
A Structured Approach to Autonom
ous D

riving in Sim
ulated Environm

ents
Bjørn André Aaslund

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Bjørn André Aaslund

A Structured Approach to
Autonomous Driving in Simulated
Environments

Master’s thesis in Computer Science
Supervisor: Rudolf Mester
June 2022

M
as

te
r’s

 th
es

is

Bjørn André Aaslund

A Structured Approach to Autonomous
Driving in Simulated Environments

Master’s thesis in Computer Science
Supervisor: Rudolf Mester
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Autonomous vehicles have made significant progress and gained much attention in the last years.
This thesis studies a new approach for simulated autonomous driving with a focus on safety. There
are currently two different families of approaches to autonomous vehicles; end-to-end approaches
and structured approaches. A structured approach is selected for this thesis because each module
can be tested and certified. These are crucial for the system’s safety and essential aspects for the
prominent stakeholders.

The simulation environment CARLA is selected as the simulation environment for this system.
CARLA offers a wide variety of sensors. A semantic camera is one of these sensors, and it is used
to create a bird´s eye view sensor that is used in this thesis. CARLA operates with many semantic
classes that are not relevant for driving. Therefore, the semantic classes are mapped into four new
semantic classes: road, moving object, not driveable object, and don’t care. This modified bird´s eye
view is used to create a compact but sufficient intermediate representation of the environment.

The center of the ego vehicle in the modified bird’s eye view sensor sends out simulated rays for
equally distributed angles around the vehicle’s center, which end when they hit a moving object or a
not driveable object. These simulated rays are used to calculate distances between the outer surface
of the vehicle and other moving objects and not driveable objects. This intermediate environment
representation is further extended by adding the semantic class and the relative velocity of the hit
points. This intermediate environment representation does not contain information about the tem-
porary goal pose of the vehicle. To include this information, a potential field containing information
about the temporary goal pose of the ego vehicle is included. The potential field is also created from
the modified bird´s eye view.

Planning requires the possibility of predicting how the autonomous vehicle will move for some control
action signals. Nonholonomic constraints restrict the motion of vehicles, and therefore it is crucial
to design a motion model that predicts feasible short-term plans that satisfies these restrictions.
The design of the physical vehicle motion model is done by first performing system identification
of the drive train and the steering input to the inverse radius of the circular path that the vehicle
is following. The complete physical vehicle motion model makes it possible to create feasible short-
term plans based on control action sequences. The control action sequence is a time segment of the
steering and throttle signals over a limited time. These control action sequences can be compactly
described by a small number of parameters, called local plan parameters in this thesis. In principle,
such local plan parameters can be randomly chosen, tested for feasibility (collisions need to be
avoided), and ranked in terms of suitable quality measures. However, the present work aims to
train an agent to generate a small set of suitable local plan parameters based on the environment
description. For this purpose, the system uses imitation learning and reinforcement learning. The
best short-term plan is executed by applying lateral and longitudinal control or to simply execute
the underlying control action sequence. The selected short-term plan is executed for a short time
period before the autonomous vehicle creates a new short-term plan.

This results in an autonomous vehicle that is able to safely drive through a testing route with
different obstacles. It is easy to test and certify each component of the complete system. The results
also show that the autonomous vehicle drives on paths similar to clothoids in the curves.

i

Sammendrag

Autonome kjøretøy har gjort betydelig fremgang og fått mye oppmerksomhet de siste årene. Denne
avhandlingen undersøker en ny tilnærming til simulert autonom kjøring med fokus på sikkerhet. Det
er for tiden to forskjellige grupper av tilnærminger til autonome kjøretøy; ende-til-ende tilnærminger
og strukturerte tilnærminger. En strukturert tilnærming er valgt i denne avhandlingen fordi hver
modul kan testes og sertifiseres. Dette er avgjørende for systemets sikkerhet og vesentlige aspekter
for de største interessentene.

Simuleringsmiljøet CARLA er valgt som simuleringsmiljø for dette systemet. CARLA tilbyr et
bredt utvalg av sensorer. Semantiske kamera er en av disse sensorene, og det blir bruket til å lage
en fugleperspektivsensor som brukes i denne avhandlingen. CARLA opererer med mange seman-
tiske klasser som ikke er relevante for kjøring. Derfor er de semantiske klassene inndelt i fire nye
semantiske klasser: vei, objekt i bevegelse, ikke kjørbart objekt og uinteressant. Det modifiserte
fugleperspektivet brukes til å lage et kompakt, men tilstrekkelig representasjon av miljøet.

Sentrum av ego-kjøretøyet i den modifiserte fugleperspektivsensoren sender ut simulerte stråler
for likt fordelte vinkler rundt kjøretøyets senter, som slutter når de treffer et objekt i bevegelse
eller et objekt som ikke kan kjøres. Disse simulerte strålene brukes til å beregne avstander mellom
den ytre overflaten av kjøretøyet og andre bevegelige objekter og ikke kjørbare objekter. Denne
representasjonen av mellommiljøet utvides ytterligere ved å legge til den semantiske klassen og
den relative hastigheten til treffpunktene. Denne representasjonen av mellommiljøet inneholder
ikke informasjon om kjøretøyets midlertidige målposisjon. For å inkludere denne informasjonen,
inkluderes et potensialfelt som inneholder informasjon om den midlertidige målposisjonen til ego-
kjøretøyet. Potensialfeltet skapes også fra det modifiserte fugleperspektivet.

Planlegging krever muligheten til å forutsi hvordan det autonome kjøretøyet vil bevege seg gitt
noe informasjon om miljøet rundt kjøretøyet. Ikke-holonomiske begrensninger (eng: nonholonomic
constraints) begrenser bevegelsen til kjøretøy, og derfor er det avgjørende å designe en bevegelses-
modell som forutsier mulige veier som tilfredsstiller disse begrensningene. Utformingen av beveg-
elsesmodellen gjøres ved først å utføre systemidentifikasjon av drivverket og styreinngangen til den
omvendte radiusen til den sirkulære banen som kjøretøyet følger. Den komplette bevegelsesmod-
ellen gjør det mulig å lage gjennomførbare planer basert på kontrollhandlingssekvenser (eng: control
action sequences). Kontrollhandlingssekvensen er et tidssegment av styrings- og gasssignaler over
en begrenset tid. Disse kontrollhandlingssekvensene kan beskrives kompakt med et lite antall pa-
rametere, i denne avhandlingen blir dette kalt lokale planparametre (eng: local plan parameters) i
denne avhandlingen. I prinsippet kan slike lokale planparametre velges tilfeldig, testes for gjennom-
førbarhet (kollisjoner må unngås), og rangeres i forhold til egnede kvalitetstrekk. Det nåværende
arbeidet trener en agent til å generere egnede lokale planparametre basert på miljøbeskrivelsen. Til
dette formålet bruker systemet imitasjonslæring (eng: imitasjon learning) og forsterkende læring
(reinforcement learning). Den beste kortsiktige planen utføres ved å bruke lateral og langsgående
kontroll eller ved å bare utføre den underliggende kontrollhandlingssekvensen. Den valgte kortsiktige
planen utføres i en kort periode før det autonome kjøretøyet oppretter en ny kortsiktig plan.

Dette resulterer i et autonomt kjøretøy som trygt kan kjøre gjennom en testrute med forskjellige
hindringer. Det er enkelt å teste og sertifisere hver komponent i hele systemet. Resultatene viser også
at det autonome kjøretøyet kjører på stier som ligner clothoider (eng: clothoids) i kurvene.

ii

Preface

This is a master’s thesis in Computer Science, written in the spring of 2022 for the course TDT4900
at the Norwegian University of Science and Technology (NTNU).

In researching and developing a structured approach to autonomous driving, I have been able get a
deep understanding of all the modules that is required for an autonomous vehicle. It has been very
interesting to come up with ideas for all these modules, implement the ideas, and connect them
together. I am grateful for the opportunity to work on this topic, and I hope that the reader will
appreciate the synergy of these modules as much as I have done.

I want to thank my supervisor, Rudolf Mester. His clever ideas and guidance throughout the entire
process has been extremely valuable and inspirational.

Trondheim, June 20th, 2022

Bjørn André Aaslund

iii

Contents

Abstract i

Sammendrag ii

Preface iii

Contents iv

List of Figures vii

List of Tables x

1. Introduction 1
1.1. Introduction and motivation for autonomous vehicles 1
1.2. Research objectives in this thesis . 2
1.3. Thesis outline . 2

2. End-to-end and Structured Approaches to Autonomous Driving 3
2.1. End-to-end approaches for AVs . 4

2.1.1. Imitation learning for end-to-end autonomous driving 4
2.1.2. Reinforcement learning for end-to-end autonomous driving 5

2.2. Structured approaches to AVs . 6
2.2.1. Perception . 6
2.2.2. Environment representation . 6
2.2.3. Plan and decide . 6
2.2.4. Control . 7

3. State of the Art 8

4. Overview of the Relevant Components of the CARLA System 10
4.1. Disable environment objects in CARLA . 10
4.2. Adjustment of vehicle physics in CARLA . 10
4.3. Relevant measurements and sensors in CARLA . 11
4.4. High-level planning provided by CARLA . 11
4.5. Traffic Manager for creating specific driving scenarios 11

5. Overview of the SafeRide System 12
5.1. The interface to the CARLA simulator . 12
5.2. The agent in the SafeRide system . 13

6. Sensor Data Processing in the SafeRide System 16
6.1. LiDAR for autonomous vehicles . 16
6.2. LiDAR as implemented in CARLA . 16
6.3. Camera for autonomous vehicles . 17

iv

Contents v

6.4. Cameras as implemented in CARLA . 18
6.5. Semantic sensors in CARLA . 18
6.6. Recolored BEV sensor . 18

7. Intermediate Environment Representation 20
7.1. The Circogram environment representation . 21

7.1.1. Creation of the dynamic Circogram . 24
7.2. The potential field environment representation . 27

7.2.1. Creation of potential field from semantic BEV in CARLA 27

8. Physical Vehicle Motion Models 29
8.1. Constant turn rate and velocity model . 29
8.2. Constant steering angle and velocity . 31
8.3. Dynamic bicycle model . 36
8.4. System identification for the vehicle motion models 38

8.4.1. Longitudinal drive train model . 39
8.4.2. Steering to inverse radius model . 45

8.5. Validation of the physical motion model . 46

9. The Planning Component 48
9.1. Expectations of a good autonomous vehicle . 48
9.2. High-level planning between two locations . 48

9.2.1. High-level planning as supported in CARLA 49
9.2.2. High-level planning in SafeRide . 50

9.3. Navigation in SafeRide . 51
9.4. Control action sequence generation . 52

9.4.1. Driving action generator . 52
9.5. Different proposals for short-term planners . 54

9.5.1. Short-term planner with random sampling . 54
9.5.2. Short-term planner with imitation learning 56
9.5.3. Short-term planner with reinforcement learning 57

9.6. Policy network for the learning-based short-term planners 57
9.6.1. Feature extraction of the potential field . 58
9.6.2. Feature extraction of the dynamic Circogram 59
9.6.3. Feed forward neural network of concatenated features 59

9.7. Short-term plan selection . 61
9.7.1. Hard constraints to avoid collision and obey speed limits 61
9.7.2. Soft plan selection criteria . 62
9.7.3. Short-term plan optimization . 66

9.8. Planning in different driving situations . 67

10.Plan Execution and Control 70
10.1. Control to follow short-term plan . 70

10.1.1. PID controller . 70
10.1.2. Stanley controller . 71
10.1.3. Tuning of gains for the controllers . 71

10.2. Execute control action sequence . 72

11.Experimental Results 74
11.1. Experimental setup of the SafeRide system . 74

11.1.1. Sensor configurations . 74

Contents vi

11.1.2. Environment representation configuration . 74
11.1.3. Selection of motion model . 74
11.1.4. Setup of the planning component . 75
11.1.5. Execution of the best short-term plans . 75

11.2. Experimental testing route . 75
11.3. Results from different driving situations in the test route 76

11.3.1. Left turn when navigation command is to follow lane 77
11.3.2. Left at intersection with static car . 77
11.3.3. Right at intersection without other cars . 78
11.3.4. Narrow passage through parked cars at both sides of the road 79
11.3.5. Left at intersection with dynamic car . 80
11.3.6. Right at intersection with dynamic car . 81
11.3.7. Parked car in the middle of the lane . 82

12.Discussion of the Design Process and the Results 84
12.1. Discussion of the initial experiments during the design process 84

12.1.1. Discussion of minimal viable agent . 84
12.1.2. Discussion of the number of local plan parameters 84
12.1.3. Discussion of comfort and speed limits . 85
12.1.4. Discussion of safety margin to obstacles . 85
12.1.5. Discussion of the short-term plan selection . 85
12.1.6. Discussion of the learning-based short-term planners 86

12.2. Discussion of the results from the test route . 87
12.2.1. Left turn when navigation command is to follow lane 87
12.2.2. Left in intersection with static car . 87
12.2.3. Right in intersection without other cars . 88
12.2.4. Narrow passage through parked cars at both sides of the road 88
12.2.5. Left in intersection with dynamic car . 88
12.2.6. Right in intersection with dynamic car . 89
12.2.7. Parked car in the middle of the lane . 90

13.Conclusion and Further Work 91
13.1. Conclusion . 91
13.2. Further Work . 92

A. Definitions Used in the Thesis 96

B. Affine Transformation between Coordinate Frames 98

C. Difficulties of Creating the Circogram from a BEV in CARLA 99

D. Discontinuity of Angles 100

E. Complete Autoencoder Architecture 101

F. Recreated images from the trained autoencoder 102

G. Complete Policy Architecture 104

H. The testing route 105

I. Initial experiments during the design process of SafeRide 106

List of Figures

2.1. Overview of the difference between an end-to-end approach and a structured approach
to autonomous vehicles. 3

5.1. High-level overview of the SafeRide system. 13
5.2. Overview of the interface between the simulator and the agent. 14
5.3. Overview of the agent in the SafeRide system. 15

6.1. A point cloud from a scanning of a LiDAR sensor. 17
6.2. Conversion of an RGB image to a image with semantic classes. 18
6.3. Creation of custom recolored BEV sensor in CARLA. 19

7.1. Stixel representation created from raw camera image. 20
7.2. An illustration of how an intermediate representation improves generalization. 21
7.3. Collision corridors created from different objects. 22
7.4. Creation of a Circogram from a semantic BEV image. 22
7.5. Illustration of how boarder points of the ego vehicle are calculated. 23
7.6. Creation of a dynamic Circogram from a semantic BEV image and velocity informa-

tion of other moving objects. 24
7.7. A limitation of using a LiDAR for creating the Circogram. 25
7.8. Illustration of how the static part of the Circogram is created in CARLA. 26
7.9. A recolored BEV from the custom sensor together with the corresponding potential

field. 28

8.1. The different coordinate frames that are used to create the physical motion models,
and the relevant symbols. 30

8.2. Overview of the complete motion model. 32
8.3. Illustration of the symbols that are used in the constant turn rate and velocity model. 33
8.4. Illustration of the symbols that are used in the constant steering angle and velocity

model. 33
8.5. Graph of the relation between the steering input and the slip angle. 35
8.6. Illustration of the symbols that are used in the dynamic bicycle model. 37
8.7. Block diagram and response of the drive train system. 40
8.8. Analysis of the drive train for different step functions for the throttle input. 42
8.9. Analysis of the drive train for different step functions for the brake input. 43
8.10. Regression of the braking input against the deacceleration measures. 44
8.11. Regression of the measured steering input against the inverse radius of the curve. . . 46
8.12. Comparison of motion model and measured motion of a CARLA vehicle. 47

9.1. An overview of the road network in Town01 in Carla. 49
9.2. Possible spawning positions in Town01 for the ego vehicle and a generated high-level

plan between two locations. 50
9.3. Two segmented high-level plans that show how the desired velocity vh affects the

number of points in the segment. 51
9.4. Example of two different points in the high-level plan that are used for navigation. . 52

vii

List of Figures viii

9.5. Example of possible control action sequences for the steering input and the throttle
input, and the corresponding short-term plan. 53

9.6. Diagram of how the dynamic action generator is connected to the motion model. . . 54
9.7. Abstract overview of the policy network architecture which takes the environment

state as input and outputs local plan parameters. 58
9.8. Convolutional autoencoder structure for the feature extractor of the potential field. . 59
9.9. Convolutional neural network structure for the feature extractor of the dynamic

Circogram. 60
9.10. Feed forward neural network architecture of the head of the policy. 60
9.11. Illustration of four circles that approximate the outer surface of the ego vehicle. . . . 62
9.12. The process of how the hard constraints in the short-term plan selection reduce the

set of feasible short-term plans. 63
9.13. Illustration of how the relative velocity vector and the distance vector on the risk

measure τi. 64
9.14. The process of applying the multi objective optimization with the soft constraints on

a set of short-term plans that fulfills the hard constraints. 67
9.15. Different optimization weights for the different soft constraints for the different driv-

ing situations. 68
9.16. An extension of the neural network policy to allow for different policies in different

driving situations. 69

10.1. A vehicle that tracks a short-term plan by using lateral and longitudinal controllers. 72
10.2. A vehicle that tracks a short-term plan by executing actions from the control action

sequence. 73

11.1. The testing route that is designed to test the trained SafeRide system. The test
route consists of seven different situations that required different maneuvers of the
autonomous vehicle. The situations in the boxes around the map will be arrived in
a counter clockwise manner, starting from the box at the top to the left, and ending
at the box at the top to the right. 76

11.2. Result of left turn when navigation command is to follow lane. 77
11.3. Result of left at intersection with static car. 78
11.4. Result of right at intersection without other vehicles. 79
11.5. Result of driving through a narrow passage consisting of parked cars at both sides of

the road. 80
11.6. Result of right at intersection with dynamic car creating an obstacle. 81
11.7. Result of right at intersection with dynamic car creating an obstacle. 82
11.8. Result of overtaking a parked car in the middle of the lane. 83

12.1. Illustration of different confidence levels in the local plan parameters. 86

B.1. Points that are used to create the affine transformation between the coordinate frames. 98

D.1. The orientation θ before the removal of the discontinuity, and the result θ̂ after the
removal of the discontinuity. 100

F.1. Original potential fields and the recreated potential fields from the trained autoencoder.103

List of Figures ix

H.1. The complete testing route where all the driving situations are connected. Parts of
the route where the ego vehicle only need to follow the lane are removed. This makes
the high-level plan provided by CARLA a continuous line from the starting position
to the end position. 105

List of Tables

8.1. Important symbols in the physical motion model. 31
8.2. The proportionality factor and the time constants in the drive train for different step

inputs of the throttle. 43
8.3. Braking deacceleration for different initial velocities, and different braking inputs. . . 44
8.4. Regression of the braking input against the deacceleration. 45
8.5. Regression of the steering input against the inverse radius. 46

10.1. Controller gain constants that are used in the longitudinal and lateral controllers. . . 71

11.1. The amount of data that is used to train the short-term planner based on imitation
learning . 75

11.2. Parameters used in the experiments for the planning component. 75

A.1. Important names relevant to CARLA together with a short explanation. 96
A.2. Important defined names relevant to the sensors together with a short explanation. . 96
A.3. Important defined names relevant to the intermediate environment representation

component together with a short explanation. 96
A.4. Important defined names relevant to the physical motion model component together

with a short explanation. 97
A.5. Important defined names relevant to the planning component together with a short

explanation. 97

E.1. Model summary for the autoencoder network used to extract features from the po-
tential field. 101

G.1. Model summary for policy network used for mapping environment states to local plan
parameters. 104

x

1. Introduction

This chapter introduces the thesis by introducing and motivating the topic in section 1.1. sec-
tion 1.2 describes the objectives of the thesis. Finally, section 1.3 briefly describes the outline of the
thesis.

1.1. Introduction and motivation for autonomous vehicles

The human society is approaching a new paradigm in human travel, and autonomous vehicles (AV)
are at the center of this evolution. Cars have evolved a lot during the last decades from containing no
mechanisms for supporting the driver, to offering GPS-based navigation, emergency braking systems,
obstacle alert systems, and adaptive cruise control to only mention some of the technologies new
cars offer. Cars have advanced from completely mechanical devices to complex devices where diverse
digital components accompany the mechanical main structure. The rapid growth and innovative
developments are due to the many benefits they create for society. Completely autonomous cars
will create new benefits for society regarding safety, independence, economy, and productivity to
mention some.

National Highway Traffic Safety Administration (NTHSA) is an agency of the U.S. federal govern-
ment, and reports that around 95% of all car accidents in the USA are related to human errors1.
Thus by removing the human driver, the number of accidents can be decreased drastically. Au-
tonomous driving has the potential to reduce risky behavior by drivers. Maybe the most significant
impact might be that this approach gets rid of drivers who are tired or influenced by drugs.

By removing the need for a human driver, the cars no longer need to follow traditional design rules.
People with disabilities that refuse them to drive traditional cars, can transport themselves inde-
pendently with an autonomous vehicle. Even children could transport themselves by autonomous
vehicles, and then they do not rely on another person driving them.

Autonomous driving could also create economic benefits. With fewer accidents, there will be less
need for vehicle repair, which will also affect the medical costs. Both of these economic benefits
will also be correlated with the safety aspect, causing fewer accidents. Fully autonomous driving
could even improve the productivity of society. Today people use a considerable amount of their
time driving, which the drivers could use doing other tasks. If the additional time is used to create
value, this benefit might also influence economic growth.

Altogether the benefits of fully automated cars are enormous, and they will primarily have a positive
impact on the society2. Autonomous driving is a research area that has received much attention.
Many big companies are investing heavily in this technology. For the most prominent stakeholders,
it is vital to be able to test and certify the autonomous cars. Since the liability requirements are so
strict for the manufacturers, it is in the their best interest to test and certify the autonomous vehicle.
Therefore, a structured approach to autonomous driving is developed in this thesis. A structured

12016 Fatal Motor Vehicle Crashes: Overview,
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456

2The technology might be abused for military purposes.

1

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456

1.2. Research objectives in this thesis 2

approach to autonomous driving offer the opportunity to understand and verity each component of
the system, which end-to-end approaches to autonomous driving currently do not. Therefore, this
thesis aims to use a structured approach to design an autonomous vehicle for simulated environments
that is based on a sparse but sufficient environment representation, which is used to create safe and
feasible short-term plans.

1.2. Research objectives in this thesis

The overall goal of this thesis is to research and design a structured approach to autonomous driving
in a simulated environment. The system is centered around safety, and therefore the design decision
are made thereafter. The design of each component in the structured approach to autonomous
driving is also done with the biggest stakeholders in mind. The goal is that the autonomous vehicle
could be tested and certified. This will be done by designing a novel approach to create feasible
short-term plans based on control action sequences and a physical vehicle motion model. Thus, the
following research objectives have been formulated:

1. Research a sparse but sufficient intermediate environment representation.

2. Research the ability of creating a physical vehicle motion model for a simulation environment.

3. Research the ability of creating a physical vehicle motion model for a simulation environment.

4. Research the possibility of creating short-term plans that comply with nonholonomic con-
straints based on sequences of control actions.

5. Research the possibility of representing the control action sequences with few parameters that
can be learned.

1.3. Thesis outline

This thesis starts by explaining two different approaches to autonomous driving in chapter 2, namely
end-to-end and structured approaches. An overview of each approach is given, and the reason for
selecting a structured approach for the autonomous vehicle is explained. Thereafter, the state of
the art in autonomous driving and mobile robots is summarized in chapter 3. This chapter focuses
on topics which are related to the design of our autonomous vehicle. CARLA is selected as the
simulation environment for this thesis, and the relevant components from CARLA are explained
in chapter 4. chapter 2 to chapter 4 contain background information necessary for this thesis.
Next, an overview of the complete design of the autonomous vehicle is given in chapter 5. All
the components of the system, and how they are connected are briefly explained. In chapter 6 we
explain how the sensors from CARLA works, and how they are preprocessed to the sensor that is
used by the autonomous vehicle in this thesis. The created sensor is the main building block for
creating the intermediate environment representation that is explained in chapter 7. In chapter 8, the
physical motion model of the vehicle is designed. The physical motion model and the intermediate
environment representation is used to create short-term plans for the autonomous vehicle. This
process is explained in chapter 9. The short-term plans are executed by a component explained in
chapter 10. The methodology contains all the chapters from chapter 5 to chapter 10. The results
from the final design of the autonomous vehicle is presented in chapter 11, and they will be discussed
in chapter 12. The thesis will be concluded and further work will be presented in chapter 13.

2. End-to-end and Structured Approaches to
Autonomous Driving

One way to divide AV systems into two groups is to separate end-to-end approaches from mod-
ular approaches. An end-to-end approach attempts to achieve autonomous driving using a single,
comprehensive software component, while a modular approach contains several building blocks that
together form the system. An overview of the two approaches is shown in Figure 2.1. An end-to-end
approach could have an agent based on imitation learning or reinforcement learning, which takes
sensor data as input and outputs actions. A modular approach divides the task of creating actions
into several subtasks. These subtasks could be low-level perception, scene parsing, path planning,
and vehicle control. By solving each of these subtasks, the goal is that the whole pipeline works as
an AV. Each module in the modular approach may be partly, completely or not at all implemented
by machine learning (ML), and such a structured approach could also be trained end-to-end or
whatever is possible for ML systems. The difference between the two approaches is whether they
break down the task into different modules.

Sensor input

Sensor input End-to-end pipeline

Modular pipeline

Perception Environment
representation

Plan & decide Vehicle control

Neural network

Figure 2.1.: Overview of the difference between an end-to-end approach and a structured approach
to autonomous vehicles. The structured approach contain several components that required careful
designing.

These two approaches have both advantages and disadvantages. End-to-end learning is simpler to
implement in the sense that it requires less domain knowledge. It only requires one module that
maps inputs to outputs, but this module might be very complex. These architectures need a lot

3

2.1. End-to-end approaches for AVs 4

of data and require a long training time. The reasons for this is that the input space is large and
complex, and driving is a hard task to learn. The ample input space makes it hard for the agent to
generalize well. For example, if the sensor input is a RGB front-facing camera, then the agent needs
to learn to stop behind other cars no matter what color they have. When the agent is designed
end-to-end, it also removes the explainability of the agent. The agent creates its own rules, and
it is hard to understand them for the designers. Explainability is a crucial aspect of safety-critical
systems.

The added computational cost might not be a significant disadvantage of using an end-to-end
approach for the most prominent companies. The biggest stakeholders like Google and Tesla have a
lot of computing power and do not see this as the bottleneck for the AV. The critical aspect for the
companies is the possibility of producing AVs where they can test each module. Since the liability
requirements are so strict for the manufacturers, it is in the their best interest to test and certify
each module. If an accident occurs, the manufacturer wants to know which part of the complete
system caused the event, and they want to fix this problem without changing the rest of the system.
However, this will make the complete system verification void, which require a new review.

The verification of each module and the complete system creates the need for each module to be
explainable. It needs to be possible to understand what causes an error. Using raw sensor data, the
agent gets noisy input with a lot of information that is unnecessary for driving. Thus, it is easier to
explain the AV’s actions if all the input data is relevant to the driving decision. One drawback of
this is that one might remove relevant information without noticing it. It will further increase the
explainability if each module is supposed to solve a specific task. Then it is possible to assess the
decisions that each module makes, and the modules can also be tested and certified.

End-to-end approaches have shown outstanding performance in games like chess and go [Silver et al.
2016]. In these settings, the agents have learned a deeper understanding of the game by using end-
to-end approaches. For AVs, the goal is not to develop radical new ideas but to create a robust, safe,
and explainable system. A modular approach requires more expert decisions and knowledge, making
the system harder to design. The different modules also often need to be trained independently, and
it is harder to optimize the whole pipeline than for end-to-end learning. The advantages are that
the AV will become more explainable, generalize better, and require less data than the end-to-end
learning approach.

2.1. End-to-end approaches for AVs

There exist currently two main groups of end-to-end approaches for AVs, which is based on imitation
learning and reinforcement learning. There have also been proposed combinations of these techniques
to overcome the limitations of each of them.

