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Abstract

The main objective of this thesis is to investigate the risk of interest rate
derivatives. We test the effect on risk from changes in the Norwegian pol-
icy rate using INLA, integrated nested Laplace approximation. INLA is an
established method within statistics but has not been used much in quanti-
tative finance. Studying and evaluating the properties of this framework is
a central part of the thesis. Two INLA models are fitted to the entire period
from January 2005 to May 2022, and the best performing one is fitted to
four subperiods with lengths of approximately two years each. HJM models
are fitted to the same four subperiods, giving a qualitative and quantitative
comparison of INLA and a more established method for measuring financial
risk.

The INLA models give sensible and precise results, with risk measures for
every day of the data set. The high persistence of the models indicates that
the global risk is incorporated in the local risk measurements, which is a
desired property of our time series. Our model does not indicate that the
policy rate changes influence the risk measures, as the information from the
changes seems to be compromised in the derivative prices. We conclude that
INLA is an appropriate and effective framework for modelling financial time
series.
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Sammendrag

Denne masteroppgavens hovedm̊al er å utforske risiko tilknyttet rented-
erivater. Vi tester effekten endringer i den norske styringsrenten har p̊a
risikoen ved å bruke INLA (Integrated Nested Laplace Approximation).
INLA har blitt en etablert metode innen statistikk, men er lite brukt innen
kvantitativ finans. Utforsking og evaluering av rammeverkets egenskaper
utgjør en sentral del av oppgaven. To INLA-modeller er benyttet p̊a perio-
den fra januar 2005 til mai 2022, og den beste modellen av disse er benyttet
p̊a fire underperioder med lengder p̊a omtrent to år hver. HJM-modeller er
benyttet p̊a de samme fire underperiodene for å gi en kvalitativ og kvanti-
tativ sammenligning av INLA og en mer brukt metode for å m̊ale finansiell
risiko.

INLA-modellene gir fornuftige og presise resultater, med risikom̊al for hver
dag i datasettet. Den høye persistensen av modellene indikerer at den globale
risikoen er bakt inn i de lokale risikom̊alene, som er en ønsket egenskap av tid-
srekken vi modellerer. Modellen v̊ar indikerer at endringene i styringsrenten
ikke p̊avirker risikom̊alene, som kan være en konsekvens av at informasjonen
fra endringene allerede er inkorporert i derivatene. Vi konkluderer at INLA
er et nyttig og effektivt rammeverk for modellering av finansielle tidsrekker.
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Chapter 1

Introduction

Mathematical models play an important role in a wide variety of subjects because
of their ability to precisely describe the behaviour of different systems. The field
of economics and finance is one of the subjects where mathematics come in handy
- nowadays investors should have some basic mathematical knowledge to keep up
with their colleagues and competitors. In fact, multiple mathematical disciplines
are used in finance, with some of the most used ones being statistics, numerical
methods and differential equations. These disciplines are often combined and
applied to a dynamical system aiming to describe some financial quantity.

Applied mathematics associated with finance is better known under the term quan-
titative finance. The roots of the field go back to 1900, when Louis Bachelier pub-
lished his PhD thesis Théorie de la spéculation on modelling stock options using
stochastic processes [1]. 73 years later, Fischer Black and Myron Scholes published
the well-known The Pricing of Options and Corporate Liabilities [2], which is now
a cornerstone within quantitative finance.

A person working with quantitative finance typically wishes to do one of the follow-
ing: price derivatives or measure and manage risk in some portfolio. In derivative
pricing the most important tools are partial differential equations combined with
stochastic calculus, as well as different simulation methods. On the other hand,
risk modelling relies heavily on statistics. With new technology, quantitative meth-
ods such as Markov chain Monte Carlo (MCMC) and bootstrapping have replaced
the earlier qualitative methods, yielding much faster and easier analysis. Risk
management is highly relevant for both commercial and savings banks, as well as
for insurance companies. For that reason, it is internationally regulated through
the Basel frameworks of The Bank of International Settlements.

1



2 CHAPTER 1. INTRODUCTION

The outbreak of the Covid-19 pandemic caused abrupt declines in worldwide mar-
kets in March 2020. Norges Bank, the central bank of Norway, reduced its policy
rate to 0% for the first time in history to try to absorb the worst economic shock as
a response to the outbreak. Although the halt in the economy negatively impacted
both people and businesses, it recovered relatively fast because of the expansionary
monetary policy applied by many central banks all around the world. A complex
situation with increasing prices, supply chain issues and lately also Russia’s inva-
sion and the following war in Ukraine has resulted in volatile and uncertain market
conditions in the Spring of 2022. Alarming economic events have happened, and
many are asking if we will soon be facing a new recession.

Because of the late situation, risk measurement and management are highly rele-
vant today. Knowing how to identify and quantify risk is important for all investors
to prevent extreme and fatal losses. Thus, this thesis will be focusing on financial
risk and how to calculate two loss-related risk measures from financial time series.
To do so, we will study a relatively new method within quantitative finance and
see how this method performs compared to more used ones.

Although MCMC methods are much faster than the old, non-computational meth-
ods, the algorithm is relatively slow. INLA, integrated nested Laplace approxima-
tions, was introduced in 2009, as a computationally efficient alternative to MCMC.
As opposed to the simulation-based methods of MCMC, INLA performs approxi-
mate Bayesian inference by making numerical approximations and solving integrals
[3]. Since it was released in 2009, INLA has grown in popularity among statisti-
cians. Despite the fast algorithm and very similar performance to corresponding
MCMC methods [4], it is not yet established within quantitative finance. Only
a few articles are published, most of them focusing on the results of stochastic
volatility models.

The goal of this thesis is to investigate the risk of interest rate derivatives, and to
study how changes in the policy rate influences this risk. For both purposes, we use
the INLA framework to model the stochastic volatility of a bond portfolio. This
volatility is then used to calculate the risk measures value at risk and expected
shortfall of the models, and model selection criteria are used to decide which model
is the most optimal - the one with or the one without the policy rate variable. We
also compare INLA to HJM, a well-known and used method to measure financial
risk.

A possible drawback of a stochastic volatility model in INLA is the distribution.
This model must be either Gaussian, Student-t or normal inverse gamma dis-
tributed, neither of which behave like the typical financial return series. These
returns series are more likely to have skewed distributions, e.g., the lognormal dis-
tribution. However, we know that established methods such as the Heath, Jarrow
& Morton framework also implement Gaussian distributions for their increments
in the return series. Comparing INLA to such a method could result in proposing
a new, more efficient way to perform risk management.
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The risk management methods used today yield the desired results but are compu-
tationally demanding. To run the necessary computations, servers must continu-
ously work on the problems. This requires power and capacity. Thus, reducing the
required capacity by using a more efficient method will also reduce the operating
costs. If INLA proves to be a sufficient alternative to the existing risk measure-
ment methods, banks and other investors could reduce their time and resources
spent on risk management.

This thesis is a continuation of the author’s project thesis, and hence parts of the
theory presented here coincides with that of the project thesis. In particular, the
HJM and HJM related topics are built upon the project thesis work. The new
element of this master thesis is INLA, which will be our main focus.

In Chapter 2, we present basic financial concepts as well as some relevant theory
for this thesis. The basic concepts include time valuation, the efficient market
hypothesis and three models related to the latter. The next part, Section 2.3,
introduces and discusses monetary policy thoroughly. Topics such as the policy
rate, recessions and today’s monetary situation are reviewed. This part focuses
on Norway, but also discusses the international situation. The chapter finishes by
Section 2.4 about interest rates and financial instruments.

Chapter 3 presents relevant background theory from mathematics and the more
specific models used in this thesis. Understanding the fundamental theory of Brow-
nian motion, Itô’s lemma and Bayesian hierarchical models, the reader will have a
good basis for understanding the more specific theory described later. INLA, the
main method of this thesis, is presented in Section 3.5, before we go through the
HJM framework and model selection criteria.

Financial risk, risk management and regulations are the topics of Chapter 4. The
chapter introduces five risk classes and presents the two risk measures we later use
in our analysis; value at risk and expected shortfall. The Basel II and Basel III
frameworks of the Bank of International Settlements are brought up in the final
section of this chapter.

The data, as well as some preliminary analysis, is presented in Chapter 5. We
present the original and transformed interest rate data, descriptive statistics and
introduce the four subperiods we later return to in the analysis. The specific
implementation of the INLA framework relevant for this thesis is described in
Chapter 6.

Chapter 7, Results and Discussion, presents and discusses the analysis of the the-
sis. The section is opened by some fundamental historically measured risk as an
indication of how we expect the results to behave, before we apply the model from
Chapter 6 to our data. Furthermore, we compare the methods and strategies of
INLA and HJM in Section 7.2. Finally, the thesis is concluded in Chapter 8. Here
we also suggest some future work within the topic of this thesis.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Finance

The concept of finance is built up by elements from science as well as from social
sciences. Unlike the natural sciences, such as physics and chemistry, there are no
underlying natural laws in finance; we can easily calculate when a falling feather
will hit the ground, but we cannot know what the stock price of Apple will be
tomorrow. Movements in the financial markets are affected by human emotions
and expectations, as well as financial and non-financial events. Such events and
human behaviour are hard to predict, and thus it is hard to perform controlled
studies to provide new knowledge.

In the following sections, important financial concepts are described. First some
basic concepts are introduced, before monetary policy and relevant financial in-
struments and derivatives are discussed.

2.1 Time Valuation

The concept of time value of money can be described by the statement that one
dollar today is worth more than one dollar tomorrow. There are two main drivers
behind this concept; investment opportunities and time preference, the latter also
called human impatience by the economist Fisher [5]. Time preference refers to
the general preference for present income instead of future income. Some expenses
cannot be postponed until later, and buying less necessary expenses in the future
instead of in the present may be associated with a risk. Even though the investor
has a certain income in ten years, the desired expenses to be invested in may
not be available anymore. For the investment opportunity, assume you could get
$1000 today or in one year. If you choose to receive the money today, you could
invest the amount and earn, say, 9.5%, or 95 dollars on the investment in one
year. Choosing to receive the money in one year from now instead, you lose the
opportunity to make such a profit while waiting to receive the amount.

5



6 CHAPTER 2. FINANCE

Because of the time value of money, we need a way to compare past, present
and future values. Comparing forward in time is called compounding and com-
paring backward in time is called discounting. Interest is compounded according
to some predefined time interval, for example continuously, monthly or annually.
Compounded interest is interest on the principal amount plus the accumulated
interest from previous time intervals, known as interest on interest. If interest is
compounded annually according to a rate r, the value at a time T in the future is
given by

FVT = PV (1 + r)T ,

where FV and PV denote the future and present values, respectively. Oppositely,
discounting a future amount, the present value of a future investment is given by

PV = FVT (1 + r)−T .

If interest is compounded n times per year, the future value is given by

FVT = PV (1 + r/n)nT = PV
(
(1 + r/n)n/r

)rT
.

As n → ∞, (1 + r/n)n/r → e, which gives

FVT = PV · erT ⇐⇒ PV = FVT · e−rT . (2.1)

Moving the terms and taking the logarithm of Equation (2.1), we find that the
logarithmic returns are given by

rT = ln
FVT

PV

from which it can easily be seen that the compound return simplifies to the sum of
the interest rates. For this reason, the logarithmic returns are widely used when
modelling financial time series.
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2.2 Efficient Markets and the Efficient Market

Hypothesis

Fama [6] defines an efficient market as a market where all available information
is fully reflected in the prices. Such prices can be defined mathematically as the
deviation of the expected return from the realised return, that is

ϵj,t+1 =
pj,t+1 − pj,t

pj,t
− E[pj,t+1|Φt]− pj,t

pj,t
=

pj,t+1 − E[pj,t+1|Φt]

pj,t
.

Here ϵ denotes the excess returns, p is the price, Φt is the information set at time
t and j is the asset index. Using this definition, Fama introduced three models for
market efficiency; the fair game, submartingale and random walk models.

The Fair Game model states that the information set Φt cannot be used to
generate positive excess returns. Equivalently,

E[ϵj,t+1|Φt] = 0.

This model relies on the assumption that the market equilibrium can in fact be
modelled by expected returns where the equilibrium is fully reflected in the infor-
mation set.

In the Submartingale model, the price follows a submartingale. That is, at
time t+1, the conditional expectation of the price depends only on the history Φt,
and is equal to or larger than the price at time t. For all times t and information
sets Φt,

E[pj,t+1|Φt] ≥ pj,t. (2.2)

If Equation (2.2) is an equality, the process is called a martingale. However,
the prices are expected to increase over time with the expected return, giving a
higher expectation than the previously observed price. Thus, the price will follow
a submartingale, while the properly discounted expected price will be a martingale
[7].

Finally, the Random Walk model is a more thorough model, specifying all
moments of the distribution of ϵ. The former two models only specify the ex-
pected value, which is the first moment. In the random walk model, the returns
are assumed to be independently and identically distributed, and the process has
the Markov property. Formally, these assumptions imply that the marginal and
conditional distributions of the returns rj,t+1 are equal,

f(rj,t+1|Φt) = f(rj,t+1),

where f(·) denotes the probability distribution function.



8 CHAPTER 2. FINANCE

Market efficiency may be categorised in three groups, depending on the type of
information reflected in the current prices. The three categories of the efficient
market hypothesis are:

• Weak form: All historical prices are fully reflected.

