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Preface

The purpose of this master’s thesis is to present mathematical models and a matheuristic
for solving two-echelon multi-product maritime inventory routing problems. The models
formulated in this thesis are based on research that is already done within the field
of maritime inventory routing problems, and are extended to suit problems with two
echelons.

This master’s thesis is written by three students from Industrial Economy and Technol-
ogy Management at the Norwegian University of Science and Technology (NTNU), and
concludes their Master of Science degree at NTNU. The master’s thesis is a continuation
of the project report carried out by Chaudhary et al. (2021), in the subject TIØ4500 -
Managerial Economics and Operations Research.

We would like to thank our supervisor, Professor Magnus Stålhane, for his guidance,
ideas, and educational discussions throughout the writing of this master’s thesis as well
as the project report.

Trondheim, June 2, 2022.
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Summary

Maritime transport is the backbone of the global trade economy with more than 80%
of the volume of international trade transported by sea. Being a slow mode of trans-
portation, comprehensive scheduling is essential, and using mathematical optimization
as a support tool can help reduce the costs of operating. Even though maritime in-
ventory routing problems have been subject to a significant amount of research for the
last decades, problems with two echelons and multiple products are not yet found in the
literature.

In the problem at hand, multiple products are transported in a two-echelon supply chain.
In the first echelon, the products are transported over long distances from a production
port to regional hubs. Products are further distributed over shorter distances from the
hubs to consumption ports in the second echelon. There is one region containing only the
production port, with the remaining regions containing one hub and multiple consumption
ports. Each region has a heterogeneous fleet of vessels. The objective is minimizing costs
by deciding when, where, and how much of each product to transport, as well as how
much and when to buy or sell in an external spot market available to all hubs.

Two arc-flow models for the problem are formulated, including a fixed-charge network
flow formulation (FCNF), to which valid inequalities and variable bound tightenings are
implemented. A decomposition matheuristic is developed with the aim of obtaining high
quality solutions for larger instances. The matheuristic takes advantage of the problem
structure by aggregating the demand in each region and splitting the problem into smaller
subproblems, which are then solved iteratively. It applies the FCNF model, as this proved
to be the best exact model for quickly finding high-quality solutions for the subproblems.
Preprocessing techniques are applied, as well as a clustering technique combined with a
relax-and-fix and fix-and-optimize framework when subproblems are too computationally
heavy for the exact FCNF. In the computational study, the matheuristic finds feasible
solutions to all 75 test instances, whereas the exact solution method finds feasible solutions
to 37. Out of these 37 instances, the matheuristic finds the best objective value in 10,
and the average objective value of the matheuristic is 0,9% higher than for the exact
method. Analysis shows that the matheuristic on average removes around 70% of integer
variables compared to the exact solution method.
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Sammendrag

Sjøfart som transportmetode har lenge vært ryggraden i verdensøkonomien, og trans-
porterer i dag omtrent 80% av den globale handelen per volum. Ettersom dette er en
langsom transportsmetode, er det nødvendig med omfattende ruteplanlegging. Med bruk
av matematisk optimering som besluttningsstøtte er det mulig å redusere operasjonskost-
nadene betydelig. Selv om maritime ruteplanleggingsproblemer har vært forsket mye på
de siste tiårene, er det svært få studier som omfatter problemer med transport av flere
produkter og flere ledd mellom produsent og forbruker.

Problemet i denne masteroppgaven omhandler transport av flere produkter i en verdikjede
med mellomlagre mellom produsent og forbruker. I første ledd blir produkter transportert
over lengre distanser fra en produsenthavn til de regionale mellomlagrene. Fra de regionale
mellomlagrene blir produktene transportert videre over kortere distanser til forbrukere, og
dette utgjør andre ledd. Det er én region som kun består av produsenten. De resterende
regionene har ett regionalt mellomlager, og flere forbrukere. Hver region har en heterogen
flåte med skip. Målet er å minimere kostnadene ved å avgjøre når, hvor, og hvor mye
av hvert produkt som skal transporteres. I tillegg avgjøres det når og hvor mye som skal
kjøpes og selges på spotmarkedet som er tilgjengelig for de reginalene mellomlagrene.

To matematiske modeller er presentert, inkludert en fixed-charge network flow (FCNF)
med tilhørende gyldige ulikheter og innstramninger av variabelgrenser. En dekomponer-
ingsheuristikk er implementert med mål om å finne løsninger av høy kvalitet på større
instanser. Heuristikken utnytter problemstrukturen ved å aggregere etterspørselen i hver
region, og deler problemet opp i subproblemer som løses iterativt. Den benytter FCNF-
modellen som viste seg best egnet for å raskt finne løsninger for subproblemene. Prepros-
essering er benyttet, samt en kombinasjon av clustering og et relax-and-fix og fix-and-
optimize rammeverk som benyttes når subproblemene blir for komplekse for den eksakte
FCNF-modellen. I beregningsstuidet klarer heuristikken å finne løsninger for alle 75 in-
stanser og den eksakte modellen finner løsinger for 37. Blant disse 37 instansene finner
heuristikken beste objektivverdi i 10 av dem, og den gjennomsnittlige objektivverdien er
0,9% høyere enn for den eksakte modellen. Analyser viser at heuristikken i gjennomsnitt
fjerner ca. 70% av heltallsvariablene sammenlignet med den eksakte løsningsmetoden.
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Chapter 1
Introduction

As the world has become more globalized, the production of different goods are specialized
in certain geographic regions. At the same time, consumption of goods is increasing, which
is met by increased levels of output. Reduction in trade barriers, and lower costs for raw
materials and labour in certain areas of the world motivate companies to outsource to a
greater extent. Consequently, the need for transporting products over longer distances is
increasing. During the last 30 years, the international seaborne trade has increased by
over 200% in terms of weight. In 2019, the seaborne trade passed 11 billion tons, which
makes up closer to 90% of the total world trade (Sirimanne et al., 2019). Transport by sea
has become the primary means of transporting several different products, including raw
materials, crude oil, and petroleum products (Sirimanne et al., 2019). The importance
of maritime transport in the global economy was emphasized by the previous Secretary-
General of UN, Ban Ki-moon, when he referred to maritime transport as the “backbone
of global trade and the global economy” (United Nations, 2016).

Due to the growth seen in maritime transportation in recent years, the number of ships
in operation, and their sizes, have been increasing (Allianz, 2021). Operating large cargo
ships with load capacities of several thousand tons is expensive. The main cost drivers in
this industry include fuel costs, crew salaries and berthing fees. Additionally, there are
large costs associated with either owning or chartering a vessel, where the latter cost is is
primarily determined by the number of days a vessel is chartered. Maritime transporta-
tion is substantially slower than transportation by air or road, frequently taking several
days, or even weeks, per transportation leg. Because many businesses rely on the goods
being transported by sea, minor delays could negatively impact their entire operation.
Hence, comprehensive planning concerning routing and inventory is important for keep-
ing costs at a minimum. Using mathematical optimization as a support tool to create
routes and schedules may potentially reduce the total costs of operation significantly.
Another important aspect that favours optimizing the transportation routes by sea is
the air pollution and emission of greenhouse gases caused by large cargo ships (EEA,
2021). These aspects are some of the reasons why maritime transportation has grown as
a research field during this millennium.
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In recent decades, optimizing maritime transport has become a greater research field of
interest. The literature focuses on the problems concerning both the routing of the ships,
as well as the inventory at the supplier and the customers. Supply chains implementing
vendor-managed inventories are usually the subject for research. The problems within
this research field are named maritime inventory routing problems (MIRP). Several case
studies on the liquefied natural gas (LNG) industry were conducted throughout the first
decade of this millennium. In the last decade, alongside several case studies, general
models and extensions for MIRP have been published. Being a complex problem to
solve, several different solution methods have also been developed to obtain good solutions
within a reasonable time.

Existing MIRP literature primarily studies supply chains with no intermediate facilities
between producer and consumer, and general mathematical models only represent this
one-echelon structure. In reality, intermediate facilities are found in many supply chains.
We study a general two-echelon multi-product maritime supply chain. In the first echelon,
products are transported over longer distances from a production port to regional hubs.
These hubs can also trade with an external spot market. In each region, there are multiple
consumption ports served by their respective hubs. This constitutes the second echelon.
The main costs considered are the fuel cost and the cost of buying and selling products
in the spot market. When formulating this as a mathematical optimization problem, the
objective is to minimize the total costs.

This masters’ thesis contributes to the literature by studying a two-echelon multi-product
MIRP, which is an extended version of the general MIRP. Two arc-flow formulations with
these extensions are presented, with one being a basic arc-flow model, and the other a
fixed-charge network flow model. The latter has been seen in the literature to achieve
tighter bounds than the general model. To solve the larger instances, a matheuristic
is presented. This heuristic is based on aggregating the customers’ demand, and solves
each region independently by applying clustering and using a relax-and-fix and fix-and-
optimize framework.

This masters’ thesis is organized in the following manner: Chapter 2 presents an overview
of existing relevant literature. In Chapter 3, the problem studied is presented, and the
two different mathematical formulations of the problem are given in Chapter 4. Chap-
ter 5 presents the matheuristic for the formulated problem, and a computational study is
conducted in Chapter 6. Concluding remarks are given in Chapter 7, and fields of study
for future research are discussed in Chapter 8.
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Chapter 2
Literature Review

In this chapter, relevant literature for maritime inventory routing problems is reviewed. In
Section 2.1, the strategy for finding relevant literature is described. The general maritime
inventory routing problem is discussed in Section 2.2, followed by model characteristics in
Section 2.3. Extensions of the problem are discussed in Section 2.4 and Section 2.5, while
Section 2.6 looks at solution methods. This review is based on work done in Chaudhary
et al. (2021). Concluding the literature review with Section 2.7, we will discuss where
the problem of this thesis situates in the existing research, as well as our contribution to
the field.

2.1 Literature Search Strategy

The maritime inventory routing problem, hereby also known as MIRP, has developed a
lot as a research field in recent years. Therefore, an increasing amount of literature is
found concerned with problems within this field. It is mostly referred to as MIRP, but
other abbreviations and names are also used for the same, or quite similar, problems in
some papers.

To get an overview of the research done within this field, we started by looking at two
surveys: Papageorgiou et al. (2014a) and Christiansen et al. (2013). These articles pro-
vided us with a good overview of the work done concerning MIRP, as well as working as
a guideline for further literature search.

To begin with, the literature research was based on work referenced in the two surveys.
As we started to narrow our search down towards specific extensions of the problem and
solution methods, we used Google Scholar to search for relevant articles. We decided to
only use articles that were written in English and that were published by acknowledged
scientific publishers or in journals. Different combinations of words such as “two-echelon”
and “multi-product” were used to retrieve relevant literature. An overview of the terms
and search words used is shown in Table 2.1. The words written in the columns are words
used in combinations with the headings when searching. Combinations of the keywords
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in each column have also been used.

Table 2.1: Words used in the search for relevant literature.

MIRP Multi-Product Two-Echelon MIRP Heuristic
Mathematical Model MIRP MIRP Relax-and-Fix

Maritime Inventory Routing Problem IRP IRP Rolling Horizon
FCNF Maritime Inventory Routing Maritime Inventory Routing Clustering

Arc-Flow Inventory Routing Inventory Routing Fix-and-Optimize
Unmixable Heuristic Decomposition

Matheuristic

2.2 The General Maritime Inventory Routing Problem

Vendor managed inventory (VMI) is a supply chain practice where the supplier is in
control of inventory management for the customers. In the literature, the inventory
routing problem (IRP) deals with optimizing decisions in supply chains implementing
VMI. It includes both inventory management and vehicle routing. In a general IRP, a
single product is distributed from a single supplier to a set of customers to satisfy their
demand for a given period. The consumer has a given consumption rate. Inventory
capacities at the supplier and customers are given. The products are transported by a
fleet of vehicles, which is usually homogeneous and with given capacities. The objective
is to minimize the delivery and storage costs (Bertazzi and Speranza, 2012). A maritime
inventory routing problem (MIRP) can be seen as a special case of the IRP that arises
in a maritime setting (Papageorgiou et al., 2014a).

A MIRP is defined as a planning problem where an actor has the responsibility for both
the inventory management at one or both ends of the maritime transportation legs and
for the ships’ routing and scheduling (Christiansen et al., 2013, p. 475). The goal of the
general MIRP is to minimize the cost of transporting a single product between production
and consumption ports. For both types of ports, there are given storage capacities, as
well as known production and consumption rates. Usually, a heterogeneous fleet of ships
is used for the transportation of the product. With a heterogeneous fleet, each ship has
a distinct capacity. The ships can both load and discharge multiple times, often also
partially, during the planning horizon. The initial inventories for ports and ships are
known, as well as the initial locations of the ships. The costs of sailing, port costs, and
waiting costs are ship-dependent. The objective is to minimize the costs by designing
routes and schedules that minimize transport and delivery costs, as well as determining
how much and at which ports to load/discharge the product (Christiansen et al., 2013).
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2.3 Model Characteristics

The formulation of time is an important characteristic that differentiates mathematical
models in MIRP from each other. The most common approach is to use discrete time.
This is the approach Papageorgiou et al. (2014a) take in the first publicly available library
of MIRP, where they present a core model for MIRP. In such models, each action occurs
at a fixed point in time. Continuous time models are more often used in situations where
production and consumption rates are constant, such as in the case of Al-Khayyal and
Hwang (2007), where they minimize the cost of transporting several liquid bulk products.
Another example of the use of continuous time is seen in the paper by Christiansen and
Fagerholt (2009), where a single product, with constant production and consumption
rates is transported from production to consumption ports.

Another important concept in the mathematical model is the difference between arc-flow
and path-flow formulations. Models using path-flow formulation have decision variables
that represent a whole sequence of ports that are visited by each ship. Persson and Göthe-
Lundgren (2005) use this formulation when they look at the transportation of multiple
oil products. Andersson (2011) takes the same approach when studying transportation of
pulp products between mills and terminals. Arc-flow formulations have decision variables
for movement from one port to another, and are more common in the MIRP literature
than path-flow (Papageorgiou et al., 2014a). In the survey by Christiansen et al. (2013),
Agra et al. (2013), and several other papers, arc-flow formulations are used.

Using an arc-flow and a discrete time-model to find optimal schedules for transporting
a single product and maintaining capacities and restrictions in ports, Song and Furman
(2013) present a time-space network. The problem is defined on a graph G = (V, E),
where V is the set of nodes that represent a visit to a specific port in a particular time
period. The set of nodes includes both supplier and customers. E is the set of arcs that
connects the nodes, and the arcs represent movement from one port to another in a later
time period, or that the ship stays in the same port in subsequent time periods. The
nodes are shared by all the ships, but each ship has its own set of arcs. This approach
is also used by Persson and Göthe-Lundgren (2005) and Papageorgiou et al. (2014a). A
visual representation of such a network for a single ship, with two ports and six time
periods, is given in Figure 2.1. The source and sink nodes represent the start and end
destinations for the ships.

With the goal of obtaining a better linear relaxation, Agra et al. (2013) extends this
arc-flow model and formulate the MIRP as a single-commodity fixed-charge network
flow problem (FCNF). A similar model is also used in Friske et al. (2021). In this
formulation, the commodities supplied from the producer to the customers flow along
the arcs corresponding to the vessel routes. The nodes in each port are divided into
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Figure 2.1: Visualization of time-space network.

three levels. The first level handles arrival and waiting of the vessels, the operations are
controlled by the second level, and inventory is regulated in the last level. A visualization
of this is given in Figure 2.2. A vessel arrives the port in first time time period and
waits one day. Thereafter, it operates in two consecutive days before it leaves the port.
With this reformulation, known valid inequalities can be applied to tighten the problem
formulation, which makes it possible to find solutions more efficiently.

The composition of ships and their attributes in a fleet is another essential part that dis-
tinguishes the problems studied. A great majority of the aforementioned articles presents
problems with heterogeneous fleets consisting of ships with different characteristics such
as speed, capacity, and travel cost. In contrast, Andersson (2011) presents a problem
where the fleet consists of three identical ships. The option of chartering ships is also
present, as it is in Soroush and Al-Yakoob (2018) when transporting crude oil products.
Stålhane et al. (2012) present a problem with an available fleet, in addition to the op-
tion to charter ships on daily rates when transporting multiple LNG products. When
studying a problem of transporting products of grain, Bilgen and Ozkarahan (2007) do
not have their own fleet, but charter the ships. Whether a ship can load or discharge in
several ports also differ in the literature. As in Bilgen and Ozkarahan (2007), Soroush
and Al-Yakoob (2018) can only discharge their products at a single port. In several other
articles, such as Christiansen and Grønhaug (2009), Hemmati et al. (2016), and Hennig
et al. (2012), the ships are allowed to load and discharge at several ports.
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2.4 Multi-Product MIRP Characteristics

The extension of multiple products is often seen in maritime inventory routing problems.
Instead of one product, multiple products are to be transported and delivered. Depending
on the problem, different parameters can be specified by product type, such as port
demand and port inventory capacity. In some cases, it is not possible to mix the product
types due to the nature of the products. In this section, the key characteristics of multi-
product MIRP are discussed, which include bounds on loading, discharging and inventory
at ports, as well as the inventory and product handling on board the ships.

Characteristics regarding loading, discharging and storing of the different products in
the ports differ greatly in the literature. Papageorgiou et al. (2014a) introduce a general
extension for multiple products in their core model. In their extension, there is no need for
product-specific inventory, loading or discharging bounds on the ports, as the products are
mixable. These bounds are set on the aggregate level. However, lower and upper bounds
for the amount produced or consumed in each port are specified by product type. This
extension stands out compared other papers, as unmixable products appear to be more
common than mixable products in multi-product MIRP papers. A common approach
is to set product-specific bounds for loading, discharging and inventory in ports. This
approach is seen in the paper by Al-Khayyal and Hwang (2007), which describes such
a problem with transportation of oil. Both upper and lower inventory bounds for each
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product in a port are implemented. The same is also done in Christiansen et al. (2011),
where they look at transport of cement. This is directly transferable to the loading and
discharging as well, since the storage capacity dictates these bounds. A different approach
is taken by Hemmati et al. (2016), with all ports allowed to both produce and consume
depending on the product. Each port is either producer, consumer or neither for a given
product. Agra et al. (2014) present a combination of these approaches, with some ports
able to both produce and consume products, and other ports only able to consume.

Proceeding with loading and discharging in ports, several different approaches for how
ships are allowed to load and discharge can be found in the literature. Agra et al. (2014),
Hemmati et al. (2016) and Siswanto et al. (2011) have taken the approach of restricting
the ports to only have one ship visiting, and thus loading or discharging, at a given time.
A similar problem is described by Christiansen et al. (2011). However, in this problem,
only the consumption ports are restricted to one ship at a time. The production ports
can service multiple ships simultaneously, as they are larger than the consumption ports.
A less restrictive approach is taken by Al-Khayyal and Hwang (2007) by allowing only
one ship to load or discharge a specified product in a given port at a time. Multiple ships
can therefore load or discharge simultaneously as long as they handle different products.
The most liberal approach is seen in the papers by Bilgen and Ozkarahan (2007) and
Papageorgiou et al. (2014a), which both allow ships to simultaneously load and discharge
multiple products.

A common challenge found in multi-product MIRP is the transportation of the products,
and potentially the allocation of compartments on the ships. Unmixable products cre-
ate a need for multiple compartments to separate the products. Bilgen and Ozkarahan
(2007) deal with unmixable products, but take a similar approach as Papageorgiou et al.
(2014a), where there is no need for tank allocation. They assume that there are enough
compartments with varying sizes to maintain a separation of all products. Therefore, as in
Papageorgiou et al. (2014a), the total capacity of the ship is the only capacity constraint
to consider for the ships. A similar approach is seen in the papers by Hemmati et al.
(2016) and Persson and Göthe-Lundgren (2005). Siswanto et al. (2011) introduce com-
partments for unmixable products, but use undedicated ones. Undedicated compartments
are defined as compartments that can transport any type of product, but only one type
at a time. In contrast to the previous papers mentioned, the number of compartments is
not high enough to assume that separation of the products is possible with all combina-
tions of quantities. Christiansen et al. (2011) take a similar approach, with undedicated
compartments for the unmixable cement products. Agra et al. (2014) and Al-Khayyal
and Hwang (2007) both introduce dedicated compartments. Consequently, they need to
address the problem of allocating products to different compartments, adding an alloca-
tion problem to their MIRP. Dedicated compartments imply that a given compartment
transports one type of product during the entire planning period.
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2.5 Two-Echelon Inventory Routing Problems

Standard routing problems consider supply chains of only two layers. Products move
directly from origin to destination, which is referred to as direct shipping. When supply
chains use one or more layers of intermediate facilities for storage, merging, consolidation
or transshipment, it is defined as a multi-echelon. Two-echelon is a special case of multi-
echelon with one layer of intermediate facilities. The problem can not be decomposed and
solved separately for each echelon since the flow of freight must be coordinated between
layers in the supply chain (Cuda et al., 2015). When conducting the literature review,
it appeared that no, or very few, papers study multi-echelon MIRPs. Consequently, this
section reviews relevant literature on the closely related two-echelon IRP, which deals
with both vehicle routing as well as inventory management on a supply chain of two
echelons.