2.1.1. Imitation learning for end-to-end autonomous driving

Imitation learning is a supervised learning technique that learns from expert decisions. The goal
is to learn a mapping from input data which describe the current situation of the environment to
the expert decision, thus it is required to collect data from an expert who explores the environment
where the agent is going to learn to drive. For AVs, the input data could be a collection of sensor
data or preprocessed sensor data, and the expert data could be a human driving in a city or an
autopilot in a simulated environment. Given an input data xi, the model parameterized with θ
predicts an action âi = F (xi; θ). The action contains information about how to turn the steering
wheel and how much to push the gas pedal. The objective is to optimize a set of parameters θ, such

2.1. End-to-end approaches for AVs 5

that the difference between the estimated action, âi, and the expert’s action, ai, is minimized. This
can be expressed by Equation 2.1.

min
θ

∑
i

(L(F (xi; θ), ai), (2.1)

where L is a loss function. This way of learning assumes that the expert actions only depend on
the observations that the expert do. It is therefore important to give the learning agent all the
information that the expert uses to make a decision. In intersections the expert decides where to
turn based on the goal of arriving at a specific location. This is information that the learning agent
also needs to take into consideration to be able to make the correct turn. If a goal location is set
by the beginning of driving, a high-level planning algorithm can be used to find the best route. The
navigational instructions given to the agent can either be the decision in the next intersection, or a
set of the next way points.

Imitation learning has showed promising results for AV control the last couple of years. Some of
the state of the art agents in simulated environments take advantage of this approach, for example
Prakash, Chitta, and Geiger (2021). Although the promising results, there exists several limitations
with this way of learning. In imitation learning the agent do not perform any exploration to learn
what not to do in rare situations, or how to get back on track after a wrong decision. The agent
only learns how to imitate an expert, which only performs a small subset of the possible actions.
Imitation learning is also a data hungry approach, and it requires a lot of expert data to perform
well.

2.1.2. Reinforcement learning for end-to-end autonomous driving

Reinforcement learning is a group of learning based algorithms where an agent performs actions
in an environment after observing an environment state1. The agent gets feedback in terms of
rewards which reflect how good the action is. Most research in reinforcement learning has primarily
focused on solving video games and robotics locomotion problems. There has been relatively limited
research on the use of deep reinforcement learning for end-to-end autonomous driving [Kiran et al.
2021], perhaps since it is hard to safely train a reinforcement agent in the real world since such a
reinforcement learning agent needs to explore the environment to learn. There is, however, recent
notable work done by Kendall et al. (2019).

The main areas of designing a reinforcement learning based agent for end-to-end autonomous driv-
ing is to select an appropriate environment, defining the environment state, selecting an appropriate
reinforcement learning algorithm, and designing a reward function. The reward function is often a
combination of positive rewards for desirable driving behaviours, and negative rewards for unde-
sirable driving behaviours as collision and driving in the wrong lane. The reward function is often
a weighting of different rewards, and it might be challenging to select the appropriate weights.
Some possible rewards to use in AVs are closeness to the speed limit, distance from the middle
of the desired lane, difference between orientation of the vehicle and the desired lane, and mea-
sures for comfort. Kiran et al. 2021 presents an extensive survey on deep reinforcement learning for
autonomous driving.

However, there are some significant drawbacks when using reinforcement learning that impedes its
applicability to control tasks, in particular the lack of guarantees for safe operation and the capability
to specify constraints. Some of these limitations can be addressed by combining reinforcement

1The input to reinforcement learning algorithms is usually defined as a state. In this thesis, I define the state input
as an environment state to not cause confusion with the vehicle states that are used in the vehicle motion models

2.2. Structured approaches to AVs 6

learning with reliable control approaches [Bøhn et al. 2021]. These drawbacks can be handled by
using reinforcement learning as a component in a structured approach to autonomous driving instead
of using it in an end-to-end approach.

2.2. Structured approaches to AVs

The development of an AV is a complex task that can be divided into modules which can be solved
on their own. This requires more domain knowledge than the end-to-end approaches, but it offers
explainability and handles some of the current limitations with the structured approaches. It is also
possible to test and verify different modules. The AV task is divided into perception, environment
representation, planning and deciding, and control.

2.2.1. Perception

The first module is about how the AV senses the environment. The perception is the information the
AV has available to plan and make decisions. Different sensors are required for obtaining different
observations, which can be used in different parts of the system. For example, a camera can be used
to detect traffic signs, while a radar can be used to calculate the distance to the vehicle in front
of the ego vehicle. The AV needs different sensors to perceive the environment far away from the
vehicle and close to the vehicle. Redundant sources also increase confidence in the detection and
are important for robust sensing which improves safety. LiDAR, camera, radar, and ultra-sound
are sensors that are commonly used for autonomous driving. The different sensors that are used
for the perception of the environment offer information on different levels of abstractions, and the
sensor measurements need to be preprocessed to be meaningful for an AV. The different sensor
measurements are used in different parts of the environment representation.

2.2.2. Environment representation

The sensors include a lot of information that is not necessary for driving a car safely, and the
measurements are often noisy. Environment representation and localization are used to tackle these
problems. An environment representation for an AV should include all the necessary information for
an AV to drive. Environment representations are about extracting useful information from sensor
measurements. Semantic segmentation and object detection are two procedures to separate different
objects, and creates a better understanding of the environment. Another environment representation
that is currently popular by designers of AVs is the so-called bird´s eye view (BEV) representation2.
This is a top down view of the environment around the ego vehicle, and might include information
about the drivable area, the position of other relevant objects, and the desired lane. Although,
the BEV does not contain any dynamic information, and hence it needs to be accompanied by
additional velocity information to create a sufficient environment representation for autonomous
driving. A sufficient representation of the surrounding environment is required to plan where to
drive.

2.2.3. Plan and decide

Planning is often divided into navigation and short-term planning. The navigation is a high-level
plan about how to drive from the start position to the goal. This is similar to the navigational

2Tesla currently uses a high-fidelity BEV representation in their autonomous vehicle design: https://www.tesla.
com/AI

https://www.tesla.com/AI
https://www.tesla.com/AI

2.2. Structured approaches to AVs 7

information drivers currently get from a GPS-based routing device. One approach to obtaining such
a high-level plan is to treat the road network as a weighted graph. The shortest path is found
by a shortest path algorithm as A∗. Navigational instructions are generated from the resulting
shortest path. The short-term planning is about generating a trajectory over a short time horizon
that is safe, efficient, comfortable, and approaches the global goal location. This plan incorporates
several decisions based on the perception. The decisions can for example be to stop in front of a
red light or drive around an obstacle. These types of decisions are often handled with finite state
machines.

2.2.4. Control

The last module executes the short-term plans. This is done by creating actions that make the vehicle
follow the short-term plan. The control task can either be divided into lateral and longitudinal
control, or be handled in one unit. Popular approaches are classical methods of closed loop control
and optimal control. The classical methods of closed loop control execute actions which compensate
for the deviations between the plan and the observed motion. A popular control design is to use a PID
(proportional-integral-derivative) controller for the longitudinal control, and a geometric controller
as a pure pursuit controller or a Stanley controller for the lateral control. The optimal controllers
select actions for a short time horizon such that a cost function which depends on the actions is
minimized. The optimization problem can also be extended by constraints, and model predictive
control (MPC) is a popular optimal controller that contains constraints. The goal of MPC methods
is to track a specified path while stabilizing the behaviour of the vehicle [Paden et al. 2016].

3. State of the Art

Bojarski et al. (2016) create an AV that can follow a lane based on a convolutional neural net-
work (CNN). They explain that this approach optimizes the whole pipeline at once but needs more
work to improve robustness. One way to improve robustness is to create a sufficient environment
representation that removes unnecessary information. Bird’s Eye View (BEV) is a map where the
point of view is above the vehicle. BEV is assumed to be a sufficient environment representation
since autonomous driving can be simplified to a system that operates in the plane. Roddick and
Cipolla (2020) uses 8 RGB cameras to create a semantic BEV. Philion and Fidler (2020) takes this
further by applying motion planning in the outputted BEV. Toromanoff, Wirbel, and Moutarde
(2020) take another approach by designing different representations they assume to be necessary for
autonomous driving. They train an autoencoder to extract information about the semantics, traffic
lights, intersections, and lane positions. The encoder part is used to represent the environment, and
actions are selected based on this information. A similar approach to extract features is used by
Chitta, Prakash, and Geiger (2021). This approach uses attention maps to create efficient reasoning
about the environment’s semantic, spatial, and temporal structure. A sparser environment represen-
tation is used by Klose and Mester (2019), which uses distances from the vehicle to the curb of the
road. They define this representation as a Circogram, which will be extended in this thesis.

In the last years, AVs have been closely related to learning. Well designed simulation environments
have made it easier to design and test different learning approaches for AVs that are dangerous to
test in the real world. There have been many innovative approaches to use imitation learning for
AVs in the years after the success by Bojarski et al. (2016). Chen et al. (2020) divide the imitation
learning task into two steps. In the first step, they create an agent with access to the ground truth
information. This agent then learns to drive by using all the available information, which they call
learning by cheating. In the second step, this agent supervises another agent that only has access to
image data. Chen et al. (2020) highlight that further work should combine this with reinforcement
learning to exceed the capabilities of the expert. Codevilla et al. (2019) explain the limitations
of imitation learning when scaling to a full specter of driving scenarios. Generalization issues are
one of the limitations that are highlighted. The generalization issue can be overcome by increasing
the dataset or introducing reinforcement learning. Liang et al. (2018) introduce an approach called
Controllable Imitative Reinforcement Learning (CIRL), which combines reinforcement learning with
imitation learning to make learning more data efficient. Furthermore, they apply different specialized
policies and reward functions for different situations. Liang et al. (2018) was the first approach to
use reinforcement learning to learn a policy in a simulator and obtain a better performance than
approaches based on imitation learning. Toromanoff, Wirbel, and Moutarde (2020) argues that
there currently does not exist a reinforcement learning algorithm that can handle urban driving.
Hence, some preprocessing is necessary to utilize reinforcement learning. Toromanoff, Wirbel, and
Moutarde (2020) creates an autoencoder that extracts implicit affordances, which are used in the
reinforcement learning setup. The previous papers use the learned policy in all driving situations, but
Ohn-Bar et al. (2020) highlights that different driving behaviors are required in different situations.
Therefore, they propose a mixture of policies that are used in different situations. The mixture of
policies makes the AV perform well in diverse situations.

The learning algorithms presented in the previous paragraph have learned to output different vari-

8

2.2. Structured approaches to AVs 9

ables. Liang et al. (2018) outputs the next action that should be used. This means that it outputs 3
values between −1 and 1, corresponding to steering, throttle, and brake. Chen, Koltun, and Krähen-
bühl (2021) discretize the actions and output a categorical distribution over the discrete actions.
Only outputting the actions may lead to noisy behavior. To overcome noisy driving, Chen et al.
(2020) predicts the next waypoints that the AV should drive through. Chitta, Prakash, and Geiger
(2021) uses a similar procedure but includes samples from a uniformly spaced grid for robustness.
One disadvantage of this approach is that the vehicle might not able to drive through the waypoints
due to the nonholonomic constraints of the vehicle.

Optimal control is a well studied area and has great success in mobile robotics. Model Predictive
Control (MPC) is a way to control a process while fulfilling constraints at the same time [Rawlings
and Mayne 2009]. MPC has become popular due to its capacity to handle complex nonlinear dy-
namics while still satisfying output constraints. This has been a successful approach for planning
and controlling when solving complex quadrotor problems. Falanga et al. (2018) creates a MPC
based model that combines planning and perception of objects. Regardless of the success, MPC still
encounters problems in some applications due to high computational costs, the need for an accurate
mathematical model, and the sensitivity to design choices. The design choices that heavily influence
the performance are the formulation of the cost function, hyperparameters, and the prediction hori-
zon. These limit the MPC to generalize well for problems that need different design choices. Lately,
there have been approaches that aim at utilizing the strength of MPC and learning to make models
more flexible. Song and Scaramuzza (2020) propose to use a policy to output high-level decision
variables for a MPC controller. They show that this approach overcomes some of the difficulties
with MPC. This approach is extended and tested for agile drone flights by Song and Scaramuzza
(2022).

This thesis aims to develop a robust model for the AV, which uses a sufficient environment represen-
tation to compute feasible short-term trajectories. Based on the recent improvement in combining
MPC with learning, we want to utilize the well-known dynamics of vehicles and reduce the com-
plexity of the learning problem.

4. Overview of the Relevant Components of
the CARLA System

Realistic digital simulation environments are becoming one of the most important concepts to build
safe AV technology. The use of a simulator that has realistic physics, the necessary sensors, and
possibility to generate a wide range of driving scenarios is a key to build safe and robust AVs. The
complexity of urban environments requires that models need to be tested in countless environments
and traffic scenarios to be able to generalize well. This requirement causes the cost and development
time to exponentially increase using the physical real world environment. For this reason a simulator
is vital.

In 2017 there existed few open source simulators suitable for AV research. Furthermore, the limited
ones were quite restrictive in terms of customization and control over the environment. Dosovitskiy
et al. 2017 observed the need for an open source simulator specifically designed for training and
benchmarking AV systems, and created CARLA (Car Learning to Act). CARLA has now become
one of the most powerful and promising simulators for developing and testing AV technology.

CARLA has been created to support the development, training, and validation of AV systems. In
addition to open-source code and protocols, CARLA provides urban layouts, buildings, and vehicles
that were created for this purpose and can be used freely. The simulation platform supports flexible
specification of sensor suites, environmental conditions, complete control of all static and dynamic
actors, map generation, and more. The simulator is an open-source layer on top of Unreal Engine
4 and is designed as a server-client system. The server runs the simulation and renders the scene,
while the client is an interface that allows interaction between the autonomous agent and the server.
All the major components in CARLA that are used or modified are described below.

4.1. Disable environment objects in CARLA

All objects in a CARLA simulation is assigned an ID when the simulation starts. It is possible
to disable an object from a CARLA simulation by ID. This feature is used to disable all the
objects that can interfere with the custom sensor described in section 6.6. The sensor is based on
a camera above the vehicle which works as a BEV. The objects that are disabled consists of poles
and low hanging vegetation. These objects might cover the road on the custom BEV sensor, and
are therefore disabled. The objects that are disabled are static and hence will not influence the
simulation other than being an obstacle. The disabled obstacles are located on the sidewalks, where
the our implemented autonomous vehicle is very unlikely to drive. Therefore, the disabling of these
objects will be beneficial for the custom sensor, but not reduce the difficulty for our autonomous
vehicle.

4.2. Adjustment of vehicle physics in CARLA

CARLA offers the possibility to adjust the physics and the mechanics of the vehicles in the simu-
lation. We will not use an electric vehicle in this work since the recuperation effect will complicate

10

4.3. Relevant measurements and sensors in CARLA 11

the physical motion model in chapter 8. The standard Ford Mustang is selected for the ego vehicle,
but other vehicles could also be used. Automatic gearing is selected, and the gear switching time is
set close to zero. A gear switching time set to zero is again an action to increase the simplicity of
how the throttle impacts the velocity. The reduction of gear switching time will remove tiny drops
in the velocity when automatic gear changes occur. When a constant throttle or bake is applied,
these changes to the vehicle physics will result in a smooth rise or fall in the velocity.

4.3. Relevant measurements and sensors in CARLA

A precise description of the location and the movement of the vehicle is required to perform the
planning described in chapter 9. Therefore, we require several types of measurements in the design of
our autonomous vehicle. The location of the vehicle is described with global coordinates in meters,
and the orientation in angles. The world coordinate frame is described in chapter 8. The orientation
is measured between the global x-axis and the longitudinal axis of the vehicle. The movement of the
vehicle is described by the velocity and the rotation around the centre of gravity. Carla provides the
velocity in m/s and the rotation as the change in angles per second. All the measurements that the
server provides in angles are transformed into radians. The server provides these measurements for
all the actors in the simulation. The measurements and the sensor data are necessary for creating
the intermediate environment representation presented in section 7.1. It is possible to retrieve all
these measurements every time the server ticks.

In this thesis, only two sensors of the vast amount of sensors that CARLA provide is used. LiDARs,
RGB cameras, and semantic cameras are used. CARLA offer a simple way to obtain the sensor
measurements at every tick at the server. It is important to notice that CARLA uses the Unreal
Engine coordinate system where positive x is forward, positive y is right, and positive z is up. All
the sensors return the coordinate measurements in local space. How these sensors are implemented
will be further explained in section 6.2 and section 6.4.

4.4. High-level planning provided by CARLA

A component which creates high-level plans between two locations is created by CARLA. This
component is not included in the CARLA package, but comes as file with a implemented class
which can be imported. The start position of the high-level plan is usually the spawning position,
which is a location where a vehicle can be teleported to without causing a collision. This component
and how it is used in the autonomous vehicle is thoroughly explained in subsection 9.2.1.

4.5. Traffic Manager for creating specific driving scenarios

The Traffic Manager is a component in CARLA which controls vehicles in autopilot mode in the
simulation. This module is used to populated the simulation with other vehicles, and to set up
scenarios where the ego vehicle need more training or testing. In this thesis, only the velocity,
the preferred distance to the leading vehicle, and the starting location of the other vehicles are
controlled. The Traffic Manager also includes other more complex functionality that is not used in
this thesis.

5. Overview of the SafeRide System

This chapter presents the overall structure of the system SafeRide developed in this project. SafeRide
is a system that implements a particular, structured approach to simulated autonomous driving.
This choice of the system architecture, the decision to implement the system as a composition
of individual functional modules, makes it possible to test and certify each component. SafeRide
consists of several components, which will be presented and explained in this section. Figure 5.1
shows an high-level overview of all the components and their connections. The architecture consists
of a simulator based on Unreal Engine, an agent connected to a vehicle motion model, and an
interface between the simulator and the agent. The simulator simulates vehicles and provides start
and end locations for the drive, the dynamic vehicle state (position, velocity, orientation, and change
in orientation) described in chapter 8, and a semantic BEV described in section 6.5.

The start and end locations are only provided once before the autonomous vehicle starts to drive.
The vehicle is teleported to a new start location if the vehicle collides or reaches the end location,
SafeRide and CARLA are used in an episode-based manner. The duration between the vehicle starts
to it reaches the end location or collides is called an episode. An episode-based manner is used for
collecting training data, training the agent, and to test difficult situations several times. The start
and end locations are drawn randomly from a predefined set of possible spawning positions before
every episode starts.

The interface uses the start and end locations, the dynamic vehicle state, and the semantic BEV
to create a navigation command described in subsection 9.2.1, and an intermediate environment
representations. This data together with the dynamic vehicle state is forwarded to the agent. The
agent uses this information to create steering and throttle commands which are sent to the simulator
through the interface.

5.1. The interface to the CARLA simulator

The autonomous driving simulator CARLA already introduced in chapter 4, is used as the platform
on which the SafeRide system is developed. Figure 5.2 shows the three building blocks of the interface
to the CARLA simulator. The high-level planner (HLP) is a class implemented by CARLA which
takes the start and end locations as inputs and creates a high-level plan between these two locations.
This high-level plan only takes the road topology into account and creates a route proposal. The
route consists of equally distributed points between the start and end locations, which are extended
with the desired speed and the navigation command which is a command describing the maneuver
(left, right, straight, follow lane) at the location. An A* search with distance heuristic creates the
high-level plan. This component is further explained in section 9.2. The high-level plan is the only
input to the navigator (NAV). This component uses the high-level plan to navigation instructions
similar to a GPS-based navigation system that vehicles currently use. A navigation instruction is
created from the next point in the high-level plan where the navigation command changes, explained
in section 9.3. The navigation instruction consists of the distance along the high-level plan to this
point, the current navigation command, and the next navigation command. An interpretation of an
example of a navigational instruction could be, follow lane for 200 meters, then take left.

12

5.2. The agent in the SafeRide system 13

Dynamic
vehicle state

Simulator
(CARLA)

Vehicle
motion model

Steering , throttle

Unreal engine

Start and End
locations

Agent

Semantic BEV

Intermediate
Environment
representation

Dynamic
vehicle state

Navigation
command

Interface

Steering , throttle

Figure 5.1.: High-level overview of the SafeRide system. The green boxes are provided software and
implementations, and the blue boxes are implemented by me. The interface consists both provided
software and implementations by me, and is therefore green and blue.

In order to allow autonomous driving, the simulator is used to provide measurements and sensor
data, which the state data preprocessor (SDPP) preprocesses. The SDPP takes the dynamic vehicle
state, the semantic BEV, and the high-level plan as inputs. The only transformation the SDPP does
to the dynamic vehicle state is to change the orientation and change in orientation to radians, before
it is forwarded to the agent. The SDPP also uses the provided input to create the bipartite inter-
mediate environment representation. The first part of the intermediate environment representation
include information of the distances, the relative velocity, and the labels of the surrounding objects.
This intermediate environment representation is called Circogram and is described in . The second
intermediate environment representation is a potential field which is a field of positive values that
incorporate how far away a pixel is from the desired location in the semantic BEV. The high-level
plan is used to find the attraction point in the semantic BEV, which is then used to create the
potential field. The pixels that are not in the free space are assigned a high value. The potential
field is furhter explained in .

5.2. The agent in the SafeRide system

Figure 5.3 illustrates the components in the agent and their connections. The short-term planner
(STP) component obtains the navigation command, the dynamic vehicle state variables, the poten-
tial field, and the Circogram from respectively the HLP and the SDPP, and learns to create local
plan parameters. A short-term plan is a feasible plan for the next couple of seconds which complies
with the nonholonomic constraints of a vehicle; section 9.4 explains the details. This component
learns to output safe local plan parameters from the provided data. A safe short-term plan is a
plan that has a high time to collision (TTC) and keeps a certain distance to the other objects. The
short-term plan differs from the high-level plan in the sense that the precise geometric structure and
semantic labels, as well as the dynamics of the ego vehicle and surrounding objects are taken into

5.2. The agent in the SafeRide system 14

Dynamic
vehicle state

High-level
plan

Simulator
(CARLA)

Vehicle
motion model

Steering , throttle

Unreal engine

State data
preprocessor

High-level
planner

Start and End
locations

Agent

Semantic BEV Circogram

Potential field

Dynamic
vehicle state

Navigator

Navigation
command

Figure 5.2.: Overview of the interface between the simulator and the agent. The interface consists
of a high-level planner, a navigator, and a state data preprocessor.

consideration. A short-term plan is a trajectory over time, that is a sequence of dynamic vehicle
states. In our approach, a short-term plan is represented by a small number of parameters (for
details, see section 9.4).

The dynamic action generator (DAG) generates proposals for the actions the ego vehicle should
perform during a short time period, which we call control action sequences. The goal of the STP
is to create local plan parameters that can be used to generate several control action sequences
by the DAG. The DAG uses the local plan parameters from the STP and a motion model (MM)
to create feasible short-term plans. The short-term plan selection (STPS) starts by removing the
short-term plans that lead to a collision (hard constraints), and selects the best of the remaining
ones, based on risk, efficiency, and comfort. The short-term plan executor (PE) uses closed-loop
control and the short-term plan to calculate control actions that are sent to the input channels of
the simulated vehicle. The selected short-term plan is executed by a controller that compensates for
the deviations between the plan (which is based on a non-perfect dynamic model) and the observed
motion, or by executing the control actions in the control action sequence that is used to create the
best short-term plan. The STP produces new local plan parameters after a given period, and the
currently executed short-term plan is replaced by the updated one.

5.2. The agent in the SafeRide system 15

Vehicle
motion model

Steering , throttle

Navigation
command

Circogram

Potential field

Dynamic
vehicle state

Short-term plan executor

Short-term
planner

Dynamic action generator

Short-term plan selection
hard constraints

Short-term plans

Local plan parameters

Best short-term plan

Control action
sequence

Agent

Short-term plan
optimization

Feasible short-term plans

Sh
or

t-t
er

m
 p

la
n

se
le

ct
io

n

Figure 5.3.: Overview of the agent in the SafeRide system. The vehicle motion model is not a part
of the agent, but is illustrated for completeness.

6. Sensor Data Processing in the SafeRide
System

An autonomous vehicle needs the ability to detect the environment to act intelligently. Humans use
their eyes and ears to see and hear what is happening around them. Humans can navigate their cars
around obstacles and follow traffic rules by using this information.

Autonomous vehicles need some information about the environment to behave appropriately. Differ-
ent sensors enable autonomous vehicles to perceive the environment in a similar way as humans, and
some sensors give information to the autonomous vehicle that humans can not obtain. It is essential
to select sensors that can be implemented in the real world and contain the necessary informa-
tion to drive a car safely. This section examines LiDARs and cameras as sensors for autonomous
vehicles.

6.1. LiDAR for autonomous vehicles

A LiDAR is a sensor with the ability to measure distances to other objects. This is done by sending
out a rotating laser beam and measuring the time it takes for the reflected light to arrive back at the
sensor, similar to a Radar system. The time can then be used to create an accurate but semi-sparse
3D plot of the surface of the objects around the sensor. It is a semi-sparse representation of the
environment, as only a limited number of laser beams (Velodyne offers LiDARs with up to 128
laser beams) can be sent out, which gives a scanning of the environment in a special geometry. An
example of a point cloud from a scanning is given in Figure 6.1 This means that it is possible to
calculate the distance to the surrounding objects from the measurements. This distance is valuable
information for a vehicle with the primary goal of not crashing with other objects.

The LiDAR sensor has some shortages when it comes to perceiving the surroundings. It cannot
obtain information of traffic signs, the state of traffic lights, or road lane marking. This means that
an autonomous vehicle also needs other sensors to follow the traffic rules.

6.2. LiDAR as implemented in CARLA

CARLA uses ray-casting to implement the LIDAR sensor, which was first introduced by Roth 1982.
Simulated light rays are cast from the LiDAR sensor, and the paths are traversed. Ray-casting
emissions detect mesh models in the Unreal Engine simulation, and generate the point cloud. The
output raw data format is an array of 32-bit floats. Every four values are one point pi = [xi, yi, zi, ri],
where xi, yi, zi are coordinates and ri is the intensity. The intensity is calculated from the length
of the simulated light ray.

16

6.3. Camera for autonomous vehicles 17

Figure 6.1.: A point cloud from a scanning of a LiDAR. Each circle around the car corresponds to
a laser ray.

Source: https://velodynelidar.com/blog/guide-to-lidar-wavelengths/

6.3. Camera for autonomous vehicles

Cameras are the sensors that are most similar to how humans see the world. Hence this would be
a natural choice of sensor. A camera is relatively inexpensive compared to the other sensors, but
cameras require suitable software and affordable processing hardware to extract useful information.
The software and hardware are needed to convert the image information into some representation
that is useful for guiding a vehicle, for instance a semantic map (illustrated in Figure 6.2) or a
point cloud. The usefulness of cameras is decided by the software that converts images into useful
information for autonomous driving. By using the appropriate software, a camera can be used to
detect both static and dynamic obstacles. These capabilities are beneficial for an autonomous vehicle
and are in fact the only information needed for a human to drive. The detection of obstacles can give
information on traffic signs, the state of traffic lights, road lane markings, and pedestrians.

This sensor is the only sensor presented in this section that has the capability of sensing changing
driving conditions. A camera can capture icy parts on the road, and the driving behavior can be
adjusted to the conditions. A challenge for cameras in Nordic environments is the possibility of
snowy weather. An autonomous vehicle that has learned to follow the road lane marking may lose
information needed for steering. This challenge can be overcome by including these edge cases in
the training. The result might be that the autonomous vehicle learns to follow the wheel tracks of
the other car

One camera can only detect what is happening in a particular part of the surroundings around
the vehicle. Roddick and Cipolla 2020 proposed to use several cameras to incorporate the human
possibility of changing the viewing direction by turning the head. As described in chapter 3 Tesla
uses eight cameras to capture everything that is going on around the vehicle. One drawback of this
solution is that many images do not contain useful information.

6.4. Cameras as implemented in CARLA 18

Figure 6.2.: Example of a conversion of a image to information that is relevant for guiding a vehicle.
In this example the useful information are semantic classes. This conversion is performed in CARLA.