• Semi-strong form: All historical prices, including publicly available infor-
mation, are fully reflected.

• Strong form: All information, including public and private/inside informa-
tion, is reflected.

An important concept related to efficient markets, is the no-arbitrage condition.
Arbitrage is simultaneously buying and selling financial instruments in two (or
more) different markets to make a profit [8]. Since the action is instantaneous,
there is no associated risk, and thus the no-arbitrage condition states that making
an instantaneous risk-free profit is impossible. Later, we will see that this condition
is frequently used as an argument when modelling prices of financial instruments.

2.3 Monetary Policy

Monetary policy refers to the available tools of central banks to regulate the econ-
omy, and more specifically the amount of money, of its country. The implemented
monetary policy may vary from country to country, depending on the economic
foundation and situation. Examples of such tools and instruments are policy rates,
(open) market operations and reserve requirements, among others. This thesis will
mainly focus on the monetary policy of Norway and the Norwegian central bank.

Within monetary policy, the main objective of Norges Bank is to maintain financial
stability through a low and stable inflation, as well as a high and stable production
and employment rate. Multiple other central banks share this objective. In Nor-
way, the purpose of the central bank is enshrined in paragraph 1-2 in the Central
Bank Act [9] and in the Regulation on Monetary Policy. By paragraph 3 in the
latter, the operational target is an inflation close to 2% over time [10], where the
inflation is measured by the consumer price index (CPI). This target is shared by
the majority of Norway’s main trading partners [11].

A low and stable inflation is desired as a too high inflation progressively will make
the monetary value unpredictable [12]. In addition, the probability of occurrence of
significantly serious economic costs caused by price variations will be much higher
in an instable economic growth. On the other hand, zero inflation will typically
cause a halt in the demand, resulting in a low or even declining wage growth. In
the long term, this brings the economy itself to a halt, similar to what happens
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during a deflation. Deflation is associated with falling prices, resulting in a lower
economic activity, lower wages and a higher unemployment rate. As opposed to
during an inflation, where central banks can increase the policy rate to simulate
the economy, deflations are harder to influence for the central banks. Lowering
the policy rate far beyond zero is not desired during a deflation, as the tendency
among consumers is then to save rather than invest, hoping that the monetary
value will soon increase. The combination of low interest rates and high savings
rates yielding ineffectiveness in the monetary policy is known as a liquidity trap
[13].

In order to steer the inflation towards the desired level, Norges Bank sets the policy
rate eight times yearly. Depending on the current situation and expected events,
the policy rate may be raised, reduced or remain unchanged. For almost 20 years,
the policy rate has never been increased by more than 25 basis points at once.
On the other hand, reductions in the rate have been of the same size in calmer
market situations, and of larger amplitudes in more turbulent financial periods
[14]. Increasing the policy rate is an instrument used to slow down the economy,
making it less attractive to spend and more attractive to save money, known as a
contractionary monetary policy. On the other hand, reducing the rates, a tool of
expansionary monetary policy, is used to increase spending and boost the economy.

2.3.1 Channels

The policy rate does not directly affect the population; it does so through different
channels. In particular, the policy rate is the rate on overnight deposits in Norges
Bank for Norwegian banks up to a given amount [15], and how the banks choose
to react to the policy rate changes is of higher importance for the population than
the actual changes. The banks’ reaction does not solely depend on the level of
the policy rate; in general, market conditions are typically just as important. To
understand how the policy rate impacts the economy, some knowledge regarding
the mechanism of two other interest rates is required.

If a bank’s overnight deposit in Norges Bank exceeds the given amount of the
policy rate, the bank receives the reserve rate [16] on this exceeding amount.
This rate is typically 100 basis points lower than the policy rate, and thus the
bank will aim to avoid exceeding the policy rate quota. If the bank instead has a
negative balance in Norges Bank at the end of the day, it has to pay the D-loan
rate so that the overnight balance is zero. The D-loan rate is typically 100 basis
points above the policy rate.
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Consequently, the banks will try to ensure that their overnight deposits in Norges
Bank is within the specified amount, as well as above zero. If this is not the case,
they typically borrow or lend among other banks at the overnight rate, a rate close
to the policy rate. In this way, a bank exceeding the quota will receive a higher
rate on the exceeding amount, while a bank with a negative deposit at the end
of the day will have to pay a lower rate to obtain the desired zero balance. The
reserve rate has been negative since March 2020, emphasising why the banks wish
to participate in the overnight redistribution.

As mentioned, the policy rate affects the population and the general economy
through different channels. In Norway, there are three main channels [17]:

• The demand channel: When the policy rate is changed, the demand levels
will often move in the opposite direction as soon as the market has adjusted
to the change. Thus, the effect of changes through the demand channel
will be a lower or higher inflation for an increased or decreased policy rate,
respectively.

• The foreign exchange channel: Consumers, both individuals and com-
panies, are influenced by the exchange rate when buying or selling abroad.
If the Norwegian policy rate is changed while the rates abroad stay fixed,
the value of the Norwegian krone may change in the same direction as the
policy rate change. An increased policy rate simultaneously lowers import
prices and decreases the export, the latter resulting in a lower demand in
the export sector. The foreign exchange channel thus works by changing the
import prices and the demand from abroad trading partners.

• The expectations channel: The final channel is closely related to wages
and prices on goods and services. Wages must follow the general inflation
for the employees to maintain their habits - which they typically wish to do
- and so the expectation of higher inflation may lead to higher inflation.

2.3.2 Recessions

For many years, the international macroeconomic trend has been positive and in-
creasing. However, larger economic declines have occurred along the way, affecting
entire economies. Such a decline is known as a recession, a significant negative fluc-
tuation with a duration of multiple months as defined by the National Bureau of
Economic Research [18]. There are many theories of what causes a recession, where
economic, financial and psychological factors are some of the recurring keywords.
The global Financial Crisis of 2007-2009 is an example of a recession caused by
financial factors. A series of events related to financial regulations created a per-
fect storm in the US housing market, causing severe subprime mortgage problems
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in banks and hedge funds [19]. On the other hand, global events such as the out-
break of the Covid-19 pandemic in 2020 may also cause recessions. The lockdowns
across numerous countries worldwide caused a halt in the economic activity, which
combined with the uncertainty about the future caused a recession.

Predicting when a recession will hit is difficult. Recessions have only occurred a
certain number of times in our available historical data, and the general market
conditions in the time leading up to these recessions have varied. This makes
it hard to build a precise predictive model. In addition, the market itself has
changed over the years. However, certain variables seem to be able to indicate
an upcoming recession - for example yield curve inversion, typically represented
by a negative spread between a longer and a shorter yield. From 1970 to 2018, a
negative term spread of the U.S. ten-year minus three-month yield always occurred
before a recession [20]. D. S. Miller of FED concludes in a FED Note that there
is no single best predictor of the different term spreads [21]. The best spread will
vary from one situation to another, but Miller states that in general, the principal
components model of Johansson and Meldrum [20] is the most accurate one.

Low interest rate environments can cause investors and other market participants
to take a higher risk, as borrowing money is cheaper. When more people can afford
to buy goods, services and housing, prices are pushed up. Certain prices may
experience an abrupt growth, for instance housing or electricity prices. Combined
with a low rate, this causes high debt in households, which again causes a higher
sensitivity to lost income. Once interest rates rise as the central bank increases
the policy rate to steer towards the inflation target, households with a high debt-
to-income ratio are at especially high risk. Besides the risk of the term amount
of the mortgage increasing with a higher interest rate, lower income or decreasing
housing prices may be critical for high debt households. Because of this, a low-rate
environment is not desirable over time. The propagation of an issue in a smaller
part of the market can cause the market in total to collapse, as seen in the global
Financial Crisis.

Market declines have their natural place in all business cycles; a market cannot
grow uninterrupted forever. The actions of the central bank can play an essential
role in navigating out of a recession without causing too much harm to businesses
and households. Learning from previous declines and recessions, central banks
and monetary organisations work both independently and internationally to con-
stantly develop new tools and frameworks to attenuate the consequences of future
recessions. For instance, the global Financial Crisis revealed a need for better risk
management in banks. An extension to the existing framework was published and
agreed to already by 2010. An example of how a central bank can dampen the
impact and duration of a recession besides lowering the policy rate, is to purchase
Treasury securities. This was done by the FED in the US during the Covid-19
pandemic, to ensure that the cash flow would not be too low for the markets to
function [22]. Risk management is discussed in closer detail in Section 4.2.
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2.3.3 Today’s Monetary Situation

In the wake of the financial crisis of 2008-2009, policy rates in most western coun-
tries have been relatively low compared to historical levels. For instance, the
Norwegian policy rate has not exceeded 2% since 2011 [14], and as of May 2022,
the policy rate is 0.75%. Like the majority of other countries, the outbreak of
the coronavirus in the first quarter of 2020 had a great impact on the Norwegian
economy. Interest rates fell abruptly, unemployment rates rose, and companies of
all sizes had to get governmental funding to avoid bankruptcy. From March 2020
until the lifting of the final restrictions in the first quarter of 2022, the trend of the
economic activity has been correlated to the degree of national restrictions [23].

As a consequence of the pandemic, multiple industries experienced supply and
shipping challenges leading to increased commodity prices. Combined with ex-
pensive electricity, this resulted in a higher inflation. In April 2022, the CPI was
5.4% while the adjusted CPI, CPI-ATE, was 2.6% [24], a little bit above the in-
flation target of 2%. Especially transportation, electricity and consumer goods
contributed to the high CPI. To slow the economy, the policy rate is thus expected
to increase steadily in the coming years, and the central bank has implemented a
contractionary monetary policy. The Committee expects a policy rate of 2.5% by
the end of 2023 [25].

In Norway, the low-rate economy has been particularly visible in the housing mar-
ket, as it has enabled more people to apply for, and get, a mortgage. Housing
prices have steadily increased as a result of the increasing demand, and in 2021
the housing price index for existing housing of Norway was 7.1% [26], compared to
the CPI that increased by 5.3% in the same period [24]. The result of the growing
debt combined with rising interest rates may be a noticeable, and even problem-
atic, decrease in the personal finance for those with large mortgages relative to
their income and assets. A research conducted by Finanstilsynet in 2021 found
that the total debt-to-income ratio was above 400% for 47% of all new loans [27].
This number is close to the maximal debt-to-income ratio of 500%, and the level is
high compared to historical numbers. If the wages do not increase when the policy
rate increases, many young homeowners may face tighter economic times ahead.

A high inflation is not exclusive for Norway - in fact, multiple countries experience
an even higher inflation than 5.4%. For instance, in March 2022, the inflation rate
in the USA was 8.5%, a level it has not reached since 1981 [28]. As a result of this,
the Federal Reserve increased the policy rate by 0.5 percentage points for the first
time since 2000 in May 2022 [29]. It was questioned whether the increase would
be as large as 75 basis points, but the Federal Reserve did not find it necessary;
however, more 50 basis points increases are expected in the upcoming time.

Russia’s invasion of Ukraine and the following war has exaggerated the effect
of rising prices; usually, both Russia and Ukraine are important international
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suppliers of essential goods, such as oil and wheat. The International Monetary
Fund states in their World Economic Output report of April 2022 that certain
supply chains will experience issues until 2023, yielding a higher expected inflation
for the next years [30]. The same report concludes that central banks should closely
follow the economic situation and take the necessary actions in time. Focusing on
the long-term economy in addition to absorbing the impact of the war in Ukraine
will be important for the countries as well as their residents in the upcoming
months.

2.4 Interest Rates and Financial Instruments

In the modern society, we all get in touch with interest rates at some point in our
lives. Our bank may pay us interest on our bank deposits, and when we repay
our mortgage loan, we usually pay more than the originally borrowed amount.
The interest rate is the additional fraction of the principal amount the borrower
must pay the lender per time unit - essentially it is a charge for using the lender’s
assets. Oppositely, for the lender, the interest rate equals the rate of return. The
lender’s interest is of course to regain his or her assets from the borrower, so
a borrower that is considered riskier will have to pay more interest than a less
risky borrower. Furthermore, loans with longer maturities usually have a higher
interest rate because of the potential risks taken. In addition to the baseline risk,
potential losses can occur from not investing the lent amount in a possibly higher
profit yielding investment.

Unlike stocks, we cannot buy interest rates; this makes modelling interest rates
and pricing instruments technically harder as we have no underlying asset to hedge
with. In addition, the relationship between interest rates of different maturities
must be considered when modelling the rates. This must be done in a sensible
manner, such that the fundamental properties of interest rates are maintained.
For instance, when we model forward rates, compounded one-year rates up to five
years in the future should not be lower than the five-year rate; if that was the case,
nobody would have chosen the five-year interest rate on their loan.

Most interest rates are compounded according to some predefined time interval, for
example continuously, monthly or annually. The compound interest is interest on
the principal amount plus the accumulated interest from previous time intervals -
or simply just interest on interest. If interest is compounded annually, the growth
factor of an investment is

(1 + rd)
T−t, (2.3)

where rd is a discretely compounded interest rate and T − t is the time interval
for the growth, here given in years.
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Financial instruments are contracts holding a monetary value. Instruments can
be based on both equity and debt, where stock options are equity-based, and
interest rate swaps are debt-based examples. Furthermore, financial instruments
are typically divided into two groups; cash and derivative instruments [31]. In this
thesis, we will focus on derivatives, whose value is dependent on some underlying
quantity. Specifically, we will model a portfolio of bonds.

