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Summary

Within the European power system, the electricity mix is experiencing more
presence of variable power production due to the green shift. This shift causes
increased need for flexibility measures to combat instability, which is achievable
on both the generation and consumption side of the power system. Buildings,
neighborhoods, and most end-users are able to assist with flexibility through
demand side management, adjusting their consumption profile to react to the
price signals given. This flexibility can be activated through the use of home
energy management systems, which can control the flexible assets present in a
given building. However, most of these applications only consider the short-term
period of operation, up to a couple of days in the future when operating the
flexible assets. Flexibility also has a value in operation beyond this period, and
can assist in the long-term strategy of operation of the energy system in buildings,
which could be many weeks or months into the future. This is important when
accounting for long-term price signals or when operating seasonal flexible assets.
Finding accurate and descriptive measures of representing the long-term value of
flexibility use is needed to enable this.

The work presented in this thesis investigates the long-term value of flexibility
in residential buildings at the end-user level, and how the value of flexibility
can be represented for a short-term operational model. The work applies and
describes a long-term strategy framework specifically aimed at generating cost
curves representing the long-term value of flexibility. The cost curves describe
the future consequence of operation based on the future price signals they include.
The developed models enable price signals of different categories to be included in
the strategy framework. These price signals could be grid tariffs, but also flexible
assets themselves, for instance, seasonal storage. The strategy framework creates
a coupling between short-term and long-term operation of buildings, to achieve
better overall use of flexibility within buildings.

Overall, this thesis is made up of four scientific papers, where three are published
and one is submitted for review at the present time. These publications comprise
the contribution and discussion constituted in this thesis. A summary of the
main results of this PhD is given below:

• A long-term strategy framework and toolbox for building operation has
been created, to provide more information on the long-term value of flex-
ibility for building operation. The toolbox Long-term strategy frame-
work for future building operation (LOSTFUTURE) calculates the
long-term value of flexibility, and represents this as future cost curves. The
framework enables long-term price signals to be embedded into the strategy,
such that the cost curves represent the consequence of operation on these
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signals as well. Through the use of flexible assets, operation of the building
can be controlled to react to the short-term and long-term consequences of
operation.

• The LOSTFUTURE toolbox has been used in combination with several
different long-term price signals, to analyze the long-term value of flex-
ibility and strategic decisions during operation. For a monthly demand
charge, penalizing peak-import of electricity, the strategy finds the cost-
optimal peak-import level to aim for over the whole month, accounting for
both the demand charge cost and value of operation from real-time price
variation. For a price signal related to CO2eq-inventory, motivating cost-
optimal net zero-emission during yearly operation, the strategy captures the
cost-optimal value of emission compensation and the optimal timing of per-
forming this compensation. For long-term price signal as input to seasonal
thermal energy storage operation, the strategy captures the value of using
the seasonal storage unit to benefit from seasonal variation in operation.

• With the LOSTFUTURE toolbox, the flexible assets are controlled such
that they are able to influence the short-term and long-term value of flexi-
bility. The flexible assets in this work included a small-scale battery energy
storage system, a controllable electric vehicle charger, and control of space
heating to influence indoor temperature. For a case study surrounding a
monthly demand charge price signal in a Norwegian building, each of these
flexible assets individually provided means of flexibility use to react to the
long-term price signal during operation. Despite only being able to perform
flexibility within a day at the time, the flexible assets are able to react to
the long-term price signals and cost-optimally balance cost of operation.
While the battery and electric vehicle charger saw cost-reduction primar-
ily in the demand charge price signal, space heating found a cost-optimal
peak-import level that balanced savings from real-time prices. This showed
that each flexible asset reacts to the price signals differently based on their
characteristics.

• Multi-period price signals coupled to other price signals have been investi-
gated and applied to the LOSTFUTURE toolbox. This enables the frame-
work to include multiple price signals at once, including price signals that
are repeatedly activated and only valid for a limited period at a time. This
coupling was performed on a case study surrounding a Norwegian building
with seasonal thermal energy storage and monthly demand charge, to find
the operational strategy over a whole year. The model managed to accu-
rately couple each monthly demand charge with the strategy surrounding
the seasonal storage unit, such that the long-term value of flexibility on
both price signals were preserved. The results showed a strategy that cap-
tured the accurate peak-import level of the demand charge for each month,
and also the cost-effective use of seasonal storage.
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Dn Set containing list of coupling auxiliary points for state variable n
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P Set of index positions for weighting variable γ in the expected future cost
curve

Pi Set containing list of connecting weighting variables for auxiliary variable
λ, index i

SSg Set of scenarios for stochastic variables for decision stage g

Sg Set containing information for decision stage g

T Set of time steps within a decision stage

Parameters

βinit
i Auxiliary parameter taking the initial value for state variable i for a

decomposed optimization problem [-]

ĖB,dch,max, ĖB,ch,max Discharge/charge capacity for battery [ kWh
h ]

ĖMax Maximum EV charging capacity [ kWh
h ]

ĖSTES,in,max
t Rated input capacity limit for the STES at time step t [ kWh

h ]

ĖSTES,out,max
t Rated output capacity limit for the STES at time step t [ kWh

h ]

Q̇sh Rated capacity for space heating radiator [ kWh
h ]

ηBdch, η
B
ch Discharge/charge efficiency for battery [p.u]

ηEV
ch EV charging efficiency [p.u]

ηPV Total efficiency for PV system [p.u]

ηSTES Storage loss for the STES at each stage [p.u]

Γ(g, ssg) List containing input data to all stochastic variables for a decomposed
problem in stage g, scenario ssg
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NOMENCLATURE

Cgrid DSO volumetric cost for imported energy [EUR
kWh ]

Cfuturep Expected future cost for segment p [EUR]
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Ci, Ce Heat capacity for interior and building envelope [ kWh
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Cn,g
init List containing new marginal cost for price signal that is deactivated at

stage g, for state variable n [EUR
− ]

COPHP Coefficient of performance for the heat pump [p.u]

DEV EV storage discharge when not connected to the building [kWh]

E0
CO2eq Initial value of accumulated CO2eq-inventory at beginning of decision

stage [kgCO2eq]

EB,min, EB,max Battery lower and upper SoC bounds [kWh]

ESTES
Rated Rated storage capacity for the STES tank [kWh]

ESTES
0 Initial state of charge for STES at beginning of decision stage [kWh]

EEV,min
t , EEV,max

t Time dependent EV SoC capacity boundary [kWh]

PHP Rated electrical capacity for the HP [ kWh
h ]

PStages List containing information on stages where a new price signal is initiated

PStates
g List containing state variables that have a new active price signal at stage

g

PSV
i,n Discrete value of state variable n for segment i [-]

P imp
0 Initial highest peak-import of electricity [ kWh

h ]

Pn,g
init List containing initial value condition for price-signal being active from

decision stage g, for state variable n [-]

Rie, Reo The thermal resistance between the interior-building envelope and build-
ing envelope-outdoor area [

◦C
kWh ]

T in,min
t , T in,max

t Lower/upper interior temperature boundary [◦C]

Decision variables

αfuture
g+1 Expected future cost of operation for future stage g + 1 [EUR]

γp Weighted variable for segment p

λi Auxiliary variable for discrete segments of state variable n, for index i of
list Dn
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Chapter 1: Introduction

1 Introduction

1.1 Motivation

In 2019, the global average temperature increased by 1.1◦C compared to indus-
trial levels [1]. To combat climate change, the European Union (EU) has set
a target to reduce 1990-level greenhouse gas (GHG) emissions by 55% by 2030.
This goal covers multiple sectors, and an essential one is the energy sector, which
is driving toward a green shift. In the EU, European households account for
25% of the final energy consumption [2]. Out of these 25%, 50% of the total
final energy consumption is primarily used for heating and cooling. Thus, the
building stock plays an important role in reaching a carbon-neutral community
by 2050 [2].

The European power system is experiencing a considerable change in the electric-
ity mix as a result of the green shift [3]. Renewable, variable electricity produc-
tion is being installed at a rapid rate, leading to more variation and uncertainty
within production. With this trend increasing over the years to meet the goals
in 2030 and 2050, the power grid will need more flexibility sources to preserve
the security of supply in the future [4]. Increased variability, uncertainty, and
more location dependency can lead to more imbalance within the power system
and decrease reliability, increasing the need for active measures that can reinforce
the system [5]. Flexibility is an important measure to keep the power system in
balance, and can be achieved on both the generation and consumption side of
the power system, changing their pattern to cooperate with the immediate power
system behavior. End-users can participate with flexibility to the power system
through their home, where demand-side management (DSM) can play a role in
the transition [6]. DSM can not only be an active counter-measure for varia-
tion in production, but also to avoid local grid congestion, and reduce peak-hour
consumption when electricity demand is high.

End-users are able to perform DSM by adjusting their consumption profile, which
can be a reaction to different price signals. Their consumption profile can be op-
erated through home energy management systems (HEMS), which control certain
loads or flexibility in their home or building [7]. Flexible assets are able to shift
and influence the consumption profile, and can be controlled to optimize the value
of flexibility. Within short-term operation, most work using HEMS normally con-
sider the value of flexibility up to a couple of days in the future [8]. However,
flexibility does not only influence short-term operation, but also provides valu-
able potential in the long-term strategy of operation, which could be many weeks
or months into the future. This is especially true with the presence of long-term
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Chapter 1: Introduction

price signals that demand response needs to react to. As such, models need to
account for the long-term value of operation.

There is a need to find accurate and descriptive measures of representing the
long-term value of flexibility. There exist demand response programs that ac-
count for longer periods than what is normally forecast in HEMS-formulations.
For instance, the grid tariff monthly demand charge, present in some countries in
Europe [9], sets a cost based on highest import of electricity over a whole month.
Accounting for this grid tariff during operation of an HEMS would require suf-
ficient information of the future to capture the long-term value of flexibility. In
addition, seasonal flexibility and long-term storage require an operational strat-
egy that accounts for the value of operation over the different seasons ahead.
Including information on long-term value of flexibility into short-term operation
of buildings can complicate the overall problem. As such, representing the long-
term value of flexibility, without increasing the complexity of the overall problem
too much, needs to be explored.

Accounting for the long-term value of flexibility during short-term operation
would provide more information to improve short-term decisions. This could
respond to reduction in operational costs, both by representing long-term cost-
based price signals and enabling accurate operation of seasonal energy storage
systems. In addition, other long-term price signals that promote operational
goals outside of cost-based decisions could be incorporated and visualized, like
CO2eq-impact of operation. For buildings or energy systems that want to include
CO2eq-intensity and compensation into the operational planning, like Zero Emis-
sion Buildings (ZEBs) [10], a long-term operational strategy would showcase the
value of flexibility toward compensation. This includes both here-and-now and
the future value of compensation. Finding the long-term value of flexibility would
promote cost-optimal use of flexibility to achieve the emission-based goals dur-
ing operation. Thus, long-term value of flexibility incorporated to price signals
of different characteristics would increase the level of detail during operational
decisions.

This thesis investigates how to represent the long-term value of flexibility and
incorporate long-term price signals into residential building operation. The work
applies and describes a long-term strategy framework for residential building op-
eration, generating cost curves representing the long-term value of flexibility. This
strategy framework analyzes the long-term influence of operation, including long-
term price signals in the overall analysis. These long-term price signals could, for
instance, be grid tariffs, seasonal energy storage systems like heat or hydrogen,
or others. The framework returns simplified cost curves that explain the future
consequence of operation based on the long-term price signals, describing the fu-
ture change in cost of operating the system. The strategy framework helps create
a coupling between short-term and long-term operation of residential buildings,
to achieve better overall use of flexibility within residential buildings, and ulti-
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Chapter 1: Introduction

mately reduce operational costs. For further explanation, residential buildings
are denoted as buildings, unless stated otherwise.

1.2 PhD Project Scope

The main aim of this thesis is to answer several key research questions linked to
coupling long-term value of flexibility into building operation and incorporating
long-term price signals into short-term operation. A main research question has
been defined to address the research gap:

Main Research Question: How can the long-term impact of building energy
system operation be represented to capture the long-term value of flexibility?

The main research question has been divided into several subcategories that sup-
plement it, to more concretely specify the different goals within:

• RQ1: What is the relation between long-term and short-term value of
flexibility for scheduling of the building energy system?

• RQ2: How do different flexible assets in scheduling of the building energy
system impact long-term value of flexibility?

• RQ3: What is the long-term value of CO2eq-emission savings for a zero
emission building during the operational phase?

• RQ4: How can long-term, seasonal flexibility be represented for short-term
operation of buildings?

The overall scope of this thesis can be divided into two main parts. The first part
aim to present the application of a long-term strategy framework and the area
of use for this framework. The second part focuses more on different long-term
price signals, and how to extend the framework to increase accuracy.

1.3 Contributions

The contributions of this PhD thesis are listed as follows:

• A long-term strategy framework for calculating and representing the long-
term value of flexibility for building operation has been performed.