6.4. Cameras as implemented in CARLA

The cameras in CARLA is also implemented with ray casting in the same way as the LiDAR
sensors. Simulated light rays are cast from the camera sensor, and the paths are traversed. Ray-
casting emissions detect mesh models in the Unreal Engine simulation which are projected to a 2D
plane. The cameras are initialized with field of view, height, and width.

6.5. Semantic sensors in CARLA

CARLA offers two different semantic sensors in their current version (version 0.9.13), namely se-
mantic LiDAR and semantic camera. Both of these sensors are extensions of the original sensors
described in section 6.2 and section 6.2. The semantic LiDAR is extended by the semantic class of
the object that the simulated light ray hits. This means that each point in the point cloud contains
five values. Each object in the simulation is assigned a semantic class when the simulation starts,
and each semantic class corresponds to a color. The semantic camera in CARLA returns an image
where the semantic class information is encoded in the red channel. The classes need to be mapped
to the corresponding colors on the client side to view the semantic images. CARLA uses 23 different
classes1.

6.6. Recolored BEV sensor

Bird´s eye view (BEV) is an environment representation often used in autonomous driving. Tesla
proposed a sophisticated way of generating BEV images from cameras in their latest AI-day presen-
tation 2. A BEV sensor does not exist in CARLA, but it is possible to create a ground truth BEV

1All the classes are listed here,
https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-segmentation-camera

2The complete presentation can be view here: https://www.youtube.com/watch?v=j0z4FweCy4M

https://carla.readthedocs.io/en/latest/ref_sensors/##semantic-segmentation-camera
https://www.youtube.com/watch?v=j0z4FweCy4M

6.6. Recolored BEV sensor 19

(a) BEV with original semantic classes from CARLA. (b) BEV after recoloring to our own classes.

Figure 6.3.: Creation of custom recolored BEV sensor in CARLA.The pink color represent a not
drivable object, the purple color represent the road, and the dark blue color represent a moving
object.

sensor by placing a semantic camera above the ego vehicle and facing it downwards. The camera is
placed in front of the vehicle since the information in front of the vehicle is more important than
the information behind the vehicle. As explained in section 6.5, CARLA comes with many different
semantic classes. All of these classes are not necessary information to drive safe, and hence these
classes are reduced to only contain classes that are useful. In this thesis, the relevant classes are
road, moving object, not driveable object, and don’t care. Figure 6.3b illustrates the mapping from
the semantic classes in CARLA to the relevant classes in this thesis. The recolored BEV is used as
a sensor in the SafeRide system.

7. Intermediate Environment Representation

The raw sensor data is not immediately helpful in guiding an autonomous vehicle. Therefore, it is
appropriate to preprocess the raw sensor data to an explicit intermediate environment representa-
tion where it is easier to learn how to drive. The hypothesis in this thesis is that it is easier for an
autonomous vehicle to learn to drive safely and with more comfort for the passengers if an environ-
ment representation based on human understanding of physics, possible geometric structure, and
traffic semantics is designed and made available to the learning agent. Figure 7.1 shows an exam-
ple of such a transformation, where an algorithm transforms image data into stixels representing
objects that can cause a collision with the ego vehicle. Another benefit of an intermediate environ-
ment representation is that it improves generalization. Figure 7.2 illustrates how an intermediate
environment representation reduces the input space and improves generalization. The explicit in-
termediate environment represents the essential semantic, geometric, and kinematic situation. Two
different intermediate environment representations are used in this thesis. The Circogram represen-
tation will be explained in section 7.1, and the potential field representation will be explained in
section 7.2.

Figure 7.1.: Stixel representation created from raw camera image [Badino, Franke, and Pfeiffer 2009].
The vertical rectangles inform the ego vehicle about the free space in front of the ego vehicle.

20

7.1. The Circogram environment representation 21

Raw sensor space Intermediate representation space

𝒯𝑇𝑟𝑎𝑖𝑛 𝒫

𝑇𝑒𝑠𝑡 𝒬
𝒯(𝒬)

𝒯(𝒫)

Sunny

Rain

Figure 7.2.: An illustration of how an intermediate representation improves generalization. In this
example, RGB images are transformed to a semantic BEV image which makes the intermediate
representation generalize well. However, the weather information is useful and need to be encoded
in another way.

7.1. The Circogram environment representation

An autonomous vehicle can be thought of as a system that operates in a plane limited by 3D
obstacles compared to drones operating in the 3D-space. This plane simplifies the real world where
there exist non-touching overlaps like bridges and tunnels. The space that the vehicle operates in
is called a collision corridor, which is the 3D space limited on the bottom by the road plane, and
on the top by a virtual plane parallel to the road plane in the height of the ego vehicle. Figure 7.3
illustrates four examples of this space. Any obstacle in the space is represented by a red vertical
bar that goes over the complete height of the corridor. It does not matter whether it is only a point
object somewhere in that vertical bar or an object with a certain vertical extension along this bar,
such as a pole. The remaining of this section is based on my preproject report [Aaslund 2021].

One intermediate environment representation that is based on this simplification of the environment
is the Circogram by Klose and Mester 2019. The Circogram is created by sending out N rays from
the center of the vehicle. For each of these rays, there are two points of interest. The endpoint
of a Circogram ray, which is given by the presence of an object at any height between the road
surface and the car height. The endpoint can be considered as a virtual Stixel, which is described
by Badino, Franke, and Pfeiffer 2009. Badino, Franke, and Pfeiffer 2009 represent the area where
the vehicle can drive as free space and obstacles as sticks with different colors. The second point of
interest is the point that represents the outer hull of the vehicle. This information is crucial if one
wishes to drive in a narrow alley without scratching the vehicle surface or bumping into something.
Figure 7.4 illustrates the Circogram representation.

7.1. The Circogram environment representation 22

Figure 7.3.: Collision corridors created from different objects. The red vertical bars illustrates the
objects that the black ego vehicle can collide with. The blue striped box show the free space in front
of the ego vehicle.

Figure 7.4.: Creation of a Circogram from a semantic BEV image. The image to the left illustrates
a semantic BEV and red simulated rays. The image to the right shows the ego vehicle and the
hitpoints illustrated with red dots.

This representation of the environment is a sparse and compact abstraction of the environment, but
it is a sufficient representation of the driving situation. This means that the process of obtaining
the best driving action at any time will require less computing power and hence also be faster. One
limitation of this approach is that it might be difficult to drive if the roads do not contain curbs or
highways with several lanes. Also, a different system is needed to handle the traffic rules.

It is important to use the distance from the surface of the vehicle to the objects around the vehicle,

7.1. The Circogram environment representation 23

instead of the distance from the center of the vehicle. The ego vehicle is defined to be centered in
origo and pointing in π

2 . Then, the surface coordinates in the xy-plane are calculated by,

[
xs
ys

]
=

[
sgn(cos(α)) · w/2

x · tan(α)

]
if w · |sin(α)| < ` · |cos(α)|

[
sgn(sin(α)) · `/2

y/ tan(α)

]
else

(7.1)

𝑥

𝑦

ℓ

𝑤

𝛼!
𝛼"

Figure 7.5.: Illustration of how the boarder points of the ego vehicle are calculated. The blue point
in the end of the blue line is calculated with the first part of the picewise function in Equation
(7.1), and the orange point in the end of the orange line is calculated with the second part of the
equation.

where w is the width of the vehicle, ` is the length of the vehicle, and α is the angle between
the direction of the vehicle and the LiDAR ray that hit the object. This is further illustrated in
Figure 7.5. These calculations make the assumption that the vehicle is a rectangle. The distance of
the Circogram ray is calculated by,

di =
√

(xi − xs)2 + (yi − ys)2 (7.2)

where i is one of the Circogram rays, and di is the distance of the circogram ray.

This approach could be extended by adding more available information to the Circogram rays. The
extension of the static Circogram representation will be called the dynamic Circogram. The static
Circogram is extended by adding a semantic class and the relative velocity with respect to the ego

7.1. The Circogram environment representation 24

vehicle. By combining Circograms close in time, it is possible to obtain an more expressive represen-
tation. From two Circograms it is possible to obtain the relative velocity vector of the surrounding
objects. In this thesis it is assumed that perfect sensors exists, and the true instantaneous velocity
of the other moving objects are used. The dynamic Circogram is illustrated in Figure 7.6.

Sidewalk
Vehicle
Not known

Figure 7.6.: Creation of a dynamic Circogram from a semantic BEV image and velocity information
of other moving objects. The image to the left illustrates a semantic BEV and red simulated rays.
The image to the right illustrates a dynamic Circogram. The arrows illustrates the relative velocity,
and the points that do not have an arrow have the same velocity as the ego vehicle.

After this transformation the Circogram representation consists of points p ∈ R4 on the form
(di, vx,i, vy,i, ci). The same information can also be described as (di, si, ξi, ci), where si is the speed,
and ξi is the angle between the velocity vector vi and the direction of the ego vehicle which is
defined as π

2 . This whole intermediate representation will be in the space R4×N , where N is the
number of Circogram rays.

The dynamic Circogram can be used to understand how the surrounding objects are moving relative
to the ego vehicle. If the relative velocity vector is close to 0, it means that the object move with
the same speed and in the same direction as the ego vehicle. A high relative speed means that
the distance between the object and the ego vehicle is changing quickly. The distance is growing
or decressing depending on the orientation of the relative velocity vector. This means that the ego
vehicle needs to pay more attention to the objects that has a velocity direction towards the ego
vehicle, and it does not need to worry about the objects that have a relative velocity pointing away.
The dynamic Circogram makes it easy to understand which objects that can become conflicting,
and hence put the attention at these points. One issue with the static Circogram is that it is not
possible to differ between a vehicle in fort of the ego vehicle and a wall. The dynamic Circogram
can easily differ between these two scenarios since they have different relative speed compared to
the ego vehicle.

7.1.1. Creation of the dynamic Circogram

There are different ways to produce the Circogram. It is possible to create the Circogram from
a semantic BEV or from a semantic LiDAR. These two approaches have different drawbacks. A
semantic BEV is created in CARLA by attaching a semantic camera above the ego vehicle, as
explained in section 6.6. This setup creates a problem if there exist objects that cover the road.
These objects can be low hanging trees or lamp posts. These objects can be assigned to an own class

7.1. The Circogram environment representation 25

Figure 7.7.: Creation of a Circogram ray from several LiDAR rays. The red lines to the left illustrates
laser rays, and the striped blue area close to the car with the LiDAR illustrates a deadspot that
the LiDAR cannot detect. The upper red line in the image to the left hits the other car. The image
to the right shows the resulting Circogram ray from above the cars.

called "do not care" and handled accordingly or removed from the simulation. The second approach
is to use LiDAR data. The LiDAR sensor sends out rays in N directions above the ego vehicle. The
closest LiDAR ray which hits something in the relevant height above the ground corridor causes an
endpoint of the corresponding Circogram ray. The Circogram ray is obtained from this LiDAR ray by
backprojecting it onto the 2D plane. A limitation of this approach is the deadspots that are created
close to the vehicle, which are areas the LiDAR rays do not detect. Figure 7.7 illustrates the process
of generating a Circogram from a simulated LiDAR. The figure to the left shows a LiDAR that hits
a different vehicle, and the figure to the right shows the resulting Circogram ray. One deadspot is
illustrated with the blue striped area close to the car with the LiDAR in Figure 7.7.

In this thesis, the recolored semantic BEV described in section 6.6 is used to create the Circogram.
This sensor returns BEV images F ∈ [0, 255]rc×3, with r and c being respectively the number of
rows and columns of the image. An affine transformation that transforms coordinates in the ego
vehicle coordinate frame to pixel coordinates is used to find the pixel of the center of the vehicle.
This affine transformation is found by the least squares method and is further described in the
Appendix B. The center of the vehicle in the ego coordinate frame is transformed into a pixel op. A
virtual circle in the pixel coordinate frame with op as the center and a sufficient radius is selected
(that makes the whole image fit inside the circle). This circle is used to distribute the Circogram
rays. Each Circogram ray is sent out of op with a certain angle θi. The angles θi are discretized in

the interval [0, 2π) with step ∆θ =
2π

n
.

The length of the Circogram rays is found by traversing each line of pixels from op to each of the
equally distributed points on the circle. The line of pixels between op and one point of the circle
is found by the Bresenhams line algorithm. These lines are traversed one at a time, and the pixel
where the Circogram ray starts is the first pixel that corresponds to a drivable color. The pixel
where the Circogram ray ends is the first pixel after the start pixel, which does not correspond
to a drivable class. This is denoted as a hit point. This class will be the class that corresponds to
this Circogram ray. The length of the Circogram ray is then calculated by transforming the pixel
coordinates to the ego vehicles coordinate frame, and calculating the euclidean distance between
the points. The Circogram at this point is a vector v ∈ Rn×2). This matrix contains the distance of
each Circogram ray li (i.e. the distance from the car to a hit point) having a certain angle θi, and
classes of the endpoints. The rays that hit the edge of the image is assigned an own class called free
direction, and the length is set to 30 m.

The SafeRide system assumes perfect sensors to avoid data preprocessing of subsequent Circograms
to obtain the relative velocity. The endpoint of the Circogram ray is the coordinates of the location
where the ray hits another object. It is possible to retrieve additional information about this point

7.1. The Circogram environment representation 26

(a) Illustration of how the static part of the
Circogram is created in CARLA. The red lines are the
simulated Circogram rays. They are only drawn to
better illustrate how the static part of the Circogram
is created.

(b) The resulting hitpoints after sending out the sim-
ulated Circogram rays are marked with pink boxes.
The simulated rays that did not hit anything before
the image edge are not marked. This image is taken
further away than the image used for the Circogram
to better show the hitpoints.

Figure 7.8.: Illustration of how the static part of the Circogram is created in CARLA.

in CARLA. The additional information is retrieved by looping through all the actors (objects that
interfere with the simulation in CARLA) and checking if the Circogram ray has hit it. We retrieve
which actor which is located at this location. Once this is done, we extract the velocity and angular
velocity this object had during the last tick. The algorithm below further explains this process.

Algorithm 1 Static to dynamic Circogram
procedure GenerateDynamicCircogram(staticCircogram, actorList)

for point in staticCircogram do
for actor in actorList do

if point in actor.get_boundingbox() then
point[velocity]← actor.get_velocity()
point[angular_velocity]← actor.get_angular_velocity()
break

end if
end for

end for
end procedure

The relative velocity of the endpoint of the Circogram ray with respect to the start of the Circogram
ray can be calculated from the instantaneous motion vector for both points, the vector li, and the
momentary rotation rate ωi and ωs. The hit point rotates with orbital angular velocity ωi about
its center of rotation in a coordinate frame Fi which itself rotates with a spin angular velocity ωs

with respect to an external frame Fs, we can define ω = ωi+ωs to be the composite orbital angular
velocity vector of the point about its center of rotation with respect to Fs. The ωi and vi will be

7.2. The potential field environment representation 27

0 when the Circogram ray hits a static object. CARLA uses the left hand rule to determine the
direction of the angular velocity. The velocity of the hit point of the Circogram ray i is defined as
vi, and the instantaneous motion vector of the ego vehicle is defined as vs. The relationship between
the velocities when the reference frame is rotating is given by,

vi = vs + ω × li + vi/s (7.3)

Then the relative velocity vector vi/s is calculated with,

vi/s = vi − vs − ω × li (7.4)

7.2. The potential field environment representation

The dynamic Circogram environment representation includes the necessary information for driving
safely, but it does not contain any information about where the autonomous vehicle should drive.
The dynamic Circogram is created from the recolored BEV sensor explained in section 6.6. A
temporary goal pose is defined to be a location in the recolored BEV that the autonomous vehicle
want to arrive. The temporary goal pose works as an attractor on the ego vehicle.

One common way to encode the attraction to a position in the two-dimensional plane is to use a
potential field approach. This approach is based on a potential function which can be interpreted
as energy, and the gradient of the potential function as a force. The potential function will guide
the vehicle as if it is a particle in a gradient field. Usually obstacles will have the opposite effect of
the temporary goal pose, obstacles will act as a repulsive force. The value of the potential function
will be a surface if it is plotted in three dimensions. One widely used algorithm to approach the
temporary goal pose is to use gradient decent. This potential field approach is a rather commonly
used approach in robot motion planning [Koren and Borenstein 1991]. In SafeRide , the vehicle is
considered as a dynamical system which is a subject to non-holonomic constraints. This means that
the vehicle cannot change the motion direction and speed instantaneously. This makes the planning
harder, and simple approaches like gradient decent cannot be used. Although the potential field
cannot directly be used to find a plan, it still contains valuable information that will be used in
section 9.5.

7.2.1. Creation of potential field from semantic BEV in CARLA

The potential field is created from the recolored BEV sensor, which is also used to create the
dynamic Circogram. Each pixel in the recolored BEV sensor contains a categorical value, which
will be transformed to a real positive value. The high-level plan provided by CARLA (explained in
subsection 9.2.1) is used to find the temporary goal pose. The location of the temporary goal pose
is defined to be the last point in the high-level plan that is inside the recolored BEV.

The creation of the potential field starts by extracting the coordinates of the temporary goal pose.
This coordinate is the starting point of a recursive approach to calculate the distances to the other
pixels in the free space. The distance between two neighbor pixels is set to one. The neighbors to
the neighbors are traversed recursively in a breadth first manner, until all the pixels in the free
space have a potential value. The remaining pixels are assign a high value The result is a positive
valued potential field in image form which contain information about how the ego vehicle can reach
the temporary goal pose. Figure 7.9 shows a recolored image that is rotated 180 degrees, and the
corresponding potential field when the temporary goal pose is down to the right in the recolored

7.2. The potential field environment representation 28

(a) One example output from the custom recolored
BEV sensor. The image is rotated 180 degrees to eas-
ily see the connection to the potential field.

(b) An output from the custom recolored BEV sensor
and the corresponding potential field. The temporary
goal pose is down to the right, which corresponds to
the ego vehicle taking a left turn in the intersection.

Figure 7.9.: A recolored BEV from the custom sensor together with the corresponding potential
field.

BEV. Figure 7.9a include a manhole cover on the sidewalk which CARLA label as a road. Figure 7.9b
shows that the manhole cover gets the same potential value although it is labeled as drivable in the
recolored BEV, and hence only the pixels in the free space are traversed.

Repulsive forces are not included since the autonomous vehicle should be able to drive close to
static objects. However, repulsive forces could be added in the velocity direction of other moving
objects. This is not done in this system since that information already is encoded in the dynamic
Circogram, and therefore redundant.

8. Physical Vehicle Motion Models

Estimating the motion of a vehicle is a crucial requirement for intelligent vehicles. The benefit of
having a motion model is that it is possible to predict how the vehicle will move based on the
throttle and steering input. It is however difficult to create a model that precisely can describe how
a vehicle will move in the real world. Therefore, it is often necessary to make assumptions to come
up with simplified models that are approximately correct.

There exists many different motion models for vehicles, and they differ in the number of assumptions
that they make. The physics based motion models can be divided into kinematic motion models and
dynamical motion models. Kinematic models describe a vehicle’s motion based on the mathematical
relationship between the parameters of the movement, without considering the forces that affect
the motion. Schubert, Richter, and Wanielik 2008 test and analyze different motion models, and
argue for which settings the different models are appropriate. In kinematic models, all the forces are
neglected, and geometry and trigonometric identities are used to derive the models. The dynamical
models extend the kinematic models by also taking forces into consideration. Vehicles are governed
by complex physics, and therefore dynamic models can get extremely large and involve many internal
parameters of the vehicle. These motion models exists as differential equations, and corresponding
time-discrete models.

Two different coordinate frames are used to explain the physical motion model. Figure 8.1 shows the
vehicle coordinate frame and the world coordinate frame. The vehicle coordinate frame is defined to
have origo at the current center of mass of the vehicle, and the y-axis pointing in the same direction
as the longitudinal axis of the vehicle. In the world coordinate frame, the position of the vehicle is
described by a point (px, py), and an orientation angle θ. The important symbols that are used in
this chapter is listed and explained in Table 8.1.

In this project we split up the complete vehicle model into a steering model and a drive train model.
The drive train model describe the resulting velocity as being effected by the throttle (or brake)
pedal, whereas the steering model describe the trajectory of the car, dependent on steering input
while moving forward. The overview of the complete model is illustrated in Figure 8.2. The vehicle
model leads to the same trajectory in space, no matter what the velocity is, if the steering angle is
coupled to the traveled distance on that trajectory, or if this course is traveled fast or slowly. The
different parts of the physical vehicle motion model will be described in this chapter.

8.1. Constant turn rate and velocity model

The simplest class of kinematic motion models describes the motion based on the velocity v and the
orientations angle of the vehicle θ as inputs. The orientation angle θ is the instantaneous orientation
of the vehicle, defined as the angle between the x-axis and the longitudinal axis of the vehicle.

One of these models is called constant turn rate and velocity model (CTRV), and it is illustrated
in Figure 8.3. This model uses the current position of the center of mass to the vehicle D with
coordinates (px, py), the current velocity v, the orientation angle θ, and the rate of change of
orientation θ̇ (also called turn rate) to compute the next vehicle state vector x. Due to this setup,

29

8.1. Constant turn rate and velocity model 30

𝑦

𝑥

(a) Vehicle frame.

𝑥

𝑦

𝜃

𝑝!

𝑝"

(b) World frame.

Figure 8.1.: The different coordinate frames that are used to create the physical motion models, and
the relevant symbols.

the vehicle runs on a circular course with a rotation center C. This model makes the assumption
that the turn rate is constant θ̈ = 0, and that the velocity is constant, v̇ = 0. This means that the
output will be a new position (px, py) and a new orientation angle θ. The state vector x for this
model is defined as,

x =

px
py
v
θ

θ̇

 , (8.1)

and hence the change rate of the state vector is written as,

ẋ =

ṗx
ṗy
v̇

θ̇

θ̈

 =

v cos(θ)
v sin(θ)

0

θ̇
0

 (8.2)

The input of the orientation angle θ is assumed to be a linear function of time between two time
instants tk and tk+1, and the difference between them is ∆t. From this it follows that θk+1 =

8.2. Constant steering angle and velocity 31

Symbol Definition
px x-coordinate of the center of mass of the vehicle in the world

frame.
py y-coordinate of the center of mass of the vehicle in the world

frame.
θ The orientation in the world frame defined as the angle be-

tween the x-axis and the longitudinal axis of the vehicle.
θ̇ The change in orientation of the vehicle in the world frame.
φ Angle between the direction of the tire and the longitudinal

axis of the vehicle.
β The slip angle, defined as the angle between the velocity of

the center of mass and longitudinal axis of the vehicle.
z Steering input.
r Throttle input.
b Brake input.
Cr The point of the rotation center in the world frame.
A The point of the front tire in the world frame.
B The point of the rear tire in the world frame.

Table 8.1.: Important symbols in the physical motion model. The symbols are defined throughout
this chapter and reused in the remaining chapters.

∫ tk+1

tk
θk + θ̇k(t− tk)dt. The time-discrete model then becomes,

xk+1 = xk +

∫ tk+1

tk

vk cos(θk + θ̇k(t− tk))
vk sin(θk + θ̇k(t− tk))

0

θ̇k
0

 dt = xk +

∫ tk+1

tk
vk cos(θk + θ̇k(t− tk))dt∫ tk+1

tk
vk sin(θk + θ̇k(t− tk))dt

0∫ tk+1

tk
θ̇kdt

0

= xk +

vk

[
1

θ̇k
sin(θk + θ̇k(t− tk))

]tk+1

tk

vk

[
− 1

θ̇k
cos(θk + θ̇k(t− tk))

]tk+1

tk
0

∆t · θ̇k
0

= xk +

vk

θ̇k

(
sin(θk + θ̇k∆t)− sin(θk)

)
−vk
θ̇k

(
cos(θk + θ̇k∆t)− cos(θk)

)
0

∆t · θ̇k
0

(8.3)

CTRV assumes that there is no functional relation between the velocity v and the turn rate θ̇. As a
consequence, disturbed turn rate measurements can change the orientation angle of the vehicle even
if it is not moving [Schubert, Richter, and Wanielik 2008]. To overcome this issue, one can model
the functional relation between the velocity and the turn rate by the steering angle.

8.2. Constant steering angle and velocity

One model that uses the steering angle φ is called constant steering angle and velocity model (CSAV),
also called the bicycle model in the literature [Rajamani 2012]. This model simplifies a 4 wheeled

8.2. Constant steering angle and velocity 32

𝑟(𝑡) 𝑣(𝑡)
𝐷𝑟𝑖𝑣𝑒 𝑡𝑟𝑎𝑖𝑛

𝑧(𝑡)
�̇�(𝑡)𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔

𝑚𝑜𝑑𝑒𝑙

𝒙(𝑡) 𝒙(𝑡 + 1)𝑀𝑜𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝜃(𝑡)

𝑝!(𝑡)

𝑝"(𝑡)

𝑣(𝑡)

Figure 8.2.: Overview of the complete motion model. The complete motion model takes the current
position (px, py), the orientation θ, the throttle input r, and the steering input z, and produces a
new dynamic vehicle state.

vehicle by merging the front tires together and the rear tires together, hence it is sometimes called
the bicycle model. The mechanical construction of the vehicle is simplified to only contain two tires
that are mounted in a distance L. An illustration of this model and the variables used to define the
model is provided in Figure 8.4. It is necessary to define several angles to describe the motion of
this model. The front tire can be steered and takes an steering angle φ relative to the longitudinal
axis of the vehicle. The orientation angle θ is the instantaneous orientation of the vehicle, defined
as the angle between the x-axis and the longitudinal axis of the vehicle. The center of mass D of
the vehicle has the coordinates (px, py) and is located on the longitudinal axis and has the distance
`f from the front tire and the distance `r from the rear tire, thus L = `f + `r. D serves as the
origin (center) of the vehicle coordinate system, and is the point that we aim to describe how will
move. Therefore, both translation information as well as rotation information is given with respect
to the center of gravity. Since the front tire is allowed to change direction, the velocity vectors at
each tire may have different directions. This means that the velocity vectors at point A and point
B are in the same direction as the front tire and the rear tire respectively. From this it follows that
the velocity vector of the center of mass D to the vehicle may be different from the direction of the
velocity vector of the front tire. As Figure 8.4 shows, both road contact points of the tires as well as
the center of gravity of the vehicle move on concentric circles around the center of rotation Cr with
different radii. A closer look reveals furthermore, that the tangential angles of the motion in these 3
points are different. Therefore, another angle, the slip angle β is introduced. Given these 3 points,
the relation between the slip angle β (which is the one which finally characterizes the motion of the
vehicle) and the steering angle φ at the front tire is found by geometry and Figure 8.4.

By applying the sine rule to triangle ACD and BCD, and assuming that the steering angle at the

8.2. Constant steering angle and velocity 33

X

Y

𝑝!

𝑣

𝑝"

𝑅

𝑅

𝜃

𝐷

𝐶"

Figure 8.3.: Illustration of the symbols that are used in the constant turn rate and velocity model.

X

Y

𝑝!

𝑙𝑓

𝑙𝑟

𝑣
𝜃

𝜙

𝛽

𝐴

𝐵

𝑝"
𝐷

𝑅

𝐶&

Figure 8.4.: Illustration of the of a simplified vehicle model, where the front tires and the rear tires
are respectively merged from two to four tires. The variables used in the derivation of the equations
in this section are defined here.

8.2. Constant steering angle and velocity 34

rear tire is 0,

sin(φ− β(φ))

`f
=

sin
(π

2
− φ

)
R

(8.4)

sin(β(φ))

`r
=

sin
(π

2

)
R

=
1

R
(8.5)

By applying sin(α1 − α2) = sin(α1) cos(α2)− sin(α2) cos(α1) we get,

sin(φ) cos(β(φ))− sin(β(φ)) cos(φ)

`f
=

cos (φ)

R
(8.6)

Now we multiply both sides of Equation (8.6) with
`f

cos(φ)
and get,

tan(φ) cos(β(φ))− sin(β(φ)) =
`f
R

(8.7)

The slip angle β(φ) is obtained by multiplying Equation (8.7) with `r and subtracting Equation
(8.5) multiplied with `f ,

β(φ) = arctan

(
lr tan(φ)

L

)
(8.8)

Figure 8.5 illustrates how realistic values of φ is transformed into β-values.

