t) value by using the clipped quantizer bin center s′z(t), maximum error mz(t),
quantizer index qz(t) and high-resolution predicted sample s̆z(t) values, as equation 2.20
states, broken down into several steps to make it easier to understand and debug.

Prior to this computation, combinational logic is used to extract the right value from
parameters damping ϕz and offset ψz, a new value per new spectral band z (see equations
2.22 and 2.23), fixing offset ψz to 0 in case lossless compression is configured.
This IP requires only 1 clock cycle to produce a valid output, given a valid input.

3.7.5 Prediction IP

Figure 3.13: Prediction IP block diagram

79

Figure 3.13 shows the block diagram of the Prediction IP, by far the most complex
one within the Predictor block, as it includes five times more IPs inside than any other
sub-block.

Relatively speaking, this top IP simply interconnects all its sub-IPs, with no additional
logic in between. Important to mention that, as one can see on Figure 3.13, these
interconnections define the second (and last) close-loop branch in the whole algorithm,
with all the dependencies, and again, this branch will not be executed until the open-loop
branch finish processing.

The following operations are performed inside this IP, with the same execution order
as here described:

1. Firstly, the Sample store IP bypasses the incoming sample representative s′′z (t) along
with 5 specific surrounding (older) values at a given time (see section 3.7.5.1), to
be used by the Local sum IP to compute a weighted local sum σz(t) out of them
(see section 3.7.5.2).

2. The previous local sum σz(t), together with the surrounding sample representa-
tive s′′z (t) values again, are taken to compute the (central and directional) local
differences dz(t) values (see section 3.7.5.3).

3. Next is creating the local difference vector Uz(t), filled with the local current and
previous central local differences P ∗ (see section 3.7.5.4).

4. The inner product of the local differences Uz(t) and weights Wz(t) vectors (this
one coming from the close-loop, defined on the last step here below) produces the
predicted central local difference d̂z(t) (see section 3.7.5.8), and along with the local
sum σz(t) values one more time (delayed 3 clock cycles for synchro.), the high-
resolution predicted sample s̆z(t) value is generated too (see section 3.7.5.9).

5. Last but foremost, the double-resolution predicted sample s̃z(t) value is computed
based on the original sample sz(t) and high-resolution predicted sample s̆z(t) values
(see section 3.7.5.10), to finally compute the real predicted sample ŝz(t) (see section
3.7.5.11).

6. Right at the end, executing now the close-loop branch, the weights vector Wz(t) is
filled with the weight ωz values (one per local difference dz(t)), defining a starting
value for each of them before updating them (see section 3.7.5.7). The updating
process needs external values gathered from Weight update scaling exponent IP and
Double-resolution prediction error IP (see sections 3.7.5.5 and 3.7.5.6, respectively).

All operations on the open loop branch define a total of 8 clock cycles to produce a
valid output, given a valid input.

80

3.7.5.1 Samples Store IP

Figure 3.14 shows the block diagram of the Sample Store IP:

Figure 3.14: Samples Store IP block diagram

The Samples Store IP receives only a sample, the current sample representative s′′z (t)
value in this case, and bypasses it again along with a total of 5 specific neighbour samples.
In this context, neighbour samples imply that they are older samples, compared than the
current one.

The neighbour samples are taken by instantiating the Shift register IP multiple times
(one per neighbour sample) in parallel (see section 3.7.5.1.1), with the corresponding
delay time configured at instantiation time for every one of them.

Compared to the incoming sample, with relative coordinates x=y=z=0 (see Figure
2.1), these neighbour samples are:

• Position x=-1, y=0, z=0, abbreviated as ’W’.

• Position x=-1, y=0, z=-1, abbreviated as ’Wz’.

• Position x=0, y=-1, z=0, abbreviated as ’N’.

• Position x=-1, y=-1, z=0, abbreviated as ’NW’.

• Position x=+1, y=-1, z=0, abbreviated as ’NE’.

Of course, these locations are translated into delays that depend on the selected input
sample order. Such values are detailed on Table 3.1:

81

Order NW N NE W Z-1 Z-2 z-P
BSQ NX+1 NX NX -1 1 NX*NY 2*NX*NY P*NX*NY

BIP (NX+1)*NZ NX*NZ (NX -1)*NZ NZ 1 2 P
BIL NX*NZ+1 NX*NZ NX*NZ-1 1 NX 2*NX P*NX

Table 3.1: Delay values to generate all neighbour samples

The 5 neighbour samples together with the current sample are put within a record
(combinational logic) before being sent out.

This IP just needs 1 clock cycle to produce a valid output, given a valid input, but
there is one important idea to keep in mind, addressed in section 3.7.5.1.1.

3.7.5.1.1 Shift Register IP .

The Shift Register IP, shown in Figure 3.14, is a clocked process that basically introduces
the incoming sample value in the least significant position of an array, whose size is as
long as desired (see Table 3.1 for the meaningful values), and it moves such value to the
next/left position of the array on every clock cycle. The output of the module is the
most significant position of such array, as Figure 3.15 shows:

Figure 3.15: Shift register structure

The size of the sample, its default value and the size of the array (equivalent to the
delay time in clock cycles) are freely configurable by the user at instantiation time.

As a result, with this IP it is possible to get an older specific sample at a given moment
in time, or many of them if instantiations in parallel are performed instead (see section
3.7.5.1). The enable and image coordinates are delayed the same quantity of time too,
so that next IPs in the chain have the possibility to start working once the configured
delay is reached.

While it is true that this IP only needs 1 clock cycle to provide a new output value,
it must be noted that such output will always be 0 until the array is fully filled for the
very first time. In other words, the delay time (in clock cycles) is reached.
Nevertheless, this is something not to worry about, as thanks to the Image Coordinates

Control IP, the algorithm itself is smart enough to know when the neighbour samples
are whether available or not. Equation 2.25 is a good example of this.

Section 10.14 shows part of its source code.

82

3.7.5.2 Local Sum IP

Figure 3.16 shows the block diagram of the Local Sum IP:

Figure 3.16: Local Sum IP block diagram

This IP computes the weighted local sum σz(t) value out from some neighbour sample
representative s′′z (t) values in spectral band z, depending on the selected configuration.
Neighbour positions are North (N), West (W) and North-West (NW).

The user defines how to compute this sum, and then the IP only instantiates the
selected clocked-process, as this option is not allowed to change at run-time:

1. Wide neighbor-oriented local sum option (see equation 2.24).

2. Narrow neighbor-oriented local sum option (see equation 2.25).

3. Wide column-oriented local sum option (see equation 2.26).

4. Narrow column-oriented local sum option (see equation 2.27).

This unique instantiated clocked process defines that just 1 clock cycle is required to
produce a valid output, given a valid input.

Finally, in order to avoid confusions with the user configuration, the constraints defined
on section 2.3.5.1 are not implemented by this IP itself, but instead they are implemented
on the very top entity (see section 3.5).
This is done to ensure a unique absolute configuration in the whole system, not chang-

ing depending on the sub-IP that the developer is checking at that very moment.

83

3.7.5.3 Local Differences IP

Figure 3.17 shows the block diagram of the Local Differences IP:

Figure 3.17: Local Differences IP block diagram

This IP computes the local difference dz(t) values by means of the local sum σz(t) and
sample representative s′′z (t) values.
The local difference dz(t) and sample representative s′′z (t) values are managed by their

respective custom record types, which store together the central (or current) and direc-
tional (neighbour) sample values of them. Neighbour positions are North (N), West (W)
and North-West (NW).

As one can see on Figure 3.17, there are four different clocked processes, working all
of them in parallel, to compute the central local difference (see equation 2.28) as well as
the three directional local differences dNz (t), dWz (t) and dNWz (t) (see equations 2.29, 2.30
and 2.31, respectively).
If the user configures the system to work under Reduced Prediction mode, directional

local differences dNz (t), dWz (t) and dNWz (t) are permanently fixed to 0.

The two records (pure combinational logic) are used to extract the sub-signals from
the sample representative s′′z (t) array before the computation, and to join the sub-signals
from the local difference dz(t) array after the computation.

Because of all the processes are executed in parallel, and the other parts of the IP are
combinational logic, only 1 clock cycle is required in to produce a valid output, given a
valid input.

84

3.7.5.4 Local Differences Vector IP

Figure 3.18 shows the block diagram of the Local Differences Vector IP:

Figure 3.18: Local Differences Vector IP block diagram

This IP takes the central and directional local difference dz(t) values and it computes
the local difference vector Uz(t), as described on section 2.3.5.3.

Regardless of choosing either Reduced or Full prediction mode, as well as the number of
previous spectral bands P ∗ to use (see equation 2.32), the vector Uz(t) is directly created
for the longest possible case (full prediction mode and P = 15).

This approach makes this module quite simpler and still efficient, and later, the Pre-
dicted Central Local Difference IP will fetch only of the necessary array positions, de-
pending on the current spectral band z (see section 3.7.5.8).

Managed by a clocked process, the incoming directional local differences dNz (t), dWz (t)
and dNWz (t) are placed into the 3 first positions of the local difference vector Uz(t), or
simply set to 0 if working under Reduced prediction mode.
To compute all previous central local difference dz(t) values, 15 (longest case) Shift

register IPs are instantiated, setting each one with delay z-1 (see Table 3.1) and being
its output the input of the next one.
In the same way as with the Local Differences IP, the input and output data arrays

extract and join their sub-signals, before and after computation, respectively.

Similar to the Samples Store IP (see section 3.7.5.1), the Shift Register IPs here used
to generate the previous central local differences will require some additional clock cycles
before the proper values are outputted. Nevertheless, the algorithm controls the image
coordinates and knows when the required data is available.
The clocked process and sub-IPs are all executed in parallel, and so, only 1 clock cycle

is required to produce a valid output, given a valid input.

85

3.7.5.5 Weight Update Scaling Exponent IP

The Weight Update Scaling Exponent IP, placed in the close-loop branch from Figure
3.13, implements a clocked process to compute the weight update scaling exponent p(t)
value, as equation 2.47 defines.

Unlike the rest of the IPs, the output value does not depend on other signals, but
entirely on the image coordinates and user-specified parameters vmin, vmax and tinc,
which are constrained according to equations 2.48 and 2.49.
This calculation is broken down into smaller steps for the sake of readability and

debugging purposes.

This simply IP just needs 1 clock cycle to produce a valid output, given a valid input.

3.7.5.6 Double-Resolution Prediction Error IP

The Double-Resolution Prediction Error IP, placed in the close-loop branch from Figure
3.13, implements a clocked process to compute the double-resolution prediction error
ez(t) value, as equation 2.50 states.

This calculation is broken down into smaller steps for the sake of readability and
debugging purposes.

This simply IP just needs 1 clock cycle to produce a valid output, given a valid input.

3.7.5.7 Weights Vector IP

Figure 3.19 shows the block diagram of the Weights Vector IP:

Figure 3.19: Weights Vector IP block diagram

86

This IP implements a clocked process for the initialization and the update of the weight
ωz values, to be placed within the Weights vector Wz(t), as described on sections 2.3.5.4
and 2.3.5.7.

As defined on section 2.3.5.4, the configured weights initialization type, default or cus-
tom, is applied at the beginning of all spectral bands z (every time that t = 0), computing
equations 2.37 and 2.38 for the default initialization (for either full or reduced prediction
mode), and equation 2.39 for the custom initialization. In any case, the resulting values
are constrained as equation 2.36 states.

Right away after initialization, the weight ωz values must be updated on each clock
cycle, according to equations 2.41 (central weight value), 2.42, 2.43 and 2.44 (directional
weight values). These equations are broken down in smaller steps with variables to make
the computations easy to follow and debug.
As these equations require the previous weight ωz values on t− 1 to compute the new

ones, a Shift Register IP (see section 3.7.5.1.1) is instantiated, and configured depending
on the samples input order, to delay the signal properly (see Table 3.1).

This updating process demands the weight update scaling exponent p(t) and double-
resolution prediction error ez(t) values, both of them computed one clock cycle before
(see sections 3.7.5.5 and 3.7.5.6, respectively).

Finally, all weight ωz values are placed within the weight vector Wz(t). The directional
weight ωNz (t), ωWz (t) and ωNWz (t) values are placed into the 3 first positions from the
vector, and the other positions are filled with the central weight ωz(t) values (one per
spectral band z). This weight vector Wz(t) actually has the same positions as the local
difference vector Uz(t).

Indeed, following the same approach as for the Local Difference Vector IP, this vector is
directly created for the longest possible case (full prediction mode and P = 15), regardless
of the chosen prediction mode and previous spectral band P ∗ to use (see equation 2.32).
Later, the Predicted Central Local Difference IP (see section 3.7.5.8) will fetch only the

necessary positions, depending on the current spectral band z.

With the clocked process and the sub-IP, both of them executed in parallel, theWeights
Vector IP just requires 1 clock cycle to produce a valid output, given a valid input.

3.7.5.8 Predicted Central Local Difference IP

Figure 3.20 is the block diagram of the Predicted Central Local Difference IP.

This IP is a clocked process that computes the predicted central local difference d̂z(t)
value, which is the inner product between the local difference vector Uz(t) and the weight
vector Wz(t), producing a single output value per both complete input vectors, just as
equation 2.53 depicts.

87

Figure 3.20: Predicted Central Local Difference IP block diagram

As already mentioned on sections 3.7.5.4 and 3.7.5.7, the Local Differences Vector IP
and Weights Vector IP are generated for the longest case (P = 15) regardless of the
configuration, but the Predicted Central Local Difference IP must take into account only
the necessary positions to compute equation 2.53 properly.
For such a purpose, the IP uses the preceding spectral bands P ∗

z value and the image
coordinates. The inner product consists of a for-loop that multiplies the same position
of both vectors, and adds the result to the next iteration multiplication. Therefore, the
for-loop size is basically the current number of spectral band z (being preceding spectral
bands P ∗

z the maximum value).

The selected prediction mode is read at instantiation time, and so, if the current spectral
band z is the first one (z = 0) while working under Reduced prediction mode, the output
is fixed to d̂z(t) = 0.

This IP just needs 1 clock cycle to generate a valid output, given a valid input.

3.7.5.9 High-Resolution Predicted Sample IP

The High-Resolution Predicted Sample IP, shown in Figure 3.13, computes the high-
resolution predicted sample s̆z(t) value, as equation 2.54 defines. The computation is
broken down into smaller steps for simplicity and debugging purposes.

This IP just needs 1 clock cycle to generate a valid output, given a valid input.

3.7.5.10 Double-Resolution Predicted Sample IP

The Double-Resolution Predicted Sample IP, shown in Figure 3.13, computes the double-
resolution predicted sample s̃z(t) value, as equation 2.56 shows.
This IP just needs 1 clock cycle to generate a valid output, given a valid input.

3.7.5.11 Predicted Sample IP

The Predicted Sample IP, shown in Figure 3.13, computes the predicted sample ŝz(t)
value, according to the equation 2.57.
This IP just needs 1 clock cycle to generate a valid output, given a valid input.

88

3.8 Predictor-Encoder Interconnection IP

Figure 3.21 shows the block diagram of the Predictor-Encoder Interconnect IP:

Figure 3.21: Predictor-Encoder Interconnect IP block diagram

As its identification name suggests, this IP is used as a bridge between the Predictor
and Encoder blocks. It is required only when the Periodic Error Limit Updating option
is enabled by the user configuration (see section 2.3.2.1.1), as the Encoder block would
expect not only the mapped quantizer index δz(t) values from the Predictor block, but
the Error Limit Values as well.

If such option is not enabled, the Predictor and Encoder blocks are connected straight-
forward (single connection for the mapped quantizer index δz(t) values).

This IP is in charge of two operations, both executed in parallel:

1. A clocked process updates and outputs the Error Limit Values according to the
user configuration (absolute, relative or both error limit types) every U frames (see
section 2.3.2.1.1).

• While the Error Limit Values are being outputted, an enable signal is also
sent out to the Encoder block as well as to the Parallel Synchronous FIFOs
IP, so that the next IPs in the chain are aware of the kind of received data.

2. The Parallel Synchronous FIFOs IP continuously stores and releases the incoming
mapped quantizer index δz(t) values and image coordinates, except when it is time
to output the Error Limit Values, moment at which such data stall until its next
turn (see section 3.8.1).

As the clocked process and the sub-IP are executed both in parallel, the Predictor-
Encoder Interconnection IP just needs 1 clock cycle to generate a valid output, given a
valid input.

89

3.8.1 Parallel Synchronous FIFOs IP

Figure 3.22 shows the block diagram of the Parallel Synchronous FIFOs IP:

Figure 3.22: Parallel Synchronous FIFOs IP block diagram

This IP is the only one integrating external sub-IPs, the Synchronous FIFO from the
XPM library v2019.1 [32]. It is in charge of storing different kind of data (one per XPM
FIFO), but sorted out just in two types:

1. Image coordinates: This first XPM FIFO is prepared to store exclusively the in-
coming image coordinates, to control the position of the other data stored.

2. General data: A configurable number of XPM FIFOs are instantiated in parallel
to store any other kind of data.

As these FIFOs can accept data only in std_logic_vector, such format should previ-
ously be given, if required. This is not needed for the General data because it is already
in std_logic_vector, but for the image coordinates it is different.
The image coordinates are stored in an array with the x, y, z and t positions (see

section 3.6), so they need 2 non-clocked processes: one to serialize such positions (before
entering the FIFO) and another one to parallelize them (after leaving the FIFO).

The FIFOs must always be ready to write data in, but this data must be read out only
under certain circumstances (see sections 3.8 and 3.9.3), so a Read enable input signal is
integrated for such a purpose.
Besides, as these FIFOs need some time to initialize [32, p.47], an additional AND gate

merges their rst_busy signals into FIFO init output signal, to inform to the rest of the
design when the Parallel Synchronous FIFOs IP is ready to start working.

All FIFOs are executed in parallel and the rest of logic is combinational, so this IP
(once FIFOs were initialized) just need 1 clock cycle to produce a valid output, given a
valid input. Section 10.16 shows part of its source code.

90

3.9 Encoder Top IP

The Encoder IP implements the encoding stage of the compressor and the format of such
output image, described on section 2.4. Figure 3.23 shows its block diagram:

Figure 3.23: Encoder Top IP block diagram

The Encoder IP functionality is broken down into the following tasks:

1. First of all, the Encoder Header IP, which is purely combinational (see section
3.9.1), generates the variable-length header according to the user configuration.

2. The Encoder Body IP (see section 3.9.2) encodes the incoming mapped quantizer
index δz(t) values, sample by sample.

• Additionally, if the Periodic Error Limit Updating option is enabled, then the
Error Limit Values are periodically encoded as part of the body as well.

3. Next, the Packer IP (see section 3.9.3) fetches both the encoder header and body
data (plus their respective widths) to pack them with the user-specified width B.

4. Finally, the output packets go into a non-clocked (combinational) process for the
Endianness, to either do nothing (bytes already on Big Endian order) or rearrange
the bytes to Little Endian order.

While it is true that the Encoder Header IP and Encoder Body IP start both at the
very beginning in parallel, the Encoder Header IP produces an output immediately (as
it has no input signals, just a static configuration), but the Encoder Body IP must wait
until the Predictor IP starts to send data to it.

Finally, in order to make the system more configurable according to the user needs, a
new user-specified parameter has been added to whether instantiate the Encoder Header
IP or not. This option allows to simplify the design and to work only with the desired
part of the Encoder block.

The critical path of this IP (with Hybrid Entropy Coder selected) defines a total of 6
clock cycles to generate a valid output, given a valid input.

91

3.9.1 Encoder Header IP

Figure 3.24 shows the block diagram of the Encoder Header IP:

Figure 3.24: Encoder Header IP block diagram

This IP instantiates the 3Metadata sub-IPs (Image, Predictor and Encoder) altogether
with the aim to fetch and output all header data together. The whole design is purely
combinational logic (not even clock and reset signals exist here) and it just holds static
configuration, so the payload is already arranged from the very beginning.

It must be noted that the 3 IPs output their data with a variable size, depending on
the configuration, something that enters in conflict when declaring the VHDL entity. To
overcome this problem of entity declaration, each IP must output both the payload itself
(in a very-long fixed-size signal) and, in parallel, there is another signal informing about
the meaningful data-bits from the payload signal.
This is where the non-clocked process from the end of the chain comes into play. It

takes the Image, Predictor and Encoder Metadatas, together with their meaningful data
size, and it serializes and outputs them by just joining the meaningful data-bits.

But once more, the resulting serialized payload is introduced and outputted in a very-
long fixed-size signal (4096-bits for security), and the sum of the 3 metadata sizes out-
putted as integer in parallel as well.

Additionally, to avoid strange values, both outputs are set to 0 until the sub-IPs have
meaningful data to offer.