• The influence flexible assets have on long-term price signals has been inves-
tigated. The role of flexible assets has been investigated individually, and
cooperatively, with different case studies surrounding varying price signals.
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Chapter 1: Introduction

• The long-term strategy framework for building operation has been inves-
tigated for several long-term price signals, that are difficult to represent
directly for short-term operational models. These price signals include grid
tariffs, seasonal flexible assets, and a way to account for the CO2eq-emission
inventory during operation.

• A framework for accounting for multiple long-term price signals of different
length and pattern has been developed.

• This work has demonstrated the added value of operation and use of flexi-
bility when accounting for long-term operation, and how this can be incor-
porated to short-term operation models to improve overall performance.

All the mentioned contributions are presented within the publications that are
part of this PhD thesis. In addition, some additional results based on the pub-
lished work are included in this work, that supplements the overall analysis.

1.4 List of Publications

Over the course of this PhD, multiple papers have been created and published
as the foundation of this research. The papers that create this foundation are
listed below, and can be found in full in the “Publications” section in this docu-
ment. Currently, Paper IV is under review, and as such, is expected to undergo
modifications in the future.

Paper I K. E. Thorvaldsen, S. Bjarghov, and H. Farahmand. “Representing Long-
term Impact of Residential Building Energy Management using Stochastic
Dynamic Programming”, in 2020 International Conference on Probabilistic
Methods Applied to Power Systems (PMAPS), IEEE, Aug 2020.
DOI: https://doi.org/10.1109/PMAPS47429.2020.9183623

Paper II K. E. Thorvaldsen, M. Korp̊as, and H. Farahmand. “Long-term Value
of Flexibility from Flexible Assets in Building Operation”, International
Journal of Electrical Power & Energy Systems, vol. 138, June 2022.
DOI: https://doi.org/10.1016/j.ijepes.2021.107811

Paper III K. E. Thorvaldsen, M. Korp̊as, K. B. Lindberg, and H. Farahmand. “A
stochastic operational planning model for a zero emission building with
emission compensation”, Applied Energy, vol. 302, Nov 2021.
DOI: https://doi.org/10.1016/j.apenergy.2021.117415

Paper IV K. E. Thorvaldsen, and H. Farahmand. “Long-term strategy framework
for residential building operation with seasonal storage and capacity-based
grid tariffs”, under review in Elsevier: Applied Energy, submitted March
2022.
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Chapter 1: Introduction

An additional paper has been published during the timeline of the PhD, to which
the contribution from the author has been limited. This paper is relevant in
regards to the topic, as the operation of flexible commercial buildings with a
long-term price signal was investigated. The publication is given here:

• I. E. Skoglund, M. Rostad, and K. E. Thorvaldsen, “Impact of shared bat-
tery energy storage system on total system costs and power peak reduction
in commercial buildings”, in In Journal of Physics: Conference Series, IOP
Publishing, Vol. 2042, Nov 2021.
DOI: https://doi.org/10.1088/1742-6596/2042/1/012108

1.5 Thesis Outline

This thesis presents an overview of the key research context necessary for the
overall work in Chapter 2. In Chapter 3, the methodological approach created
for the long-term strategy framework is presented in its entirety. Next, Chapter
4 showcases and discusses the main findings of this thesis, being a combination of
published work and additional results answering the overall research questions.
The findings are further discussed and a conclusion is presented in Chapter 5,
with suggestions for future work to improve this important research field.

The four papers created during this thesis, with three published and one a work-
in-progress, are presented in their entirety at the end of this thesis. When these
papers are referred to in the thesis, the content is based on the attached versions
with their corresponding paper number.
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2 Research Context

This chapter aims to describe the research context behind each research ques-
tion, providing necessary information about the motivation behind them. The
description here will focus on residential building operation and flexibility within
buildings. For each research question, some description on existing practices and
relevant literature will be presented. Chapter 2.1 is related to RQ1 and RQ2,
Chapter 2.2 explains the relevance of RQ3, while Chapter 2.3 describes the cur-
rent status related to RQ4.

2.1 End-user Flexibility in Building Operation

2.1.1 End-user Flexibility

The role of the end-users has seen a shift in recent years. From being considered
a passive consumer with inflexible demand, their characteristics and behavior
are undergoing a transition in accordance with the changes happening in the
power system. With the introduction of more power-intense applications, like
EV chargers, induction ovens, etc., consumption becomes more power-consuming
over a shorter duration. The high need for electricity by many at once strains
the local distribution grid and makes it more prone to congestion. With the
roll-out of smart meters, DSM is more accessible through automation and smart
control, to react to price signals by adjusting their consumption profile [6]. As
peak-consumption from end-users create potential bottlenecks that can strain
the local distributional grid, most motivations behind enabling DSM lies with
lowering peak-consumption and shifting the load to off-peak hours. Taking a
daily consumption profile as the basis, DSM comprises six common categories to
flatten consumption [11], shown by Fig. 2.1. The focus in this work makes most
use of the peak shaving, valley filling, and load shifting categories.

A similar description within DSM is demand response (DR). DR programs are
price signals that aim to induce change in consumption profiles [12]. There are
multiple DR programs formulated, and these are typically divided between price-
based and incentive-based programs. Price-based programs give price signals
about cost of electricity consumption, with Time-of-use (ToU), Real-time pricing
(RTP), and critical peak pricing (CPP) all in this category. By giving cost-based
signals on using electricity at certain periods, these programs will motivate the
user to shift consumption to reduce cost. RTP is a common practice in Norway,
enabled by the presence of smart meters [13]. Incentive-based programs aim to
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Figure 2.1: Different demand side management categories [11].

encourage flexibility by benefiting the end-users. Some examples include capacity
market programs and ancillary service markets, where the end-user can be paid
by providing flexibility. To be able to participate in the different DR programs
or to enable DSM, it is necessary to have flexibility within the building and
appropriate flexible measures that limit discomfort for the residents.

2.1.2 Flexible Assets in Buildings

Within a building, several flexible mechanisms could be activated to enable DSM.
In theory, all load is flexible, but some is based on the users’ preference and
willingness to change. Based on the components available in the building, the
flexibility potential differs. A study on different flexibility types was conducted
in [14], characterizing the flexibility within a building. Within this study, the
distribution of different flexibility types based on scope was performed, where
buildings were one of these scopes. Buildings have components with high flexi-
bility potential on load-shifting, and some potential on shedding and generation.
The focus in this work will mostly explain some of the flexible assets in the
load-shifting category.

Battery Energy Storage System

A Battery Energy Storage Systems (BESS) is a flexible asset that is used for
storing and discharging electricity to the energy system at cost-optimal times.
A BESS contains a stationary battery unit connected to inverters that converts
the electricity to appropriate current types between the battery and the external
connection. The storage medium can vary, and there exists a wide variety of
storage mediums suited for a BESS, as showcased in reference [15], but lithium-
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ion is by far the most common medium. The BESS can be charged and discharged
with electricity when needed, and thus can contribute to peak-shaving and valley-
filling flexibility [16]. Note that this flexible asset is not a load in a building
system, and would not change the consumption pattern for demand, but would
influence interaction with the electricity grid by reducing or increasing need of
electricity to the building. It could also be used strategically to store excess
local production from, for instance, a Photovoltaic (PV) system, to increase self-
consumption, which was carried out in [17]. The influence from the BESS is based
on the installed capacity, and by the inverter capacity, whereas each limit storage
capacity and power input/output, respectively. Based on the ratio between these
two components, known as the C-rate [18], the goal of the BESS can go from
short-term, high-power influence, to long-term, low-power influence.

Electric Vehicles

EVs are becoming more present at homes, and charging these can also be seen as
a flexible asset. The primary goal when charging EVs is to have sufficient state
of charge (SoC) at departure to ensure sufficient driving range for the upcoming
trip. Standard EV chargers have no automatic activated control system, which
means that, in a passive manner, the EV is being charged when plugged into
the charger. As the EV is also dependent on user-behavior, the EV is typically
plugged in during the evening after the user returns from work, as was shown in
reference [19] when analyzing EV flexibility. With a passive charging strategy,
this would increase the expected electricity demand from a building during the
evening, which also is a period with possible bottlenecks and higher demand from
other sources. The EV charger can be flexible by shifting the charging period
toward the night and during off-peak hours, to flatten the demand curve. This op-
tion is becoming more accessible currently, with most EVs allowing pre-specified
charging periods, and some companies offering EV chargers, like Easee [20], that
enable smart control of charging based on RTP-prices in the spot market. In
addition, bi-directional flow of electricity from EVs, enables more characteristics
from a BESS to be inherited to the EV. Peak-shaving is an increased flexibility
option with bi-directional flow, as was explored in [21].

Space Heating

Space heating (SH) is another important asset that could be considered a flexible
asset. Indoor heating or cooling to maintain a stable and comfortable temper-
ature is a load with substantial consumption of electricity over the course of a
year, depending on the seasons. In Norway, heating demand is normally cov-
ered through electricity and heat pumps, while gas and oil is more common in
European countries [22]. However, this trend is changing and electric heating is
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expected to be more prevalent in the future as a decarbonization strategy [23].
As mentioned earlier, energy consumption for heating and cooling of the building
stock in EU amounts to a substantial portion of energy use [24], meaning energy
savings obtained by more strategically operating these assets have a high value.
Flexibility within SH is tied to the timing of heating or cooling the building,
where pre-heating and pre-cooling is an important DSM measure, as proposed
with regards to thermal flexibility in [25]. If there is flexibility within indoor
temperature, where the temperature can deviate within a given boundary, this
provides more opportunities to shift the consumption and still be within appre-
ciated limits. Comfortable temperature boundaries are important for SH and
making use of this to shift heating or cooling could improve operation while not
affecting the user comfort. A study in [26] showed how comfortable temperature
ranges depend on the room and time of year, highlighting the worth of tempera-
ture flexibility for optimal control. With smart control of space heating, accurate
temperatures can be maintained, and this also enables strategic pre-heating of
the areas when optimal.

Other Flexible Assets

There are multiple other flexible assets that are available in a building than the
ones previously mentioned. The work in this thesis primarily considers at the
aforementioned assets, but there exists other assets that could provide flexibil-
ity. For instance, water heaters supplying domestic hot water could be modeled
and controlled by a HEMS. These water heaters could provide flexibility to the
system on different levels, as was carried out in [27]. This work analyzed the flex-
ibility potential of an electric water heater, and discussed the flexibility potential
toward flexibility markets such as frequency containment reserve and frequency
restoration reserve. Other electrical appliances include clothes washer, clothes
dryer, dishwasher, refrigerator, etc., as was listed in [28]. This work investigated
the demand response opportunity these appliances could provide, and their cou-
pling to user comfort. As such, multiple flexible assets exist in a building and can
provide flexibility, but it is important that controlling them limits the influence
on user comfort.

2.1.3 Building Operation

To activate and make use of the available flexibility within residential buildings,
it is necessary to have control systems and means of operating flexible assets. To
control the flexibility, HEMSs have been developed as a means to adjust energy
input and output from the flexible assets, based on the measures that the HEMS
accounts for during operation of the building. These measures can be internal
information such as indoor temperature, but also external factors such as RTP
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and cost of operation. Such controllable measures for a HEMS can differ, and the
logical process behind the decisions depends on the overall goal of the system.

The review in [8] provided an overview of literature addressing HEMS, focusing
on modeling approaches and their corresponding impact on operation. Models
are used to simplify the operational process, and are typically divided into three
approaches: Mathematical optimization, meta-heuristic, and heuristic methods.
A mathematical optimization approach makes use of input data to obtain an
optimal solution to the overall problem defined. The complexity of such math-
ematical formulations are based on the structure of the problem, and the level
of detail included. As such, their computational effort can be significant. Meta-
heuristic algorithms searches over a large set of feasible solutions, to converge
toward an acceptable solution. This approach requires less computational effort
and can also be applied to optimization problems. Heuristic methods use deter-
mined rules to find an approximate solution. The accuracy of the rules applied to
the heuristic method influences the results. All the mentioned methods describe
and use the the system differently, aiming to accurately capture the main goal
and objective of the HEMS.

Use of optimization problems for operating flexible assets within HEMSs has been
carried out in many studies. In [29], a mixed integer linear problem was formu-
lated within a HEMS, to operate a system with PV, BESS, and a bi-directional
EV charger. Their goal was to operate under dynamic pricing and limitations on
peak power consumption over 24 hours, reaching a 35% cost reduction compared
to a base case without PV or BESS. A model-predictive control (MPC) formula-
tion was applied in [30], controlling a heat pump, with thermal storage alongside
a BESS. The MPC model was used to control the different flexible assets in a
problem including uncertainty, achieving a 11.6% cost reduction and improved
performance compared to a reference case. A rolling horizon strategy was applied
to an optimization model in [31], which operated a microgrid with PV, wind tur-
bines, a diesel generator, BESS, and DSM options. These are some of the many
published works that have examined different techniques for operating a HEMS.
A different review of recent works on HEMSs was done in [16], where optimiza-
tion problems in HEMS and MPC formulations had a substantial taxonomy of
previous work especially included. For a further overview of the existing work in
these fields, refer to [16].