A bond is a contract yielding a known amount, the par value, to the holder at
maturity. Furthermore, it may also pay coupons at fixed times during the lifetime
of the contract. It is a security typically issued by governments, municipalities
or big companies to finance projects, and can be thought of as a loan where the
investor is the lender, and the issuer is the borrower[8]. The value to be paid back
to the lender at maturity is called the par or face value. Coupon payments can be
paid at fixed times according to a fixed or a floating rate, or not paid at all - if so,
the bond is said to be a zero-coupon bond.

For simplicity, we use zero-coupon bonds when we model the interest rates in this
thesis. The price of an annually compounded zero-coupon bond Z(t, T ) with face
value 1 is the inverse of the growth factor given in Equation (2.3),

Z(t, T ) = (1 + rd)
−(T−t), (2.4)

where t is the time at which the zero-coupon bond is priced and T is the maturity.

Finally, we present two central concepts of the thesis:

Definition 1 (Yield curve). The yield curve Y (t) shows the yield, i.e., the interest
rate, for a financial instrument as a function of different available maturities at
time t.

Different shapes of the yield curve, such as increasing, flat or inverted, have dif-
ferent macroeconomic implications. Some examples of different yield curves are
presented and discussed in Chapter 5.

Definition 2 (Forward rate). The forward rate f(t, T ) is the future interest rate
on a bond investment starting at some specified time in the future, calculated from
today’s yield curve.

The zero-coupon bond price in Equation (2.4) can also be expressed in terms of
the forward rate,

Z(t, T ) = exp
{
−
∫ T

t

f(t, s)ds
}
, (2.5)

from which it directly follows that the forward rate can be expressed by the zero-
coupon bond price by the equation

f(t, T ) = − ∂

∂T
logZ(t, T ). (2.6)



Chapter 3

Theory and Models

Quantitative finance makes use of multiple mathematical concepts, such as stochas-
tic differential equations, numerical mathematics and statistics. This chapter
starts by presenting Brownian motion and Itô’s lemma, two cornerstones in fi-
nancial mathematics. Then we discuss the related Bayesian hierarchical models
and Monte Carlo methods, as well as INLA, a special case of a Bayesian model
and an alternative to Monte Carlo methods. Finally, we present a more widely
used method for modelling interest rates and some preliminary theory for this
model; the Heath, Jarrow & Morton framework and principal component analysis,
respectively.

3.1 Brownian Motion

Brownian motion, better known as the Wiener process in mathematics, is a con-
tinuous stochastic process that in finance is used for its prominent representation
of random processes in modelling of both stocks and stochastic interest rates.
Mathematically, the following properties describe a Wiener process [32]:

Definition 3 (Wiener Process). Let W be a Wiener process. Then

1. W0 = 0.

2. For t > 0, the increments Wt+1 −Wt are independent of all past values.

3. The increments of W are Gaussian, i.e., for t, τ ≥ 0, Wt+τ −Wt is normally
distributed with mean 0 and variance τ .

4. The paths of W are continuous, but nowhere differentiable.

15
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In practice, Definition 3 yields some important properties for the modelled quantity
[33]. The Brownian motion in quantitative models will be Markovian, that is
Wt+1 will be independent of all past values except for the present value Wt, and
the martingale property holds, i.e., E[Wt|τ < t] = Wτ . Furthermore, since the
Brownian motion is a random walk, we have almost surely quadratic variation,

n∑
i=1

(Wti −Wti−1
)2 → t,

when the full time interval [0, t] is partitioned into n+1 parts ti =
it
n
, and n → ∞.

The chosen scaling of the increment by the square root of the time increment
ensures that the model is finite; any other choice of the scaling factor would either
blow up the model or make it converge to a limit yielding no motion [8].

3.2 Itô’s Lemma

Itô’s Lemma is the stochastic variable equivalent to Taylor’s theorem in classical
calculus, and it plays a highly important role in quantitative finance as we need
a way to study the evolution of stochastic processes. Examples of use include
derivation of the famous Black-Scholes model, pricing of derivatives and market
risk management.

Theorem 1 (Itô’s Lemma). Assume that f(S, t) is a smooth function of the
stochastic process S and time t, and that S satisfies

dS = µSdt+ σSdX,

where dX is a Wiener process and µ and σ are the mean and volatility, respectively,
of the process. Then, if dX2 → dt as dt → 0 with probability 1, and (dt)2 = 0,

df =
∂f

∂S
(σSdX + µSdt) +

1

2
σ2S2 ∂

2f

∂S2
dt

= σS
∂f

∂S
dX +

(
µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
+

∂f

∂t

)
dt

For a derivation of Itô’s lemma in a quantitative financial setting the reader is
referred to Wilmott [8]; or, for a more general derivation and proof, to the original
by Itô [34].
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3.3 Bayesian Hierarchical models

Hierarchical modelling is used for multilevel statistical models where the observa-
tions are clustered in groups sharing some properties. In this thesis, the Bayesian
method is preferred over the frequentist method because of its ability to account
for uncertainty, as well as providing interesting information about the parameters
and their intervals [35].

As opposed to the controlled experiments of frequentists, the Bayesian method
makes an assumption about the likelihood and combines it with a prior distribution
to find the posterior distribution by using Bayes’ theorem:

Theorem 2 (Bayes’ theorem). Let A and B be two events with P (B) ̸= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

Here P (·|·) denotes a conditional probability, where the first event is conditional
on the second.

In the Bayesian setting, we assume that θ is a vector of unknown parameters and
y is the vector of observations. Note that elements of θ are not only parameters,
but also stochastic variables. Then P (y) and P (θ) are the priors and

P (θ|y) = P (y|θ)P (θ)

P (y)

is the posterior we wish to find. As the denominator does not depend on θ, our
quantity of interest, we simplify calculations by finding the proportional instead;

P (θ|y) ∝ P (y|θ)× P (θ)

Posterior ∝ Likelihood× Prior
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3.4 Monte Carlo Integration and Markov Chain

Monte Carlo

In finance, Monte Carlo methods are used in two different settings; to explore
properties in order to find quantities of interest, and to find the value of derivatives.
Modelling financial models as random walks and simulating a large number of
scenarios allow us to estimate interesting quantities such as value at risk from the
simulated data [36].

The idea behind Monte Carlo integration is to simulate n random draws X1, X2,
. . . , Xn from the target distribution f to estimate the value of an integral. From
basic statistical theory, the expectation of a function h of a random variable X,
where f is the density of X, is given by

µ = E[h(X)] =

∫
h(X)f(X)dX.

In many cases, this integral is not analytically tractable. As an alternative to
numerical approximation, the mean µ may be estimated by simulation. Now, let
E[h(X)] = µ, and let X1, . . . ,Xn be independent and identically distributed ran-
dom samples from our target distribution f . By the strong law of large numbers,
the Monte Carlo estimate of µ is simply the average of the sample:

µ̂MC =
1

n

n∑
i=1

h(Xi).

The variance of this estimator is given by

Ŝ2 =
1

n− 1

n∑
i=1

[h(Xi)− µ̂MC ],

and by the central limit theorem, the distribution of µ̂MC converges to a normal
distribution when n → ∞. The convergence rate is relatively slow, O(n−1/2) [37].

When dealing with high-dimensional or complex distributions, Markov chain Monte
Carlo (MCMC) is a popular choice. Introducing a Markov chain to the Monte
Carlo integration, we get a process converging to the target distribution f so that
we can perform inference for this distribution. The Markov chain is a stochastic
process satisfying the Markov property, like the Brownian motion in Chapter 3.1
- which is, in fact, a special case of a Markov chain.

Using MCMC, we can perform inference for the distribution of interest by sam-
pling non-uniform distributions. Compared to similar approaches, increased di-
mensionality in an MCMC algorithm does not change the speed of convergence.
Multiple MCMC algorithms exist, with some of the most popular ones being the
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Metropolis-Hastings algorithm and the Gibbs sampler. Before taking a closer look
at Metropolis-Hastings to understand the mechanisms of a MCMC algorithm, we
need to introduce two concepts [37].

Theorem 3 (Unique Limiting Distribution). If the Markov chain is irreducible,
aperiodic and positive recurrent, it has a unique limiting distribution f(x). For a
state space S, the limiting distribution is given by

f(y) =
∑
x∈S

f(x)P (y|x) ∀y ∈ S∑
x∈S

f(x) = 1

Definition 4 (The detailed balance condition). The detailed balance condition is
a sufficient condition for Theorem 3:

f(x)P (y|x) = f(y)P (x|y) ∀x, y ∈ S.

If this condition is satisfied, the Markov chain is time reversible.

The majority of all MCMC algorithms use reversible Markov chains, i.e., processes
that satisfy the definition and theorem above. We now take a closer look at the
Metropolis-Hastings algorithm, which in short can be described as follows:

1. Draw the initial state x0 = g(x0) such that f(x0) > 0.

2. Generate a proposal X∗ from the proposal distribution g(·|xt).

3. Draw u ∼ Unif(0, 1).

4. Calculate the acceptance probability α = min
{
1, f(y)g(xt|y)

f(xt)g(y|xt)

}
5. If u < α : Xt+1 = X∗; otherwise Xt+1 = xt.

6. Increment t and repeat steps 2-6 until the desired amount of iterations, n, is
performed.

The number of iterations n is chosen such that the Markov chain will have time to
converge to the stationary distribution, and typical choices are n > 1000. Depend-
ing on the proposal distribution g, we usually discard the m first samples, called
the burn-in period, to get rid of irrelevant effects of the initial proposal. If running
a single simulation, the easiest way to find m is by plotting the Markov chain and
locating where the process stabilises. For more details on the Metropolis-Hastings
algorithm, the reader is referred to Givens & Hoeting [37].



20 CHAPTER 3. THEORY AND MODELS

3.5 Integrated Nested Laplace Approximation

Integrated nested Laplace approximation (INLA) is an alternative to Markov chain
Monte Carlo for performing Bayesian inference. Instead of using the rather slow
MCMC sampling methods to inference, INLA is based on Laplace approximations
and numerical integration, yielding a computationally fast and flexible approach.
Before the INLA approach was developed, Gaussian approximation-based propos-
als were popular to try to reduce the runtime of the MCMC algorithms. However,
even the fastest samplers were slow; and so, the idea of inference using closed form
Gaussian approximations arose, leading to the INLA framework.

INLA can be applied to a broad field of models, including almost all types of hier-
archical Bayesian models. The common property of these models is the structure
of the latent field. This field must be a Gaussian Markov random field (GMRF):

Definition 5 (Gaussian Markov random field). A GMRF x ∼ N(µ, σ),
x = (x1, . . . , xn) is a Gaussian random variable that satisfies the Markov property,
that is

P (xi|{xj : j ̸= i}) = P (xi|{xj : j ∈ Ni})
where Ni are the neighbours of a point xi. The Markov property is encoded in the
precision matrix Q = Σ−1 with entries Qij = 0 ⇐⇒ j ̸∈ {i,Ni} [3].

The first stage of an INLA model consists of the observations y, assumed to be
conditionally independent given the latent field x and possibly some parameters
θ1,

y|x,θ1 ∼
∏
i

π(yi|xi,θ1),

where i = 1, . . . , n and n is the number of variables in the latent field.

The unobserved process makes up the second stage of the model, and this latent
model is assumed to be a GMRF with a sparse precision matrix Q = Σ−1. This
field can be large, with up to 106 dimensions, and is on the form

x|θ2 ∼ N (0,Q(θ2)
−1),

where N (·, ·) denotes the Gaussian distribution. The sparsity of the inverse covari-
ance matrix is an essential part of the INLA method, as it enables using efficient
sparse-matrix calculations instead of standard dense-matrix calculations.

Finally, the third stage consists of the hyperparameters of the likelihood and the
precision parameter of the GMRF. This corresponds to the prior distribution of
θ = (θ1,θ2). The number of hyperparameters j should be small; j ≤ 9 [38].

Using Bayes’ theorem given in Equation (3.1), we find that the posterior distribu-
tion is given by

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i

π(yi|xi,θ).
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However, this is not the main quantity of interest when using INLA. Instead, we
wish to approximate the posterior marginals of the hyperparameters and the latent
Gaussian variables, i.e., π(θj|y) and π(xi|y) for i = 1, . . . , n, respectively. Again,
using Bayes’ theorem, we find these to be given by

π(θj|y) =
∫
θ−j

∫
x

π(x,θ|y)dxdθ−j =

∫
θ−j

π(θ|y)dθ−j (3.2)

and

π(xi|y) =
∫
θ

∫
x−i

π(x,θ|y)dx−idθ =

∫
θ

π(xi,θ|y)dθ

=

∫
θ

π(xi|θ,y)π(θ|y)dθ
(3.3)

The posterior marginals are found by approximating each of the components in
the integrals, and then integrating out the remaining variables not of interest. In
Equation (3.3), the approximation is

π̂(θ|y) ∝ π(x,θ,y)

π̂G(x|θ,y)

∣∣∣∣
x=x∗(θ)

(3.4)

where the normalising constant is neglected, and π̂G(x|θ,y) is the Gaussian ap-
proximation of the full conditional of x. x∗(θ) is the mode of this full conditional,
given a θ. The reader is referred to Chopin, Martino and Rue [3] for the full details
of deriving the expression. We note that the numerator is simple to compute, while
the denominator is more complex and expensive. For each value θk, a Cholesky
decomposition is used to compute the precision matrix Q(θk). It is possible to
find the posterior marginals π̂(θj|y) by numerically integrating Equation (3.4).
However, doing so by using the quantities already found while deriving Equation
(3.4), the process is much less computationally demanding.