Although there are many similarities between MIRP and IRP, a few key distinctions
are prominent. Some of those Ronen (2002) outlines are: (1) In IRP, the vehicles in a
fleet are usually identical. This is usually not the case in MIRPs, where fleets are often
heterogeneous. (2) MIRPs often involve several products, and sometimes products that
have to be kept separately, which is rarely necessary in IRP. (3) Travel time is often much
longer in MIRP, and (4) unlike the ships, the vehicles in IRP must return to base each
day. (5) Ships can also often be sourced at several facilities in MIRPs, unlike the vehicles
in IRPs.

In the two-echelon inventory routing problem (2E-IRP) literature, the number of inter-
mediate facilities and origins differ. Chan and Simchi-Levi (1998) study a distribution
system with one origin, multiple intermediate facilities, and multiple destinations where
there is an upper limit to the frequency of visits. In Farias et al. (2021) a similar distribu-
tion system is studied, but without frequency restrictions. Here, one vehicle can supply
multiple intermediate facilities before restocking at the origin. Both Li et al. (2011) and
Zhao et al. (2008) study a distribution system with one intermediate facility and one
origin, where the former allows direct shipment from origin to destination. Rohmer et al.
(2019) introduce a two-echelon multi-product IRP for perishable goods with one origin
and one intermediate facility. Guimarães et al. (2019) claim to be the first to introduce a
formulation with multiple origins and intermediate facilities in their paper on distribution
systems, which is based on an ethanol and gasoline supply chain in South America.

The modelling of the fleet of vehicles also differs in the literature. In Guimarães et al.
(2019), each intermediate facility has one fleet of vehicles assigned to it. All fleets are
homogeneous and equal. These vehicles are used for transportation in both echelons.
Vehicles must return to their original facility before the end of the planning period. In
contrast, Chan and Simchi-Levi (1998), Li et al. (2011), and Farias et al. (2021) have

9



two homogeneous fleets; one for each echelon. Zhao et al. (2008) study a problem where
goods in the first echelon are transported by train, while a homogeneous fleet of vehicles
is used in the second echelon.

2.6 Solution Methods

The combination of vehicle routing and inventory management makes MIRPs difficult
to solve using commercial solvers, such as CPLEX and Gurobi, especially for larger in-
stances. Only a few papers apply exact solution methods to their problems, and will
therefore be briefly reviewed in section 2.6.1. Due to the complexity of MIRPs, sev-
eral different heuristic algorithms are found in the literature. Some papers only use
metaheuristics to solve the problem, which are discussed in section 2.6.2, but the great
majority of them are matheuristics. A matheuristic combines mathematical programming
and metaheuristics, which are general heuristic frameworks for problems with similar pat-
terns, to create an optimization algorithm (Fischetti and Fischetti, 2016). In the vehicle
routing problem (VRP) literature, which is closely related to IRP, with the main differ-
ence being that the amount to transport is given in the VRP, Archetti and Speranza
(2014) divides the matheuristics into three categories: (1) decomposition approaches,
where the problems are divided into smaller subproblems, (2) improvement heuristics
and (3) branch-and-price/column generation-based approaches. As MIRP is a special
case of IRP, this division appears appropriate when studying the MIRP literature as
well. Due to the differences in problem characteristics between IRP and MIRP, the main
focus in this section is on solution methods in the literature applied on MIRPs. In this
section, the first two categories, decomposition approaches and improvement heuristics,
are reviewed in subsections 2.6.4-2.6.5, respectively. In combination with matheuristics,
several papers also include preprocessing to make the problems easier to solve, which is
discussed in Subsection 2.6.3.

2.6.1 Exact Solution Methods

One of the main purposes of solving the problems using exact solution methods is to
prove, and solve problems to, optimality. To test the new FCNF formulation, and the
valid inequalities, Agra et al. (2013) conducted a computational study using a branch-
and-bound scheme. Different branching priorities were set on variables concerning the
vessel movements. The results show that compared to the original formulation of the
problem, the new FCNF formulation provides much better bounds. When studying the
transportation of multiple oil-products from oil refineries to depots, Persson and Göthe-
Lundgren (2005) use column generation and constraint branching as the solution method.
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The shipment problem, concerning products and amounts to be transported, is linearly
relaxed, and solved using column generation. To choose among the schedules obtained
for the ships, constraint branching is used. The branching implies that a ship must visit
a port in a given time period, or it can not. Valid inequalities are also applied to obtain
solutions more quickly. A similar approach is used when Engineer et al. (2012) look at
a single-product MIRP with multiple supply and demand facilities. A branch-and-price
algorithm is used to solve the master problem containing all possible routes, in addition
to load and discharge quantities. The linear relaxation of the master problem is solved
by cutting the branch-and-bound tree if the solution is fractional. A similar branching
scheme as Persson and Göthe-Lundgren (2005) is imposed, where a vessel is either forced
to or prohibited from loading or discharging a product at a port at a given time. With
these methods, larger instances of MIRPs can be solved. Studying transportation of
LNG, Grønhaug et al. (2010) also use a branch-and-price method. The master problem
in the column generation handles the inventory, and the subproblems generate the ship
routes. The solution method finds high-quality integer solutions on almost all instances
tested.

2.6.2 Metaheuristics

Metaheuristics are general algorithm ideas that can be applied on several different prob-
lems to obtain solutions more efficiently than exact methods, including MIRPs. When
optimizing the solution of an ADP problem for LNG transportation, Stålhane et al.
(2012) use a greedy construction algorithm that gives a set of initial solutions, combined
with a first-descent neighborhood search with five neighborhood operators. High-quality
solutions are obtained in a short amount of time compared to exact solution methods.
Also studying LNG problems, Asokan (2014) proposes an algorithm with parallel large
neighborhood search to solve larger instances. Initially, a construction heuristic is used to
build feasible solutions, and thereafter improved by neighborhood search. The operators
are either a pair of selected vessels, or time-windows. Based on these operators, new
subproblems are created to optimize the schedules within the neighborhoods. Using this
method, good results are achieved on the test instances within reasonable time. When
studying a multi-product MIRP, Sanghikian et al. (2021) apply a variable neighborhood
search heuristic. Four neighborhoods are defined, with the first two as intra-route, where
for example two visits in the solution are exchanged. The two other are inter-route,
meaning inserting or deleting a visit in a route. Compared to work done prior to this
paper, this method performs better in terms of objective value and computational time.
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2.6.3 Preprocessing

The purpose of preprocessing is to reduce the problem size, which is often done by en-
forcing problem-specific requirements. This includes both fixing and/or removing some
of the variables. In their arc-flow model, Song and Furman (2013) remove several arcs
between consumption and production ports, and set the ship storage to zero at the end
of the planning horizon. A similar approach is taken by Friske et al. (2021), where they
study the MIRP presented in Papageorgiou et al. (2014a). The problem is formulated on
a time-space network, and arcs that have a low probability of being used in a high-quality
solution are removed in preprocessing. Examples of such arcs are those that have very
long travel distances. Reduction of arcs that ships can use is also found in Papageorgiou
et al. (2018). When solving the problem, only arcs that facilitate travel in even-numbered
periods are generated.

To reduce the solution space, Rakke et al. (2011) remove solutions that are almost sym-
metric. This is done by reducing the number of contracts a ship can deliver to on a
given day. This improves both the solution time and the quality of solutions. Fagerholt
and Christiansen (2000) also reduce the complexity of the problem when studying a ship
scheduling problem by reducing the number of candidate schedules. Schedules with poor
utilization of ships are most likely not included in an optimal solution and are therefore
excluded.

2.6.4 Decomposition Approaches

In decomposition approaches, the main problem is divided into subproblems, and solved
iteratively. As will be seen in this section, it is common to decompose with regard to time
periods. In a general rolling horizon heuristic (RHH), the problem is divided into n time
periods, giving n subproblems. Each subproblem is solved as a mixed integer problem,
and by combining these solutions, a solution for the full problem is obtained. Studying
a MIRP for an LNG producer, Rakke et al. (2011) use an RHH to create an annual
delivery program (ADP). They divide the whole planning horizon into a number of time
partitions, where some of the partitions might be overlapping, and solve each subproblem
with branch-and-bound. This method provides high quality solutions, and solution times
are significantly lower than when solving the full mathematical model using a commercial
solver. Papageorgiou et al. (2018) present a computational study using RHH to find
schedules and inventory policies for MIRPs, which solves several instances of different
MIRPs significantly quicker than CPLEX and Gurobi. Looking at the optimization of
short sea fuel oil distribution, Agra et al. (2014) use a hybrid heuristic consisting of three
heuristics. An initial solution is found by the first heuristic, which is then solved by RHH,
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before local optima are found by using local branching. The use of the three heuristics
combined outperformed the use of only the RHH.

Uggen et al. (2013) extend the RHH model and present a relax-and-fix (R&F) heuristic.
The main difference from the RHH is that R&F considers the whole planning horizon in
each iteration, but integer requirements on variables outside the subproblem are relaxed.
When using RHH, only the time horizon that makes up one subproblem is considered
in each iteration, and the remaining integer variables are ignored. R&F heuristics solves
each subproblem with integer variables, while it relaxes the variables in the remaining
subproblems that are not yet solved. Once the subproblem is solved, the variables in the
solved subproblem are fixed. It iterates through every subproblem until all the variables
in the problem are fixed. An illustration of the R&F heuristic is given in Figure 2.3.

Iteration 1

Iteration 2

Iteration 3

Iteration n

Interval 1 Interval 3Interval 2 Interval n

Interval 1 Interval 3Interval 2 Interval n

Interval 1 Interval 3Interval 2 Interval n

Interval 1 Interval 3Interval 2 Interval n

Integer block Relaxed block

Integer block

Integer block

Integer block

Fixed block Relaxed block

Fixed block Relaxed block

Fixed block

Planning horizon

Figure 2.3: Visualization of Relax-and-Fix heuristic.

Building on the model presented in Uggen et al. (2013), Friske et al. (2021) present an
effective R&F algorithm for the problem presented in Papageorgiou et al. (2014a). To
avoid infeasibility, they also use overlapping planning horizons. The R&F heuristic is used
to generate an initial solution, and to improve this solution they use a fix-and-optimize
(F&O) heuristic. In the R&F, the problem is divided into a number of subproblems
which are made up by time intervals in the planning horizon. In each iteration, the
planning horizon is dived into three blocks. The first is an integer block where the
integer requirements are forced. The second and third are a relaxed and an end block,
where integer requirements are relaxed. After solving the first iteration, the time period
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that made up the integer block is now a fixed block, where the solution is fixed, and the
proceeding blocks become an integer block, relaxed block and end block, respectively.
This is done iteratively until the last time interval is reached. The proposed algorithm
was implemented on both an arc-flow model and an FCNF formulation, based on the work
of Agra et al. (2013). It was more efficient when used on the FCNF formulation, and it
obtained three new best-known solutions on the public dataset presented in Papageorgiou
et al. (2014a). Similar solution methods were implemented on a single-product MIRP in
Friske and Buriol (2017), which used an arc-flow formulation, and in Friske and Buriol
(2018), where an FCNF formulation was used. Both managed to obtain new best-known
solutions for a few instances.

The partitioning of variables to create subproblems can also be done based on other
criteria than time. Ferreira et al. (2009) show that one can use the different indices
of the integer variables to group variables and create more tailor-made subproblems.
Papageorgiou et al. (2014b) present a two-stage decomposition algorithm for a MIRP. In
the first stage, which is the construction phase, ports are aggregated by regions and vessels
by vessel classes. In the "zoomed out" phase, the master-problem concerning the routing
between regions is solved by using the aggregated information. In the "zoomed in" phase,
each region makes up a subproblem, in which the vessel routes are decided, and how much
to load and discharge. In the second stage, the solution from the first stage is used, and
valid inequalities and practical assumptions are imposed, such as limiting how many
customers each vessel can visit. Computational results show that combining these two
phases outperforms commercial MIP solvers. Another approach taking advantage of the
problem structure is found in Hemmati et al. (2016), where they consider a multi-product
MIRP and use a hybrid matheuristic. In the first phase, the inventory-routing problem is
converted into a ship routing and scheduling problem. This is done by generating cargo
subject to the inventory limits. In the second phase, the problems are solved by using
neighborhood search. This approach is called Hybrid Cargo Generating and Routing
(HCGR), and is built on the approach of Hemmati et al. (2015).

Guimarães et al. (2019) present a matheuristic for solving larger instances of the 2E-IRP
by handling vehicle routes with an Adaptive Large Neighbourhood Search (ALNS), while
a MIP is solved exactly to decide delivery quantities and the pickup of input from supplier.
The MIP is also allowed to add and remove customers from a route to potentially find
better neighbour solutions. Rohmer et al. (2019) present a matheuristic combining ALNS
with a MILP formulation for the 2E-IRP. Three versions of the approach is presented,
differing in the extent to which routing and delivery patterns are solved independently
of each other. Vadseth et al. (2021) look at an IRP with a maximum level replenishment
policy with the aim to minimize transportation and inventory costs. A matheuristic,
which initially generates a giant tour and then splits it into routes to generate an initial
set of promising routes, is presented. It iterates between solving a path-flow model with a
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small set of routes, and updating the set of routes based on the optimal solution from the
previous iteration. This metaheuristic is very efficient on IRPs, and finds the best-known
solutions for 179 out of 240 multi-vehicle IRP benchmark instances.

Another approach to decomposing problems seen in the IRP literature is to partition the
set of customers into disjoint subsets called clusters. Studying the supply chain of a su-
permarket chain in the Netherlands, Gaur and Fisher (2004) use clustering of customers
when developing weekly delivery schedules. They start by clustering two customers at a
time, before using a heuristic that expands these clusters to obtain better solutions. Using
this method, the supermarkets reduced their transport expenses significantly. Nambira-
jana et al. (2016) also take advantage of clustering when studying a 2E-IRP. In their
three-phase heuristic to solve the problem, clustering is an essential phase. They present
both clustering of customers based on distance to reduce the travel costs, and also based
on the total demand and vehicle capacities. The clustering is an iterative process that is
repeated to avoid unfavourable clusters. Using this solution method, they achieve better
results than using the commercial solver CPLEX.

2.6.5 Improvement Heuristics

In some cases, matheuristics are used as improvement procedures. As mentioned, Friske
et al. (2021) use an F&O heuristic to improve the initial solution provided by the R&F.
In F&O, a set of integer values from the solution given by R&F are unfixed, and the
full problem is optimized once again. By doing this iteratively for each subproblem, the
problem is re-optimized to obtain better solutions. Song and Furman (2013) present
a modeling framework for the IRP and look at a specific case study on a MIRP. The
heuristic used is an optimization-based large neighborhood search. The search for a better
solution starts with a feasible solution from a branch-and-cut algorithm. Some of the
binary variables are fixed to the values from the current solution, and small subproblems
are created and optimized. The subproblems are generated by fixing all binary variables
except those associated with a selected pair of ships. The subproblems optimize the
transportation cost for the two selected ships and fix the variables, before iterating to
the next subproblem which includes a new pair of ships. Goel et al. (2012) present an
arc-flow formulation based on the MIRP model from Song and Furman (2013). They look
at optimizing shipping schedule and inventory management in an LNG project. A greedy
construction algorithm is used to build an initial solution, which is improved by two large
neighborhood search algorithms. The first algorithm changes the departure date of the
ships, while the other improves the routes of two ships at a time. This algorithm works
efficiently and is faster than using commercial solvers.
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2.7 Our Contribution

Maritime inventory routing problems have been studied for many years and have grown
as a research field during the last decade. Routing and scheduling for LNG companies and
optimizing transport of different products, such as crude oil and pulp, are some examples
of case studies categorized as MIRPs. For many years, most MIRPs were case-specific,
but as MIRP has become a more common subject of research, a library for MIRP has been
introduced by Papageorgiou et al. (2014a). In recent years, several general extensions of
the MIRP have been presented.

The general mathematical formulation of the studied general two-echelon multi-product
MIRP in this master’s thesis is based on the core MIRP model presented by Papageorgiou
et al. (2014a). Studying the results in Chaudhary et al. (2021), the need for a model with
tighter dual bounds was prominent. Therefore, extending this model, based on the work
of Agra et al. (2013) and Friske et al. (2021), an FCNF formulation of the problem at
hand is also presented. The problem is defined on a time-space network. The decision
variables regarding ship movement are connected to arcs, and similar arc-flow models
are also used in Christiansen et al. (2013) and Agra et al. (2013). The fleet consists
of heterogeneous ships, which is also the case for Al-Khayyal and Hwang (2007), Song
and Furman (2013) and Christiansen and Fagerholt (2009). Unlike Goel et al. (2012)
and Soroush and Al-Yakoob (2018), but alike Hemmati et al. (2016) and Al-Khayyal and
Hwang (2007), the ships are allowed to partially load and/or discharge. The products in
this problem are unmixable, but during transportation, they are treated similarly as in
Bilgen and Ozkarahan (2007). It is assumed that there are enough compartments with
varying sizes on the ships to maintain the separation of all products, and that they are
only limited by the total storage capacity of the ship. This means that tank allocation is
not taken into account in the formulation. Just like Papageorgiou et al. (2018) and Uggen
et al. (2013) the option of buying and selling products from a spot market is available.
The objective is to minimize the cost of delivering the products demanded.

As the instance sizes grow, MIRPs quickly become difficult to solve using exact methods
and commercial solvers. In recent years, several heuristics approaches have been made to
obtain high-quality solutions with shorter computational time. Concerning two-echelon,
only heuristics solving IRPs are found in the literature. Due to the differences in the
nature of IRPs and MIRPs, which are mentioned in Section 2.5, the existing solution
methods are not easily applicable for the problem studied. Therefore, a new matheuristic
is presented. Inspiration is initially taken from Song and Furman (2013) and Friske et al.
(2021) to reduce the problem size by preprocessing. Certain arcs are removed and some
variables are fixed. The matheuristic in this paper is further inspired by Papageorgiou
et al. (2014b), which aggregate regions into super-customers. This creates subproblems
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that consists of single echelon MIRPs. In each region, a clustering of customers are made,
similar to Gaur and Fisher (2004) and Nambirajana et al. (2016). A relax-and-fix and
fix-and-optimize heuristic is applied to the clusters, which provided high-quality solutions
in short computational time in Friske et al. (2021), among others. Utilizing the structure
of the problem, the main problem is divided into subproblems, which are solved and
improved iteratively to obtain high-quality solutions for the whole problem.

During the literature study, we have not come across any studies concerning multi-echelon
MIRPs. Building on the work from Papageorgiou et al. (2014a) and Agra et al. (2013),
we present a general arc-flow formulation, and a new FCNF formulation with tighten-
ings and valid inequalities, for the two-echelon multi-product maritime inventory routing
problem. We also present a new decompisition-based matheuristic with elements from
clustering and relax-and-fix and fix-and-optimize heuristics, which demonstrates how the
structure of the problem can be utilized. A computational study is conducted, where the
performances of the two mathematical formulations are compared, as well an extensive
testing of the presented solution method.
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Chapter 3
Problem Description

In this master’s thesis, a general two-echelon multi-product maritime inventory routing
problem with heterogeneous fleets is studied. There is a set of unmixable products, which
must be kept separately for the entire planning period. The set of ports contains one
production port, several regional hubs, and multiple consumption ports.

All ports have a storage for each product with a given maximum and minimum capacity.
Each port has an initial inventory of each product at the start of the planning period.
To avoid greedy or short-term solutions, the quantity stored of each product in each port
must be greater than or equal to the average of the maximum and minimum capacity
at the end of the planning period. Furthermore, there is a berth capacity in each port.
There are bounds on the quantity that can be loaded or discharged in a port by a vessel
per time period. The rate of production in the production port and the demand in the
consumption ports of each product are given for each time period. The hubs have neither
production nor demand, but are connected to a spot market. All hubs can buy and sell
an unlimited quantity of each product in all time periods at a fixed buying and selling
price.