When creating optimization problems that aim to control a HEMS, the schedul-
ing horizon of the problem can differ. The length of the horizon is important
to capture the longer effects of using the flexible assets, for instance, accounting
for price signals with longer periods, or preparing for future use of flexibility. In
addition, the time resolution also determines in how much detail the system is
described and the influence on use of flexibility during operation. The literature
review in [8] also included an overview of the coupling between time resolution
and scheduling horizon. A majority of the references used hourly time resolu-
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tion with a 24-hour scheduling horizon. The scheduling horizon is important in
accordance to what kind of data format is used to portray the future, and if
uncertainty is included during operation. By representing the future uncertainty
with forecasting, which is commonly done in MPC-models [8], the accuracy of
the forecasts decrease with longer horizons due to the increasing span of error in
the forecast. Another approach to deal with uncertainty is to include scenarios
into the optimization problem, formulated as scenario trees. However, this would
grow exponentially with an increasing horizon, creating more complexity that
would increase computation time. As such, limitations on scheduling horizons
are connected to the accuracy of the future and the uncertainty within it, while
at the same time making the optimization problem efficient to solve without too
much complexity within.

2.1.4 Long-term Price Signals for Building Operation

Optimization models that operate a HEMS for buildings limit the long-term
horizon that is considered. Based on the method use for representing future
uncertain demand and input data, this is to decrease computational time and
inaccuracy of the long-term data [8]. During operation of buildings, the flexible
assets within try to react to price signals to reduce the overall cost of operation.
DR-programs use price signals as a means to promote flexibility. Most of these
price signals, like RTPs, have a relatively short-term time-frame and influence
on operation, since they are realized on a daily basis. However, by having a
short-term scheduling horizon during operation, the long-term value of flexibility
beyond the horizon is simplified, or left out of the operational decision. This
limits the performance of the flexible assets. In addition, this ignores any long-
term price signals or considerations that would influence operation of the flexible
assets in the short-term time-frame.

A long-term price signal within building operation is a type of demand response
signal aimed to influence operational strategy over a prolonged period. The
duration of these signals can vary depending on motivation and type of signal,
and the signal itself is not required to be cost-based or to induce a cost. These
signals could be used as guidance for cost-optimal control of seasonal flexibility,
so that seasonal and long-term storage represent the future value of operation.
Signals like these exist and are used for operation today, for instance within
hydropower scheduling. Water values, which are long-/medium-term price signals
for reservoir levels in hydropower scheduling, offer information on the future value
of storing water for producing electricity [32]. The price signal is only meant as
a means to put a price on the current water available, comparing the long-term
value of storing water versus the here-and-now benefits of using the water.

There exist cost-based long-term price signals that depend on the operational
performance of a building over longer periods. Within grid tariffs, long-term
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price signals could be incorporated to motivate predictable and stable consump-
tion profiles, and avoid unnecessary peaks of import. These would normally be
given by distribution system operators (DSOs). An example of this is a grid
tariff called a monthly demand charge. The demand charge puts a cost on the
consumer based on the highest single-hour import-quantity over the duration of
a month. This is a type of price-based DR that aims to flatten the consumption
profile of the consumers, where the user is penalized for unnecessary peaks of
import. The grid tariff has been investigated prior for buildings to reduce peak
consumption, as discussed initially in [33]. This grid tariff was set to be im-
plemented for residential users in Norway in 2022 but was delayed before being
replaced with a new grid tariff [34]. For commercial buildings and large energy-
consuming residential users in Norway, it has existed for several years as part of
their grid tariff structure [35]. Within Europe, this grid tariff is present in some
countries [9]. Another grid tariff that includes a long-term horizon is the sub-
scribed capacity grid tariff, where the user is penalized for using more electricity
than their subscribed limit. In Norwegian settings, this grid tariff has been inves-
tigated for yearly subscription periods [36], but other studies have also decreased
the period down to weekly subscriptions [37]. The mentioned capacity-based grid
tariffs show that accounting for longer periods of operation could become more
common for end-users.

2.1.5 Coupling Short- and Long-term Value of Flexibility

HEMSs aim to operate the flexible assets to take full advantage of the value of
flexibility. With the existing short-term operational models, the short-term value
of flexibility is utilized explicitly. However, the long-term value of flexibility is not
captured in the existing models, and is left out of the decision process. With long-
term price signals as part of demand response programs, like the monthly demand
charge, the need to couple the short-term and long-term operation is important to
make overall optimal decisions. The flexible assets used in the short-term could
also provide valuable flexibility on the long-term goal. To enable this long-term
consideration, accurate and representative signals that gives information on the
long-term value is needed. This could be given as input to a short-term model,
that includes operational impact beyond the short-term scheduling horizon.

The monthly demand charge has been investigated and looked into in the existing
literature for residential buildings. The goal of these works has been to find a way
to identify an optimal peak-import level to balance demand charge cost and RTP-
savings from increasing peak capacity. In [38], an adaptive optimal monthly peak
demand limiting strategy for buildings with monthly demand charge cost was
established. Their work used an optimal threshold resetting scheme to capture the
future cost-savings of demand-limiting control, which sets an appropriate peak-
import level during operation based on expectations. This study was extended
in [39], where they tried to capture the tradeoff between load predictions and
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actual power usage. Three different tradeoff schemes, which all consider different
inputs of predicted and known data, are used here to find the optimal threshold
for peak-import. The demand charge cost was investigated under a different
approach in [40], where a metaheuristic approach was used. The approach aimed
to balance cost-savings from RTP versus the demand charge cost, where a user-
defined weighting constant put a cost on the grid tariff cost in the future.

In the aforementioned articles, the goal has been to give information to the short-
term model on the potential long-term consequences of operation here-and-now.
It offers additional information to existing models for HEMS operation, without
complicating the problem further, to a certain extent. However, these approaches
are limited in terms of representing general long-term price signals, since they
are specifically made for the monthly demand charge. Based on the existing
literature, there exists no general formulation or approach for representing long-
term price signals into short-term operational models on the building side, or
other end-users such as industry. Since the nature of these price signals can be
quite different, this complicates the establishment of a general framework to deal
with many variations of the signals. In addition, having multiple signals at once
could also be required, which also raises the need for a general framework.

Within hydropower scheduling, splitting the operation of hydropower into short-,
medium-, and long-term phases enables the long-term value of flexibility to be
captured. The medium- and long-term phases analyze the long-term price sig-
nals, like reservoir level, environmental constraints, price and inflow data, and the
outputs of the analysis are cost curves. These cost curves contain the long-term
value of altering the short-term strategy, which can be fed into a short-term oper-
ational model. This is illustrated in [41]. For the medium- and long-term horizon,
decomposition techniques such as Stochastic Dynamic Programming (SDP) and
Stochastic Dual-Dynamic Programming (SDDP) have been frequently used to
calculate the long-term value of flexibility. These techniques are general and en-
able different long-term price signals to be included. Dividing the operational
decision into multiple phases enables the global, long-term value of flexibility to
be captured during real-time operation of the HEMS, to improve the value of
operation while also representing long-term price signals.

The use of SDP and SDDP as decomposition techniques has been investigated
within the end-user side of the energy system recently. In [42], the authors used
SDP on a multi-stage stochastic electricity market model with grid constraints,
batteries, and intermittent renewable energy sources. Similar work was done
in [43] using SDDP, but where both a short- and long-term model were coupled
together to capture and showcase the long-term value of flexibility. The same
main author has studied battery degradation using SDDP for a microgrid in [44]
and how long-term planning can increase battery lifetime with degradation in [45].
The presence of these works together with the work related to this thesis, show
that the long-term value of flexibility on the consumer side is becoming more

14



Chapter 2: Research Context

relevant and a more prominent topic of study.

2.2 CO2eq-emission during Operation of a Zero
Emission Building

2.2.1 Zero Emission Buildings

In 2010, the EU’s Energy Performance of Buildings Directive (EPBD) launched
the concept of Zero Energy Buildings [46], with the aim of promoting research on
how buildings can assist in reducing emissions and bolstering security of supply.
In recent years, the topic has expanded, with Zero Emission Buildings (ZEBs) [47]
and Zero Emission Neighborhoods (ZENs) [48] being researched to determine how
buildings can achieve net zero emission during their lifetime. Within these areas,
all phases of the lifetime are taken into account, but the operational phase is
deemed critical due to its role in reducing emissions through smart operation [49].

Reference [50] found that for a ZEB, the operational phase is influenced by build-
ing location, electricity mix in the grid, local on-site production, and how the
building is designed and constructed. When it comes to emission compensation
for ZEBs, the CO2eq-intensity of the electricity grid is used as the indicator, and
compensation is based on the electricity mix in the grid. A Norwegian standard
definition states that emission compensation for buildings can be linked to export
of electricity to the electricity grid, where the emission factor can be based on
the local time-dependent electricity mix in the grid [51]. The value of emission
compensation is then linked with import and export of electricity for the ZEB
during operation.

Some literature looking at design of ZEBs, where the operational phase is in-
cluded, has used annual average CO2eq-intensity. This was done in [52] for a
near-ZEB in Norway, where four PV technologies were investigated for different
yearly average CO2eq-intensities, seeing that PV increases compensation contri-
bution with higher CO2eq-intensity in the electricity mix. The emission factors
used were taken from [53], where yearly average and marginal emission were cal-
culated for different zones in Europe, based on several future scenarios on electric-
ity mix. Yearly average CO2eq-intensity was also used in [54] for electricity use,
where optimal design of a school building was analyzed. For other technologies
that did not use electricity, primal energy indicators presented their influence on
emissions. The findings showed how the CO2eq-intensity impacted installation of
energy carriers, especially based on how strict the net zero-emission target should
be. With a stronger net zero-emission target, investment in local PV production
was prioritized, using the electricity grid as a virtual seasonal storage unit. Dur-
ing summer, excess electricity is exported, which is brought back during winter.
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Given the use of yearly average CO2eq-intensity, the net balance between import
and export to the grid is emphasized, while the timing is not accounted for.

Some works have estimated hourly average CO2eq-intensity values for the electric-
ity system in Europe. A methodology to calculate these values for all hours, for
different bidding zones in Europe, was presented in [55]. This was done by tracing
the origin of electricity back to where it was generated. A similar approach was
also taken in [56]. These approaches motivate more analysis on emission compen-
sation for ZEBs on an hourly basis during operation. The work analyzed in [54]
was extended in [57], where they compared hourly average CO2eq-intensity and
yearly average when designing a ZEN in Norway. They did not find that much
changes to the design when comparing the two alternatives.

The two different ways of measuring CO2eq-intensity on electricity from the grid
have different consequences in terms of operational decisions for the energy sys-
tem. With a yearly average, the overall goal lies in the net exchange of electricity
over the year, where timing and seasonal variation is neglected. This limits the
value flexible assets in a building can have on emission compensation, since load
shifting does not influence the net import or export noticeably. This promotes
more planning regarding the overall quantity of production and consumption
over the year. With hourly CO2eq-intensity, timing of interaction with the grid
has more influence on emission compensation. As with RTP, CO2eq-intensity
varies from hour to hour, which creates an opportunity to use available flexibil-
ity to shift consumption and strategically interact when the CO2eq-intensity is
favorable. With high intensity, export of electricity is favored, while lower inten-
sity promotes import of electricity. The finer resolution on the CO2eq-intensity
enables more possibilities to work on emission compensation in the continuous
operation of the building over a year.

Another timing-dependent CO2eq-intensity value that has been investigated is
the hourly marginal CO2eq-intensity value. This marginal factor is linked to
the change in emissions from electricity when the load is increased or decreased.
The emission savings or increase is linked to the marginal unit that would change
production as a result of change in demand. Marginal values were included in the
analysis of a ZEN in [57], and lead to lower cost of the energy system compared to
only using average values. For the work in this thesis, the use of timing-dependent
CO2eq-intensity is limited to hourly average values.

2.2.2 Operation of Zero Emission Buildings

Operation of a ZEB would focus on managing the demand in the energy sys-
tem, while accounting for emissions to achieve net zero-emission. As buildings
have estimated lifetimes of approximately 60 years [58], analyzing for a repre-
sentative operational year is a way to simplify the contribution on emissions for
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the operational phase. As yearly operation enables the seasonal variations in
the energy system to be captured, during operation of the energy system in the
building, both cost of operation over the year and accumulated CO2eq-inventory
should be considered. This makes the goal of operating look at both economic
and emission-based considerations. Emission-based consideration is not directly
economic; it can either be included as a constraint, as was done in [54], or it can
be converted by a conversion factor into an economic influence. The latter was
done in [57] for a ZEN, where they used external compensation price options as
the conversion factor, making emissions part of the economic objective function.
This makes the overall objective function of operation multi-objective.