The CSAV model uses the steering angle φ instead of the turn rate θ̇ in the state variable,

x =

px
py
v
θ
φ

 , (8.9)

The radius R of the vehicle path is constant due to the constant steering angle φ between two
timesteps, then the turn rate is equal to the angular velocity of the vehicle. This results in θ̇ =

v

R
.

The course angle of the vehicle is given by θ + β(φ). Instead of the steering angle φ being a direct
input to the differential equation system, it is first converted into the slip angle β. By decomposing
the velocity v, we obtain the change rate of the state space formulation,

ẋ =

ṗx
ṗy
v̇

θ̇

φ̇

 =

v · cos(β(φ) + θ)
v · sin(β(φ) + θ)

0
v cos(β(φ))

L
tan(φ)

0

 . (8.10)

8.2. Constant steering angle and velocity 35

Figure 8.5.: Graph of the relation between the steering input and the slip angle. The slip angle β(φ)
for steering inputs φ ∈ [−1.22, 1.22] rad.

A derivation of these equations is given by Kong et al. 2015. Recall that both the velocity v and
the steering angle φ inputs are assumed to be constant. These are the only input variables since the
turn rate θ̇ only depends on the steering angle φ. Equation (8.10) is integrated over ∆t with these

8.3. Dynamic bicycle model 36

assumptions on the inputs, then the time-discrete model becomes,

xk+1 = xk +

∫ tk+1

tk

v · cos(β(φ) + θ)
v · sin(β(φ) + θ)

0
v cos(β(φ))

L
tan(φ)

0

 = xk +

∫ tk+1

tk
vk cos(β(φ)k + θk + θ̇k(t− tk))∫ tk+1

tk
vk sin(β(φ)k + θk + θ̇k(t− tk))

0∫ tk+1

tk

vk cos(β(φ)k)

L
tan(φk)

0

= xk +

vk

[
1

θ̇k
sin(β(φk) + θk + θ̇k(t− tk))

]tk+1

tk

vk

[
− 1

θ̇k
cos(β(φk) + θk + θ̇k(t− tk))

]tk+1

tk
0

∆t
vk cos(β(φk))

L
tan(φk)

0

= xk +

vk

θ̇k

(
sin(β(φk) + θk + θ̇k∆t)− sin(β(φk) + θk)

)
−vk
θ̇k

(
cos(β(φk) + θk + θ̇k∆t) + cos(β(φk) + θk)

)
0

∆t · vk cos(β(φk))

L
tan(φk)

0

(8.11)

8.3. Dynamic bicycle model

This section is largely based on my preproject report [Aaslund 2021]. The previous kinematic models
assumes that there are no slip between the tire and the road. This is an assumption that only holds
for low speeds, and with high friction between the tire and the road. This assumption will be
broken in this research, since slippery roads will lead to lower frictions between the tires and the
road. Therefore, it is important to have a motion model that allows this to happen. The dynamic
bicycle model is an extension of the bicycle model, where one allows slip between the tires and the
road. This means that the velocity direction and the tire direction do not need to be the same.

Although this model relaxes one assumption, it still is based on several assumptions. The model
assumes that the vehicle’s motion is restricted to the xy-plane. The vehicle is restricted to be a
rigid body. Only lateral tire forces, generated by a linear tire model. This assumption is okay as
long as we are in the area where the tire model is linear. One also assumes small steering angle,
which is valid in high speed but might be broken when driving in city centres and parking. The
final assumption is that it assumes constant longitudinal velocity.

All derivations below are based on Pepy, Lambert, and Mounier 2006. To derive a state space
representation of the dynamics, we need to describe the lateral dynamics, the orientation dynamics,
and the tire force. Figure 8.6 define the symbols that are used for the derivations. To derive the

8.3. Dynamic bicycle model 37

X

Y

𝑙𝑓

𝑙𝑟

v

𝜃

𝜙

𝛽

𝐹!

𝐹"

𝛼!

𝛼"

�̇�

𝑣#,% 𝑣#,&

𝑣',(

𝑣',)

𝑝#

𝑝$

𝐴

𝐵

𝐷

𝐶)

Figure 8.6.: Illustration of the dynamic bicycle model, and definition of variables used in the deriva-
tion of the equations.

lateral dynamics, we need to start by Newtons second law,

may =
∑
i

Fy,i = Fr + Ff cos(φ) ≈ Fr + Ff

ay = v̇y + θ̇vx

⇒ m(v̇y + θ̇vx) = Fr + Ff

(8.12)

where Fr and Ff are respectively the rear tire force and the front tire force that we assume follow a
linear model. This means that the forces can be written as Fr = crαr and Ff = cfαf . cr and cf are
the cornering stiffness coefficients for front and rear tires. Since we are only considering motions in
the xy-plane and a rigid body, we only need to consider one moment of interia, Iz =

∫
B(x2 +y2)dm.

To derive the orientation dynamics, we need to use the angular momentum principle,

Iz θ̈ =
∑
i

Mi = −`rFf + `fFf cos(θ)

⇒ Iz θ̈ = −`rFf + `fFf

(8.13)

The only unknown variables in Equation (8.12) and Equation (8.13) are the tire forces. Since we
assume the tire forces are linear we get,

Fr = −crαr ≈ −cr tan(αr) = −cr
vB,y
vB,x

Ff = −cfαf ≈ −cf tan(αf) = −cf
vA,η
vA,ξ

(8.14)

8.4. System identification for the vehicle motion models 38

where vB,x = vx, vB,y = vy − θ̇`r, vA,x = vx, vA,y = vy + θ̇`f . In the front coordinate system we
get vA,ξ = vA,x cos(θ) + vA,y sin(θ) and vA,η = −vA,x sin(θ) + vA,y cos(θ). By plugging in these into
Equation (8.14) we obtain,

Fr = −cr
vB,y
vB,x

= −cr
vy − θ̇`r
vx

Ff = −cf
vA,η
vA,ξ

= −cf
−vxθ + (vy + θ̇`f)

vx + (vy + θ̇`f)θ
≈ cfθ − cf

(vy + θ̇`f)

vx

(8.15)

In the last approximation, we have used that vx >> (vy + θ̇`f)θ. By inserting the tire forces into
Equation (8.12) and Equation (8.13) we get the state space formulation,

v̇yφ̇
θ̈

 =

−
cr + cf
mvx

0
cr`r − cf `f

mvx
− vx

0 0 1

cr`r − cf `f
Izvx

0
cr`

2
r − cf `2f
Izvx

vyφ
θ̇

+

cf
m
0

cf
Iz
`f

φ (8.16)

The state space representation can be integrated and used to extend the kinematic models described
in section 8.2 to simulate the vehicle dynamics.

8.4. System identification for the vehicle motion models

The driver can only influence the behavior of the vehicle by pressing the gas pedal and turning the
wheel. However, the motion models in section 8.1, section 8.2, and section 8.3 use the speed and
the change in orientation as inputs instead of the actuator inputs. Hence it is necessary to model
the relationship between the actuator inputs, and the inputs to the vehicle models. This is done by
simple physical modelling together with system identification in the SafeRide system. subsection 8.4.1
describes the longitudinal drive train, and subsection 8.4.2 describes the relationship between the
steering input and the inverse radius of the arc the vehicle is currently driving.

There exists two different ways to perform system identification; active and passive system identi-
fication. The input signal is selected or designed in active system identification, and the resulting
output from the system is observed. The relationship between the input and the output signal can
then be described with a transfer function. The passive system identification is when we observe a
system in operation, record the input signal as well as the output signal, and infer the relationship
between the two of them from a long sequence of input signals. The passive system identification also
leads to a transfer function in the same way as the active system identification. The passive system
identification is not done on the basis of a self designed or a self selected signal but just on the basis
of what the system does in operation. One disadvantage with the active system identification is that
it requires appropriate road network, which might be hard to create. For example it is necessary to
have a big parking lot to perform the system identification of the steering model. If the system is a
simple proportional system, or just a simple non-linear input - output relation, it might be simpler
to estimate it using the passive approach. The longitudinal drive train in subsection 8.4.1 is based
on active system identification, and the steering input to inverse radius model uses passive system
identification.

8.4. System identification for the vehicle motion models 39

8.4.1. Longitudinal drive train model

The throttle is the actuator which influences the velocity, and hence the SafeRide system need to be
able to related the current speed together with a throttle input to a new velocity. This observation
creates the need for a model that transforms the throttle to velocity. The motion models use the
previous velocity to predict the next state, and therefore it is more appropriate to have model
that transforms throttle to velocity instead of a model that transforms throttle to acceleration.
This model is called a longitudinal drive train model, and it will be derived by first modelling
the relation between the velocity and throttle with physics, and then system identification will be
performed to estimate the constants in the equation. There also exists several complete physical
models that relates the throttle to velocity or acceleration. These physical models require several
constants from the motor dynamic. Such constants are hard to obtain in CARLA, and thus simple
physical modelling together with system identification is used to create the model.

An analysis of the forces that works on a vehicle can be used to easier perform the system identifica-
tion of the longitudinal drive train. Let us assume that the thrust, the air resistance and the friction
resistance are the only forces that works on the vehicle. The throttle is, in first order approximation,
proportional to the motor moment, and the motor moment on the drive axle is converted by the tire
into a linear thrust. The thrust and the counterforces, exerted by the tire friction on the road and
the air resistance are in balance when the acceleration is zeros. Let F be the thrust, r ∈ (0, 1) be
the throttle value, then F (r) = α · r(t) with Fmax = α. The air resistance and the road friction are
approximated to be proportional to the speed v(t). Let furthermore M be the mass of the vehicle.
Then by Newton´s second law,

∑
i

Fi = Mv̇(t) (8.17)

and thus,

v̇(t) =
(α · r(t)− β(φ) · v(t))

M
(8.18)

From this it follows that the throttle model can be approximated to follow a first order differential
equation on the form,

r(t) = Av̇(t) +Bv(t) (8.19)

This assumption is valid since a step function input does not make the output to overshoot, and
will result in one zero in the transfer function. Taking the Laplace transformation of the differential
equation we obtain,

R(s) = A(sV (s)− v(0)) +BV (s)

= V (s)(As+B)−Av(0)
(8.20)

Te transfer function can then be calculated if we assume that v(0) = 0.

G(s) =
V (s)

R(s)
=

1

As+B
=

KL

τLs+ 1
(8.21)

8.4. System identification for the vehicle motion models 40

𝑅(𝑠) 𝑉(𝑠)
𝐺(𝑠)

(a) Block diagram of the drive train plant.
(b) The system response to a impulse and step signal
at t = 0, and KL = 1 and τL = 1

Figure 8.7.: Block diagram and response of the drive train system.

where,

KL =
1

B
and τL =

A

B
.

A block diagram of the longitudinal system model is shown in Figure 8.7a. This means that the
output of the system will be the inverse Laplace transform of V (s) = R(s)G(s). R(s) = 1 is selected

to calculate the impulse response of the system, and R(s) =
1

s
is selected to calculate the step

response of the system. The two responses in the time domain are respectively,

v(t) = L−1

(
1 · KL

τLs+ 1

)
= L−1

KL

τL
· 1

s+
1

τL

 =
KL

τL
· e

(
−

1

τL

)
t

, (8.22)

v(t) = L−1

(
1

s

KL

τLs+ 1

)
=

∫ t

0

KL

τL
· e(−t/τL)dv = KL

(
1− e(−t/τL)

)
(8.23)

These two responses of the system are plotted in Figure 8.7b.

The time constant of the plant and the proportionality factor have been approximated by evaluating
the response of the system to different step values. The proportionality factor corresponds to the
gain of the system, and is calculated from steady state signals rss and vss,

KL =
∆v

∆r
=
vss − v0

rss − r0
(8.24)

The time constant regulates how quick the response of the system is. The smaller the constant, the
faster the system approaches the steady state. The value of this constant corresponds to the time
at which the output signal reaches the 63.2% of the steady state value from the moment that the

8.4. System identification for the vehicle motion models 41

step input changes. It is calculated by setting t = τL for a step input with value r,

v(τL) = r ·KL

1− e

(
−

1

τL

)
τL

 = r ·KL

(
1− e−1

)
= 0.632 · r ·KL (8.25)

This means that τL is the time where the velocity v is 0.632 · u ·KL.

Several experiments have been performed to estimate the proportionality factor KL and the time
constant τL. The experiments are conducted by placing the vehicle on a long straight road. The
vehicle is a car with automatic gearing1, and it is initially standing still. The throttle r is pressed
to some test value ri. The car accelerates until it reaches some stable end velocity vss after some

time. The location, the velocity, and the acceleration are saved every
1

30
s.

Step signals from 0.1 to 1.0 have been used to see how the plant react. The open loop response for
all the step functions are shown in Figure 8.8. The plots show that the system looks like a first order
system, but the time constants and the proportionality factors seems to change with the throttle
r.

1The gear shift time in CARLA is set to 0 to simplify the dynamics.

8.4. System identification for the vehicle motion models 42

Figure 8.8.: Analysis of the drive train for different step functions for the throttle input. The blue
line is the velocity, the orange dots are the acceleration, the red line is the step input, and the
green line is the z.coordinate.

8.4. System identification for the vehicle motion models 43

System identification
Step input vss [m/s] KL τL [s]

0.1 0.3213 3.2130 11.5333
0.2 0.9172 4.5860 1.7333
0.3 2.5230 8.4100 2.5000
0.4 4.3075 10.7689 2.5000
0.5 20.7613 41.5226 17.8000
0.6 26.9109 44.8515 16.2333
0.7 33.3450 47.6357 14.8667
0.8 40.4055 50.5069 14.8000
0.9 51.0440 56.7156 16.0000
1.0 51.1523 51.1523 12.3667

Table 8.2.: The proportionality factor KL and the time constants τL in the drive train for different
step inputs of the throttle.

The velocity v looks noisy when the throttle r is 0.1. KL and τL are calculated for each step signal
with Equation (8.24) and Equation (8.25), and listed in Table 8.2.

A similar test is performed for the braking system. The vehicle is accelerated to an initial speed, and
different step braking inputs b are tested. The initial speed is selected to be 5.56 m/s (20 km/h),
13.89 m/s (50 km/h), and 27.78 m/s (100 km/h). Step signals from 0.1 to 1.0 have been used to
see how the plant react. Figure 8.9 shows the result for an initial velocity of 13.89 m/s and a brake
input of 0.1 and 1.0. All the experiments showed that the velocity decreases approximately linearly,
where the slope depends on the braking input b. This means that the deacceleration from the brake
is constant for each braking input b. The deaccelerations from all the experiments are summarized
in Table 8.3.

Figure 8.9.: System identification for brake input 0.1 and 1.0 with initial velocity of 13.89 m/s. The
blue line is the velocity, the orange dots are the acceleration, the red line is the step input, and the
green line is the z.coordinate.

Once again we assume an operating velocity of 13.89 m/s (50 km/h), and perform a linear regression
of the deacceleration from 13.89 m/s (50 km/h). Figure 8.10 show the regression of the deacceleration
against the brake input for an initial velocity of 13.89 m/s (50 km/h).

The coefficients from the regression are listed in Table 8.3. It is assumed that the braking input bk
is constant function of time between two time instants tk and tk+1. The following equation is used

8.4. System identification for the vehicle motion models 44

Braking deacceleration
Step input 5.56 [km/h] 13.89 [km/h] 27.78 [km/h]

0.1 6.69 [m/s2] 3.09 [m/s2] 3.03 [m/s2]
0.2 6.94 [m/s2] 4.00 [m/s2] 4.04 [m/s2]
0.3 6.94 [m/s2] 4.79 [m/s2] 5.12 [m/s2]
0.4 6.94 [m/s2] 6.61 [m/s2] 5.41 [m/s2]
0.5 6.94 [m/s2] 8.17 [m/s2] 7.72 [m/s2]
0.6 6.94 [m/s2] 8.32 [m/s2] 8.60 [m/s2]
0.7 7.21 [m/s2] 8.85 [m/s2] 9.48 [m/s2]
0.8 7.21 [m/s2] 9.45 [m/s2] 10.29 [m/s2]
0.9 7.21 [m/s2] 9.71 [m/s2] 10.98 [m/s2]
1.0 7.21 [m/s2] 10.14 [m/s2] 11.72 [m/s2]

Table 8.3.: Braking deacceleration for different initial velocities, and different braking inputs.

Figure 8.10.: Regression of the braking input against the deacceleration measures from an initial
velocity of 13.89 m/s (50 km/h). The blue dots are the measured deacceleration for the corresponding
braking input, and the green line is the regression line.

8.4. System identification for the vehicle motion models 45

to perform a prediction of the velocity when a braking input is applied

vk+1 = vk − (8.1 · bk + 2.86) ·∆t. (8.26)

Type of data c1 c2 MSE
Initial velocity of 13.89 [m/s] 8.10 [m/s2] 2.86 [m/s2] 0.40 [m/s2]

Table 8.4.: Results from the regression of the braking input against the deacceleration.

This complete the longitudinal drive train to consist of two equations which transforms the throttle
or brake together with the current velocity to the next velocity.

8.4.2. Steering to inverse radius model

For the steering to inverse radius model, it is appropriate to use a passive system identification. A
passive system identification is selected due to the lack of large open area where different steering
inputs could be investigated. It is required to model the nonlinerar relation between the steering
input φ and the radius of the circle that results from the steering input. The radius R is related to
the turn rate θ̇ and the velocity v by,

θ̇ =
v

R
. (8.27)

The turn rate θ̇ as a function of the steering angle will also depend on the vehicle speed v. Each
vehicle in CARLA comes with a maximum steering angle which correspond to an steering input z
of 1 or −1. Hence it is necessary to record the orientation angle θ, the steering input z, and the
vehicle velocity v. These values are recorded while an autopilot drives randomly around in a town.
The town should have a wide range of different curves, such that many different steering maneuvers
are used. Town03 in CARLA is selected for the passive system identification of the steering based
on this requirement. The resulting dataset will contain points (θi, zi, vi), where i = 1, . . . , N . The

time between each recorded point is ∆t =
1

20
since the simulation is run synchronously. We assume

that the turn rate θ̇ is linear between two timesteps, hence it can be estimated from two subsequent
orientation angles,

θ̇i =
θi+1 − θi

∆t
(8.28)

The preprocessed dataset contain (θ̇i, zi, vi), where i = 1, . . . , N − 1. The system identification
problem of the steering is now reduced to a regression problem. The goal is to find a function f
that maps steering inputs z to θ̇ that can be used in the vehicle motion model. Since the turn rate θ̇
depend on both the steering input z and the velocity v, we can divide the turn rate θ̇ by the velocity
v to remove this dependency. By doing this, we are actually finding a function that maps the steering
input z to the inverse of the radius R of the circle path. After this, we are left by finding a function

f that maps the steering input z to
θ̇

v
=

1

R
. Thus, g(z) =

1

R
, and v · g(z) = v · 1

R
= θ̇.

8.5. Validation of the physical motion model 46

(a) Regression using the ground truth turn rate θ̇ (b) Regression using the calculated turn rate from
subsequent orientation measures θ

Figure 8.11.: Regression of the measured steering input against the inverse radius of the curve θ̇
divided by the velocity v.

The data in Figure 8.11 looks to have a linear relationship. Therefore, a linear regression is used to

approximate the relationship between the steering input z and the inverse radius
θ̇

v
. The coefficients

from the regression are in Table 8.5. It is expected that the function should be odd, since z = 0
should result in a line with an infinite radius. Since a2 ≈ 0, and the argument above, a2 is selected
to be 0. Therefore,

θ̇

v
= a1 · z (8.29)

Type of data a1 a2 MSE
Using ground truth turn rate 0.2850 [rad/m] 0.0005 [rad/m] 12.3208e-5 [rad/m]
Using calculated turn rate 0.2897 [rad/m] 0.0005 [rad/m] 7.3438e-5 [rad/m]

Table 8.5.: Results from the regression of the steering input against the yaw rate θ̇ divided by the
velocity v, which is the same as the inverse radius.

8.5. Validation of the physical motion model

The complete physical motion model is compared against the motion of an autopilot in CARLA
when a sequence of steering inputs z, throttle inputs r, and braking inputs b are applied. The
complete physical motion model takes the same inputs that are applied to the CARLA vehicle and
predicts the next states x. Different driving scenarios are tested (acceleration from 0, stopping, and
different turns). The measured states and the predicted states for one of the driving scenarios are
compared in Figure 8.12. Figure 8.12c shows orientations above π radians, although the orientation
has been defined to be θ ∈ [−π, π]. The removal of the discontinuity is explained in Appendix D.
This validates the design of the physical motion model, and shows that is approximates the motion
of the used vehicle in CARLA.

8.5. Validation of the physical motion model 47

(a) Measured and predicted position.

(b) Measured and predicted velocity. The red line is
the throttle input, and the purple line in the brake
input.

(c) Measured and predicted orientation together with
the input signals that affect the velocity.

(d) Measured and predicted turn rate together with
the steering input z. The red line is the steering input.

Figure 8.12.: Comparison of motion model and measured motion of a CARLA vehicle. The orange
lines and scatter plots are the predicted data from the motion model while the blue lines and
scatter plots are the measured data.

The change in orientation θ̇ is found by multiplying the inverse radius with the current velocity. This
value will be one of the inputs in the models described in section 8.1, section 8.2, or section 8.3.

9. The Planning Component

A plan is a loosely defined term, and it is therefore appropriate to start this chapter with a concrete
definition of the term. SafeRide uses two different types of plans, short-term plans and high-level
plans, and both of these types of plans will be defined. A short-term plan is a hallucinated description
of motion over time. This means the position in the world frame (px, py) of the center of gravity to
the ego vehicle, the orientation in the world frame θ, and the velocity v as a function of time. A
short-term plan is a sequence of px, py, θ, and v separated with small time intervals since discrete
time is considered. A high-level plan is not as specific as a short-term plan, it includes information
about how to reach the final goal location without considering the dynamics of the ego vehicle and
surrounding objects. The high-level plan is used to create navigation instructions.

The planning component consists of high-level planning, navigation, control action sequence gen-
eration, short-term plan generation, and short-term plan selection. These activities contribute to
different levels of the plan, and the result is a short-term plan that the ego vehicle follows for a
short period of time before the short-term plan is updated. This chapter contains several defined
names, and these names are presented in Appendix A together with a short explanation.

9.1. Expectations of a good autonomous vehicle

A sufficient planning component will lead to an autonomous vehicle that obeys some general expec-
tations. These expectations are listed below.

1. The autonomous vehicle should follow the high-level plan if there do not exist sharp curves or
other conflicting objects.

2. The autonomous vehicle should pass conflicting static objects that block the high-level plan
and hence deviate from the high-level plan.

3. The autonomous vehicle will deviate from the high-level plan in sharp curves since the high-
level plan does not consider the holonomic constraint of the vehicle.

4. The autonomous vehicle should slow down before sharp curves to stay in the correct lane.

5. The autonomous vehicle should stop if the whole driveable area is blocked.

These expectations will be used to validate the planning component and ensure that the autonomous
vehicle works well.

9.2. High-level planning between two locations

Drivers use navigation systems to create high-level plans that explain how it is possible to drive from
one location to another location. Vehicles are mainly transportation tools used for going from one
position to another. For an autonomous vehicle to drive to a goal location, it is necessary to obtain
a high-level plan that explains where to go at intersections, which lane to use, and the speed limit.
The high-level plan needs to be updated while the vehicle drives along the route. A deviation from

48

9.2. High-level planning between two locations 49

Figure 9.1.: An overview of the road network in Town01 in Carla. The road network consists of
T-junctions and sharp curves.

the high-level plan or changes in the traffic might trigger the high-level plan to change. Humans
can memorize routes that they drive frequently, but when driving to new locations, humans need
to pay attention to traffic signs or use a GPS. An autonomous vehicle needs similar information to
make high-level decisions at intersections.

9.2.1. High-level planning as supported in CARLA

Carla creates a compound map of the town where the ego vehicle will operate. The map contains
both a 3D model of the town and its road definition. The data that defines the roads is retrieved
from an OpenDRIVE file that describes the town. OpenDRIVE is an open format specification
to describe the logic of road networks. The road definition contains different data structures that
together define the road structures. The data structures include information about traffic signs,
waypoints, lanes, and junctions. In addition to these data structures, Carla operates with four
different navigational commands; left, right, straight, and follow the lane. The Carla team uses this
information to create high-level plans between two locations. An illustration of the road network in
Town01 is shown in Figure 9.1.

The CARLA team provides code that finds the shortest path between two waypoints in the road
network. The A* search algorithm with distance heuristic is used to find the high-level plan between
two waypoints in the road network. The CARLA team has implemented a class that creates a list of
tuples on the form (waypoint, navigational command) from a start location to an end destination.
The waypoint is a point in the middle of a lane with orientation, and the navigational command is
one of the predefined commands made by the CARLA team. The sampling resolution between the
tuples is set when an object of the class is created. A spawning position is a term the CARLA team
uses to describe a position in the simulation where a vehicle can be initialized without creating a
collision. Figure 9.2 show the possible spawning positions for a vehicle, and the generated high-level
plan from a random start location to a random end location. Figure 9.2b illustrates a high-level
plan that is generated between two locations in Town01. It shows the location of the waypoints in
the route together with the navigational command which is illustrated with different colors. The

9.2. High-level planning between two locations 50

(a) An overview of the possible starting and ending
locations in Town01. The blue dots are predefined
locations where the vehicle easily can be teleported
to.

(b) The yellow points correspond to a follow lane
command, the turquoise points correspond to a right
turn, the blue points correspond to a left turn, and
the purple points correspond to straight in junction.
The green point is the start location, and the red
point is the end location.

Figure 9.2.: Possible spawning positions in Town01 for the ego vehicle and a generated high-level
plan between two locations.

route includes more information than the (x, y) coordinates and the navigational command that are
scattered in Figure 9.2, but this additional information is not necessary for the high-level planning
in SafeRide.

9.2.2. High-level planning in SafeRide

The high-level planning in SafeRide is based on the high-level planning provided by CARLA de-
scribed in subsection 9.2.1. A start position ~s and a goal position ~g are selected at the start of a
ride. The shortest path between these positions that complies with the traffic rules is calculated
with the high-level plan code provided by the CARLA team. SafeRide only saves tuples on the
form (xh, yh, vh, ch) where xh is the x-position in meters, yh is the y-position in meters, vh is the
target speed in m/s, and ch ∈ {left, right, straight, follow lane} is the navigational command. The
sample resolution sr between these points is 1 meter, which means that the number of points in the
high-level plan will depend on the length of the high-level plan.

The high-level plan in SafeRide is called segmented high-level plan. This high-level plan is a moving
segment of the complete high-level plan provided by CARLA. SafeRide uses a moving segment of the
high-level plan from CARLA to create targets for the short-term planner with imitation learning,
which will be explained in subsection 9.5.2. The moving segment starts at the current location of
the ego vehicle, and the length is determined by the desired velocity vh at the point in the high-level
plan closest to the ego vehicle, and the length of the short-term plan Tf in seconds described in
section 9.4. The number of points n in the segment of the high-level plan is given by,

n =

⌈
vh
sr
· (Tf + 1)

⌉
(9.1)

The segmented high-level plan has a variable number of points since it is used to select the best
short-term plan (see section 9.7) to be the target for the short-term planner with imitation learning.

9.3. Navigation in SafeRide 51

Figure 9.3.: Two segmented high-level plans that show how the desired velocity vh affects the number
of points in the segment. The ego vehicle in the figure to the left has a lower vh than the ego vehicle
in the figure to the right.

Figure 9.3 illustrates how a change in desired velocity vh influence the number of points in the
segmented high-level plan. The segment is required to be longer than the generated short-term
plans, but it is also beneficial to keep it as short as possible because of the computational cost.
The motivation for varying the number of points n in the segmented high-level plan will be further
clarified in section 9.7.