Because of the nature of the Encoder Header IP, 0 clock cycles (so immediately) are
necessary to generate a valid output.

92

3.9.1.1 Image Metadata IP

The Metadata IPs are in charge of implementing Tables 2.1 to 2.16 and serialize them
into a single output signal, together with another signal in parallel that simply defines
the size of the mentioned payload.

To make this possible (logic applicable to the rest of Metadata IPs), the source code
of each one is structured as follows:

1. A custom record type is created for every table, with the same data fields as the
table sub-elements, plus another one with the total data-bits width of it.

• If a table has a variable-length field (like Table Data Subblock field within
Table 2.5), such custom record type will have a very-long fixed-size signal for
this payload, plus an extra field to store its meaningful data-bits size.

• If a table has another table inside (like Table 2.6 within Table 2.9), the custom
record types are nested as well.

2. Constants of these custom record types are created, and initialized with the neces-
sary data. Then, each constant represents a table.

• For the initialization of every variable-length field, two functions are imple-
mented: one to generate the payload itself, and another one to calculate its
total size.

3. All constants are serialized, each one of them with its additional dedicated function,
together into the output signal, and the previous total data-bits width field is used
to inform about its meaningful data size too.

Thus, for the specific case of the Image Metadata IP (in Figure 3.24), Tables 2.2, 2.3
and 2.5 (see sections 2.4.1.1 and 2.4.1.1.1) are instantiated, filled, and serialized into an
output signal (whose size is 2048-bits to ensure all possible configurations fit), together
with another signal that defines the payload size.

All necessary data are static configuration values coming from different VHDL pack-
ages, including the Supplementary Information Tables integrated here inside as well (see
section 3.9.1.1.1).

This IP is purely combinational, so this header data is generated immediately. Section
10.15 shows part of its source code.

93

3.9.1.1.1 Supplementary Information Tables .

According to section 2.4.1.1.1, the CCSDS-123 standard foresees the possibility to define
up to 15 variable-length tables with auxiliary information to an end user, such as the
wavelength associated with each spectral band z [10, p.22-24].

When enabled, each table demands a preconfigured purpose (see Table 2.4), structure
(0-dimensional, 1-dimensional, 2-dimensional ZX or 2-dimensional YX) and data type
(unsigned, signed or float).

All these requirements are static configuration that the user must define before execut-
ing the algorithm. Thus, and in the same way as in section 3.7.2.1.1, a VHDL package
is created covering all the possibilities:

• 15 constant 0-dimensional arrays of unsigned data type.

• 15 constant 0-dimensional arrays of signed data type.

• 15 constant 0-dimensional arrays of float data type.

• 15 constant 1-dimensional arrays of unsigned data type.

• 15 constant 1-dimensional arrays of signed data type.

• 15 constant 1-dimensional arrays of float data type.

• 15 constant 2-dimensional ZX arrays of unsigned data type.

• 15 constant 2-dimensional ZX arrays of signed data type.

• 15 constant 2-dimensional ZX arrays of float data type.

• 15 constant 2-dimensional YX arrays of unsigned data type.

• 15 constant 2-dimensional YX arrays of signed data type.

• 15 constant 2-dimensional YX arrays of float data type.

Each one of these arrays are placed into an independent matrix, so that there is one
single place where to extract the 15 arrays of a group, and the user configuration defines
which matrix is the one to be used.

As a VHDL package, the Supplementary Information Tables are purely combinational
logic, so this header data is available immediately.

94

3.9.1.2 Predictor Metadata IP

Using exactly the same structure as detailed on section 3.9.1.1, the Predictor Metadata
IP, shown in Figure 3.24, is in charge of instantiating Tables 2.6 to 2.14 (see section
2.4.1.2), filled them with the proper data and serialize them in the same order as listed
within such tables.

There are 2 specific functions for every existing variable-length field: one for generating
the payload, and another one for computing its data size. In this case, the variable-length
fields are: Absolute Error Limit Values Subblock, Relative Error Limit Values Subblock,
Damping Table Subblock and Offset Table Subblock fields.

Even though all existing tables are instantiated and filled here, not all of them are
included into the output signal, but just the enabled ones, and most of the tables have
conditional fields. User configuration parametersWeight Initialization Table Flag, Weight
Exponent Offset Table Flag, Damping Table Flag and Offset Table Flag are the condi-
tional factors for such purpose.

In the same way as with the Image Metadata IP, the outputs of this IP are the complete
serialized header payload on a very-long fixed-size signal (2048-bits because of all available
tables) in parallel with another signal that says the meaningful data-bits from payload.

This IP is purely combinational logic, so this header data is generated immediately.

3.9.1.3 Encoder Metadata IP

Using exactly the same structure as detailed on section 3.9.1.1, the Encoder Metadata
IP, shown in Figure 3.24, is in charge of instantiating Tables 2.15 and 2.16 (see section
2.4.1.3), filled them with the proper data and serialize them in the same order as listed
within such tables.

There are 2 specific functions for every existing variable-length field: one for generating
the payload, and another one for computing its data size. Here, the variable-length field
is: Accumulator Initialization Table field from Sample-Adaptive Entropy Coder table.
There is one extra function here to give the same format to the Encoder Metadata IP

regardless of the selected Entropy Coder (as each table is slightly different), so that the
Encoder Header IP can process it with the same logic.

Both tables are instantiated from the very beginning, but only either Table 2.15 or
2.16 is included into the output signal, depending on Sample-Adaptive Entropy Coder or
Hybrid Entropy Coder has been selected, respectively.

In the same way as with the Image Metadata IP, the outputs of this IP are the serialized
header payload on a very-long fixed-size signal (512-bits because this encoder is quite
short) in parallel with another signal that says the meaningful data-bits of the payload.

This IP is purely combinational logic, so this header data is generated immediately.

95

3.9.2 Encoder Body IP

Figure 3.25 shows the block diagram of the Encoder Body IP:

Figure 3.25: Encoder Body IP block diagram

This IP instantiates one of the available entropy coders, and it forwards both the input
and output signals, with no additional logic at all in between.
In other words, it just acts as a wrapper for the selected sub-IP.

The available entropy coders are 2:

• Sample-Adaptive Entropy Coder IP, whose implementation is explained on section
3.9.2.1.

• Hybrid Entropy Coder IP, whose implementation is explained on section 3.9.2.2.

In order to forward the input and output signals, a multiplexer and a demultiplexer
are used (pure combinational logic), routing to/from the selected entropy coder.

As a safety measurement, in case no entropy coder has been configured, this IP sets the
output signals to 0, and enable signal and image coordinates are not forwarded either.
This is done to ensure that no strange behaviour is experienced on the next IPs in the
chain if a bad configuration was provided.

The Encoder Body IP totally depends on the selected Entropy Coder to define the
necessary number of clock cycles to produce a valid output, given a valid input. Therefore,
depending on the user configuration, refer to section either 3.9.2.1 or 3.9.2.2 to see the
timing characteristics of this IP.

2Block-Adaptive Entropy Coder is not mentioned here, because it was not implemented.

96

3.9.2.1 Sample-Adaptive Entropy Coder IP

Figure 3.26 shows the block diagram of the Sample-Adaptive Entropy Coder IP:

Figure 3.26: Sample-Adaptive Entropy Coder IP block diagram

This IP interconnects its sub-IPs with no additional logic in between, and it is in charge
of encoding the mapped quantizer index δz(t) and Error Limit values (both referred as
payload) under the Sample-Adaptive Entropy Coder logic.

The following operations are performed, with the same execution order as listed here:

1. First, the Sample-Adaptive Statistic IP uses the mapped quantizer index δz(t) values
to compute the accumulator Σz(t) and counter Γ(t) values (see section 3.9.2.1.1).

2. Second, the Sample-Adaptive GPO2 Coder IP uses mapped quantizer index δz(t)
and Error Limit values (delayed one clock cycle to be synchronized) along with
the accumulator Σz(t) and counter Γ(t) values to output the payload codeword
Rkz(t)(δz(t)) as well as its meaningful data size (see section 3.9.2.1.2).

The Sample-Adaptive Entropy Coder IP needs a total of 3 clock cycles to produce a
valid output, given a valid input.

3.9.2.1.1 Sample-Adaptive Statistic IP .

Figure 3.27 shows the block diagram of the Sample-Adaptive Statistic IP. This IP uses
the mapped quantizer index δz(t) values on a clocked process to compute the accumulator
Σz(t) and counter Γ(t) values, according to equations 2.71, 2.72, 2.74 (for initialization),
2.75 and 2.76 (for updating).

It can be seen in these equations from above that data on position t−1 is necessary to
compute the next values. But as such previous position on time depends on the selected
samples input order (see Table 3.1), 5 Shift Register IPs in parallel (one per input and
output signal) are instantiated and configured with the (same) right delay.

97

One can appreciate that Error limit values and its enable signal are not required in
this IP, so they are simply delayed and outputted for the next IP in the chain. As this
delay depends on the selected samples input order, they use Shift Register IPs with the
same configuration for such operation.

Figure 3.27: Hybrid Entropy Coder IP block diagram

This IP just needs 1 clock cycle to generate a valid output, given a valid input.
Nonetheless, one more time it is important to keep in mind that this IP, as any other one
using the Shift Register IP, outputs no data until the configured delay time is reached, but
the algorithm is smart enough to know when to demand the data (see section 3.7.5.1.1).

3.9.2.1.2 Sample-Adaptive GPO2 Coder IP .

Figure 3.28: Sample-Adaptive GPO2 Code IP block diagram

98

Figure 3.28 shows the block diagram of the Sample-Adaptive GPO2 Code IP. This
IP uses the incoming payload (mapped quantizer index δz(t) and Error limit values) to
generate the variable-length GPO2 codeword Rkz(t)(δz(t)).

There are a total of two clocked processes for four different operations, executed in the
same order as listed here:

1. The first clocked process uses the incoming accumulator Σz(t) and counter Γ(t)
values to compute the variable-length code parameter kz(t), operation defined on
equation 2.79, and result constrained as equation 2.80 shows.

2. The second clocked process is in charge of three operations, managed by the in-
coming Error Limit values enable signal:

a) If the Error Limit values enable signal is high (just one clock cycle every U
frames, see section 2.4.2), new absolute and/or relative Error Limit values are
received, delayed one clock cycle to synchronize, and encoded with DA and
DR bits, respectively.

• The quantity of Error limit values to encode vary from one single value
to a couple of arrays of size NZ each, as section 3.7.2.1.1 explains.

b) If the Error Limit values enable signal is low, then the GPO2 codewords
Rkz(t)(δz(t)) are computed by using the mapped quantizer index δz(t) values,
delayed one clock cycle to synchronize, together with the variable-length code
parameter kz(t), as described on section 2.4.2.1.2.

• As this codeword has a variable-length, its meaningful data-bits size must
be outputted in parallel with it.

c) At the very end, once the complete image has been encoded, both output
signals are fixed to 0. This small tweak makes the Packer IP not to pack
more encoded data than required (see section 3.9.3).

• Once a new input image comes in, the output signals are updated again
as usual.

Given the complexity of the mathematical operations in this IP, all computations
have been broken down into smaller steps to make them easier to understand and for
debugging purposes as well.

Because of the two sequential clocked processes, the Sample-Adaptive GPO2 Coder IP
only requires 2 clock cycles to generate a valid output, given a valid input.

Section 10.17 shows part of its source code.

99

3.9.2.2 Hybrid Entropy Coder IP

Figure 3.29 shows the block diagram of the Hybrid Entropy Coder IP:

Figure 3.29: Hybrid Entropy Coder IP block diagram

This IP interconnects its sub-IPs with a minimum additional (combinational) logic in
between, and it is in charge of encoding the mapped quantizer index δz(t) and Error Limit
values (both referred as payload) under the Hybrid Entropy Coder logic.

The following operations are performed, with the same execution order as listed here:

1. First, the Hybrid Statistic IP uses the mapped quantizer index δz(t) values to com-
pute the high-resolution accumulator Σ̃z(t) and counter Γ(t) values, along with the
Entropy selection signal (see section 3.9.2.2.1).

2. Second, both the Hybrid High-Entropy Coder IP and Hybrid Low-Entropy Coder IP
take the mapped quantizer index δz(t) and Error Limit values (delayed one clock
cycle to be synchronized) along with the high-resolution accumulator Σ̃z(t) and
counter Γ(t) values to compute the reverse codeword R

′

kz(t)
(δz(t)) as well as its

meaningful data size (see sections 3.9.2.2.2 and 3.9.2.2.3).

3. Third, the Entropy selection (delayed one clock cycle to be synchronized) is used
on a multiplexer to select which reverse codeword R′kz(t)(δz(t)), from either Hybrid
High-Entropy Coder IP or Hybrid Low-Entropy Coder IP, is forwarded.

4. At the end, the Hybrid Compressed Image Tail IP bypasses the reverse codeword
R
′

kz(t)
(δz(t)) along with its size, and only when the complete input image has been

encoded, it uses the high-resolution accumulator Σ̃z(t) and active prefixes (from
Hybrid Low-Entropy Coder IP) values from all spectral bands in order to send out
a final image tail data (see section 3.9.2.2.4).

100

As Figure 3.29 depicts, it is important to emphasize that the two available Hybrid
Entropy Coders (High-Entropy and Low-Entropy) are working at a time.

Even though section 2.4.2.2.1 explains about using equation 2.85 to determine which
Entropy Coder to use at every moment for encoding, here the two of them are always
working, and then the multiplexer with the Entropy selection signal decides which in-
coming data is meaningful, and so, forwarded.
This approach ensures a very quick switching between Entropy coders, so no data is

lost in the process, and the reason why high-resolution accumulator Σ̃z(t) and Entropy
selection signals are forwarded through the Hybrid High-Entropy Coder IP.

The Hybrid Entropy Coder IP needs a total of 4 clock cycles to produce a valid output,
given a valid input.

3.9.2.2.1 Hybrid Statistic IP .

On a very similar way to the Sample-Adaptive Statistic IP, the Hybrid Statistic IP uses the
mapped quantizer index δz(t) values on a clocked process to compute the high-resolution
accumulator Σ̃z(t) and counter Γ(t) values, according to equations 2.81, 2.82 (for initial-
ization), 2.83 and 2.84 (for updating).
The structure of this IP is basically the same as the block diagram from Figure 3.27.

The aforementioned equations show that position t−1 from high-resolution accumulator
Σ̃z(t) and counter Γ(t) values are necessary to compute the next ones, and as such
previous position on time depends on the selected samples input order (see Table 3.1),
5 Shift Register IPs in parallel (one per input and output signal) are instantiated and
configured with the right delay.

As described on section 2.4.2.2.1, every time code statistics are rescaled (condition
Γ(t− 1) = 2γ

∗ − 1 from equations 2.83 and 2.84), the least significant bit from Σ̃z(t− 1)
is also outputted, so that it can be encoded in the bitstream by the next IPs.

The incoming Error limit values and its enable signal are not required in this IP either,
so they are simply delayed and forwarded for the next IPs in the chain. As this delay
depends on the selected samples input order, they use Shift Register IPs with the same
configuration for such purpose.

Last but not least, after computing the new high-resolution accumulator Σ̃z(t) and
counter Γ(t) values, a non-clocked process is used to compute the next Entropy selection
value, according to equation 2.85.
If this signal is asserted, then δz(t) is a ‘high-entropy’ mapped quantizer index and

the payload is encoded using the Hybrid High-Entropy Coder IP (see section 3.9.2.2.2).
Otherwise (or simply when D = 2), δz(t) is a ‘low-entropy’ mapped quantizer index and
the payload is encoded using the Hybrid Low-Entropy Coder IP (see section 3.9.2.2.3).

The Shift Register IPs, clocked process and non-clocked process from the Hybrid Statis-
tic IP define a total of 1 clock cycle to generate a valid output, given a valid input.

101

3.9.2.2.2 Hybrid High-Entropy Coder IP .

Almost the same as with the Sample-Adaptive GPO2 Coder IP, the Hybrid High-Entropy
Coder IP takes the incoming payload (mapped quantizer index δz(t) and Error limit
values) to generate the variable-length reversed GPO2 codeword R′kz(t)(δz(t)).
The structure of this IP is basically the same as the block diagram from Figure 3.28.

There are a total of two clocked processes for four different operations, executed in the
same order as listed here:

1. The first clocked process uses the incoming high-resolution accumulator Σ̃z(t) and
counter Γ(t) values to compute the variable-length code parameter kz(t), operation
defined on equation 2.86, and result constrained as equation 2.87 shows.

2. The second clocked process is in charge of three operations, managed by the in-
coming Error Limit values enable signal:

a) If the Error Limit values enable signal is high (just one clock cycle every U
frames, see section 2.4.2), new absolute and/or relative Error Limit values are
received, delayed one clock cycle to synchronize, and encoded with DA and
DR bits, respectively.

• The quantity of Error limit values to encode vary from one single value
to a couple of arrays of size NZ each, as section 3.7.2.1.1 explains.

b) If the Error Limit values enable signal is low, then the reversed GPO2 code-
words R′kz(t)(δz(t)) are computed by using the mapped quantizer index δz(t)
values, delayed one clock cycle to synchronize, together with the variable-
length code parameter kz(t), as described on section 2.4.2.2.2.

• As this reversed codeword has a variable-length, its meaningful data-bits
size must be outputted in parallel with it.

• Only when the Hybrid Statistic IP performs the code selection statistics
rescaling (see section 3.9.2.2.1), the LSb of Σ̃z(t − 1) is also attached to
the codeword, located at the beginning of it.

c) At the very end, once the complete image has been encoded, both output
signals are fixed to 0. This small tweak makes the Packer IP not to pack
more encoded data than required (see section 3.9.3).

• Once a new input image comes in, the output signals are updated again
as usual.

Identical to the Sample-Adaptive GPO2 Coder IP, all computations in this IP have been
broken down into smaller steps to make them easier to understand and for debugging
purposes as well.

Because of the two sequential clocked processes, the Hybrid High-Entropy Coder IP
only requires 2 clock cycles to generate a valid output, given a valid input.

102

3.9.2.2.3 Hybrid Low-Entropy Coder IP .

Figure 3.30 shows the block diagram of the Hybrid Low-Entropy Coder IP:

Figure 3.30: Hybrid Low-Entropy Coder IP block diagram

This IP takes the incoming payload (mapped quantizer index δz(t) and Error limit
values) to generate the variable-to-variable length codeword R′kz(t)(δz(t)).

There are a total of three (mixing clocked and non-clocked) processes for eight different
operations, executed in the same order as listed here:

1. The first clocked process is in charge of four operations:

a) The code index table i is computed according to equation 2.88.

b) The input symbol ιz(t) is computed according to equation 2.89.

c) With these two values, the active prefix array is updated and outputted.

• The active prefix array is an array of 16 positions (as many as available
Hybrid Code/Flush Tables), and inside each position there is the updated
ith active prefix.

• Such active prefix update consists of attaching the new input symbol ιz(t)
into the LSb position of the ith column (out of 16) of the array and shifting
the older ones to the right.

d) The new ith active prefix is used to try to find a match (because there could
be none) with the input codeword field from the ith Hybrid Code Table [10,
p.78-94].

• In case there has been a match with the ith active prefix, the ith table
pointer is stored inside the signal code prefix.

103

2. Only if the new input symbol ιz(t) turns out to be the null sequence ’X’, the second
non-clocked process uses the mapped quantizer index δz(t) and code index table i
values to compute the residual codeword R′0(δz(t) − Li − 1), in the same way as
described on section 2.4.2.2.2.

3. The third clocked process is in charge of three operations, managed by the incoming
Error Limit values enable signal:

a) If the Error Limit values enable signal is high (just one clock cycle every U
frames, see section 2.4.2), new absolute and/or relative Error Limit values are
received, delayed one clock cycle to synchronize, and encoded with DA and
DR bits, respectively.

• The quantity of Error limit values to encode vary from one single value
to a couple of arrays of size NZ each, as section 3.7.2.1.1 explains.

b) If the Error Limit values enable signal is low, and only when there has been
a code prefix update in the previous clock cycle, then the variable-to-variable
length codeword R

′

kz(t)
(δz(t)) is generated by extracting the output codeword

field from the ith Hybrid Code Table [10, p.78-94].

• As this reversed codeword has a variable-length, its meaningful data-bits
size must be outputted in parallel with it.

• If the new input symbol ιz(t) has been the null sequence ’X’, the afore-
mentioned residual codeword R′0(δz(t)−Li− 1) shall be placed before the
output codeword value.

• Moreover, only when the Hybrid Statistic IP performs the code selection
statistics rescaling (see section 3.9.2.2.1), the LSb of Σ̃z(t − 1) is also
attached to the codeword, located at the beginning of it.

c) At the very end, once the complete image has been encoded, both output
signals are fixed to 0. This small tweak makes the Packer IP not to pack
more encoded data than required (see section 3.9.3).