Little work has been conducted on optimal operation of ZEBs or ZENs, with
a focus on net zero-emission. Such buildings and neighborhoods have been de-
signed, where the operational phase has been included as part of the decision
leading to the optimal design. Examples of these were presented in the previous
subchapter. These works presented a whole year during the operational phase, to
include the seasonal variation in operation. However, the operational phase was
simplified since the overall goal laid on the design. An exception to this is [59],
which investigated clustering methods, with the aim of designing the energy sys-
tem of a ZEN. The clustering methods would simplify the operational phase to
only include parts of the year, decreasing the complexity of the overall problem.
The output in the model gave the optimal design of a ZEN. This method provides
a way to account for the future operation in a simplified manner, to have some
idea of the long-term consequence of operation.

The operational strategy for a ZEB including emission compensation is depen-
dent on the seasonal variations. During winter, high thermal demand would
promote flexibility use to shift consumption to hours with lower CO2eq-intensity.
The summer period would have high local production from PV systems, which
with flexibility can either cover the user’s own consumption or be exported to
the grid when the CO2eq-intensity is high. However, there is also a need to cap-
ture the necessary flexibility use to achieve the net zero-emission goal over the
year. The performance of operation during winter and summer is coupled, as
the strategic decision in each season influence each other. With a cost-effective
strategy, sufficient compensation should be done without unnecessary use of flex-
ibility that would increase cost of operation. The accumulated CO2eq-inventory
affects the strategic decision at different periods of the year, making the strategy
of emission compensation coupled in time. In addition, the role of uncertainty
during operation affects the importance of compensation and the possibility to
perform cost-effective decisions. When strategically trying to operate a ZEB
cost-optimally, having information on the future value of emission compensation
would provide a means to take accurate actions during the year.
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2.3 Seasonal Energy Storage

The role of flexible assets is ultimately to assist in the energy system by pro-
viding system service and better utilization of resources and infrastructure. The
flexibility aims to adjust the consumption profile for the building to fit the price
signals and cost-effective goals of operation. Some flexible assets have a shorter
available time period in which their flexibility is effective. However, there also
exist long-term flexible assets. These flexible assets aim to take advantage of
long-term change in the energy system, for instance, seasonal variations.

Seasonal energy storage systems are able to take advantage of the seasonal varia-
tion in the energy system. These kinds of flexible assets have been investigated in
some works. A literature review investigated the role of storage in the energy sys-
tem [60], where long-term storage was examined. The need for electricity storage
was found to be dependent on the percentage of renewables in the power system.
Multiple seasonal storage medium options are listed, for instance, underground
hydrogen storage and heating. Underground hydrogen storage was investigated
in [61] to provide long-term storage. Both design and operation were considered
regarding how the hydrogen storage could assist in emission reduction. Heating
as seasonal storage is very beneficial on the consumer side, as heating demand
covers a large portion of the energy demand [2].

A report in [62] lists seasonal thermal energy storage (STES) as a suitable long-
term flexible asset within ZEN. The key objective for the STES is to store sur-
plus heat generated during the summer and deliver this to the system during
winter. The STES can store heating within different mediums, like hot water
tank storage, water-gravel pit storage, and aquifer thermal energy storage, to
name a few [63]. The STES is able to increase the self-sufficiency with renew-
able sources, which was investigated in [64], where the STES stored excess local
solar production. These properties are important for the goal of more effective
use of local production and to decrease the need from the electricity grid. Some
drawbacks with STES are related to overall storage efficiency. A review from
the techno-economic perspective of STES was conducted in [65], where differ-
ent STES mediums and their performance were evaluated. For storage volumes
around 10000 m3, storage efficiency could fluctuate between 20-80%, depending
on the medium. As such, the use of STES comes with potential losses, motivating
efficient and accurate use of the STES during operation.

2.3.1 Operation of Seasonal Thermal Energy Storage

Operation of an STES would focus on either storing or releasing heat, based on
the seasonal period and storage quantity. STES, as part of the energy systems,
has been investigated in some studies. In [66], the STES was coupled with a
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combined heat and power (CHP) plant, providing flexibility during operation
to increase efficiency on the CHP. The work in [67] looked at a sector-coupled
energy system model of Europe, to find the optimal investment and operation
of the system. The STES was part of the investment option, assisting with the
variation of demand and renewables in the long-term setting.

There is limited work that exclusively investigates the operational strategy for use
of long-term flexible assets as STES. In studies where STES has been part of the
analysis, the main goal has primarily been focused on design phases. However, the
work in [68] investigated how the STES could assist in a district heating network
to lower total system cost. The aim of the study was primarily targeting toward
the operational side, where uncertainty in terms of demand for each month over
a year would influence the strategic storage amount during the different seasons.
A drawback of the work was the computational complexity, as the multi-stage
multi-scenario problem took about eight to nine hours to solve. Also, each month
was simplified as a representative day, and with three scenarios each for eight
of the twelve months, the scenario tree included 6,561 different combinations.
This shows that the operational setting includes much complexity and that it is
beneficial to deal with this using decomposition techniques. The work managed
to show how the strategic planning of the STES could provide long-term benefits
for the system in an operational setting. Since the STES primarily deals with
seasonal variation, having information on the consequence of operation between
the seasons is vital to capture the benefit of long-term storage. As such, there is
great potential in capturing the long-term value of flexibility for a storage system
like an STES during operation.
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3 Framework for Long-term Strat-
egy of Energy Building Operation

This chapter presents the Long-term Strategy Framework for Future Build-
ing Operation (LOSTFUTURE) toolbox. The LOSTFUTURE toolbox is
used to create a long-term strategy framework for operation of the energy system
in buildings, finding the long-term value of flexibility. The toolbox can account
for long-term price signals that are valid for longer periods during operation and
account for the value of flexibility for multiple variables at once. The outputs of
this toolbox are cost curves for the whole period, containing information on the
long-term value of flexibility for the chosen variables, denoted as expected future
cost curves (EFCCs). This chapter details the methodology of the toolbox, in-
cluding the optimization problem defined for the building and the decomposition
methodology for calculating the EFCCs. The analysis of results from using the
LOSTFUTURE tool will be presented in Chapter 4.

3.1 The LOSTFUTURE Toolbox

During the PhD-period, investigating the long-term strategy framework has been
the basis off all published work, and the formulated research questions. This has
led to the creation of the LOSTFUTURE toolbox, which is a general formulation
of the strategy framework. This formulation makes use of an optimization prob-
lem describing the energy system of a building, to generate expected future cost
curves, representing the long-term value of flexibility beyond the current decision
stage.

This toolbox searches for the long-term value of flexibility and global cost-optimal
operation of a building with several flexible assets present. The long-term value
of flexibility includes the short-term benefits of controlling the flexible assets and
their influence on the long-term price signals. The outputs are several EFCCs, for
each decision stage the overall period is decomposed into. The EFCC describes
the long-term influence on variable values within a discrete state space. Thus, the
EFCCs provide updated relevant future information based on the current stage
and circumstances surrounding the use of flexible assets.

The overall framework can be integrated into various formulations of the energy
system in buildings. This work has formulated a simplified building energy sys-
tem, with most attention on the electrical system. This includes flexible and
non-flexible loads, flexible assets of different types, and local PV-production.
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The thermal system has been formulated to cover SH. In Paper IV, the ther-
mal system was expanded with the presence of STES. The flexible assets are all
considered behind-the-meter of the building, influencing the interaction with the
electricity grid where electricity is purchased or sold.

The long-term price signals that are investigated in the overall problem have dif-
ferent goals, which changes the operational strategy. By incorporating these into
the EFCCs, they are able to be represented and accounted for in a short-term
setting, giving additional information to short-term operation models. An illus-
tration of the LOSTFUTURE toolbox and the coupling to short-term operation
models is shown in Fig. 3.1. As illustrated, the LOSTFUTURE toolbox analyzes
input data, uses decomposition techniques to analyze the long-term period, and
outputs several EFCCs for different decision stages during the overall period. The
output then represents the future value of flexibility beyond a specified point in
time.

Figure 3.1: Illustration showcasing the purpose of the LOSTFUTURE Frame-
work. The framework generates future cost curves that act as future price signals
for a short-term operational model.

The toolbox is divided into two parts. The first part describes the formulation
and structure of the strategy framework, including decomposition of the problem.
This specific work has used SDP as the decomposition technique. The second part
is the mathematical formulation making up the energy system of the building,
including the different price signals and flexible assets present. The formulation
of the overall problem and decomposition technique used will be presented in
Chapter 3.2. The mathematical formulation of the energy system used can be
found in Chapter 3.3.
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3.2 Model Overview for LOSTFUTURE

The overall goal of the LOSTFUTURE toolbox is to provide a long-term strategy
framework for building operation. Over a longer period and planning horizon,
the toolbox generates operating strategies for several decision stages, representing
the future cost of operation as EFCCs. The overall objective is to minimize the
cost of operation for the energy system. The cost of operation include purchase
of electricity from the local distributional grid, grid tariffs, and other price-based
signals the end-user considers.

Over the course of the long-term period, the flexible assets within the building
are intended to minimize the cost of operation. Their interaction is based on the
here-and-now value of operation for a given decision stage, and according to the
long-term implications by their operational decisions, denoted as the long-term
value of flexibility. With the presence of long-term price signals that are valid for
periods longer than a given decision stage, which are captured within the EFCCs,
the variables making up the EFCC are coupled in time. For a specified short-
term period, the operational decision and the actions taken here-and-now are
influenced by the initial conditions, and by the future consequences of operation.
With the presence of uncertainty, the overall operational decision is made up of
multiple possible directions that could occur. This coupling between the long-
term period gives the overall problem a dynamic nature, and the problem can be
formulated as a multi-stage, multi-scenario optimization problem.

A multi-stage, multi-scenario optimization problem can be very large and time-
consuming to solve. This depends mainly on the size of the problem, and the
level of detail and scenarios present. For instance, the work in [68] formulated a
multi-stage, multi-scenario optimization problem when analyzing the role of an
STES in a neighborhood, where simplifications in decision stages were made to
make the problem solve quicker. To simplify the problem, and to make it easier to
solve and analyze the future value of operation, decomposition techniques can be
applied. As mentioned within hydropower scheduling in Chapter 2.1.5, common
techniques for decomposing similar problems are SDP and SDDP [41].

For the LOSTFUTURE toolbox, the original problem is decomposed into smaller
decision stages. Each decision stage is decoupled from the others, only connected
through the EFCC, and the state variables making up this cost curve. The so-
lution procedure coupling the decision stages uses SDP as the foundation. Here,
the state variables are discretized, and we analyze the operational performance
for all the discrete values of the state variables and for all scenarios, in each de-
composed decision stage. The analysis is done in a backward procedure, starting
at the end of the long-term period and analyzing toward the first decision stage.
More detail on the solution procedure is found in Section 3.2.3.
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SDP was chosen as decomposition technique due to the origin of the problem.
With SDP, the whole period can be analyzed without high computational effort by
solving several smaller decomposed optimization problems. The influence of the
discrete state space enable us to see how initial conditions of these variables affect
operation. Another advantage is that SDP allows for non-convexity problems to
be formulated and solved, which a standard SDDP technique is not capable of
doing without modifications. The EFCCs within LOSTFUTURE can be piece-
wise linear in nature and thus enables the non-convex value of flexibility to be
represented. A drawback with SDP is that the computational effort increases
with a larger system being analyzed. The number of decision stages, number of
scenarios, and number of discretized state variable values all influence the total
number of decomposed problems to analyze. Especially with both an increasing
number of state variables and discrete values, the problem grows exponentially,
known as the “curse of dimensionality”. The accuracy of the cost curves acquired
by the solution procedure depends on the step size of the discrete state variable
points, which then poses an accuracy versus computation time issue.

3.2.1 Coupling between Decision Stages

When the overall problem is decomposed into several smaller, decomposed de-
cision stages, the coupling between stages needs to be formulated. The set Sg
contains information that is relevant for the decision stage g, including informa-
tion that is carried over between the stages. This set is made up of two separate
subsets; SSg includes all scenarios and corresponding stochastic variables that
are dependent on the decision stage g, while NP contains the discrete state vari-
ables values that will be investigated and are part of the EFCC. Together, a
decomposed decision problem is for a specific scenario and state variable initial
condition defined as ssg, np ∈ Sg. Thus, for each decision stage g, we investigate
all combinations of scenarios and state variable initial conditions, which will be
the foundation of calculating the EFCCs for each stage.