In Figure 3.1, an example of the ports in a problem instance of 4 regions is illustrated.
There is one region containing only the production port, hereby referred to as the pro-
duction region. The remaining regions, referred to as consumption regions, contain one
hub and multiple consumption ports. There is one heterogeneous fleet of vessels sup-
plying the hubs with products from the production port. These vessels will never travel
directly from one hub to another, and will thus visit the production port between visits to
hubs. No direct shipments from production to consumption ports are allowed. For each
consumption region, there is a heterogeneous fleet of vessels supplying the consumption
ports with products from the hub. Consumption ports are only supplied by the hub in
the same region. A vessel may visit and discharge at multiple consumption ports before
restocking at the hub. Vessels can not visit ports outside its region. If a vessel visits a
port, it must operate for at least one time period and may continue to operate after this.
Waiting can only happen prior to operating. There are no vessels in any of the ports at
the end of the planning horizon. At the hubs, vessels from the production region and
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consumption region will only discharge and load, respectively. When visiting a produc-
tion port, a vessel can only load. In consumption ports, discharging is the only option.
The transportation of product to and from the spot market is assumed to be instant and
handled externally.

Regional hubRegional hub

Regional hub

Consumption port

Consumption port

Consumption port

Region 3

Region 2Region 1

Region 0

Product 1

Product 2

Product 3

Figure 3.1: Example of ports in a problem instance with 4 regions and 3 products.

Each vessel has a given storage capacity for the total quantity of all products. There is
a cost associated with choosing to travel from one port to another with a given vessel.
A vessel has a given time period from which it is first available, and an initial inventory
of each product at that time. A vessel can load or discharge multiple products simulta-
neously. Multiple vessels can load or discharge the same product at the same time in a
port, within the bounds of the berth capacity.

The objective is to minimize the total costs, which consist of the travelling cost and cost
of products bought and sold in the spot market. The decisions to be made are whether
or not a vessel will sail from one port to another in a given time period, and how much
to load or discharge of each product when it operates. Additionally, the quantity of a
product bought or sold in the spot market from or to a hub at a given time must be
decided.
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Chapter 4
Mathematical Model

As discussed in Section 2.7, arc-flow discrete-time formulations can be used to represent
the problem at hand. In this section, two different formulations will be presented. The
first model, presented in Section 4.1, is based on the formulation presented by Papa-
georgiou et al. (2014a). The second model, presented in Section 4.2, takes inspiration
from Agra et al. (2013) and Friske and Buriol (2018), and presents the problem as a
fixed-charge network flow problem (FCNF). Inspired by the work of these two papers, we
present known valid inequalities and variable tightenings for FCNF which are modified
to fit the problem at hand.

4.1 Basic Arc-Flow Formulation

The model is based on a time-space network that consists of nodes, which represent the
combination of a port and a specific time period. The nodes are connected with arcs. A
vessel sailing from the source node to a regular node represents the arrival of the vessel
to its initial destination. A vessel travelling on an arc from a regular node to the sink
node indicates that the vessel is no longer being used. A vessel using an arc between two
nodes associated with the same port, but at different times, indicates that the vessel is
either waiting or operating in that port. A vessel sailing directly from the source node to
the sink node is equivalent to not using the vessel. Arcs are permitted for a vessel if, and
only if, the ports associated with the nodes belong to a region to which the vessel can
travel. Additionally, permitted arcs must allow for sufficient sailing and loading time.

4.1.1 Modelling Assumptions

1. Vessels have numerous tanks, and it is assumed that combinations of tanks allow
for every ratio of products as long as the total quantity is below the capacity of
the vessel. Hence, the vessel capacity constraints only consider the total quantity
of products stored.
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2. A vessel can not start to operate at a port in the last period of the planning horizon.

3. A time-discrete model has been used. Variables are therefore only changed at
separate points in time. A given point in time is always rounded to the nearest
time period.

4.1.2 Definitions

Indices

t - time period
r - region
v - vessel
j - port
p - product type
n - node, n = (j, t) : j 2 J , t 2 T
a - arc, a = ((i, t), (j, t0)) : i, j 2 J , t, t

0 2 T , t
0
> t

Sets

T - set of time periods {0, |T |-1},
R - set of regions, where r = 0 is the production region and remaining regions are
consumption regions
V - set of all vessels
Vr - set of vessels associated with region r 2 R
J P - set of production ports
J C - set of consumption ports
J H - set of regional hubs
J - set of all ports, J = J P [ J C [ J H

Jv - set of ports which vessel v can visit
Jr - set of ports in region r

P - set of product types
N - set of nodes, excluding source node n0 and a sink node nT

N0 - set of all nodes, including a source node n0 and a sink node nT

NP - set of nodes n = (j, t) where j 2 J P

N C - set of nodes n = (j, t) where j 2 J C

NH - set of nodes n = (j, t) where j 2 J H

A - set of all arcs
Av - set of (permitted) arcs associated with vessel v 2 V . This set contains only arcs
leaving a node on, or later than, the first time period from which this vessel is available.
�
+
vn - outgoing arcs associated with node n = (j, t) 2 N0 and vessel v 2 V
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�
�

vn - incoming arcs associated with node n = (j, t) 2 N0 and vessel v 2 V

Parameters

Bj - number of berths in port j 2 J
Cva - cost for vessel v to traverse arc a 2 Av

C
B - cost per quantity bought on the sport market

C
S - revenue per quantity sold on the sport market

Djtp - quantity produced or consumed of product p 2 P at port j 2 J in period t 2 T .
The parameter is negative for j 2 J C, and positive for j 2 J P .
�j - an indicator parameter taking value +1 if j 2 J P and -1 if j 2 J C

F
min
j - minimum quantity that can be loaded or discharged to or from a vessel at port

j 2 J in each time period
F

max
j - maximum quantity that can be loaded or discharged to or from a vessel at port

j 2 J in each time period
Qv - storage capacity of vessel v 2 V
S
max
jp - upper bound on inventory for product p 2 P at port j 2 J

S
min
jp - lower bound on inventory for product p 2 P at port j 2 J

S
0
jp - initial storage of product p 2 P at port j 2 J

U
0
vp - initial storage of product p 2 P in vessel v 2 V

Variables

fjvtp - quantity loaded or discharged of product p 2 P at port j 2 J in period t 2 T for
vessel v 2 V
sjtp - quantity of product p 2 P at port j 2 J available at the end of period t 2 T
uvtp - quantity of product p 2 P on vessel v 2 V available at the end of period t 2 T
xva - takes value 1 if vessel v 2 V uses arc a 2 Av, and 0 otherwise
zjvt - takes value 1 if vessel v 2 V loads or discharges at node n = (j, t) 2 N , and 0
otherwise
kjtp - quantity of product p 2 P bought in spot market at node n = (j, t) 2 NH

ljtp - quantity of product p 2 P sold in spot market at node n = (j, t) 2 NH

A visualization of the variables just presented can be seen in Figure 4.1, where a vessel
departs from port j in time period t and arrives in port k in time period t

0.
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xva

Skt’p

Vessel v

Qv

fvitp fvkt’p
uvtp

Vessel sailing

Flow of product

Spot Market
(Available to Hubs)

kitp

litp

a = arc from (i, t) to (k, t’ )

zvkt’

sitp

zjvt

ljtp
kjtp

zkvt’

fjvtp fkvt’p

sjtp skt’p

(j, t)

j, t

Figure 4.1: Visualization of variables.

For ease of exposition in the mathematical model, it is assumed that operation and travel
for a vessel happens only in ports it is allowed to visit. Hence, all variables indexed by
vessel v and port j are only defined for j 2 Jv.

4.1.3 Formulation

Objective Function:

min
X

v2V

X

a2Av

Cvaxva +
X

(j,t)2NH

X

p2P

(CB
kjtp � C

S
ljtp), (4.1)

The objective function (4.1) minimizes the total cost and consists of two terms. The first
term represents the total travelling cost, which is the sum of the cost of all arcs that are
traversed by the vessels. The second term is the total cost from the spot market, which
is the quantity bought minus the quantity sold multiplied with buying and selling price,
respectively.
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Flow Balance Constraints:

X

a2�+vn

xva �
X

a2��vn

xva =

8
>><

>>:

1 if n = n0

�1 if n = n(T )

0 if n 2 N

, v 2 V , n 2 N0 (4.2)

zjvt 
X

a2��vn

xva, v 2 V , n = (j, t) 2 N , (4.3)

zjvt  xva, v 2 V , (j, t) 2 N , a = {(j, t), (j, t+ 1)}, (4.4)

zjv(t�1)  zjvt +
X

a=((j,t),(i,t0))2�+vn,i 6=j

xva, v 2 V , n = (j, t) 2 N , t > 0 (4.5)

Constraints (4.2) ensure that if a vessel enters a node it must also leave the same node. For
the artificial start and end nodes, vessels will only leave or enter, respectively. Constraints
(4.3) make sure that a vessel does not attempt to load or discharge at a node unless the
vessel actually arrived at the node. In addition if the vessel is operating, it can not
leave the port in the same time period due to constraints (4.4). Constraints (4.5) ensure
that if a vessel operates it must either continue operating or leave in the next time period.

Inventory Balance Constraints:

sjtp = sj(t�1)p +Djtp �
X

v2Vr

�jfjvtp, r 2 R, j 2 Jr \ {J H}, t 2 T \ {0}, p 2 P , (4.6)

sj0p = S
0
jp +Dj0p �

X

v2Vr

�jfjv0p, r 2 R, j 2 Jr \ {J H}, p 2 P , (4.7)

sjtp = sj(t�1)p +
X

v2V0

fjvtp �
X

v2Vr

fjvtp + kjtp � ljtp, r 2 R, j 2 J H \ Jr, t 2 T \ {0}, p 2 P ,

(4.8)
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sj0p = S
0
jp +

X

v2V0

fjv0p �
X

v2Vr

fjv0p + kj0p � lj0p, r 2 R, j 2 J H \ Jr, p 2 P , (4.9)

sjtp � (Smax
jp + S

min
jp )/2, n = (j, t) 2 N , p 2 P , t = |T |� 1, (4.10)

uvtp = uv(t�1)p +
X

n=(j,t)2NP

fjvtp �
X

n=(j,t)2NH

fjvtp, v 2 V0, t 2 T \ {0}, p 2 P , (4.11)

uv0p = U
0
vp +

X

n=(j,0)2NP

fjv0p �
X

n=(j,0)2NH

fjv0p, v 2 V0, p 2 P , (4.12)

uvtp = uv(t�1)p +
X

n=(j,t)2NH

fjvtp �
X

n=(j,t)2NC

fjvtp, v 2 V \ {V0}, t 2 T \ {0}, p 2 P ,

(4.13)

uv0p = U
0
vp +

X

n=(j,0)2NH

fjv0p �
X

n=(j,0)2NC

fjv0p, v 2 V \ {V0}, p 2 P , (4.14)

Constraints (4.6) and (4.7) ensure inventory balance for all products in all ports that are
not hubs when t > 0 and t = 0, respectively. Constraints (4.8) and (4.9) handle inventory
balance in the hubs for t > 0 and t = 0. Inventory constraints for hubs are different,
since vessels will both load and discharge at the hubs, which is not the case for production
and consumption ports. Constraints (4.10) make sure that the inventory of ports for all
products at the end of the planning period is greater than, or equal to, the average of the
maximum and minimum storage capacity. Constraints (4.11) and (4.12) ensure inventory
balance for vessels belonging to the production region for t > 0 and t = 0, respectively.
These vessels load at production ports and discharge at hubs. Constraints (4.13) and
(4.14) handle the inventory of vessels in the consumption regions for t > 0 and t = 0.
These vessels load at hubs and discharge at consumption ports.
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Quantity Constraints:

X

v2V

zjvt  Bj, n = (j, t) 2 N , (4.15)

F
min
j zjvt 

X

p2P

fjvtp  F
max
j zjvt, v 2 V , n = (j, t) 2 N , (4.16)

S
min
jp  sjtp  S

max
jp , n = (j, t) 2 N , p 2 P , (4.17)

0 
X

p2P

uvtp  Qv, v 2 V , t 2 T , (4.18)

Constraints (4.15) ensure that the total number of vessels loading or discharging at a
node is not exceeding the berth capacity of the port belonging to that node. Constraints
(4.16) make sure the quantity loaded or discharged of a product to or from a vessel is
not above or below the upper and lower bound of loading capacities for the port. Addi-
tionally, loading and discharging can only happen at nodes that are actually visited by
the vessel. Constraints (4.17) make sure that the quantity stored in a port is never below
minimum or above maximum storage levels. Constraints (4.18) handle the capacity of
the vessels.

Constraints on Variables:

0  kjtp, ljtp, (j, t) 2 NH
, p 2 P , (4.19)

0  sjtp (j, t) 2 N , p 2 P , (4.20)

0  fjvtp (j, t) 2 N , v 2 V , p 2 P , (4.21)
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0  uvtp v 2 V , t 2 T , p 2 P , (4.22)

xva 2 {0, 1}, v 2 V ,a 2 Av, (4.23)

zjvt 2 {0, 1}, v 2 V ,n = (j, t) 2 N , (4.24)

Constraints (4.19) - (4.22) enforce non-negativity, while constraints (4.23) and (4.24)
enforce binary requirements.

4.2 FCNF Formulation

To obtain better dual bounds than the Basic Arc-Flow formulation just presented, Agra
et al. (2013) formulate a similar MIRP as a single-commodity fixed-charge network flow
problem. In this formulation, the commodities supplied from the producer flow along the
arcs corresponding to the vessel routes until they reach the consumption ports, where they
are consumed externally. There are several known valid inequalities for FCNF problems,
and applying these may further tighten the bounds.

In this formulation, each port-time is divided into three levels, which is presented in
Figure 4.2. The first level deals with arrival and waiting of vessels. The middle level
coordinates the vessel’s operations and departures, and the bottom level is responsible
for the inventory at the port. New sets, parameters and variables that are changed
and added to the original Basic Arc-Flow formulation are given in Subsection 4.2.1. A
mathematical formulation inspired by the FCNF formulation of Agra et al. (2013) is
presented in Subsection 4.2.2, followed by tightening of variables and valid inequalities in
Subsection 4.2.3 and Subsection 4.2.4, respectively.

4.2.1 Defintions

Sets

Ov - origin node for vessel v 2 V
Dv - destination node for vessel v 2 V
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Parameters

�v - an indicator parameter taking value +1 if v 2 Vr where r is a consumption region,
and -1 if v 2 Vr where r is a production region.
Tijv - travel time from port i 2 J to port j 2 J with vessel v 2 V . If i = Ov, Tijv

indicates the earliest available time for vessel v 2 V
Q̄r - the largest vessel capacity of all vessels in region r 2 R

Variables

z
A
jvt - takes value 1 if vessel v 2 V starts operating at port j 2 J at time t 2 T , and 0

otherwise
z
B
jvt - takes value 1 if vessel v 2 V continues to operate at port j 2 J at time t 2 T after

starting to operate, and 0 otherwise
wjvt - takes value 1 if vessel v 2 V waits at port j 2 J at time t 2 T , and 0 otherwise
u
X
ijvtp - load on board vessel v 2 V of product p 2 P when traveling from port i 2 J to

port j 2 J leaving at time t 2 T
u
A
jvtp - load on board vessel v 2 V of product p 2 P when starting to operate in port

j 2 J in time period t 2 T
u
B
jvtp - load on board vessel v 2 V of product p 2 P before continuing to operate in port

j 2 J in time period t 2 T
u
W
jvtp - load on board vessel v 2 V of product p 2 P when waiting in port j 2 J in time

period t 2 T

The variable of operating, zjvt, is now split into two variables, zAjvt and z
B
jvt. zAjvt indicates

the start of operation in a port for a vessel in a given time period, while z
B
jvt indicates

that an operation is continued after operating in the previous time period. Unlike the
formulation of Section 4.1, there is now a separate waiting variable, wjvt, instead of
representing waiting as travelling to a node with the same port in a later time period.
The flow variable keeping track of the inventory on vessels, uvtp, is replaced by four flow
variables that ensure correct flow of commodities on the arcs. The relation between these
new variables is visualized in Figure 4.2 through an example. In this example, the vessel
enters the port in the first time period and waits until the second period. After that it
operates in two periods before it leaves the port.
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Figure 4.2: Visualization of the the three levels in each port in FCNF.

4.2.2 Mathematical Formulation

Objective Function:

min
X

i2J

X

j2J

X

v2V

X

t2T

Cijvxijvt +
X

j2JH

X

t2T

X

p2P

(CB
kjtp � C

S
ljtp), (4.25)

The objective function (4.25) is similar to the objective function (4.1), and minimize the
total costs, consisting of travel cost and cost related to trade in the spot market.

Flow Balance Constraints:

X

i2J[Ov

xijv(t�Tijv) + wjv(t�1) = wjvt + z
A
jvt, j 2 J , v 2 V , t 2 T \ {0}, (4.26)

z
A
jv(t�1) + z

B
jv(t�1) = z

B
jvt +

X

i2J[Dv

xjivt, j 2 J , v 2 V , t 2 T \ {0}, (4.27)
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X

j2J[Dv

xOvjv0 = 1, v 2 V , (4.28)

X

t2T

X

i2J[Ov

xiDvvt = 1, v 2 V , (4.29)

z
A
jvt + z

B
jvt = zjvt, j 2 J , v 2 V , t 2 T , (4.30)

The constraints (4.2) - (4.5) are now replaced by (4.26) - (4.30). Constraints (4.26)
ensure that if a vessel arrives or waits in a port it must either wait or operate in the
next time period. Constraints (4.27) make sure that if a vessel operates it must either
continue to operate or leave the port in the next time period. All vessels must leave the
source node, and enter the sink node, which is made sure by constraints (4.28) and (4.29).
Connection between the binary variables related to operation is handled by constraints
(4.30). These constraints describe the movement of the vessels in the extended network
given in Figure 4.2.

Flow Balance Constraints on Vessels:

X

i2J[Ov

u
X
ijv(t�Tijv)p + u

W
jv(t�1)p = u

W
jvtp + u

A
jvtp, j 2 J , v 2 V , t 2 T \ {0}, p 2 P , (4.31)

u
A
jv(t�1)p + u

B
jv(t�1)p +�jfjv(t�1)p = u

B
jvtp +

X

i2J[Dv

u
X
jivtp, j 2 J \ {J H}, v 2 V , t 2 T , p 2 P ,

(4.32)

u
A
jv(t�1)p + u

B
jv(t�1)p +�vfjv(t�1)p = u

B
jvtp +

X

i2J[Dv

u
X
jivtp, j 2 J H

, v 2 V , t 2 T , p 2 P ,

(4.33)

u
X
Ovjv0p = U

0
vpxOvjv0, v 2 V , j 2 J [Dv, p 2 P , (4.34)
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X

p2P

u
X
ijvtp  Qvxijvt, v 2 V , i 2 J [Ov, j 2 J [Dv, t 2 T , (4.35)

X

p2P

u
A
jvtp  Qvz

A
jvt, j 2 J , v 2 V , t 2 T , (4.36)

X

p2P

u
B
jvtp  Qvz

B
jvt, j 2 J , v 2 V , t 2 T , (4.37)

X

p2P

u
W
jvt  Qvwjvt, j 2 J , v 2 V , t 2 T , (4.38)

These constraints replace constraints (4.11)-(4.14) and (4.18). Constraints (4.31) ensure
that the inventory on the vessel when it starts to operate or wait in a port is equal to
the inventory the vessel arrived with, or the inventory that the vessel has been waiting
with in the previous time period. The flow conservation on vessels in the production
and consumption ports is maintained by constraints (4.32), and by constraints (4.33) for
the hubs. The initial inventory on the vessels are set by constraints (4.34). The upper
bounds on the flow variables are handled by constraints (4.35) - (4.38).

Inventory Balance Constraints:

sjtp = sj(t�1)p +Djtp �
X

v2Vr

�jfjvtp, r 2 R, j 2 Jr \ {J H}, t 2 T \ {0}, p 2 P , (4.39)

sj0p = S
0
jp +Dj0p �

X

v2Vr

�jfjv0p, r 2 R, j 2 Jr \ {J H}, p 2 P , (4.40)

sjtp = sj(t�1)p +
X

v2V0

fjvtp �
X

v2Vr

fjvtp + kjtp � ljtp, r 2 R, j 2 J H \ Jr, t 2 T \ {0}, p 2 P ,

(4.41)

sj0p = S
0
jp +

X

v2V0

fjv0p �
X

v2Vr

fjv0p + kj0p � lj0p, r 2 R, j 2 J H \ Jr, p 2 P , (4.42)
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sjtp � (Smax
jp + S

min
jp )/2, j 2 J , p 2 P , t = |T |� 1, (4.43)

Constraints (4.39)-(4.43) are identical to (4.6)-(4.10).