• Once a new input image comes in, the output signals are updated again
as usual.

Exactly the same approach as with the Hybrid High-Entropy Coder IP, all mathemat-
ical computations in this IP have been broken down into smaller steps to make them
easier to understand and for debugging purposes as well.

The two sequential clocked processes together with the non-clocked process, make the
Hybrid Low-Entropy Coder IP require only 2 clock cycles to generate a valid output,
given a valid input.

104

3.9.2.2.4 Hybrid Compressed Image Tail IP .

Figure 3.31 shows the block diagram of the Hybrid Compressed Image Tail IP:

Figure 3.31: Hybrid Compressed Image Tail IP block diagram

This IP forwards the incoming encoded data (reverse codeword R′kz(t)(δz(t))) with its
data width, and it also uses the high-resolution accumulator Σ̃z(t) and active prefix array
values to generate the compressed image tail.

There are a total of 2 clocked processes, plus combinational logic, for four different
operations, executed in the same order as listed here:

1. The first clocked process is in charge of three different operations:

a) It forwards the incoming reverse codeword R′kz(t)(δz(t)), along with its width.

b) At the end of every spectral band z (so when the image coordinates t = NX ∗
NY − 1) the current high-resolution accumulator Σ̃z(t) is stored into an array
of NZ positions (one per spectral band).

c) If the current spectral band z is the last one, so the end of the image, the
incoming active prefix array (whose size is 16 elements as the available 16
Hybrid Flush Tables), is used to find a match (and there must be one) between
the incoming ith active prefix with the active prefix field from the ith Hybrid
Flush Table, saving the ith table pointer when succeeded.

• Additionally, the tail start flag is asserted, to inform that the incoming
reverse codeword R′kz(t)(δz(t)) has been completely forwarded out.

2. The second clocked process, enabled by the previous tail start flag, computes and
outputs the compressed image tail as follows, with one element per clock cycle:

a) In order of increasing code index i, the 16 previous table pointers are used to
extract and output the 16 flush codewords from their corresponding Hybrid
Flush Tables.

105

• Each element is outputted with its specific data width, also extracted
from the very same tables.

b) Next, in order of increasing spectral band z, all stored high-resolution accumu-
lator Σ̃z(t) values are also outputted, each one of them with a data width of
2 +D + γ∗ bits.

c) Finally, there is one single bit high ’1’ outputted, and the tail start flag is
deasserted as well.

3. At the end, there is a multiplexer (combinational logic) managed by the tail start,
managing whether the output from the first or the second process should be out-
putted.

As always, all mathematical computations in this IP have been broken down into
smaller steps to make them easier to understand and for debugging purposes as well.

With the two clocked processes, the Hybrid Compressed Image Tail IP require just 1
clock cycle to generate a valid output, given a valid input.

3.9.3 Packer IP

Figure 3.32 shows the block diagram of the Packer IP:

Figure 3.32: Packer IP block diagram

This IP is in charge of receiving the Encoder Header data and Encoder Body data
(together with their widths) and pack them into chunks of a user-specified configurable
size output word B. The Encoder Header data is always processed first, and only then,
Encoder Body data is processed too.

Due to the fully configurable nature of the system, the Packer IP must be prepared to
pack the data under any set-up configuration, and the first point (already mentioned on
section 3.9) is the option to whether enable or disable the Encoder Header IP.

106

If such IP is disabled, the Packer IP has to deal only with the Encoder Body data,
so no additional logic needs to be added. But in case the Encoder Header IP is indeed
enabled, it turns out that the Encoder Body data would start coming before the Encoder
Header data has been fully processed.
To overcome this situation, the Parallel Synchronous FIFOs IP is instantiated (see

section 3.8.1), which stalls the incoming Encoder Body data and its size (plus its enable
signal and image coordinates) until the Encoder Header data has been fully processed.

With the IP prepared not to lose any incoming data, a clocked process later is designed
to pack all of it. To start packing the Encoder Header data, which is a very long signal
with its width in parallel (static configuration, see section 3.9.1), this process reads the
data chunk to chunk (size B), and it outputs it. This is a quite straight-forward task.

But on the other side, when it is the time for the Encoder Body data, the data size
configuration leads to one of the two following situations to occur:

• The maximum data size (Umax +D) is shorter/equal than the packet size (B).

• The maximum data size (Umax +D) is longer than the packet size (B).

Figure 3.33: Packing data timing diagram [17, p.9]

In the first case, with Encoder body data (received clock after clock) shorter/equal than
the packet size, only when there is enough data to fill a packet, it is outputted. If the
incoming data perfectly fits the packet, then everything is outputted, but in case the last
chunk does not fully fit the packet, the LSb bits that fit are sent out, and the MSb bits
(overflow) are directly put into the next packet.

107

Figure 3.33 shows the timing diagram of packing data under this first case, and as it
can be appreciated, data is written into the packet from left to right.

In the second case, with Encoder body data (received clock after clock) larger than
what it can be packed on a single clock cycle, instead it is continuously stored on a long-
enough (input image size) vector, and packets are made by accessing such vector on every
clock cycle, extracting the least significant chunk, and finally shifting the remaining data
to the left.

For the two cases, a bunch of counters are used to monitor every aspect of the afore-
mentioned logic: how many valid bits are within the packets, the overflow bits to put in
the next packet, data pending to be put into the packets, etc.
They are really useful, and not only for monitoring purposes, because depending on

the user configuration, packing data is a task that could finish long after all input data
was received, specially in the second case above (tweak already mentioned on sections
3.9.2.2.2, 3.9.2.2.2 and 3.9.2.2.3).

Finally, there is a non-clocked process to manage all flags. It uses enable signal and
image coordinates to inform about the following situations:

• The first packet is sent out (start flag).

• A new packet is sent out (valid flag).

• The last packet is sent out (end flag).

• The packet holds header or body data (header enable and body enable flags).

This piece of logic is particularly interesting, because documentation [10, p.20] explic-
itly says that no logic is foreseen to inform to the outside world when a compressed image
started and finished to be sent sent out.
Therefore, this proposal seeks to fill this void, providing a way to inform outside when

the present CCSDS-123 algorithm is outputting new data, when it has started and when
it has finished.

Moreover, the end flag is also used internally to disable part of the system until the
current input image has been fully processed, and to restart everything once this moment
has come (see section 3.6).
This point ensures that the algorithm will always be fully prepared to work with new

data when it informs so (so no data overlapping) and the overhead or delay between
input images will always be minimal (just one clock cycle).

The critical path of the Packer IP (when Encoder Header IP is enabled) defines a total
of 2 clock cycles to generate a valid output, given a valid input.

108

4 Validation Plan

4.1 Validation scope

The present work seeks to develop a full implementation of the CCSDS-123 standard
to run on FPGA, including both Issues 1 & 2, with a fully-configurable nature as its
core, and for instance being able to modify the size of all signals to configure most of the
implemented equations, among others.
While it is true that the whole standard (with the exception of Block-Adaptive Entropy

Coder) has been implemented in VHDL-2008, the complete validation of such enormous
system is something that goes way beyond of what a Master Thesis can cover, as the
existence of such a number of configurable parameters (see Tables 10.1 to 10.4) would
lead to more than 1000 configuration permutations or test-cases.

Therefore, only validation by simulation is performed, and focusing in the most inter-
esting test-cases (as detailed in section 4.3), which makes the present implementation be
the current state-of-art, such as the Encoder Header module or the Periodic Error Limit
Updating option.

These test-cases are more than enough to prove that the current implementation is
working as intended as well as to report its performance and resources utilization.
The tools for the validation plan are described on section 4.2.

It must also be mentioned that the pandemic situation with Covid-19 did not give any
chance to dispose of a FPGA to work with, so this is the reason why validation by hard-
ware (using ILAs [30] and VIOs [31] on Xilinx Vivado IDE over a JTAG communication)
has not been possible.

4.2 Validation tools

Several tools have been used for the validation of the implemented source code.
Section 4.2.1 details the tool used for the validation by simulation, and section 4.2.2

the tool used for the bitstream generation and power consumption, timing and resources
utilization reports.

4.2.1 VUnit testbenches

With a similar approach as explained in section 3.4.1 with the VHDL packages, an
architecture of VHDL testbench files have been created in order to perform the validation
by simulation, all of them created under the VUnit framework (see section 2.6).

109

The complete architecture is composed of 14 different IP levels, grouping a total of
20 VUnit testbenches:

1. Top entity: Two testbenches:
• One for the CCSDS-123-Issue2 Top entity IP.
• One for the Parallel Synchronous FIFOs IP.

2. Image block: One testbench for the Image Coordinates Control IP.

3. Predictor block: One testbench for the Predictor Top IP.

4. Adder sub-block: One testbench for the Adder IP.

5. Quantizer sub-block: One testbench for the Quantizer IP, Fidelity Control IP
and Error Limit Values Table.

6. Mapper sub-block: One testbench for the Mapper IP and Scaled Difference IP.

7. Sample Repr. sub-block: One testbench for Sample Representative IP, Clipped
Quantizer Bin Center IP and Double-Resolution Sample Representative IP.

8. Prediction sub-block: Five testbenches:
• One for the Prediction IP.
• One for the Samples Store IP, Shift Register IP and Local Sum IP.
• One for the Local Differences IP, Local Differences Vector IP and Predicted
Central Local Difference IP.

• One for the Weight Update Scaling Exponent IP, Double-Resolution Prediction
Error IP and Weights Vector IP.

• One for the High-Resolution Predicted Sample IP, Double-Resolution Predicted
Sample IP and Predicted Sample IP.

9. Encoder block: One testbench for the Encoder Top IP.

10. Enc. Header sub-block: One testbench for Encoder Header IP, Image Metadata
IP, Supplementary Info. Tables, Predictor Metadata IP and Encoder Metadata IP.

11. Enc. Body sub-block: One testbench for the Encoder Body IP.

12. Sample-Adapt. Coder sub-block: One testbench for Sample-Adaptive Entropy
Coder IP, Sample-Adaptive Statistic IP and Sample-Adaptive GPO2 Coder IP.

13. Hybrid Coder sub-block: One testbench for the Hybrid Entropy Coder IP,
Hybrid Statistic IP, Hybrid High-Entropy Coder IP, Hybrid Low-Entropy Coder IP
and Hybrid Compressed Image Tail IP.

14. Packer sub-block: Two testbenches:
• One for the Packer IP.
• One for the Parallel Synchronous FIFOs IP.

110

For every IP level, there is a folder called simulation with one or more VUnit test-
benches, and even though there are not as many testbenches as IPs developed, every
single one of them is instantiated in at least one testbench.

Since every VUnit testbench is composed of a Python script and a VHDL testbench,
one can go to the right folder and simply execute the Python file, so that specific IP or
IPs group can be tested. In such case, the executable command would be for example:

python run_adder.py

But because of the quantity of VUnit testbenches and their different locations, a bash
file called run_simulations.sh is created to provide a single entry point for all IP levels.
Following are the command to execute this bash file, and the GUI that prints out:

sh run_simulations.sh

Figure 4.1: GUI of testbenches bash file

Regardless of the selected way to execute the VUnit testbench, a report with a success
or fail criteria is printed out, showing that there are neither compilation nor run-time
errors if successful, as Figure 4.2 shows:

Figure 4.2: VUnit testbench report

111

The VUnit framework permits to introduce automatic validation criteria (by means
of assertions-like functions [1]), so validation can be fully automated. Unfortunately,
because of the design complexity, and specially the number of configurable parameters,
this has not been doable, and instead, manual validation is performed by using the
simulator engine to check the waveforms out (not in background anymore).
In this case, the ModelSim Simulator Engine is used [22], and Figure 4.3 is its GUI:

Figure 4.3: ModelSim Simulator Engine GUI

To open the ModelSim Simulator Engine GUI for a specific VUnit testbench, the
attribute ’-g’ must be added when calling the Python file:

python run_adder.py -g

Sections 10.18, 10.19 and 10.20 show part of an example Python script, VUnit test-
bench and simulations bash file source code, respectively.

4.2.2 Vivado TCL framework

With all source code successfully developed, the next step would be to open the Xilinx
Vivado IDE tool and to generate the bitstream file to flash the FPGA.

For such purpose, a TCL framework (folder _vivado_framework) has been created, so
that all steps involved in this task can be fully automated.

This TCL framework is in charge of the following tasks, executed in the same order as
explained here:

1. Opens the Xilinx Vivado IDE tool (openable in batch and GUI modes).

2. Creates a project for the selected FPGA platform, and configures it with VHDL
as the HDL to use, and default library name.

112

3. Adds the selected source files, and configures them with the VHDL-2008 standard.

4. Adds the selected placement and timing constraint files.

5. Executes the Synthesis process, with OOC option also configurable [35].

6. Executes the Implementation process [34].

7. Generates the power-consumption, utilization and timing reports.

8. Generates the bitstream to flash the FPGA.

To make this framework more accessible and easier to manage, a bash file called
run_vivado_project.sh is created to make use of it.
It is executed with the following command, and Figure 4.4 is the GUI that prints out:

sh run_vivado_project.sh

Figure 4.4: GUI of Xilinx Vivado bash file

As the previous figure clearly shows, the Xilinx Vivado bash file accesses the TCL
framework to provide the following options:

1. Generate a Vivado project under batch mode.

2. Generate a Vivado project under GUI mode.

3. Open the already generated Vivado project.

4. Close the already generated Vivado project.

5. Execute the Vivado TCL shell.

The generated project will always be called ccsds123issue2_project and located inside
the folder _vivado_framework, and all generated output files (bitstream and reports) are
copied into folder artifacts, also located inside the same folder.

Last but not least, and even though it is not expected, one can modify the TCL
framework by going to the folder _vivado_framework and accessing the TCL files. This
allows to add/remove source, constraint files and block designs, do not execute Synthesis
or Implementation, change the FPGA target device, etc.

Sections 10.21 and 10.22 show part of the TCL framework and Xilinx Vivado bash file
source code, respectively.

113

4.3 Test-cases

The present algorithm has been designed with a fully configurable nature as its core, being
every single IP instantiation dependent to the user configuration, and some of them even
not instantiated if configured so, such as the Encoder Header IP. These dependencies
are explained in chapter 3.
All these configuration possibilities make impractical validate every single test-case,

as there would be way more than 1000 of them (or configuration permutations). Check
section 3.5.1 and Tables 10.1, 10.2, 10.3, 10.4 to understand the magnitude of it.

Therefore, a bunch of test-cases must be selected to perform the validation, and still
provide results good enough to demonstrate that the design is working as intended.

Using the same approach as how the source code has been structured (see section 3.5),
the test-cases are sorted out by the following groups:

• Image Coordinates Control block: Results are displayed on section 5.3.1.

• Predictor block: Results are displayed on section 5.3.2.

• Encoder block: Results are displayed on section 5.3.3.

• Top Entity block: Results are displayed on section 5.3.4.

For each group, first all IPs are validated in an isolated way (putting special emphasis
in the ones that give added value to this implementation), then a validation scales up to
the major blocks, to finish validating the very top entity.
This statement just applies to the functionality aspect of the system, as the parameters

configuration will remain (almost) untouched because of the reason given above.

Nevertheless, the following ’standardized’ test-case is the one used for providing the re-
sults of the bitstream generation as well as HW integration reports, discussed on sections
5.1 and 5.2, respectively:

• Issue 1 configuration (see Table 2.18).

• Signed input samples with a data range of 16 bits.

• BIP input order.

• Full prediction mode selected.

• Lossless compression selected.

• Sample-Adaptive Entropy Coder IP selected.

• Encoder Header IP disabled.

• Periodic Error Limit Updating option disabled.

114

5 Results

5.1 Bitstream generation

Using the ’standardized’ test-case (see section 4.3), passing the Synthesis and Implemen-
tation processes has been quite fast, less than 20 minutes altogether. Indeed, any other
configuration does not require much more (or less) time than that, not even enabling the
OOC option (see section 2.7), so this value is a good average.
This is due to the fact that the presented algorithm is a pure PL (FPGA design using

hdl), and absolutely nothing from PS (uC design using SW prog. languages). Moreover,
as the title of document [10] suggests, the CCSDS-123 standard has a low-complexity.

However, it is interesting to mention that the time to generate the bitstream is sub-
stantially increased when either there are time violations (Vivado IDE spends more time
on looking for alternative routing paths that fulfils the required timing) or the design
demands almost all resources within the FPGA (a lack of resources makes really difficult
for Vivado IDE to find a single routing path).

In fact, FPGAs invest way more resources on interconnecting the IPs, rather than
implementing the IPs themselves, and this relation is usually about 90%-10% [20], which
makes the previous statement quite understandable.

With the bitstream already generated, Vivado IDE reports several critical warnings,
all of them because the placement constraints file has constrained the input image signal
width as 32-bits (maximum possible case), when the current user configuration is using
a width of 16-bits (user-specified parameter dynamic range D). Thus, the constraints file
is already prepared for any user configuration, and these should simply be ignored, so 0
critical warnings can be assumed here.

If the schematics generated after Synthesis and Implementation processes are com-
pared, the first one infers the design using a total of 642 cells, 87 I/O ports and 1590
nets, and the second one infers the design with a total of 641 cells, 87 I/O ports and
1550 nets.
Even though the numbers are quite similar for both processes, this comparison clearly

demonstrates that the Vivado IDE can perform more resources optimizations once the
target device is known, as stated on section 2.8.

Using the TCL framework, located within folder _vivado_framework, along with its
associated bash file (see section 4.2.2), the generation of this bitstream is automated and
stored into folder artifacts, also inside folder _vivado_framework.

115

5.2 HW integration reports

This section shows and discusses the reports generated with Vivado IDE, after passing
both Synthesis [35] and Implementation [34] processes.
As already mentioned on sections 2.7 and 2.8, the existing differences for each report

between these two processes are because the Synthesis just provides an estimation of
the final design, and the Implementation provides an exact result (and usually better),
because only the second one knows the target device, and so, it can take benefit of the
available FPGA resources.

It must be mentioned once again that these results correspond to ’standardized’ test-
case from section 4.3, and as this algorithm is fully configurable, they would slightly
change when a new user configuration is defined.

5.2.1 Power consumption report

Both power consumption reports after passing Synthesis and Implementation processes
are displayed on Figure 5.1. Overall, both report almost the same power consumption:
0.713W in the first case (left), and 0.721W in the second case (right).

Figure 5.1: Power consumption reports for Synthesis (left) and Implementation (right)

Regardless of the final value, it is quite interesting to see that 10% corresponds to
dynamic power consumption (components toggling continuously during normal function-
ality), and the other 90% corresponds to static power consumption (leakages from capac-
itors while keeping the data).

These results say that the design is continuously storing a lot of data, much more
than this is being computed. This is very likely due to the quantity of Shift Register
IPs required in the Predictor block to manage its neighbour input samples and the two
existing close-loop branches on it.

Anyway, this low dynamic power consumption is also thanks to the set frequency of the
clock signal (see section 5.2.1), as keeping the frequency as slow as possible is translated
into a decrease in the number of times per second that all components toggle [15].

116

5.2.2 Utilization report

Figures 5.2 and 5.3 list the Xilinx primitive resources used to infer the presented algorithm
(and also compared with the available ones) after passing Synthesis and Implementation
processes, respectively:

Figure 5.2: Reduced Utilization report for Synthesis

Figure 5.3: Reduced Utilization report for Implementation

One more time, here there are (almost) no improvements between the 2 processes,
yet just a minimal decrease in the number of LUTs and LUTRAMs, which do not even
modify the Utilization % field.
In any case, the percentage of utilization is very small compared with what Zynq Ultra-

Scale+ MPSoC ZCU102 Evaluation Board offers, and this ensures that other algorithms
can work together with the CCSDS-123 algorithm under the same hardware platform.

Going a bit deeper, Figures 10.2 and 10.3 show the extended versions of the previous
utilization reports, where not only more types of Xilinx primitives are listed, but they
also show the utilization required for every single (instantiated) IP.
It can be seen that the Encoder block demands more logic resources than the Predictor

block (which has more and simpler sub-IPs), something totally normal due to the fully
configurable nature of the Encoder block, always changing the width of its output signal.
However, the most demanding one is the Adder IP, since it manages the big close-loop

branch from the Predictor block, and it must store all original samples sz(t) and predicted
samples ŝz(t) to compute the prediction residual ∆z(t), demanding a lot of FFs for it.

Finally, in case the available FPGA resources were not enough to implement the de-
sign, the Vivado IDE tool provides advanced options to highlight which RTL modules
or routing paths consume more resources (and what kind of) specifically, so that an
optimization of the conflicted parts of the design could be executed [32][34].