The coupling between stages and information carried over is directly linked to
the EFCC. The EFCC contains the variables that we allow to couple the stages,
and their relationship is captured by the cost change within the EFCC. Other
information that is not part of the EFCC cannot be coupled between stages in
a dynamic pattern. As such, this type of data must be simplified, such that a
feasible transition between stages is possible. For instance, if a BESS SoC is not
part of the EFCC, the start and end SoC condition must satisfy the other stages
initial and ending values. The setup in LOSTFUTURE assumes a fixed start/end
condition for short-term storage levels and flexible assets not part of the EFCC.
This fixed parameter value can be determined by the user.
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3.2.2 Stochastic Scenarios

The stochastic scenarios that are embedded in the long-term strategy framework
increase the complexity of the overall problem. With a long-term price signal
present, which for some could be decided at the end of the period, accounting
for the future consequences are vital, and as such, this motivates a backward
procedure in the decomposition technique. However, uncertainty and their de-
pendencies can cause problems with the backward procedure. Some uncertainty,
like for instance weather, has a serial correlation, as history defines the current
scenarios. This is an issue that must be addressed for the SDP decomposition
technique to be applicable backward. This is accounted for by treating the sce-
narios and assumptions for all stochastic variables as Markov Decision processes
(MDP), and representing each scenario as a discrete occurrence [69]. MDP as-
sumes memoryless scenarios, removing the dependencies on the historical cou-
pling [70]. With MDP, we disregard how we got here, and only consider what
scenarios can occur in the future, with their corresponding probability weights.
This enables the backward procedure within SDP to be applied. The scenario
coupling between stages is showcased in the lower half of Fig. 3.2.

Figure 3.2: Illustration of scenario coupling between stage transition, and the
correlation between stages and multiple price signals. Figure taken from Paper
IV.

The different scenarios in the problem, as shown in Fig. 3.2, have an MDP
behavior. There is no scenario tree expansion, since the dependencies have been
removed by the assumed MDP behavior. Each decision stage has a finite number
of scenarios ssg ∈ SSg that could occur, with different parameter values for the
stochastic variables. The transition probability ρ(g, ssg|ssg−1) is the probability
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of going from a specific scenario node to another when advancing the decision
stage g−1 to g. Within a specific scenario, the stochastic variables in the overall
optimization problem are given as parameter data. This makes each decomposed
problem for a given stochastic scenario deterministic. Within LOSTFUTURE,
most of the input data can be stochastic, depending on the use case and nature
of the analysis. For instance, the list below mentions some possible stochastic
parameters that could be set within LOSTFUTURE:

• Power system values: Spot price, CO2eq-intensity values

• Weather-dependent parameters: Solar irradiation, outdoor temperature

• User-dependent parameters: Non-flexible electric demand, DHW demand,
EV availability

• Seasonal parameters: Intake/outtake limitation for flow of heat to/from the
STES

3.2.3 Solution Procedure: The SDP-algorithm

The solution procedure within LOSTFUTURE follows an SDP-algorithm layout.
The SDP-algorithm is given in Alg. 1. For every decision stage g ∈ G, for every
scenario ssg ∈ SSg , and for every discrete point combination of all state variables
np ∈ NP , the optimization problem presented in Chapter 3.3 is executed. The
economic results from the optimization problem make up new EFCCs for every
decision stage. The solution procedure operates backward, where we start in the
last stage and move toward the first decision stage. This makes the generated
EFCCs provide information on the future value of flexibility from that stage and
beyond, based on the state variables. The algorithm follows a description of SDP,
but an extension to the algorithm is given at lines 11-12, initiating an algorithm
extension that is part of the work in this thesis. These lines are described in
detail in Chapter 3.2.4.

Here, the algorithm will be explained in more detail. The SDP-algorithm initiates
multiple for-loops at the start, one for stages and one for all discrete state variable
initial values, in lines 1 and 2, respectively. Line 3 sets the state variable initial
conditions for the applicable variables. β is an auxiliary parameter representing
the initial condition for each state variable. The formulation enables multiple
state variables to be defined, and as such the index np includes initial values
for all state variables. Further on, the for-loop for every scenario is executed in
Line 4, and the stochastic variables are defined in Line 5. The realized stochastic
variables are specified from Γ, based on the current scenario and decision stage.
The EFCC for this specific stage and scenario is set in Line 6, portraying the
future value of flexibility. For the initial case g = G, the EFCC could be specified
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Algorithm 1: The SDP algorithm

1 for g = G,G − 1, .., 1 do
2 for np ∈ NP do
3 βinit

i ← PSV
i,Ni

for i ∈ np
4 for ssg ∈ SSg do

5 {Cspott , DEl
t , f

CO2eq

t , DWT
t , δEV

t , IIrrt , T out
t } ← Γ(g, ssg)

6 Cfuturep ← Φ(p, ssg, g + 1) for p = 1..NP

7 Cssg,np
← Optimize(3.1)− (3.9)

8 for ssg−1 ∈ SSg do

9 Φ(np, s
s
g−1, g) =

∑SSg
ssg=1 Cssg,np

· ρ(g, ssg|ssg−1)

10 if g ∈ PStages then
11 Φ(...)← UpdateEFCC(g, n,Φ(...)) ∀n ∈ PStates

g

as end-values for the corresponding state variables at the end of the period,
defined by the user. Line 7 solves the deterministic decomposed optimization
problem, where the objective function result is stored in the Cssg,np variable. The
economic results are used to define the new EFCC for this stage in Lines 8-9.
This for-loop is based on the scenarios that occur in the next stage g−1, which is
the observation point for which the EFCCs will be valid. An EFCC is generated
for each scenario combination, based on the weighted probability ρ(g, ssg|ssg−1)
during stage transition. The EFCC is the weighted sum of the objective function
for each discrete variable value. The output then portrays an EFCC, where each
discrete point captures the future value of flexibility given uncertainty and change
in state variable values. When the EFCC has been completed for this stage g,
the loop continues for the next stage until an EFCC has been generated for each
stage over the period.

3.2.4 Extension to SDP-algorithm: Solution Strategy for
Multi-period Price Signals

Paper IV describes an extension to the SDP-algorithm, where multiple long-
term price signals of different characteristics and lengths where investigated. A
specific case study involved having two price signals with different lengths, and
where one would reoccur multiple times during the overall period. This multi-
period price signal needs to be coupled to the EFCCs, so that only the period
currently active is captured directly. This was intertwined in Alg 1 by lines 10-11,
checking if the current stage provokes a new price signal period in PStages. If so,
it performs this update for all state variables with a new price signal ∀n ∈ PStates

g .
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The motivation behind this extension lies in situations with different long-term
price signals being part of the EFCC, where one is repeating multiple times
during the overall planning period. For instance, an STES considers a year to
capture the seasonal variations of operating the flexible asset, while a monthly
demand charge would consider a month at a time. Over a year, the monthly
demand charge price signal would occur 12 instances during the planning period
of the STES. For shorter but repeatable price signals, the EFCC needs to be
updated during price signal transition, but still contain some level of information
on their influence on price signals that are still active. During a transition, state
variables need to keep coupling with each other correctly, so their information
gives an accurate description of the future and their influence on each other.
A new price signal contains no historical coupling with an existing price signal,
but the existing price signal has historical influence on the old price signal. An
illustration of the coupling between stages and situations with different periods
are shown in the top part of Fig. 3.2.

The two signals used in Fig. 3.2 show how each stage always considers both price
signals, while one of the price signals is having shorter, repeatable periods. Signal
2 has multiple periods being active or renewed, while Signal 1 considers the whole
planning period. The EFCCs generated by this formulation should only consider
the future cost of operation for the active price signals. As such, Signal 2 should
only consider the period currently active, and not consider any information on
future or historical periods. During transition of price signal periods, the EFCCs
need to be updated to remove any direct cost association with the deactivated
price signal, and must include the cost for the now present price signal in Signal
2. For Signal 1, it should still consider the whole future period. That includes
periods when Signal 2 has different price signal periods active, and as such,
some indirect influence on operation from these future periods of Signal 2 can
be embedded within Signal 1. This coupling between price signals with different
periods and lengths leads to the formulation of the extension within the SDP-
algorithm, which is presented below in Alg. 2. Note that this formulation uses
two state variables, but the formulation could be generalized.

Line 2 defines the new marginal cost for the long-term price signal that is being
introduced. In Line 3, the initial state variable value for the price signal removed
is stated. Line 4 initiate the for-loop for all scenarios, since the EFCC exists for
all scenarios ssg ∈ SSg . Line 5 sets the EFCC cost for the (0,0) point, acting as
the starting point of the EFCC matrix. The for-loop in Line 6 is for all discrete
points of the state variable with the new price signal. At first, the marginal cost
change for this state variable dimension is recalculated in Line 7, based on the
new marginal cost Cval

init. This removes any information on the future value of
flexibility from the removed price signal, and replaces it with the end-cost for the
new price signal.

Lines 8-9 couple the new price signal with the other still-active price signals,

28



Chapter 3: Framework for Long-term Strategy of Energy Building
Operation

Algorithm 2: Function UpdateEFCC(...)

1 Input: g, n,Φ(...)

2 Cval
init ← Cn,g

init

3 ninit ← Pn,g
init

4 for ssg ∈ SSg do
5 α(0, 0)← Φ(0, 0, ssg−1, g)

6 for n0 ∈ Nn
P do

7 α(n0, 0)← α(n0 − 1, 0)) + (PSV
n0,n − PSV

n0−1,n) · Cval
init

8 for n1 ∈ N 6=n
P \n1 6= 0 do

9 α(n0, n1)←
α(n0, n1 − 1) + Φ(ninit, n1, s

s
g−1, g)− Φ(ninit, n1 − 1, ssg−1, g)

10 Φnew(n0, n1, s
s
g−1, g)← α(n0, n1) ∀n0, n1 ∈ N 0

P ,N 1
P

11 Output: Φnew(...)

generating a new EFCC. In these lines, the marginal cost changes for all other
state variables are acquired from the existing EFCC, Φ. An important part of this
line is that the marginal cost we take from Φ is for the specific initial condition
value of the removed price signal, as set in Line 3, ninit. This is done to deal
with the existing coupling between the different price signals that is apparent in
Φ. For the new price signal, it has no dependencies to the other price signals.
However, the old price signal has some coupling to the other, and the initial
condition of this old price signal will be the basis when we arrive at this stage.
By using ninit, the other price signals include information under the situation
that at stage g, the future price signal will have an initial condition value ninit.
We then get the marginal cost change in the new EFCC for a starting condition
ninit. After the new EFCC has been formulated for all scenarios, the EFCC is
returned to the SDP-algorithm in Alg. 1, and the general strategy framework
calculation can continue. The new EFCC then includes a new price signal, no
dependencies between that price signal and the others, but still information on
the future price signals and their influence on operation.

3.3 LOSTFUTURE Optimization Problem

This section presents the general mathematical formulation of the optimization
problem used within the LOSTFUTURE toolbox. The optimization problem
describes the energy system within a single-family house. Within the energy sys-
tem, different flexible assets are included, being controllable by the optimization
problem. External and internal signals are included within the problem, such as
grid tariffs and cost of electricity from the local distributional grid. The different
papers have some deviations on the overall optimization problem, depending on
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the system analyzed. This will be highlighted where applicable.

An illustration of the energy system within the building can be found in Fig.
3.3. The building contains several flexible assets that are controllable using the
optimization problem, giving opportunity for DSM. The energy system considers
mostly the electrical side, but the thermal system is also present in a simplified
manner, in the form of SH flexibility.

The optimization problem is coupled to the solution procedure in that it describes
a decomposed decision problem. For a specific stage, specific scenario, and for
a specific initial conditions on the state variables, the optimization problem is
formulated and solved, as formulated in lines 3-7 in the solution procedure in
Alg. 1. The stochastic variables are realized within the problem as input data,
making the problem deterministic within the decomposed formulation.

Figure 3.3: Illustration of the energy system within the building represented by
the optimization problem, used in Paper II.

3.3.1 Objective Function

The overall objective function is to minimize the total cost of operation for the
building, relative to the energy system and electricity usage. The objective func-
tion is divided into two different cost-considerations. The first is the cost associ-
ated with electricity purchase and sale with the local distributional grid, where
RTP and volumetric grid tariff costs are accounted for. The second part is the
expected future cost of operation, αfuture

g+1 , which is portraying the long-term
value of flexibility. This is based on the EFCCs generated, which for a specific
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future stage g + 1 is given as input for this optimization problem. With this
formulation, the objective function accounts for the short-term cost of operation
and the long-term value of flexibility. The costs that the EFCC considers are
described in more detail in Chapter 3.3.7.

min{
∑

t∈T
[Cspott · (yimp

t − yexpt ) + Cgrid · yimp
t ] + αfuture

g+1 } (3.1)

3.3.2 Electrical Energy Balance

The electrical energy balance is described in Eq. (3.2). This covers interaction
with the electricity grid, PV production, BESS, SH, EV, and electricity demand.
This work has considered specific electricity usage from residents as non-flexible
demand. The hot water tank included can be part of the electrical or thermal
energy balance, and was placed in the thermal system in Paper IV. The ther-
mal system is connected to the electrical side, so all heat is produced through
electricity, from either a heat pump or radiator. This, however, is dependent on
the case study and the thermal system used.

yimp
t − yexpt + yB,dch

t + yPV
t = DEl

t +DWT
t + yEV,ch

t + yHP
t + yB,ch

t ∀t (3.2)

3.3.3 Electric Vehicle

The electric vehicle (EV) model is formulated in Eqs. (3.3a)-(3.3c). This work
presents an EV modeled as a uni-directional battery, with continuous charging
rate. The EV is only chargeable when connected to the building, set by the
stochastic variable δEV

t , and is discharged with a constant load discharge when
away to simulate driving consumption. The EV has a time-dependent SoC range
on the battery, which can be adjusted when, for instance, the EV is about to
travel.