When the hyperparameters θ are estimated, we can find π̂(xi|θ,y). The ap-
proximation can be performed in multiple ways. The Laplace approximation is
preferred for its accuracy, but with the high accuracy, an expensive computational
cost follows. To significantly reduce the cost, while still being more accurate than
the simplest methods, a simplified Laplace approximation is chosen for the anal-
ysis in this thesis. The simplified Laplace is also the default strategy used in the
R-package of INLA [39], and the approximation is based on

π̂LA(xi|θ,y) ∝
π(x,θ,y)

π̂GG(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗−i(xi,θ)

where π̂GG is a different Gaussian approximation than the one used in Equation
(3.4), and x∗

−i(xi,θ) is the corresponding modal configuration. Although x is a
sparse matrix, the expression is very expensive to evaluate. Hence, the approxima-
tion is simplified by combing elements of the above equation and a plain Gaussian
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approximation. In particular, the simplified Laplace computes the Taylor series
around the Laplace node, correcting the issues of the location and skew of the
Gaussian approximation [39]. Finally, the integral in Equation (3.3) is solved by
a numerical scheme.

3.6 Principal Component Analysis and Singular

Value Decomposition

Principal component analysis (PCA) is a technique that transforms a set of pos-
sibly correlated variables to another set of linearly independent variables through
an orthogonal transformation. The transformation is done in such a manner that
the first principal components explain the most variance, which is why PCA is
mainly used to reduce the number of dimensions in complex models.

Let X be a standardised and centralised (m× n) matrix, where m is the number
of samples and n is the number of variables in our original data set, and denote
the associated covariance matrix by Cov[X] = Σ. Then Σ is a square (n×n) and
positive semi-definite matrix which can be diagonalized by

Σ = V ΛV −1,

where the columns of V are the eigenvectors and Λ = Diag{λ1, . . . , λn} is a
diagonal matrix which elements are the eigenvalues ofΣ. The eigenvectors are then
the principal directions, and the corresponding eigenvalues are sorted in descending
order where the highest eigenvalue explains the most variance.

The eigenvector corresponding to the highest eigenvalue will point in the direction
explaining the most variance, i.e., the most important direction of the data. We can
then reduce the dimension of the data from n dimensions to p, p < n, depending on
how much explained variance we wish to keep in our model. The more correlated
the original variables are, the fewer principal components are needed to explain
a larger proportion of the variance. Multiple different methods exist for choosing
the exact number of principal components to include in the model, but quite
a few of these are ad hoc, without a formal justification. An example of such
a method is visualising the principal components and choosing those who, from
visual inspection, capture certain properties of the curve. Regardless of the missing
formalities, this method has shown to be quite plausible and work well in practice
[40].

The traditional PCA method where we decompose the covariance matrix is not
optimal in all situations. In terms of numerical accuracy, singular value decom-
position (SVD) is preferred because it extracts data in the highest variance direc-
tions compared to PCA which is quite simply a linear transformation of the data
[40]. Let X be as above. Instead of finding the covariance matrix, we now find
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the eigenvectors and eigenvalues of XXT and XTX, matrices which both carry
some pleasant properties; independent of the structure of X they are symmetrical,
square, of the same rank asX, and either positive semi-definite or positive-definite.
From these matrices, the SVD is given by

X = USV T .

Here U , with dimension (m×m), and V , with dimension (n× n), are found from
the orthonormal eigenvectors from XXT and XTX, respectively. Both U and V
are thus invertible and orthogonal matrices, the latter meaning that UTU = Im×m

and V TV = In×n. S is a diagonal (m × n) matrix where the upper square is a
diagonal matrix which elements are the singular values, i.e., Diag{σ1, . . . , σn},
where σi = λ2

i .

Using the SVD results to perform PCA, we follow the procedure described for
the traditional PCA. However, the columns of V are now the principal directions,
while XV = USV TV = US are the principal components and the eigenvalues
are as mentioned above. When m ≫ n, U and S are quite large - however,
computer software usually deals with possible issues caused by this.

3.7 The Heath, Jarrow & Morton Framework

The Heath, Jarrow & Morton (HJM) framework is used for forward rate modelling.
Instead of the classical derivation of the forward curves from short rate models,
the concept of HJM is to model the evolution of the whole forward curve, denoted
by f(t, T ) at time t where T is the maturity. Yield curve fitting is contained in
the model as there is an explicit relation between the yield and forward curves.

Under the HJM framework, the modelled quantity may take negative values. Ear-
lier this was regarded as a disadvantage; however, policy rates have now taken on
negative values, such as at the European Central Bank where the rate was lowered
from 0% to −0.10% in June 2014 [41].

As we wish to model both short and long forward rates, we follow the multi-factor
HJM framework with d sources of randomness. From Equation (2.5) and Equation
(2.6) in the previous chapter, we found the relationship between the zero-coupon
bond price Z and the forward rate f to be given by

Z(t, T ) = exp
{
−
∫ T

t

f(t, s)ds
}

⇐⇒ f(t, T ) = − ∂

∂T
logZ(t, T ).
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Furthermore, we assume that changes in zero-coupon bonds are on the form

dZ(t, T ) = µ(t, T )Z(t, T )dt+ σT (t, T )Z(t, T )dW , (3.5)

where σ is a (1×d) vector of the volatility factors andW is a d-dimensional Wiener
process. Combining Equation (2.6) and Equation (3.5), and differentiating with
respect to t, the forward curve evolves according to the differential equation

df(t, T ) =
∂

∂T

(1
2
σT (t, T )σ(t, T )− µ(t, T )

)
dt− ∂

∂T
σT (t, T )dW . (3.6)

The two dt-terms, which are deterministic, express the drift in terms of volatility of
the curves and in terms of the bond, respectively. We denote the factor associated
with the random component dW by ν(t, T ),

ν(t, T ) = − ∂

∂T
σ(t, T ), (3.7)

which is the forward rate volatility function. The k’th volatility factor is given by

νk(t, T ) =
√
λkuk, (3.8)

where λk is the k’th eigenvalue and uk is the k’th eigenvector, for k = 1, . . . , d.

An important assumption in the HJM framework is the no-arbitrage argument.
Derivatives must be priced in risk-neutral settings to avoid arbitrage opportunities,
which corresponds to µ(t, T ) = r(t). The interested reader is referred to Heath,
Jarrow and Morton [42] for the derivation and proof of this statement. In the limit
the spot rate r(t) equals f(t, t), the forward rate with maturity today, and thus
∂
∂T

µ(t, T ) = 0. The forward rate drift is then related to the volatility by

m(t, T ) =
∂

∂T

(1
2
σT (t, T )σ(t, T )− µ(t, T )

)
= νT (t, T )

∫ T

t

ν(t, s)ds. (3.9)

Inserting Equations (3.7) and (3.9) into (3.6), we obtain the stochastic differential
equation

df(t, T ) =

(
νT (t, T )

∫ T

t

ν(t, s)ds

)
dt+ νT (t, T )dW , (3.10)

which models the evolution of the forward rate curves in the multi-factor HJM
framework.

Using HJM to price derivatives, we first model Equation (3.10) for a given amount
of days, e.g., 252 days, which corresponds to one trading year. Then, the desired
derivative is priced from the single simulation, and the process is repeated n times
to obtain a sample from which the mean is the resulting price of the derivative.
If we wish to investigate the price in closer detail, we repeat the whole process m
times to obtain a distribution.
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3.7.1 Discretisation of the HJM model

In most cases, exact simulation of the HJM model is impossible; only a few choices
of σ(t, T ) allows exact simulation of Equation (3.10). In general, we must discretise
the model in both arguments t and T of f(t, T ). The discretisation presented in
this section follows the arguments of Glasserman [43].

We discretise the first argument t on the time grid 0 = t0 < t1 < · · · < tM . In
general, the complete forward curve f(ti, T ) cannot be represented for a fixed time
ti, ti ≤ T , and thus the maturity grid also needs to be discretised. To simplify
notation, which can here be done nearly without loss of generality, we let the
discretisation of T be the same as the one for t.

In the further analysis, discrete variables are denoted with a hat to distinguish
from their continuous equivalents; f̂(ti, tj) denotes the discretised forward rate at
time ti with maturity tj for i ≤ j. The discrete version of the zero-coupon bond
price is then on the form

Ẑ(ti, tj) = exp

{
−

j−1∑
l=1

f̂(ti, tl)[tl+1 − tl]

}
. (3.11)

Discretising a model yields a discretisation error. To avoid the introduced error to
be larger than necessary, we let Ẑ(0, tj) = Z(0, tj) for all maturities tj. Combining
Equations (2.5) and (3.11), we obtain

j−1∑
l=0

f̂(0, tl)[tl+1 − tl] =

∫ tj

0

f(0, s)ds,

that is,

f̂(0, tl) =
1

tl+1 − tl

∫ tl+1

tl

f(0, u)du ∀ l = 0, . . .M − 1

which corresponds to each f̂(0, tl) being the average level of the continuous forward
rate f(0, T ) on the interval [tl, tl+1]. The discretised evolution of the forward curve
is thus

f̂(ti, tj) =f̂(ti−1, tj) + µ̂(ti−1, tj)[ti − ti−1]+√
ti − ti−1ν̂(ti−1, tj)Zi

(3.12)

for i, j = 1, . . . ,M , where Z1, . . . ,ZM are independent standard normal d-variate
variables.

The discretised risk µ̂(ti−1, tj) consists of the d contributions from each of the
volatility factors,

µ̂(ti−1, tj) =
d∑

k=1

µ̂k(ti−1, tj).
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This drift can be derived in multiple ways; here, we derive it from the no-arbitrage
condition, which corresponds to the discounted bond prices being martingales.
With the discrete short rate f̂(tk, tk), this condition implies that

Ẑ(ti, tj) exp

{
−

i−1∑
k=0

f̂(tk, tk)[tk+1 − tk]

}
is a martingale in i for all j. The martingale can be expressed by

E
[
Ẑ(ti, tj) exp

{
−

i−1∑
k=0

f̂(tk, tk)[tk+1 − tk]
}
|Z1, . . . ,Zi−1

]
= Ẑ(ti−1, tj) exp

{
−

i−2∑
k=0

f̂(tk, tk)[tk+1 − tk]
}
,

which by Equation (3.11) and cancelling terms yields

E
[
exp

{
−

j−1∑
l=i

f̂(ti, tl)[tl+1 − tl]
}
|Z1, . . . ,Zi−1

]
= exp

{
−

j−1∑
l=i

f̂(ti−1, tl)[tl+1 − tl]
}
.

Substituting in the evolution of the discretised forward rate given by Equation
(3.12) gives

E
[
exp

{
−

j−1∑
l=i

√
ti − ti−1ν̂

T (ti, tl)Zi[tl+1 − tl]
}
|Z1, . . . ,Zi−1

]
= exp

{
−

j−1∑
l=i

d∑
k=1

µ̂k(ti−1, tl)[ti − ti−1][tl+1 − tl]
}
.

Evaluating the expectation on the left-hand side and taking the logarithm, we
obtain

1

2

d∑
k=1

( j−1∑
l=i

ν̂k(ti−1, tl)[tl+1 − tl]
)2

=
d∑

k=1

j−1∑
l=i

µ̂k(ti−1, tl)[tl+1 − tl],

from which we find the k’th contribution to the drift, µ̂k(ti−1, tj), that satisfies the
martingale condition for any number d of volatility factors. This contribution is
given by

µ̂k(ti−1, tj) =
1

2(tj+1 − tj)

[( j∑
l=i

ν̂k(ti−1, tl)[tl+1 − tl]

)2

−
( j−1∑

l=i

ν̂k(ti−1, tl)[tl+1 − tl]

)2]
.
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3.8 Model Selection Criteria

To decide which model is the best one out of a set of models, different criteria
can be used. The most used one is perhaps the Akaike information criterion
(AIC), which aims to find the best model in terms of the optimal balance of over-
and underfitting [44]. The criterion can be used on Bayesian models, but it is
mostly used by frequentists as it comes short in terms of some of the fundamental
properties of Bayesian hierarchical models. In this section we discuss four different
model selection criteria, of which all can easily be found when using the INLA R-
package.

In this thesis, we want to test whether a variable should be included in a model or
not. We thus use the same priors and initial values for the hyperparameters, and
only differ the formulas of the models we want to compare. Then, the comparison
is focused on the variable, and we avoid bias from other factors.

3.8.1 Deviance Information Criterion

The deviance information criterion (DIC) is a generalised version of AIC to enable
better comparison of Bayesian models [45]. The AIC is given by

AIC = 2k − 2 ln L̂,

where k is the number of parameters and L̂ is the maximum likelihood function
of the model. The DIC is similar to AIC in many ways, with a main difference in
the way the priors are considered. The DIC is defined as

DIC = 2pD − 2 lnπ(y|θ̂),

where π(y|θ̂) is the log-likelihood given the Bayesian estimate θ̂ and pD is the
effective number of parameters, given by

pD = lnπ(y|θ̂)− E[lnπ(y|θ)].

Here, E[·] denotes the posterior expected value. Using DIC to compare two or
more models, the criterion favours the model with the lowest measure.