Quantity Constraints:

X

v2V

zjvt  Bj, j 2 J , t 2 T , (4.44)

F
min
j zjvt 

X

p2P

fjvtp  F
max
j zjvt, j 2 J , v 2 V , t 2 T , (4.45)

S
min
jp  sjtp  S

max
jp , j 2 J , t 2 T , p 2 P , (4.46)

Constraints (4.44)-(4.46) are identical to (4.15)-(4.17).

Constraints on Variables:

0  kjtp, ljtp, j 2 J H
, t 2 T , p 2 P , (4.47)

0  sjtp j 2 J , t 2 T , p 2 P , (4.48)

0  u
X
ijvtp, i, j 2 J , v 2 V , t 2 T , p 2 P , (4.49)

0  fjvtp, u
A
jvtp, u

B
jvtp, u

W
jvtp, j 2 J , v 2 V , t 2 T , p 2 P , (4.50)

xijvt 2 {0, 1}, i, j 2 J , v 2 V , t 2 T , t+ Tij  |T |� 1 (4.51)

zjvt, wjvt, z
A
jvt, z

B
jvt 2 {0, 1}, j 2 J , v 2 V , t 2 T (4.52)

Constraints (4.47)-(4.50) ensure that the variables take non-negative values. Binary re-
quirements are enforces by constraints (4.51)-(4.52).
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4.2.3 Tightening Flow Variables Bounds

Based on the requirements that a vessel must operate when visiting a port, and that a
vessel must leave a port after operating, the upper and lower bounds of the flow variables
can be tightened. Friske et al. (2021) demonstrate how the linear relaxation can be
tightened and solutions can be obtained more efficiently with these bounds. Inspired by
this work, we present tightening of flow variables for the problem in this thesis.

F
min
j z

B
jvt 

X

p2P

u
B
jvtp, j 2 J , v 2 V , t 2 T , (4.53)

X

p2P

u
B
jvtp  z

B
jvt(Qv � F

min
j ), j 2 J , v 2 V , t 2 T , (4.54)

zjvtF
min
j 

X

p2P

(uA
jvtp + u

B
jvtp), j 2 J C

, v 2 V , t 2 T , (4.55)

X

p2P
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Constraints (4.53) and (4.54) set lower and upper bounds on the inventory on a vessel
when continuing to operate. Between two operations in a discharging port, the upper
bound reflects the operation in the previous time period while the lower bound reflects
the need for inventory in the next operation. For production ports, the same logic applies.
Between two operations, the lower bound must reflect the minimum amount loaded in the
previous operation and the upper bound ensures there is sufficient storage capacity on the
vessel to load in the next operation. A vessel can only start operating in a consumption
port if there is sufficient inventory, which is handled by (4.55). Upper and lower bounds
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on vessel inventory when waiting are set by (4.56) and (4.57) for production ports and
consumption ports, respectively. Waiting is always followed by operation, and there
must be sufficient inventory or storage capacity on the vessel to allow for this. Finally,
constraints (4.58) handles lower and upper bounds on the vessel inventory when travelling
between two consumption ports. The lower bound on inventory onboard must satisfy the
minimum quantity that can be loaded in second port. The upper bound is affected by
the operation in the first port.

4.2.4 Valid Inequalities

To obtain better bounds for the FCNF model, Agra et al. (2013) derives a set of different
valid inequalities. These are based on knapsack sets, and are also presented in Friske and
Buriol (2018) and Friske et al. (2021). Inspired by them, the following inequalities are
adjusted to be applicable to the problem presented.
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Constraints (4.59) ensure the minimum number of vessel departures from the production
port, which is the minimum amount of products that must be loaded from the port during
the planning horizon divided by the maximum vessel capacity in the region. Similarly,
constraints (4.61) enforce the minimum number of vessels arriving in consumption ports.
The minimum numbers of operations required during the planning horizon are set by
constraints (4.60) for production ports and constraints (4.62) for consumption ports.
These are based on the minimum quantity that must be loaded or discharged in the
planning horizon and the maximum rate of loading or discharging in the ports.
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Chapter 5
Two-Stage Decomposition

Matheuristic with Fix-and-Optimize

This chapter presents the matheuristic designed to solve the two-echelon multi-product
maritime inventory routing problem described in Chapter 3. As the problem size in-
creases, the problem becomes more difficult to solve, or even find a feasible solultion for,
with exact solution methods. The main motivation for applying a matheuristic to the
problem is to be able to efficiently find high-quality solutions for larger instances.

The problem studied in this master’s thesis is unique compared to problems in the existing
MIRP literature. As discussed in Chapter 2, the combination of two echelons, multiple
products and MIRP is not present in the literature. In Section 2.6, several solution
methods for 2E-IRP, MIRP and multi-product MIRP are presented and discussed, in
addition to solution methods applied to combinations of these characteristics in problems.
The matheuristic presented in this chapter is a new matheuristic inspired by the articles
discussed, largely because of their good computational results.

The matheuristic presented in this chapter decomposes the full problem into smaller
subproblems. These subproblems can be solved exactly, or with an additional heuristic for
more complex subproblems. Section 5.1 gives an overview of the two-stage decomposition
matheuristic applied to the full problem, in addition to the motivation and reasoning
behind it. Section 5.2 presents the heuristic approaches applied as a solution method to
complex subproblems, while Section 5.3 introduces the heuristic preprocessing applied to
the full problem. The full matheuristic is hereby referred to as AD-RFFO, where AD
refers to the aggregation of demand, and RFFO to the relax-and-fix and fix-and-optimize
approach.
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5.1 Two-Stage Decomposition Matheuristic with Feed-
back

As discussed in Chapter 3, each region has its own fleet of vessels. Therefore, taking
advantage of the problem structure to create multiple independent MIRPs is the first
step of the matheuristic. The fact that vessels in the production region supply the
hubs is what prevents the consumption regions from being completely independent. A
similar problem without the production region would in turn give multiple independent
MIRPs. By decomposing the problem, and thus solving the production region first, each
consumption region can be solved independently. As seen and described in Chapter 3
and Chapter 4, this is possible because the spot market is available to all hubs and
ensures that all regional subproblems will be feasible. This approach has similarities to
Papageorgiou et al. (2014b), who present a two-stage decomposition heuristic for a MIRP
by aggregating the demand of multiple consumption ports into one super port, which
resembles the regional hubs of the problem at hand. Applying this heuristic yielded good
results on a set of public MIRP-instances. The heuristic outperformed commercial MIP-
solvers, and is applicable to a two-echelon MIRP as the demand in the regions may be
aggregated in the hubs.

Subsection 5.1.1 presents an overview of the matheuristic and how the problem is decom-
posed. Subsection 5.1.2 discusses and presents the changes necessary to the mathematical
model to handle the decomposition of the problem, while Subsection 5.1.3 presents how
the demand in the problems is aggregated as a part of the decomposition.

5.1.1 Overview

The aggregation-part of the matheuristic enables a decomposition of the problem, with
each region constituting a subproblem. This is done by aggregating the demand of the
consumption ports in each region into their respective hubs. The production region is
therefore one subproblem, which is solved with the hubs as consumption ports with aggre-
gated demand retrieved from the hub’s respective consumption ports. The consumption
regions are consequently solved with the hubs as production ports, and with the deliver-
ies from the production region as production rates. The decomposition of the example
problem illustrated in Chapter 3 is seen in Figure 5.1, which contains a total of four
subproblems. Note that the production stage is the first stage of the decomposition, with
only one production port and the regional hubs. The consumption stage is the next stage
of the decomposition, where all regions with their regional hub and consumption ports
constitute the consumption stage. Each region in this stage constitutes one subproblem
each. Every subproblem in the consumption stage is solved independently. The problem
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to solve now consists of |R| smaller subproblems. However, an optimal solution for the
full problem is not guaranteed with optimal solutions for each individual subproblem,
and feedback must be implemented to create dependence between the subproblems in
the production and consumption stage.

Regional hub

Regional hub

Regional hub

Production port

Product 1

Product 2

Product 3

Region 0

Demand
/su

pply

Regional hub

Consumption port

Region 1

Regional hub

Consumption port

Region 2

Regional hub

Consumption port

Region 3

Demand/supply

Demand/supply

Figure 5.1: Example of problem-decomposition with production and consumption stages.

In addition to aggregating the demand in each region to the hubs, a parameter �j has
been introduced to shift the demand in each consumption port by a specific set of time
periods to take travel time in the consumption stage into account. This is done to ensure
that products are available in a hub at the right time for shipment to its consumption
ports. If the products arrive too late, the hub must buy in the spot market to fulfill
the demand of the consumption ports. On the other hand, if products arrive too early,
storage capacities may be exceeded and products must be sold in the spot market, which
in turn might make the hubs buy products from the spot market at a later time.

The production and consumption stages are solved sequentially and in multiple iterations.
The production region is solved first with the aggregated demand in the hubs, and then
each of the consumption regions are independently solved with the deliveries from the
production stage solution as production rates. One optimization of the production and
consumption stage constitutes one iteration of the matheuristic, and the feedback is given
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as the parameter �j to shift the demand in the production stage.

The aggregated matheuristic with feedback is presented in Algorithm 1. The matheuristic
iterates through all subproblems for as long as the total time limit is not reached, or as
long as there is no change to �j. Note that stageP and stageC defines the production
and consumption stages, respectively. The termination criteria can be seen in the while
loop on line 5, and in lines 18-20.

Algorithm 1 Aggregated Matheuristic with Feedback
1: �  initialsigma(R,J , Tij)

2: M set of all subproblems, mStageP [MStageC

3: mStageP  updatemodel(mStageP , �)

4: bestObj  1
5: while timeElapsed < totalT imeLimit do
6: solStageP  optimize(mStageP )

7: initialize solStageC

8: for m in MStageC do
9: m updatemodel(m, solStageP )

10: solStageC [m] optimize(m)
11: end for
12: obj  objective(solStageP , solStageC)
13: if obj < bestObj then
14: bestObj  obj

15: end if
16: �old = �

17: �  updateSigma(solStageC ,J , Tij)

18: if �old = � then
19: break
20: end if
21: mStageP  updatemodel(mStageP , �)

22: end while

The matheuristic initializes a starting �j on line 1 with the function initialsigma. The
set of all subproblems in both the production stage and consumption stage is defined
on line 2, with mStageP being the only subproblem in the production stage, and MStageC

being the set of all subproblems in the consumption stage. The model for the production
stage subproblem is updated in accordance with the new �j through updatemodel on
line 3. The current best objective, bestObj, is set to infinity as a starting value. The
iterations of the matheuristic begins on line 5. The matheuristic optimizes the production
stage on line 6, and uses the solution solStageP to update the supply for the hubs in each
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of the consumption stage models on line 9. The optimization for each consumption stage
subproblem is performed on line 10. Note that the list containing the solutions for all
subproblems in the consumption stage solStageC is initialized on line 7. The function
optimize called on lines 6 and 10 is a solution method optimizing the model. optimize
has a time limit (timeLimit1) for finding a first feasible solution, meaning that each
subproblem has a given amount of time to find a feasible solution. Furthermore, optimize
implements a second time limit (timeLimit2) when the first feasible solution is found.
Note that the matheuristic saves the best objective value of all iterations, as there is a
chance that an updated sigma will worsen the objective value. This is done on lines 12 -
15, with the current objective value calculated on line 12. The solutions found from the
subproblems in the consumption stage is used to update �j through updatesigma on
line 17. Finally, the model for the production stage is updated with the new �j on line
21 before the next iteration is started.

5.1.2 Mathematical Changes

To support the decomposition of the problem, changes must be made to the mathematical
model presented in Chapter 4. The mathematical model has been split up into two types
of models, one for each stage of the decomposition. The initial testing done in Section 6.3
showed that the FCNF-model is the most appropriate for the heuristic, so only the changes
made to this model are presented in this subsection. The following changes can be applied
in the same manner to the Basic Arc-Flow model.

For both types of models, hubs have been reassigned to consumption ports and produc-
tions ports, for the production and consumption stage respectively. Therefore, no ports
are longer classified as hubs. This is done as the subproblems are not two-echelon, but
single-echelon MIRPs. The mathematical models presented below all represent one region
each, instead of the full problem as in Section 4.2. This means that |R| = 1 for all models,
and that all ports and vessels for other regions than the model’s respective region are
removed. Therefore, only one model of the production stage type is made, while |R|� 1

models of the consumption stage type are made. The following set is introduced:

M - set of all subproblems.

To represent the changes described above, subsets for each subproblem m 2 M have
been made for the sets of regions R, vessels V , production ports J P , consumption ports
J C and ports J . The sets are defined as:

Rm - the respective region of subproblem m. |Rm| = 1 for all m 2M.
Vm - all vessels in Vr, where r = Rm.
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J P
m =

8
<

:
J P if m is a subproblem in the production stage.

J H \ Jr, r = Rm if m is a subproblem in the consumption stage

J C
m =

8
<

:
J H if m is a subproblem in the production stage.

J C \ Jr, r = Rm if m is a subproblem in the consumption stage.
Jm - all ports in subproblem m, Jm = J P

m [ J C
m.

The following parameter has been added to both mathematical models to increase read-
ability:

�j - takes value 1 if port j can buy or sell in spot market, 0 otherwise.

Production Stage

The parameter Djtp is changed to represent the aggregated demand. The time-shift in
demand for port j is defined as �j. Djtp is updated according to the following equations:

Djtp =
X

i2J C\Jr

Di(t+�i)p, r 2 R, j 2 J H \ Jr, t 2 T \ {0}, p 2 P ,

Dj0p =
X

i2J C\Jr

�iX

t=0

Ditp, r 2 R, j 2 J H \ Jr, p 2 P ,

Note that the sets J C, J H and Jr are the original from Section 4.2. These must be
used to aggregate the demand. Note that the second equation aggregates all demand
where t � �j < 0 to t = 0, while the first equation handles all other t. The function
updatemodel used in Algorithm 1 updates Djtp as described, in accordance with �j.

The following is the mathematical model for subproblem m in the production stage:

min
X

i2Jm

X

j2Jm

X

v2Vm

X

t2T

Cijvxijvt +
X

j2J C
m

X

t2T

X

p2P

(CB
kjtp � C

S
ljtp), (5.1)

s.t.

(4.23)� (4.29), (4.31)� (4.35), (4.40)� (4.58)
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sjtp = sj(t�1)p +Djtp �
X

v2Vm

�jfjvtp + �j(kjtp � ljtp), j 2 Jm, t 2 T \ {0}, p 2 P , (5.2)

sj0p = S
0
jp +Dj0p �

X

v2Vm

�jfjv0p + �j(kj0p � lj0p), j 2 Jm, p 2 P , (5.3)

The objective function (4.25) has been updated to (5.1) such that it sums over consump-
tion ports when calculating the total cost of the spot market. Constraints (4.39) and
(4.40) have been updated to include the spot market, as the spot market is preserved,
but not the hubs. These are now constraints (5.2) and (5.3). The constraints control the
inventory balance of all ports in the problem. The parameter �j is added to make sure
that only the consumption ports are allowed to use the spot market.

Constraints (4.33) have been removed, as these are the flow conservation for hubs. The
same applies to constraints (4.41) and (4.42), as these control the inventory balance for
hubs. The only changes made to constraints (4.26) - (4.32), (4.34) - (4.38) and (4.43)
- (4.62) are changing the sets R,V ,J P

,J C and J to the respective sets indexed by
subproblem m as presented above.

Consumption Stage

This mathematical model represents the consumption stage, with one mathematical
model being created for each individual consumption region. The parameter Djtp is
here changed to represent the solution from the production stage, given by the fjvtp-
variables. Only the fjvtp-variables from the production stage where j is a consumption
port, originally classified as a hub, are kept. The amounts bought and sold in the spot
market in the production stage are ignored, as the consumption stage will still make
sure that all inventory balance constraints are satisfied. The final amount bought and
sold will therefore be decided in each consumption stage to keep flexibility between the
stages. Only the costs of the spot market from the consumption stage is included in the
objective function for the full problem. With f

⇤

jvtp as the f -variables in the solution from
the production stage, Djtp is updated according to the following equation:

Djtp =
X

v2Vm

f
⇤

jvtp, m 2M, j 2 J P
m, t 2 T , p 2 P ,

As there is only one production port in each region in the consumption stage, this will be
done for all deliveries to this port in the solution from the production stage. The function

43



updatemodel used in Algorithm 1 updates Djtp as described, in accordance with the
solution from the production stage.

The following is the mathematical model for subproblem m in the consumption stage:
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s.t.

(4.23)� (4.29), (4.31)� (4.35), (4.40)� (4.58),

(5.2)� (5.3),

The objective function (4.25) has been updated to (5.4) such that it sums over production
ports when calculating the total cost of the spot market. Constraints (5.2) and (5.3)
are the same as in the production stage, and constraints (4.33), (4.41) and (4.42) have
been removed for the same reason as in the production stage. The only changes made
to constraints (4.26) - (4.32), (4.34) - (4.38) and (4.43) - (4.62) are changing the sets
R,V ,J P

,J C and J to the respective sets indexed by subproblem m as presented above.

5.1.3 Time-shift in Demand

When aggregating the demand from a consumption port to a hub, the time at which
the demand occurs must be shifted to take the travel time between the hub and the
consumption port into account. As mentioned, this is done to ensure that the products
arrive at the right time to the hub in the production stage.

A �j-parameter has been introduced to represent the shift in time for a port j 2 J .
This parameter is updated between each iteration according to the consumption stage
solutions, and is the feedback given from iteration i to iteration i + 1. As �j changes,
the solution may change, giving a more suitable �j for the next iteration. An initial �j is
calculated in the first iteration, and a new �j is calculated at the end of each iteration.

44



Initial �j

The initial �j is calculated as the total travelling time of all arcs in a region, but with
each travel time between two ports just included once. Preliminary testing showed that
the initial �j had little effect on the second iteration �j, and it is therefore calculated as a
definite worst case instead of an arbitrary number. Using this method eliminates the need
for a more complex algorithm for finding an initial �j. As ports in a real-life consumption
region usually are close in proximity, the total travelling time will in most cases not be a
large number. Preliminary testing of the initial �j showed that the parameter was always
significantly less than the number of time periods, meaning that the time-shift was not
severely exaggerated. The initial �j is the same for all ports j 2 Jr in a region r. With
Tij as the travel time between port i and port j, the initial �j is given as:

�j =
X

i2Jr

X

k2Jr

Tik

2
, j 2 Jr \ J C

, r 2 R \ {0}

Each port in a region is assigned a �j equal to the time it takes to travel all arcs in the
respective region once. The sum is therefore divided by two as all arcs are bidirectional.
This is done for all regions except region 0, which is the production region as described
in Chapter 4.

Updating �j

After each iteration of the matheuristic, �j must be updated in accordance with the
consumption stage solutions. This may improve the solution of the next iteration. For
every iteration except for the first one, �j represents the average time between each visit
to port j. This is calculated as seen in Algorithm 2. Changes in �j also work as a
termination criteria for the matheuristic. When �j has no change between two iterations,
a local optima has been found and the matheuristic terminates.

In Algorithm 2, the consumption stage solutions are used to calculate the new sigma.
Note that solStageC contains the solutions for each subproblem in the consumption stage.
For each subproblem m, the algorithm finds a new �j for each consumption port in m.
These loops can be seen on lines 2 and 3. A new �j for the consumption port, a counter for
the number of visits to the port, and the total travel time between hub and the port are
initiated on lines 4-6. To find the average time between deliveries, all deliveries to ports
in the region must first be retrieved. Then, for all deliveries, the time difference between
delivery and departure from the hub for the vessel which made the delivery is found.
This can be seen on lines 7 - 11. More specifically, for each arrival into a consumption

45



port j with vessel v, the previous departure from the hub with vessel v is found. By
finding the time between the previous departure from hub and the arrival to port j for
each incoming arc to port j, the average time between visits, and thus �j, is found. The
new �j is calculated on line 15.