EEV
t − EEV

t−1 = yEV,ch
t ηEV

ch δEV
t −DEV (1− δEV

t ) ∀t (3.3a)

0 ≤ yEV,ch
t ≤ ĖMax ∀t (3.3b)

EEV,min
t ≤ EEV

t ≤ EEV,max
t ∀t (3.3c)
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3.3.4 Battery Energy Storage System

The building has a bi-directional BESS connected to the electrical system, with
the characteristics as explained in Eqs. (3.4a)-(3.4d). The battery can be dis-
charged and charged at a continuous rate, limited by power capacity and storage
capacity. Battery degradation is left out of this formulation.

EB
t − EB

t−1 = yB,ch
t ηBch −

yB,dch
t

ηBdch
∀t (3.4a)

0 ≤ yB,ch
t ηBch ≤ ĖB,ch,max ∀t ∈ T (3.4b)

0 ≤ yB,dch
t ≤ ĖB,dch,max ∀t ∈ T (3.4c)

EB,min ≤ EB
t ≤ EB,max ∀t (3.4d)

3.3.5 Photovoltaic System

A PV system is roof-mounted at the building and provides local electricity to the
building. The system, connected through the HEMS, can alter the power output
up to the maximum time-dependent irradiation-dependent production.

0 ≤ yPV
t ≤ APV · ηPV · IIrrt ∀t ∈ T (3.5)

3.3.6 Thermal System

The thermal system involves all thermal energy needs for the building. In the first
works, the thermal system only made up the SH section for indoor temperature
control, but a larger system has been explored specifically in Paper IV, where
an STES unit was included. Thermal energy delivery is only available from the
electrical side of the energy system of the building. The explanation below is
based on the formulation in Paper IV, for the extended thermal system with
STES.

Heat Pump

The thermal system is connected to a heat pump (HP) that produce heat from
electricity. The coefficient of performance (COP) is assumed to be constant at
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all times. The production is continuous up to the rated capacity.

yHP,out
t = COPHP · yHP

t , ∀t (3.6a)

0 ≤ yHP
t ≤ PHP , ∀t (3.6b)

(3.6c)

Thermal Energy Balance

The thermal energy balance is captured through Eq. (3.7a). Heat can be provided
by both the HP and STES discharge, which is used to cover SH-demand, hot water
tank demand (if applicable and not present on the electrical side), or to be stored
in the STES.

yHP,out
t + ySTES,out

t = DWT
t + qsht + ySTES,in

t ∀t (3.7a)

(3.7b)

Seasonal Thermal Energy Storage

The STES is coupled to the thermal system, and can either provide or store
heat based on the optimal decision. Eqs. (3.8a)-(3.8e) explain the characteristics
of the STES. The STES has time-dependent limitation on flow of heat, giving
options to seasonal limitation on flow if represented as stochastic variables. The
STES can store heat up to the rated capacity of the storage unit. Efficiency losses
of the system are captured through a constant efficiency loss factor, initiated at
the start of operation for each decision stage. As the STES considers seasonal
storage, being a long-term flexible asset, there is a need to couple the STES SoC
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with the EFCC to be able to store heat between decision stages.

ESTES
t − ESTES

0 · (1− ηSTES)

= ySTES,in
t − ySTES,out

t , t = 1 (3.8a)

ESTES
t − ESTES

t−1 = ySTES,in
t − ySTES,out

t , ∀t (3.8b)

0 ≤ ESTES
t ≤ ESTES

Rated , ∀t (3.8c)

0 ≤ ySTES,in
t ≤ ĖSTES,in,max

t , ∀t (3.8d)

0 ≤ ySTES,out
t ≤ ĖSTES,out,max

t , ∀t (3.8e)

Space Heating

The indoor SH system covers the heating demand to keep the indoor temperature
at comfortable levels. The system itself has been assumed to behave as a grey-box
model, formulated as a linear state-space model [71, 72]. Using an RC-network
model, the SH system and the dynamics between heaters, outdoor temperatures,
and such can be coupled together. This work has used an 2R2C model in the
optimization problem, formulated in Eqs. (3.9a)-(3.9d). With this 2R2C formu-
lation, the SH system is divided into three zones: the indoor, the envelope acting
as the walls around the building, and the outdoor area. All of these zones have
their respective temperature, with the outdoor temperature being given as input.
The indoor temperature is adjustable through the radiator providing heat, with
temperature ranges given as input to specify the levels deemed comfortable for
the residents.

0 ≤ qsht ≤ Q̇sh ∀t (3.9a)

T in,min
t ≤ T in

t ≤ T in,max
t ∀t (3.9b)

T in
t − T in

t−1 =
1

RieCi
[T e

t−1 − T in
t−1] +

1

Ci
qsht ∀t (3.9c)

T e
t − T e

t−1 =
1

RieCe
[T in

t−1 − T e
t−1]

+
1

ReoCi
(T out

t−1 − T e
t−1) ∀t (3.9d)
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3.3.7 Expected Future Cost Curve

The EFCCs are formulated within the optimization problem to describe the future
cost change for the building, based on the state variable values. This expression
allows the optimization problem to consider the consequences of operation beyond
the detailed horizon in the decision stage. The EFCCs are generated as part of
the solution procedure, explained in Chapter 3.2.3.

The formulation of the EFCC in a general manner is demonstrated in Eqs.
(3.10a)-(3.10g). The formulation enables up to N number of state variables
being coupled to the EFCC. The EFCC is based on discrete points of the state
variables, where the weighting variable γp defines all discrete points within the
curve, in up to N -dimensions. The sum of the weighting variable must be equal
to 1 in Eq. (3.10a). Based on the weighted variables, the future cost is defined
in Eq. (3.10b), where the future cost for each discrete point Cfuturep is multiplied
by their weighted variables. This future cost is coupled to the objective function.

P∑

p

γp = 1 (3.10a)

αfuture
g+1 =

P∑

p

γp · Cfuture
p (3.10b)

Dn∑

i

λi = 1, ∀n ∈ N (3.10c)

λi =

Pi∑

p

γp, ∀i ∈ Dn, ∀n ∈ N (3.10d)

0 ≤ γp ≤ 1, ∀p ∈ P (3.10e)

0 ≤ λi ≤ 1, SOS2 ∀i ∈ Dn, ∀n ∈ N (3.10f)

SVn =

Dn∑

i

PSV
i,n · λi, ∀n ∈ N (3.10g)

The state variables are connected to the EFCCs through the auxiliary variable
λi. λi makes up discrete representation of the state variables, where a specified
number of indices i ∈ Dn are connected to each state variable n, as given in Eq.
(3.10c). The coupling of the auxiliary variables and the weighting variables γ are
done in Eq. (3.10d), tying the EFCC to the state variables. To illustrate this
modeling approach, Fig. 3.4 shows how the auxiliary and weighted variables are
connected, for a system with two state variables (N = 2). Each state variable
is made up of several discrete points, where each auxiliary variable point is con-
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nected to several weighting variables γp. For instance, auxiliary variable point λ0
would in Eq. (3.10d) sum up every weighting variable γp for [(0, 0), (0, 1), (0, 2)]
in that dimension, which is repeated for all discrete points and for all state vari-
ables in the matrix. With this, the state variables are connected to the EFCC
through the weighting variables. The auxiliary variable points λi are coupled
to their corresponding state variable in Eq. (3.10g), where SV is a generalized
formulation for the chosen decision variables making up the EFCC.

Figure 3.4: Illustration of an EFCC with 2 state variables, and example input
data to showcase the coupling of state variables and weighting variables. The
dotted red lines overlapping show how the formulation represents a piecewise-
linear plane for 2 state variables.

The state variables can have continuous value, meaning the discrete weighted
points in the EFCC can be made up of several weighted points. For linear
and convex optimization problems, piecewise-linear weighting between adjacent
points would occur naturally as part of the problem formulation. For instances
where non-linear problems exist, this can be handled by coupling the discrete
state variables points λi, ∀i ∈ Dn together with an special ordered set of type 2
(SOS2)-nature for all n. SOS2-nature means that for a set of variables, up to two
of them can be non-zero, and additionally they must be adjacent to each other in
the set [73]. Eqs. (3.10e) and (3.10f) describe the value range for the weighting
variable and state variable points, respectively, whereas the latter can include an
SOS2-formulation.

3.3.8 Long-term Price Signals

The different works in this thesis have implemented several long-term price signals
as part of the EFCC. These all have a unique formulation that ties them to the
EFCC-constraints, and that makes up the state variables in λ. For a given state
variable n, the mathematical coupling to the EFCC would be as formulated in
Eq. (3.10g).
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Each of the long-term price signals analyzed in this work are given here, in
their mathematical formulation. Note that this list is exclusively related to the
published work in this thesis, but this does not prelude other decision variables or
price signals from being formulated with this layout. In fact, this is encouraged
to improve the framework and possible strategies to be formulated.

Monthly Demand Charge

Papers I, II, and IV investigate a monthly demand charge as long-term price
signal. This grid tariff puts a cost on the highest single-hour import quantity over
the entire month. The mathematical formulation of this grid tariff is presented in
Eqs. (3.11a) and (3.11b) for a specific decision stage. The state variable pimp sets
the highest peak import level achieved, which can be based on the historically
highest peak import value in Eq. (3.11a), or based on the operational decision
on import of electricity during this stage in Eq. (3.11b).

pimp ≥ P imp
0 (3.11a)

pimp ≥ yimp
t ∀t (3.11b)

CO2eq-inventory for Net-zero Emission

Paper III introduces a long-term price signal based on emission from electricity
for end-users. The state variable for CO2eq-inventory eCO2eq

is based on the
initial emission quantity for this decision stage, and the interaction with the

grid during this period, given in Eq. (3.12). f
CO2eq

t contains information on
the time-dependent average CO2eq-intensity of electricity in the distributional
grid, based on the electricity mix and electricity transfer between bidding zones.
This CO2eq-intensity value enables compensation of emissions to be performed
by exporting electricity to the grid, where compensation is based on the current
intensity value.

eCO2eq
= E0

CO2eq
+

∑

t∈T
(yimp

t − yexpt ) · fCO2eq

t (3.12)

Short- and Long-term Flexible Assets

It is also possible to couple flexible assets to the EFCCs as long-term price signals.
This was done in Paper IV for an STES, in which the seasonal coupling of the
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asset is necessary to use it optimally. As described in Paper IV, this is achieved
by coupling the storage level at the last time step to the EFCC, for instance,
ESTES
T . The EFCC then captures the future value given the end storage level at

this stage. The price signals captured within the EFCC would then correspond
to the long-term value of flexibility from this flexible asset directly, in terms of
change in storage level. This formulation is extendable to any type of flexible
asset within this work, for instance, EV, BESS, and SH, but this has yet to be
investigated further.
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4 Results and Discussion

This chapter presents the results and findings from this PhD, which are primarily
based on the published articles given in Chapter 1.4. Some of the published
works have led to further results that are not stated in the published work but
are still highly relevant for this thesis. These additional results are mentioned
here. The overall findings are compiled into three categories, as shown in Fig.
4.1. This layout is the basis of this chapter. The first category examines the long-
term value of flexibility for energy building operation, and how long-term price
signals can be formulated and represented to short-term operation. The second
category considers more closely the flexible assets in buildings and their long-term
performance on operation. This includes short-term flexible assets and long-term
flexible assets. The last category provides a technical overview of representing
more detail in the long-term strategy framework.

Figure 4.1: Overview of the structure for Chapter 4, and each subchapters relation
to published work and research questions.

4.1 Relation between Long-term and Short-term
Value of Flexibility

The main focus of this thesis has been to explore the long-term value of flexibility,
in light of different price signals. The overall goal has been to generate a long-
term strategy framework, which can be coupled to a short-term operational model
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to improve overall performance. This section outlines the different long-term
strategies that have been investigated in the published works, and presents a
detailed exploration of what added value the long-term strategy framework offers
to performance. The first part addresses the relevant articles and their long-term
price signals, while the second part compares the price signals investigated and
discusses their influence on operation.

4.1.1 The Value of Including Long-term Price Signals

Paper I: Monthly Capacity-based Grid Tariff

In this paper, an early version of the LOSTFUTURE toolbox in Chapter 3 was
created to analyze the long-term value of flexibility for operating the energy
system of a Norwegian building. The motivation for long-term consideration
stems from a monthly demand charge grid tariff, which imposes a cost each month
based on the highest single-hour electricity import. This price signal motivates a
flat import profile over the month. Since the overall period is included in the grid
tariff cost, the need to consider a strategic optimal peak-import level from the
start of the period will benefit cost of operation, and resulted in this framework
being put to the test.

The flexible assets in this building comprise of a BESS, a uni-directional EV
charger, and SH. With this flexibility portfolio available, electricity import can
be controlled to maintain a cost-optimal peak-import level, while also considering
the limitations within the flexible assets. The LOSTFUTURE toolbox generates
multiple EFCCs for each decision stage throughout the month, that show the
future cost increase of adjusting peak-import. Each EFCC considers the future
cost for all days in the future, so the closer to the start of the month, the more
information about the future is captured in the EFCCs, since a backward SDP
is applied.