9.3. Navigation in SafeRide

Navigational systems offer sparser data on a higher level than a segment of points, as is the case
for the high-level plan. Therefore, we introduce an attraction point that will be used to generate
the navigational instructions for the SafeRide system. The attraction point is the first point in the
high-level plan where the navigational command changes. The navigational instruction consists of
three different values. The first value is the navigation command before the attraction point. This is
a categorical value which informs the vehicle about what command that need to be performed until
this point. The second values in the navigation instruction is the next navigational command. The
last value in the navigation instruction is the distance to the attraction point, da. This is calculated
by summing the distance between the n subsequent points xh before the attraction point,

da =

k∑
i=0

‖x(i+1)
h − x(i)

h ‖. (9.2)

Altogether, these three values correspond to a common GPS-based navigation system. Navigational
commands in such systems could for instance be; follow lane for 250 meters, then take a right
turn. The navigational instructions in SafeRide contain the same information that is given in the
example. Figure 9.4 illustrates two different attraction points. Figure 9.4a shows an attraction point
that is processed to the navigational instruction follow lane for 10 meters, then take left. Figure 9.4b

9.4. Control action sequence generation 52

(a) Attraction point that is translated to the naviga-
tion instruction follow lane 10 meters, then take left.

(b) Attraction point that is translated to the naviga-
tion instruction take left 15 meters, then follow lane.

Figure 9.4.: Example of two different points in the high-level plan that are used for navigation. The
color of the attraction point in the figure to the left illustrates that the navigational command is
follow lane until this point. The color of the attraction point in the figure to the right illustrates
that the navigational command is left until this point.

shows an attraction point that is processed to the navigational instruction take left for 15 meters,
then follow lane. The attraction point will incentivize the autonomous vehicle to make the correct
decision at intersections. However, the autonomous vehicle is not forced at any cost to take the
proposed decision. The navigational instruction is less strict than the high-level plan.

9.4. Control action sequence generation

In this thesis we define a control action sequence to be a sequence of steering actions z and throttle
actions r. The control action sequence is used by the complete motion model described in chapter 8
to predict possible short-term plans. Steering actions cannot change arbitrarily fast, therefore it
takes some time to turn the steering wheel. The same argument holds for the pressing the throttle
pedal. This means that it is not possible to change the steering action z or throttle action r from −1
to 1 during a short time interval. Therefore, the steering and throttle actions need to be continuous
functions over time. We propose a way to create feasible short-term plans based on the control action
sequences that are piecewise linear over time. The short-term plans are executed by the short-term
plan executor module described in chapter 10. Next, the component that creates the control action
sequences is explained.

9.4.1. Driving action generator

The inputs to the complete motion model designed in chapter 8 are generated by a driving action
generator (DAG). The DAG outputs control action sequences from some given parameters. Fig-
ure 9.5 illustrates how the motion model transforms the control action sequences from the DAG
to a short-term plan. A positive value of the steering input z correspond to a left turn, as seen in

9.4. Control action sequence generation 53

Steering input

Throttle input

𝑡

𝑧(𝑡)

𝑇

1

0

-1

𝑟(𝑡)

𝑡𝑇

1

0

-1

Figure 9.5.: Example of possible control action sequences for the steering input z and the throttle
input r, and the corresponding short-term plan.

Figure 9.5. The curvature of the short-term plan increases since the steering input is increasing as
time proceeds. This DAG outputs two linear functions over time for a given time interval T . Thus
they can be represented by two parameters a and b,

z(t− t0) = z(t0) + a · t
r(t− t0) = r(t0) + b · t

(9.3)

These control action sequences are continuous over time, which means that z(t0 + T) and r(t0 + T)
are automatically also the start values of the next period. The input parameters to the DAG are the
desired values z(t0 +T) and r(t0 +T) at the end of the interval. This way, it is ensured that z(t) and
r(t) stay in well-defined value intervals. In other words, the DAG is just producing a smooth course
of the action signals. The motion model converts the control action sequence into a prediction of
the temporal evolution of the vehicle position x(t), the vehicle speed v(t), and the orientation θ(t).
Figure 9.6 shows an overview of how the DAG and the motion model are connected. The generated
short-term plan (see right part of Figure 9.5 for an example) can then be checked for collisions and
evaluated for different criteria.

If non-smooth control action sequences are desirable, we can use more parameters. For example if
we want two curve segments z(t0 +T/2), r(t0 +T/2), z(t0 +T), and r(t0 +T) is selected. The input
values to the DAG is named local plan parameters. In the following sections, different ways to create
these local plan parameters will be presented.

9.5. Different proposals for short-term planners 54

DAG Motion model

𝒙(𝑡)

𝝓(𝑡)
𝑟(𝑡! + 𝑇)

𝑧(𝑡! + 𝑇)

Figure 9.6.: The architecture of a short-term plan generation system. The local plan parameters
describing the steering input z and the throttle input r some time T into the future are inputs to
the dynamic action generator (DAG). The DAG outputs control action sequences, which a motion
model transforms to a short-term plan.

9.5. Different proposals for short-term planners

In this section, different short-term planners are proposed. The goal of a short term planner is
to produce local plan parameters which result in feasible, safe, and comfort short-term plans that
leads the ego vehicle closer to the goal location. All the short-term planners share one structural
element, they use local plan parameters to hallucinate short-term plans. The available information
that the short-term planners can use to generate local plan parameters is defined as an environment
state. The environment state consists of the dynamic Circogram, the potential field, the naviga-
tional instruction, and the dynamic vehicle state (position, velocity, orientation, and change in
orientation).

The short-term planners are presented one after one with increasing complexity. The first short-term
planner is based on random sampling, which result in a simple but inefficient short-term planner. A
short-term planner without information about the situation is only an initial experiment, and the
short-term planner must have some input from the current driving situation. The second short-term
planner uses imitation learning to create a policy network which takes environment states as inputs
and outputs local plan parameters. This short-term planner learns from prerecorded driving, which
might result in dataset bias and poor generalization. The last short-term planner improves this by
using reinforcement learning to allow exploration.

9.5.1. Short-term planner with random sampling

The simplest way to create the local plan parameters described in section 9.4 is to select them
by random sampling. This way of creating local plan parameters is named short-term planner with
random sampling (STP-RS). This way to create the local plan parameters is only meant as an initial
experiment due to the low efficiency of evaluating many short-term plans. The efficiency loss results
from the fact that the sampling is not controlled by the current driving situation. The short-term
planner does not know about the current steering needs and will therefore most often produce plans
which are not feasible since they would lead to collisions. However, it is possible to randomly draw
the local plan parameters from a specified distribution. The probability is high that one of the
resulting short-term plans are good if many short-term plans are created. It is explained later why
this is not a good approach, and better approaches will be presented later in this chapter.

9.5. Different proposals for short-term planners 55

Finite state machine with random local plan parameters

The control action sequence generation in section 9.4 requires a set of local plan parameters to
output short-term plans. One way to create these parameters is by random sampling. In this section,
we design two different ways of sampling the parameters. These two approaches to create random
parameters are included as states in a deterministic finite state machine (DFSM) that decides which
way to random sample the parameters.

Driving consists primarily of two different types of plans. Either the driver follows the high-level
plan, or an event happens, and the driver needs to do a maneuver. Therefore, we define a steady-state
and an event state. These two states sample the random parameters in different ways.

In the steady-state, we assume that the steering and throttle actions do not change that much. At
t0 the actuators are on the current state, and the next parameter will be this state plus some small
deviation. This is the same as using the previous parameter as the mean in a normal distribution,
and setting some small standard deviations σz and σr. Hence, in this state we sample the next local
plan parameters from a normal distribution where the previous local plan parameter is the mean
as,

z(ti+1) ∼ N (z(ti), σz)

r(ti+1) ∼ N (r(ti), σr)
(9.4)

If all the generated short-term plans from the steady state parameter generation lead to a collision,
then we switch to the event state. In the event state, we do not make any assumptions about the
parameters. Therefore, we sample the local plan parameters from a uniform distribution over the
whole possible interval.

z(ti+1) ∼ U(−1, 1)

r(ti+1) ∼ U(−1, 1)
(9.5)

Fine-tuning of random local plan parameters

Generating random local plan parameters from a uniform distribution results in a small set of feasible
short-term plans. This means that the system can select between few possible short-term plans. To
create a larger set of possible short-term plans, we propose to create the random parameters in two
steps. The first step is to generate random parameters from a uniform distribution as in Equation
(9.5). The best of the possible parameters, zb(ti+1) and rb(ti+1), is then fine-tuned. The next step
is to draw parameters from a normal distribution with small standard deviations σz and σr, and
mean zb(ti+1) and rb(ti+1),

z(ti) ∼ N (zb(ti), σz)

r(ti) ∼ N (rb(ti), σr)
(9.6)

The fine-tuning creates a more extensive set of suitable local plan parameters and will improve the
planning. This improvement of the parameters from this two-step process comes with an additional
computational cost. The random generation of local plan parameters is not an efficient approach
and this approach is only an initial experiment. Nevertheless, this process will be used to create
target parameters for the short-term planner with imitation learning.

9.5. Different proposals for short-term planners 56

9.5.2. Short-term planner with imitation learning

A more efficient approach is to use learning to create the local plan parameters. Imitation learning
has previously shown remarkable performance for autonomous vehicles in CARLA [Chen et al. 2020].
Imitation learning is performed by collecting data from an expert driver or an autopilot and then
using this data in a supervised learning manner. The data which needs to be collected is the so-called
input to the neural network, and the corresponding so-called target. The input is the environment
state, and is a combination of a dynamic Circogram, a potential field, a dynamic vehicle state,
and a navigational instruction. The navigation commands in the navigation instruction are one
hot encoded. The corresponding target is the local plan parameters. The short-term planner with
imitation learning (STP-IL) learns a mapping from an environment state to local plan parameters.
The environment states can be saved at every frame, but the target values in the SafeRide system
are harder to obtain. It is necessary to preprocess data from the simulation to create the local plan
parameters, or use the STP-RS described in subsection 9.5.1. An expert driver does not perform a
linear change in steering and throttle every T , which is assumed by the DAG described in section 9.4.
The violation of the assumptions in section 9.4 means that it is necessary to preprocess the expert
actions to create appropriate local plan parameter targets. The targets can be created by taking
the average of all the actions in the interval, or simply using the action T seconds into the future
as the action. This way of creating the targets is a considerable simplification and assumes that the
expert selects smooth actions. Then the target y at time t can be created by,

yt =
1

n

n∑
i

at+∆t∗i

yt = aT

(9.7)

where yt is the target at time t, at is the actuator state at t, n = T
∆t is the number of timesteps to

T . Another approach is to carefully select the data where a linear regression of the actions for the
next T seconds have residuals below a threshold. This approach will create better targets, but some
driving situations will never yield results where the residuals are below some threshold. Targets
from only simple driving scenarios will result in an agent who only learns simple maneuvers where
the actions are almost linearly.

The short-term plans that are created from STP-RS as described in section 9.5.1, perform very well
in initial experiments. This process is therefore used to create targets for STP-IL. The creation of
the targets is done by generating 200 random short-term plans with the two-step process explained
in section 9.5.1. This means that 400 short-term plans are created and evaluated for every target
that is created. The random generation yields good short-term plans, but it is not efficient enough
to use in the final SafeRide system. The best short-term plan is selected based on section 9.7, which
will be described later. The local plan parameters that result in the best short-term plan will become
the local plan parameters for the specific environment state.

The produced local plan parameters from the STP-IL are assumed to be means of normally dis-
tributed random variables. Each of the means are connected to small standard deviations, σr and σz.
The produced means and the standard deviations are used to generate several feasible short-term
plans. The generation of the short-term plans is completed by the DAG and the complete motion
model. This process is done to improve the robustness of the system. Hence it is possible to generate
several short-term plans from one output from the STP-IL.

9.6. Policy network for the learning-based short-term planners 57

9.5.3. Short-term planner with reinforcement learning

Imitation learning is criticized for dataset bias and overfitting [Codevilla et al. 2019]. Reinforcement
learning is an approach that overcomes these limitations by exploring unknown environment states.
The reinforcement learning algorithm is used to create local plan parameters for the vehicle in
the same way as the imitation learning described in the previous section. This way of learning
the local plan parameters is named short-term planner with reinforcement learning (STP-RL). The
environment states consists of the same information as in the imitation learning setup. The output
is the local plan parameters. This means that the STP-RL should output the steering input and the
throttle/brake input some seconds into the future. The produced local plan parameters from the
STP-RL are assumed to be means of normally distributed random variables. Each of the means is
connected to standard deviations, σr and σz. The produced means and the standard deviations are
used to generate several feasible short-term plans. This process is the same as for the STP-IL.

The reward function should reflect what many safe, comfort, efficient and feasible short-term plans
are generated. One way to design the reward function is use the amount of feasible short-term plans
times the total short-term plan score. The short-term plan score ρ is explained in section 9.7, and a
high value is beneficial. The STP-RL receives a negative reward if the vehicle crashes, or drives into
the opposite driving lane. Although this might result in an autonomous vehicle that never overtakes
other vehicles. The reward is therefore defined as,

R(s, a) =

−10 if crash
−1 if all short-term plans lead to crash
−1 if outside driving lane
κ · ρ else

(9.8)

where κ is the proportion of the short-term plans that are feasible, and ρ is the short-term plan
score defined in section 9.7. The STP-RL will learn to output many short-term plans with good
scores, which is the goal.

Speeding up learning

Reinforcement learning agents often take in general long time to learn a policy or a value function
that performs well. One can use imitation learning to speed up the training to overcome this limita-
tion. The speedup is done by initializing the reinforcement learning policy with the trained weights
from imitation learning. This approach uses the same policy network that is proposed for STP-IL,
shown in Figure 9.7.

9.6. Policy network for the learning-based short-term planners

The architecture of the neural network is illustrated in Figure 9.7. The policy network that maps en-
vironment states to local plan parameters consists of two feature extractors and a dense feed forward
neural network head. The two feature extractors take the intermediate environment representations
as inputs. The dense feed forward neural network takes the output from the feature extractors, the
dynamic vehicle state, and the navigation instruction as inputs. The policy network yields local
plan parameters which represent the mean of a stochastic variable. These three components will be
described sequentially in the next sections.

9.6. Policy network for the learning-based short-term planners 58

Feature extractor 1

Feature extractor 2

Fe
ed

fo
rw

ar
d

ne
ur

al
 n

et
w

or
k

Lo
ca

lp
la

n
pa

ra
m

et
er

s

Potential field

Dynamic Circogram

Navigation instruction

Dynamic vehicle state

Figure 9.7.: Policy network architecture that takes the potential field, the dynamic Circogram, the
dynamic vehicle state, and the navigational instruction as input, and outputs local plan parameters.
The neural network consists of two feature extractor, and one feed forward neural network head.

9.6.1. Feature extraction of the potential field

As explained in section 7.2, all the values in the potential field that do not correspond to free space
have the same big value. All the values in the free space can be deduced from the neighbors. This
means that the potential field contains redundant data, which means that it should be possible
to compress the potential field to a latent vector h. This vector should contain all the information
relevant in the potential field. One way to compress images to latent vectors is to use an autoencoder.
An autoencoder is trained on a big dataset with potential fields. The potential fields contain some
high values, and are therefore scaled. All the values are divided by 512 because the recolored BEV,
which the potential field is created from, has the shape 512x512. The creation of potential fields is
efficient, which makes it possible to create a huge dataset with such images. Figure 9.8 shows the
autoencoder structure that SafeRide uses. The encoder consists of three 2-dimensional convolutional
layers, and one dense layer, while the decoder consists of one dense layer and three 2-dimensional
transposed convolutional layers. All the activation functions are ReLu-functions. The input to the
encoder is the potential field which is a 128x128 matrix with only positive values. The potential
field on the left side of the figure is an example of an original image of the potential field, and
the potential field on the right side of the figure is the corresponded recreated potential field. The
brighter color outside the free space is due to some high values that influences the color map.
Figure F.1 shows several examples of original potential fields and the recreated potential fields
from the decoder part of the autoencoder. The autoencoder is able to preserve the temporary goal
pose and the location of the free space. These are the important information from the potential
field, which means that the autoencoder is able to compress the potential field to 128 features that
represent this information.

The autoencoder is trained by itself on a predefined dataset of potential fields. The potential fields
are generated from driving with an autopilot. Only the trained encoder is used in the SafeRide

9.6. Policy network for the learning-based short-term planners 59

Co
nv

2d

Co
nv

2d

Co
nv

2d

La
te

nt
 sp

ac
e

Co
nv

Tr
an

sp
os

e2
d

Co
nv

Tr
an

sp
os

e2
d

Co
nv

Tr
an

sp
os

e2
d

Encoder Decoder

Feature extractor 1

(1x128x128) (1x128x128)

(8x42x42)

(16x14x14)

(32x4x4)
(1x128)

(32x4x4)

(8x42x42)

(16x14x14)

Figure 9.8.: Convolutional autoencoder structure for the feature extractor of the potential field.

system. The weights in the encoder called feature extractor 1 are frozen after the training. Hence
this feature extractor is only used to compress the potential field to a latent vector which contain
information that is used to find good local plan parameters.

9.6.2. Feature extraction of the dynamic Circogram

The second part of the environment state is the dynamic Circogram. The dynamic Circogram is a
sparse representation extracted from the recolored BEV and the motion of all the dynamic objects
in the recolored BEV. It is not possible to further compress this data if the number of simulated
rays are kept constant, and hence it is not reasonable to build an autoencoder for this part of the
policy network. However, it is appropriate to use convulutional layers due to the spatial relationship
between subsequent points in the dynamic Circogram.

In this architecture, it is assumed that the dynamic Circogram contains 100 points. This feature
extractor is build up of one-dimensional convolutional and max-pooling layers. The design is in-
spired by the VGG-16 architecture by Liu and Deng 2015. Two convolutional layers with the same
number of channels are followed by a max-pooling layer. Figure 9.9 shows the structure of the fea-
ture extractor of the dynamic Circogram. The feature extractor of the dynamic Circogram is not
pretrained.

9.6.3. Feed forward neural network of concatenated features

The last part of the policy network uses the extracted features, the dynamic vehicle state, and the
navigation instruction as inputs and outputs the mean of local plan parameters. The features from
the feature extractors described in subsection 9.6.1 and subsection 9.6.2 are concatenated with the
dynamic vehicle state, and the navigation instruction. The concatenated data is passed through two
dense layers, which results in mean values of the local plan parameters.

9.6. Policy network for the learning-based short-term planners 60

Feature extractor 2

Dynamic Circogram

Co
nv

1d

Co
nv

1d

M
ax

Po
ol

in
g1

d

Co
nv

1d

Co
nv

1d

M
ax

Po
ol

in
g1

d

(4x100)

(8x100) (8x100) (8x25) (16x25) (16x25) (16x6)

Output features
(96)

Figure 9.9.: Convolutional neural network structure for the feature extractor of the dynamic
Circogram. The convolutional neural network consists of convolutional and max-pooling layers.

De
ns

e

Lo
ca

lp
la

n
pa

ra
m

et
er

s

Navigation instruction

Dynamic vehicle state

Feed forward neural

De
ns

e

Co
nc

at
en

at
e

Features from FE1

Features from FE2

(128)

(5)

(96)

(3) (232)

(64)

(232)

(4)

Figure 9.10.: Feed forward neural network architecture of the head of the policy. The feed forward
neural network consists of a concatenation of the features and two dense layers.

9.7. Short-term plan selection 61

In this specific architecture, the block only yields four outputs which correspond to the mean of the
local plan parameters that the DAG uses. There are two parameters for steering and two parameters
for throttle. The output can be extended in two different ways. First, it is possible to increase the
number of outputs to represent several short-term plan segments. This will increase the complexity of
the short-term plans that are generated. The other extension is to also output the standard deviation
to the mean parameters. The reasoning behind this is that highway driving is more predictable than
urban driving and therefore needs a lower standard deviation in the short-term plan generation.
Nevertheless, in this thesis we only yield the mean parameters, and assume that that the standard
deviation is a small constant number. The decision to treat the outputs as normal random variables
makes it possible to quickly generate a small set of local plan parameters. Providing a set of good
local plan parameters will increase the robustness of the autonomous vehicle, but it will be necessary
to have a procedure of finding the best local plan parameters in the set.

9.7. Short-term plan selection

It is necessary to select the best short-term plan if the short-term planner proposes several short-
term plans. This selection process needs to be completed in two steps. First, one needs to remove
short-term plans that lead to a collision and do not obey the traffic rules. Then one needs to find
the best short-term plan of the remaining based on optimization with some criteria.

9.7.1. Hard constraints to avoid collision and obey speed limits

The first step in the short-term plan selection procedure is to remove the short-term plans that
lead to a collision. The short-term plans describe how the center of the vehicle will move, but
it is necessary to use the rigid body of the vehicle at each point. The rigid body of the vehicle
is approximated with four circles, which makes it fast to check for collisions. For each point in
the short-term plan, four points (xf , yf) are distributed along the longitudinal axis of the vehicle.
These points are located a distance ri away from the center of gravity of the vehicle in the vehicle
coordinate frame. Two of the points are placed in front of the center of gravity, and the other two
points are placed behind the center of gravity. The center of the circles are calculated by,

[
xf
yf

]
=

[
xc + ri · cos(φ)
yc + ri · sin(φ)

]
(9.9)

This results in four centers of circles which are used to check if the short-term plan lead to a collision.
This is illustrated in Figure 9.11. The collision check is done by calculating the distance from the
hitpoints in the Circogram to the center of the circles, and checking if it is bigger or smaller than the
radius of the circles. If one point from the Circogram is inside one of the circles, then the short-term
plan will lead to a collision. To further improve safety, a safety margin is included. This is done by
enforcing that the distance between the hitpoints from the Circogram and the circles is above some
threshold. In this thesis, we use a safety distance of 0.1m.

The second hard constraint is the speed limit. The ego vehicle is not allowed to drive faster than the
speed limit, and therefore all the short-term plans that include a speed higher than the speed limit
are removed. This is checked by finding the closest point in the high-level plan for each point in the
possible short-term plan and checking the speed in the short-term plan against the corresponding
speed in the high-level plan. Given a point (xc, yc, vc, φc) in a possible short-term plan and a high-
level segment with n points (x

(i)
h , y

(i)
h , v

(i)
h , c

(i)
h) where i = 1, . . . , n. Then the closest point in the

9.7. Short-term plan selection 62

Figure 9.11.: Illustration of four circles that approximate the outer surface of the ego vehicle.

high-level plan k is found by,

k = arg min
i

√
(x

(i)
h − xc)2 + (y

(i)
h − yc)2 (9.10)

The speed vc is checked against the speed v(k)
h . If vc > v

(k)
h , then the short-term plan is removed

from the set of possible short-term plans. There might be beneficial to let the autonomous vehicle
drive faster than the speed limit in some situations to avoid dangerous situations. This aspect is not
considered in the SafeRide system. Figure 9.12 shows the process of applying the hard constrains
on a set of short-term plans. All the generated short-term plans are shown in Figure 9.12a. The
short-term plans that violate the speed limit or lead to a collision is detected. These short-term
plans are colored red in Figure 9.12.

9.7.2. Soft plan selection criteria

The set of short-term plans that do not violate any of the hard constraints is further evaluated. The
best short-term plan needs to be selected for the current pose of the car from the set of possible
short-term plans. This short-term plan should lead to the expected behavior described in section 9.1
in the beginning of this chapter. The best short-term plan is the one that leads the car towards the
goal state and at the same time keeps the ego vehicle comfortable and safe. Criteria that consider the
risk, the comfort, the target speed, and the high level plan are presented in the next sections.

Risk criteria

Risk is one of the objectives that is used for selecting the best short-term plan. It is necessary to
define what a safe short-term plan is with mathematical notation. One way to measure the risk
is to use the distance to the surrounding objects together with the relative motion vector. A safe
short-term plan should keep a safe distance to other objects, especially other objects that move
towards the ego vehicle.

9.7. Short-term plan selection 63

(a) 200 generated short-term plans from STP-R.
These short-term plans are generated with the two-
step process explained in section 9.5.1.

(b) The result after applying the hard constraints.
The red short-term plans violates one of the hard
constraints. The blue short-term plans fulfill the hard
constraints, which means that they do not violate the
speed limit or lead to a collision.

Figure 9.12.: The process of how the hard constraints in the short-term plan selection reduce the
set of feasible short-term plans.

Time to collision (TTC) is a widely used time based risk indicator that calculates the time to a
possible collision for the ego vehicle. The TTC value at an instant time is defined as the time for
the ego vehicle and an other object to collide if they continue at their current speed and on the
same short-term plan. A negative value of TTC means that the vehicles are moving apart from
each other. The Dynamic Circogram presented in section 7.1 include the necessary information to
calculate the TTC, which can be used as a risk measure.

The Dynamic Circogram contains the relative velocity vi/s between the ego vehicle and each hitpoint
from the simulated rays explained in section 7.1. This is used together with the vector from each
surface point xo on the vehicle to the hitpoints xd. The vector between these points is defined as
` = xd − xo, which is the vector between the outer surface of the vehicle and the hitpoint. A risk
criteria τ is defined to be the projection of the relative velocity vi/s onto the vector ` multiplied by
the norm of `. τ for a hitpoint i is then computed by,

τi = |`| · vi/s · ` (9.11)

By analyzing the projection and |`| on its own, it is possible to understand which values of τi that are
risky. This is illustrated in Figure 9.13. Case 2 in the figure has a negative τi because of the negative
value of the projection. This means that the ego vehicle is driving away from the hitpoint, and the
situation is not considered as risky. Case 1 and case 3 has equal positive value of the projection, but
the difference to the hitpoint differ. The ego vehicle is closer to the hitpoint in case 1 compared to
case 2. Therefore, case 1 is more risky since it has a smaller |`|. If vi/s and ` are pointing is the same
direction, then the projection will be close to zero. On the other hand, the projection is negative
if they are pointing in opposite direction. This means that the most risky short-term plan has a

9.7. Short-term plan selection 64

ℓ

ℓ

ℓ
𝒗𝒊/𝒔 𝒗𝒊/𝒔

𝒗𝒊/𝒔

Case 1 Case 3Case 2

Figure 9.13.: Illustration of how the relative velocity vector vi/s and the distance vector |`| on the
risk measure τi. Three different cases show how the length of the distance vector and the projection
of the relative velocity onto the distance vector.

projection that is positive and close to zero. ` is used to scale the projection such that the distance
between the ego vehicle and the surrounding objects is considered. To summarize, a surrounding
object is considered to be risky if the relative velocity between it and the ego vehicle is pointing in
the same direction as the vector between them and that they are close.

The TTC τi is calculated between each pair of outer surface points of the vehicle and the hitpoints.
A negative τi means that the ego vehicle is not going to hit that object. For positive values, a τi
close to 0 is risky. Therefore, we select the minimum of the positive values τ+

i to represent the
risk,

τ = min(τ+
i) (9.12)

It is necessary to assess the risk along the whole short-term plan. This is done by calculating the
outer surface of the ego vehicle at each timestep t along the short-term plan, and summing the τt
for all t. The risk criterion based on the TTC ρ1 is defined as,

ρ1 =

T∑
t=0

τt (9.13)

Comfort criteria

The comfort of the passengers is also an important measure of how good the short-term plan is.
Change in the lateral acceleration is perceived as unpleasant for passengers [Hayati et al. 2020].

9.7. Short-term plan selection 65

Jerk is the third derivative of the position with respect to time, and is defined as,

j(t) =
d3r(t)

dt3
(9.14)

The lateral jerk is the x-component of the jerk in the ego vehicle coordinate frame. This will be
caused by centripetal acceleration when entering a curved path. A short-term plan with lower jerk
will increase the comfort for the passengers in the ego vehicle. For a short-term plan r(t), the total
jerk will be the integral of the squared jerk from the start of the short-term plan t0 to the end of
the short-term plan t1,

H(r(t)) =

∫ t1

t0

...
rx(t)2dt, (9.15)

where rx(t) is the lateral component of the short-term plan. The total squared jerk from (9.16) can
be discretized as,

ρ2 =
√
H[r[ti]] =

√√√√ tN∑
t0

(
ax[ti]− ax[ti−1]

∆t

)2

, (9.16)

where ax[ti] = vx[ti]−vx[ti−1]
∆t and vx[ti] is the velocity at time ti in x-direction from the generated

short-term plan, ∆t = ti− ti−1, and t0 and tN are respectively the first and the last timestep in the
short-term plan.