Algorithm 2 Updating �j

1: function updateSigma(solStageC ,J , Tij)
2: for subproblem m in solStageC do
3: for j in m \ JC do
4: �j  0

5: nV isits 0

6: totalT ime 0

7: for each delivery of products to j in solution do
8: tdel  time of delivery of products to j

9: tdep  previous departure from hub with the
10: same vessel as delivery to j

11: travelT ime tdel � tdep

12: totalT ime totalT ime+ travelT ime

13: nV isits nV isits+ 1

14: end for
15: �j  totalT ime/nV isits

16: end for
17: end for
18: return �

19: end function

5.2 Cluster-Based RFFO Heuristic

As the total problem size grows, each of the subproblems in the consumption stage may
become more complex, making them more difficult to solve exactly. Eventually, each
subproblem requires a heuristic for being solved efficiently. As vessels in the production
region are not allowed to travel between hubs, but only to and from the hub, the sub-
problem of the production region does not grow too complex for exact solution methods.
This was seen in preliminary testing. With a high number of time periods, vessels, ports
or products, each consumption region could constitute its own large and complex MIRP.
To resolve this problem, a heuristic has been implemented to solve the subproblems in
the consumption stage. As these regions are independent, the problems to solve are no
longer two-echelon, and rather regular multi-product MIRPs. Solution methods applica-
ble to these types of problems are discussed in Section 2.6, and clustering is a common
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decomposition approach in the literature to reduce the problem size, as seen in both Gaur
and Fisher (2004) and Nambirajana et al. (2016). In addition, both R&F (relax-and-fix)
and F&O (fix-and-optimize) heuristics as solution methods have yielded good results for
IRPs and MIRPs, with Friske et al. (2021) obtaining good results on a MIRP using a
combination of the two heuristics. The heuristic applied to complex subproblems, pre-
sented in this section, is a combination of these approaches. By clustering the ports in a
consumption region, artificial regions are created. The clusters can be seen as artificial
regions, as they share a similar structure with the regions in the full problem in terms of
vessels not being allowed to travel directly between ports in regions, or clusters. These
artificial regions can be solved efficiently with an R&F and F&O approach, hereby called
RFFO, by letting each artificial region constitute a subproblem.

An overview of the clustering approach is outlined in Subsection 5.2.1, with the RFFO-
heuristic applied to the clusters described in Subsection 5.2.2. The details of the R&F
and F&O heuristics is presented in Subsection 5.2.3 and Subsection 5.2.4, respectively.
Finally, the different methods of clustering are discussed in Subsection 5.2.5.

5.2.1 Overview of Clustering-Approach

The artificial regions, hereby called clusters, are created inside each consumption region.
In practice, this means that ports are clustered, and arcs between clusters are removed.
An example of the result of clustering applied to a region containing six consumption
ports is presented in Figure 5.2. The approach taken for both R&F and F&O in this
heuristic is to decompose the subproblems into clusters. One subproblem is therefore
split up into |C| smaller problems called cluster-problems. The smaller problems are
called cluster-problems to separate them from the subproblems in the AD-RFFO. With
a subproblem in the consumption stage as P , a smaller cluster-problem Pc for cluster
c is defined as the full subproblem P where cluster c is the only cluster with binary
requirements for variables. The rest of the clusters are either relaxed or fixed, depending
on the phase of the heuristic. The heuristic applied to each subproblem can be split up
into two phases: a construction phase and an improvement phase. The R&F-heuristic is
applied in the construction phase, while the F&O-heuristic is applied in the improvement
phase. As discussed, the subproblem of the production region does not grow too complex
for exact solution methods. The cluster-based RFFO-heuristic is therefore solely applied
to the consumption stage subproblems.
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ports
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Figure 5.2: Region without clustering applied to the left, and with clustering applied to the right.

In addition to clustering the ports, each cluster is assigned a set of non-empty set of
vessels. The vessels in this set are only allowed to use the arcs associated with the
respective cluster. This constitutes arcs between ports in the cluster, and between ports
in the cluster and the hub. The clusters are now more independent of each other, as
they have their own fleet of vessels. The assignment of vessels to clusters are done as
long as there are enough vessels so that each cluster is assigned the same number of
vessels. More specifically, as long as |C| mod Vassigned = 0, where |C| is the number
of clusters and Vassigned is the number of vessels in the subproblem to be assigned to
clusters. When this condition is no longer true, the remaining vessels will be free vessels :
vessels that are allowed to operate in all clusters. This is done to make sure no cluster
is assigned more vessels than others, and thus potentially making the clusters with fewer
vessels infeasible. Vessels are assigned to clusters based on their capacity, which will be
discussed in Subsection 5.2.5.
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5.2.2 RFFO-Heuristic

Each region with clusters is solved by applying the RFFO-heuristic outlined in this sec-
tion. An overview of the two phases is illustrated in Figure 5.3. In the first iteration,
which is the construction phase applying an R&F-approach, binary requirements on vari-
ables in all clusters are relaxed. Thereafter, binary requirements are iteratively enforced
to the respective clusters of the cluster-problems. For each cluster-problem, the full sub-
problem is solved, and the solution values are fixed for the respective cluster. When all
clusters have their respective variables fixed to a solution, the improvement phase apply-
ing an F&O-heuristic begins. The variables of one cluster are unfixed, and subsequently
solved together with the rest of the problem, which has fixed variables. The variables of
the cluster are then fixed to the new solution. This is done iteratively for each cluster-
problem. Note that a cluster will always be solved together with the rest of the relaxed
or fixed clusters, for R&F or F&O respectively. Therefore, when a cluster-problem is
solved, the full subproblem is also solved.

Terminate

Relax variables in all 
clusters

Construction Phase

Enforce binary 
requirements for cluster Optimize problem

Fix variables in clusterGo to next cluster

Improvement Phase

Unfix fixed variables in 
cluster

Go to next cluster

Optimize problem

Fix variables in cluster
If time limit reached, or no 
improvement in solution

If there are remaining relaxed clusters

If all clusters are fixed

First cluster

Figure 5.3: Illustration of the phases of the heuristic.

For instances applying the RFFO-heuristic, optimize in Algorithm 1 calls the heuristic
for each region in the consumption stage, as mentioned earlier. This is done instead of
an exact solution method used for smaller instances. The construction and improvement
phases are discussed in the next sections. See Appendix B.1 for a detailed pseudocode
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of the full RFFO-heuristic, where both phases are implemented as one compact RFFO-
heuristic.

5.2.3 Construction Phase

The construction phase applies an R&F heuristic to generate a starting solution for the
improvement phase. The main objective in this phase is to find a feasible solution. The
details of this phase are outlined in Algorithm 3. Lines 2-6 relaxes all binary variables
in subproblem m of the consumption stage. For the problem presented in this thesis,
the binary variables relaxed in subproblem m are the x, z, z

A, z
B, and w-variables.

These are the binary variables associated with using an arc, loading/discharging in a
port, and waiting in a port, respectively. Lines 7-19 iterate through each cluster, and
the variables belonging to the cluster are iterated through on lines 8-18. Lines 9-11
enforce binary requirements on the binary variables. Note that "originally binary" on
line 9 indicates whether or not a variable var has binary requirements in the initial
model. The full subproblem m is optimized using an exact solution method on line
13. This optimization runs until it finds a feasible solution, or it reaches a time limit
timeLimit1. If a feasible solution is found, the optimization restarts on line 14 with
termination parameters MIPGap and timeLimit2, which are tolerances for the duality
gap and computational time. On lines 15-18, variables are fixed to the solution found.

50



Algorithm 3 Construction Phase
1: function construction(m)
2: for var in m do
3: if var is binary then
4: var  continuous
5: end if
6: end for
7: for c in clusters do
8: for var in c do
9: if var is originally binary then

10: var  binary
11: end if
12: end for
13: optimize m until feasible solution or timeLimit1

14: if feasible, optimize m until MIPGap or timeLimit2

15: for var in c do
16: if var is binary then
17: fix var to solution
18: end if
19: end for
20: end for
21: return solution of m
22: end function

The computational complexity of the problem is dominated by the binary variables to a
much greater extent than the continuous variables. Therefore, extra flexibility is gained
by not fixing any continuous variables. The initial solution found in the construction
phase may be far from optimal for the full model, and an iterative process in the form of
an improvement phase is appropriate.

5.2.4 Improvement Phase

To improve the initial solution found in the construction phase, an F&O heuristic is
applied. The improvement phase iterates through all cluster-problems multiple times, in
contrast to the construction phase with its single iteration. While the heuristic in the
construction phase iterates through each cluster-problem once with the sole purpose of
finding a feasible solution for the full subproblem, the F&O heuristic iterates through
the cluster-problems until a local optimum is found or the time limit is reached. This
can be seen in the while loop from line 3 to line 18 in Algorithm 4. Note that the initial
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current objective, currentObjective, is the objective from the solution in construction
phase, as seen on line 1. A further distinction between the two phases lies in the name of
the heuristics: while R&F relaxes all clusters and fixes one at a time, F&O unfixes and
optimizes one cluster with the rest fixed. An initial previous objective, prevObj, is set
to infinity on line 2 for starting the algorithm. For a given cluster, the heuristic unfixes
the binary variables on lines 5-7, before optimizing the full model on lines 8-9. Note that
the termination criterias are the same as described in Algorithm 3. On lines 11-13, the
unfixed variables are fixed to the new solution. The variables to be fixed are the same in
the improvement phase as in the construction phase, namely the binary x, z, zA, zB and
w-variables. Finally, the previous and current objective values are saved on lines 16-17.

Algorithm 4 Improvement Phase
1: function improvement(m, currentObj)
2: prevObj  1
3: while currentObj < prevObj or elapsedT ime < timeLimit do
4: for c in clusters do
5: for var in c do
6: unfix var

7: end for
8: optimize m until feasible solution or timeLimit1

9: if feasible, optimize m until MIPGap or timeLimit2

10: for var in c do
11: if var is binary then
12: fix var to solution
13: end if
14: end for
15: end for
16: prevObj  currentObj

17: currentObj  m.objective
18: end while
19: return solution of m
20: end function
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5.2.5 Clustering Methods

Two different methods for clustering have been applied, and both are tested in Chapter 6.
The two methods are based on physical distance between ports, and difference in demands
for the ports.

Distance Clustering

When creating clusters based on physical distance between ports, two initial clusters are
created, containing one consumption port each. One cluster contains the port furthest
away from the hub, while the other contains the port closest to the hub. The remaining
clusters are initialized by finding the ports evenly spaced in distance between the closest
and most distant port. When all clusters have been initialized with one port each, the
algorithm iterates through the clusters and finds the remaining port closest in distance to
the initial port assigned to the cluster. This is done until all ports have been assigned to
a cluster. Note that this method finds the ports closest to the initial port of a cluster, and
not the port closest to the previous port assigned to the cluster. This method of clustering
might not be an appropriate method if distances between ports are large, as it does not
minimize the distance between all ports within a cluster. The last ports assigned to a
cluster might be better assigned to another cluster. However, it is an effective method
in the problem described in this thesis, as consumption regions contain ports that are in
close to proximity each other. As travel distances are short, this method does most likely
not produce unfavorable clusters.

When assigning vessels to clusters, the vessel with the highest capacity is assigned to
the cluster with the initial port most distant from the hub. The vessel with the second
highest capacity is assigned to the cluster with the second most distant cluster, and so
on. For each iteration of assigning vessels to clusters, the most distant cluster gets the
remaining vessel with the highest capacity. The free vessels not assigned to a cluster are
therefore the vessels with the lowest capacities, as it is assumed that the free vessels have
a smaller degree of utilization than vessels assigned to clusters. To ensure that the most
distant clusters are the first to get the opportunity to utilize free vessels, these clusters
are solved first.

Demand Clustering

Clustering based on the demand of the ports is done in the same way as with distances.
The initial clusters are created based on the port with the highest and smallest total
demand of the planning period, and the remaining clusters are initialized by the ports
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evenly spaced when sorted on total demand. The remaining ports are assigned to clusters
in the same way as with distance, by iterating through each cluster and finding the port
closest to the initial port in total demand. Instead of clustering based on creating an
equal total demand between clusters, this is done to ensure the ports with the largest
demand are served by large vessels. The vessels are assigned in the same way as with
distance clustering: the vessel with the highest capacity is assigned to the cluster with
the largest demand, and so on. By doing this, it is ensured that the ports with the largest
demand both get the large vessels, and the opportunity to use what they need of potential
free vessels before the smaller clusters are optimized. The cluster with the lowest amount
of total demand are given the smallest vessel, and is also the last to use what is left of
the potential free vessels.

5.3 Preprocessing

To reduce the total problem size, and thus more efficiently find good solutions, heuristic
preprocessing inspired by Song and Furman (2013) and Friske et al. (2021) have been
applied to the problem. Multiple preprocessing approaches are outlined in this section,
and these are tested to find the best possible combination in Chapter 6.

The preprocessing seeks to remove variables that are unlikely to be necessary in an
optimal, or near-optimal, solution. As binary variables have a much higher impact on
the computational complexity than continuous variables, binary variables are the ones
removed in the preprocessing. The x-variables make up the majority of total binary
variables in the arc-flow model, while the z and w-variables are binary variables also
affecting the computational time. The x-variables are indexed on vessel v, time period
t, and ports i and j. The z and w-variables are indexed like the x-variable, but without
the additional port i. The primary goal of the preprocessing is therefore to reduce the
x-variables, and potentially some z and w-variables as a consequence of this.

Removing arcs based on time-periods

Two options of removing arcs based on time-periods are implemented and tested in this
thesis. These include only being allowed to depart a port every second time period, or
only being allowed to depart every third time period. As the planning period of MIRP’s
are long, it is assumed that reducing the possible times of departure is an effective way
of reducing the number of x-variables without compromising the solution significantly.
For the production region, where traveling times are long, vessels infrequently visit ports.
Hence, the potential unnecessary waiting in ports is less significant. The negative effect
of removing arcs in the consumption region can be greater, since the frequency of visits
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is much higher. Consequently, a compromise between reducing complexity and keeping
the best solutions must be found with this preprocessing method.

Removing variables based on port-vessel combinations

Removing the possibility of a vessel in region r visiting a specific port in region r is
another way of removing x-variables, and consequently removing z and w-variables. The
ports removed for vessels in the production region are hubs, and consumption ports for
the vessels in the consumption regions. These are all ports for discharging products in the
full problem. Each vessel v has a set of such ports in Jv it is allowed to service, and by
removing one unique discharging port j from each of the vessels’ Jv, one can also remove
all x, z and w-variables connecting the vessel v to port j. Note that no port is removed
from more than one vessel. For the production region, this can be effective as a vessel
most likely never visit all hubs during the planning period. As travel between hubs are not
allowed, removing a hub from a vessel’s Jv will most likely not affect the solution value.
For consumption regions, a vessel is not likely to visit all consumption ports between each
visit to the hub, especially in instances with a high number of consumption ports. As
there are multiple vessels in each consumption region and distances between consumption
ports are short, removing a consumption port from a vessel’s Jv is also a method that
can prove effective and not remove optimal routes in a region.

This preprocessing is only applied where the number of vessels is larger than one, |V | > 1.
This is done to ensure that all ports can be serviced. In addition, this is not applied if
the cluster-based RFFO described in Section 5.2 is used. By applying both methods, a
port in a cluster can potentially be removed from the only vessel servicing that specific
cluster. Consequently, ports may end up not being allowed to be serviced by any vessels.
This preprocessing method is done at a much larger scale in the clusters by removing
whole groups of ports from vessels, namely the clusters.

Removing arcs based on distances

The final preprocessing approach removes arcs between consumption ports that are far
away from each other. The distances between consumption ports are, as mentioned,
short, but there are always some arcs that are longer than the rest. For each region, the
longest travel time between two ports in the region is found, and all arcs with this travel
time are removed. This is an aggressive preprocessing method potentially removing many
x-variables, and it can prove highly effective in terms of computational complexity. It is
however more prone to removing potential optimal solutions, especially where all ports
in a region are close in proximity and a high number of arcs removed.

55



56



Chapter 6
Computational Study

This chapter presents the main findings from the computational study, which was con-
ducted to develop the best version of the AD-RFFO matheuristic, presented in Chapter 5,
and evaluate its performance compared to an exact solution method. Section 6.1 explains
how test instances are generated, and the grouping of them is explained in Section 6.2.
In Section 6.3, the performance of the mathematical models of Chapter 4 is discussed,
and the one best suited for use in AD-RFFO, and for use in the final comparison to
AD-RFFO, is identified. Following is Section 6.4, where preprocessing, clustering, and
parameter tuning for the matheuristic are tested. Finally, Section 6.5 evaluates the per-
formance of the AD-RFFO and compares it to the best exact solution method.

All models were run in Python 3.8.6 with the Gurobi Optimization version 9.1 solver.
Gurobi was run using an academic license obtained via NTNU. The full computational
study was conducted on NTNU’s online computer cluster Solstorm 1. There are multiple
different node racks in Solstorm, and all tests in this study was run on nodes 4-16 to 4-20
in node rack 4. The nodes run on a Lenovo NextScale nx360 M5, with a 2 x 12-core Intel
@ 2.3GHz processor and a memory of 64 GB RAM.

6.1 Test Instance Generation

As discussed in Section 2.7, the MIRP literature does not contain any studies of two-
echelon problems. Consequently, there are no publicly available benchmark instances for
testing and comparing the performance of the matheuristic and exact models presented in
this thesis. Test instances were generated with the aim of representing real world maritime
supply chains with two echelons. Larger vessels transport products across continents to
regional hubs. Smaller vessels will collect the products at the hubs and distribute to
destinations located in close proximity to the regional hub.

Each test instance is generated by first drawing both distances between ports and vessel
capacities randomly from predefined intervals, which are based on realistic data. Re-

1
https://solstorm.iot.ntnu.no/wordpress/
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maining parameters are, at least partly, functions of vessel capacities and/or distances
to ensure realistic proportions within each instance. The following sections explains in
detail how parameters are generated.

6.1.1 Vessels

Data on vessels is extracted from Yieldstreet (2019) and Tankers (2014), and different
vessel types are retrieved to reflect real life. For the production region, the vessel capacity
is drawn in the interval [120.000 dwt, 200.000 dwt] based on the vessel type Suezmax.
Vessel capacity in the consumption region is based on the vessel type LR1 and takes
values in the interval [55.000 dwt, 80.000 dwt]. The vessel speed is set to 15 knots for all
vessels. Fuel consumption is 40 and 60 metric tons per day for vessels in consumption
and production region, respectively.

To simulate a realistic initial state, some non-empty vessels in the production region are
available at a given number of time periods after the start of the planning horizon. The
aim of this adaptation is to emulate the movement of vessels that departed from ports
before the start of the planning period. More specifically, bNV P

2 c vessels will be available
between 5 and 15 time periods after the start of the planning horizon, where N

V P is
the number of vessels in the production region. Each vessel is loaded with 50% of total
capacity with equal quantities of each product. Due to the short sailing distances in the
consumption regions, all vessels in these regions are available at the start of the planning
horizon with no initial storage.

6.1.2 Distances

Distances between the production port and hubs represent deep sea shipping. The maxi-
mum distance of 8000 nautical miles is inspired by distance between Yanbu in the Middle
East and Houston in the US. The minimum distance is set to 4000 nautical miles and
represents a trip from the Middle East to Europe. Hence, the distance between the
production plant and each hub is between 4000 and 8000 nautical miles, resulting in
sailing times between 11 and 22 days. An online sea distance calculator from ShipTraffic
(2022) was used to find distances. Distances within regions, meaning between hubs and
consumption ports and between consumption ports, represent short sea shipping for the
final distribution. The interval is 250 to 1000 nautical miles, translating to travel times
between 1 and 3 days.
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6.1.3 Production and Demand

To avoid substantial discrepancy between transportation capacity and quantities de-
manded, the demand in a port is a function of the fleet capacity in the region it belongs
to. It is assumed that a port can be visited every 20th day on average. The daily demand
Djtp for a product in a port should on average use the total vessel capacity of the region
every 20th day, divided by the number of ports in the region and number of products.

In each region r, DMP
r is the midpoint of the interval from which the daily demand is

drawn. The following parameters were used to calculate it: the smallest capacity among
all vessels in the region Q

min
r , the number of vessels in region N

V
r , the number of products

N
P , and the number of ports per region N

J . The midpoint is calculated as follows:

D
MP
r = Qmin

r NV
r

20NPNJ

To allow some variability between ports, the lower and upper limit for the demand per
product in a port in region r has a 25% deviation from the average value calculated as
described above. The interval for Djtp where port j belongs to region r is [0.75DMP

r ,
1.25DMP

r ]. Daily production of a product in the production port is the sum of the daily
demand of that product from all consumption ports.

6.1.4 Port capacities

Port storage capacities are functions of average daily demand or production, and take
travel times into considerations. The initial storage in all ports is the average of minimum
and maximum storage capacity. In a consumption port j, the minimum storage for a
product p, Smin

jp , is 5 times the average daily demand of p, while the maximum storage
S
max
jp is 30 times the average daily demand. Hence, the consumption ports must be

replenished at least every 25th day. Due to the long sailing distances in the production
region, the storage capacity in the production port must allow for more infrequent visits
from the vessels of the region. Hence, Smin

jp and S
max
jp are 10 and 70 times daily production,

respectively. Hubs are connected to the spot market and are less reliant on its own storage.
For hubs, Smin

jp and S
max
jp are 0 and 15 times the total of the average daily demand for all

ports in the region, respectively.