3.8.2 Watanabe-Akaike Information Criterion

The Watanabe-Akaike information criterion, also called the widely applicable in-
formation criterion (WAIC) is similar to the DIC, but the effective number of
parameters is replaced by

pWAIC =
n∑

i=1

Var[ln π(yi|θ)].
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Summarising the variances from each observation gives a more stable expression
than the one used in the DIC. The criterion is then given by

WAIC = 2pWAIC − 2
n∑

i=1

ln

∫
π(yi|θ)π(θ|y)dθ

where the latter term is the logarithmic pointwise predictive distribution [46].

3.8.3 Conditional Predictive Ordinal

Another Bayesian model selection criterion is the conditional predictive ordinal
(CPO), which selects the best models in terms of how surprising new observations
are. The measure is given by

CPOi = π(yi|y−i)

where π(·|x) denotes the predictive distribution given some history x [47]. A
smaller CPO corresponds to a larger effect of the new observation yi, and thus the
new observation can result in an underfitting model, or it can be an outlier. We
note that a CPO can be unreliable, and if any of the CPO values are found to be
so, they should be corrected.

The CPO is measured at each observation of the data set, and thus we compare
models based on [48]

−mean
(
lnCPOi

)
.

Comparing the negative mean of the logarithmic CPO’s, we once again favour the
model with the lowest measure.

3.8.4 Marginal Likelihood

The final measure used to select the best model is the marginal likelihood. Finding
the marginal likelihood requires solving an analytically intractable integral, so a
numerical approximation is used instead. The INLA approximation is similar to
the expression in Equation (3.4), and is given by

π̂(y) =

∫
π(θ,x,y)

π̂G(x|y,θ)

∣∣∣∣
x=x∗(θ)

dθ

where π̂G(·) and the node x∗(θ) is the same as in Equation (3.4). As for the other
model selection criteria, we favour the model with the smallest marginal likelihood
value.



Chapter 4

Financial Risk and Risk
Management

Financial risk is a relevant topic for both businesses and governments, as well as for
both professionals and individuals in the market. The term financial risk typically
refers to the possibility of a loss of money, but it is also used in context with the
possibility of default for companies. Many people associate the term with some-
thing negative, and even though it is not negative by definition, it is common to
think that a risk will have significantly negative consequences. Regardless of ones
understanding of financial risk, being able to detect and quantify it is important.
Then the needed actions can be done in time, so that the negative outcome will
not be fatal. Some forms of risk can be eliminated by diversification, while other
forms are inevitable. Financial risk can be classified into the following groups [49]:

• Market risk: Also known as systematic risk, market risk originates from
the financial markets. This type of risk cannot be eliminated, and examples
of market risk sources from the last two decades are outbreaks of pandemics,
market recessions and changes in policy rates.

• Credit risk: The risk of a counterparty not being able to carry out its
obligations previously agreed on when entering a contract. The simplest
example is a borrower not being able to repay his debt to the lender, which
explains why your loan will be more expensive if you are considered as a
riskier borrower.

• Liquidity risk: The risk of not being able to repay (short-term) debt obliga-
tions because of an insufficient liquidity. For instance, a real estate company
may have valuable properties and carry most of its value in these. Properties
are relatively illiquid, so there is a risk that the company will not be able
to fulfil its obligations if the properties do not sell, of if they sell at a lower
price than listed.

29
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• Operational risk: The risk caused by organizational flaws and failures,
either related to the management, the employees of the company or to other
failures such as technical system ones. Human caused mistakes will almost
always fall into this category of risk.

• Legal risk: Risks caused by legal constraints and uncertainty. For in-
stance, misunderstanding and thus failing to meet the law can give extra
costs through fines and fees. Legal risk was initially seen as a part of opera-
tional risk, but over the years the importance of the category has increased.
Today this risk is thus typically distinguished from operational risk.

The risk category of interest in this thesis is market risk, or systematic risk. Frame-
work and regulations on systematic risk is presented in the final section of this
chapter, Section 4.2. First, we present some risk measures and some desired prop-
erties of these.

4.1 Risk measures

Being able to identify, analyse and quantify risk is crucial for any investor or
financial company. A high risk is often associated with a higher return but can
also lead to a massive loss. A company or an investor will usually have a preferred
tolerance for risk, which together with the risk measure is used to decide whether
to make a certain investment or enter a contract. Risk measures can be relative to
some benchmark, such as the measures alpha and beta, or they can tell something
about how large expected losses might be. The latter is often used by investors
to make decisions. To put it bluntly, being better than some benchmark does not
help if the losses are so great that you go bankrupt. Measures related to the size
of expected losses will thus be the focus of this thesis. Before we present two such
measures, we present the concept of risk coherency.

4.1.1 Coherent Risk

Let Ω be a finite set of states equivalent to all outcomes of a portfolio, and let G
be the set of all risks on Ω. Denote by ρ(X) the risk measure for a risk X ∈ G.

A risk measure is coherent if it satisfies the following axioms [50]:

1. Translation invariance: ∀X ∈ G and for all constant α ∈ R, ρ(X + α) =
ρ(X) − α; that is, adding an amount α of cash or another riskless asset to
the portfolio reduces the risk by the same amount. Conversely, subtracting
a constant amount from the portfolio increases the risk by this amount.
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2. Subadditivity: ∀X1, X2 ∈ G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2); the risk cannot
increase when we combine two portfolios. We will later see that a well-known
risk measure fails to meet this property.

3. Positive homogeneity: ∀λ ≥ 0 and ∀X ∈ G, ρ(λX) = λρ(X). Increasing the
portfolio size by a factor λ will increase the risk by the same factor.

4. Monotonicity: ∀X, Y ∈ G, X ≤ Y, ρ(Y ) ≤ ρ(X). If a portfolio Y always per-
forms better than another portfolio X, then the latter will have the highest
risk.

The four coherency properties are logical and sensible considering the common
understanding of risk as a concept. If, for example, increasing a portfolio size by a
factor λ ≥ 0 did not increase the risk by the same factor, but instead with a factor
smaller than λ, investors would be able to take on much larger positions without
adding too much risk. Then multiplying the size of the portfolio would result in
less risk, and a portfolio size converging to infinity would have a risk converging
towards zero. This is an obvious contradiction of any reasonable concept of risk
and emphasises why we want the coherent risk axioms to be satisfied. However,
not all risk measures satisfy all the axioms; one of the most popular ones does not
satisfy the subadditivity axiom in general. This measure is value at risk, which is
presented in the following section.

4.1.2 Value at Risk

Value at risk, or VaR, is a quantified measure of potential losses for investments
or businesses in a specified period. It is used to measure and control the risk of
portfolios, and the metric states what the potential loss is and what the probability
is for this loss to happen. VaR can be applied to a long list of financial instruments
and derivatives of those, e.g., stocks, bonds, options, swaps and many more. The
concept is easy to understand and simple to calculate as long as certain properties
of the underlying are known, which is why it is broadly used in the financial
industry. VaR is usually calculated in one of three ways; by historical simulation,
the variance-covariance method or by Monte Carlo simulation, where the first is
the most used one.

More precisely, VaR is defined as the smallest value l such that losses greater
than l have probability L of not exceeding (1 − α), where α ∈ (0, 1) is a chosen
significance level, typically 5% or smaller. In mathematical notation,

VaRα(X) = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}

where FL(l) = P (L ≤ l) is the cumulative distribution function for the losses.
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In other words, VaR is simply the lower α quantile of the loss distribution. This
leads to some serious disadvantages of using the method; VaR does not indicate
anything about the size of the loss if it exceeds the confidence level. Loss distri-
butions for investments and portfolios can often have heavy tails and even quite
many outliers, which are not accounted for in VaR.

In general, VaR is not a coherent risk measure, since it fails to satisfy the sub-
additivity axiom. That is, the VaR may increase when combining two portfolios,
contrary to the diversification principle. Because of this, an investor or a company
basing their decisions on VaR can incorrectly appraise the maximal expected loss
of a portfolio. This may cause them to not hedge an investment that should ideally
have been hedged, or to make another suboptimal decision. To handle the issues
of VaR, the measure expected shortfall (ES) was introduced by Artzner et al.[50]
in the late 1990’s.

As previously mentioned, VaR can be measured in three ways. The historical
method and Monte Carlo simulation both fall under the non-parametric calcula-
tion. Once the data is available, either from simulation of from some historical
data, the α level 1-day VaR is simply the lower α quantile of the profit-and-loss
distribution.

The parametric calculation of VaR is also called the variance-covariance method.
This method assumes that the data follows a Gaussian distribution, so that the
standard normal distribution curve can be used to find the VaR. The 1-day VaR
is given by

VaRα = µ+ σΦ−1(α), (4.1)

where µ is the mean and σ is the standard deviation of the return series, and Φ(·) is
the cumulative distribution function of N (0, 1) [51]. The same method also works
for a Student-t distributed profit-and-loss distribution. The VaR is then the same
as shown in Equation (4.1), but with the standard normal cumulative distribution
function replaced by the Student-t version, with ν > 2 degrees of freedom. To
obtain the n-day VaR, we simply multiply the 1-day VaR measurement by

√
n. If

the data follows, or is close to following, a Gaussian distribution, the parametric
method is suitable and easy to implement. However, financial time series are often
more likely to follow a lognormal distribution. If so, the non-parametric method
is preferred over the parametric method, as the latter will underestimate the risk
to a potentially critical degree.
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4.1.3 Expected Shortfall

ES, also known as conditional VaR (CVaR), quantifies the amount of risk in the
tail by finding the weighted mean of the extreme losses in the returns, i.e., the
return losses below the VaR cut-off. Mathematically, ES is defined as

ESα =
1

1− α

∫ 1

α

qu(FL)du =
1

1− α

∫ 1

α

VaRu(L)du.

Unlike VaR, ES is a coherent risk measure as it satisfies all four axioms. The
proof of this statement is not trivial, and a mathematical background is strongly
recommended to understand the technicalities. For multiple ways to prove the
subadditivity of ES, the reader is referred to Embrechts and Wang [52].

When we have calculated the VaR for some financial data, finding the ES is not
too hard. For the non-parametric method, ES is the average of all observations
exceeding the α level VaR. The parametric ES is similar to the parametric VaR
given in Equation (4.1), with some modifications;

ESα = µ+ σ
ϕ
(
Φ−1(α)

)
1− α

,

where ϕ(·) denotes the probability density function of N (0, 1) and the other pa-
rameters are as in the VaR definition [51].

The concepts of VaR and ES are visualised in Figure 4.1. Here we observe how for
the normal distribution, VaR would not outperform ES as there is not much tail
risk present. However, in the mixed distribution displayed in Figure 4.1c, there is
much more risk in the tail. Such distributions, or even more extreme ones, may
occur in the real world. This shows the importance of measuring the ES.

(a) Normal distribution
(b) Lognormal distribu-
tion

(c) Mixed distribution

Figure 4.1: A visualisation of VaR and ES for three different distributions. Note
that the lognormal distribution is reversed to replicate a typical loss distribution.
The shaded area shows the lower 5% quantile. VaR is the cut-off between the
shaded and non-shaded areas, while ES is the expected value of the shaded area.
The mixed distribution clearly depicts a situation where VaR would give an unre-
alistic indication of the risk.
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4.2 Risk Management and Regulations

All banks, investment funds, financial institutions and even individuals participat-
ing in financial markets should be familiar with risk management. While banks
and institutions are required to implement risk management by the law, investors
and individuals should have a professional or personal interest of managing their
risk to some degree. For instance, when deciding which investment to add to your
portfolio, you would choose the one with the lowest risk for your desired expected
return. The volatility of an asset is a simple, yet relatively informative measure
of risk for an individual in the stock market. If you want a more informative risk
measure quantifying the profits and losses of your investments, VaR and ES are
good choices of risk metrics.

The Basel Committee on Banking Supervision (BCBS) under the Bank for Inter-
national Settlements (BIS) provides the Basel frameworks for banks worldwide.
BIS was established in 1930 as the first financial institution in history, to deal
with the economic aftermath of the First World War; in particular regarding the
payments Germany was required to do by the Treaty of Versailles. Half a century
later, the global economy had seen a stagflation, and multiple countries requested
a framework on how to ensure financial stability. The Basel Capital Accord, today
known as Basel I, was issued in 1988 as a response to this request, and has been
refined twice since; by Basel II in 2004 and Basel III in 2017 [53]. BIS currently
has 63 members, of which all are either central banks or monetary authorities. Ex-
amples include the central banks of Norway, United States, Japan, EU, England,
and many more [54].

The decisions of the BCBS are not legally required to follow for the members of
BIS but are rather implemented by each central bank or authority for their coun-
tries. For instance, in the European Union and the European Economic Area, the
Capital Requirements Directive IV (CRD) and the Capital Requirements Regu-
lation (CRR) legislations implement the Basel III framework for banks and other
financial institutions [55]. Since 2019, the implemented framework has been a re-
vised version of Basel III. The current edition was BCBS’ response to the financial
crisis of 2008. During this crisis, banks suffered from great economic losses. The
need for a more precise and comprehensive framework became apparent, as the
pillars of the prevailing Basel II capital framework came short. In particular, top-
ics such as liquidity, regulatory capital and risk management were not sufficiently
well covered by the three pillars of Basel II [56].