117

5.2.3 Timing report

Figures 5.4 and 5.5 show the timing report of the present design, after passing Synthesis
and Implementation processes, respectively:

Figure 5.4: Timing report for Synthesis

Figure 5.5: Timing report for Implementation

As it can be appreciated, the timing constraints were not met after executing Synthesis,
failing in the Hold time [15] part. Nonetheless, such violations are automatically fixed
after executing Implementation, and this is thanks to the extra optimizations done in the
routing paths, only possible because the FPGA target device is known here [34].

Unfortunately, the clock frequency had to be dropped to 40MHz to meet all the timing
constraints, instead of the original idea of 100-125MHz.
This unexpected event has occurred because the implemented equations have not been

broken down properly. Chapter 3 says many times that the equations have been broken
down into several steps, but that was using variables (so most things done at a time),
so that the readability of the source code improves, but it should have been done using
signals instead (so one step done per clock cycle). Such modification makes most of the
IPs require more clock cycles to produce a valid output, given a valid input, but on the
other hand, they can work at a higher frequency.

When there were timing violations, the critical path of the design was in the Encoder
block, in this case the Sample-Adaptive Entropy Coder, due to the fact that it is the most
demanding part of the implementation.
Moreover, the timing violations were sorted out as Intra-Clock Paths because the whole

system is using just one clock signal, so no different clock domains to deal with [15].

Despite this unexpected result, the timing performance is still quite good, and fixing
the code to break down the equations properly would be really easy to perform, since the
source code architecture has already been designed thinking in this kind of eventualities
(see section 3.4).

118

5.3 Functionality outcome

While the design of the source code has followed a top-down approach (see chapter 3), its
validation has followed a bottom-up approach. In other words, the design started from
a high-level point of view, making first the IPs architecture, to a low-level point of view,
where they are implemented; and validation started checking all IPs in an isolated way,
to finally perform the integration tests.
This is the V-Model methodology, created to reduce the working effort, and to maximize

the flexibility and results [12].

Therefore, sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4 detail the isolated and integration tests
that have been carried out, and their respective results.
Such tests have been performed using the testbenches architecture, created with the

VUnit framework, as detailed on section 4.2.1.

Both isolated and integration tests consist on visual validation by checking the wave-
forms, and additionally for the very top entity (see section 5.3.4), results are also com-
pared with the VHDL implementation from reference [17].
Anyway, because of the huge quantity of signals and configuration possibilities in the

design, it is almost impossible to attach a waveform of every one of them. Instead,
results are simply explained, and only waveforms showing the most interesting parts are
attached here.

As explained on section 3.4, and applicable to the whole source code, all waveforms
below demonstrate that no signal nor variable have neither open-circuit nor short-circuit
state in any part of the design.

5.3.1 Image Coordinates Control IP block

The Image Coordinates Control IP, the only one within this block, works as intended,
counting the coordinates depending on the selected samples input order, and all output
signals are deasserted once the input signal image_end is asserted.

Figure 5.6 is the waveform showing the expected behaviour, in this particular case
with the BIP order:

Figure 5.6: Image Coordinates Control IP waveform

119

5.3.2 Predictor IP block

5.3.2.1 Adder IP sub-block

The Adder IP, the only one within this sub-block, works as expected, and Figure 5.7
shows its waveform:

Figure 5.7: Adder IP waveform

As explained on section, this IP successfully outputs all original samples sz(t) to pro-
duce the predicted samples ŝz(t), and once both are fully received and stored (middle
point from Figure 5.7), it outputs now the synchronized prediction residual ∆z(t).

Such behaviour, which involves storing a lot of data and outputting the whole image
twice, explains why Figures 10.2 and 10.3 say that this IP requires a lot of resources
(mainly FFs).

5.3.2.2 Quantizer IP sub-block

Figure 5.8: Quantizer IP waveform

Only involving the Quantizer IP, Fidelity Control IP and Error Limit Values Table,
Figure 5.8 shows the waveform of the Quantizer sub-block.

Values are computed as expected, and the different enable signals and image coordi-
nates clearly define when the sub-IPs start working.

In this case, Periodic Error Limit Updating with absolute error limit option is enabled,
so one can see how Error limit values (and maximum error mz(t) too) changes over time.

120

5.3.2.3 Mapper IP sub-block

Figure 5.9 is the waveform of the Mapper sub-block, covering the Mapper IP and the
Scaled Difference IP:

Figure 5.9: Mapper IP waveform

This sub-block compute the signed quantizer index qz(t) and scaled difference θz(t) as
intended, and properly synchronized by means of the enable signal and image coordinates.

5.3.2.4 Sample Representative IP sub-block

The waveform from the Sample Representative sub-block is shown in Figure 5.10, in-
cluding the Sample Representative IP, Clipped Quantizer Bin Center IP and Double-
Resolution Sample Representative IP:

Figure 5.10: Sample Representative IP waveform

The figure above shows clearly all synchronization signals among the sub-IPs, which
consist on delay signals (such as original sample sz(t) or clipped quantizer bin center
s
′
z(t)) in order to provide the right value together with the right image coordinates.

All values are computed as expected and forwarded to the output properly synchro-
nized, with no data lost in between.

121

5.3.2.5 Prediction IP sub-block

The Prediction sub-block includes a total of 12 sub-IPs: Samples Store IP, Shift Register
IP, Local Sum IP, Local Differences IP, Local Differences Vector IP, Weight Update Scal-
ing Exponent IP, Double-Resolution Prediction Error IP, Weights Vector IP, Predicted
Central Local Difference IP, High-Resolution Predicted Sample IP, Double-Resolution
Predicted Sample IP and Predicted Sample IP.
Figure 5.11 shows the waveform including all these IPs:

Figure 5.11: Prediction IP waveform

This test shows that all values are computed as intended, and more importantly, no
data is lost along this long path, which even includes a close-loop branch.

Here, a lot of enable signals and image coordinates can be seen, which successfully
control the synchronization of such 12 sub-IPs.

5.3.2.6 Predictor Top IP integration test

The Predictor Top IP, where sections 5.3.2.1, 5.3.2.2, 5.3.2.3, 5.3.2.4 and 5.3.2.5 are
included, simply consisted on seeing that all data is flowing as expected, given that if
the sub-IP can compute their values in a isolated test, here it should be the same.

The synchronization among all modules is correct and values are computed as expected,
even with the Periodic Error Limit Updating option enabled, wheremaximum errormz(t)
changes over time.
And in the same way as discussed with the Adder IP, this test shows the whole input

image is forwarded twice: one to generate the predicted sample ŝz(t), and using such
signal, the proper prediction residual ∆z(t) can be generated, computing the final mapped
quantizer index δz(t).

122

Figure 5.12 is the waveform of the Predictor Top IP.

Figure 5.12: Predictor Top IP waveform

5.3.3 Encoder IP block

5.3.3.1 Encoder Header IP sub-block

Figure 5.13 is the waveform of the Encoder Header IP. As this IP is fully combinational
logic (so payload is generated immediately), there is no need to see a graph with signals
changing over time (because they do not), but instead, just see the initial values:

Figure 5.13: Encoder Header IP waveform

This figure shows that Image, Predictor and Encoder Metadata are generated according
to the configuration above, and they are saved on very long signals, with their respective
useful data-width on separated signals.
Then, one can see that such data is joined together in the final Encoder Header meta-

data, concatenating only the meaningful bits, and again, the new data is stored on a very
long signal, with another signal in parallel detailing the useful data-width.

123

5.3.3.2 Sample-Adaptive Entropy Coder IP sub-block

Figure 5.14 shows the waveform of the Sample-Adaptive Entropy Coder sub-block, cov-
ering the Sample-Adaptive Entropy Coder IP, Sample-Adaptive Statistic IP and Sample-
Adaptive GPO2 Coder IP:

Figure 5.14: Sample-Adaptive Entropy Coder IP waveform

The values are properly computed, encoding the payload as expected, and synchronized
among the sub-IPs, so no data is lost.
Moreover, it can be seen that apart from the mapped quantizer index δz(t), new Error

Limit values (with its associated enable signal) are periodically introduced after some
clock cycles, at which point they are encoded as well.

As the output codeword is variable-length too, the waveform shows such payload is
stored into a fixed-size signal, and another signal in parallel with its useful data-width.

5.3.3.3 Hybrid Entropy Coder IP sub-block

Figure 5.15: Hybrid Entropy Coder IP waveform

124

Figure 5.15 is the waveform of the Hybrid Entropy Coder sub-block, covering the Hybrid
Entropy Coder IP, Hybrid Statistic IP, Hybrid High-Entropy Coder IP, Hybrid Low-
Entropy Coder IP and Hybrid Compressed Image Tail IP.

On a very similar way as with the Sample-Adaptive Entropy Coder sub-block, here the
mapped quantizer index δz(t) are encoded as expected, and when new Error Limit values
are received, they are encoded too. Moreover, the output variable-length codeword is
also generated along with its useful data-width in parallel.

It turns out the Hybrid Entropy Coder sub-block is not synthesizable, more concretely
due to the Hybrid Low-Entropy Coder IP, which is using several array of strings to handle
the Hybrid Code/Flush Tables. To overcome this problem, a small update by defining a
’string to std_logic_vector ’ conversion would be necessary, redefining such tables.

5.3.3.4 Packer IP sub-block

Figure 5.16 is the waveform for Packer FIFOs IP and Parallel Synchronous FIFOs IP:

Figure 5.16: Packer IP waveform

This configuration both Encoder Header and Encoder Body data comes in together,
each one with their respective data-width in parallel, and they are packed and outputted
as intended. It always starts packing with the Encoder Header, and then it moves to the
Encoder Body, filling the packet with 0-padding in the last iteration for both cases.

Although the Encoder Body data was already coming in while packing the Encoder
Header data, it can be seen that no data was lost, thanks to the Parallel Synchronous
FIFOs, holding the data until ready to be processed.

Furthermore, the flags to know when the packing started, finished, new packet created,
FIFOs are ready, header or body data are being outputted, also work as expected.

125

5.3.3.5 Encoder Top IP integration test

Figure 5.17 shows the waveform of the Encoder Top IP:

Figure 5.17: Encoder Top IP waveform

The Encoder Top IP, where sections 5.3.3.1, 5.3.3.2, 5.3.3.3 and 5.3.3.4 are included,
simply consisted on seeing that all data is flowing as expected, given that if the sub-IP
can compute their values in a isolated test, here it should be the same.

The synchronization among all modules is correct, and all values are computed as
expected, generating packets out from the Encoder Header and Encoder Body data, with
the corresponding flags asserted properly.

Additionally from the Encoder Top IP, the generated packets are also properly re-
ordered, byte to byte, depending on the Endianness configuration.

5.3.4 Top Entity IP integration test

Figure 5.18 shows the waveform of the CCSDS-123 Top Entity IP. This block includes
not only all IPs tested above, but also the Predictor-Encoder Interconnection IP, which
connects the Predictor and Encoder blocks.

Once the Predictor IP outputs the mapped quantizer index δz(t), such data is forwarded
into the Encoder IP, swapping with the Error Limit Values every time they are updated.
Finally, the Encoder IP outputs the data packets together with all flags as intended.

Working with this very CCSDS-123 Top Entity IP, not only the waveform from Figure
5.18 was used to do a visual validation of the mathematical operations and synchro-
nization signals, but something else was carried out. Using the ’standardized’ test-case
configuration from section 4.3, the source code from reference [17] was also used to com-
pare the output signals from the two implementations.
Both projects output the same quantity of packets and with the same pay-

load, under several different user configurations.

126

Figure 5.18: Top Entity IP waveform

5.4 Performance & Final results

As just said on section 5.3, the presented CCSDS-123 Issues 1 & 2 algorithm is fully
working as intended, at least in all configured test-cases, because there are too many
configuration permutations to test every single one of them.
Always using the waveforms, the tests were carried out by both visual validation of

signals (applicable for all IPs on an isolated way, plus integration tests), and by comparing
with the VHDL implementation from reference [17] too (applicable for Top Entity IP).

Apart from functionality, these tests were also used to compute the total clock cycles
(TotalCC) to fully compress an incoming image, reflected on equations 5.1, 5.2 and 5.3:

PredictorCC = (NX ∗NY ∗NZ) + (2 ∗ (1 + 2 + 2)) + (8 + 3) (5.1)

EncoderCC = 0 + (4 + 6) + 2 (5.2)

TotalCC = (NX ∗NY ∗NZ) + PredictorCC + EncoderCC (5.3)

NX , NY and NZ are the configured image dimensions, and the numbers refer to the
time that both blocks need to compute their respective output signals (see chapter 3).
In the particular case of the Predictor block, its equation shows how the input image

is fully forwarded once (NX ∗ NY ∗ NZ), traveling the whole block (1 + 2 + 2 + 8 + 3)
to finally cross the open-loop one more time (1 + 2 + 2), in order to generate the final
prediction residual ∆z(t) (see section 3.7.1) and then mapped quantizer index δz(t).
Nevertheless, the TotalCC value could slightly change depending on the image com-

pression ratio that the specific user configuration provides.

After several tests, the measured image compression ratio is between the 40% and
60% of the original input image size, and such fluctuations depend on the provided
user configuration, mainly by the user-specified parameter output word size B.

127

5.5 Time planning

The system introduced in this report is the work of 15 months. It started as a Specializa-
tion Project [24], scheduled from 28/08/2020 to 19/12/2020, and then it continued with
the present Master Thesis, scheduled from 10/01/2021 to 18/01/2022.

The time planning (Specialization Project + Master Thesis) was structured into the
following points:

1. Packages: It comprises the development of the VHDL packages described in sec-
tion 3.4.1. It took an approximated time of 160 hours.

2. IPs development: It comprises the creation of every single IP, covering sections
3.5 to 3.9.3, as well as their respective VUnit testbenches to perform their valida-
tion. It took an approximated time of 1000 hours.

3. Simulations Bash file: It comprises the bash file to unify and execute all VUnit
testbenches. It took an approximated time of 80 hours.

4. Xilinx Vivado Bash file: It comprises the bash file, together with the TCL
framework, to automate the creation of the Xilinx Vivado project, along with the
bitstream and reports generation. It took an approximated time of 100 hours.

5. IPs integration: It comprises the constraint files declaration and all necessary
corrections in the source code files, so that there are no timing violations and the
bitstream can be successfully created. It took an approximated time of 60 hours.

6. Documentation: It comprises writing the present report and all documentation
research associated with it, such as exploring the current published papers about
the CCSDS-123 standard. It took an approximated time of 400 hours.

Therefore, the total time invested into this project has been an approximated amount
of 1800 hours.

Figure 5.19 represents the Gantt chart for this time planning, and some interesting
points can be extracted from it.

• Although the Predictor block integrates many sub-IPs, the approach of one IP per
mathematical operation supposed a lot of small IPs that were developed quite fast.

– This applies only to the easy blocks, as some others (like the Weights vector
IP) were a bit difficult to fully understand them prior to be implemented.

• The Encoder block required more effort to be developed than the Predictor block,
even though the second one is simpler than the first one.

• Obviously, the write of this report took quite a lot of time, so it slowed down the
source code development and its validation.

128

Figure 5.19: Gantt chart

129

6 Discussion

Compared to the previous Specialization Project [24], where the basis of the current work
comes from, now the Master Thesis completes the system, a work with fairly more than
7.5+30 ECTS behind its source code.

The implementation with a modular and reusable approach continues to be the right
direction to go one more time. Keeping one IP per (almost) every single mathematical
operation (having a 1:1 match with the structure of the provided documentation) has
definitely ease the development and the validation of the source code. This could be seen
while testing and debugging the system, specially in the two close-loop branches from
the Predictor block.
And in the same way, the source code is considered to be prepared for future improve-

ments or bug fixes.

Now that the whole system has been implemented, the most complex part of it has
been with no doubt the Encoder block. While it is true that such block is smaller than
the Predictor block, its nature of variable-length output signals (for Encoder Header,
Encoder Body and Packer parts) required a lot of time for design and simulation, in
order to ensure the source code would work under any possible user configuration.

The VUnit and TCL frameworks, commanded by their respective bash files, resulted
to be very powerful tools to automate a lot of work, specially when using the Xilinx
Vivado IDE, a very demanding and quite slow software tool.
For simulation, the defined VUnit testbenches architecture along with the ModelSim

Simulator Engine were very useful to quickly test and debug the IPs. However, it is
also true that the validation process was quite time-consuming because there was no
time to implement automatic pass/fail criteria assertions, which could have potentially
automated all the source code validation (even though the fully-configurable nature of
the source code would have made really difficult this to happen).

Always keeping in mind that the results can slightly change depending on the selected
user configuration, the bitstream takes very little time to be generated, around 20 min-
utes (since this is a pure PL design), and it demands only around 10% of the resources
from the FPGA target device.
Furthermore, the clock frequency had to be dropped to 40MHz in order to meet all

the timing constraints, instead of the original expectations of around 100-125MHz.
This was because the equations have not been broken down in several steps per clock
cycle, yet everything wanted to be done at once.

130

While this unforeseen issue with the timing constraints could be seen as a design
problem, the truth is quite the contrary. Thanks to the aforementioned modular and
reusable source code architecture, already created thinking in the improvements and bug
fixes coming for the future, it turns out that such fix of breaking down the equations is
quite easy to perform, not affecting the integrity of the design at all.
Indeed, this proves one more time how robust the presented source code is, and how

well prepared for the future it is.

Last but not least, the implemented source code is functionally working as intended,
statement validated from 2 different approaches: visual validation of mathematical op-
erations and signals synchronization, and comparing the results with the VHDL imple-
mentation from reference [17].
Additionally, equation 5.3 defines the total number of clock cycles to fully compress

the input image, and an image compression ratio of between 40% and 60% the original
input image size (depending on the selected user configuration, specially by the output
packet size) has been measured.

131

7 Related Work

A bunch of papers have been written proposing partial implementations of the CCSDS-
123 Issue 1 & 2 algorithms to be run on configurable hardware (FPGA), but so far there
are no full implementations of them, which makes the present work be the state-of-the-art
of the CCSDS-123 standard.

For example, references [17] and [18] introduce a partial (but completely functional)
implementation of the Issue 1 algorithm, tested under many different FPGA platforms
and with an outstanding performance.
Reference [9] is also a partial implementation with good performance results, but

developed in C, to run on a uC.

Other papers just focus on the Hybrid Entropy Coder, the unique new Entropy Coder
introduced in the Issue 2 algorithm, and also the most complex among the three available
ones (together with Sample-Adaptive Entropy Coder and Block-Adaptive Entropy Coder).

Reference [14] is a study of its insights and capabilities, and references [21] and [26]
introduce a complete implementation of the same Entropy Coder, detailing the necessary
resources to build it up along with its performance results.

Reference [28] introduces a partial implementation of the Issue 2 by using HLS, giving
a software approach to the algorithm, but still to be run on configurable hardware.
Performance and resources usage are also discussed in here, but being less size-efficient
compared to a pure HDL implementation.

Finally, a quite remarkable reference is [25]. It introduces an implementation of the
Issue 2 (only the new features in respect of Issue 1), yet the really interesting point is the
proposal of using a new samples input order apart from BSQ, BIP and BIL: the Frame
Interleaved by Diagonal (FID). This input order promises to reduce the dependencies
with the neighbour samples on the Predictor stage, and so, to perform a lighter and
faster payload compression.

None of these implementations integrates the Encoder Header (section 3.9.1), Supple-
mentary Information Tables (section 3.9.1.1.1) nor Error Limit values update (section
3.7.2.1.1) parts, to say some examples, and this is the reason why the present work is
currently by far the most complete implementation of the CCSDS-123 Issue 1 & 2 al-
gorithms, integrating the whole CCSDS-123 standard, with the unique exception of the
Block-Adaptive Entropy Coder (logic coming from Issue 1).
Nonetheless, the aforementioned works have been excellent references for this one, and

hopefully the present report will become a reference point for future papers as well.

132

8 Future Work

The present work is the most complete implementation of the CCSDS-123 Issues 1 & 2
algorithm released as of today, at least for the FPGA world, and providing very positive
results so far. Nonetheless, there are still some things to be done in order to make this
implementation more robust and to give it a lot of added value.

The very first point is to break down all implemented equations on the design, so that
a single mathematical operation per clock cycle is executed. This would let increase the
systems’ clock frequency from the current 40MHz to around 100-125MHz or even more.
Even though that would make the system need more clock cycles to successfully compress
an image, in terms of data-rate would be a big improvement.
The interesting part of this point is that is quite easy to perform, as the source code

architecture has been developed in a way that this kind of improvements or bug fixes can
be done with a minimum effort, not affecting the source code integrity at all.