The marginal EFCCs (MEFCCs) for specific days are presented in Fig. 4.2, which
shows the change in marginal future cost based on peak-import. With more days
included, the curves account for two distinct occurrences that influence strategy
of operation. First, the curves account for high-demand days, which would put
the lower-bound on peak-import. Since the grid tariff is based on the highest
single-hour, a highly asymmetric state variable, the worst-case scenario in terms
of peak demand gives the set-point. Second, the benefit from RTP cost could
motivate higher peak-import levels. If the variation in spot prices are high, the
increased incentive on having more flexibility on import timing to save RTP cost,
could be higher than the cost of peak-import. For one specific day, the marginal
cost of peak-import on a monthly level would most likely not cover the RTP
variations, but the more days included, the more opportunities for this marginal
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peak-import cost increase to be covered over the month. This trend is captured
in Fig. 4.2, where comparison of MEFCCs for day 1 and 15, indicates that day
15 has, in general, a higher marginal future cost for all peak-import levels. The
offset of these two curves are both based on higher peak-demand scenarios, but
also due to more days with RTP benefits being captured in day 1 MEFCC.

Figure 4.2: Overview over marginal EFCCs for different days over the month.
Figure taken from Paper I.

The findings in this paper showed that the LOSTFUTURE toolbox represents the
long-term price signals and long-term value of flexibility during operation. The
EFCCs reveal the cost-optimal initial peak-import level to aim for at the begin-
ning of the month. During operation, each EFCC contributes to a continuously
updated consideration of the future value of flexibility in terms of peak-import
levels, based on the current decision stage. The framework was compared to
two different simple strategies that could handle the long-term price signal. One
ignores the long-term price signal during operation, which had the highest total
cost of operation due to high demand charge cost. The other strategy tried to
minimize peak-import level due to no knowledge of the future cost of operation.
It achieved a lower average peak-level than the LOSTFUTURE framework did
but had a higher total cost of operation over the month. This is due to more use
of flexibility earlier in the month to keep peak-import levels low, which in most
cases was readjusted later in the month. This approach leads to extra cost of
flexibility use without any savings in return. The LOSTFUTURE framework per-
forms better since it has a representation of the future cost of operation, which
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makes it start the month on a peak-import level closer to the achieved level.
It could for some few scenarios start on a higher peak-import level than what
would be possible to achieve over the month, caused since the strategy accounts
for uncertainty and finds the expected future value of flexibility. In addition,
it considers the added value of increasing peak-import to increase RTP savings,
which the other strategies do not consider at all.

Paper III: Net-zero Emission during Yearly Operation of Energy Sys-
tem in Buildings

Paper III explores a different type of price signal, where emission compensa-
tion during operation in a ZEB is analyzed. The long-term strategy is to achieve
net-zero emission during operation over a year while taking into account building-
embedded emissions. The analysis considers that hourly average CO2eq emission
factors for electricity in the distributional grid are accounted for during opera-
tion, based on the electricity mix in each NordPool bidding zone. Emission is
accumulated and compensated based on import/export of electricity to the dis-
tributional gird, based on the average emission factor for the specific hour of
operation. As stated in [49], the operational phase is deemed critical for achiev-
ing net-zero emission for a ZEB, and at least zero-emission should be achieved
during this phase. Therefore, there is high motivation to identify the appropri-
ate operational strategy over the year, to achieve net-zero emission for such a
building.

Currently, cost of emission is not considered for end-users and normally not part of
the operational decision for buildings. However, this was included in the objective
function by representing it as a cost-based price signal, making the overall goal
multi-objective. The cost is only considered for the ending CO2eq-inventory at the
end of the year, where the cost is based on the yearly accumulated CO2eq-emission
and a user-defined penalty cost. The penalty cost allows the user to define how
much it should prioritize emission compensation versus cost of operation, to co-
optimize both over the year. With this multi-objective formulation, a user-defined
cost of emission is compared to the real monetary cost of operation, where the
penalty cost weight influences the priority during operation.

This price signal on emission compensation is embedded in the LOSTFUTURE
framework and in EFCCs as a long-term price signal, given at the end of the
year. The strategy framework then generates EFCCs that consider the change
in future cost based on the CO2eq-inventory at each week of the year. The long-
term value of flexibility captures the future opportunity cost of compensating
emissions, which is achieved through flexibility from the flexible assets. The
strategy compares if the marginal cost of emission compensation in the current
operational stage is cost-efficient to perform now, or in the future. In addition, the
EFCCs account for the whole year, which includes seasonal variation in strategies
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to deal with emission compensation. During the summer, excess production is
exported, and during winter, timing of import of electricity is focused.

The influence of varying penalty cost for emission compensation is captured in
Fig. 4.3. Here, the MEFCC for the first week of the year is shown, with varying
penalty costs. Since this curve considers the rest of the year, it highlights the
compensation potential over the year with the different penalty costs. At negative
inventory (meaning surplus of compensation), the marginal cost is close to zero.
At zero cost, the current inventory level is satisfactory to reach net zero-emission
during the year, and emission compensation can be disregarded during opera-
tion. With higher inventory, the marginal cost increases, implying that some
compensation must be performed during the year to reach zero-emission. This
marginal cost reflects the expected future cost increase to compensate for this
specific inventory level. The curve flattens with increasing emission inventory at
their corresponding penalty cost. The penalty cost sets the limit on how much
the user is willing to pay for marginal compensation increase. At these points, it
is expected that some leftover emission is present at the end of the year, and a
marginal CO2eq-inventory increase would increase the total cost of emission paid
at the end. Should there be some flexibility remaining to perform this marginal
emission compensation, it is deemed more costly than the penalty cost, and as
such, the cost-optimal solution is to pay the penalty. With increasing penalty
costs, more cost-optimal compensation opportunities exist in the future to reach
net zero-emission. These opportunities show how much compensation can be
achieved through flexibility, and that there is a wide range of options during the
year, with different costs for flexibility behind them.

The results in Paper III for a Norwegian building located in NO2, found that
with increasing penalty cost, the ending CO2eq-inventory decreased, with close
to zero-emission being achievable at around 1 EUR

kgCO2eq
. With the increased focus

on emission compensation, the cost of operation increased, implying that the
shift of focus affected the economical performance for the building. However, at
1 EUR

kgCO2eq
, the yearly cost increase compared to ignoring emission compensating

only came to 4.5%, despite a penalty cost almost 40-times larger than the highest
cost for CO2eq-quotas in 2019 [74]. The International Energy Agency (IEA)

reported that by 2050 the CO2eq-price could reach up to 0.25 $
kgCO2eq

[75], which

is only about a quarter of the 1 EUR
kgCO2eq

penalty cost tested here.

The interaction on purchase of electricity exhibited a change in behavior with
increasing penalty cost. The work in [76] found that the Norwegian bidding
zone NO2 has tendencies of opposite peaks between electricity price and CO2eq-
intensity, which was also the case in our study. With increasing penalty cost,
and higher need for compensation, this motivates the operational strategy to im-
port during times with high electricity price, and export during off-peaks. The
reason for this is primarily that the high share of hydropower enables increased
production when the prices are high, and allows the interconnectors to Denmark
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Figure 4.3: MEFCCs for different penalty costs, at week 0. Taken from Paper
III.

and the Netherlands supply electricity when the price is low. This strategy works
against the desired behavior on use of flexibility in buildings, and could in large-
scale cases increase risk of congestion in the system. This trend was observed in
our work, where the strategy changed with increasing penalty cost. The increas-
ing penalty cost motivates the system to increase import at high electricity-price
hours, due to low CO2eq-intensity.

The analysis of the Norwegian case study in NO2 was compared to a Danish case
in DK1. In DK1, net zero-emission was achieved regardless of penalty cost. This
was due to the electricity mix, and the timing of electricity price and CO2eq-
intensity. With a high presence of wind power, the variation in CO2eq-intensity
was greater than in NO2, and the intensity followed the variation of electricity
prices, with low intensity during low price-hours. The strategic planning from
the SDP-algorithm still showed possible compensation potential in the future,
although it was not necessary to use flexibility toward emission compensation to
achieve the net-zero emission criteria. By considering emission obtained during
other phases of the ZEB in the emission compensation goal over the year, this
strategy would be able to use the available flexibility to increase compensation
further. The comparison between DK1 and NO2 showed that the low variation
in CO2eq-intensity in Norway, together with dispatchable hydropower, makes
emission compensation a non-preferred operational strategy for the building.
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Paper IV: Seasonal Thermal Storage with Monthly Capacity-based
Grid Tariff

The work on the LOSTFUTURE framework in Paper IV increased the dimen-
sions of the EFCC to include two long-term price signals. The strategy for the
building in this work combines an STES unit, together with the monthly demand
charge grid tariff. This makes the overall long-term objective to store heat from
summer to winter, while keeping the peak-import level under control for each
month of the year. The recurring monthly demand charge required a change
to the framework, which led to the extension of the SDP-algorithm, described
in Chapter 3.2.4. This extension enables the EFCCs to capture the long-term
strategy even when a signal is repeating and only valid for shorter periods at a
time.

The operational strategy acquired by the SDP algorithm manages to account
for both long-term price signals, including their influence on each other. The
MEFCCs generated are valid for each marginal direction available, and thus one
for both the demand charge and STES is generated for each stage. Figs 4.4, 4.5
present the MEFCC for each long-term price signal for day 140, which is about 45
days before the winter period initiates. Looking at the demand charge MEFCC
in Fig. 4.4, the STES SoC heavily influence the strategy for peak-import. With
higher SoC, less peak-import is needed. This profile implies that the strategy
here is influenced by how prepared the STES is for the winter period, with high
priority on increasing peak-import to store heat in the STES if necessary. Like-
wise, the STES MEFCC in Fig. 4.5 shows that the future opportunity value
for heat decreases with higher SoC. With high SoC, lowering peak-import level
increases the added value of storing heat, which indicates that with limited elec-
tricity import, each marginal heat storage increase is more valuable in the future.
As demonstrated here, the EFCCs generated captures the long-term value of flex-
ibility for both price signals, and how they influence each other. A strategy for
one of the price signals influences the strategy for the other, and thus they work
together to achieve an optimal long-term strategy for the energy system.

During the operational analysis, the findings in Paper IV revealed that the long-
term strategy balances both the STES and demand charge throughout the year,
as showcased in Fig. 4.6. For each month, the strategy regarding the demand
charge is clear and without too much variation, and also well-tied to the STES
SoC. During summer, the STES influences the peak-import in September and
October, increasing peak-import to aggressively store heat for the winter period.
This added peak is primarily only meant to increase STES SoC, supported by
the MEFCCs in Figs. 4.4, 4.5. Had the SoC been higher, the peak-import would
have been decreased, which occured in the case in Paper IV where PV was
included in the energy system. During the winter period in Fig. 4.6, the peak-
import is significantly reduced by discharging the STES, and sees little variation
throughout the winter. The last two months are the ones with the most variation
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Figure 4.4: MEFCC for demand charge in day 140. Taken from Paper IV.

Figure 4.5: MEFCC for STES in day 140. Taken from Paper IV.

in profiles, whereas the initial STES SoC at the start of March influences the
planned peak-import level for the two months, to properly distribute the remain-
ing heat and reduce demand charge cost. This shows that the two price signals
work together to minimize the cost of operation over the year, and their strategy
is well-captured by the EFCCs generated with the LOSTFUTURE framework.

4.1.2 Long-term Value of Flexibility with Long-term Price
Signals

The three papers mentioned above have all described different types of long-term
price signals. When comparing these to each other, their behavior and influence
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Figure 4.6: Operational performance with STES and monthly demand charge,
without PV. Taken from Paper IV.

on operation differ noticeably, which we will try to sum up and discuss here.

The monthly demand charge is a cost based on your import profile, measured
based on the interaction with the electricity grid. The motivation for the price
signal is to have a predictable and flat consumption profile over the month, and
avoid short unnecessary peaks. With higher peak import, this influences the
strategy going forward, and there is no way to counter an unnecessary peak, ex-
cept by making the best out of the available flexibility. This asymmetric price
signal values a carefully thought out strategy to handle peak import. By ac-
counting for the grid tariff through EFCCs, this enables the available flexibility
to consider this grid tariff directly and also how this flexibility influences RTP
variation in the future.