Market risk measurement requirements are some of the most important differ-
ences of the current and previous versions. The Basel Committee highlights five
main drivers of market risk; commodity prices, equity prices, interest rates, credit
spreads and foreign exchange [57]. In terms of quantitative standards, the following
were prevailing in Basel II:
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1. VaR had to be computed every day.

2. The 10-day 99% VaR was to be used. The banks could either compute the
10-day VaR directly, or scale it up from a shorter holding period.

3. The historical data period used to calculate the VaR had to be at least one
year.

4. All the three methods of measuring the VaR mentioned in Section 4.1.2 were
allowed.

This list does not show the complete list of quantitative standards in the Basel II
framework; the reader is referred to BCBS [58] for the full version.

The financial crisis revealed the insufficiency of VaR in terms of extreme losses,
even though stress tests had to be carried out. Thus, ES was introduced in Basel
III, replacing both VaR and stressed VaR. The full list of requirements of how to
calculate ES in the new framework can be seen in BCBS [59]. A short summary
of the most relevant requirements for this thesis are given here:

1. ES must be calculated on a daily basis.

2. The 97.5% quantile ES must be used.

3. ES must be calculated based on the worst-case scenario 12 months available
in the data set. This data set must, at least, date back to 2007.

4. No specific method of how to measure the ES is determined - both parametric
and non-parametric methods are fine.

The remaining of the Basel III capital requirements calculations concerns calibra-
tion of stress periods, model and risk factor standards and that the banks should
be able to distinguish the different risk classifications as well as calculating the
correct correlation between these.

The capital requirements discussed above only make up a small part of the huge
Basel III framework; even within market risk, the framework is much more com-
prehensive than seen here. Besides the risk measurement, BCBS brings up three
key characteristics of the updated framework [57]:

• On the boundary of the trading and banking books, regulatory requirements
are specified to prevent banks and institutions from moving capital within
the institution to meet the capital requirements.

• The internal models of banks are tested by improved criteria which are better
at finding inappropriate models.

• The risk measurement requirements for options, foreign exchange and similar
instruments are improved in terms of how the risk is weighted.
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Chapter 5

Data

The data set used in this thesis is provided by DNB and represents NIBOR, Norwe-
gian Interbank Offered Rate. The data includes maturities ranging from 3 months
to 15 years, covering the time period from 3 January 2005 to 30 May 2022. In
addition, the Norwegian policy rate is included to observe how the interest rates
change compared to the policy rate. This data is downloaded from the open API
of Norges Bank, the central bank of Norway [14].
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Figure 5.1: NIBOR rates for the period January 2005 to May 2022, with the
Norwegian policy rate for the same period displayed by the black line.
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The NIBOR rates are displayed in Figure 5.1, where the Norwegian policy rate is
represented by the black line. There are certain patterns in the data set; during
financially stable times, the yield curve takes an inclining slope, while the opposite
is true during financial reclines. We recognise two main recessions in the data set.
The first abrupt fall of the interest and policy rates is the financial crisis of 2007-
2009, while the second large fall is the outbreak of Covid-19 in March 2020. From
the financial crisis to 2020, there is a downward trend in the interest rate levels,
as a result of the strategy of the central bank decisions both in Norway and on
an international level. In 2021, and especially in 2022, this trend seems to take
a turn, into a growing trend over multiple quarters. In particular, we note the
difference in the NIBOR rates when the policy rate was increased in 2018-2019
versus the most recent series of policy rate increases. In 2018-2019 the yield curve
flattened, while the most distinct movement of the yield curve during the most
recent changes in the policy rate seems to be the increased level.
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Figure 5.2: Three categories of yield curves observed in the data set; the normal,
flat and inverted yield curves. Note that the x-axis is scaled to show changes
between short maturities better.

Figure 5.2 displays the yield curves of three different dates found in our data set.
The normal curve is from 3 January 2005, the flat curve is from 21 February
2020 and the inverted curve is from 26 September 2008; these dates are chosen
to represent the characteristics clearly, as each category has its implications [60].
In the normal curve, represented by the red line, longer maturities have higher
yields. This is the yield curve we observe most of the time, and it is an indicator
of healthy market conditions. The steeper the normal yield curve, the higher is
the expected future growth.
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In uncertain economic times, a flat or humped yield curve is a common observation.
The difference between a flat and humped yield curve is that in the latter, middle
maturities - typically ranging from 6 months to 2 years - have a higher yield than
the short and long rates, which we can see some hints of in the green line. This
can for instance happen because of an increased volatility [60]. Finally, if the yield
curve is inverted as displayed by the blue line, we are in one of two situations;
either there is a recession going on, or there is a strong indication that a recession
is coming up in the near future. In the case of this example, taken from September
2008, there was an ongoing recession.

5.1 Preprocessing

The interest rate data set is incomplete in the sense that not all series have the
same length. While the majority of the series have dates equivalent to all business
days in the given time period, the dates of the first three and latter two series do
not match the rest. Certain problems arise from this situation; for example, we
cannot perform the desired matrix calculations to our data set. To deal with these
problems, we preprocess the data before performing the analysis.

The complete series consist of 4542 observation pairs on the form (Date, Value) for
each maturity. However, not all the series are complete - for instance the shortest
ones, the 3- and 6-month interest rates, have 160 less observations, i.e., about 3.5%
of the data are missing compared to the longest series. The missing observations
are distributed somewhat uniformly in their respective series, and there are no
long periods where the data is missing. Since interest rates have a fair chance of
remaining at the same level on consecutive days, expanding the shorter series by
adding the initially missing dates seems like a fairly good solution to the problem.
The series which after the expansion have missing values for the added dates
are then completed by inserting the interest rate value from the previous date.
All series initially have data for the first dates in the data set. Thus, to avoid
problems if two or more consecutive dates miss data, the function is implemented
in a forward loop so there is always a previous value available. Another method
would be to cut down the length of the longest series to the length of the shortest
series. This must be used for instance if the method described here results in
unstable decomposed matrices.

The means and standard deviations of the raw and processed versions of the rele-
vant NIBOR series are given in Table 5.1. There are no drastic changes in any of
the parameters for any of the series. Except from the 0.011 percentage points dif-
ference in the 1-year mean of the raw and processed series, there are no differences
bigger than 0.003 percentage points. Furthermore, the standard deviations of the
raw series are relatively large, and so the processed data series are contained in
the uncertainty intervals.
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Raw Processed
Mean Sd. Mean Sd.

3 months 2.158 1.498 2.156 1.494
6 months 2.294 1.506 2.292 1.502
1 year 2.316 1.501 2.327 1.486
12 years 3.248 1.355 3.251 1.356
15 years 3.313 1.348 3.316 1.349

Table 5.1: Means and standard deviations for selected raw and preprocessed
NIBOR rates, given in percent.

5.2 Descriptive Statistics

The NIBOR swap rates are transformed to forward rates by Equation (2.6) in
Section 2.4 to be suitable for modelling. The forward rates are plotted in Figure
5.3 together with the Norwegian policy rate, and a summary of the means and
standard deviations for the interest rate series is given in Table 5.2. We recognise
the same general patterns from the swap rates also in these series, but the spread
between the different rates seems to be larger for the forward rates. This results in
somewhat different yield curves for the forward rates than for the NIBOR rates.
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Figure 5.3: Forward rates derived from the NIBOR rates for the period January
2005 to May 2022, with the Norwegian policy rate for the same period displayed
by the black line.
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The properties of the interest rates in Table 5.2 behave as expected - rates of
longer maturities have a higher mean, and a lower standard deviation, than rates
of shorter maturities. The mean and standard deviations are almost strictly in-
creasing and decreasing, respectively, for higher maturities, with just a few excep-
tions.

Maturity Mean (%) Sd. (%)
3 months 2.388 1.470
6 months 2.325 1.467
1 year 2.580 1.478
2 years 2.774 1.397
3 years 2.981 1.362
4 years 3.171 1.347
5 years 3.311 1.331
6 years 3.418 1.315
7 years 3.491 1.302
8 years 3.547 1.299
9 years 3.581 1.299
10 years 3.570 1.293
12 years 3.508 1.294

Table 5.2: The means and standard deviations for the Norwegian forward rate
series for January 2005-May 2022.

5.3 Portfolio

Risk can be measured directly from the interest rates; however, risk measures of
derivatives are often more interesting. Thus, we look at a portfolio of four zero-
coupon bonds of different maturities - 3-months, 1-, 5- and 10 years. Bonds are
chosen because of their very close relationship to interest rates, which allows us to
measure the risk from the interest rate movements with as little noise as possible.

To minimize the risk in such a portfolio, the bonds with longer maturities would
be weighted heavier than the shorter maturity ones, because of their less volatile
nature. In addition, a dynamic weighting would be preferred. However, we choose
to base our modelling on a uniformly weighted portfolio, such that the more volatile
nature of the short rates will be better reflected in the measured risk. We are
interested in investigating the changes in the bond prices rather than the bond
prices themselves, as this will translate to the profit and losses when finding the
risk. The logarithmic scales of these changes are used, as often done in quantitative
finance.
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The bond prices in the portfolio as well as the corresponding forward rates are
displayed in Figure 5.4. Here, the left-hand panel shows the prices, while the right-
hand panel shows the interest rates. In the former plot, the price of the weighted
sum is represented by the black line, located just above the 5-year bond price. We
observe that this price reflects properties of all its components, as desired. The
separate bond prices behave as expected - bonds of longer maturities entail more
risk, and so the price of such bonds will be lower. Also, the prices decrease during
more turbulent periods and recessions, when the future expectations are worse.
Finally, the different bonds seem to be correlated to a high degree, especially
those of similar maturities.
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Figure 5.4: The prices of the different bonds in the portfolio and the corresponding
forward rates. The black line in the price plot represents the weighted sum of the
portfolio.

Furthermore, Figure 5.5 displays the logarithmic daily changes of the portfolio
as one unit, and the histogram of these changes. The black vertical line in the
histogram shows the mean and is very close to zero. Comparing the daily changes
of the portfolio to the swap rates in Figure 5.3, we can confirm that the largest
changes of the portfolio do indeed occur when the swap rates are prone to the
most drastic changes.

The correlation plot displayed in Figure 5.6 shows the correlations between the
daily changes of the bonds in our portfolio. All the correlations are found to be
significant at the 0.1% level, i.e., highly significant. The highest correlation is the
one of the 5- and 10-year maturity bonds, with a coefficient of 0.912. Furthermore,
both the 3-month to 1-year and 1-year to 5-year correlations are larger than 0.5,
confirming the apparently high correlation we observed in Figure 5.4.
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Figure 5.5: The logarithmic daily changes of the portfolio and the corresponding
histogram. The black line in the histogram represents the mean of the changes.
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Figure 5.6: Correlation between the daily changes in the portfolio bonds.
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5.4 Preliminary PCA Analysis

We apply PCA to the daily changes of the forward rates to analyse the data more
thoroughly in a preparatory manner. In particular, we compute the eigenvalues
and eigenvectors of the correlation matrix in order to find the volatility factors
given by Equation (3.8). These volatility factors are then fitted by polynomials.
Applying this process to the entire period would not give very informative re-
sults, so instead, we split the period into four different subperiods which represent
different characteristics. All periods, except from the last one, are chosen to be
approximately two years long to follow the standard convention for financial time
series modelling. The dates of the periods are given in Table 5.3.

Period Dates
Financial crisis 13 June 2008 - 10 May 2010

Normal conditions 1 July 2016 - 1 June 2018
Covid-19 outbreak 26 July 2019 - 5 May 2021
Covid-19 recovery 5 May 2021 - 31 May 2022

Table 5.3: Calibration periods.

Our forward rate data set consists of 13 rates of different maturities, and hence the
covariance matrix will be of dimension (13×13) and we will have 13 eigenvalues and
eigenvectors. After performing the PCA, we can find the proportion of variance
explained by each of the components. The cumulative proportions of variance
explained for the first five eigenvalues of the four different subperiods are given
in Table 5.4. The faster these proportions converge to 100%, the more correlated
is the corresponding data set. Here, we observe that the Covid-19 outbreak and
Covid-19 recovery periods have the most prominent correlation structures, while
the data indicates weaker correlations in the normal condition and financial crisis
periods. We return to Figure 5.3 for a simple explanation; the yield curves are
significantly less consistent in the weaker correlation periods than in the outbreak
and recovery of the Covid-19 pandemic.

Eigenvalue Financial crisis Normal conditions Covid outbreak Covid recovery

λ1 24.3 51.6 73.4 66.8
λ2 44.3 63.8 86.3 75.6
λ3 57.2 71.9 90.2 82.7
λ4 68.3 78.8 93.4 88.0
λ5 76.9 84.9 96.1 91.8

Table 5.4: Cumulative proportion of variance explained for the first five eigenvalues
of the four subperiods, given in percent.
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The discrete fitted volatilities are displayed in Figures 5.7 and 5.8. Just like the
yield curves we presented in Chapter 5, different shapes of the volatilities have dif-
ferent implications; however, the interpretation here varies slightly from the yield
curve interpretation. The first volatility factors are all fitted by straight, constant
lines, corresponding to a parallel shift movement being the most important char-
acteristic of the model. That is, from one time to another, the interest rates of
different maturities will change by the same factor.
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Figure 5.7: The discrete fitted volatilities of two calibration periods: the financial
crisis and normal market conditions.
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Figure 5.8: The discrete fitted volatilities of two calibration periods: the Covid-19
outbreak and the past year of an increased policy rate.