The loading and discharging capacity for ports in a region is related to the maximum
capacity of the largest vessel in the same region, Qmax

r . A maximum loading and discharg-
ing capacityn in a port j, Fmax

j , in region r is drawn randomly from [0.5Qmax
r , Qmax

r ],
while the minimum capacity, Fmin

j , is drawn from [0.01Qmax
r , 0.05Qmax

r ].

The berth capacity for consumption ports is a random integer between 1 and the number
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of vessels in a consumption region N
V C . Similarly, the berth capacity of the production

port is between 1 and the number of vessels in the production region N
V P . Hubs are

served by vessels from both the production region and one consumption region. To
reflect a higher frequency of visit in these ports, berth capacity is set between N

V C and
N

V C +N
V C for hubs.

6.1.5 Spot Market Price

The spot market is intended to be used mainly in situations where there is temporarily
insufficient amount of goods flowing from the production port to a hub. To discourage
excessive use of the spot market, the price of buying a given quantity must be higher than
the theoretical maximum cost of moving the same quantity from production port to a
hub. The cost of buying in the spot market CB is calculated as CB = TmaxFV PCF

Capmin , where
T

max is the maximum sailing time from production port to hub, F V P and C
F is the fuel

consumption and cost, and Cap
min is the smallest capacity of a vessel in the production

region. The fuel cost is set to $600/mt. It is here assumed that vessels are fully loaded.
The selling price must be lower than the buying price to avoid unbounded problems. It
is set to half the buying price.
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6.2 Grouping of Test Instances

There are multiple parameters subject for variation in each test instance, and a suitable
grouping is necessary in order to perform a thorough and systematic computational study.
An instance has been created as a base for each of the groupings. This base instance has
|T | = 40 time periods, |R| = 3 regions, |J | = 3 consumption ports in each region, |VP|
= 3 vessels in the production region, |VC| = 3 vessels in each of the consumption regions
and |P| = 2 products, as presented in Table 6.1. Based on this, new instances are created
by reducing or increasing one dimension at a time.

Table 6.1: Base instance B1.

Group Instance number |T | |R| |J | |VP| |VC| |P|
Base B1 40 3 3 3 3 2

The instances are grouped based on which parameter is changed in each test instance.
The changes are made in number of time periods, regions, ports, vessels and products.
Changes in different parameters make up the different groups. As an example, the group
named Time will only have instances that differ in number of time periods, while keeping
all other parameters constant. In all but one of the instance groups, the demand is kept
constant, and it is not changed during the planning period. In order to test whether a
fluctuating demand influences performance of the solution methods, a group with variable
demand is also created. Two groups of complex instances are also created to test the
performance of the solution methods when the instances become more complex. For the
complex instances, changes are made in multiple dimensions at a time. The changes
are primarily made in the number of ports, the number of time periods and regions to
increase the total instance size.

The range in parameters for the test instances of each group is presented below in Ta-
ble 6.2, where the smallest and the most complex instance in each group is presented.
A full table with all test instances is given in Appendix C.1. The purpose of grouping
the instances in this manner is to systematically test the effect of changes in one param-
eter at a time. This allows us to better analyze how the different parameters affect the
complexity of the problem. A total of 75 instances are subject to testing, and the main
findings are presented in Section 6.5.

The general rule is that the number of vessels in the production region, |VP | is the same
as in consumption regions, |VC|. In some cases, when the complexity increases, the
number of vessels needed in the production region also increases in order for the instance
to be feasible. The main reason for this being that when the number of consumption
ports grow, the production rate also grows. The storage capacity of the production port
is set according to this rate, but the vessel capacities are constant. To accommodate the
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Table 6.2: Range of all groups of test instances.

Group Instance no. |T | |R| |J | |VP | |VC| |P|
Time T20 20 3 3 3 3 2

T200 200 3 3 5 3 2
Var. demand VD1 20 3 3 3 3 2

VD10 200 3 3 5 3 2
Regions R2 40 2 3 3 3 2

R30 40 30 3 15 3 2
Ports J1 40 3 1 3 3 2

J8 40 3 8 3 3 2
Vessels V1 40 3 3 1 1 2

V8 40 3 3 8 8 2
Products P1 40 3 3 3 3 1

P8 40 3 3 3 3 8
Complex 1 C1.1 40 4 6 8 3 3

C1.10 80 4 8 8 4 3
C2.1 50 5 6 3 3 2

Complex 2 C2.9 100 5 9 10 5 2
C2.10 40 5 12 6 6 2

increased production and consumption rates, the number of vessels in production region
is also subject for change in larger instances.

To conduct the initial testing in Section 6.3 and Section 6.4, a group of 20 initial instances,
containing a subset of three or four instances from each group in Table 6.2, was created.
The full set of initial test instances can be seen in Appendix C.2. Additionally, the
instance group Complex 2 was used as the 10 initial complex instances in Section 6.4 for
testing the performance on more computationally heavy instances.

6.3 Initial Testing of Exact Models

There were two primary goals with the initial testing of the exact models in this section.
The first goal was finding the mathematical model for use in the matheuristic. To solve
the subproblems of the decomposed problem, the best of the two mathematical models
presented in this thesis is used as an exact solution method unless clustering is applied.
The second goal was identifying the best mathematical model for finding good primal
and dual solutions when solving larger problem instances exactly, which would be used
in the comparison with the AD-RFFO in Section 6.5. The goal of AD-RFFO, presented
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in Chapter 5, is to provide high quality solutions for problem instances which can not be
solved by a commercial solver. As the problem has a long planning horizon, computational
time of multiple hours can be accepted. However, preliminary testing has shown that
the objective value is to a small degree improved with computational times beyond two
hours. Consequently, the mathematical model for solving larger instances exactly and
the matheuristic is adapted to find the best objective values within a time frame of two
hours.

As described in Section 5.1, the matheuristic splits the entire problem into many subprob-
lems, which are solved sequentially. In most cases, each subproblem is solved multiple
times. Consequently, the main requirement for the mathematical model solving these
subproblems is reliably finding feasible, high quality solutions in a short amount of time.
To reflect this requirement, 600 seconds were chosen as the computational time limit
when testing was conducted to find the mathematical model to use in the matheuristic.
When testing was conducted to find the best model for solving larger instances exactly,
the computational time was increased to one hour. Although two hours is the time limit
in the final comparison of Section 6.5, one hour is assumed to give an accurate picture
of the relative performance and was chosen due to the high number of initial tests to be
run. In Subsection 6.3.1, a comparison of the two mathematical models from Chapter 4
is presented, followed by Subsection 6.3.2 where combinations of valid inequalities and
variable bound tightening for the FCNF formulation are tested.

6.3.1 FCNF vs. Basic Arc-Flow Model

Table 6.3 presents the results most relevant for evaluating which of the models, Basic Arc-
Flow or FCNF, is best suited for use in the matheuristic, where the objective is reliably
finding feasible, high quality solutions within a short amount of time. The number of
instances where the models obtained a feasible solution within 600 seconds is reported
(No. of sol.), as well as the number of times where the configuration had the best objective
value among both models after 600 seconds (No. of best). In cases where the two models
found solutions with less than 0,01% deviation in objective value, both were considered
best. Finally, the average time to first feasible solution is reported (Avg. time feas.).
Averages are solely based on instances where both models found feasible solutions within
3600 seconds. Based on the results from table Table 6.3, it is evident that the FCNF is
substantially better than the Basic Arc-Flow model at finding feasible solutions of high
quality in a relatively short amount of time. Hence, it is the choice of model for use in
the matheuristic. This is illustrated by the chosen configuration highlighted in green in
the table.
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Table 6.3: Results from test conducted on 20 initial instances to find the exact model for use in the

heuristic. No. of sol. and no. of best reported after 600s.

FCNF Basic Arc-Flow Model
No. of sol. 14 6
No. of best 14 4
Avg. time feas. [s] 154 825

The second purpose of the initial testing was deciding which of the two exact models
had the best performance when the computational times increased, where the goal was
reliably finding good primal and dual solutions. The first two rows of Table 6.4 reports
the average objective value (Avg. obj. value) and dual gap as reported from Gurobi
(Avg. gap) after 3600 seconds for 12 out of 20 instances, where both models found a
feasible solution. Similar to Table 6.3, the number of best solutions is reported, now with
a computational time of 3600 seconds. Finally, the number of instances where a model
found the highest dual bound (No. of best bound) is reported. In accordance with the
results of Friske et al. (2021), the dual bounds of the FCNF model is significantly higher
than those of the Basic Arc-Flow model. Additionally, the FCNF model provides best
solutions on most instances and has a better average objective value than the Basic Arc-
Flow model. Consequently, the FCNF model was chosen as the exact solution method
to be compared to AD-RFFO, which will be explored further in Section 6.5.

Table 6.4: Results from both exact models tested on the 20 initial instances, with focus on longer

computational times. Results reported after 3600s.

FCNF Basic Arc-Flow Model
Avg. obj. value 3 578 557 3 649 784
Avg. gap 7,68% 89,17%
No. of best 16 5
No. of best bound 20 0

6.3.2 Testing of FCNF Configurations

This subsection presents results from the testing of different configurations of the vari-
able bound tightenings and valid inequalities for the FCNF model, presented in Subsec-
tion 4.2.3 and Subsection 4.2.4, respectively. In order to find the best configuration, valid
inequalities and variable bound tightenings were grouped according to their properties,
and presented in Table 6.5. The "F" in the naming represents the FCNF model, while
"V" and "T" are valid inequalities and variable bound tightenings, respectively. "FC" is
a combination of the best set of valid inequalities and the best set of tightenings. The
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complete set of configurations, as well as the constraints they represent, can be seen in
Table 6.5.

Table 6.5: Groups of valid inequalities and variable bound tightenings.

Mathematical model Configuration Name
FCNF - FCNF

(4.55), (4.57) FV1
FCNF + VI (4.56), (4.58) FV2

(4.55) - (4.58) FV3
(4.49) - (4.51) FT1
(4.52) - (4.53) FT2
(4.54) FT3

FCNF + Tightening (4.49) - (4.53) FT4
(4.49) - (4.51), (4.54) FT5
(4.52) - (4.54) FT6
(4.49) - (4.54) FT7

FNCF Combo (4.49) - (4.51), (4.55), (4.57) FC

Each group and combination of groups were tested to find the best final configuration.
First, the FCNF model without any valid inequalities or tightenings was run to obtain
benchmark results, as can be seen in Table 6.6. The best combination of valid inequalities
was then determined by testing and comparing FV1, FV2, and FV3. Tightenings of
variable bounds were then tested, namely the combinations FT1 - FT7. Finally, the best
among FV1 - FV3 was combined with the best among FT1 - FT7, forming FC.

Similar to Table 6.3 from the previous subsection, Table 6.6 presents the number of
feasible and best solutions after 600 seconds, as well as the average time to first feasible
solution. With the aim of reliably finding high quality solutions within 600 seconds, FV1
stands out as the best alternative for use in the matheuristic with the best score on all
metrics presented in the table. FV1 are valid inequalities setting lower bounds on the
minimum number of vessels arriving to or departing from a port during the planning
horizon.
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Table 6.6: Results from the FCNF configurations tested on the 20 initial instances, with focus on

matheuristic configuration. No. of sol. and no. of best reported after 600s.

No. of Sol. No of Best Avg. Time Feas. [s]
FCNF 14 3 233
FV1 16 5 150
FV2 15 3 247
FV3 13 2 388
FT1 15 3 297
FT2 13 2 399
FT3 13 3 406
FT4 13 3 322
FT5 12 3 439
FT6 12 3 399
FT7 14 0 226
FC 14 3 156

Table 6.7 presents the results from the tests conducted to find the best combination of
valid inequalities and variable bound tightenings for longer computational times in the
comparison with the AD-RFFO. It reports the average objective value and gap on the 14
out of 20 instances to which all configurations found a feasible solution within the time
limit of 3600 seconds. The numbers of best objective values and bounds are calculated
similarly as the data of Table 6.4. Although the main emphasis is put on finding the
best primal solutions, higher dual bounds can also help evaluate the performance of
the matheuristic. With a good trade-off between primal and dual solutions, FV1 is the
preferred configuration for longer computational times.
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Table 6.7: Results from the FCNF configurations tested on the 20 initial instances, with focus on longer

computational times. Results reported after 3600s.

Avg. Obj. Value Avg. Gap No. of Best No. of Best Bound
FCNF 4 605 417 7,21% 8 5
FV1 4 596 418 6,79% 7 8
FV2 4 604 318 6,64% 5 10
FV3 4 601 892 7,05% 5 5
FT1 4 611 353 7,41% 6 4
FT2 4 601 907 6,99% 6 5
FT3 4 601 002 6,18% 8 5
FT4 4 622 435 7,04% 5 3
FT5 4 600 173 6,93% 7 2
FT6 4 615 737 7,44% 4 3
FT7 4 622 723 7,57% 4 6
FC 4 613 726 7,39% 7 3

6.4 Initial Testing and Tuning of AD-RFFO

From the results of Section 6.3, it became clear that the FCNF model with the configu-
ration previously defined as FV1 was to be used in the AD-RFFO. This section presents
the testing conducted to develop a matheuristic with the ability of solving large problem
instances within two hours. More specifically, preprocessing and clustering techniques
were tested, as well as different parameter settings. Subsection 6.4.1 reports testing of
the preprocessing techniques from Section 5.3. With the best preprocessing technique
applied, the two clustering methods of Section 5.2 are tested in Subsection 6.4.2. With
preprocessing and clustering applied, the gap and time limits are subject to tuning in
Subsection 6.4.3.

The 10 initial complex instances were run in all tests to evaluate the performance on
larger instances. To be able to solve these instances, clustering was applied in the form
of distance clustering. Preliminary testing showed that distance clustering worked well,
and this was chosen as the standard before the testing of different clustering methods.
Additionally, the same 20 initial instances as in Section 6.3 were used, in order to have
benchmark results from the exact FCNF model. As will be explained shortly, clustering is
not active unless there are at least 6 ports in each region. Hence, the 20 initial instances,
which all have less than 6 ports, were not run when comparing clustering methods.

The maximum computational time was 7200 seconds for the 10 initial complex instances,
similar to the final testing in Section 6.5. The time limit of 3600 seconds, as previously

67



used for the 20 initial instances, was unchanged. Note that the total elapsed time for
AD-RFFO is checked prior to the start of each iteration. In a small number of cases
this has caused the total computational time to slightly exceed the time limit, as a final
iteration can be initiated just before the time limit is reached.

Prior to the parameter tuning in Subsection 6.4.3, initial values based on preliminary
testing were set, as reported in Table 6.8. MIPgap refers to the dual gap tolerance
before termination in each subproblem or cluster-problem. timeLimit1 is the total time
limit for each subproblem and cluster-problem. It is not subject to tuning, as it is as-
sumed that if no feasible solution is found in one of the subproblems or cluster-problems
within the given time limit, the full problem is too complex to be solved within the total
time limit as multiple iterations are necessary. timeLimit2 represents the maximum com-
putational time in a subproblem or a cluster-problem after a feasible solution is found.
This parameter value is lower with clustering applied, as the consumption regions are
split into cluster-problems, which are solved using the RFFO, as explained in Subsec-
tion 5.2.2. With each cluster-problem being less complex, the need for computational
time per cluster-problem is lower. The number of clusters to be made is set to bJC

3 c,
which ensures that all clusters contain at least 3 consumption ports. The clustering is
therefore applied when |J C | � 6, since six is the smallest number of ports required to
create at least two clusters.

Table 6.8: Initial value of matheuristic parameters.

MIPgap 10%
timeLimit1 900 seconds
timeLimit2 300 seconds (100 seconds with clustering)

6.4.1 Preprocessing

Four different combinations of the preprocessing techniques from Section 5.3 were tested.
No PP is AD-RFFO with no preprocessing applied. 2nd Day and 3rd Day refers to only
allowing departures every second and third day, respectively. 1D refers to prohibiting
each vessel from visiting one of the discharging ports in the region to which it belongs.
Finally, LA is the preprocessing where all arcs with the longest travelling times in the
region is removed. Keeping only departures in every third time period can be seen
as a more aggressive preprocessing method than keeping every second, in terms of the
number of variables removed, and combining either two with 1D or LA removes even
more variables. Combinations including LA are regarded as the most aggressive. The
preprocessing combinations presented have a different degree of aggressiveness to avoid
testing all combinations. To see how different levels of aggressiveness in the preprocessing
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affect performance, these combinations were tested on the 20 initial instances, and the
10 initial complex instances.

Table 6.9 reports the results from testing the preprocessing methods on the 20 initial
instances. The exact FCNF-model found a feasible solution within 3600s for 16 instances.
The average gaps between these 16 primal solutions and the primal solutions of the
heuristic applying the different preprocessing techniques is presented (Avg. Obj. vs.
FCNF). The gap is calculated as |ObjV al�ObjFCNF |

|ObjV al| , where ObjVal is the objective value
found with the current preprocessing technique and ObjFCNF is the best objective value
found by the FCNF. The number of instances where a feasible solution is found within
3600 seconds is reported for each of the preprocessing techniques (No. of sol.), as well as
the average computational time (Avg. time). It appears to be a minor trade-off between
the average runtime and the best objective value. The more aggressive the preprocessing,
the quicker it finds its best solution, but the worse the objective value. This may indicate
that in some cases, good solutions are cut out of the solution space when the preprocessing
is too aggressive. In some cases, removing too many variables may result in the removal
of all feasible solutions. This may be the reason that 2ndDay, LA only managed to find
solution on 19 of the 20 instances.

Table 6.9: Results from the preprocessing tests conducted on the 20 initial instances, 3600s time limit

per instance.

No PP 2nd Day 2nd Day, 1D 3rd Day, 1D 2nd Day, LA
Avg. Obj. vs. FCNC 1,91% 1,85% 2,69% 3,20% 1,94%
No. of sol. 20 20 20 20 19
Avg. time [s] 976 910 780 775 994

In Table 6.10, the results from the tests run on the 10 complex instances are presented.
To evaluate the ability to find high quality solutions within reasonable time, the number
of best and feasible solutions are reported. The results supports the hypothesis that re-
moving the longest arcs is too aggressive and impairs the ability to find feasible solutions.
From the results on the complex instances, where the differences in performance were
larger, it was clear that 3rd Day, 1D is the best preprocessing for the matheuristic. It is
superior at finding the best solutions as well as being among the best at finding feasible
solutions. It removes more arcs than 2nd Day, 1D while still finding better objective
values, which suggests that it is more scalable for larger instances.
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Table 6.10: Results from the preprocessing tests conducted on the 10 initial complex instances, 7200s

time limit per instance.

No PP 2nd Day 2nd Day, 1D 3rd Day, 1D 2nd Day, LA
No. of best 1 2 2 6 0
No. of sol. 9 7 7 9 5

6.4.2 Clustering

As described in Section 5.2, two different methods of clustering, namely demand and
distance based clustering, were implemented. As discussed, both methods were only
tested on the 10 initial complex instances.

The results from the testing is reported in Table 6.11, with the average objective value,
average computational time and the number of feasible solutions reported for all con-
figurations. "No clustering" finds only one feasible solution, and AD-RFFO without
clustering is thus left out of the analysis. A reason for this may be that the larger sub-
problems are solved exactly, instead of the smaller cluster-problems which are solved
iteratively with RFFO. Average objective value and computational time is based on the 6
instances where both clustering methods found a feasible solution within the time limit.
When comparing the two, the number of feasible solutions is the most important, as the
purpose of the clustering is to reduce computational complexity when subproblems in the
matheuristic grow too large for commercial solvers. With feasible solutions to 9 out of 10
instances and a slightly better average objective value and computational time, distance
clustering is preferred for the matheuristic.

Table 6.11: Results of clustering methods tested on the 10 initial complex instances, 7200s time limit

per instance.

Distance Demand No Clustering
Avg. obj. value 27 425 445 27 565 118 -
Avg. time [s] 3 699 4 409 -
No. of sol. 9 7 1

6.4.3 MIP-gap and time limits

The termination tolerances for dual gap and runtime for AD-RFFO were both subject
to tuning. The dual gap tolerance is called MIPGap, and as discussed in Chapter 5, the
tolerance for runtime is split into two, namely timeLimit1 and timeLimit2. As discussed,
these sets upper limits for the computational time allowed to find a first feasible solution,
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and for optimizing after the first feasible solution is found, respectively. Both tolerances
for dual gap and computational time affect the total time of each iteration in the AD-
RFFO. In most cases, a lower dual gap tolerance translates to a higher computational
time in each iteration, within the bounds of the time limit.