Target speed criteria

It is also desirable that the autonomous vehicle drives with a speed that is close to the speed limit
when it is possible. Therefore, the deviation between the speed along the short-term plan and the
closest corresponding point on the high-level plan is calculated. The index of the closest point on the
high-level plan is k, and calculated with Equation (9.10) for each point on the possible short-term
plan. It is beneficial that ρ2 is as small as possible.

ρ3 =

√√√√ T∑
t=1

(
v

(t)
c − v(k)

h

)2
(9.17)

The aim is to have a short-term plan where this criteria is close to zero.

High-level plan criteria

The autonomous vehicle also need a criterion that makes the autonomous vehicle follow the high-
level plan if it is possible. We use a soft constraint for the high-level plan because it should be possible
to deviate from the high-level plan to avoid dangerous situations. For example, the autonomous
vehicle should be able to deviate from the high-level plan in an intersection if a pedestrian suddenly
runs into the lane that the high-level plan suggests. Nevertheless, we want all the points in the
short-term plan to be as close as possible to the nearest point in the high-level plan. Again, the
index of the closest point on the high-level plan is k, and calculated with Equation (9.10) for each
point on the possible short-term plan. The square root of the sum of the squared distances is used as

9.7. Short-term plan selection 66

a measure of the deviation between the short-term plan and the high-level plan, and it is calculated
by,

ρ4 =

√√√√ T∑
t=1

(
x

(t)
c − x(k)

h

)2
+
(
y

(t)
c − y(k)

h

)2
(9.18)

This criteria is based on the high level plan segment, described in subsection 9.2.2. This information
is not realistic to obtain from a navigational system, and therefore it will only be used to create
targets for the imitation learning. A more realistic criteria is based on the second high level plan
described in subsection 9.2.2, which is the attraction point. This criteria will be based on the distance
between the end point x of a short-term plan and the next attraction point p,

ρ5 = ‖x− p‖ (9.19)

9.7.3. Short-term plan optimization

The selection of the best short-term plan is based on one criteria from all the categories in sub-
section 9.7.2. This is a non-trivial task, since increasing the score from one criteria might reduce
the score of other criteria. Each criteria is treated as an objective, and the problem is recognized
as a multi objective optimization problem [Miettinen 1998]. This is a wide group of optimization
problems that depend on the individual objectives. One group of solution methods is called a priori
solutions. These solution methods require that sufficient preference information is expressed before
the optimization process [Hwang and Masud 1979]. It is defined that either a lower or higher value
is preferred for all the individual criteria in the SafeRide system, and hence the requirement for
using a priori methods is fulfilled.

One simple a priori method is to transform the multi objective optimization to a single objective
optimization method. This means that we are using a function g that takes the individual criteria
as inputs to form a new optimization formulation,

max
x∈X

g(ρ1(x), ρ2(x), ρ3(x), ρ5(x))1. (9.20)

Hwang and Masud 1979 propose scalarizing as a simple a priori method. Scalarizing require that
each individual criteria is multiplied by a weight wi where i = 1, . . . , 5. The scaled criteria are
summed together, and the sum is optimized as a single objective optimization.

The proposed criteria are in different ranges. This might lead to problems since one criteria might
dominate the other criteria. The weights in the scalarizing is meant to handle this issue, but it is
hard to select the correct weights. Normalization is used to avoid some criteria to dominate others
and to make the selection of appropriate weights simpler. Normalization is performed to avoid the
different objectives to have different scales. After the normalization the scores for each criteria has
a mean of 0 and a standard deviation of 1. The normalized value for ρi is calculated by subtracting
the mean ρ̄i and dividing by the standard deviation σρi ,

ρ′i =
ρi − ρ̄i
σρi

(9.21)

1ρ4(x) is not considered here since it is only used to create local plan parameter targets for the STP-IL.

9.8. Planning in different driving situations 67

Since all the criteria are in the same interval after the normalization, g is defined to add the values
that are preferred to be large and subtract the criteria that we want to be small. This means that the
multi objective optimization problem is transformed to the following single objective optimization
problem,

max
x∈X

w1ρ
′
1(x)− w2ρ

′
2(x)− w3ρ

′
3(x)− w5ρ

′
5(x)) (9.22)

Figure 9.14 shows how the multi objective optimization selects one of the feasible short-term plans.
The blue short-term plans in Figure 9.14a are the short-term plans that do not violate any hard
constraints. The green short-term plan in Figure 9.14b is the short-term plan with the highest score,
and is therefore selected.

(a) 200 generated short-term plans from STP-R
where the short-term plans that violate the hard con-
straints are red, and the short-term plans that fulfills
the hard constraints are blue.

(b) The result after applying the soft constraints. The
red short-term plans violates one of the hard con-
straints. The blue short-term plans fulfill the hard
constraints. The green short-term plan is the short-
term plan that achieves the highest score from the
multi objective optimization.

Figure 9.14.: The process of applying the multi objective optimization with the soft constraints on
a set of short-term plans that fulfills the hard constraints.

9.8. Planning in different driving situations

The weights that are used in the multi objective optimization determines the behaviour of the au-
tonomous vehicle. The weight for the soft risk constraint w1 determines how fast the autonomous
vehicle should approach other objects. By adjusting this w1, it is possible to determine how ag-
gressive the autonomous vehicle should act. If w1 is high, then the autonomous vehicle is penalized
for proposing risky short-term plans. This will lead to a vehicle which waits at intersections until
other moving objects have crossed. The weight for the soft comfort criteria w2 influences the shape
of the possible short-term plans. By instance, if w2 is high, then the autonomous vehicle will not
propose to overtake other vehicles. This is due to the fact that an overtaking creates some jerk.

9.8. Planning in different driving situations 68

The target speed in the environment is an upper limit, and do not consider the shape of the road.
This is a realistic setting, and human drivers reduces the speed in sharp curves to make the curve
comfortable. The weight for the soft constraint w3 determines how close to the speed limit that
is preferable. An autonomous vehicle should drive close to the speed limit on straight roads, but
reduce the speed in sharp curves, and hence deviate from the target speed. By selecting a high w3,
the autonomous vehicle might not be able to obtain this behavior. The weight for the high-level
plan criteria w4 has some of the same effect as w1. If w4 is high then the autonomous vehicle will
not overtake other vehicles since these short-term plans deviates from the high level plan.

This reasoning shows the necessity to change the weights based on different situations. We have
observed four different general situations that require different behaviours from the ego vehicle.
The situations are categorized by the presence of moving objects, and if the ego vehicle is in an
intersection or not. This categorization results in four different groups of situations that require
different weights. The driving situation is easliy determined by the current navigational command
and the existence of other moving objects in the dynamic Circogram. The driving situations are
illustrated together with the corresponding weights in Figure 9.15. The weights are selected based
on experiments and visually analyzing the resulting behavior.

Driving
situations

None moving
objectsMoving objects

Intersection

w1 = 1, w2 = 0.5,
w3 = 0.5 , w4 = 0.5

No intersection

w1 = 0.3, w2 = 1,
w3 = 1, w4 = 1

No intersection

w1 = 1, w2 = 0.5,
w3 = 0.5, w4 = 0.5

Intersection

w1 = 0.3, w2 = 1,
w3 = 0.5, w4 = 1

Figure 9.15.: Different optimization weights for the different soft constraints for the different driving
situations.

Different weights depending on the defined situations will affect the short-term plan selection de-
scribed in section 9.7, the short-term planner with imitation learning described in subsection 9.5.2,
and the short-term planner with reinforcement learning described in subsection 9.5.3. The short-
term plan selection process will only have one minor change. Instead of keeping the weights constant,
they will change depending on the current driving situation. By only changing the short-term plan
selection process, one assume that the local plan parameters are equal in all the situations. This
might not be the case, and the local plan parameters could be generated by different policies.

Inspired by Ohn-Bar et al. 2020, we create four different policies which depend on the driving
situation. The imitation learning setup explained in subsection 9.5.2 is used to train the neural net-

9.8. Planning in different driving situations 69

Feature extractor 1

Feature extractor 2

Fe
ed

fo
rw

ar
d

ne
ur

al
 n

et
w

or
k

Lo
ca

lp
la

n
pa

ra
m

et
er

s

Potential field

Dynamic Circogram

Navigation instruction

Dynamic vehicle state

Lo
ca

lp
la

n
pa

ra
m

et
er

s
Lo

ca
lp

la
n

pa
ra

m
et

er
s

Lo
ca

lp
la

n
pa

ra
m

et
er

s

Figure 9.16.: An extension of the neural network policy to allow for different policies in different
driving situations. This neural network architecture has four different heads that are conditioned
on the driving situation.

work. The only difference is that the neural network has four heads that condition on the situation.
This means that all the policies use the same feature extractor, and only the heads differ. This is
illustrated in Figure 9.16. The four heads require target values that comes from different driving
behaviours. Targets that reflect the four different driving behaviours are created by the random
generation of parameters with fine tuning, using the weights in Figure 9.15 together with ρ4 (close-
ness to the segmented high-level plan). The four heads are trained on each of the resulting four
datasets, one at the time. The correct head is selected base on the current driving situation when
the autonomous vehicle is operating. This result in local plan parameters that reflect the current
driving situation. The short-term plan selection is also performed with the weights in Figure 9.15.
The autonomous vehicle obtains more diverse behaviours by conditioning on the driving situation
in the component that creates the local plan parameters.

Another approach to create local plan parameters from policies that depend on the driving situation
is to adjust the STP-RL explained in subsection 9.5.3. This can be done be creating four different
reward functions based on Figure 9.15. The reward functions only differ in the weights that are
used for each of the soft short-term plan selection criteria. This will result in four different policies
that differ in risk, comfort, and how strictly they follow the high-level plan. This has not been
implemented, but similar a approach is done by Yang, Sun, and Narasimhan (2019).

10. Plan Execution and Control

10.1. Control to follow short-term plan

Control theory can handle the control of dynamical systems in engineered processes and machines.
The goal is to develop a model that adjusts the system inputs to drive the system to a desired
state, while minimizing any delay, overshoot, or steady-state error. This is highly relevant for an
autonomous vehicle which for example should adjust the throttle to keep the speed limit and contain
a desired distance to surrounding objects. In the autonomous vehicle literature, it has been used
one controller for the throttle and one for the steering commands. A longitudinal controller is
used to control the throttle commands, and a lateral controller is used to control the steering
commands.

10.1.1. PID controller

A PID controller is a controller that uses feedback to try to minimize the error between the actual
state and the desired reference state. It corrects the error by applying a proportional, a integrated,
and a derivative term. The proportional term handles the current error, the integral term is used
to handle the past errors, and the derivative term is used to handle the effect of future errors. This
is expressed in Equation 10.1.

u(t) = Kpe(t) +Ki

∫ ∞
0

e(τ)dτ +Kd
de(t)

dt
(10.1)

where the error e(t) = |r(t)−y(t)| is the difference between the reference state and the actual state.
Kp,Ki andKd, all non-negative, denote the coefficients for the proportional, integral, and derivative
terms respectively. To discretize Equation (10.1) is needed to select a way of discretizing the integral
i[k] between the time indices k− 1 and k, and a way of discretizing the derivatie d[k] between k− 1
and k. The time between k − 1 and k is Ts seconds. The time interval between each command will
be the same as the time between each frame in the simulation. The integral is descretized with
the trapezoidal rule, and the derivative is discretized with a finite differnce approximation. The
discretization of the integration term in the PID-controller is given by,

i[k] = i[k − 1] + Ts
e[k] + e[k − 1]

2
. (10.2)

The discretization of the derivative term in the PID-controller is given by,

d[k] =
e[k]− e[k − 1]

Ts
(10.3)

The complete discretization of Equation (10.1) is given by,

u[k] = Kpe[k] +Kii[k] +Kdd[k] (10.4)

70

10.1. Control to follow short-term plan 71

10.1.2. Stanley controller

The DARPA Grand Challenge (DGC) is an collection of challenges where teams have the oppor-
tunity to test autonomous vehicles in a competitive situations [Behringer et al. 2004]. In addition
to intelligent behaviour, the participating vehicles must also exhibit ruggedness and endurance in
order to survive the fast ride over rough terrain. The Stanford team won the 2005 DGC with a car
called Stanley. The lateral controller they developed for this car has later been called the Stanley
controller [Hoffmann et al. 2007]. The controller is a lateral geometric controller that has shown
better performance than the simple pure pursuit controller. It uses the center of the front axels as
a reference point, and uses both the heading error and the distance from the closest point on the
trajectory to steer. The goal of the controller is to correct the heading error, the position error and
to stay within the maximum steering angels.

δ(t) = ψ(t) + tan−1(
ke(t)

ks + vf (t)
) (10.5)

where δ(t) is the steering angel at time t, ψ(t) is the heading error, e(t) is the positional error, vf (t)
is the speed, and k and ks are two different gains. The discrete version of Equation (10.6) at the
discrete time k is given by,

δ[k] = ψ[k] + tan−1(
Ke[k]

Ks + vf [k])
) (10.6)

10.1.3. Tuning of gains for the controllers

The longitudinal and lateral controllers tracks the best short-term plan. The gains and the softening
constant used in the experiments are presented in Table 10.1. These have been tuned manually to
obtain the desired behaviour.

Parameter name Value
Proportional gain, Kp 0.07
Integral gain, Ki 0.3
Derivative gain, Kd 0.09
Steering gain, K 0.2
Softening constant, Ks 0.01

Table 10.1.: Controller gain constants that are used in the longitudinal and lateral controllers.

Figure 10.1 shows that the controller is able to track an arbitrary short-term plan created by the
planning component. The resulting path from the composite controller seems to cut the curves.

10.2. Execute control action sequence 72

(a) Snapshots of the ego vehicle which tracks the
short-term plan.

(b) Comparison of the short-term plan and the ex-
ecuted path. The green line is the short-term plan,
and the black line is the executed path.

Figure 10.1.: A vehicle that tracks a short-term plan by using lateral and longitudinal controllers.
The green line shows an arbitrary short-term plan, and the snapshots of the vehicle shows that the
vehicle is able to follow the short-term plan.

10.2. Execute control action sequence

The short-term plan is based on a sequence of discrete actions called a control action sequence,
and can be directly used to control the vehicle. If the motion model that creates the short-term
plans corresponds with the simulation environment, then the vehicle will follow the short-term plan
by executing the discrete actions. As showed in section 8.5, the complete physical motion model
creates plans that are similar to the measured movement from a sequence of discrete actions. Hence,
executing the control action sequence that underlies the short-term plan will make the vehicle follow
the short-term plan. Figure 10.2 shows that the ego vehicle is able to track an arbitrary short-term
plan. The resulting path from executing the control action sequence is a bit shorter than the short-
term plan, which means that the average speed is lower than in the short-term plan. The performance
in this example is similar to the performance in section 8.5. The similarity between the short-term
plan and the executed path depends on how well the physical motion model correspond to the
vehicle in the simulation.

10.2. Execute control action sequence 73

(a) Snapshots of the ego vehicle which tracks the
short-term plan.

(b) Comparison of the short-term plan and the ex-
ecuted path. The green line is the short-term plan,
and the black line is the executed path.

Figure 10.2.: A vehicle that tracks a short-term plan by executing actions from the control action
sequence. The green line shows an arbitrary short-term plan, and the snapshots of the vehicle shows
that the vehicle is able to follow the short-term plan.

11. Experimental Results

The results from the autonomous vehicle are shown in this chapter. section 11.1 starts by showing
the parameters and the configurations that are used for the experiments. Then the route that is
designed to test the SafeRide system is presented, followed by the results in this route. This section
presents images of the path of the ego vehicle.

11.1. Experimental setup of the SafeRide system

Several different configurations for each component can be used throughout the design of the
SafeRide system. Initial experiments have been conducted during the design of the SafeRide sys-
tem. The initial experiments are used to decide some of the configurations that are used in the
testing of the system. Appendix I shows all the initial experiments that have been conducted, and a
small comment is written for every experiment. All the configurations and parameters used to create
the experimental results are presented in this section. The CARLA simulation is run in synchronous
mode at 30 frames per second.

11.1.1. Sensor configurations

A semantic camera is used to create the recolored BEV sensor. The semantic camera is placed 7 m
above and 4 meters in front of the ego vehicle, and has a pitch angle of −90 degrees. This means
that the camera is facing directly down 4 meters in front of the ego vehicle. Further, the images
consist of 512x512 pixels and the field of view is set to 125 degrees.

11.1.2. Environment representation configuration

The dynamic Circogram uses 100 simulated rays that are equally distributed around the ego vehicle.
The potential field is created from the same recolored BEV that is used to create the dynamic
Circogram. The potential field does not need as many pixels as the 512x512 recolored BEV contains.
Therefore, the potential field is downsampled with max-pooling with a stride equal to the filter size.
Experiments have shown that a 128x128 size is sufficient. This size of the potential field is therefore
used in the experimental results.

11.1.3. Selection of motion model

chapter 8 presents three different motion models that take the dynamic vehicle state as input. In
the experiments, we will use the CTRV model explained in section 8.1. This choice is made because
of the simple implementation, and because Schubert, Richter, and Wanielik (2008) shows that the
complexity of the motion model is not significant for vehicle tracking. The motion model calculates

the dynamic vehicle states at time intervals of
1

60
seconds.

74

11.2. Experimental testing route 75

Driving situation Number of data samples
Intersection no moving objects 5000
Intersection with moving objects 4000
No intersection no moving objects 10000
No intersection with moving objects 3000

Table 11.1.: The amount of data that is used to train the short-term planner based on imitation
learning for each driving situation. The driving situations are the same as in section 9.8.

11.1.4. Setup of the planning component

The general parameters in the planning component are presented in Table 11.2. The STP-IL is the
short-term planner that is used in these experiments. The complete architecture of the autoencoder
network is listed in Table E.1, and the complete architecture of the policy network is listed in
Table G.1. These tables include the activation functions, the initialization of the weights, the output
shape of each layer, the kernel shape, the stride, the padding, and the number of parameters for
each layer. The neural networks have been trained on 21000 training samples. The distribution of
the training samples between the different driving situations is shown in Table 11.1. The weights
presented in Figure 9.15 are used to adjust the behaviour depending on the driving situation.

Parameter name Value
Short-term plan frequency, ω 0.5 [s]
Length of short-term plan, T 3 [s]
Number of short-term plans, N 50
Number of local plan parameters 4
Standard deviation throttle local plan parameter, σr 0.1
Standard deviation steering local plan parameter, σz 0.1

Table 11.2.: Parameters used in the experiments for the planning component. The parameters that
do not have a unit are unitless.

11.1.5. Execution of the best short-term plans

In chapter 10, two different ways of executing the best short-term plan are proposed. In the exper-
iments in this section, we have chosen to execute the control action sequence. This is the preferred
way of tracking the short-term plan since it removes the need of introducing a controller that requires
tuning.

11.2. Experimental testing route

A route that requires different maneuvers is developed to test the SafeRide system described in
section 11.1. The route is between two locations in Town02 which has not been used for training.
Town02 is similar to Town01 but smaller. The testing route is illustrated in Figure 11.1. The
figure shows the start location marked with a green circle, different driving situations marked with
blue circles, and the goal location marked with a red circle. All the circles have a corresponding
overview image of the situation that the ego vehicle needs to handle. The high-level plan described
in subsection 9.2.2 is also plotted to show where the desired direction. Figure H.1 shows a bigger
figure of the complete testing route where the driving situations are stacked together.

11.3. Results from different driving situations in the test route 76

Figure 11.1.: The testing route that is designed to test the trained SafeRide system. The test route
consists of seven different situations that required different maneuvers of the autonomous vehicle.
The situations in the boxes around the map will be arrived in a counter clockwise manner, starting
from the box at the top to the left, and ending at the box at the top to the right.

The testing route starts at the green circle in Figure 11.1. The autonomous vehicle needs to follow
the lane until a sharp left turn while the navigational command still is to follow the lane. Then
the next driving situation is that the vehicle needs to take a left turn at the next intersection.
This needs to be done while another static vehicle is placed at the other side of the intersection.
This requires that the autonomous vehicle notices that the other vehicle is not moving, and it is
safe to cross the other lane. The following driving situation is a right turn at the next intersection.
Thereafter, the ego vehicle is approaching parked cars on each side of the road. None of the vehicles
is moving, and the gap between the cars makes it possible to drive between them. This illustrates a
narrow passage that the ego vehicle needs to drive through. At the next intersection, there will be
another moving vehicle in the intersection when the ego vehicle needs to make a decision. The other
moving vehicle needs to start driving at a particular time to reach the intersection as an obstacle
for the ego vehicle. The selection of the appropriate starting time is done by iterative adjustments.
The next intersection includes a similar driving situation, but this time the other moving vehicle
is approaching the intersection from another direction. The starting time of this vehicle is found
by the same process as the other dynamic obstacle vehicle. The last situation is a static vehicle in
the middle of the lane. Then the route ends at the red circle in Figure 11.1. The results from these
seven driving situations will be presented in the next section.

11.3. Results from different driving situations in the test route

In this section, the results from all the different driving situations in the test route illustrated
in Figure 11.1 are presented. An image containing snapshots of the vehicles is used to show the
performance of the agent in a specific driving situation.

11.3. Results from different driving situations in the test route 77

11.3.1. Left turn when navigation command is to follow lane

The first driving situation in the test route is a 90 degrees left turn. This turn is not part of an
intersection, which means that the navigational command is to follow the lane. This driving situation
will reveal if the autonomous vehicle detects the turn from the hitpoints in the Circogram, and the
features from the potential field. The results from the left turn when the navigational command is
to follow the lane are shown in Figure 11.2.

Figure 11.2.: The first driving situation in the testing route. This shows the result of a left turn
when navigation command is to follow lane. Seven snapshots of the ego vehicle are stitched together
to this figure.

The result shows that the ego vehicle is driving close to the curb before the curve starts. The ego
vehicle starts to turn around 8 meters before the beginning of the turn, which is a few meters
after the hitpoints in the Circogram indicate that there is a turn. The ego vehicle touches the lane
markings in the middle of the turn before it is approaching the curb again. At the end of the turn, the
ego vehicle is again close to the curb. The ego vehicle drives through the curve with approximately
the same velocity, and the sharp turn at the end of the curve creates some additional jerk. This
shows that the ego vehicle is able to follow a lane that includes curves.

11.3.2. Left at intersection with static car

The second driving situation is the first time that the ego vehicle needs to make a decision about
where to drive. As seen in Figure 11.1, the navigational command is to take a left turn at this
intersection. In addition, there is placed another vehicle in the opposite lane on the other side of
the intersection. This vehicle is static, and does not move during the test route. The static vehicle
is placed close enough to the intersection to be detected in the Circogram by the ego vehicle when
it is close to the intersection. The result from this intersection is shown in Figure 11.3.

11.3. Results from different driving situations in the test route 78

Figure 11.3.: The second driving situation in the testing route. This shows the result of left at
intersection with static car. Seven snapshots of the ego vehicle are stitched together to this figure.

Once again the result shows that the ego vehicle is driving close to the curb when it is following the
lane, and the road is straight. The ego vehicle starts to turn at the correct time and keeps a safe
distance from the other static vehicle. Also in this turn, the ego vehicle touches the other lane in the
middle of the curve. This shows that the agent is able to select the correct road in an intersection
and that it is able to do this while other moving objects are detected.

11.3.3. Right at intersection without other cars

The third driving situation is a right turn in an intersection. The right turns are sharper than the
left turns due to the right-hand traffic in the CARLA towns. No other moving objects are present
in this driving situation, and it only tests the performance of the ego vehicle at right turns in
intersections. The result from this intersection is shown in Figure 11.4.

11.3. Results from different driving situations in the test route 79

Figure 11.4.: The result of right at intersection without other vehicles. This driving situation contains
the sharpest curve the ego vehicle need to drive. Five snapshots of the ego vehicle are stitched
together to this figure.

Figure 11.4 shows that the ego vehicle is very close to the curb at the beginning of the curve. It
does not hit the curb, but it is closer to the curb than the defined safety margin that the ego vehicle
should keep to other objects. The ego vehicle needs to adjust the course to not hit the curb. It
drives straight for a short time before it again turns right. At the end of the curve the ego vehicle
is close to the lane marking.

11.3.4. Narrow passage through parked cars at both sides of the road

This driving situation checks how the ego vehicle operates when the free space of the road gets
narrower. In this driving situation, there are placed three static cars on each side of the road. The
width of the road is reduced by four meters, and the narrow part of the road is in total 15 meters.
The result from this driving situation is shown in Figure 11.5.

11.3. Results from different driving situations in the test route 80

Figure 11.5.: The result of driving through a narrow passage consisting of parked cars at both sides
of the road. Six snapshots of the ego vehicle are stitched together to this figure.

The first snapshot of the ego vehicle reveals that the ego vehicle is still close to the lane marking
after the previous driving situation. The orientation of the ego vehicle shows that it is facing the
curb, and would probably approach the curb if no obstacles are present. The ego vehicle turns to
the left to avoid hitting the first of the parked cars on the right side of the road. Thereafter, the ego
vehicle drives as close as possible to the parked cars to the right without causing a collision. After
the last parked car, the ego vehicle turns to the right to drive in the intended lane.

11.3.5. Left at intersection with dynamic car

This driving situation is the first with another dynamic car. The other dynamic car starts when
the ego vehicle is at a specified distance from the interaction, and drives with a constant throttle.
This is defined to ensure that the other vehicle will become an obstacle for the ego vehicle in the
interaction. The ego vehicle needs to cross the driving lane to the other dynamic vehicle to follow
the navigational command. The result of this driving situation is shown in Figure 11.6. This result
consists of two figures since the paths are crossing.

11.3. Results from different driving situations in the test route 81

(a) The first part of the driving situation of a left
turn at intersection with another dynamic car. Five
snapshots of the vehicles are stitched together to this
figure. The ego vehicle is only present at three posi-
tions in the figure since it is not moving in the last
two snapshots.

(b) The second part of the driving situation of a left
turn at intersection with another dynamic car. Two
snapshots of the ego vehicle are stitched together to
this figure. The other dynamic vehicle is not present
since the ego vehicle does not start to drive before it
is outside of this area.

Figure 11.6.: The result of right at intersection with dynamic car creating an obstacle. This driving
situation is illustrated with two subfigures since the paths from the the vehicles overlap.

Figure 11.6a consists four snapshots of the area. In the first snapshot, only the other vehicle is
visible. The three next snapshots contain both of the vehicles. The distance between the two first
ego vehicle positions is larger than the distance between the position of the other vehicle. This is
because the ego vehicle has a higher velocity than the other vehicle. The third and fourth snapshots
of the ego vehicle are overlapping, meaning that the ego vehicle has slowed down its speed. In the
last snapshot, the ego vehicle is very close to the other vehicle, but they have not collided. The ego
vehicle can slow down to avoid hitting another moving vehicle when it needs to cross the lane.

Figure 11.6b is an extension of the driving situation in Figure 11.6a. The two first snapshots of the
ego vehicle are almost in the same position. The ego vehicle starts to drive slowly after the other
vehicle has passed. After the two first snapshots, half of the other vehicle is outside of the figure.
The ego vehicle increases the speed after the two first snapshots and completes the left turn at the
intersection.

11.3.6. Right at intersection with dynamic car

This driving situation differs from the previous since the desired lane to the ego vehicle is the same
that the other dynamic car is using. The ego vehicle either needs to drive in front of the other
dynamic car, or slow down and drive behind the other dynamic car. Once again, the other dynamic
car starts when the ego vehicle is at a specified distance from the interaction, and drives with a
constant throttle. Figure 11.7 shows how the ego vehicle drives in this driving situation.

11.3. Results from different driving situations in the test route 82

(a) The first part of the driving situation of a right
turn at intersection with another dynamic car. Five
snapshots of the vehicles are stitched together to this
figure. The ego vehicle is only present at three posi-
tions in the figure since it is not moving in the last
two snapshots.