The second volatility components of Figure 5.7a and Figure 5.8a are approximately
two different linear movements, with one change of direction over the tenors. This
corresponds to a twist in the yield curve, a phenomenon where the short and long
rates change their relative position. We can recognise these movements with ease
in the forward rate curve displayed in Figure 5.3; the twist is particularly visible
during the financial crisis, when the 3 month rate is almost 8% in the fall of 2008.
The second volatility components of Figure 5.7b and Figure 5.8b are not as easy
to interpret, and likewise, they do not indicate as much about the yield curve.
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Looking at the forward rate plot in Figure 5.3 once again, we can see why; the
calibration periods simply do not contain any yield curve inversions in the two
right-hand panel calibration periods.

The third volatility components are related to the curvature of the yield curve.
In the financial crisis and the Covid-19 recovery periods we see a declining trend
from short to long maturities, while the two other calibration periods have less
consistent trends along the tenors [61].



Chapter 6

Implementation

The aim of this thesis is to investigate the effect of changes of the Norwegian
policy rate on interest rate risk and we thus want a model from which we can
easily measure the risk. The model should be sensitive to the changes in the
financial time series we are modelling, while not being too complex in terms of
implementation.

The chosen model is a stochastic volatility model with an autoregressive model of
order 1 (AR(1)) as the latent model, which can easily be implemented in INLA.
The basic version of this model was presented by Taylor in 1982 [62], and is given
by

rt = exp

{
ηt
2

}
ϵt (6.1)

ηt = µ+ ϕ(ηt−1 − µ) + σht (6.2)

where rt is the return on day t, ηt is the logarithmic variance on day t and ϵt, ht ∼
N (0, 1). Furthermore, ηt is an AR(1) process with three parameters; mean µ,
persistence ϕ ∈ (0, 1) and Gaussian noise σ [62].

In our case, we rewrite Equations (6.1) and (6.2) as the following for simplicity:

rt|ηt ∼ N (0, exp{ηt})
ηt = µ+ ft

ft|ft−1, . . . , f1, λf , ϕ ∼ N (ϕft−1, λ
−1
f )

where λf = 1/σ2 is the inverse volatility, i.e., the precision, of the AR(1) process
given in Equation (6.2). When the common mean µ is assigned a vague Gaussian
prior, our latent field is given by

x = (η1, . . . , ηn, µ) ∼ N (0,Q−1(θ1)),

where the precision matrix Q(θ) is a sparse matrix satisfying the Markov property,
such that x is a GMRF. Note that µ is fixed to zero by default in INLA; so

47
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Figure 6.1: A simple figure of the model structure.

is it in our model. When we write the model on this form, θ consists of two
hyperparameters:

θ = (log λf , ϕ).

The structure of this model is shown in Figure 6.1. Here, the persistence parameter
ϕ is transformed by

κ = logit

(
ϕ+ 1

2

)
.

Using this parametrisation, the prior for ϕ will be roughly uniform in (0, 1), which
gives a stationary time series. Furthermore, it ensures that the parameters are well-
defined on R, to avoid restricting the area where the optimisation is performed.
We want both hyperparameters to have vague priors, and assign

log λf ∼ LogGamma(1, 0.0005)

κ ∼ N (0, (0.0001)−1)

To test the effect of the policy rate, we add a categorical variable to the latent
process. We denote this variable by zt, and define it in the following way:

zt =


0 ; ∆PR,t = 0

1 ; ∆PR,t = ±0.25

2 ; |∆PR,t| > 0.25

where ∆PR,t is the change of the policy rate from day t− 1 to day t in percentage
points. The latent process is then modelled by

ηt,i = µi,z + ft, i = 0, 1, 2.

The coding is implemented so that the levels of z are compared to a reference
group where the zt variable is omitted. Hence, we obtain one coefficient of µ for
each level of zt, i.e., µ0,z is the coefficient if zt is fixed to be zero, and so on.



Chapter 7

Results and Discussion

We start by finding the 97.5% and 99% VaR and ES using the historical method,
measuring the risk based on the 100 last days. These measures are displayed
in Figure 7.1 and Figure 7.2 for the 97.5% and 99% risk measures, respectively.
Because we are using the historical method, these plots are quite uneven, as the
risk can take the same value multiple days in a row with such small quantiles.
However, we get an indication of which properties we should expect to see in our
modelled risk later. The plots behave like expected; the ES takes higher values
than the VaR in both figures, and the 99% risk measures are at a higher level than
the 97.5% measures. The most distinct differences occur in periods we know are
more volatile. Also, the ES stays at a higher level for a longer time than the VaR.
However, the historical method does not picture the risks during the Covid-19
outbreak and recovery as well as we would expect. Because of the used method,
the risk observations are lagged compared to the interest rate series. That is, if
a multi-day event increasing the risk happens at time t, we will not observe the
increased risk clearly before some weeks have passed.
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Figure 7.1: The 97.5% VaR and ES of the portfolio measured by the historical
method.
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Figure 7.2: The 99% VaR and ES of the portfolio measured by the historical
method.
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7.1 INLA

We fit the models given in Chapter 6 to the entire data set, from January 2005 to
May 2022. The hyperparameters of the two models, without and with the policy
rate factor variable, are given in Table 7.1. For both models, the persistence is
large and close to 1, with low standard deviations. A high persistence indicates
a strong dependence between the daily observations. Thus, shocks in such time
series will significantly affect the future predictions. In addition, the precision
parameters are similar to each other, both in terms of the mean and the standard
deviation.

ϕ log λf

Mean Sd. Mean Sd.
Without factor variable 0.999 0.008 2.178 0.306
With factor variable 0.969 0.007 2.184 0.310

Table 7.1: The means and standard deviations for the hyperparameters of the two
models.

For the model with the factor variable, each level of µ has its own distribution.
The means and standard deviations for these levels are given in Table 7.2. We
note how the z = 0 group has a significantly lower standard deviation than the
two other groups. This is as expected, simply because of the occurrence of each
group; there are relatively few occurrences of z = 1, and even fewer of z = 2.

Mean Sd.
z = 0 -0.024 0.087
z = 1 0.111 0.275
z = 2 0.732 0.521

Table 7.2: The means and standard deviations for the different policy rate change
groups.

The posterior mean of η for the simple model is displayed in Figure 7.3, with
the corresponding 2.5% and 97.5% quantiles. Similarly, Figure 7.4 displays the
posterior mean of η for the three factor levels. Here, the quantiles are omitted
for better visibility. Plots with quantiles for each factor level are given in Figure
A.1 in the appendix. In summary, the posterior mean and quantiles of the z = 0
group are similar to the results from the simple model, but with slightly larger
quantile intervals. For the z = 1 and z = 2 groups, the uncertainty caused by the
few occurrences is reflected in the much larger quantile intervals. In addition, this
model, and in particular the z = 2 group, seems to underestimate the ups and
downs we expect to see in the posterior mean of η.
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Figure 7.3: The posterior mean of η for the simple model. The blue lines represent
the 2.5% and 97.5% quantiles.
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Figure 7.4: The posterior mean of η for the factor variable model. Each line
represents a different level of the factor, and the quantiles are omitted from the
figure for a neater presentation.
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Risk can be measured by a parametric or a non-parametric method, as discussed
in Chapter 4. When modelling in INLA, we obtain a distribution for posterior
marginal of η for each of the data points. From this, we can find both the VaR
and ES. In our case, η is an AR(1) process, which follows a Gaussian distribution.
To confirm that this is indeed the case so that we can use the parametric method
for measuring the risks, we plot the posterior marginal of η for three different dates
in our model data set - the first, one in the middle, and the last. These posterior
marginals are displayed in Figure 7.5.
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Figure 7.5: The posterior marginal of η for three arbitrarily chosen dates from the
data set.

The Gaussian distribution of the posterior marginals of η are confirmed by Figure
7.5, and thus we can use the parametric method for finding the risk measures. The
97.5% and 99% VaR and ES of the simple model are given in Figure 7.6 and Figure
7.7, respectively. The same plots for each level of the factor variable model can
be found in the appendix, in Figure A.2. Comparing to the historically measured
risk in Figure 7.1 and Figure 7.2, we observe two main differences. Firstly, the
INLA models seems to be better at identifying risk in low-rate environments, for
instance as seen in 2020 and 2022. Furthermore, because risk is measured for
just one date at the time in INLA, we avoid the irregularities and lagging of the
historical method.

A summary of the subfigures of Figure A.2 are given in Figure 7.8, which displays
the 97.5% ES for the z = 1 and z = 2 levels. This corresponds to the estimated
ES if the policy rate change was kept constant at ∆PR,t = ±0.25 or |∆PR,t| > 0.25,
respectively. As expected, these risks are higher than the ones observed for the
simple model in Figure 7.6. We observe that the ES for the different levels behave
in a similar manner as the simple model, in terms of upward movements around
recessions and turbulent periods. However, the factor variable model seems to
contain slightly more noise. This is an inherent consequence of the uncertainty
caused by the few observations of policy rate changes.
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Figure 7.6: The 97.5% VaR and ES for the simple model.
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Figure 7.7: The 99% VaR and ES for the simple model.
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For both risk levels, the VaR and ES follow each other closely. There are two
main reasons for this; the similarity of the formulas used to calculate the risk
measures, and the distributions from which we measure the standard deviations.
These distributions are Gaussian and have no heavy tails. Hence, the ES and VaR
will not be very different.
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Figure 7.8: The 97.5% ES for the z = 1 and z = 2 levels of the factor variable
model.

To compare the differences of the Basel II and Basel III framework standards, we
plot the difference between the 99% VaR and the 97.5% ES of the simple model
in Figure 7.9. Here, a negative value corresponds to a larger 97.5% ES than 99%
VaR. We observe that the ES is in fact larger than the VaR for all the dates,
and that the difference is more prominent during recessions and other turbulent
economic periods. This confirms why ES is better at identifying tail risk, and thus
why it is - and should be - preferred over VaR.

Moreover, the risk measure plots and the difference displayed in Figure 7.9 show
another important property of the ES. While the VaR can recover relatively fast
after a shock, the tail contains more risk over a longer period of time. Year 2008-
2009 in Figure 7.9 displays this property particularly well; if the ES had recovered
as fast as the VaR, the spike would have been narrower than the spike observed
here.
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Figure 7.9: The 99% VaR minus the 97.5% ES for the simple model.

We then compare the models with and without the policy rate variable to inves-
tigate the effect of policy rate changes on interest rate risk. A summary of the
computed values of the model selection criteria from Section 3.8 is given in Table
7.3. Furthermore, a lagged factor variable model is included in this table. This
lagged model is identical to the factor variable model, but the observations of the
policy rate are pushed ten trading days back in time. That is,

znew =
(
z11,orig, z12,orig, . . . , zn−10,orig, 0, . . . , 0

)
where znew denotes the lagged variable, zi,orig is the i’th observation of the original
policy rate change variable and there are 10 zeros at the end of znew. Hence, we
allow for some absorption time of the policy rate changes into the market prices.

DIC WAIC CPO Mlik
Without factor variable 13052.17 13126.61 1.470 -6614.61
With factor variable 13054.69 13131.76 1.473 -6628.36

With lagged factor variable 13054.23 13129.99 1.471 -6627.77

Table 7.3: Model selection criteria values for the two models, as well as for a lagged
factor variable model.

From Table 7.3, all criteria but the marginal likelihood favour the simple model
without the policy rate variable. The differences between the criteria of the three
models are very small, implying that adding the variable does not improve the
model, either if it is lagged or not. We know that the policy rate influences the
interest rates in real life. The reason why our model does not indicate the same
can be that the information following policy rate changes is already incorporated
by the market. The lagged model seeks to test this more thoroughly, but it seems
the interest rate series already contain this information even when the variable is
lagged. Furthermore, the criteria slightly favour that if the factor variable should
be included in the model, it should be lagged. We choose to use the non-lagged
variable in our analysis because of the very small and insignificant difference.
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7.2 Comparison of INLA and HJM

We proceed with a comparison of INLA and HJM, where the latter is more com-
monly used in the financial industry. The two methods are built upon quite dif-
ferent strategies, which is important to keep in mind when comparing the results
presented in this section.

The evolution of the yield curve is modelled as described in Section 3.7 for a period
of one year. For one such simulation, we find the bond prices and the daily return
in the portfolio from day 251 to 252. The last two dates of the simulation are
chosen to include as much variability as possible into our risk measures. The HJM
simulation is run n = 100 times, and the process is repeated m = 1000 times to
find the return distribution from which we can measure the risk.

The simple model of the previous section is chosen as the INLA model for the
subperiods. There is a possibility that the more complex model would have been
preferred over the simple model for the subperiods, in terms of the model selection
criteria. However, we have seen that these models give very similar results, and
the essence of the INLA method will certainly be reflected in the results also for
the simple model.

The following subsections present results from our four different subperiods. For
the INLA models, the posterior means of η and the 97.5% VaR and ES are pre-
sented. The 2.5% and 97.5% quantiles are included in the posterior mean plots to
display the corresponding uncertainty. For the HJM simulations, the distributions
of the returns on the last days for each simulation period are presented by his-
tograms. These results are summarised and discussed in Section 7.2.5. Here, the
risk measures for the HJM simulations are also presented. Finally, the inherent
differences of the INLA and HJM methods are discussed based on our results.