Another point would be to implement the Block-Adaptive Entropy Coder. This IP
comes from the Issue 1 algorithm (not updated on Issue 2), and it is the very last
remaining piece of logic in here to have a 100% complete implementation of the CCSDS-
123 standard. This Entropy Coder is less complex than the new Hybrid Entropy Coder,
so its implementation should not be time-consuming at all.

Next would be the validation by hardware of the source code, as the pandemic situation
with Covid-19 did not give any change to work on the assigned hardware platform. And
although extensive validation by simulation has been performed, the fully-configurable
nature of this algorithm always leaves an open door for creating more test-cases, and to
provide even more consistent results. The Predictor block is the part of the code with
more configurable parameters, so it would be smart to start from that section on.

Once improvements have been suggested, the next statements are referred to the added
value, and the most interesting one is to integrate a PS-PL communication to let the PS
either read or modify the PL configuration in real-time.
Now, all system configuration is static, which means re-compilation is mandatory every

time a parameter needs to be modified, but adding an AXI-Lite interface in the very top
IP of the design, for example, to receive in real-time the total image coordinates of the
next image, would prepare this algorithm to (de)code images of different sizes without
stop working at all. This proposal opens up a huge range of new possibilities indeed.

All these proposals and suggestions ensure a more reliable and robust solution to
be used in the outer space with no problems, and also prepared to overcome the new
challenges that are about to come.

133

9 Conclusions

The present report introduces a VHDL-2008 full implementation of the CCSDS-123 Issue
1 & 2 algorithms (with the unique exception of the Block-Adaptive Entropy Coder) to
run on a FPGA. To the best of the author’s knowledge, this work represents the current
state-of-the-art and it pretends to be a reference point to all future works related with
the CCSDS-123 standard.

The source code has been designed with the modularity, reusability and readability
principles as its core. Implementing a single IP for (almost) every single mathematical
operation, it offers the possibility to update or fix the code with a minimum effort (so
already prepared for the future) as well as a 1:1 match with the provided documentation
(so really fast to understand it).

The VUnit framework has been used to perform validation by simulation, which au-
tomated and accelerated this process a lot, and all executed tests were successful, so the
implementation is already prepared to work. Anyway, because of the fully-configurable
nature of this implementation, it was not possible to test every possible test-case.
Besides, even though the pandemic situation with the Covid-19 did not give any chance

to perform validation by hardware, a TCL framework is also provided to automate the
creation of a Xilinx Vivado project along with the bitstream and HW integration reports
generation (taking about 20 minutes to finish). This framework saves a lot of time while
developing as well.

The complete system just uses a single clock signal to work, and the timing report shows
that a maximum clock frequency of 40MHz can be used to perform all operations on time.
Breaking down all implemented equations, to execute one mathematical operation per
clock cycle, something really easy to do thanks to the introduced modular and reusable
source code architecture, would increase such clock frequency to around 100-125MHz, or
even more.
Furthermore, this implementation only requires around 10% of the resources from the

chosen target device: Zynq UltraScale+ MPSoC ZCU102 Evaluation Board. Nevertheless,
the results can slightly change depending on the selected user configuration.

The total clock cycles require to fully compress an input image is precisely defined on
equation 5.3, very closely related to such image dimensions, showing that the Issue 2
requires substantially more time to finish than Issue 1 because of the two new close-loop
branches.
Besides, an image compression ratio of between 40% and 60% in respect of the original

input image size, depending on the user configuration, has been measured.

134

Thanks to the aforementioned design principles applied while developing the code,
the expectations now are that this implementation is used on a real environment for the
(de)compression of hyperspectral images under the CCSDS-123 standard, and in case the
source code shall be either upgraded or fixed, a new solution should not be developed, but
instead, this work should act as a basis for the improvements, with the aim of creating
a very robust commercial solution of the CCSDS-123 standard to run on FPGA.

Hopefully this work can be a good contribution to the HYPSO mission and SmallSat
project in the NTNU, and it can help to many others projects in the future.

135

10 Appendix - List of codes

10.1 Mathematical conventions

In order to interpret all equations from chapter 2 properly, the following mathematical
notations must be understood first:

• The largest integer n such that n ≤ x:

(10.1)

• The smallest integer n such that n ≥ x:

(10.2)

• The modulus of an integer M with respect to a positive integer divisor n:

(10.3)

• The R-bit two’s complement integer that is congruent to x modulo 2R:

(10.4)

• The clipping of the real number x to the range [xmin, xmax]:

(10.5)

• The sign function sgn(x):

(10.6)

• The sign-plus function sgn+(x):

(10.7)

136

10.2 Image parameters

Table 10.1: Image parameters [10, p.98]

10.3 Predictor parameters

Table 10.2: Predictor parameters (1/2) [10, p.98-100]

137

Table 10.3: Predictor parameters (2/2) [10, p.98-100]

10.4 Encoder parameters

Table 10.4: Encoder parameters [10, p.100-101]

138

10.5 VHDL Style Guide

All source code has been developed as plain-text using only VHDL-2008 (so without high-
level tools), and following quite strict coding rules in order to enhance the readability as
much as possible.

Hereafter is the complete style guide used for the development [16]:

• Generics and constants are written in upper case (e.g. ’ONE_CONSTANT’) to
emphasize them.

• Everything else is written in lower case, including entity/signal names, keywords...

• All identifiers written in C style (e.g. ’long_identifier_made_using_underscores’).

• Components are used to instantiate VHDL entities instead of direct instantiation.

• Component declarations are put in a package if used in more than one place.

• Prefixes and suffixes are used for different identifiers:

– Non-interface ports:

∗ In ports: _i

∗ Out ports: _o

∗ I/O ports: _io

– Interface ports (AXI4-Full, AXI4-Stream...):

∗ Master ("client", making requests): m_

∗ Slave ("server", responding to requests): s_

– Signals: _s

– Variables: _v

– Alias: _a

– Types: _t

– Constants: _C

– Generics: _G

– Generate label: g_

– Process label: p_

– Block label: b_

– Instantiation label: i_

139

10.6 HDL Coding Guidelines

The following list shows the guidelines used in this project (and specially for further
improvements) to get an easily maintainable source code [16]:

• Write readable, easily understandable, self-explaining code:

– Take good care about identifier names. Do not use unnecessary abbreviations
which make the code hard to read. Make every identifier explain itself and its
intention. Take your time to think about proper names.

– Use functions, procedures and auxiliary variables with strong names to make
the code more readable and self-explaining.

– Use comments to explain the big picture and give background information
beyond what is written in the code (e.g. explaining the idea behind a certain
algorithm).

– If you feel the need to write comments explaining what you are doing (or how
you are doing it), rewrite the code to explain itself. Comments get outdated
easily. The code in contrast is always up to date.

• Do not repeat yourself:

– Do not copy and paste code. Extract re-usable code into entities, functions
or procedures.

– Do not use "magic numbers" in the code. Use constants, functions or pro-
cedures defined at proper places instead (within the smallest scope at which
you need them).

– Make use of the single source of truth: No information or algorithm may be
redundant. Everything should be defined in one place only.

• Write modular code:

– Every module (a VHDL entity, a function, a procedure or a process) should
have exactly one job. If a module does several things at once, try to split the
module into several smaller ones.

– Reduce the dependencies between all modules. Each module should have a
clear, well-defined interface with minimal functional dependencies (whether
explicit or implicit) with other modules. Each module should be able to work
on its own.

– Do not use global constants to configure the code. Use generics instead wher-
ever possible.

– Use packages to define constants, functions and procedures. Remember that
also a package should serve exactly one purpose. Do not randomly assemble
unrelated constants, functions and procedures into random package. Every-
thing within a package should be closely related.

140

• Write reusable code:

– Whenever you have the chance, break down each problem into smaller and
reusable pieces.

– Use already existing modules wherever possible.

– Write generic, reusable modules when no modules exist for your problem yet.

– Communicate! Whenever writing new (possibly) reusable modules, agree on
the interface and behaviour with the team.

• Stay at one abstraction layer:

– Break down your problem top down. Start by writing abstract code at the
highest possible level and use black-box modules to perform the more detailed
work. Implement these black-box modules using the same approach.

– Always work as near to the "problem domain" as possible instead of at the
"solution domain". Use high level data types (records) which represent the
solution to your problem instead of using low level data types (std_logic) for
everything.

– Do not mix high level and low level code. Do not instantiate FPGA primitives
within a high level code. Each code should only depend on your problem
(problem domain) but NOT on the hardware OR the other way around. Never
write problem specific code which depends on specific hardware.

– Avoid mixing the level of abstraction within one module. Again, use functions,
procedures and entities as interfaces to lower or higher abstraction layers.

• Write automated test-benches for your modules:

– Think about all major possible use cases of your modules (not only the use
cases you are handling right now).

– Define the behaviour of the modules as generic as possible (of course depending
on the nature and the general reusability). Define test cases covering all the
use cases.

– Implement a VHDL test-bench for all the test cases. Each test-bench should
have automatic pass/fail checks.

– Extend the test benches regularly. Whenever implementing new features or
fixing bugs, start by writing new test cases for it.

– Perform regression tests with every new change by running all previously
existing test cases.

141

10.7 SoC Package Pinout

Figure 10.1 is the pinout of the SoC XCZU9EG, package FFVB1156 [36, p.145]:

Figure 10.1: SoC XCZU9EG-FFVB1156 package pinout

142

10.8 Extended Utilization Reports

Figure 10.2: Extended Utilization report after Synthesis

Figure 10.3: Extended Utilization report after Implementation

143

1 -- Example 1 for handling "signed" and "unsigned" signals with different data sizes
2 p_example1 : process(clock_i) is
3 begin
4 if rising_edge(clock_i) then
5 if (SMPL_TYPE_G = '0') then -- Incoming data is recognized as "signed"
6 comp1_s <= std_logic_sector(resize(resize(signed(data_s0_i), D_C+3) -

resize(signed(data_s3_i), D_C+3), D_C+2));
7 else -- SMPL_TYPE_G = '1' -- Incoming data is recognized as "unsigned"
8 comp1_s <= std_logic_sector(resize(signed(resize(unsigned(data_s0_i), D_C+3))

- resize(signed(data_s3_i), D_C+3), D_C+2));
9 end if;

10 end process p_example1;
11
12
13
14 -- Example 2 for handling "signed" and "unsigned" signals with different data sizes
15 p_example2 : process(clock_i) is
16 begin
17 if rising_edge(clock_i) then
18 comp1_s <= std_logic_sector(to_signed(4 - fi_s, comp1_s'length));
19 comp2_s <= std_logic_sector(resize(shift_sgn(resize(signed(data_s1_i), Re_C),

OMEGA_C), Re_C));
20 comp3_s <= sgn(signed(data_quant_i));
21 comp4_s <= std_logic_sector(resize(to_signed(comp3_s, Re_C*2) *

resize(signed(data_merr_i), Re_C*2), Re_C*2));
22 comp5_s <= std_logic_sector(resize(signed(comp2_s) - signed(comp4_s), Re_C*2));
23 comp6_s <= std_logic_sector(resize(resize(signed(data_s6_i), Re_C) -

resize(signed(PW_OM1_C), Re_C), Re_C));
24 comp7_s <= std_logic_sector(resize(resize(signed(comp1_s), Re_C*2) *

resize(signed(comp5_s), Re_C*2) + resize(signed(comp6_s), Re_C*2), Re_C*2));
25 comp8_s <= std_logic_sector(resize(shift_sgn(signed(comp7_s), -D_C)), Re_C));
26 end if;
27 end process p_example2;
28
29
30
31 -- Example 3 for handling "signed" and "unsigned" signals with different data sizes
32 p_example3 : process(clock_i) is
33 begin
34 if rising_edge(clock_i) then
35 comp1_s <= std_logic_sector(resize(resize(signed(data_lsum_i), D_C+6) -

shift_sgn(resize(signed(SMPL_LIMIT_G.mid), D_C+6), 2), D_C+6));
36 comp2_s <= std_logic_sector(resize(resize(signed(data_pred_cldiff_i), Re_C+4) +

shift_sgn(resize(signed(comp1_s), Re_C+4), OMEGA_C), Re_C+4));
37 comp3_s <= std_logic_sector(mod_R(signed(comp2_s), Re_C));
38 comp4_s <= std_logic_sector(resize(resize(signed(comp3_s), Re_C) +

shift_sgn(resize(signed(SMPL_LIMIT_G.mid), Re_C), OMEGA_C+2) +
resize(signed(PW_OM1_C), Re_C), Re_C));

39 comp5_s <= std_logic_sector(resize(shift_sgn(resize(signed(SMPL_LIMIT_G.min),
Re_C), OMEGA_C+2), Re_C));

40 comp6_s <= std_logic_sector(resize(shift_sgn(resize(signed(SMPL_LIMIT_G.max),
Re_C), OMEGA_C+2) + resize(signed(PW_OM1_C), Re_C), Re_C));

41 comp7_s <= std_logic_sector(clip(signed(comp4_s), signed(comp5_s),
signed(comp6_s)));

42 end if;
43 end process p_example3;

10.9 Signed/Unsigned signals handling

144

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 library work;
6 use work.param_image.all;
7 use work.types_image.all;
8 use work.utils_image.all;
9
10 -- Table E-2: Predictor Quantities
11 package param_predictor is
12
13 constant P_C : integer range 0 to 15 := work.utils_image.min(3,

NZ_C); -- Number of spectral bands used for prediction
14 constant MAX_PZ_C: integer range 0 to 15 := P_C;

-- Maximum number of previous spectral bands for prediction in band Z
15 constant MAX_CZ_C: integer range 0 to MAX_PZ_C+3 := P_C + 3;

-- Maximum number of local diff. values for prediction in band Z
16
17 constant DA_C : integer range 1 to (work.utils_image.min(D_C-1, 16)) := 8;

-- Absolute error limit bit depth
18 constant A_C : integer range 0 to (2**DA_C-1) := 10;

-- Absolute error limit constant
19 constant DR_C : integer range 1 to (work.utils_image.min(D_C-1, 16)) := 8;

-- Relative error limit bit depth
20 constant R_C : integer range 0 to (2**DR_C-1) := 20;

-- Relative error limit constant
21
22 constant U_C : integer range 0 to 9 := 2;

-- Error limit update period exponent
23
24 constant THETA_C : integer range 0 to 4 := 0;

-- Sample representative resolution
25 constant FI_ARR_C : array_integer_t(0 to NZ_C-1) := (others => 0);

-- Sample representative damping
26 constant PSI_ARR_C: array_integer_t(0 to NZ_C-1) := (others => 0);

-- Sample representative offset
27
28 constant C_ARR_C : array_integer_t(0 to NZ_C-1) := (others => 0);

-- Intra-band weight exponent offsets
29 constant Ci_MTX_C: matrix_integer_t(0 to NZ_C-1)(0 to MAX_PZ_C-1) := (others =>

(others => 0)); -- Inter-band weight exponent offsets
30
31 constant V_MIN_C : integer range -6 to 9 := -6;

-- Initial weight update scaling exponent parameters
32 constant V_MAX_C : integer range V_MIN_C to 9 := 9;

-- Final weight update scaling exponent parameters
33 constant T_INC_C : integer range 4 to 11 := 4;

-- Weight update scaling exponent change interval
34
35 constant OMEGA_C : integer range 4 to 19 := 19;

-- Weight resolution
36 constant W_MIN_C : signed(OMEGA_C+3-1 downto 0) := (OMEGA_C+3-1 => '1',

others => '0'); -- Minimum possible weight value
37 constant W_MAX_C : signed(OMEGA_C+3-1 downto 0) := (OMEGA_C+3-1 => '0',

others => '1'); -- Maximum possible weight value
38 constant Q_C : integer range 3 to (OMEGA_C+3) := 8;

-- Weight initialization resolution
39 constant Re_C : integer range (work.utils_image.max(32, D_C+OMEGA_C+2)) to 64

:= 64; -- Register size in bits, used in prediction calculation
40
41 -- Weight initialization vector (in two's complement)
42 constant LAMBDA_MTX_C : matrix_signed_t(0 to NZ_C-1)(0 to MAX_CZ_C-1)(Q_C-1

downto 0) := (others => (others => (Q_C/2-1 => '1', others => '0')));
43
44 end package param_predictor;

10.10 VHDL Package example

145

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 library work;
6 use work.gen_labels.all;
7 use work.param_image.all;
8 use work.types_image.all;
9 use work.utils_image.all;
10
11 use work.param_encoder.all;
12
13 entity image_coord_control is
14 generic (
15 -- 00: BSQ order, 01: BIP order, 10: BIL order
16 SMPL_ORDER_G : std_logic_vector(1 downto 0)
17);
18 port (
19 clock_i : in std_logic;
20 reset_i : in std_logic;
21
22 enable_i : in std_logic;
23 enable_o : out std_logic;
24
25 image_end_i : in std_logic;
26 img_coord_o : out img_coord_t
27);
28 end entity image_coord_control;
29
30 architecture behavioural of image_coord_control is
31 -- Regardless of the sample order, ONLY the first coordinate to change must

start with '-1' (either 'x' or 'z'), so that the first change outputs (0, 0, 0)
32 signal x_s : integer range -1 to NX_C-1 := iif(SMPL_ORDER_G = BIP_C, 0, -1);

-- X coord: Sample/Width
33 signal y_s : integer range -1 to NY_C-1 := 0;

-- Y coord: Frame
34 signal z_s : integer range -1 to NZ_C-1 := iif(SMPL_ORDER_G = BIP_C, -1, 0);

-- Z coord: (Spectral) Band
35
36 signal enable_s : std_logic := '0';
37 signal image_end_s : std_logic := '0';
38 signal stall_s : std_logic := '0';
39
40 -- Intermediate values (only for BIP/BIL input order)
41 constant M_C : integer := iif(SMPL_ORDER_G = BIP_C, M_BIP_C, M_BIL_C);
42 constant I_MAX_C : integer := division_up(NZ_C, M_C);
43
44 begin
45 -- Input values delayed to synchronize them with the next modules in chain
46 p_image_delay : process(clock_i) is
47 begin
48 if rising_edge(clock_i) then
49 if (reset_i = '1') then
50 image_end_s <= '0';
51 enable_s <= '0';
52 else
53 -- "image_end_s" is the only signal that must not be restarted with

"stall_s", so such condition only applies for "enable_s"
54 image_end_s <= image_end_i;
55 if (stall_s = '1') then
56 enable_s <= '0';
57 else
58 enable_s <= enable_i;
59 end if;
60 end if;
61 end if;
62 end process p_image_delay;
63
64

10.11 Image Coordinates Control IP source code

146

65 -- Once whole image has been introduced, next one must not start until current
one has been completely processed

66 p_stall_count : process(reset_i, image_end_s, image_end_i, x_s, y_s, z_s) is
67 begin
68 if (reset_i = '1') then
69 stall_s <= '0';
70 else
71 if (x_s >= NX_C-1 and y_s >= NY_C-1 and z_s >= NZ_C-1) then
72 stall_s <= '1';
73 else
74 -- Due to synchro. issues, the deassertion of "stall_s" can ONLY be

done with a falling edge of "image_end_i"
75 if (image_end_s = '1' and image_end_i = '0') then
76 stall_s <= '0';
77 end if;
78 end if;
79 end if;
80 end process p_stall_count;
81
82 -- Coordinates counting for input order BSQ
83 g_img_coord_BSQ : if (SMPL_ORDER_G = BSQ_C) generate
84 p_img_coord_BSQ : process(clock_i) is
85 begin
86 if (rising_edge(clock_i)) then
87 if (reset_i = '1' or stall_s = '1') then
88 x_s <= -1; -- With BSQ_C, first coordinate to change is

always 'x', so it should always start with '-1'
89 y_s <= 0;
90 z_s <= 0;
91 else
92 if (enable_i = '1') then
93 if (x_s < NX_C-1) then
94 x_s <= x_s + 1;
95 else
96 x_s <= 0;
97 if (y_s < NY_C-1) then
98 y_s <= y_s + 1;
99 else
100 y_s <= 0;
101 if (z_s < NZ_C-1) then
102 z_s <= z_s + 1;
103 else
104 z_s <= 0;
105 end if;
106 end if;
107 end if;
108 end if;
109 end if;
110 end if;
111 end process p_img_coord_BSQ;
112 end generate g_img_coord_BSQ;
113
114 -- Outputs
115 enable_o <= enable_s;
116 img_coord_o <= (
117 x => x_s,
118 y => y_s,
119 z => z_s,
120 t => y_s * NX_C + x_s
121);
122 end architecture behavioural;