When solving larger instances, the clustering splits the subproblems into cluster-problems,
which are solved iteratively. As there are multiple iterations on the clustering-problems
within a subproblem when clustering is applied, it is natural to assume that different
tolerances for dual gap and computational times are ideal when this is applied. As a
consequence of this assumption, the testing was first performed on the 20 initial instances
to decide which gap and time limit to use on smaller instances, and then on the 10 initial
complex instances to decide which combination to use on larger instances where clustering
is applied. When the dual gap tolerance is increased, so is the time spent on each iteration
if this tolerance is not reached. There is an interdependence between the gap and time
limit, and hence a need to tune them simultaneously as opposed to the sequential tuning
of more independent parameters.

As discussed earlier, a 10% MIPGap was set as the standard tolerance for AD-RFFO.
In addition, timeLimit1 of 900 seconds is never subject to tuning, and 300 seconds
for timeLimit2 was set as the standard without clustering. In the rest of this section,
timeLimit2 is the only time limit considered. These tolerances were therefore used as a
base for the tuning done in this section. To explore how both increases and decreases of
the parameters affected performance, all combinations of 120, 300 and 480 seconds for
the time limit and 5, 10 and 15% for the dual gap tolerance were tested. The results from
tests run on the 20 initial instances can be seen in table Table 6.12. Average objective
values and computational times for all 20 instances are reported, and every combination
of parameters found feasible solutions to all instances. In addition, the average gaps to
the objective values found by the FCNF model on 16 instances are reported.

Table 6.12: Results from combinations of MIP-gaps and time-limits on the 20 initial instances, 3600s

time limit per instance.

Configuration Avg. Obj. Value Avg. Time [s] Avg. Obj. vs. FCNF
5%, 120s 5 807 768 677 1,08%
5%, 300s 5 794 793 1288 0,88%
5%, 480s 5 792 095 1641 0,82%
10%, 120s 5 938 998 294 3,29%
10%, 300s 5 960 185 775 3,20%
10%, 480s 5 969 722 1004 3,20%
15%, 120s 6 115 788 160 5,11%
15%, 300s 6 117 727 264 5,17%
15%, 480s 6 096 039 474 5,17%
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Some of the configurations allow for longer computational times in each subproblem,
such as 5% gap and 480 seconds time limit. When gap limits are higher and time limits
shorter, subproblems usually terminate faster. As the total computational time for an
instance is constant, a faster termination of each subproblem allows for a higher number
of iterations. The results suggest that increasing the gap limit worsens the objective
value, which may indicate that finding better solutions for each subproblem in each
iteration is more important for solution quality than the number of iterations. For the
combinations with 10% and 15% tolerance, the objective value is almost constant for
all time limits, although the average computational time increases significantly. This
indicates that allowing computational times of more than 120 seconds increases solution
times without improving the objective value significantly with gap limits of 10 and 15%.

As the aim of the matheuristic is finding high quality solution within two hours, a dual
gap tolerance of 5% provides the best solution quality with acceptable computational
times. As the difference in objective value between time limits of 300 and 480 seconds is
marginal, 300 seconds was the preferred one. Consequently, the combination of 5% and
300s is the chosen combination when clustering is not applied.

For the 10 initial complex instances, where clustering is applied, a 10% tolerance for the
dual gap and a 100s time limit was used initially. Similarly, to the testing conducted on
the 20 initial instances, the parameters were in this case also increased and decreased,
forming the combinations seen in Table 6.13. As in Table 6.12, the average objective
values of the 5 instances solved by all combinations are reported, as well as the number
of feasible solutions within the time limit of 7200 seconds. The average objective values
of the combinations with a 40s time limit per iteration indicate a need for more time
to have sufficiently good solution quality. A similar effect is seen in the low number of
instances to which a feasible solution is found with this time limit. The solution times
were quite similar for all instances, and thus the number of feasible solutions was the
main emphasis when choosing the combination to use when clustering is applied. The
10% MIPGap and 160s timeLimit2 stands out as the best with 9 feasible solutions and
slightly better average objective value than with similar gap and 100 seconds time limit.
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Table 6.13: Results from combinations of MIP-gaps and time-limits on the 10 initial complex instances,

7200s time limit per instance.

Configuration Avg. Obj. Value No. of sol.
5%, 40s 48 923 892 6
5%, 100s 30 966 501 8
5%, 160s 30 854 371 6
10%, 40s 49 281 239 6
10%, 100s 32 504 557 9
10%, 160s 31 996 513 9
15%, 40s 49 687 995 6
15%, 100s 33 294 842 8
15%, 160s 33 031 713 8

6.4.4 Final Configuration of AD-RFFO

As a conclusion to the initial testing of the exact models and the tuning of AD-RFFO, a
final configuration of AD-RFFO is presented in Table 6.14. The mathematical model and
its configuration is presented, in addition to the combination of preprocessing methods,
clustering method and termination tolerances. This configuration will be tested against
the FCNF-model with valid inequality group FV1 applied in Section 6.5.

Table 6.14: The final configuration of AD-RFFO.

Mathematical Model FCNF
Model Configuration FV1
Preprocessing Method 3rd Day, 1D
Clustering Method Distance
MIPGap, timeLimit2 without Clustering 5%, 300s
MIPGap, timeLimit2 with Clustering 10%, 160s
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6.5 FCNF vs. AD-RFFO

A set of 75 new instances were generated to conduct the final testing. The results from
this testing using FCNF and AD-RFFO is presented and discussed in this section. An
overview of the main findings is given in Subsection 6.5.1, before the results of each
instance group is analysed to find the effects of changes in instance parameters in Sub-
section 6.5.2.

6.5.1 Overview

The number of instances solved by the two different solution methods, as well as the
number of best objective values, are given in Table 6.15. All the results for the instances
can be seen in Appendix D.1. The dual gaps presented in the tables in this chapter were
calculated as |ObjV al�ObjBound|

|ObjV al| , where ObjBound is the objective bound and ObjVal is the
best objective value obtained before the time limit is reached. The objective bounds
obtained by FCNF is used when calculating the dual gaps for AD-RFFO as well. The
average dual gap of both solution methods, and the average difference between their
objective values are also presented in Table 6.15. The difference in objective value is
calculated by taking the average of AD-RFFO’s objective values divided by FCNF’s
average objective value.

Table 6.15: Overview of the results from FCNF and AD-RFFO tested on all 75 instances. Time limit of

7200s on all instances.

FCNF AD-RFFO
No. of sol. (of 75) 37 75
No. of best* 27 10
Avg. dual gap* 7,25% 8,12%
Avg. obj. vs. FCNF - 0,9%

*Only including instances both methods found feasible solutions

As can be seen in Table 6.15, FCNF manages to find feasible solutions only for about half
of the instances, while AD-RFFO provides solutions on all test instances. Both models
were allowed to run for 7200 seconds on every instance. The average dual gaps are
relatively close between the two methods, and FCNF did not manage to prove optimality
for any instances. The solutions found by AD-RFFO are close to the FCNF solutions, and
in almost 30% of the instances solved by both methods, AD-RFFO finds better objective
values. This indicates its capability to solve complex instances within reasonable time,
and provide solutions that are very close to FCNF, and in some cases, even better.
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The main reason AD-RFFO outperforms FCNF when solving large instances is that it
takes advantage of dividing the full problem into subproblems. In this way, the number
of variables constituting each subproblem are substantially reduced compared to the
whole problem. Obtaining the full solution in this manner is easier than to solve the
whole problem with all variables at the same time, as FCNF does. Additionally, the total
number of variables is also reduced when using AD-RFFO as a result of the preprocessing
and clustering heuristic applied, especially the integer variables. On average, AD-RFFO
generated almost 70% fewer binary variables than FCNF. Only the binary variables are
included in the analysis, as these contribute the most to computational complexity. The
full overview with number of variables for each instance is given in Appendix D.2. Note
that the variables reported are the variables after presolve in Gurobi. As will be seen in the
following section, AD-RFFO is less affected by the increases in the different parameters in
the instances than FCNF, mainly because of the problem decomposition and the reduction
in the number of variables.

6.5.2 Parameter Impact on Solution Methods

Studying the different instance parameters, it can be seen that changes in some param-
eters affect the solutions more than others. Instance groups that exhibit clear patterns
in terms of how an increase in their respective parameter affect the solutions are dis-
cussed in this section. Tables presented in this section include the relevant instances that
are discussed (Instance), the dual gaps for FCNF and AD-RFFO (Dual Gap), and the
solution times for AD-RFFO (Solution Time).

Time Group

As the number of time periods in the instances increase, it becomes more difficult for
FCNF to find feasible solutions. This is reflected in the duality gaps, which are increasing
as the instance size grow, as seen in Table 6.16. FCNF only manages to find feasible
solutions on the five smallest instances in this group. AD-RFFO does not exhibit the
same pattern of increased difficulty to solve the problem as time periods increase. Feasible
solutions are found for every instance, and the objective values do not deviate significantly
from the exact method. Even when solving the larger instances, the computational time
does not increase substantially.
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Table 6.16: Results from both FCNF and AD-RFFO in the group with an increase in planning periods.

FCNF AD-RFFO
Instance Dual Gap Solution Time [s] Dual Gap
T20 2,73% 540 3,93%
T40 8,68% 5400 9,18%
T60 9,85% 1260 10,03%
T80 7,29% 1020 9,12%
T100 12,40% 660 8,36%
T120 - 728 -
T140 - 3680 -
T160 - 1821 7,85%
T180 - 4518 -
T200 - 1060 -

Another aspect that was tested is variation in demand. While keeping all other parame-
ters the same as in instance group Time, the demand was changed to be variable during
the planning horizon. There was no clear impact of variable demand on the solution
methods. The same pattern as in the time group was seen as the instances grew.

Region Group

Studying the results from the instance group with an increase in the number of regions,
it can be seen in Table 6.17 that all the instances up to R10 are solved by both solution
methods, but feasible solutions for larger instances than R10 are only found by AD-RFFO.
For the three largest instances, the computational nodes ran out of memory during the
creation of the model when FCNF was applied. There is no prominent pattern of how an
increase in the number of regions affect AD-RFFO other than a higher average solution
time on the larger instances compared to the smaller once. This seems reasonable because
as the number of regions increase, the number of subproblems to be solved increases as
well. As the subproblems are solved independently, solving the full problem itself does
not become more difficult. This can also be seen looking at the number of binary variables
in each subproblem, given in Figure 6.1. The average numbers of binary variables per
subproblem are relatively constant for all instances, but the total number of variables
increases.
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Table 6.17: Results from both FCNF and AD-RFFO in the group with an increase in regions.

FCNF AD-RFFO
Instance Dual Gap Solution Time[s] Dual Gap
R2 4,05% 902 10,84%
R3 8,68% 5400 9,18%
R4 3,83% 637 6,51%
R5 6,90% 1219 8,08%
R6 5,53% 3454 8,03%
R7 6,42% 6000 7,87%
R8 7,26% 5640 8,67%
R9 5,95% 1782 6,81%
R10 5,10% 1929 6,73%
R11 - 3733 7,42%
R12 - 6242 8,00%
R15 - 2780 8,30%
R20 -* 6832 -**
R25 -* 6075 -**
R30 -* 7623 -**

*The nodes ran out of memory to create model and start computation

**No dual bound found for FCNF, AD-RFFO found solution

The advantage of decomposing the problem into subproblems becomes greater as the
number of regions increase. As can be seen in Figure 6.1, the number of variables increase
with the number of regions. For FCNF, all the variables are included simultaneously
when optimizing the whole problem. When using AD-RFFO, the preprocessing initially
makes sure that the total variables constituting the problem are substantially reduced.
A reduction of at least 50% is made for each instance. Furthermore, the advantage of
using AD-RFFO is seen as only one subproblem is solved at a time, meaning that each
optimization done in AD-RFFO only considers a fraction of the variables of FCNF. Even
though the problems are decomposed and the number of variables are reduced, it appears
that the solutions provided by AD-RFFO are close to the objective bounds found by
FCNF regardless of the number of regions.
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Figure 6.1: Number of binary variables in the region group for FCNF, AD-RFFO and the average for

subproblems of AD-RFFO.

Port Group

An increase in the number of ports in each consumption region increases the number
of arcs, and thus binary variables, drastically. Consequently, the problem complexity
increases, which can be seen in Table 6.18.

Table 6.18: Results from both FCNF and AD-RFFO in the group with an increase in consumption ports.

FCNF AD-RFFO
Instance Dual Gap Solution Time [s] Dual Gap
J1 3,10% 7 3,62%
J2 2,53% 607 3,25%
J3 8,68% 5400 9,18%
J4 8,72% 5400 8,17%
J5 14,89% 3048 12,74%
J6 21,56% 5793 19,33%
J7 - 5825 23,68%
J8 - 6069 22,53%

The dual gaps increase for both solution methods as the number of ports increase. In-
creasing the number of ports also affects the computational time of AD-RFFO, which gets
higher as the instances get larger. One of the main reasons for this is that as the number
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of ports get larger, and the number of vessels is kept constant, the routing within each
region may become more complex as each vessel must be routed through more ports than
previously. An indication of this will be seen when looking at the vessel group, where an
increase in number of vessels allows the matheuristic to obtain feasible solutions faster.
The increased difficulty to solve the problem with more ports is also reflected in the
number of binary variables that are generated when solving the instances, which rapidly
increases with the number of ports, as seen in the plot in Figure 6.2.
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Figure 6.2: Number of binary variables in the port group for FCNF and AD-RFFO.

For FCNF, the number of variables has an increasing growth as the number of ports
increases, which is illustrated by the convex plot in Figure 6.2. This is not the case for AD-
RFFO. It exhibits a marginal growth in the number of variables until it reaches instance
J6, where the number decreases, and does not increase significantly in the following
instances. When the number of ports increases above five, the clustering is applied to
each subproblem. Clustering reduces the number of variables significantly, and creates
even smaller cluster-problems that are solved efficiently. This allows AD-RFFO to find
feasible solutions for every instance, including the two where FCNF did not. By solving
more instances and obtaining better solutions on three of the six instances solved by
FCNF, AD-RFFO seems to scale better when the number of ports increase.
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Vessel Group

As the number of vessels increase, an opposite effect from the increase in number of
ports can be seen. Whereas an increase in the number of ports worsened duality gaps
and computational times, both are improved by having more vessels in each region.
Feasible solutions are found for all instances, as seen in Table 6.19. When examining
the computational time of AD-RFFO, a reduction is evident when the number of vessels
increases. This reflects that the problems are getting less difficult to solve as the instances
grow. More available vessels creates flexibility in terms of routing, and each vessel has the
possibility to visit fewer customers to obtain a feasible solution compared to when having
fewer vessels per port. This makes the routing part of the problem easier to solve. The
reduction in complexity by having more vessels is also shown by FCNF obtaining better
duality gaps than AD-RFFO on all the instances. Using a heuristic, certain simplifications
are made to reduce complexity. For smaller problems, these simplifications might not be
beneficial for obtaining good solutions compared to solving the problem exactly. The
preprocessing used in the heuristic might also be unfavourable, especially for smaller
problems, by removing good solutions from the solution space. Therefore, applying a
matheuristic on these instances might speed up the calculation, at the expense of objective
value.

Table 6.19: Results from both FCNF and AD-RFFO in the group with an increase in the number of

vessels.

FCNF AD-RFFO
Instance Dual Gap Solution Time [s] Dual Gap
V1 2,78% 4920 6,02%
V2 9,34% 3000 10,15%
V3 8,68% 5400 9,18%
V4 2,74% 1200 6,27%
V5 3,35% 973 7,19%
V6 2,79% 37 5,52%
V7 1,66% 54 6,94%
V8 1,97% 52 3,36%

Product Group

To test whether the solution methods were sensitive to changes in the number of products
in the problem, a set of instances differing in number of products was tested. There was
no clear impact of increasing the number of products found during the testing, and all
instances with multiple products were solved with reasonable dual gaps by both solution
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methods. One of the reasons that an increase in the number of products did not make any
impact on the solution methods might be that the number of binary variables generated
in each instance remained constant, as can be seen in Figure 6.3. The reason for this
being that no binary variables are connected to products. As long as the number of
binary variables does not increase significantly, it seems like the problem does not increase
substantially in the degree of difficulty. The assumption that each vessel has numerous
tanks, and that combinations of tanks allow for every ratio of products, is the main reason
for products not being connected to any binary variables. If this was not the case, a part
of the problem would be tank allocation, which would have contributed to making the
problems more difficult to solve as the number of products increased.
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Figure 6.3: Number of variables in port group for FCNF and AD-RFFO.

6.5.3 Complex Group

The group of complex instances consists of instances varying in several dimensions. The
purpose was measuring the performance of AD-RFFO when applied to computationally
heavy instances, and test whether or not the proposed matheuristic manages to solve in-
stances which FCNF could not. All instances were solved, which can be seen in Table 6.20.
Note that only the relevant parameters changed are presented, with all parameters of the
instances presented in Appendix C.1. FCNF did not solve any of the instances within the
time limit, and managed only to obtain bounds on three of the instances. The solutions
obtained by AD-RFFO had an average gap of 20% to the three bounds obtained, but the
quality of these bounds is uncertain.
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Table 6.20: Results from both FCNF and AD-RFFO in the group with complex instances.

AD-RFFO
Instance |T | |R| |J | Solution Time [s]
C1.1 40 4 6 5856
C1.2 60 4 6 6437
C1.3 80 4 6 5867
C1.4 100 4 6 7110
C1.5 40 4 7 7039
C1.6 60 4 7 7948
C1.7 80 4 7 6233
C1.8 40 4 8 7867
C1.9 60 4 8 6000
C1.10 80 4 8 8073
C2.1 50 5 6 1039
C2.2 100 5 6 6360
C2.3 100 5 6 7831
C2.4 50 5 7 6872
C2.5 100 5 7 4190
C2.6 50 5 8 7094
C2.7 100 5 8 5220
C2.8 50 5 9 6254
C2.9 100 5 9 5672
C2.10 40 5 12 3725

As mentioned, AD-RFFO takes advantage of the preprocessing and problem decompo-
sition to obtain subproblems with fewer variables. In addition to a lower number of
variables for the total problem, AD-RFFO has an advantage by only solving the sub-
problems instead of the full problem. The number of variables generated is one of the
main attributes that distinguishes FCNF and AD-RFFO. When looking at solutions of
the previous instance groups, it was clear that AD-RFFO generated fewer variables than
FCNF. When solving larger instances, the difference between these two methods becomes
more prominent. Looking at Figure 6.4, it can be seen that AD-RFFO generates between
82%-95% fewer binary variables for every instance compared to FCNF.
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Figure 6.4: Number of variables in the complex instances for FCNF and AD-RFFO.

AD-RFFO finds feasible solutions to all complex instances, and drastically reduces the
number of variables in each subproblem. Based on these results, it can be assumed that
even more complex instances, especially in the number of regions and time periods, could
be solved with satisfactory solution quality.

83



84



Chapter 7
Concluding Remarks

In this master’s thesis, a maritime inventory routing problem inspired by maritime supply
chains with intermediate facilities and multiple products is studied. To the best of our
knowledge, MIRPs with two echelons have not previously been studied. With the combi-
nation of two-echelons and multiple products, the problem stands out from other problems
in the MIRP literature. We present two mathematical models for this problem, where
one of the models is a general arc-flow model, and the other being an reformulation of this
model to a fixed-charged network flow (FCNF) model. A decomposition matheuristic is
constructed and applied to the problem, with an additional cluster-based Relax-and-Fix
and Fix-and-Optimize heuristic for solving the decomposed subproblems. In addition,
preprocessing techniques are presented and applied to reduce the total problem size for
the matheuristic. The matheuristic demonstrates how the two-echelon problem studied
can be decomposed into subproblems based on regions.

75 problem instances were generated for the computational study, with parameters and
values based on real life data. Instances differ in the number of regions, ports per con-
sumption region, vessels per region, products and time periods. An subset of all instances
were used for initial testing. The FCNF model proved to be the best suited for use in
both the matheuristic and final testing against the matheuristic. The FNCF model found
more feasible solutions, and obtained better dual bounds and objective values after both
ten minutes and one hour, compared to the general arc-flow model.