When reading these results and the following discussion, it is important to remem-
ber the differences of the two methods. The INLA results come from a regression-
style model, which does not make any predictions. Contrarily, the HJM simu-
lations are predictions, estimating the price after simulating one year forward in
time. Since these predictions incorporate the trend of the corresponding calibra-
tion period, they can be thought of as the risk of the trend.
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The mechanisms behind the INLA and HJM methods used in this thesis are
sketched in Figure 7.10 and Figure 7.11, respectively. The INLA model is very
local; each value of η is constructed by given neighbourhood observations because
of the sparsity of the Gaussian Markov random field. The construction of the
autoregressive time series ensures that present shocks are propagated into future
observations of the process. On the other hand, the HJM model gives one single
global risk measure from the return distribution. In addition to the computational
efficiency, this local versus global level of measurement is the most prominent
difference of the two methods.

Return series 

rt ~ N(0, exp(η))

Smoothed latent
model of η

VaR and ES from

functions of η

Apply SV model 
using INLA

Figure 7.10: Sketch of the INLA method. The INLA framework models the la-
tent process η of a time series, here the returns of the bond portfolio. Since the
exponential of this latent process is the variance of the return series, and since we
obtain a Gaussian distribution of η for each time step, we can find the VaR and
ES using the parametric method.

Trend m(t,T)

Volatility v(t,T)

Simulate df(t,T)

252 times
Save return of

 last date

Repeat 
n x m times

Find VaR and ES

from return distribution

Figure 7.11: Sketch of the HJM method. The trend and volatility of some interest
rate series are found, and then used to simulate the increments df(t, T ). This
yields a new, simulated interest rate series. The relevant bond returns are found
for the last date of this simulation, and the process is repeated n times to price
the bond portfolio. Then, this is repeated m times to obtain a return distribution
from which we can find the VaR and ES using the non-parametric method.

Comparing these two methods despite their differences is interesting because they
take different approaches to reach the same goal. HJM is an established method
for finding the risk of financial time series, modelling the term structure and the
market expectations of the future interest rate. If INLA gives similar results as the
HJM framework in terms of the order of magnitude of the risks, it indicates that
INLA is an appropriate method within quantitative finance - although it does not
preserve the term structure. The appropriateness of INLA is what we investigate
by the following sections.



7.2. COMPARISON OF INLA AND HJM 59

7.2.1 Financial crisis period
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Figure 7.12: INLA results for the model calibrated on the financial crisis period.
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Figure 7.13: The distribution of the returns from the HJM model calibrated on
the financial crisis period. The black line represents the smoothed distribution of
the blue histogram.



60 CHAPTER 7. RESULTS AND DISCUSSION

7.2.2 Normal conditions period
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Figure 7.14: INLA results for the model calibrated on the normal conditions pe-
riod.
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Figure 7.15: The distribution of the returns from the HJM model calibrated on
the normal conditions period. The black line represents the smoothed distribution
of the blue histogram.
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7.2.3 Covid-19 outbreak period
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Figure 7.16: INLA results for the model calibrated on the Covid-19 outbreak
period.
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Figure 7.17: The distribution of the returns from the HJM model calibrated on the
Covid-19 outbreak period. The black line represents the smoothed distribution of
the blue histogram.
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7.2.4 Covid-19 recovery period

-2

-1

0

1

2

apr 2021 jul 2021 okt 2021 jan 2022 apr 2022
Date

P
os

te
rio

r 
m

ea
n 

of
 η

(a) The posterior mean of η, where the blue
lines represent the 2.5% and 97.5% quan-
tiles.

2

3

4

5

apr 2021 jul 2021 okt 2021 jan 2022 apr 2022
Date

R
is

k 
(%

)

(b) The 97.5% VaR and ES. The red line
represents the ES, and the blue line repre-
sents the VaR.

Figure 7.18: INLA results for the model calibrated on the Covid-19 recovery period.
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Figure 7.19: The distribution of the returns from the HJM model calibrated on
the Covid-19 recovery period. The black line represents the smoothed distribution
of the blue histogram.
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7.2.5 Discussion

In the previous sections, INLA and HJM results for each subperiod are displayed.
For INLA, the posterior means with the corresponding 2.5% and 97.5% quantiles,
as well as the 97.5% VaR and ES, are presented. These quantities are observed
every day of the subperiods. For the HJM simulations, histograms of the daily
logarithmic returns are presented. As previously mentioned, these histograms
represent the daily change from the second last to the last day of the simulation
period, to include more variability. With the chosen method, we only obtain one
measure of VaR and one of ES for the entire period for each of the HJM simulations.
These risk measures are given in Table 7.4.

VaR (%) ES (%)

Financial crisis
97.5% 2.172 2.650
99% 2.635 2.951

Normal conditions
97.5% 3.634 4.282
99% 4.284 4.739

Covid-19 outbreak
97.5% 4.395 5.149
99% 5.232 5.706

Covid-19 recovery
97.5% 4.147 4.991
99% 5.074 5.644

Table 7.4: The 97.5% and 99% VaR and ES from the HJM simulations for the
four subperiods.

Furthermore, the mean risk measures of the INLA subperiod models are given in
Table 7.5.

VaR (%) ES (%)

Financial crisis
97.5% 2.598 3.098
99% 3.083 3.532

Normal conditions
97.5% 1.506 1.796
99% 1.787 2.047

Covid-19 outbreak
97.5% 2.069 2.468
99% 2.456 2.813

Covid-19 recovery
97.5% 2.278 2.717
99% 2.703 3.097

Table 7.5: The mean 97.5% and 99% VaR and ES from the INLA models of the
four subperiods.
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A HJM simulation gives an estimate for the forward rates, and hence also an es-
timate for the portfolio returns in our case. These estimates rely heavily on the
trend of the corresponding calibration period, which explains the somewhat sur-
prising HJM results of the financial crisis period. The calibration period includes
the crash of the financial crisis and ends in May 2010. In the latter months of this
period, the shock had dampened, and the yield curve had decreased to a low level.
From Figure 7.13 and the risk measures in Table 7.4, we observe relatively low
risks. This can be a consequence of the falling trend which has been picked up by
the simulations, combined with low rates at the starting date of the simulation.

Comparing the financial crisis HJM results to the normal conditions results, the
effect discussed in the previous paragraph is made even clearer. It seems reasonable
that the financial crisis model would have the highest risks of these two periods,
yet this is not the case. From the INLA results of the normal conditions period,
displayed in Figure 7.14, we observe that there is a much weaker trend in this
subperiod. This can be the explanation of why the daily returns of the normal
conditions period take on a larger range of values, giving higher risks as well.

Because of the different properties of the two strategies used to measure the risk
of the two methods, Table 7.4 and Table 7.5 should not be directly compared, as
previously mentioned.

To compare the risk measurements of the two different strategies, we should instead
rely on a combination of the daily risks and the mean of these for the INLA model.
For the financial crisis period, the HJM results are fairly similar to the last year
of the corresponding INLA model. Moreover, the maximal 97.5% ES from the
INLA models of the two Covid-19 periods are similar to the 97.5% ES of the HJM
models.

The normal conditions period is where the two strategies differ the most. Here,
the maximal 97.5% ES of the INLA model is approximately 2.75%, while the cor-
responding measure of the HJM model is 4.28%. As previously discussed, this
subperiod has the least trend of all the periods, explaining why the HJM simula-
tions take on a much broader interval for the daily returns.

The INLA framework is very flexible and can easily fit complex models with many
variables. The flexibility allows for a local level operation of the model which still
takes the previous history into account, yielding high-quality results for a range
of different models. Even though the framework is very flexible, the models are
also easy to interpret. More complex models will certainly be somewhat harder to
interpret, but the overall structure of an INLA model makes interpretation easier
than similar methods. For instance, the interpretation of the stochastic volatility
model of this thesis, with or without the factor variable, is straightforward.



7.2. COMPARISON OF INLA AND HJM 65

Even though we have not done so here, INLA can be used for prediction. When
simulating forward in time using INLA, we still obtain local, daily risk measures.
However, these measures will be much less precise than the measures from a re-
gression. This is because the distributions of the parameters will have significantly
larger variances, introducing more uncertainty to the daily predictions.

Furthermore, INLA is based on the observations of the given data set and does
not have any interest rate properties embedded like the HJM framework. That
is, if we base an INLA prediction on a set of observations with no clear trend,
we have no guarantee that the predictions will be reasonable in terms of interest
rate properties. However, if there are clear trends in the observations, e.g., a
periodicity, the INLA predictions can be as accurate as the HJM predictions. In
the end, no model can precisely predict the future. Hence, if the desired properties
are preserved, there are no reasons why a HJM prediction should be qualitatively
better than an INLA-based prediction.
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Chapter 8

Conclusion

This thesis aimed to investigate the effect of policy rate changes on interest rate
risk. Implementing a stochastic volatility model under the INLA framework, we
modelled the volatility of the daily returns of a bond portfolio based on NIBOR
rates. Two risk measures related to the size of the losses, VaR (value at risk) and ES
(expected shortfall), were calculated by a parametric method. Comparing models
with and without a policy rate change variable, the selection criteria indicated
that including this variable did not improve the ability to model the risk.

INLA was chosen and investigated because of its computational efficiency, with a
much faster runtime than MCMC algorithms. The framework is not established
within quantitative finance as of today. Thus, this thesis studied how INLA can be
used in a quantitative setting by applying the framework to typical problems within
the subject. We found that INLA provided a flexible and user-friendly framework,
simplifying our modelling and analysis because of its high interpretability. The
results from the stochastic volatility models implemented in INLA were found to
be sensible and well-performing, according to our expectations, the historical risk
and the economic declines of the data set. Both stochastic volatility models were
found to have a high persistence, implying that previous shocks were incorporated
in the daily volatilities found by INLA.

The ES was found to be higher than the VaR for all models and dates, as expected.
The most distinct differences occurred during and right after recessions. We found
that the VaR recovered faster than the ES after a shock, because the tail contains
some risk that only the latter is able to reveal.

67
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To compare the standards of the previous and prevailing framework standards of
Basel II and Basel III, we compared the 99% VaR to the 97.5% ES for the simple
model. For all dates, the 97.5% ES was larger than the 99% VaR. The biggest
differences were observed in times where the overall risk levels were high, e.g.,
during the financial crisis and the Covid-19 outbreak. We thus concluded that the
ES is indeed a better risk indicator than the VaR, as it contains some risk that
the VaR ignores.

We found that adding a policy rate variable did not improve the model. However,
the criteria values for the two models were very close, indicating that adding the
factor variable did not make the model significantly worse either. For instance,
the DIC of the simple model was 13052.17, while the DIC of the more complex
model was 13054.69. We know that the policy rate does have an impact on the
interest rates in reality. A possible explanation as of why the model did not
indicate this could be because the policy rate information was already absorbed
and incorporated by the interest rate series. Then, adding the same information
through the policy rate variable could not improve the model.

INLA was compared to the more established HJM by splitting the data set into
four different subperiods. For three of the four subperiods, the two methods gave
similar results. The fourth subperiod gave more divergent results, but still of
the same order of magnitude. These results indicated that INLA could be an
alternative method to measure the risk of financial time series.

Future work on the same topic could compare INLA to other methods, as there
exist MCMC algorithms which can be used in the same manner as INLA. The
MCMC model can then be on the same hierarchical form as our INLA model
and can thus include the factor variable as we did in this thesis. Martino, Aas,
Lindqvist, Neef and Rue [4] found that INLA and the MCMC program OpenBUGS
gave very similar results for financial time series, with the MCMC error as the
only quantitative difference. However, the runtimes of the two methods are not
comparable. For computational efficiency, INLA will be better choice than MCMC.

In future similar studies, it would be interesting to test the predictive abilities of
INLA for the risk measures. This would give a closer comparison to the HJM
framework, yielding a more detailed answer on how suitable INLA is for quanti-
tative finance. For a prediction model, another underlying process might be more
appropriate than the AR(1) process suggested here. To approach the problem in a
more similar way as the HJM and MCMC methods, a random walk model would
probably be appropriate.
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Introducing other variables to the model could provide insight to mechanisms
behind interest rate risk. Such variables could be the policy rates of the FED
and the European Central Bank, or the US 10 Year Treasury Rate, as we know
that these rates are important in the global economy. Furthermore, investigating
how market expectations influence the risk could also give valuable and interesting
information. As far as we know, no such data exists for the Norwegian market
today; this research would thus require another study collecting the needed data.

Finally, analysing the lagging between the policy rate changes and the following
changes in the interest rate risk could be researched more thoroughly in the future.
If a connection is found, we could improve the prediction of interest rate risk, which
would be valuable for all investors and risk managers. Optimising the portfolio
could also improve the predictive powers of the model. The portfolio used in this
thesis was static and uniformly weighted in order to simplify the complexity of the
model. This is sufficient when we wish to study overall connections, but a more
optimal portfolio could help the model to find more complex correlations.

In conclusion, INLA seems to be a good alternative to established methods. The
numerical errors are small and comparable to MCMC errors. Moreover, the INLA
algorithm is exceptionally efficient; the runtime is almost negligible compared to
HJM. The flexibility of INLA allows for prediction as well as regression, providing a
complete framework for quantitative finance. Furthermore, the method gives daily
measurements, precisely picturing the stochastic nature of the financial risk.
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Figure A.1: The posterior mean of η for each of the three factor levels with their
respective 2.5% and 97.5% quantiles.
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Figure A.2: The 97.5% and 99% VaR and ES for the three different factor levels
of the factor variable model.
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