(b) The second part of the driving situation of a right
turn at intersection with another dynamic car. Two
snapshots of the ego vehicle are stitched together to
this figure. The other dynamic vehicle is not present
since the ego vehicle does not start to drive before it
is outside of this area.

Figure 11.7.: The result of right at intersection with dynamic car creating an obstacle. This driving
situation is illustrated with two subfigures since the paths from the the vehicles overlap.

Figure 11.7a shows the first part of the driving situation. This figure contains five snapshots of the
area, and both of the vehicles are in the area during all the snapshots. It looks like the ego vehicle
only appears in three of the snapshots, but in the three last snapshots, the ego vehicle does not
change its position significantly. The ego vehicle stops just in front of the other dynamic vehicle and
avoids a collision. Figure 11.7b is an extension of the driving situation in Figure 11.7a. This figure
only contains two snapshots and shows that the ego vehicle starts to drive when the other car is
outside the area.

11.3.7. Parked car in the middle of the lane

The final driving situation in the test route is a parked car that is located in the middle of the
appropriate lane for the ego vehicle. The car is parked on a straight road, and no other vehicles are
influencing the driving situation. The result from this driving situation is shown in Figure 11.8.

11.3. Results from different driving situations in the test route 83

Figure 11.8.: The result of overtaking a parked car in the middle of the lane. Six snapshots of the
ego vehicle are stitched together to this figure.

This situation is located close to an intersection where the ego vehicle has turned left. The first
snapshot of the ego vehicle shows that it is oriented towards the curb. This is probably since the ego
vehicle has not had time after the previous intersection to get close to the curb. The next snapshot
of the ego vehicle shows that the orientation of the ego vehicle has changed, and the ego vehicle has
decided to overtake the parked car. This happens when the gap to the parked car is five meters.
Although the ego vehicle decides to overtake the parked car early, it still drives very close to the
parked car when it overtakes. After the ego vehicle has overtaken the parked car, it returns to its
lane.

12. Discussion of the Design Process and the
Results

The discussion consists of two parts. In the first part, the initial experiments and the design process
are discussed. These experiments have influenced the design, and the selection of parameters used
in the final experiment in the test route. The second part of the discussion addresses all the different
driving situations in the test route illustrated in Figure 11.1.

12.1. Discussion of the initial experiments during the design process

This section discusses initial experiments completed during the design process. The SafeRide system
has been developed with an iterative process. The initial experiments are described in Appendix I.
This spreadsheet contains information about the setup of the experiment and a short comment
on important observations. This overview of the initial experiments shows that we started with a
minimum viable design, and added complexity to overcome the unwanted behaviour of the agent.
The goal of the SafeRide system is to create a small set of feasible short-term plans based on a sparse
intermediate environment representation, where the best short-term plan can be selected.

12.1.1. Discussion of minimal viable agent

In the first initial experiments, I only used the static part of the Circogram, generated random local
plan parameters from a uniform distribution, removed short-term plans that caused a collision,
and selected the best of the remaining short-term plans based on the closeness to the segmented
high-level plan and the speed limit. The result of this design is an agent that is available to drive
without causing a collision in a static environment. However, the agent creates many short-term
plans causing a collision and proved the inefficiency of the one-step STP-R. The small set of short-
term plans that did not cause a collision disabled the functionality of the short-term plan selection.
The fine-tuning of the best local plan parameters from the one-step STP-R was introduced to
increase the set of short-term plans which complies with the hard constraints. This results in more
short-term plans that the agent can use in the short-term optimization.

12.1.2. Discussion of the number of local plan parameters

The same setup was used to investigate the influence of the number of parameters to use in the
DAG. We used a planning horizon of 3 seconds, and tested different ways of creating piecewise
linear functions for the steering and throttle input within this time horizon. We tested 2, 3, and 4
parameters for each input. Additionally, we tested the possibility of having time parameters linked
to the input parameters. These different ways of parameterizing the DAG decide the complexity of
the short-term plans. By adding more parameters, the agent can output more complex short-term
plans. Our observation is that more than 2 parameters for each command input create unstable
short-term plans, and unnecessary complexity. For a short time interval, it is sufficient to adjust
the slope of the control action sequence a few times. However, it might be beneficial to use more

84

12.1. Discussion of the initial experiments during the design process 85

parameters in more complex situations. For instance, one could create a finite state machine that
decides how many parameters the DAG should use depending on the driving situation.

12.1.3. Discussion of comfort and speed limits

The autonomous vehicle with only collision avoidance as hard constraints, and closeness to the speed
limit and the segmented high-level plan had two noticeable issues. The vehicle did not comply with
the speed limit, and it had curvy behaviour on straight roads. To overcome these issues, we added a
hard constraint on the speed limit and a soft constraint on the jerk. This resulted in an autonomous
vehicle that never drives faster than the speed limit, and soft constraint on the jerk stabilized
the short-term plans and hence increased the comfort. A hard constraint on the speed limit is very
effective, and this makes it impossible for the ego vehicle to drive faster than the speed limit. This is
the desired behaviour most of the time, but in some unusual situations, there might be beneficial to
drive a bit faster than the speed limit. This might be necessary to avoid some dangerous situations.
Therefore, the final decision was to adjust the hard constraint to be 5% above the speed limit.
Another way to solve this issue might be to have the hard constraint on the speed limit, and remove
this hard constraint in dangerous situations where it might increase safety.

12.1.4. Discussion of safety margin to obstacles

With the hard and soft constraints discussed in the previous paragraphs, the autonomous vehicle
was able to drive simple routes without any obstacles. Therefore, the complexity of the simulation
was increased by adding static and dynamic vehicles. The ego vehicle was able to overtake other
static obstacles, but it drives very closely to the obstacles. This is due to the soft constraint on the
closeness to the segmented high-level plan which is in the middle of the desired lane. It is risky to
drive close to objects that can move. For example, a passenger might open a door on another vehicle
and cause a collision, or the vehicle might suddenly start to drive. As an action to handle this, a
small safety margin was added to the collision check. This makes the vehicle increase the distance
to all objects that can cause a collision. Nevertheless, this is not exactly the desired behaviour
since it is not risky to closely pass objects that cannot move. This might prohibit the autonomous
vehicle to drive on narrow roads with oncoming traffic. The dynamic Circogram contains information
about the semantic class to the hitpoints, and this could be used to only create a safety margin
around objects that might move. A way to overcome this is to replace the safety margin in the hard
constraint with a soft constraint on the distance to objects that might move. This will not restrict
the accessibility of the autonomous vehicle and simultaneously preserve safety. Another measure to
increase the safety is soft risk criterion based on TTC. It was included to avoid colliding with other
dynamic vehicles, and to be able to differentiate between driving towards a wall and behind another
vehicle with the same velocity as the ego vehicle. The soft risk criterion also had an unintended
benefit, in fact, it improved the ego vehicle’s ability to perform right turns. Without the soft risk
criteria, the ego vehicle made too wide right turns, and often ended up in the wrong lane after the
turn. In these wide turns, the ego vehicle is driving towards to curb on the other side of the road
which results in a low TTC. Therefore, the soft risk criterion made the ego vehicle quickly change
the direction and avoided wide right curves.

12.1.5. Discussion of the short-term plan selection

As explained in subsection 9.7.3, the weighting of the soft constraints will heavily determine the
behaviour of the ego vehicle. Extensive testing of different combinations of weights has been con-
ducted, and the best weights were found by visually inspecting the resulting behaviour of the ego

12.1. Discussion of the initial experiments during the design process 86

(a) A standard deviation of σz = σr = 0.05 when
sampling a set of 10 local plan parameters that the
DAG generates short-term plans of with the physical
motion model.

(b) A standard deviation of σz = σr = 0.2 when
sampling a set of 10 local plan parameters that the
DAG generates short-term plans of with the physical
motion model.

Figure 12.1.: Illustration of different confidence levels in the local plan parameters. A small standard
deviation is interpreted as high confidence in the output from the learning-based short term planners,
and a large standard deviation is treated as the opposite.

vehicle and by defining the desired characteristic in different driving situations. For instance, in the
current system the weights will decide if the ego vehicle will use the opposite lane to overtake a
parked vehicle.

The size of the standard deviations σz and σr for the local plan parameters determine how im-
portant the short-term plan selection is, and hence also the selection of the weights. As explained
in subsection 9.5.2 and subsection 9.5.3, the local plan parameters that the learning-based short-
term planners produce are assumed to be mean values for normal distributions. By having a large
corresponding standard deviation in the normal distribution, the sampling of short-term plans will
result in a more diverse set of short-term plans. This means that the short-term plan selection is
more influential on which short-term plan the agent selects. On the other hand, a small correspond-
ing standard deviation will result in many similar plans and the short-term plan selection process
will not be as important. Therefore, the size of the standard deviation can be interpreted as the
confidence in the local plan parameters from the short-term planners. Figure 12.1 illustrates this
interpretation. If the confidence in the correctness of the local plan parameters is high, the standard
deviation could be low. However, for safety reasons, the standard deviations should be above a
certain threshold to make sure that there is always a feasible short-term plan to follow. There are
some uncertainties in learning-based approaches, and there is reason to treat the output as random
variables.

12.1.6. Discussion of the learning-based short-term planners

In section 9.5, two different learning-based short-term planners are proposed. One uses imitation
learning from prerecorded driving, and one optimizes a reward function using reinforcement learning.

12.2. Discussion of the results from the test route 87

The idea was to train the policy network in Figure 9.7 with imitation learning first, and then improve
the robustness and generalization through reinforcement learning. I was not able to improve the
policy with reinforcement learning, and this will probably improve the agent. During the collection
of prerecorded data, different scenarios were recorded through the traffic manager in CARLA. The
gathering of training data for the STP-IL is time-consuming due to the creation of the target values
(the true local plan parameters). The target values were gathered from an STP-R with a DAG that
generated a large set of feasible short-term plans. The other approaches described in Equation (9.7)
are independent of the rest of the SafeRide system, and might result in better target values. The
STP-IL will probably improve if the set of prerecorded driving is enlarged. The hyperparameters in
the policy network are not thoroughly tuned. The generalization might be improved with a different
network architecture. However, with the possibilities for improvements in the generation of local
plan parameters, the SafeRide system is able to complete a testing route with different curves, static
obstacles, and dynamic obstacles.

12.2. Discussion of the results from the test route

In this section, each of the driving situations in the testing route is discussed in chronological order.
Both the desired characteristics and the shortcomings of the agent are discussed.

12.2.1. Left turn when navigation command is to follow lane

The result from the left turn when the navigational command is to follow the lane is shown in
subsection 11.3.1. The information that indicates that the ego vehicle needs to turn in this situation
is the extracted features from the potential field and the hit points in the Circogram. The custom
recolored BEV sensor is set up such that it detects objects 30 meters in front of the ego vehicle.
The result from this driving situation shows that it is sufficient to detect the curve 30 meters prior
to the curve to successfully complete it with the current speed limit. This might not be the case for
higher speed limits.

This shows that the ego vehicle curvature of the path increases throughout the curve, before the
agent suddenly starts to drive straight when the curve is ending. A path that has a curvature that
starts at 0 and increases linearly with the path length is defined as a clothoid. These paths have
been shown to reduce the lateral jerk during a curve, and are heavily used in railway engineering.
Clothoids have also been used in optimizing the racing line during the corner entry portion of a
turn [Hossain, Eager, and Walker 2020]. This is a good characteristic of the path in the curve, and
it might be a consequence of soft constraint on the lateral jerk. However, the sudden change in
curvature at the end of the curve might cause some jerk and be uncomfortable. Paths that look
like clothoids also create some drawbacks. The clothoids shape of the path makes the ego vehicle
cross the opposite lane in the middle of the curve. This might be a dangerous path if the ego vehicle
meets another vehicle in the curve. Nevertheless, it is not possible to discuss the behaviour of the ego
vehicle in such a situation without seeing how it behaves. The ego vehicle might drive on clothoids
when no vehicle in the opposite lane is detected, and completely stay in its lane when it meets other
vehicles in the curve.

12.2.2. Left in intersection with static car

The result from the left turn in the intersection with a static car is explained in subsection 11.3.2.
The snapshots of the ego vehicle show that the ego vehicle drives as if the other vehicle is not
existing. In this situation, this is the desired behaviour since the other car is static. This shows that

12.2. Discussion of the results from the test route 88

the agent has generalized to some degree since it is able to ignore the static car. The ego vehicle
drives close to the curb before and after the intersection. This might be done to create a curve with
a bigger radius, which increases the comfort.

However, the velocity seems to be fairly constant during the whole curve. The comfort and the
decision making could be improved if the ego vehicle has slowed down before the intersection. By
slowing down before the interaction, the lateral jerk through the curve will decrease. It might also
be easier to stop if the other vehicle suddenly starts to drive.

12.2.3. Right in intersection without other cars

The result from the right intersection without other cars is described in subsection 11.3.3. This result
shows that the ego vehicle also can handle sharp turns in the CARLA town. In this intersection,
the ego vehicle ends up close to the other lane. This reduces the sharpness of the curve but might
be risky if other vehicles are driving in the opposite lane.

12.2.4. Narrow passage through parked cars at both sides of the road

The result from the narrow passage through parked cars on both sides of the road is described
in subsection 11.3.4. This driving situation illustrates some of the shortcomings of the agent. The
agent can drive through the narrow passage without colliding, but it drives close to the parked cars
on the right side of the lane. The size of the passage is too small for two cars with the size of the
ego vehicle to pass. Therefore, the ego vehicle should treat it as one lane and could drive on top
of the lane markings to increase safety. It is no risk connected with driving close to non-movable
objects, but the cars on the right side of the road could start to drive. This justifies the previous
proposal of adding the distance to movable objects as a soft constraint.

Although, this behaviour is a result of the creation of the target values for the STP-IL. The targets
are selected based on the closeness to the segmented high-level plan which is in the middle of the
lane the ego vehicle is supposed to drive. This reflects an agent with STP-IL who prefer driving
close to the middle of the lane when it is possible. Another way of overcoming this shortcoming is
to create the targets for the STP-IL from an autopilot instead of STP-R. The autopilot will not
drive that close to the parked cars on the right side of the road. The collection of training data for
the STP-IL could also be created from manual driving. This would probably give the best training
set to learn from, but this is a very time-consuming process.

The final way to improve this behaviour is to use STP-RL instead of STP-IL. The reward function
needs to reflect this desired behaviour, and the agent needs to be exposed to these situations several
times.

12.2.5. Left in intersection with dynamic car

The result from the left turn in the intersection with a dynamic car is described in subsection 11.3.5.
The ego vehicle stops very close to the other dynamic car. This is a consistent characteristic of the
SafeRide system, and should be adjusted. Such driving might cause insecurity by the other drivers,
which might respond by trying to keep a bigger distance. The ego vehicle starts to drive when the
other dynamic vehicle is out of the path that the ego vehicle needs to drive to follow the navigational
command. This shows the agent is able to detect when the obstacle has disappeared, and the ego
vehicle continues driving at this moment. For the efficiency of the traffic, this is an important
aspect.

12.2. Discussion of the results from the test route 89

The STP-IL has access to the relative velocity between the outer surface of the vehicle and the hit
points from the simulated rays in the Cricogram. This means that the STP-IL have information
that makes it possible to create local plan parameters that take the movement of the dynamic car
into account. Nevertheless, this driving situation required the other dynamic car to start within a
small specified time interval for the ego vehicle to avoid a collision. If the other dynamic car starts
a second later, then the ego vehicle attempts to cross the intersection before the other dynamic car,
which results in the other dynamic car colliding with the rear end of the ego vehicle. The current
version of SafeRide is not robust in driving situations with other moving objects. This can be solved
by simulating the movement of the hitpoints with velocity when performing the hard constraint
collision check, or by including more diverse data for the STP-IL. The first suggestion is to improve
the short-term plan selection process, and the second proposal is to improve the generation of local
plan parameters.

The first proposal to improve the robustness of driving situations with moving objects is to extend
the collision checking. All the needed information to perform this extension is already in the dynamic
Circogram. The velocity of each hit point with class label movable object, could be assumed to have
a constant velocity, and used to calculate paths that could be used in the collision check. This
means that it is required to perform a collision check at specified intervals during the length of
the short-term plan. Each position of the ego vehicle along with the proposed plan, needs to be
checked for collision with the calculated position of the movable hit points at the same discrete time
instance. This extended collision check increases the computational time of the short-term plan
selection.

The second proposal to improve the robustness of driving situations with moving objects is to add
more diverse training data for the STP-IL. As explained in section 11.1, the STP-IL is trained
on prerecorded driving from the STP-R with information about the high-level plan from CARLA.
The STP-R only stops when all the generated short-term plans lead to a collision. Hence, it is
not possible to use this way of creating training data to increase the robustness of the STP-IL
with other dynamic objects. One possible solution is to use the STP-R to collect training data in
simple settings without other dynamic objects, and use an autopilot or drive the vehicle manually
in difficult situations with other dynamic obstacles.

12.2.6. Right in intersection with dynamic car

The result from the right turn in the intersection with a dynamic car is described in subsection 11.3.6.
The discussion around the robustness with other dynamic objects also applies to this driving situa-
tion. Therefore, this part of the discussion is not repeated here to avoid redundancy. However, it is
possible to observe one advantage with the current collision check constraint. The ego vehicle does
not start to drive before it can create a short-term plan that does not lead to a collision along the
complete planned path. This result in a safety margin of the planning length. It is a rule of thumb
that one should keep a safety margin of two seconds in some countries1. The ego vehicle is forced to
keep a safety margin of the planning length by checking the complete short-term plan for collision
in the current static Circogram. This analysis shows that one should both check the complete short-
term plan for collision in the static Circogram, and use the velocity of the hitpoints in the Circogram
to calculate the temporal development of the hit points and check these for collision.

1NYS DMV - Driver’s Manual - Chapter 8: Defensive Driving refer to this as the two-second-rule: https://dmv.
ny.gov/about-dmv/chapter-8-defensive-driving

https://dmv.ny.gov/about-dmv/chapter-8-defensive-driving
https://dmv.ny.gov/about-dmv/chapter-8-defensive-driving

12.2. Discussion of the results from the test route 90

12.2.7. Parked car in the middle of the lane

The result from overtaking the parked car in the middle of the lane is described in subsection 11.3.7.
This result is similar to the result in subsection 11.3.4. The only differences are that in this driving
situation there is one other car, and the car is placed in the middle of the preferred driving lane
to the ego vehicle. This shows that the ego vehicle can deviate further away from the generated
high-level plan from CARLA. The same shortcomings that were discovered in subsection 11.3.4 also
apply here, and will not be discussed again to avoid redundancy.

13. Conclusion and Further Work

This chapter concludes the thesis and proposes some further work to improve the SafeRide sys-
tem.

13.1. Conclusion

In this thesis, we present a novel structured approach to autonomous vehicles in simulated envi-
ronments that can be tested and certified. The system is called SafeRide and is developed in the
simulation environment CARLA. The structured approach consists of an intermediate environment
representation that is created from a semantic bird´s eye view. The intermediate environment rep-
resentation is sufficient to drive the testing route. This intermediate environment representation is
used together with the dynamic vehicle state and a navigational command to create a small set
of local plan parameters. The dynamic Circogram and the potential field contain sufficient infor-
mation for driving in the test environment. The local plan parameters are used to create control
action sequences, which are transformed into short-term plans by a physical vehicle motion model.
This shows that it is possible to create short-term plans fulfilling nonholonomic constraints based
on control action sequences. To the best of my knowledge, the use of sequences of control actions to
create short-term plans has not been researched before. This thesis also shows that it is possible to
design a physical vehicle motion model in CARLA which reflects how the simulated vehicles move.
The short-term plans are tested for hard constraints and optimized based on soft constraints. The
weights in the multi objective optimization are highly influencing the behaviour of the autonomous
car. The best control action sequence that results in the best short-term plan can be executed or
the short-term plan can be executed by a controller that compensates for the deviations between
the short-term plan and the observed motion.

The final autonomous vehicle can drive smoothly through random routes that contain obstacles.
Since the short-term plans are based on a physical vehicle motion model, it is feasible for the
autonomous vehicle to correctly follow the proposed plans. This thesis shows that it is possible
to create short-term plans that precisely describe where the vehicle is going to drive. Some other
approaches to short-term planning are based on geometric curves, which may not be feasible for a
car to execute due to nonholonomic constraints. The final autonomous vehicle can avoid obstacles
when driving and follow navigational instructions similar to what GPS-based systems offer. The
results show that the autonomous vehicle drives on paths similar to clothoids in the curves. Such
curves are comfortable for the passengers.

This structured approach is selected because it makes it possible to test and certify each compo-
nent. The regulators demand this feature of the autonomous driving system1. The SafeRide system
includes the possibility to adjust the confidence in the learning-based short-term planner by ad-
justing the standard deviations when sampling local plan parameters. It is easy in the SafeRide

1ISO 22737: Intelligent transport systems — Low-speed automated driving (LSAD) systems for predefined routes
— Performance requirements, system requirements and performance test procedures: https://www.iso.org/
standard/73767.html

91

https://www.iso.org/standard/73767.html
https://www.iso.org/standard/73767.html

13.2. Further Work 92

system to analyse each of the components to verify the performance and find possibilities for im-
provements.

13.2. Further Work

The natural extension of this thesis is to make the system more robust in dynamic environments.
Better robustness in dynamic environments can either be done by generating better local plan
parameters, or to extend the path selection to handle dynamic environments. To create better local
plan parameters, it is necessary to improve the learning-based short-term planner. The short-term
planner with imitation learning can be improved by collecting more and better training data. Better
training data can be collected by using another approach for calculating the target values. This can
be done by using an autopilot, or by manual driving. The better training data set will be more
time-consuming to collect than the current training data set. As mentioned in this thesis, imitation
learning is criticized for lacking robustness and training data bias. This is still an issue if the current
training data set is improved. These limitations can be handled by using reinforcement learning to
train the short-term planner. This was the intended final step of training the short-term planner,
but this training phase was not conducted due to the time constraints of the thesis.

The second way of adapting the current system to a dynamic environment is to adapt the short-term
plan selection. This can be done by simulating the movements of the hit points in the Circogram
during the short-term plan length. To perform this extension, it is necessary to make some assump-
tions about the movements of the hit points. A simple assumption that could be used as a starting
point is to assume that the hit points move with a constant velocity.

Another observed characteristic that can be improved is how the ego vehicle behaves around other
movable objects. In the current system, the ego vehicle behaves the same way around static objects
and movable objects that have zero velocity. Movable objects with zero velocity might suddenly start
to move, and it is therefore riskier to be close to such objects. This can be addressed by adding
a new soft constraint that penalizes the closeness of the movable objects. This will only influence
the short-term plan selection process, and it might be more beneficial to make an adjustment that
influences the creation of the local plan parameters. One way to influence the creation of the local
plan parameters is to add additional information in the environment state that can be used to learn
the intended new relation. This can be done by adding repulsive forces around movable objects
in the potential field. It can be combined with the velocity to add stronger repulsive forces in the
direction the other vehicles drive.

Each of the modules in the SafeRide system required an extensive design process, and it was not
time to fine-tune the neural network architecture. It might be able to improve the performance
of the short-term planner by changing the neural network architecture for the policy. The neural
network can be changed in different ways. The current neural network architecture is relativly small
due to the small training data set. It was kept small to avoid overfitting to the small training data
set. A bigger training data set will allow the designer to use a larger neural network. The number
of hidden layers and the number of neurons in each hidden layer can be increased.

Bibliography

[1] Aaslund, Bjørn André. “Simulated Autonomous Driving in Nordic Climate — Preproject”. In:
(2021).

[2] Badino, Hernán, Franke, Uwe, and Pfeiffer, David. “The Stixel World - A Compact Medium
Level Representation of the 3D-World”. In: Pattern Recognition. Vol. 5748. Springer Berlin
Heidelberg, Sept. 2009, pp. 51–60. doi: 10.1007/978-3-642-03798-6_6.

[3] Behringer, R. et al. “The DARPA grand challenge - development of an autonomous vehicle”.
In: IEEE Intelligent Vehicles Symposium, 2004. 2004, pp. 226–231. doi: 10.1109/IVS.2004.
1336386.

[4] Bojarski, Mariusz et al. “End to End Learning for Self-Driving Cars”. In: (Apr. 2016). url:
https://www.researchgate.net/publication/301648615_End_to_End_Learning_for_
Self-Driving_Cars.

[5] Bøhn, Eivind et al. “Optimization of the Model Predictive Control Update Interval Using Re-
inforcement Learning”. In: IFAC-PapersOnLine 54.14 (2021). 3rd IFAC Conference on Mod-
elling, Identification and Control of Nonlinear Systems MICNON 2021, pp. 257–262. doi:
https://doi.org/10.1016/j.ifacol.2021.10.362.

[6] Chen, Dian, Koltun, Vladlen, and Krähenbühl, Philipp. “Learning to drive from a world
on rails”. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021,
pp. 15570–15579. doi: 10.1109/ICCV48922.2021.01530.

[7] Chen, Dian et al. “Learning by Cheating”. In: Proceedings of the Conference on Robot Learning.
Ed. by Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura. Vol. 100. Proceedings of
Machine Learning Research. PMLR, 2020, pp. 66–75. url: https://proceedings.mlr.
press/v100/chen20a.html.

[8] Chitta, Kashyap, Prakash, Aditya, and Geiger, Andreas. “NEAT: Neural Attention Fields for
End-to-End Autonomous Driving”. In: International Conference on Computer Vision (ICCV).
2021. doi: 10.48550/ARXIV.2109.04456.

[9] Codevilla, Felipe et al. “Exploring the Limitations of Behavior Cloning for Autonomous
Driving”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019,
pp. 9328–9337. doi: 10.1109/ICCV.2019.00942.

[10] Dosovitskiy, Alexey et al. “CARLA: An Open Urban Driving Simulator”. In: Proceedings of
the 1st Annual Conference on Robot Learning. Ed. by Sergey Levine, Vincent Vanhoucke, and
Ken Goldberg. Vol. 78. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1–16.
url: https://proceedings.mlr.press/v78/dosovitskiy17a.html.

[11] Falanga, Davide et al. “PAMPC: Perception-Aware Model Predictive Control for Quadrotors”.
In: IEEE/RSJ International Conference on Intelligent c Robots and Systems (IROS), Madrid.
Apr. 2018, pp. 1–8. doi: 10.1109/IROS.2018.8593739.

93

https://doi.org/10.1007/978-3-642-03798-6_6
https://doi.org/10.1109/IVS.2004.1336386
https://doi.org/10.1109/IVS.2004.1336386
https://www.researchgate.net/publication/301648615_End_to_End_Learning_for_Self-Driving_Cars
https://www.researchgate.net/publication/301648615_End_to_End_Learning_for_Self-Driving_Cars
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.362
https://doi.org/10.1109/ICCV48922.2021.01530
https://proceedings.mlr.press/v100/chen20a.html
https://proceedings.mlr.press/v100/chen20a.html
https://doi.org/10.48550/ARXIV.2109.04456
https://doi.org/10.1109/ICCV.2019.00942
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1109/IROS.2018.8593739

Bibliography 94

[12] Hayati, Hasti et al. “Jerk within the Context of Science and Engineering—A Systematic
Review”. In: Vibration 3.4 (2020), pp. 371–409. doi: 10.3390/vibration3040025.

[13] Hoffmann, Gabriel et al. “Autonomous Automobile Trajectory Tracking for Off-Road Driving:
Controller Design, Experimental Validation and Racing”. In: 2007 American Control Confer-
ence. Aug. 2007, pp. 2296 –2301. doi: 10.1109/ACC.2007.4282788.

[14] Hossain, Md Imam, Eager, David, and Walker, Paul. “Greyhound racing ideal trajectory path
generation for straight to bend based on jerk rate minimization”. In: Scientific Reports 10
(Apr. 2020), p. 7088. doi: 10.1038/s41598-020-63678-1.

[15] Hwang, Ching-Lai and Masud, Abu Syed Md. “Methods for Multiple Objective Decision Mak-
ing”. In: Multiple Objective Decision Making — Methods and Applications: A State-of-the-Art
Survey. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979, pp. 21–283. doi: 10.1007/978-
3-642-45511-7_3.