The matheuristic finds feasible solutions for all 75 instances tested, compared to the ex-
act solution method’s 37 feasible solutions. Of these 37 instances, the solutions of the
matheuristic deviate no more than 0.9% from FCNF’s objective values. The simplifica-
tions and reduction of problem size applied by the matheuristic reduce the quality of the
solutions slightly, but is significantly more scalable for large instances than the FCNF
model.

The study conducted to test the effect of changes in different parameters of test instances
can help explain the results of the heuristic. When increasing the number of regions, the
effect is small on the performance of the AD-RFFO. By decomposing the full problem,
this increase only results in more subproblems to solve sequentially, without increasing
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the complexity of the entire problem. When increasing the number of ports per region,
the effect of the cluster-based R&F/F&O heuristic applied to the subproblems is evident.
By both reducing the number of variables and solving smaller cluster-problems iteratively,
the AD-RFFO can solve problems with significantly higher number of ports than FCNF.
The ability of the AD-RFFO to solve large problem instances is a result of combining
these two heuristic methods with preprocessing.

The purpose of this thesis was to implement a model for solving complex instances of the
two-echelon multi-product maritime inventory routing problem, and develop a matheuris-
tic that is able to solve large instances and obtain high-quality solutions. The matheuristic
has demonstrated how the problem of this report can be decomposed and solved itera-
tively, and has exhibited promising results in terms of the problem sizes solved, and the
quality of the solutions compared to the FCNF model. Thus, a basis for future research
of both exact and heuristic solution methods for two echelon multi-product maritime
inventory routing problems has been established.
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Chapter 8
Future Research

This master’s thesis contains several parts subject to future research. The problem and
the corresponding mathematical models, respectively presented in Chapter 3 and Chap-
ter 4, all include assumptions and limitations. Many of these assumptions and limitations
are not present in real life, and an interesting field of study in future research is therefore
the extension of this model to reflect real life in a better way. In this thesis, it is for
instance assumed that the hubs can buy and sell an unlimited amount of products to and
from the spot market with instant delivery. In real life, bounds on the amount bought
and sold, and delivery time of products bought, may be appropriate. Other potential
extensions include chartering of vessels, the allocation of tanks to vessels, and more re-
alistic loading and discharging in ports, such as restricting the number of vessels allowed
to load or discharge a specific product simultaneously.

The matheuristic constructed for the problem in this thesis applies a cluster-based R&F/F&O
heuristic for the smaller subproblems when the full problem is decomposed. As each sub-
problem can be solved as one-echelon MIRPs, there are a vast number of possible solution
methods and heuristics in the literature that may be applied to these smaller subprob-
lems. Future work on the matheuristic includes the testing of different solution methods
for each subproblem, in addition to other preprocessing and decomposition heuristics for
the full problem.

Furthermore, finding better estimates of the performance of the matheuristic is an impor-
tant part of future research. This includes research with the purpose of finding good dual
bounds for the matheuristic’s solutions. New mathematical models and other techniques
can be implemented with this purpose.
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Appendix A
Mathematical Models

A.1 Compact Basic Arc-Flow Model
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A.2 Compact FCNF Formulation
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Tightening of flow variables
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Appendix B
Pseudocodes

B.1 Pseudocode for RFFO Heuristic

Algorithm 5 R&F & F&O Heuristic
1: function RFFO(m, currentObj)

2: for var in m do
3: if var is binary then
4: var  continuous

5: end if
6: end for
7: prevObj  1
8: while currentObj < prevObj or elapsedTime < timeLimit do
9: for c in clusters do

10: for var in c do
11: if var is originally binary then
12: var  binary

13: end if
14: if var is fixed then
15: unfix var

16: end if
17: end for
18: optimize m until feasible solution or timeLimit1

19: if feasible, optimize m until MIPGap or timeLimit2

20: for var in c do
21: if var is binary then
22: fix var to solution

23: end if
24: end for
25: end for
26: prevObj  currentObj

27: currentObj  m.objective

28: end while
29: return solution of m

30: end function
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Appendix C
Test Instances

C.1 All Test Instances

Table C.1: All test instances.

Group Instance no. Name |T | |R| |J | |VP| |VC| |P|
T1 20T3R3J3V2P 20 3 3 3 3 2
T2/B1 40T3R3J3V2P 40 3 3 3 3 2
T3 60T3R3J3V2P 60 3 3 3 3 2
T4 80T3R3J3V2P 80 3 3 3 3 2

Time T5 100T3R3J3V2P 100 3 3 3 3 2
T6 120T3R3J3V2P 120 3 3 3 3 2
T7 140T3R3J3V2P 140 3 3 5 3 2
T8 160T3R3J3V2P 160 3 3 5 3 2
T9 180T3R3J3V2P 180 3 3 5 3 2
T10 200T3R3J3V2P 200 3 3 5 3 2
R2 40T2R3J3V2P 40 2 3 3 3 2
R3/B1 40T3R3J3V2P 40 3 3 3 3 2
R4 40T4R3J3V2P 40 4 3 3 3 2
R5 40T5R3J3V2P 40 5 3 3 3 2
R6 40T6R3J3V2P 40 6 3 3 3 2
R7 40T7R3J3V2P 40 7 3 3 3 2

Region R8 40T8R3J3V2P 40 8 3 3 3 2
R9 40T9R3J3V2P 40 9 3 3 3 2
R10 40T10R3J3VP3VC2P 40 10 3 3 3 2
R11 40T11R3J5VP3VC2P 40 11 3 5 3 2
R12 40T12R3J6VP3VC2P 40 12 3 6 3 2
R15 40T15R3J7VP3VC2P 40 15 3 7 3 2
R20 40T20R3J10VP3VC2P 40 20 3 10 3 2
R25 40T25R3J12VP3VC2P 40 25 3 12 3 2

Continued on next page
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Table C.1 – continued from previous page

Group Instance no. Name |T | |R| |J | |VP| |VC| |P|
R30 40T30R3J15VP3VC2P 40 30 3 15 3 2
J1 40T3R1J3V2P 40 3 1 3 3 2
J2 40T3R2J3V2P 40 3 2 3 3 2
J3/B1 40T3R3J3V2P 40 3 3 3 3 2

Ports J4 40T3R4J3V2P 40 3 4 3 3 2
J5 40T3R5J3V2P 40 3 5 3 3 2
J6 40T3R6J3V2P 40 3 6 3 3 2
J7 40T3R7J3V2P 40 3 7 3 3 2
J8 40T3R8J3V2P 40 3 8 3 3 2
V1 40T3R3J1V2P 40 3 3 1 1 2
V2 40T3R3J2V2P 40 3 3 2 2 2
V3/B1 40T3R3J3V2P 40 3 3 3 3 2

Vessel V4 40T3R3J4V2P 40 3 3 4 4 2
V5 40T3R3J5V2P 40 3 3 5 5 2
V6 40T3R3J6V2P 40 3 3 6 6 2
V7 40T3R3J7V2P 40 3 3 7 7 2
V8 40T3R3J8V2P 40 3 3 8 8 2
P1 40T3R3J3V1P 40 3 3 3 3 1
P2/B1 40T3R3J3V2P 40 3 3 3 3 2
P3 40T3R3J3V3P 40 3 3 3 3 3

Products P4 40T3R3J3V4P 40 3 3 3 3 4
P5 40T3R3J3V5P 40 3 3 3 3 5
P6 40T3R3J3V6P 40 3 3 3 3 6
P7 40T3R3J3V7P 40 3 3 3 3 7
P8 40T3R3J3V8P 40 3 3 3 3 8
VD1 20T3R3J3V2PVD 20 3 3 3 3 2
VD2 40T3R3J3V2PVD 40 3 3 3 3 2
VD3 60T3R3J3V2PVD 60 3 3 3 3 2
VD4 80T3R3J3V2PVD 80 3 3 3 3 2

Var. Demand VD5 100T3R3J3V2PVD 100 3 3 3 3 2
VD6 120T3R3J3V2PVD 120 3 3 3 3 2
VD7 140T3R3J3V2PVD 140 3 3 5 3 2
VD8 160T3R3J3V2PVD 160 3 3 5 3 2
VD9 180T3R3J3V2PVD 180 3 3 5 3 2
VD10 200T3R3J3V2PVD 200 3 3 5 3 2
C1.1 40T4R6J8VP3VC3P 40 4 6 8 3 3
C1.2 60T4R6J8VP3VC3P 60 4 6 8 3 3

Continued on next page
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Table C.1 – continued from previous page

Group Instance no. Name |T | |R| |J | |VP| |VC| |P|
C1.3 80T4R6J8VP3VC3P 80 4 6 8 3 3
C1.4 100T4R6J8VP3VC3P 100 4 6 8 3 3
C1.5 40T4R7J8VP3VC3P 40 4 7 8 3 3
C1.6 60T4R7J8VP3VC3P 60 4 7 8 3 3
C1.7 80T4R7J8VP3VC3P 80 4 7 8 3 3
C1.8 40T4R8J8VP4VC3P 40 4 8 8 4 3
C1.9 60T4R8J8VP4VC3P 60 4 8 8 4 3

Complex C1.10 80T4R8J8VP4VC3P 80 4 8 8 4 3
C2.1 50T5R6J3VP3VC2P 50 5 6 3 3 2
C2.2 100T5R6J8VP3VC2P 100 5 6 8 3 2
C2.3 100T5R6J8VP4VC4P 100 5 6 8 4 4
C2.4 50T5R7J4VP4VC2P 50 5 7 4 4 2
C2.5 100T5R7J8VP4VC2P 100 5 7 8 4 2
C2.6 50T5R8J4VP4VC2P 50 5 8 4 4 2
C2.7 100T5R8J10VP4VC2P 100 5 8 10 4 2
C2.8 50T5R9J5VP5VC2P 50 5 9 5 5 2
C2.9 100T5R9J10VP5VC2P 100 5 9 10 5 2
C2.10 40T5R12J6VP6VC2P 40 5 12 6 6 2
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C.2 Initial Test Instances

Table C.2: Initial test instances.

Group Instance no. Name |T | |R| |J | VP |VC| |P|
T1 20T3R3J3V2P 20 3 3 3 3 2

Time T3 60T3R3J3V2P 60 3 3 3 3 2
T6 120T3R3J3V2P 120 3 3 3 3 2
R1 40T2R3J3V2P 40 2 3 3 3 2

Region R3 40T4R3J3V2P 40 4 3 3 3 2
R5 40T6R3J3V2P 40 6 3 3 3 2
J1 40T3R1J3V2P 40 3 1 3 3 2

Ports J3 40T3R3J3V2P 40 3 3 3 3 2
J5 40T3R5J3V2P 40 3 5 3 3 2
V1 40T3R3J1V2P 40 3 3 1 1 2

Vessel V2 40T3R3J2V2P 40 3 3 2 2 2
V4 40T3R3J4V2P 40 3 3 4 4 2
P1 40T3R3J3V1P 40 3 3 3 3 1

Products P3 40T3R3J3V3P 40 3 3 3 3 3
P4 40T3R3J3V4P 40 3 3 3 3 4
P6 40T3R3J3V6P 40 3 3 3 3 6
VD1 40T3R3J3V2PVD 40 3 3 3 3 2

Var. Demand VD3 60T3R3J3V2PVD 60 3 3 3 3 2
VD4 80T3R3J3V2PVD 80 3 3 3 3 2
VD5 100T3R3J3V2PVD 100 3 3 3 3 2

C2.1 50T5R6J3VP3VC2P 50 5 6 3 3 2
C2.2 100T5R6J8VP3VC2P 100 5 6 8 3 2
C2.3 100T5R6J8VP4VC4P 100 5 6 8 4 4
C2.4 50T5R7J4VP4VC2P 50 5 7 4 4 2

Complex C2.5 100T5R7J8VP4VC2P 100 5 7 8 4 2
C2.6 50T5R8J4VP4VC2P 50 5 8 4 4 2
C2.7 100T5R8J10VP4VC2P 100 5 8 10 4 2
C2.8 50T5R9J5VP5VC2P 50 5 9 5 5 2
C2.9 100T5R9J10VP5VC2P 100 5 9 10 5 2
C2.10 40T5R12J6VP6VC2P 40 5 12 6 6 2
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Appendix D
Results

D.1 Full Results from FCNF vs. AD-RFFO

Table D.1: Full Test Results.

FCNF Heuristic
Instance Obj. value Dual value Dual gap Obj. value Solution time [s] Dual gap
T1 1923443 1870930 2,73% 1947443 540 3,93%
T2 3558781 3249938 8,68% 3578463 5400 9,18%
T3 7359731 6634825 9,85% 7374730 1260 10,03%
T4 8205442 7607152 7,29% 8370848 1020 9,12%
T5 13448282 11781205 12,40% 12855867 660 8,36%
T6 - - - 16224597 728 -
T7 - - - 14486086 3680 -
T8 - 14540669 - 15779474 1821 7,85%
T9 - - - 19436458 4518 -
T10 - - - 24014950 1060 -
R2 1576211 1512426 4,05% 1696213 902 10,84%
R3 3558781 3249938 8,68% 3578463 5400 9,18%
R4 7112245 6840150 3,83% 7316245 637 6,51%
R5 8071690 7514840 6,90% 8175462 1219 8,08%
R6 11448502 10815433 5,53% 11760251 3454 8,03%
R7 14456835 13529372 6,42% 14685299 6000 7,87%
R8 17485034 16215261 7,26% 17754992 5640 8,67%
R9 19778141 18601873 5,95% 19961615 1782 6,81%
R10 23286945 22099835 5,10% 23695349 1929 6,73%
R11 - 21909398 - 23666559 3733 7,42%
R12 - 24975878 - 27148192 6242 8,00%
R15 - 32221957 - 35140346 2780 8,30%

Continued on next page
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Table D.1 – continued from previous page

FCNF Heuristic
Instance Obj. value Dual value Dual gap Obj. value Solution time [s] Dual gap
R20 - - -* 47102258 6832 -
R25 - - -* 59590109 6075 -
R30 - - -* 70012116 7623 -
J1 3098286 3002102 3,10% 3114947 7 3,62%
J2 3895960 3797399 2,53% 3925021 607 3,25%
J3 3558781 3249938 8,68% 3578463 5400 9,18%
J4 4044916 3692343 8,72% 4020916 5400 8,17%
J5 3639333 3097484 14,89% 3549661 3048 12,74%
J6 4078473 3199041 21,56% 3965400 5793 19,33%
J7 - 3514777 - 4605438 5825 23,68%
J8 - 3493312 - 4509376 6069 22,53%
V1 2091909 2033678 2,78% 2163910 4920 6,02%
V2 2853204 2586601 9,34% 2878917 3000 10,15%
V3 3558781 3249938 8,68% 3578463 5400 9,18%
V4 5239148 5095693 2,74% 5436334 1200 6,27%
V5 5039193 4870288 3,35% 5247425 973 7,19%
V6 7451107 7242851 2,79% 7666283 37 5,52%
V7 7615802 7489478 1,66% 8047802 54 6,94%
V8 10863984 10650258 1,97% 11019985 52 3,36%
P1 3839417 3648156 0.0498 3925016 409 0.0705
P2 3558781 3249938 8,68% 3578463 5400 9,18%
P3 3643065 3458881 5,06% 3719439 3913 7,01%
P4 3549544 3103659 12,56% 3525544 4821 11,97%
P5 3633334 3377941 7,03% 3725657 1235 9,33%
P6 3500860 2883388 17,64% 3308370 3019 12,85%
P7 4154271 3752474 9,67% 4077240 1456 7,97%
P8 4392065 3991163 9,13% 4332064 3025 7,87%
VD1 1688851 1673495 0,91% 1783596 3 6,17%
VD2 3568451 3385570 5,12% 3592451 3608 5,76%
VD3 6128832 5826623 4,93% 6313483 928 7,71%
VD4 11531771 9941955 13,79% 11035629 2035 9,91%
VD5 12673685 10905855 13,95% 12124129 1600 10,05%
VD6 - 14524204 - 15751053 711 7,79%
VD7 - 16904308 - 18018469 1500 6,18%
VD8 - - - 19844395 4054 -

Continued on next page
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Table D.1 – continued from previous page

FCNF Heuristic
Instance Obj. value Dual value Dual gap Obj. value Solution time [s] Dual gap
VD9 - - - 23982931 1497 -
VD10 - - - 27371399 3933 -
C1 - 9903310 12922461 1039 23,36%
C2 - - 29439045 6360 -
C3 - - - 40340571 7831 -
C4 - 13879577 17376315 6872 20,12%
C5 - - - 37834547 4190 -
C6 - - - 17219138 7094 -
C7 - - - 38471856 5220 -
C8 - - - 22662396 6254 -
C9 - - - 47901489 5672 -
C10 - - - 20606556 3725 -
C11 - - - 5206497 5856 -
C12 - 6973415 8683526 6437 19,69%
C13 - - - 15657083 5867 -
C14 - - - 21627090 7110 -
C15 - - - 6187037 7039 -
C16 - - - 9787607 7948 -
C17 - - - 17126989 6233 -
C18 - - - 7196031 7867 -
C19 - - - 15513963 6000 -
C20 - - - 20505604 8073 -
*The nodes ran out of memory to create model and start computation

113



D.2 Variables Generated by FCNF & AD-RFFO

Table D.2: Number of continuous and integer variables.

FCNF Heuristic
Instance Continuous var. Integer var. Continuous var. Integer var.
T20 6768 2820 3488 1088
T40/B1 16632 6966 8250 2557
T60 27208 11333 13523 4071
T80 37762 15700 18909 5879
T100 48446 20110 24068 7318
T120 58694 24371 29027 8705
T140 78848 32619 41348 12592
T160 91222 37721 48009 14605
T180 102664 42504 54318 16505
T200 115138 47591 60662 18575
R2 8844 3713 4663 1543
R3/B1 16632 6966 8250 2557
R4 24602 10259 12334 3834
R5 33718 14056 16558 5258
R6 40684 16944 20424 6204
R7 50210 20914 25645 7774
R8 57686 24020 28607 8693
R9 65030 27071 31001 10061
R10 72488 30618 34276 11000
R11 87792 36521 42277 13863
R12 98858 41286 51906 15916
R15 128252 53549 68533 20965
R20 -* - 107326 33989
R25 -* - 145612 45070
R30 -* - 185213 59101
J1 8508 3417 6137 1910
J2 12078 4952 8463 2655
J3/B1 16632 6966 8250 2557
J4 22606 9616 11315 3612
J5 29296 12648 14545 4755
J6 36578 15966 16719 1966

Continued on next page
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Table D.2 – continued from previous page

FCNF Heuristic
Instance Continuous var. Integer var. Continuous var. Integer var.
J7 44492 19651 18535 2628
J8 52624 23434 21778 2673
V1 5968 2251 3854 1193
V2 11182 4572 7745 2369
V3/B1 16632 6966 8250 2557
V4 22720 9574 12404 3985
V5 28590 12094 16240 5299
V6 32748 13953 18990 6303
V7 38624 16524 23540 7773
V8 42620 18339 25224 8519
P1 8393 7023 4070 2618
P2/B1 16632 6966 8250 2557
P3 25779 7169 12966 2656
P4 34108 7122 17421 2688
P5 43285 7191 22110 2705
P6 51012 7097 25913 2663
P7 58366 6951 29454 2622
P8 66664 6966 33647 2615
VD1 7060 2953 3747 1168
VD2 17084 7135 8461 2609
VD3 27650 11512 13796 4159
VD4 37498 15609 18332 5585
VD5 48014 19947 23789 7160
VD6 58640 24352 28833 8765
VD7 78608 32569 41160 12554
VD8 90532 37469 47942 14814
VD9 102516 42466 53804 16404
VD10 114792 47478 60172 18324
C2.1 92732 40493 41519 2207
C2.2 224830 97869 108674 16949
C2.3 568072 124648 212195 16772
C2.4 150508 66930 49377 6783
C2.5 342128 151504 124061 20017
C2.6 180110 80801 56916 6740
C2.7 418552 187182 146848 22620

Continued on next page
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Table D.2 – continued from previous page

FCNF Heuristic
Instance Continuous var. Integer var. Continuous var. Integer var.
C2.8 264540 120094 87145 7283
C2.9 592750 268722 205652 22221
C2.10 379454 175599 90910 6247
C1.1 88512 25560 41906 4232
C1.2 145620 42088 66676 7027
C1.3 199452 57718 92420 9886
C1.4 256737 74287 119771 12896
C1.5 106332 31083 47040 5279
C1.6 174513 51084 75509 8637
C1.7 239430 70122 102995 12094
C1.8 163644 48822 54048 5283
C1.9 259635 77523 84562 8457
C1.10 362889 108139 119514 12182
*The nodes ran out of memory to create model and start computation
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