147

1 entity adder is
2 generic (
3 SMPL_TYPE_G : std_logic;
4 SMPL_ORDER_G : std_logic_vector(1 downto 0)
5);
6 port (
7 clock_i : in std_logic;
8 reset_i : in std_logic;
9
10 img_en_i : in std_logic;
11 enable_o : out std_logic;
12 img_coord_i : in img_coord_t;
13 img_coord_o : out img_coord_t;
14
15 pred_en_i : in std_logic;
16 pred_coord_i : in img_coord_t;
17 data_s3_i : in std_logic_vector(D_C+1-1 downto 0);
18 data_s3_o : out std_logic_vector(D_C+1-1 downto 0);
19 data_s4_lsb_i : in std_logic;
20 data_s4_lsb_o : out std_logic;
21
22 data_s0_i : in std_logic_vector(D_C-1 downto 0);
23 en_res_o : out std_logic;
24 data_res_o : out std_logic_vector(D_C+2-1 downto 0)
25);
26 end entity adder;
27
28 architecture behavioural of adder is
29 begin
30 p_cnt_flags : process(clock_i) is
31 begin
32 if rising_edge(clock_i) then
33 if (reset_i = '1') then
34 img_cnt_s <= 0;
35 pred_cnt_s <= 0;
36 final_cnt_s <= 0;
37 img_end_flag_s <= '0';
38 pred_end_flag_s <= '0';
39 data_s4_lsb_arr_s <= (others => '0');
40 data_s0_arr_s <= (others => (others => '0'));
41 data_s3_arr_s <= (others => (others => '0'));
42 img_coord_arr_s <= (others => reset_img_coord(SMPL_ORDER_G));
43 else
44 -- Monitors and saves incoming original input samples
45 if (img_en_i = '1' and img_end_flag_s = '0') then
46 data_s0_arr_s(img_cnt_s) <= data_s0_i;
47 img_coord_arr_s(img_cnt_s) <= img_coord_i;
48 if (img_cnt_s < IMG_SIZE_C-1) then
49 img_cnt_s <= img_cnt_s + 1;
50 else
51 img_cnt_s <= 0;
52 img_end_flag_s <= '1';
53 end if;
54 end if;
55
56 -- Monitors and saves incoming predicted samples
57 if (pred_en_i = '1' and pred_end_flag_s = '0') then
58 data_s3_arr_s(pred_cnt_s) <= data_s3_i;
59 if (pred_cnt_s < IMG_SIZE_C-1) then
60 pred_cnt_s <= pred_cnt_s + 1;
61 else
62 pred_cnt_s <= 0;
63 pred_end_flag_s <= '1';
64 end if;
65 data_s4_lsb_arr_s(pred_cnt_s) <= data_s4_lsb_i;
66 end if;
67
68 -- Monitors and waits until residual values are sent out
69 if (img_end_flag_s = '1' and pred_end_flag_s = '1') then

10.12 Adder IP source code

148

70 if (final_cnt_s < IMG_SIZE_C-1) then
71 final_cnt_s <= final_cnt_s + 1;
72 else
73 final_cnt_s <= 0;
74 img_end_flag_s <= '0';
75 pred_end_flag_s <= '0';
76 end if;
77 end if;
78 end if;
79 end if;
80 end process p_cnt_flags;
81
82 p_pred_res_calc : process(clock_i) is
83 begin
84 if rising_edge(clock_i) then
85 if (reset_i = '1') then
86 data_s3_s <= (others => '0');
87 data_s4_lsb_s <= '0';
88 en_res_s <= '0';
89 data_res_s <= (others => '0');
90 else
91 if (img_en_i = '1' or pred_en_i = '1' or (img_end_flag_s = '1' and

pred_end_flag_s = '1')) then
92 if (img_end_flag_s = '0' or pred_end_flag_s = '0') then
93 if (img_end_flag_s = '0') then
94 if (SMPL_TYPE_G = '0') then
95 data_res_s <=

std_logic_vector(resize(resize(signed(data_s0_i),
D_C+3) - resize(signed(data_s3_i), D_C+3), D_C+2));

96 else -- SMPL_TYPE_G = '1'
97 data_res_s <=

std_logic_vector(resize(signed(resize(unsigned(data_s0
_i), D_C+3)) - resize(signed(data_s3_i), D_C+3),
D_C+2));

98 end if;
99 end if;
100 if (pred_end_flag_s = '0') then
101 data_s3_s <= data_s3_i;
102 end if;
103 elsif (img_end_flag_s = '1' and pred_end_flag_s = '1') then
104 data_s3_s <= data_s3_arr_s(final_cnt_s);
105 data_s4_lsb_s <= data_s4_lsb_arr_s(final_cnt_s);
106 en_res_s <= '1';
107 if (SMPL_TYPE_G = '0') then
108 data_res_s <=

std_logic_vector(resize(resize(signed(data_s0_arr_s(final_
cnt_s)), D_C+3) -
resize(signed(data_s3_arr_s(final_cnt_s)), D_C+3),
D_C+2));

109 else -- SMPL_TYPE_G = '1'
110 data_res_s <=

std_logic_vector(resize(signed(resize(unsigned(data_s0_arr
_s(final_cnt_s)), D_C+3)) -
resize(signed(data_s3_arr_s(final_cnt_s)), D_C+3),
D_C+2));

111 end if;
112 end if;
113 end if;
114 end if;
115 end if;
116 end process p_pred_res_calc;
117
118 enable_o <= enable_s;
119 img_coord_o <= img_coord_s;
120 data_s3_o <= data_s3_s;
121 data_s4_lsb_o <= data_s4_lsb_s;
122 en_res_o <= en_res_s;
123 data_res_o <= data_res_s;
124 end architecture behavioural;

149

1 entity scaled_diff is
2 generic (
3 SMPL_ORDER_G : std_logic_vector(1 downto 0);
4 SMPL_LIMIT_G : smpl_lim_t
5);
6 port (
7 clock_i : in std_logic;
8 reset_i : in std_logic;
9 enable_i : in std_logic;
10 enable_o : out std_logic;
11 img_coord_i : in img_coord_t;
12 img_coord_o : out img_coord_t;
13 data_s3_i : in std_logic_vector(D_C+1-1 downto 0);
14 data_merr_i : in std_logic_vector(D_C+1-1 downto 0);
15 scaled_diff_o : out std_logic_vector(D_C+1-1 downto 0)
16);
17 end entity scaled_diff;
18
19 architecture behavioural of scaled_diff is
20 begin
21 p_sc_diff_calc : process(clock_i) is
22 variable comp1_v, comp2_v, comp3_v, comp4_v, comp5_v :

std_logic_vector(D_C+3-1 downto 0) := (others => '0');
23 begin
24 if rising_edge(clock_i) then
25 if (reset_i = '1') then
26 comp1_v := (others => '0');
27 comp2_v := (others => '0');
28 comp3_v := (others => '0');
29 comp4_v := (others => '0');
30 comp5_v := (others => '0');
31 scaled_diff_s <= (others => '0');
32 else
33 if (enable_i = '1') then
34 if (img_coord_i.t = 0) then
35 comp1_v := std_logic_vector(resize(resize(signed(data_s3_i),

D_C+3) - resize(signed(SMPL_LIMIT_G.min), D_C+3), D_C+3));
36 comp2_v :=

std_logic_vector(resize(resize(signed(SMPL_LIMIT_G.max),
D_C+3) - resize(signed(data_s3_i), D_C+3), D_C+3));

37 scaled_diff_s <=
std_logic_vector(resize(work.utils_image.min(signed(comp1_v),
signed(comp2_v)), D_C+1));

38 else -- img_coord_i.t > 0
39 comp3_v := std_logic_vector(resize(resize(signed(data_s3_i),

D_C+3) - resize(signed(SMPL_LIMIT_G.min), D_C+3) +
resize(signed(data_merr_i), D_C+3), D_C+3));

40 comp4_v :=
std_logic_vector(resize(resize(signed(SMPL_LIMIT_G.max),
D_C+3) - resize(signed(data_s3_i), D_C+3) +
resize(signed(data_merr_i), D_C+3), D_C+3));

41 comp5_v :=
std_logic_vector(resize(shift_sgn(resize(signed(data_merr_i),
D_C+4), 1) + to_signed(1, D_C+4), D_C+3));

42 scaled_diff_s <=
std_logic_vector(resize(work.utils_image.min(division_down(sig
ned(comp3_v), signed(comp5_v)),
division_down(signed(comp4_v), signed(comp5_v))), D_C+1));

43 end if;
44 end if;
45 end if;
46 end if;
47 end process p_sc_diff_calc;
48
49 enable_o <= enable_s;
50 img_coord_o <= img_coord_s;
51 scaled_diff_o <= scaled_diff_s;
52 end architecture behavioural;

10.13 Scaled Difference IP source code

150

1 entity shift_register is
2 generic (
3 SMPL_ORDER_G : std_logic_vector(1 downto 0);
4 DATA_SIZE_G : integer;
5 REG_SIZE_G : integer;
6 INIT_VAL_G : std_logic_vector(DATA_SIZE_G-1 downto 0)
7);
8 port (
9 clock_i : in std_logic;
10 reset_i : in std_logic;
11
12 enable_i : in std_logic;
13 enable_o : out std_logic;
14 img_coord_i : in img_coord_t;
15 img_coord_o : out img_coord_t;
16
17 data_i : in std_logic_vector(DATA_SIZE_G-1 downto 0);
18 data_o : out std_logic_vector(DATA_SIZE_G-1 downto 0)
19);
20 end entity shift_register;
21
22 architecture behavioural of shift_register is
23 begin
24 p_shift_reg_array : process(clock_i) is
25 begin
26 if (rising_edge(clock_i)) then
27 if (reset_i = '1') then
28 enable_s <= '0';
29 img_coord_s <= reset_img_coord(SMPL_ORDER_G);
30 data_s <= INIT_VAL_G;
31 counter_s <= 0;
32 enable_arr_s <= (others => '0');
33 img_coord_arr_s <= (others => reset_img_coord(SMPL_ORDER_G));
34 data_arr_s <= (others => INIT_VAL_G);
35 else
36 if (REG_SIZE_C > 0) then
37 enable_arr_s(enable_arr_s'high downto 1) <=

enable_arr_s(enable_arr_s'high-1 downto 0);
38 img_coord_arr_s(1 to img_coord_arr_s'high) <= img_coord_arr_s(0

to img_coord_arr_s'high-1);
39 data_arr_s(1 to data_arr_s'high) <= data_arr_s(0 to

data_arr_s'high-1);
40 enable_arr_s(0) <= enable_i;
41 img_coord_arr_s(0) <= img_coord_i;
42 data_arr_s(0) <= data_i;
43 -- Outcoming value is the highest position from the shift register
44 enable_s <= enable_arr_s(enable_arr_s'high);
45 img_coord_s <= img_coord_arr_s(img_coord_arr_s'high);
46 data_s <= data_arr_s(data_arr_s'high);
47 else
48 -- If delay is just 1 clock cycle, input is directly outputted
49 enable_s <= enable_i;
50 img_coord_s <= img_coord_i;
51 data_s <= data_i;
52 end if;
53
54 if (counter_s < REG_SIZE_C) then
55 counter_s <= counter_s + 1;
56 else
57 counter_s <= 0;
58 end if;
59 end if;
60 end if;
61 end process p_shift_reg_array;
62
63 enable_o <= enable_s;
64 img_coord_o <= img_coord_s;
65 data_o <= data_s;
66 end architecture behavioural;

10.14 Shift Register IP source code

151

1 entity metadata_img is
2 generic (
3 -- 0: "signed" type samples, 1: "unsigned" type samples
4 SMPL_TYPE_G : std_logic;
5 -- 00: BSQ order, 01: BIP order, 10: BIL order
6 SMPL_ORDER_G : std_logic_vector(1 downto 0);
7 -- 00: lossless, 01: absolute error limit only, 10: relative error limit

only, 11: both absolute and relative error limits
8 FIDEL_CTRL_TYPE_G : std_logic_vector(1 downto 0);
9 -- 00: Sample-Adaptive Entropy, 01: Hybrid Entropy, 10: Block-Adaptive Entropy
10 ENCODER_TYPE_G : std_logic_vector(1 downto 0);
11 -- User Defined Data
12 UDEF_DATA_G : std_logic_vector(7 downto 0);
13 -- Array with values -> 00: unsigned integer, 01: signed integer, 10: float
14 SUPL_TABLE_TYPE_G : supl_table_type_t;
15 -- Array with values -> From 0 to 15 (check Table 3-1)
16 SUPL_TABLE_PURPOSE_G: supl_table_purpose_t;
17 -- Array with values -> 00: zero-dimensional, 01: one-dimensional, 10:

two-dimensional-zx, 11: two-dimensional-yx
18 SUPL_TABLE_STRUCT_G : supl_table_struct_t;
19 -- Array with values -> Suplementary User-Defined Data
20 SUPL_TABLE_UDATA_G : supl_table_udata_t
21);
22 port (
23 md_img_width_o : out integer;
24 md_img_data_o : out std_logic_vector(1023 downto 0)
25);
26 end entity metadata_img;
27
28 architecture behavioural of metadata_img is
29 -- Returns the size of a specific Table Data Subblock
30 function get_tdata_size(tdata_type_in : in std_logic_vector; tdata_struct_in :

in std_logic_vector; index_in : in integer) return integer is
31
32 -- Creates the Table Data Subblock
33 function create_tdata_subblock(tdata_type_in : in std_logic_vector;

tdata_struct_in : in std_logic_vector; index_in : in integer) return
std_logic_vector is

34
35 -- Returns the total size of all instantiated Supplementary Inforamtion Tables
36 function get_supl_tables_size(supl_tables_in : in mdata_img_supl_info_arr_t)

return integer is
37 variable supl_tables_size_v : integer := 0;
38 begin
39 for i in 0 to (supl_tables_in'length-1) loop
40 supl_tables_size_v := supl_tables_size_v + supl_tables_in(i).total_width;
41 end loop;
42
43 return supl_tables_size_v;
44 end function get_supl_tables_size;
45
46 -- Creates the Supplementary Inforamtion Tables structure
47 function create_supl_tables(num_tables_in : in integer) return

mdata_img_supl_info_arr_t is
48 variable supl_tables_v : mdata_img_supl_info_arr_t(0 to num_tables_in-1);
49 variable tdata_size_v : integer := 0;
50 begin
51 for i in 0 to (num_tables_in-1) loop
52 -- Compiler requires a fixed size for "table_data_subblock", so such

size is managed independently
53 tdata_size_v := get_tdata_size(SUPL_TABLE_TYPE_G(i),

SUPL_TABLE_STRUCT_G(i), i);
54
55 -- Supplementary table is filled
56 supl_tables_v(i).table_type := SUPL_TABLE_TYPE_G(i);
57 supl_tables_v(i).reserved_1 := (others => '0');
58 supl_tables_v(i).table_purpose := SUPL_TABLE_PURPOSE_G(i);
59 supl_tables_v(i).reserved_2 := (others => '0');
60 supl_tables_v(i).table_structure := SUPL_TABLE_STRUCT_G(i);

10.15 Image Metadata IP source code

152

61 supl_tables_v(i).reserved_3 := (others => '0');
62 supl_tables_v(i).supl_user_def_data := SUPL_TABLE_UDATA_G(i);
63 supl_tables_v(i).table_data_size := tdata_size_v;
64 supl_tables_v(i).table_data_subblock :=

create_tdata_subblock(SUPL_TABLE_TYPE_G(i), SUPL_TABLE_STRUCT_G(i), i);
65 supl_tables_v(i).total_width := 16 + tdata_size_v;
66 end loop;
67
68 return supl_tables_v;
69 end function create_supl_tables;
70
71 -- Auxiliary constant to avoid the array below fail if "TAU_C=0"
72 constant TAU_0_C : integer := iif(TAU_C < 1, 1, TAU_C);
73 -- Record "Supplementary Information" structure from "Image Metadata" (Table 5-4)
74 -- NOTE: If TAU_C=0, array will be built anyway (so no compilation problems),

but will not be serialized in the corresponding function...
75 constant MDATA_IMG_SUPL_INFO_ARR_C : mdata_img_supl_info_arr_t(0 to TAU_0_C-1)

:= create_supl_tables(TAU_0_C);
76
77 -- Record "Essential" sub-structure from "Image Metadata" (Table 5-3)
78 constant MDATA_IMG_ESSEN_C : mdata_img_essential_t := (
79 udef_data => UDEF_DATA_G,
80 x_size => std_logic_vector(to_unsigned(NX_C mod (2**16), 16)),
81 y_size => std_logic_vector(to_unsigned(NY_C mod (2**16), 16)),
82 z_size => std_logic_vector(to_unsigned(NZ_C mod (2**16), 16)),
83 smpl_type => (others => SMPL_TYPE_G),
84 reserved_1 => (others => '0'),
85 larg_dyn_rng_flag => (others => iif(D_C > 16, '1', '0')),
86 dyn_range => std_logic_vector(to_unsigned(D_C mod (2**4), 4)),
87 smpl_enc_order => (others => iif(SMPL_ORDER_G = BSQ_C, '1', '0')),
88 sub_frm_intlv_depth => std_logic_vector(to_unsigned(iif(SMPL_ORDER_G =

BSQ_C, 0, iif(SMPL_ORDER_G = BIL_C, M_BIL_C, M_BIP_C)) mod (2**16), 16)),
89 reserved_2 => (others => '0'),
90 out_word_size => std_logic_vector(to_unsigned(B_C mod (2**3), 3)),
91 entropy_coder_type => ENCODER_TYPE_G,
92 reserved_3 => (others => '0'),
93 quant_fidel_ctrl_mth=> FIDEL_CTRL_TYPE_G,
94 reserved_4 => (others => '0'),
95 supl_info_table_cnt => std_logic_vector(to_unsigned(TAU_C, 4)),
96 total_width => 96 -- The previous fields are a total of: 12 bytes

* 8 bits/byte = 96 bits
97);
98
99 -- Record "Image Metadata" structure (Table 5-2)
100 -- NOTE: Do not confuse "encoded with n-bits" vs "encoded mod 2**n with n-bits"!!
101 constant MDATA_IMG_C : mdata_img_t := (
102 essential => MDATA_IMG_ESSEN_C,
103 supl_info_arr => MDATA_IMG_SUPL_INFO_ARR_C,
104 total_width => MDATA_IMG_ESSEN_C.total_width + iif(TAU_C > 0,

get_supl_tables_size(MDATA_IMG_SUPL_INFO_ARR_C), 0)
105);
106
107 -- Image Metadata generation
108 constant OUT_MD_IMG_WIDTH_C : integer := MDATA_IMG_C.total_width;
109 constant OUT_MD_IMG_DATA_C : std_logic_vector(OUT_MD_IMG_WIDTH_C-1 downto 0) :=

serial_mdata_img(MDATA_IMG_C);
110
111 begin
112 -- Outputs
113 md_img_width_o <= OUT_MD_IMG_WIDTH_C;
114 md_img_data_o(md_img_data_o'length-1 downto OUT_MD_IMG_WIDTH_C) <= (others =>

'0');
115 md_img_data_o(OUT_MD_IMG_WIDTH_C-1 downto 0) <= OUT_MD_IMG_DATA_C;
116
117 end architecture behavioural;

153

1 library xpm;
2 use xpm.vcomponents.all;
3
4 entity parallel_sync_fifos is
5 generic (
6 SMPL_ORDER_G : std_logic_vector(1 downto 0);
7 DATA_WIDTH_G : integer;
8 DATA_DEPTH_G : integer;
9 NUM_PAR_FIFOS_G : integer

10);
11 port (
12 clock_i : in std_logic;
13 reset_i : in std_logic;
14
15 enable_i : in std_logic;
16 enable_o : out std_logic;
17 img_coord_i : in img_coord_t;
18 img_coord_o : out img_coord_t;
19
20 read_fifo_i : in std_logic;
21 init_fifo_o : out std_logic;
22
23 data_arr_i : in array_slv_t(0 to NUM_PAR_FIFOS_G-1)(DATA_WIDTH_G-1

downto 0);
24 data_arr_o : out array_slv_t(0 to NUM_PAR_FIFOS_G-1)(DATA_WIDTH_G-1

downto 0)
25);
26 end entity parallel_sync_fifos;
27
28 architecture behavioural of parallel_sync_fifos is
29 begin
30 g_sync_fifo_data : for i in 0 to NUM_PAR_FIFOS_G-1 generate
31 i_sync_fifo_data : xpm_fifo_sync
32 generic map()
33 port map(
34 sleep => '0',
35 rst => reset_i,
36 wr_clk => clock_i,
37 wr_en => wr_en_data_arr_s(i),
38 din => data_arr_i(i),
39 full => full_data_arr_s(i),
40 prog_full => open,
41 wr_data_count => wr_data_count_arr_s(i),
42 overflow => open,
43 wr_rst_busy => wr_rst_busy_data_arr_s(i),
44 almost_full => open,
45 wr_ack => open,
46 rd_en => rd_en_data_arr_s(i),
47 dout => data_arr_s(i),
48 empty => empty_data_arr_s(i),
49 prog_empty => open,
50 rd_data_count => rd_data_count_arr_s(i),
51 underflow => open,
52 rd_rst_busy => rd_rst_busy_data_arr_s(i),
53 almost_empty => open,
54 data_valid => open,
55 injectdbiterr => '0',
56 injectsbiterr => '0',
57 sbiterr => open,
58 dbiterr => open
59);
60 wr_en_data_arr_s(i) <= '1' when (wr_rst_busy_data_arr_s(i) = '0' and

full_data_arr_s(i) = '0') else '0';
61 rd_en_data_arr_s(i) <= '1' when (rd_rst_busy_data_arr_s(i) = '0' and

empty_data_arr_s(i) = '0' and read_fifo_i = '1') else '0';
62 end generate g_sync_fifo_data;
63
64 i_sync_fifo_coord : xpm_fifo_sync
65 generic map()
66 port map(
67 sleep => '0',
68 rst => reset_i,
69 wr_clk => clock_i,