[16] Kendall, Alex et al. “Learning to Drive in a Day”. In: 2019 International Conference on
Robotics and Automation (ICRA). 2019, pp. 8248–8254. doi: 10.1109/ICRA.2019.8793742.

[17] Kiran, Bangalore et al. “Deep Reinforcement Learning for Autonomous Driving: A Survey”.
In: IEEE Transactions on Intelligent Transportation Systems PP (Feb. 2021), pp. 1–18. doi:
10.1109/TITS.2021.3054625.

[18] Klose, Patrick and Mester, Rudolf. “Simulated Autonomous Ariving in a Realistic Driving
Environment using Deep Reinforcement Learning and a Deterministic Finite State Machine”.
In: Proceedings of the 2nd International Conference on Applications of Intelligent Systems
(Jan. 2019), pp. 1–6. doi: 10.1145/3309772.3309802.

[19] Kong, Jason et al. “Kinematic and dynamic vehicle models for autonomous driving control
design”. In: 2015 IEEE Intelligent Vehicles Symposium (IV). June 2015, pp. 1094–1099. doi:
10.1109/IVS.2015.7225830.

[20] Koren, Yoram and Borenstein, Johann. “Potential Field Methods and Their Inherent Lim-
itations for Mobile Robot Navigation”. In: Proceedings - IEEE International Conference on
Robotics and Automation. Vol. 2. May 1991, pp. 1398 –1404. doi: 10.1109/ROBOT.1991.
131810.

[21] Liang, Xiaodan et al. “CIRL: Controllable Imitative Reinforcement Learning for Vision-Based
Self-driving”. In: Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari et al. Cham: Springer
International Publishing, 2018, pp. 604–620. doi: https://doi.org/10.1007/978-3-030-
01234-2_36.

[22] Liu, Shuying and Deng, Weihong. “Very deep convolutional neural network based image clas-
sification using small training sample size”. In: 2015 3rd IAPR Asian Conference on Pattern
Recognition (ACPR). 2015, pp. 730–734. doi: 10.1109/ACPR.2015.7486599.

[23] Miettinen, Kaisa. “A Priori Methods”. In: Nonlinear Multiobjective Optimization. Boston, MA:
Springer US, 1998, pp. 115–129. doi: 10.1007/978-1-4615-5563-6_5.

[24] Ohn-Bar, Eshed et al. “Learning Situational Driving”. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2020, pp. 11293–11302. doi: 10.
1109/CVPR42600.2020.01131.

https://doi.org/10.3390/vibration3040025
https://doi.org/10.1109/ACC.2007.4282788
https://doi.org/10.1038/s41598-020-63678-1
https://doi.org/10.1007/978-3-642-45511-7_3
https://doi.org/10.1007/978-3-642-45511-7_3
https://doi.org/10.1109/ICRA.2019.8793742
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1145/3309772.3309802
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/https://doi.org/10.1007/978-3-030-01234-2_36
https://doi.org/https://doi.org/10.1007/978-3-030-01234-2_36
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1007/978-1-4615-5563-6_5
https://doi.org/10.1109/CVPR42600.2020.01131
https://doi.org/10.1109/CVPR42600.2020.01131

Bibliography 95

[25] Paden, Brian et al. “A Survey of Motion Planning and Control Techniques for Self-Driving
Urban Vehicles”. In: IEEE Transactions on Intelligent Vehicles 1 (Apr. 2016). doi: 10.1109/
TIV.2016.2578706.

[26] Pepy, R., Lambert, A., and Mounier, H. “Path Planning using a Dynamic Vehicle Model”.
In: 2006 2nd International Conference on Information Communication Technologies. Vol. 1.
2006, pp. 781–786. doi: 10.1109/ICTTA.2006.1684472.

[27] Philion, Jonah and Fidler, Sanja. “Lift, Splat, Shoot: Encoding Images From Arbitrary Cam-
era Rigs by Implicitly Unprojecting to 3D”. In: Proceedings of the European Conference on
Computer Vision. 2020. doi: DOI:10.1007/978-3-030-58568-6_12.

[28] Prakash, Aditya, Chitta, Kashyap, and Geiger, Andreas. “Multi-Modal Fusion Transformer for
End-to-End Autonomous Driving”. In: 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2021), pp. 7073–7083. doi: 10.1109/CVPR46437.2021.00700.

[29] Rajamani, Rajesh. Vehicle dynamics and control. 2nd ed. Springer New York, 2012. doi:
https://doi.org/10.1007/978-1-4614-1433-9.

[30] Rawlings, J and Mayne, D.Q. Model Predictive Control: Theory and Design. 2nd ed. Nob Hill
Publishing, LLC, Jan. 2009.

[31] Roddick, Thomas and Cipolla, Roberto. “Predicting Semantic Map Representations from
Images using Pyramid Occupancy Networks”. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020), pp. 11135–11144. doi: 10.1109/cvpr42600.
2020.01115.

[32] Roth, Scott D. “Ray casting for modeling solids”. In: Computer Graphics and Image Processing
18.2 (1982), pp. 109–144. doi: https://doi.org/10.1016/0146-664X(82)90169-1.

[33] Schubert, Robin, Richter, Eric, and Wanielik, Gerd. “Comparison and evaluation of advanced
motion models for vehicle tracking”. In: 2008 11th International Conference on Information
Fusion. Jan. 2008, pp. 1–6. doi: 10.1109/ICIF.2008.4632283.

[34] Silver, David et al. “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529 (Jan. 2016), pp. 484–489. doi: 10.1038/nature16961.

[35] Song, Yunlong and Scaramuzza, Davide. “Learning High-Level Policies for Model Predictive
Control”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Nov. 2020. doi: 10.1109/IROS45743.2020.9340823.

[36] Song, Yunlong and Scaramuzza, Davide. “Policy Search for Model Predictive Control With
Application to Agile Drone Flight”. In: IEEE Transactions on Robotics (2022), pp. 1–17. doi:
10.1109/TRO.2022.3141602.

[37] Toromanoff, Marin, Wirbel, Emilie, and Moutarde, Fabien. “End-to-End Model-Free Rein-
forcement Learning for Urban Driving using Implicit Affordances”. In: 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 7151–7160. doi:
10.1109/cvpr42600.2020.00718.

[38] Yang, Runzhe, Sun, Xingyuan, and Narasimhan, Karthik. “A Generalized Algorithm for Multi-
Objective Reinforcement Learning and Policy Adaptation”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url:
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-
Paper.pdf.

https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/ICTTA.2006.1684472
https://doi.org/DOI:10.1007/978-3-030-58568-6_12
https://doi.org/10.1109/CVPR46437.2021.00700
https://doi.org/https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1109/cvpr42600.2020.01115
https://doi.org/10.1109/cvpr42600.2020.01115
https://doi.org/https://doi.org/10.1016/0146-664X(82)90169-1
https://doi.org/10.1109/ICIF.2008.4632283
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/IROS45743.2020.9340823
https://doi.org/10.1109/TRO.2022.3141602
https://doi.org/10.1109/cvpr42600.2020.00718
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf

A. Definitions Used in the Thesis

The thesis contains many definitions and created names. All these definitions are presented in this
chapter together with a short explanation. There is reference to the section in the thesis where
they are used the first time. The tables are divided into CARLA definitions, sensor definitions,
environment representation definitions, physical motion model definitions, and planning definitions.
They are presented sequentially in own tables.

Name Explanation
Spawing position A location in the CARLA simulation where the ego vehi-

cle can be teleported without causing a collision. Used in
section 4.4.

Table A.1.: Important names relevant to CARLA together with a short explanation.

Name Explanation
Recolored BEV A semantic bird´s eye view of the ego vehicle where some

classes have been merged. Used in section 6.6.

Table A.2.: Important defined names relevant to the sensors together with a short explanation.

Name Explanation
Simulated ray A straight line in an image which ends when it hits objects.

Simulates how an laser ray works. Used in section 7.1.
Hit point A point where the simulated ray collides with a non-drivable

object. Used in section 7.1.
Circogram An intermediate environment representation that contains

distances to the boundary of the free space. Used in sec-
tion 7.1.

Dynamic
Circogram

Extension of the Circogram where relative velocity and the
semantic class of the boundary of the free space are included.
Used in section 7.1.

Potential field An intermediaste environment representation which encode
a temporary goal pose and the free space as a matrix with
positive values. Used in section 7.2.

Table A.3.: Important defined names relevant to the intermediate environment representation com-
ponent together with a short explanation.

96

Appendix 97

Name Explanation
Dynamic vehicle
state

The state vector variable used in the motion models. It con-
sists of . Used in chapter 8.

Table A.4.: Important defined names relevant to the physical motion model component together
with a short explanation.

Name Explanation
High-level plan A plan with information about how to reach the goal with-

out considering the dynamics of the ego-vehicle and sur-
rounding objects. Used in section 9.3.

Navigational com-
mand

A discrete variable which describes which road to drive to
get to the goal location. Used in subsection 9.2.1.

Segmented high-
level plan

A segment of the sequence of equally distributed points from
the start location to the goal location. Each point in the
segment also contain a navigation command. Used in sub-
section 9.2.2.

Attraction point A high-level plan that only consists of one point. The attrac-
tion point is the point in the sequence of equally distributed
points from the current location of the ego vehicle to the
goal location where the navigational command change. It
is a point that consists of a position and the navigational
command that should be used until this location. Used in
subsection 9.2.2.

Control action se-
quence

A sequence segment of control actions (steering z and throt-
tle r) for a short time period into the future. Used in sec-
tion 9.4

Local plan parame-
ters

Some parameters describing the steering input z and the
throttle input r at some time in the future. Used in subsec-
tion 9.4.1.

Driving action gen-
erator (DAG)

A component that transforms local plan parameters to con-
trol action sequences. Used in subsection 9.4.1.

Short-term plan A plan describing the motion of the ego vehicle a short
time into the future. The motion model takes con-
trol action sequences as inputs and outputs short-term
plans/trajectories. Used in section 9.4.

Short-term planner A component that creates local plan parameters from the
current dynamic Circogram, the vehicle state, and the cur-
rent high-level plan. Used in section 9.5.

Environment state An environment state in this chapter correspond to the in-
put to the short-term planner. The state consists of the cur-
rent dynamic Circogram, the vehicle state, and the current
high-level plan. Not confused with the dynamic vehicle state
presented in chapter 8. Used in section 9.5.

Plan execution
module

Executes the short-term plans/trajectories. Used in sec-
tion 9.4 but explained in chapter 10.

Table A.5.: Important defined names relevant to the planning component together with a short
explanation.

B. Affine Transformation between Coordinate
Frames

The creation of the Circogram is happening in the pixel coordinate frame, defined with (0, 0) in the
upper left corner, x being the row number, and y being the column number. Thus, it is necessary
to be able to transform the pixel coordinates to the vehicle coordinate frame. The BEV camera
is always pointing vertically down to the ground. It is possible to use an affine transformation to
transform coordinates between these coordinate systems, if we assume that the ground is flat. This
will be true for the roads in the CARLA towns that we use. An augmented matrix and vector is
used since it makes it possible to represent both the translation and the linear map using a single
matrix multiplication.

[
y
1

]
=

[
A

∣∣ b
0 . . . 0

∣∣ 1

] [
x
1

]
(B.1)

16 points distributed on the road around the vehicle was selected, and the corresponding pixel
location was found. Least squares method is used to to find the best parameters.

Figure B.1.: Points that are used to create the affine transformation between the coordinate frames.

98

C. Difficulties of Creating the Circogram from
a BEV in CARLA

The Circogram is created by sending simulated rays from the center of gravity of the ego vehicle.
The hitpoints are found by traversing the simulated ray and detecting the first pixel outside the
ego vehicle that is not a drivable area. This procedure works well as long as the ego vehicle has
a shape without any major objects protruding from the surface. This can for example be big side
mirrors or wheels that are turned maximum to one side. Such protruding objects might cause the
simulated ray to detect a hitpoint on its own surface. This needs to handled to avoid such events.
The Mustang that is used in this thesis has small side mirrors that do not influence the simulated
rays, but the front wheels collide with the simulated rays when the steering wheel is turn maximum
to the left or the right. This is handled by adjusting the starting pixels for the simulated rays that
are affected.

99

D. Discontinuity of Angles

All angles in this thesis are in radians or transformed to radians when obtained from CARLA.
Angles in radians will have a discontinuity of 2π. Since we consider the angles to be θ ∈ [−π, π], we
will have a discontinuity between −π and π. The removal of the phase discontinuity is completed
by the following steps. Given an input angle θ close to the discontinuity. Subtract π from the angle
to get away from the discontinuity. Then compute the sine and cosine representation of the angle,
and then go back into the angle representation by using atan2. Finally add π to get into the same
value range, if needed. θ̂ is the angle without the discontinuity.

θ̂ = atan2(sin(θ − π), sin(θ − π)) + π (D.1)

Figure D.1 shows the orientation with discontinuity, and the result after using Equation D.1

Figure D.1.: The orientation θ before the removal of the discontinuity, and the result θ̂ after the
removal of the discontinuity.

100

E. Complete Autoencoder Architecture

Layer Act. Init. Output Kernel Stride Padding Param
0_pf_input - - (1x128x128) - - - 0
1_pf_conv2d Relu He (8x42x42) (5, 5) (3, 3) (1, 1) 0
2_pf_conv2d Relu He (16x14x14) (5, 5) (3, 3) (1, 1) 0
3_pf_conv2d Relu He (32x4x4) (5, 5) (3, 3) (1, 1) 0
4_pf_flatten Relu He (512) - - - 0
5_pf_linear Relu He (128) - - -
6_pf_linear Relu He (512) - - -
7_pf_unflatten - - (32x4x4) - - - 0
8_pf_convtranspose2d Relu He (16x14x14) (5, 5) (3, 3) - 0
9_pf_convtranspose2d Relu He (8x42x42) (5, 5) (3, 3) (1, 1) 0
10_pf_convtranspose2d Relu He (1x128x128) (5, 5) (3, 3) - 0
Total params: 8,765
Trainable params: 8,765

Table E.1.: Model summary for the autoencoder network used to extract features from the potential
field. The table lists the activation function (Act.), the weight initialization (Init.), the output shape
(Output), the kernel shape (Kernel), the stride, the padding, and the number of parameters each
layer contains.

101

102

Appendix 103

F. Recreated images from the trained
autoencoder

(a) Original potential field. (b) Recreated potential field.

(c) Original potential field. (d) Recreated potential field.

(e) Original potential field. (f) Recreated potential field.

Figure F.1.: Original potential fields and the recreated potential fields from the trained autoencoder.
These images show that the autoencoder is able to preserve the temporary goal pose and the area
of the free space.

G. Complete Policy Architecture

Layer Act. Init. Output Kernel Stride Padding Param
0_pf_input - - (1x128x128) - - - 0
1_pf_conv2d Relu He (8x42x42) (5, 5) (3, 3) (1, 1) 0
2_pf_conv2d Relu He (16x14x14) (5, 5) (3, 3) (1, 1) 0
3_pf_conv2d Relu He (32x4x4) (5, 5) (3, 3) (1, 1) 0
4_pf_flatten Relu He (512) - - - 0
5_pf_linear Relu He (128) - - -
0_dc_input - - (4x100) - - - 0
1_dc_conv1d Relu He (8x100) (5) (1) (1) 0
2_dc_conv1d Relu He (8x100) (5) (1) (1) 0
3_dc_maxpool1d - - (8x25) (4) (4) - 0
4_dc_conv1d Relu He (16x25) (5) (1) (1) 0
5_dc_conv1d Relu He (16x25) (5) (1) (1) 0
6_dc_maxpool1d - - (16x6) (4) (4) - 0
7_dc_flatten - - (96) - - - 0
0_ffn_concatenate - - (232) - - - 0
1_ffn_linear Relu He (64) - - - 0
2_ffn_linear Tanh Xavier (4) - - - 0
Total params: 8,765
Trainable params: 8,765

Table G.1.: Model summary for policy network used for mapping environment states to local plan
parameters. The table lists the activation function (Act.), the weight initialization (Init.), the output
shape (Output), the kernel shape (Kernel), the stride, the padding, and the number of parameters
each layer contains.

104

H. The testing route

Figure H.1.: The complete testing route where all the driving situations are connected. Parts of the
route where the ego vehicle only need to follow the lane are removed. This makes the high-level
plan provided by CARLA a continuous line from the starting position to the end position.

105

106

Appendix 107

I. Initial experiments during the design
process of SafeRide

M
ovie nam

e
Path length

FPS
Num

ber of
param

eters

Num
ber of

generated
trajectories

Setting
Uniform

random

Uniform

random
 and

finetuned

Im
itation

learning
RL

26042022_random
_1.m

ov
3

30
5 (z1, z1, r1, r2, t1)

50
N

o other vehicels
x

26042022_random
_finetuned_1.m

ov
3

30
3 for z and r

50
N

o other vehicels
x

26042022_random
_finetuned_2.m

ov
3

30
3 for z and r

50
N

o other vehicels
x

26042022_random
_finetuned_3.m

ov
3

30
2 for z and r

50
N

o other vehicels
x

26042022_random
_finetuned_4.m

ov
3

30
4 for z and r

50
N

o other vehicels
x

26042022_random
_finetuned_5.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

26042022_random
_finetuned_6.m

ov
3

30
2 for z and r

100
O

ne static car
x

26042022_random
_finetuned_7.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

26042022_random
_finetuned_8.m

ov
3

30
2 for z and r

100
D

ynam
ic

environm
ent

x

28042022_random
_finetuned_1.m

ov
3

30
2 for z and r

200
D

ynam
ic

environm
ent (too

m
any cars)

x

28042022_random
_finetuned_2.m

ov
3

30
2 for z and r

200
D

ynam
ic

environm
ent (too

m
any cars)

x

General param
eters

Param
eter selection

Appendix 108

Collision
Speed lim

it
Target velocity
(w

1)

Distance from

high level plan
(w

2)

Total jerk
(w

3)
TTC (w

4)
Distance to
atractor (w

5)
W

eights
Com

m
ent

x
x

x
Few

 trajectories that are used for path
selection

x
x

x
Curvy driving on straights.

x
x

x
Curvy driving on straights. D

rives very
fast for som

e periods.

x
x

x
Stable driving on straights. Cuts tw

o
corners.

x
x

x
Very curvy driving. Cuts one corner.

x
x

x
x

x
Very stable. Som

etim
es to big turns.

x
x

x
x

x
Passes the car very closely.

x
x

x
x

x
w

1 = 1.4
Still to w

ide turns. D
o not cur corners.

x
x

x
x

x
w

1 = 1.4
H

andles static and dynam
ic cars w

ell.

x
x

x
x

x
w

2 = 1.4
Very hard environm

ent. w
2 is so high

that it stops behind one other car. Cuts
one corner.

x
x

x
x

x
w

2 = 1.1
Collides w

ith one car that com
es from

left. Show

s the need for TTC.

Path selection hard constraints
Path selection soft constraints

Appendix 109

M
ovie nam

e
Path length

FPS
Num

ber of
param

eters

Num
ber of

generated
trajectories

Setting
Uniform

random

Uniform

random
 and

finetuned

Im
itation

learning
RL

28042022_random
_finetuned_3.m

ov
3

30
2 for z and r

200
Dynam

ic
environm

ent
x

28042022_random
_finetuned_4.m

ov
3

30
2 for z and r

200
Dynam

ic
environm

ent
x

30042022_random
_finetuned_1.m

ov
3

30
2 for z and r

50
Dynam

ic
environm

ent
x

01052022_random
_finetuned_1.m

ov
3

30
2 for z and r

200
Dynam

ic
environm

ent
x

01052022_random
_finetuned_2.m

ov
3

30
2 for z and r

200
Dynam

ic
environm

ent
x

02052022_random
_finetuned_1.m

ov
3

30
2 for z and r

100
Dynam

ic
environm

ent
x

02052022_im
itation_learning_1.m

ov
3

30
2 for z and r

100
No other vehicels

x

02052022_im
itation_learning_2.m

ov
3

30
2 for z and r

100
No other vehicels

x

General param
eters

Param
eter selection

Appendix 110

Collision
Speed lim

it
Target velocity
(w

1)

Distance from

high level plan
(w

2)

Total jerk
(w

3)
TTC (w

4)
Distance to
atractor (w

5)
W

eights
Com

m
ent

x
x

x
x

x
w

2 = 1.2
Tow

n03. Stops the sim
ulation before a

tunnel. W
orks w

ell w
ith highw

ays.

x
x

x
x

x
w

2=1.1, w
3=0.6

Looks good. Good behaviour in the
outer lane in curves.

x
x

x
x

x
x

w
2=1.1, w

3=0.6

First w
ith TTC. Inner lane in curves look

better. Closer to the right in inner lane
curve. Slow

s dow
n w

hen m
eeting other

cars. Need to reduce the TTC w
eight.

x
x

x
x

x
x

w
2=1.1, w

3=0.6, w
3=0.6

Tries to stop behind a car, but crashes
gently.

x
x

x
x

x
x

w
1 = 1, w

2 = 1, w
3 = 1, w

4 = 1
The driving behaviour m

eets the
expectations.

x
x

x
x

x
x

w
1 = 1, w

2 = 1, w
3 = 1, w

4 = 2
Show

s that the ego vehicle stops w
hen

tw
o other cars are blocking the road.

x
x

x
x

x
x

w
1 = 1, w

2 = 1, w
3 = 1, w

4 = 1
Need m

ore data for the learning. Only
have 9000 sam

ples

x
x

x
x

x
x

w
1 = 1, w

2 = 1, w
3 = 1, w

4 = 1

Forgot to one hot encode the high level
plan, w

hich m
ight causing the issue in

the turns. Need m
ore data for the

learning specifically from
 edge cases

(turns and curves). Only have 9000
sam

ples.

Path selection hard constraints
Path selection soft constraints

Appendix 111

M
ovie nam

e
Path length

FPS
Num

ber of
param

eters

Num
ber of

generated
trajectories

Setting
Uniform

random

Uniform

random
 and

finetuned

Im
itation

learning
RL

05052022_im
itation_learning_1.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

05052022_im
itation_learning_2.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

06052022_im
itation_learning_1.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

06052022_im
itation_learning_2.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

06052022_im
itation_learning_3.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

10052022_im
itation_learning_1.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

10052022_im
itation_learning_2.m

ov
3

30
2 for z and r

100
N

o other vehicels
x

General param
eters

Param
eter selection

Appendix 112

Collision
Speed lim

it
Target velocity
(w

1)

Distance from

high level plan
(w

2)

Total jerk
(w

3)
TTC (w

4)
Distance to
atractor (w

5)
W

eights
Com

m
ent

x
x

x
x

x
x

w
1 = 1.1, w

2 = 0.8, w
3 = 0.6,

w
4 = 0.6

Looks better now
. Currently have

15000 sam
ples. A

dded m
ore data from

curves.

x
x

x
x

x
x

w
1 = 1.1, w

2 = 0.8, w
3 = 0.6,

w
4 = 0.6

Looks better now
. Currently have

15000 sam
ples. A

dded m
ore data from

curves.

x
x

x
x

x
x

w
1 = 1.1, w

2 = 0.8, w
3 = 0.6,

w
4 = 0.6

M
ore data, 18000. O

ne intersection,
and one turn on follow

 lane.

x
x

x
x

x
x

w
1 = 1.1, w

2 = 0.8, w
3 = 0.6,

w
4 = 0.7

O
ther intersections, still good.

x
x

x
x

x
w

1 = 1, w
3 = 1, w

4 = 1

R
em

oved soft constraint on high level
plan segm

ent. The result is that the car
does not keep its lane. It also fails in the
intersection.

x
x

x
x

x
x

w
1 = 1, w

3 = 1, w
4 = 1, w

5=1

O
nly use the distance to the attraction

point as a soft constraint. This m
akes it

follow
 the lane. A

ble to do turn w
hen it

follow
s the lane, but ends up in the

other lane after the turn. D
rives back

to ow
n lane after the turn.

x
x

x
x

x
x

w
1 = 1, w

3 = 1, w
4 = 1, w

5=1
The correct decision in the intersection.
Looses the lane after the intersection.

Path selection hard constraints
Path selection soft constraints

A Structured Approach to Autonom
ous D

riving in Sim
ulated Environm

ents
Bjørn André Aaslund

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Bjørn André Aaslund

A Structured Approach to
Autonomous Driving in Simulated
Environments

Master’s thesis in Computer Science
Supervisor: Rudolf Mester
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction and motivation for autonomous vehicles
	Research objectives in this thesis
	Thesis outline

	End-to-end and Structured Approaches to Autonomous Driving
	End-to-end approaches for AVs
	Imitation learning for end-to-end autonomous driving
	Reinforcement learning for end-to-end autonomous driving

	Structured approaches to AVs
	Perception
	Environment representation
	Plan and decide
	Control

	State of the Art
	Overview of the Relevant Components of the CARLA System
	Disable environment objects in CARLA
	Adjustment of vehicle physics in CARLA
	Relevant measurements and sensors in CARLA
	High-level planning provided by CARLA
	Traffic Manager for creating specific driving scenarios

	Overview of the SafeRide System
	The interface to the CARLA simulator
	The agent in the SafeRide system

	Sensor Data Processing in the SafeRide System
	LiDAR for autonomous vehicles
	LiDAR as implemented in CARLA
	Camera for autonomous vehicles
	Cameras as implemented in CARLA
	Semantic sensors in CARLA
	Recolored BEV sensor

	Intermediate Environment Representation
	The Circogram environment representation
	Creation of the dynamic Circogram

	The potential field environment representation
	Creation of potential field from semantic BEV in CARLA

	Physical Vehicle Motion Models
	Constant turn rate and velocity model
	Constant steering angle and velocity
	Dynamic bicycle model
	System identification for the vehicle motion models
	Longitudinal drive train model
	Steering to inverse radius model

	Validation of the physical motion model

	The Planning Component
	Expectations of a good autonomous vehicle
	High-level planning between two locations
	High-level planning as supported in CARLA
	High-level planning in SafeRide

	Navigation in SafeRide
	Control action sequence generation
	Driving action generator

	Different proposals for short-term planners
	Short-term planner with random sampling
	Short-term planner with imitation learning
	Short-term planner with reinforcement learning

	Policy network for the learning-based short-term planners
	Feature extraction of the potential field
	Feature extraction of the dynamic Circogram
	Feed forward neural network of concatenated features

	Short-term plan selection
	Hard constraints to avoid collision and obey speed limits
	Soft plan selection criteria
	Short-term plan optimization

	Planning in different driving situations

	Plan Execution and Control
	Control to follow short-term plan
	PID controller
	Stanley controller
	Tuning of gains for the controllers

	Execute control action sequence

	Experimental Results
	Experimental setup of the SafeRide system
	Sensor configurations
	Environment representation configuration
	Selection of motion model
	Setup of the planning component
	Execution of the best short-term plans

	Experimental testing route
	Results from different driving situations in the test route
	Left turn when navigation command is to follow lane
	Left at intersection with static car
	Right at intersection without other cars
	Narrow passage through parked cars at both sides of the road
	Left at intersection with dynamic car
	Right at intersection with dynamic car
	Parked car in the middle of the lane

	Discussion of the Design Process and the Results
	Discussion of the initial experiments during the design process
	Discussion of minimal viable agent
	Discussion of the number of local plan parameters
	Discussion of comfort and speed limits
	Discussion of safety margin to obstacles
	Discussion of the short-term plan selection
	Discussion of the learning-based short-term planners

	Discussion of the results from the test route
	Left turn when navigation command is to follow lane
	Left in intersection with static car
	Right in intersection without other cars
	Narrow passage through parked cars at both sides of the road
	Left in intersection with dynamic car
	Right in intersection with dynamic car
	Parked car in the middle of the lane

	Conclusion and Further Work
	Conclusion
	Further Work

	Definitions Used in the Thesis
	Affine Transformation between Coordinate Frames
	Difficulties of Creating the Circogram from a BEV in CARLA
	Discontinuity of Angles
	Complete Autoencoder Architecture
	Recreated images from the trained autoencoder
	Complete Policy Architecture
	The testing route
	Initial experiments during the design process of SafeRide