10.16 Parallel Synchronous FIFOs IP source code

154

70 wr_en => wr_en_coord_s,
71 din => serial_img_coord_in_s,
72 full => full_coord_s,
73 prog_full => open,
74 wr_data_count => wr_coord_count_s,
75 overflow => open,
76 wr_rst_busy => wr_rst_busy_coord_s,
77 almost_full => open,
78 wr_ack => open,
79 rd_en => rd_en_coord_s,
80 dout => serial_img_coord_out_s,
81 empty => empty_coord_s,
82 prog_empty => open,
83 rd_data_count => rd_coord_count_s,
84 underflow => open,
85 rd_rst_busy => rd_rst_busy_coord_s,
86 almost_empty => open,
87 data_valid => open,
88 injectdbiterr => '0',
89 injectsbiterr => '0',
90 sbiterr => open,
91 dbiterr => open
92);
93 wr_en_coord_s <= '1' when (wr_rst_busy_coord_s = '0' and full_coord_s = '0')

else '0';
94 rd_en_coord_s <= '1' when (rd_rst_busy_coord_s = '0' and empty_coord_s = '0' and

read_fifo_i = '1') else '0';
95
96

serial_img_coord_in_s(FIFO_X_COORD_WIDTH_C+FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WIDTH
_C-1 downto FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WIDTH_C) <=
std_logic_vector(to_signed(img_coord_i.x, FIFO_X_COORD_WIDTH_C));

97 serial_img_coord_in_s(FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WIDTH_C-1 downto
FIFO_Z_COORD_WIDTH_C) <= std_logic_vector(to_signed(img_coord_i.y,
FIFO_Y_COORD_WIDTH_C));

98 serial_img_coord_in_s(FIFO_Z_COORD_WIDTH_C-1 downto 0) <=
std_logic_vector(to_signed(img_coord_i.z, FIFO_Z_COORD_WIDTH_C));

99 extr_img_coord_s <= (
100 x =>

to_integer(signed(serial_img_coord_out_s(FIFO_X_COORD_WIDTH_C+FIFO_Y_COORD_WID
TH_C+FIFO_Z_COORD_WIDTH_C-1 downto
FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WIDTH_C))),

101 y =>
to_integer(signed(serial_img_coord_out_s(FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WID
TH_C-1 downto FIFO_Z_COORD_WIDTH_C))),

102 z => to_integer(signed(serial_img_coord_out_s(FIFO_Z_COORD_WIDTH_C-1 downto
0))),

103 t =>
to_integer(signed(serial_img_coord_out_s(FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WID
TH_C-1 downto FIFO_Z_COORD_WIDTH_C))) * NX_C +
to_integer(signed(serial_img_coord_out_s(FIFO_X_COORD_WIDTH_C+FIFO_Y_COORD_WID
TH_C+FIFO_Z_COORD_WIDTH_C-1 downto
FIFO_Y_COORD_WIDTH_C+FIFO_Z_COORD_WIDTH_C)))

104);
105
106 enable_o <= enable_s;
107 img_coord_o <= extr_img_coord_s when read_fifo_i = '1' else

reset_img_coord(SMPL_ORDER_G);
108 data_arr_o <= data_arr_s when read_fifo_i = '1' else (others => (others

=> '0'));
109 init_fifo_o <= not(and(wr_rst_busy_data_arr_s) and and(rd_rst_busy_data_arr_s)

and wr_rst_busy_coord_s and rd_rst_busy_coord_s);
110 end architecture behavioural;

155

1 entity smpl_adap_gpo2_code is
2 generic (
3 SMPL_ORDER_G : std_logic_vector(1 downto 0);
4 MAX_NUM_BITS_G : integer;
5 FIDEL_CTRL_TYPE_G : std_logic_vector(1 downto 0);
6 ABS_ERR_BAND_TYPE_G : std_logic;
7 REL_ERR_BAND_TYPE_G : std_logic
8);
9 port (

10 clock_i : in std_logic;
11 reset_i : in std_logic;
12
13 enable_i : in std_logic;
14 enable_o : out std_logic;
15 img_coord_i : in img_coord_t;
16 img_coord_o : out img_coord_t;
17
18 err_lim_upd_en_i : in std_logic;
19 err_lim_val_i : in std_logic_vector(D_C-1 downto 0);
20 data_mp_quan_i : in std_logic_vector(D_C-1 downto 0);
21
22 accu_i : in std_logic_vector(D_C*2-1 downto 0);
23 counter_i : in std_logic_vector(D_C-1 downto 0);
24 enc_num_bits_o : out std_logic_vector(MAX_NUM_BITS_G-1 downto 0);
25 codeword_o : out std_logic_vector(Umax_C+D_C-1 downto 0)
26);
27 end entity smpl_adap_gpo2_code;
28
29 architecture behavioural of smpl_adap_gpo2_code is
30 begin
31 p_calc_kz : process(clock_i) is
32 variable comp1_v : std_logic_vector(D_C*2-1 downto 0) := (others => '0');
33 variable comp2_v : std_logic_vector(D_C*2-1 downto 0) := (others => '0');
34 variable comp3_v : std_logic_vector(D_C*2-1 downto 0) := (others => '0');
35 begin
36 if rising_edge(clock_i) then
37 if (reset_i = '1') then
38 comp1_v := (others => '0');
39 comp2_v := (others => '0');
40 comp3_v := (others => '0');
41 log2_s <= 0;
42 kz_s <= 0;
43 else
44 if (enable_i = '1' and err_lim_upd_en_i = '0') then
45 comp1_v := std_logic_vector(to_unsigned(division_down(49*to_integer(

unsigned(counter_i)), 2**7), D_C*2));
46 comp2_v := std_logic_vector(resize(unsigned(accu_i) + unsigned(comp1_v),

D_C*2));
47 comp3_v := std_logic_vector(resize(unsigned(comp2_v) / resize(unsigned(

counter_i), D_C*2), D_C*2));
48 log2_s <= log2(to_integer(unsigned(comp3_v)) + 1);
49 kz_s <= iif(log2_s <= 0, 0, iif(log2_s > D_C-2, D_C-2, log2_s-1));
50 end if;
51 end if;
52 end if;
53 end process p_calc_kz;
54
55 p_calc_codeword : process(clock_i) is
56 variable var_length_v : integer range 0 to 2**D_C := 0;
57 variable err_lim_type_v : std_logic := '0';
58 variable data_mp_quan_v : std_logic_vector(D_C-1 downto 0) := (others => '0');
59 variable codeword_v : std_logic_vector(Umax_C+D_C-1 downto 0) := (others => '0');
60 begin
61 if rising_edge(clock_i) then
62 if (reset_i = '1') then
63 var_length_v := 0;
64 err_lim_type_v := '0';
65 codeword_v := (others => '0');
66 err_lim_cnt_s <= 0;
67 enc_num_bits_s <= (others => '0');
68 codeword_s <= (others => '0');
69 data_mp_quan_v := (others => '0');
70 else

10.17 Sample-Adaptive GPO2 Code IP source code

156

71 if (img_coord2_s = end_img_coord) then
72 enc_num_bits_s <= (others => '0');
73 codeword_v := (others => '0');
74 end if;
75
76 if (enable1_s = '1') then
77 codeword_v := (others => '0');
78 -- Mapped quantizer indexes ("?z(t)") are encoded here!
79 if (err_lim_upd_en_s = '0') then
80 err_lim_cnt_s <= 0;
81 if (img_coord1_s.t = 0) then
82 enc_num_bits_s <= std_logic_vector(to_unsigned(D_C,

MAX_NUM_BITS_G));
83 codeword_v := data_mp_quan_s & (Umax_C-1 downto 0 => '0');
84 else -- img_coord1_s.t > 0
85 var_length_v := to_integer(shift_usg(unsigned(data_mp_quan_s),

-kz_s));
86 if (var_length_v < Umax_C) then
87 enc_num_bits_s <= std_logic_vector(to_unsigned(var_length_v +

1 + kz_s, MAX_NUM_BITS_G));
88 data_mp_quan_v := data_mp_quan_s sll (D_C - kz_s);
89 codeword_v := (var_length_v-1 downto 0 => '0') & '1' &

data_mp_quan_v & (Umax_C-var_length_v-2 downto 0 => '0');
90 else -- var_length_v >= Umax_C
91 enc_num_bits_s <= std_logic_vector(to_unsigned(Umax_C + D_C,

MAX_NUM_BITS_G));
92 codeword_v := (Umax_C-1 downto 0 => '0') & data_mp_quan_s;
93 end if;
94 end if;
95
96 else -- Error limit values are encoded here!
97 if (FIDEL_CTRL_TYPE_G = ABS_ERR_C) then
98 enc_num_bits_s <= std_logic_vector(to_unsigned(DA_C,

MAX_NUM_BITS_G));
99 codeword_v(DA_C-1 downto 0) := err_lim_val_s(DA_C-1 downto 0);

100 elsif (FIDEL_CTRL_TYPE_G = REL_ERR_C) then
101 enc_num_bits_s <= std_logic_vector(to_unsigned(DR_C,

MAX_NUM_BITS_G));
102 codeword_v(DR_C-1 downto 0) := err_lim_val_s(DR_C-1 downto 0);
103 elsif (FIDEL_CTRL_TYPE_G = ABS_REL_C) then
104 if ((ABS_ERR_BAND_TYPE_G = '1' and err_lim_cnt_s = 0) or (

ABS_ERR_BAND_TYPE_G = '0' and err_lim_cnt_s < NZ_C)) then
105 err_lim_type_v := '1';
106 else
107 err_lim_type_v := '0';
108 end if;
109 err_lim_cnt_s <= err_lim_cnt_s + 1;
110 if (err_lim_type_v = '1') then
111 enc_num_bits_s <= std_logic_vector(to_unsigned(DA_C,

MAX_NUM_BITS_G));
112 codeword_v(DA_C-1 downto 0) := err_lim_val_s(DA_C-1 downto 0);
113 else -- err_lim_type_v = '0'
114 enc_num_bits_s <= std_logic_vector(to_unsigned(DR_C,

MAX_NUM_BITS_G));
115 codeword_v(DR_C-1 downto 0) := err_lim_val_s(DR_C-1 downto 0);
116 end if;
117 else
118 enc_num_bits_s <= (others => '0');
119 codeword_v := (others => '0');
120 end if;
121 end if;
122
123 codeword_s <= codeword_v;
124 end if;
125 end if;
126 end if;
127 end process p_calc_codeword;
128
129 enable_o <= enable2_s;
130 img_coord_o <= img_coord2_s;
131 enc_num_bits_o <= enc_num_bits_s;
132 codeword_o <= codeword_s;
133 end architecture behavioural;

157

1 # ************************* VUNIT AND LIBRARY INITIALIZATION ************************
2
3 # Load required libraries from VUnit
4 from os.path import join, dirname
5 # The public interface of VUnit
6 from vunit import VUnit
7 # Computes the cartesian product of input iterables
8 from itertools import product
9 # Load required functions for testcase files load
10 from os import listdir
11
12 # Returns the directory name where the present file (run.py) is located
13 root = dirname(__file__)
14
15 # Create VUnit instance by parsing command line arguments
16 ui = VUnit.from_argv()
17
18 # Add random numbers generation package
19 ui.add_random()
20 # Add verification component library
21 ui.add_verification_components()
22 # Add communication package
23 ui.add_com()
24
25 # Create library 'vunit_lib'
26 vunit_lib = ui.library("vunit_lib")
27
28 # Add all package files
29 vunit_lib.add_source_files(join(root, "../../../Image/_packages/*.vhd"))
30 vunit_lib.add_source_files(join(root, "../../../Predictor/_packages/*.vhd"))
31 vunit_lib.add_source_files(join(root, "../../../Encoder/_packages/*.vhd"))
32
33 # Add all sources files from Predictor IP
34 vunit_lib.add_source_files(join(root, "../../../Image/image_coord_control.vhd"))
35 vunit_lib.add_source_files(join(root, "../*.vhd"))
36
37 # Add testbench file from Predictor IP
38 vunit_lib.add_source_files(join(root, "tb_adder.vhd"))
39
40 # ************************************ FUNCTIONS ************************************
41
42 # To encode the parameters, the script must contain the encode function
43 def encode(tb_cfg):
44 return ",".join(["%s:%s" % (key, str(tb_cfg[key])) for key in tb_cfg])
45
46 # A list of parameters are defined, then saved and finally encoded to be in the

testbench
47 # NOTE: Less than 2 parameters makes the whole system fail...
48 def gen_adder_tests(obj, smpl_type, smpl_order):
49 for smpl_type, smpl_order in product(smpl_type, smpl_order):
50 tb_cfg = dict(
51 SMPL_TYPE_PY=smpl_type,
52 SMPL_ORDER_PY=smpl_order
53)
54 config_name = encode(tb_cfg)
55 obj.add_config(name=config_name, generics=dict(encoded_tb_cfg=encode(tb_cfg)))
56
57 # ****************************** GENERATE TESTBENCHES *******************************
58
59 # Everytime a new TB is here requested (can be the same with different parameters),
60 # all test cases in the VHDL testbench file will be executed again.
61 tb_adder = vunit_lib.test_bench("tb_adder")
62 for test in tb_adder.get_tests():
63 gen_adder_tests(test, ['0', '1'], [0])
64
65 # ********************************** MAIN FUNCTION **********************************
66
67 ui.main()

10.18 Adder IP Python script source code

158

1 entity tb_adder is
2 generic (
3 encoded_tb_cfg : string;
4 runner_cfg : string
5);
6 end entity tb_adder;
7
8 architecture behavioural of tb_adder is
9 -- Record type to pack all signals (from Python script) together
10 type tb_cfg_t is record
11 SMPL_TYPE_G : std_logic;
12 SMPL_ORDER_G : std_logic_vector(1 downto 0);
13 end record tb_cfg_t;
14
15 -- Function to decode the Python signals and connect them into the VHDL testbench
16 impure function decode(encoded_tb_cfg : string) return tb_cfg_t is
17 begin
18 return (
19 SMPL_TYPE_G => std_logic'value(get(encoded_tb_cfg, "SMPL_TYPE_PY")),
20 SMPL_ORDER_G =>

std_logic_vector(to_unsigned(integer'value(get(encoded_tb_cfg,
"SMPL_ORDER_PY")), 2))

21);
22 end function decode;
23
24 begin
25 reset_s <= '0' after 20 ns;
26 clock_s <= not clock_s after 6.4 ns; -- Main clock frequency: 78125000 Hz
27
28 -- Simulation MAIN process (if this one finishes, the whole simulation too)
29 test_runner : process is
30 begin
31 test_runner_setup(runner, runner_cfg);
32
33 while test_suite loop
34 if run("Top Adder Block") then
35 info("Running test case = " & to_string(running_test_case));
36 flag_start <= '1';
37 end if;
38
39 wait until (flag_stop = '1');
40 end loop;
41 test_runner_cleanup(runner);
42 end process;
43 test_runner_watchdog(runner, 1 ms);
44
45 -- Input signals stimulus calculation
46 p_inputs_update : process(clock_s) is
47 begin
48 if (rising_edge(clock_s)) then
49 if (reset_s = '1') then
50 pred_en_s <= '0';
51 pred_coord_s <= reset_img_coord(tb_cfg.SMPL_ORDER_G);
52 data_s0_s <= (others => '0');
53 data_s3_1s <= (others => '0');
54 data_s4_lsb_1s <= '0';
55 else
56 if (flag_start = '1') then
57 if ((img_coord_out_s.x < NX_C-1) or (img_coord_out_s.y < NY_C-1)

or (img_coord_out_s.z < NZ_C-1)) then
58 pred_en_s <= enable_out_s;
59 pred_coord_s <= img_coord_out_s;
60
61 if (data_s3_1s = (data_s3_1s'length-1 downto 0 => '1')) then
62 data_s3_1s <= (others => '0');
63 else
64 data_s3_1s <=

std_logic_vector(resize(signed(data_s3_1s) +
to_signed(3, data_s3_1s'length), data_s3_1s'length));

10.19 Adder IP VUnit testbench source code

159

65 end if;
66
67 if (data_s0_s = (data_s0_s'length-1 downto 0 => '1')) then
68 data_s0_s <= (others => '0');
69 else -- "data_s0_s" should update faster than

"data_s3_1s"
70 data_s0_s <= std_logic_vector(resize(signed(data_s0_s)

+ to_signed(5, data_s0_s'length), data_s0_s'length));
71 end if;
72
73 if (img_coord_out_s.z = 0) then
74 data_s4_lsb_1s <= not data_s4_lsb_1s;
75 end if;
76 end if;
77 end if;
78 end if;
79 end if;
80 end process p_inputs_update;
81
82 p_stop_sim : process is
83 begin
84 wait until ((img_coord_out_s.x >= NX_C-1) and (img_coord_out_s.y >= NY_C-1)

and (img_coord_out_s.z >= NZ_C-1));
85 wait for 10 ns;
86 flag_stop <= '1';
87 end process p_stop_sim;
88
89 i_image_coord_control : image_coord_control
90 generic map(
91 SMPL_ORDER_G => tb_cfg.SMPL_ORDER_G
92)
93 port map(
94 clock_i => clock_s,
95 reset_i => reset_s,
96
97 enable_i => flag_start,
98 enable_o => img_en_s,
99
100 image_end_i => '0',
101 img_coord_o => img_coord_in_s
102);
103
104 i_adder : adder
105 generic map(
106 SMPL_ORDER_G => tb_cfg.SMPL_ORDER_G,
107 SMPL_TYPE_G => tb_cfg.SMPL_TYPE_G
108)
109 port map(
110 clock_i => clock_s,
111 reset_i => reset_s,
112
113 img_en_i => img_en_s,
114 enable_o => enable_out_s,
115 img_coord_i => img_coord_in_s,
116 img_coord_o => img_coord_out_s,
117
118 pred_en_i => pred_en_s,
119 pred_coord_i => pred_coord_s,
120 data_s3_i => data_s3_1s,
121 data_s3_o => data_s3_2s,
122 data_s4_lsb_i => data_s4_lsb_1s,
123 data_s4_lsb_o => data_s4_lsb_2s,
124
125 data_s0_i => data_s0_s,
126 en_res_o => en_res_s,
127 data_res_o => data_res_s
128);
129
130 end architecture behavioural;

160

1 echo -e -n "
2 Select a block to validate:
3 - Top entity: 0
4 - Image block: 1
5 - Predictor block: 2
6 - Adder sub-block: 3
7 - Quantizer sub-block: 4
8 - Mapper sub-block: 5
9 - Sample Repr. sub-block: 6
10 - Prediction sub-block: 7
11 - Encoder block: 8
12 - Enc. Header sub-block: 9
13 - Enc. Body sub-block: 10
14 - Sample-Adapt. Coder: 11
15 - Hybrid Coder: 12
16 - Packer sub-block: 13
17 - All blocks: 14
18 Clean compiled files: 15
19 \n"
20
21 unset option
22 until [[$option == +([0-9]) && $option -le 15]]; do
23 read -r -p "Enter a valid number: " option
24 done
25
26 unset path; unset place
27 if [[$option -eq 0]]; then
28 path="./TOP/"; place="TOP"
29 elif [[$option -eq 1]]; then
30 path="./Image/"; place="IMAGE"
31 elif [[$option -eq 2]]; then
32 path="./Predictor/"; place="PREDICTOR"
33 elif [[$option -eq 3]]; then
34 path="./Predictor/adder/"; place="PRED: ADDER"
35 elif [[$option -eq 4]]; then
36 path="./Predictor/quantizer/"; place="PRED: QUANTIZER"
37 elif [[$option -eq 5]]; then
38 path="./Predictor/mapper/"; place="PRED: MAPPER"
39 elif [[$option -eq 6]]; then
40 path="./Predictor/sample_representative"; place="PRED: SAMPLE REPR."
41 elif [[$option -eq 7]]; then
42 path="./Predictor/prediction/"; place="PRED: PREDICTION"
43 elif [[$option -eq 8]]; then
44 path="./Encoder/"; place="ENCODER"
45 elif [[$option -eq 9]]; then
46 path="./Encoder/header"; place="ENC: ENCODER HEADER"
47 elif [[$option -eq 10]]; then
48 path="./Encoder/body"; place="ENC: ENCODER BODY"
49 elif [[$option -eq 11]]; then
50 path="./Encoder/body/sample_adaptive_coder"; place="ENC. BODY: SMPL-ADAPT. CODER"
51 elif [[$option -eq 12]]; then
52 path="./Encoder/body/hybrid_coder"; place="ENC. BODY: HYBRID CODER"
53 elif [[$option -eq 13]]; then
54 path="./Encoder/packer"; place="ENC: PACKER"
55 elif [[$option -eq 14]]; then
56 path="."; place="ALL"
57 else
58 rm -rf vunit_out/;
59 echo -e "\n --> FOLDER 'vunit_out' DELETED. EXITING... ";
60 exit 0;
61 fi; echo -e " *** VALIDATING -> $place IP(s) "
62
63 for file in $(find $path -name 'run_*.py'); do
64 echo -e "\n --> EXECUTING TESTBENCH \"${file#*simulation/}\" \n"
65 python $file ||
66 { echo -e "\n PROBLEM FOUND ON TESTBENCH \"${file#*simulation/}\".

VALIDATION PROCESS ABORTED..."; exit 1; }
67 done

10.20 Simulations Bash source code

161

1 ## PROJECT VARIABLES
2
3 # Set the project name
4 set xil_proj_name "ccsds123issue2_project"
5
6 # Set the default library
7 set default_library "work"
8
9 # Set the SoC HW reference for the project

10 set fpga_board_ref xc7z020clg400-1
11 # other references: xczu9eg-ffvc900-1-e
12 set ev_board_ref zcu104
13
14 # Project main HDL to use. Possible values: "VHDL", "Verilog" or "Mixed"
15 set project_language "VHDL"
16 # Specific language for both the source/simulation and constraint files
17 set sources_language "VHDL 2008"
18 set constr_language "XDC"
19
20 # The number of CPU cores to use for the "Synthesis" and "Implementation" processes
21 set num_cores 6
22 # Enable/Disable the Synthesis Out-Of-Context (disabled makes process faster and

more efficient)
23 set synth_ooc false
24 # To automatically perform the "Synthesis" process
25 set synth_enable true
26 # To automatically perform the "Implementation" process (it also includes the

bitstream generation)
27 set imple_enable true
28
29 ## PROJECT CREATION AND CONFIGURATION
30 puts " --------> INFO: Project is created and configured!"
31
32 # Set the reference directory for source file relative paths (by default the value

is script directory path)
33 set origin_dir "."
34
35 # Set the directory path for the original project from where this script was exported
36 set orig_proj_dir "[file normalize "${origin_dir}/${xil_proj_name}"]"
37
38 # Create project
39 create_project -force ${xil_proj_name} ./${xil_proj_name} -part ${fpga_board_ref}
40
41 # Set the directory path for the new project
42 set proj_dir [get_property directory [current_project]]
43
44 # Set project properties
45 set obj [current_project]
46
47 ## SOURCING ALL TCL FILES
48 puts " --------> INFO: All TCL files are sourced!"
49 source scripts/source_files.tcl
50 source scripts/constraint_files.tcl
51 source scripts/artifacts_generation.tcl
52
53 ## SOURCE FILESET CREATION
54 puts " --------> INFO: Source files are introduced into the project!"
55
56 # Create 'sources_1' fileset (if not found)
57 if {[string equal [get_filesets -quiet sources_1] ""]} {
58 create_fileset -srcset sources_1
59 }
60
61 # Set 'sources_1' fileset object (first element is set later as the top entity)
62 add_files -norecurse -fileset [get_filesets sources_1] ${source_files_list}
63
64 # Name of the top entity file (the first element from "source_files_list") is

extracted
65 set top_entity_name [file rootname [file tail [lindex ${source_files_list} 0]]]
66
67 foreach {source_file} ${source_files_list} {
68 set file_obj [get_files -of_objects [get_filesets sources_1] [list

"*$source_file"]]

10.21 Xilinx Vivado TCL framework source code

162

69 set_property -name "file_type" -value ${sources_language} -objects ${file_obj}
70 set_property -name "library" -value ${default_library} -objects ${file_obj}
71 set_property -name "used_in_synthesis" -value true -objects ${file_obj}
72 set_property -name "used_in_simulation" -value true -objects ${file_obj}
73 }
74
75 # Set 'sources_1' fileset properties (defining the first element from previous list

as the top entity)
76 set_property -name "top" -value ${top_entity_name} -objects [get_filesets sources_1]
77
78 ## CONSTRAINTS FILESET CREATION
79 puts " --------> INFO: Constraint files are introduced into the project!"
80
81 # Create 'constrs_1' fileset (if not found)
82 if {[string equal [get_filesets -quiet constrs_1] ""]} {
83 create_fileset -constrset constrs_1
84 }
85
86 # Set 'constrs_1' fileset object
87 # NOTE: List "constr_files_list" has previously been sourced from file

"constr_files.tcl"
88 add_files -norecurse -fileset [get_filesets constrs_1] ${constr_files_list}
89
90 foreach {constr_file} ${constr_files_list} {
91 set file_obj [get_files -of_objects [get_filesets constrs_1] [list

"*$constr_file"]]
92 set_property -name "file_type" -value ${constr_language} -objects ${file_obj}
93 set_property -name "library" -value ${default_library} -objects ${file_obj}
94 set_property -name "used_in_synthesis" -value true -objects ${file_obj}
95 set_property -name "used_in_implementation" -value true -objects ${file_obj}
96 }
97
98 # Set 'constrs_1' fileset properties
99 set_property -name "target_part" -value "${fpga_board_ref}" -objects [get_filesets

constrs_1]
100
101 ## SIMULATION FILESET CREATION
102 puts " --------> INFO: Simulation files are introduced into the project!"
103
104 # Create 'sim_1' fileset (if not found)
105 if {[string equal [get_filesets -quiet sim_1] ""]} {
106 create_fileset -simset sim_1
107 }
108
109 # Set 'sim_1' fileset properties
110 set obj [get_filesets sim_1]
111 set_property -name "top" -value ${top_entity_name} -objects ${obj}
112 set_property -name "top_lib" -value ${default_library} -objects ${obj}
113
114 ## SYNTHESIS/IMPLEMENTATION + BITSTREAM/HW DESCRIPTION FILE GENERATION
115 puts " --------> INFO: Synthesis/Implementation processes are executed!"
116
117 # Xilinx Vivado "Synthesis" process execution
118 if { ${synth_enable} == true } {
119 run_synthesis ${synth_ooc} ${num_cores}
120
121 # Xilinx Vivado "Implementation" process execution (and .bit/.hdf files

generation)
122 if { ${imple_enable} == true } {
123 run_implementation ${num_cores} ${origin_dir} ${xil_proj_name}

${top_entity_name}
124 }
125 }

163

1 #/bin/sh
2
3 # ***
4 # ********************** CREATE AND/OR OPEN THE VIVADO PROJECT **********************
5 # ***
6
7 # ***
8 # INSTRUCTIONS FOR EXECUTION:
9 # 1. Install "Xilinx Vivado 2019.1" (including it to the PATH as well).
10 # 2. Open a terminal and execute the present file --> "sh run_vivado_project.sh"
11 # 3. Follow instructions
12 # ***
13
14 # Displays a bunch of options, reads back the argument, and repeats if wrong value
15 echo -e -n "
16 Select an option:
17 - Generate Vivado project (batch mode): 1
18 - Generate Vivado project (GUI mode): 2
19 - Open generated Vivado project: 3
20 - Delete generated Vivado project: 4
21 - Run Vivado TCL shell: 5
22 \n"
23
24 # Infinite loop until a number from 1 to 5 is entered
25 unset option
26 until [[$option == [1-5]]]; do
27 read -r -p "Enter a valid number: " option
28 done
29
30 # Goes where the Vivado TCL framework is located
31 cd _vivado_framework/
32
33 # Executes the selected command
34 if [[$option -eq 1]]; then
35 vivado -mode batch -source generate_project.tcl
36 elif [[$option -eq 2]]; then
37 vivado -mode gui -source generate_project.tcl
38 elif [[$option -eq 3]]; then
39 vivado -mode gui ccsds123issue2_project/ccsds123issue2_project.xpr
40 elif [[$option -eq 4]]; then
41 rm -rf ccsds123issue2_project/; rm -rf artifacts/
42 rm -rf .Xil/; rm *.log; rm *.jou; rm *.str; rm *.zip
43 else
44 vivado -mode tcl
45 fi
46
47 # Comes back to the original directory
48 cd ..

10.22 Vivado Project Bash source code

164

Bibliography

[1] Lars Asplund. Vunit check library. https://vunit.github.io/check/user_guide.
html. Accessed 02.10.2021.

[2] Lars Asplund. Vunit communication library. https://vunit.github.io/com/
user_guide.html. Accessed 02.10.2021.

[3] Lars Asplund. Vunit run library. https://vunit.github.io/run/user_guide.
html. Accessed 02.10.2021.

[4] Lars Asplund. Vunit user guide. https://vunit.github.io/user_guide.html#
introduction. Accessed 01.10.2021.

[5] Lars Asplund. Vunit verification component library. https://vunit.github.io/
verification_components/user_guide.html. Accessed 02.10.2021.

[6] Lars Asplund. What is vunit? https://vunit.github.io/about.html. Accessed
6.12.2021.

[7] Roger Birkeland. Ntnu small satellite lab. https://www.ntnu.edu/ie/smallsat/
mission-hyper-spectral-camera. Accessed 11.09.2020.

[8] Roger Birkeland. Ntnu small satellite lab. https://www.ntnu.edu/ie/smallsat/
project-overview. Accessed 11.09.2020.

[9] Christoffer Boothby. An implementation of a compression algorithm for hyperspectral
images. A novelty of the CCSDS 123.0-B-2 standard. NTNU, 2020.

[10] CCSDS. Low-complexity lossless and near-lossless multispectral and hyperspectral
image compression, 2 2012. v1.0.

[11] CCSDS. Lossless multispectral and hyperspectral image compression, 5 2019. v1.0.

[12] Andreas Deuter. Slicing the V-Model – Reduced Effort, Higher Flexibility. IEEE,
2013.

[13] European Space Agency (ESA). The use of reprogrammable fpgas in space.
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/
Microelectronics/The_use_of_reprogrammable_FPGAs_in_space. Accessed
23.06.2021.

165

https://vunit.github.io/check/user_guide.html
https://vunit.github.io/check/user_guide.html
https://vunit.github.io/com/user_guide.html
https://vunit.github.io/com/user_guide.html
https://vunit.github.io/run/user_guide.html
https://vunit.github.io/run/user_guide.html
https://vunit.github.io/user_guide.html#introduction
https://vunit.github.io/user_guide.html#introduction
https://vunit.github.io/verification_components/user_guide.html
https://vunit.github.io/verification_components/user_guide.html
https://vunit.github.io/about.html
https://www.ntnu.edu/ie/smallsat/mission-hyper-spectral-camera
https://www.ntnu.edu/ie/smallsat/mission-hyper-spectral-camera
https://www.ntnu.edu/ie/smallsat/project-overview
https://www.ntnu.edu/ie/smallsat/project-overview
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/The_use_of_reprogrammable_FPGAs_in_space
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/The_use_of_reprogrammable_FPGAs_in_space

[14] Joan Serra-Sagrista Ian Blanes. Aaron Kiely. Lucana Santos. Miguel Hernández. The
hybrid entropy encoder of CCSDS-123.0-B-2: Insights and decoding process. IEEE,
2019.

[15] Zeljko Zilic Ian Brynjolfson. Fpga clock management for low power. Research Gate,
page 12, nov 1999.

[16] Ricardo Jasinski. Effective Coding with VHDL: Principles and best practice. The
MIT Press, 2016.

[17] Johan Fjeldtvedt. Milica Orlandic. Tor Arne Johansen. An Efficient Real-Time
FPGA Implementation of the CCSDS-123 Compression Standard for Hyperspectral
Images. IEEE, 2018.

[18] Johan Fjeldtvedt. Milica Orlandic. Tor Arne Johansen. A Parallel FPGA Imple-
mentation of the CCSDS-123 Compression Algorithm. Remote Sensing, 2019.

[19] Carolina Santos José Manuel Amigo. Hyperspectral imaging. https://www.
sciencedirect.com/topics/computer-science/hyperspectral-image. Accessed
04.09.2021.

[20] S.Hauck K.Compton. Reconfigurable computing: A survey of systems and software.
ACM Computing Systems, page 40, jun 2002.

[21] Panagiotis Chatziantoniou. Antonis Tsigkanos. Nektarios Kranitis. A high-
performance RTL implementation of the CCSDS-123.0-B-2 hybrid entropy coder on
a space-grade SRAM FPGA. IEEE, 2020.

[22] Mentor Graphics. ModelSim Tutorial, 1 2016. v10.5c.

[23] Uwe Meyer-Baese. Embedded Microprocessor System Design using FPGAs. Springer,
2020.

[24] Cristian Gil Morales. CCSDS123 Issue 2 (FPGA) Implementation. NTNU, 2020.

[25] Daniel Bascones. Carlos Gonzalez. Daniel Mozos. A real-time FPGA implementation
of the full CCSDS 123.0-B-2 standard. IEEE, 2021.

[26] Panagiotis Chatziantoniou. Antonis Tsigkanos. Antonis Tsigkanos. Dimitris
Theodoropoulos. Nektarios Kranitis. Antonios Paschalis. An Efficient Architecture
and High-Throughput Implementation of CCSDS-123.0-B-2 Hybrid Entropy Coder
Targeting Space-Grade SRAM FPGA Technology. IEEE, 2021.

[27] Jim Lewis Peter Ashenden. VHDL-2008: Just the New Stuff. Elsevier, 2007.

[28] Yubal Barrios. Antonio Sánchez. Raúl Guerra. Roberto Sarmiento. Hardware Imple-
mentation of the CCSDS 123.0-B-2 Near-Lossless Compression Standard Following
an HLS Design Methodology. Remote Sensing, 2021.

166

https://www.sciencedirect.com/topics/computer-science/hyperspectral-image
https://www.sciencedirect.com/topics/computer-science/hyperspectral-image

[29] Miguel Hernandez. Aaron Kiely. Matthew Klimesh. Ian Blanes. Jonathan Ligo. En-
rico Magli. Joan Serra. The CCSDS 123.0-B-2 “Low-complexity Lossless and Near-
Lossless Multispectral and Hyperspectral Image Compression” standard, explained.
IEEE, 2021.

[30] Xilinx. Integrated Logic Analyzer, 4 2016. v6.1.

[31] Xilinx. Virtual Input/Output, 4 2018. v3.0.

[32] Xilinx. UltraScale Architecture Libraries Guide, 5 2019. v2019.1.

[33] Xilinx. ZCU102 Evaluation Board, 6 2019. v1.6.

[34] Xilinx. Vivado Design Suite User Guide: Implementation, 8 2020. v2020.1.

[35] Xilinx. Vivado Design Suite User Guide: Synthesis, 1 2020. v2019.2.

[36] Xilinx. Zynq UltraScale+ Device: Packaging and Pinouts, 6 2020. v1.9.

[37] Xilinx. Zynq UltraScale+ MPSoC Data Sheet: Overview, 5 2021. v1.9.

167

11 Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references. I am aware that the thesis in digital form
can be examined for the use of unauthorized aid and in order to determine whether
the thesis as a whole or parts incorporated in it may be deemed as plagiarism. For
the comparison of my work with existing sources I agree that it shall be entered in a
database where it shall also remain after examination, to enable comparison with future
theses submitted. Further rights of reproduction and usage, however, are not grated
here. This thesis was not previously presented to another examination board and has
not been published.

Cristian Gil Morales, ID: 500306 Barcelona, 18 January 2022

Student name and ID City, date and signature

168

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Cristian Gil Morales

CCSDS-123 Issues 1 & 2
Implementation on FPGA

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
January 2022

M
as

te
r’s

 th
es

is

	Acronyms
	Introduction
	Background
	Input image
	Input samples order

	CCSDS-123 Issue 2 algorithm
	Predictor block
	Adder
	Quantizer
	Fidelity Control
	Periodic Error Limit Updating

	Mapper
	Scaled Difference

	Sample Representative
	Clipped Quantizer Bin Center
	Double-Resolution Sample Representative

	Prediction
	Local Sum
	Local Differences
	Local Differences Vector
	Weight values
	Weight Update Scaling Exponent
	Double-Resolution Prediction Error
	Weights Vector
	Predicted Central Local Difference
	High-Resolution Predicted Sample
	Double-Resolution Predicted Sample
	Predicted Sample

	Encoder block
	Encoder Header
	Image Metadata
	Supplementary Information Tables

	Predictor Metadata
	Encoder Metadata

	Encoder Body
	Sample-Adaptive Entropy Coder
	Sample-Adaptive Statistic
	Sample-Adaptive GPO2 Coder

	Hybrid Entropy Coder
	Hybrid Statistic
	Hybrid High-Entropy Coder
	Hybrid Low-Entropy Coder
	Hybrid Compressed Image Tail

	Output packets generation

	Differences between Issues 1 and 2
	VUnit framework
	Logic Synthesis
	Implementation
	HDL considerations
	VHDL signed vs unsigned signals
	Synthesis design constraints

	Design
	Overview
	Timing diagram

	Development tools
	Hardware platform
	Source code architecture
	Packages
	Block diagrams description

	CCSDS-123-Issue2 Top Entity IP
	Top Entity IP configuration

	Image Coordinates Control IP
	Predictor Top IP
	Adder IP
	Quantizer IP
	Fidelity Control IP
	Error Limit Values Table

	Mapper IP
	Scaled Difference IP

	Sample Representative IP
	Clipped Quantizer Bin Center IP
	Double-Resolution Sample Representative IP

	Prediction IP
	Samples Store IP
	Shift Register IP

	Local Sum IP
	Local Differences IP
	Local Differences Vector IP
	Weight Update Scaling Exponent IP
	Double-Resolution Prediction Error IP
	Weights Vector IP
	Predicted Central Local Difference IP
	High-Resolution Predicted Sample IP
	Double-Resolution Predicted Sample IP
	Predicted Sample IP

	Predictor-Encoder Interconnection IP
	Parallel Synchronous FIFOs IP

	Encoder Top IP
	Encoder Header IP
	Image Metadata IP
	Supplementary Information Tables

	Predictor Metadata IP
	Encoder Metadata IP

	Encoder Body IP
	Sample-Adaptive Entropy Coder IP
	Sample-Adaptive Statistic IP
	Sample-Adaptive GPO2 Coder IP

	Hybrid Entropy Coder IP
	Hybrid Statistic IP
	Hybrid High-Entropy Coder IP
	Hybrid Low-Entropy Coder IP
	Hybrid Compressed Image Tail IP

	Packer IP

	Validation Plan
	Validation scope
	Validation tools
	VUnit testbenches
	Vivado TCL framework

	Test-cases

	Results
	Bitstream generation
	HW integration reports
	Power consumption report
	Utilization report
	Timing report

	Functionality outcome
	Image Coordinates Control IP block
	Predictor IP block
	Adder IP sub-block
	Quantizer IP sub-block
	Mapper IP sub-block
	Sample Representative IP sub-block
	Prediction IP sub-block
	Predictor Top IP integration test

	Encoder IP block
	Encoder Header IP sub-block
	Sample-Adaptive Entropy Coder IP sub-block
	Hybrid Entropy Coder IP sub-block
	Packer IP sub-block
	Encoder Top IP integration test

	Top Entity IP integration test

	Performance & Final results
	Time planning

	Discussion
	Related Work
	Future Work
	Conclusions
	Appendix - List of codes
	Mathematical conventions
	Image parameters
	Predictor parameters
	Encoder parameters
	VHDL Style Guide
	HDL Coding Guidelines
	SoC Package Pinout
	Extended Utilization Reports
	Signed/Unsigned signals handling
	VHDL Package example
	Image Coordinates Control IP source code
	Adder IP source code
	Scaled Difference IP source code
	Shift Register IP source code
	Image Metadata IP source code
	Parallel Synchronous FIFOs IP source code
	Sample-Adaptive GPO2 Code IP source code
	Adder IP Python script source code
	Adder IP VUnit testbench source code
	Simulations Bash source code
	Xilinx Vivado TCL framework source code
	Vivado Project Bash source code

	Declaration of Authorship