The CO2eq-inventory has no direct influence on the user’s electricity bill, as emis-
sion inventory is not paid explicitly by the end-users. The way it was formulated
in Paper III is based on the willingness to let the consumption profile account
for emission. By considering emission compensation, this will lead to an increase
in cost of operation, given that compensation is necessary. The internal goal of
net zero-emission would impact users’ interaction with the distributional grid.
If the timing and variation between RTPs and CO2eq-intensity is off, it would
promote going against an economical optimal solution. However, this way of rep-
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resenting CO2eq-inventory enables consideration of the whole year of operation,
and the possibilities of compensation in the future. During winter, accumula-
tion of CO2eq-inventory is expected, since compensation can be achieved through
export during summer. As such, variation on a seasonal level is accounted for
with this long-term price signal. Without a long-term price signal, for instance
having a flat penalty cost on emission accumulation during short-term opera-
tion, this would result in higher use of flexibility and increased cost of operation,
and it would be difficult to reach the exact end-goal of CO2eq-inventory. With
the EFCCs, the long-term value of flexibility on the price signal is captured,
preventing unnecessary use for short-term price arbitrage.

Long-term price signals in form of flexible assets provide us a broader use of
flexibility. Long-term flexible assets, such as an STES, try to take advantage of
seasonal variation of the energy system. Within short-term models, capturing
the long-term advantage of these flexible assets is difficult. As such, representing
them as long-term price signals within EFCCs enables this advantage to be ac-
counted for during operation. The STES in Paper IV aimed to decrease cost of
operation during winter by storing cheaper electricity from the summer period.
This provides an increased benefit to the energy system, reducing the overall cost
of operation. The long-term value of flexibility for flexible assets can be captured
directly, and improve operation of energy systems.

Another point is how the long-term price signals influence each other, as was
investigated in Paper IV. There, both an STES and monthly demand charge
were coupled and represented by the EFCCs. These two price signals have dif-
ferent goals during operation, and as such, do collide with each other and their
long-term strategy. However, in this work, the STES managed to take advantage
of its long-term flexibility to influence the monthly demand charge and lower the
grid tariff cost over the whole year. By increasing peak-import during summer,
the STES could assist in reducing the peak-import during winter even lower than
without the STES. Both price signals reacted based on each other, proving that
this long-term strategy framework managed to create synergy between them.
Thus, by including multiple price signals, the performance could improve and
lead to further interesting results. As was described in Paper III, considering
CO2eq-inventory leads to a strategy that increases risk of congestion. However,
the introduction of long-term flexible assets or other price signals might make
it possible to reduce this risk. Therefore, combination of long-term price signals
could counteract the flaws each of them have, and improve the overall operational
performance.
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4.2 The Role of Flexible Assets in a Long-term
Strategy Framework

The flexible asset available are making it possible to operate buildings to reduce
the cost of operation or to react to long-term price signals. The flexible assets
enable the system to adjust the consumption profile, and each asset available
have different roles and characteristics when performing flexibility. This section
aims to investigate the flexible assets that have been presented in this work
in the context of performance toward long-term price signals. Here, we focus
primarily on short- and long-term flexible assets, since both has been studied in
the published work.

4.2.1 Short-term Flexible Assets

Paper II: Long-term Value of Flexibility from Short-term Flexible As-
sets

Paper II extended the work denoted in Paper I, by investigating the role short-
term flexibility played regarding the monthly demand charge long-term price
signal. The flexible assets, being an BESS, an uni-directional EV charger, and
SH, make up the chosen flexibility within the building that can be controlled and
adjusted accordingly in this work. The monthly demand charge is an asymmetric
price signal that penalizes unnecessary peak-import levels, and thus motivates
well thought-out strategies on optimal peak-import. Since an increase in peak-
import cannot be reversed later, this tariff enables a careful consideration of how
the flexible assets are capable of influencing long-term price signals and reacting
to long-term strategies.

A sensitivity analysis on the boundaries and capacities on the short-term flex-
ible assets were performed in this work. The sensitivity included analyzing for
battery capacity of 5 kWh and 10 kWh, 2.3 kW and 3.7 kW EV chargers, and
indoor temperature boundaries of 20-24 ◦C and 21-23 ◦C. In addition, only one
flexible asset was activated at a time, whereas the other assets had a specified
passive behavior. This made the individual contribution to the long-term value
of flexibility apparent.

The operational performance of each flexible asset, to capture their influence on
long-term flexibility, is illustrated in Fig. 4.7. This figure shows the ending peak-
import level during operation for each case analyzed. The economic performance,
where total cost of operation including the monthly demand charge at the end
of the month is accounted for, is shown in Fig. 4.8. The reference case, in which
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all flexible assets are passive, has the highest ending peak and the largest cost
of operation. As seen here, all flexible assets achieve a peak-import reduction
and reduction in cost of operation, but the degree of reduction is coupled to each
respective asset. The boxplots show the median value by with an orange line, and
each box represents the interquartile range (IQR) of the results. The whiskers
are shown as lines outside the box, covering the 1.5*IQR, and the dots are the
outliers.

Figure 4.7: Sensitivity analysis of operational performance for each flexible asset
in terms of ending peak-import level. Taken from Paper II.

Figure 4.8: Sensitivity analysis of expected total cost over the month for each
flexible asset. Taken from Paper II.

The BESS provides flexibility to the energy system in terms of peak shaving. The
BESS stores electricity during off-peak hours, and discharges when the consump-
tion profile is higher than the aimed peak-import level. Thus, a BESS is very
capable of effectively aiding in reducing peak-import levels for the building, and
reducing the long-term price signal costs. The flexible behavior of the BESS is
unique compared to the other flexible assets investigated, since it is not naturally
part of the consumption profile, having no internal load to cover. The case ana-
lyzed here had a fixed inverter capacity at 2.5 kW, which limits the peak-import
reduction. However, the storage capacity plays a role in storing sufficient elec-
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tricity to support during the peak hours. For a 5 and 10 kWh storage capacity,
average peak-reductions came at 2.20 and 2.50 kW, respectively. This highlights
the need for sufficient storage capacity to peak-shave for the entire peak-periods
but that doubling the storage capacity only gave a small peak-reduction.

The EV cases saw almost identical results regardless of charger capacity. Achiev-
ing an average of 3.54 kW peak-reduction, which is almost equivalent to the 3.7
kW passive charger present in the reference case, smart control of EV chargers
is vital to avoid unnecessary peaks during operation. The EV is available for
charging 15 hours per day, giving the EV plenty of opportunities to charge to
the desired SoC without conflicting with the non-flexible demand. The charger
capacity is not binding to the problem with so many hours available for charg-
ing. Additionally, if the EV charger would be bi-directional, it could enhance
operation of the building further, inheriting some of the characteristics from the
BESS. This was not investigated in this work.

For SH, the indoor temperature boundary influences operation in regards to peak-
reduction. A higher temperature boundary gives more flexibility in terms of load-
shifting. With a temperature boundary between 21-23 ◦C, the peak-reduction
is significantly lower than the other flexible assets, including the boundary of
20-24 ◦C. The 20-24 ◦C boundary manage to converge on a stable ending-peak,
with little deviation despite the uncertainty in the problem. The difference in the
two SH cases shows the influence on the temperature boundary, where a higher
boundary gives more capacity on load-shifting to avoid high RTP-hours. The
case study was for a winter month, with high thermal demand. This means there
is much benefit to gain from optimal operation while considering RTP. Thus,
the temperature boundary not only influences flexibility, but also seems to cor-
respond to different optimal balances between peak and RTP-benefits. However,
prioritizing both RTP and monthly demand charge means there is some cost-
based balance within the long-term strategy. Increasing peak-import levels to
increase RTP-benefits is possible; it depends on the load-shifting capability and
the cost-difference between the two price signals.

Regarding the total cost of operation, captured in Fig. 4.8, each flexible asset
contributes to lowering the cost in different ways. The total cost sees a noticeable
decrease with the BESS compared to the reference case, with the 5 kWh BESS
achieving a 8.4% cost reduction compared to the reference case, but small changes
between the two storage capacities. The cost reduction is primarily coupled to
the decrease in demand charge cost, indicating limited interaction to deal with
RTP-variation. The EV chargers see almost identical cost-reduction compared
to the reference case, at a 14.6% cost-reduction. The EV charger has the highest
cost-reduction of the flexible assets here, coupled to the increased cost on the
demand charge with a passive charging strategy. The identical cost show that
the EV chargers do not use their full capacity when charging. The SH cases
show varying total cost based on the temperature boundary, with the 20-24 ◦C
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boundary achieving the highest cost-reduction of the two. Compared to the
reference case, the 20-24 ◦C boundary ended with a 11.0% cost-reduction. Despite
having a lower peak-reduction than both BESS cases, the total cost is lower than
the BESS manage. This is coupled to the interaction to cost of operation from
RTP-variation, where the savings from load shifting leads to an overall lower cost
than by primarily reducing peak. This showcase the value of flexibility from not
only prioritizing the long-term price signals, but also the cost of operation along
the period.

Additional Results on the Basis of Paper II

The analysis in Paper II on SH showed that the long-term strategy balanced
RTP-benefits and cost of monthly demand charge. However, how this synergy
changes when adjusting one of the price signals was not investigated, prompting
further studies on this balance. Therefore, this was analyzed afterward, studying
how increasing the monthly demand charge cost influences the long-term strategy.
This was not part of the work conducted in Paper II.

The analysis included adjusting the demand charge cost from 0.2-4 times the
original cost used in Paper II. The performance for the SH case with a 20-24
◦C temperature boundary can be found in Fig. 4.9, which captures a decreasing
ending peak-import level with increasing demand charge cost. This trend implies
that SH has sufficient load-shifting potential to reduce peak-import, but that it
does not necessarily aim for the lowest possible peak-import level. This strategy
is dependent on the relation between demand charge cost, RTP variation, and
scenarios influencing heat demand. Note that for this case, RTP was deterministic
for the month. With higher demand charge cost, the boxplots including outliers
decrease toward lower peaks. There is some variety in change of operation, where
some increase of demand charge only leads to smaller operational adjustments,
and while some leads to significant peak-import reduction. The latter is very
present in the shift between a multiplication factor of 2.2 to 2.4, which sees a
0.5 kW peak-reduction. Here, this decrease of peak implies the long-term price
signal has a higher cost than the benefits from RTP-variations that was seen as
economically beneficial with a lower demand charge cost.

For the temperature boundary between 21-23 ◦C, the trend is the same, as shown
in Fig. 4.10. With increasing demand charge cost, the ending peak-import level
decreases, due to load-shifting. However, a noticeable comparison between the
two temperature boundaries is that 21-23 ◦C have much larger variation with low
demand charge cost than 20-24 ◦C. This is linked to uncertainty and the range
of heat demand needed in each scenario, and that load-shifting to reduce peak
might not be cost-effective compared to RTP-variation. With increasing demand
charge cost, the boxplots tighten more, and the two temperature boundaries
become similar in average ending peak-import levels at around 2x. However, the

52



Chapter 4: Results and Discussion

Figure 4.9: Sensitivity analysis of increasing demand charge cost with SH between
20-24 ◦C.

plots show that 21-23 ◦C has less cost-effective flexibility on load-shifting and
operates with higher peaks.

Figure 4.10: Sensitivity analysis of increasing demand charge cost with SH be-
tween 21-23 ◦C.

An apparent difference between the two temperature boundaries lies within the
initial peak-import levels at the first decision stage, indicated by the purple stars
in each figure. For 21-23 ◦C, this initial level is closer to the actual ending peaks,
but for 20-24 ◦C, the deviation is larger. This suggests that during operation,
the latter case initiates with lower peaks, due to the uncertainty in the future
regarding heat demand. The potential future savings in keeping a low peak
outweigh the increased savings by increasing the peaks early. The plots do show
that corrections are done most of the time during operation, with a few outliers.
With increasing demand charge cost, this initial value decreases, but the deviation
from the expected ending-peak level is tighter. Thus, there are always some
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benefits in comparing RTPs versus demand charge cost, but uncertainty plays a
role in what is cost-effective.

These results prove that the flexible SH is coupled well to the selected cost for
monthly demand charge during the long-term strategy. As the operational strat-
egy from LOSTFUTURE accounts for scenarios, demand charge cost, and RTP-
variations, the flexibility within SH are comparing the cost of operation toward
the long-term price signal cost. With increasing demand charge cost, it actively
tries to lower this cost by shifting heating to decrease the peak-import level. To
compare, having a strategy that would only prioritize minimizing peaks without
knowing the future cost of operation, similar to the comparison done in Paper I,
could lead to significant cost increase from RTPs higher than the peak-reduction
benefits. Thus, the long-term value of SH flexibility can have significant influence
on cost of operation when long-term price signals are present.

4.2.2 Long-term Flexible Assets

Paper IV: Seasonal Thermal Energy Storage (STES)

The role of the STES unit in Paper IV was to decrease use of electricity during
winter to provide heat. By storing thermal energy during summer, this could be
supplied to cover the significant heating demands during winter.

The STES could contribute to three important areas for the building during
winter. First, it could provide long-term load-shifting and peak-shaving from
the thermal system, to lessen the need of electricity during winter that would
increase peak-import. Second, it could make better use of cheaper electricity
during summer and local production from PV, and store this for use during
winter. And third, it could enable the short-term flexible assets like BESS and
the EV charger to have more room for flexibility with electricity from the grid
during critical periods in winter. Paper IV includes an analysis for the energy
system of a building located in Norway, with and without both PV and STES.
The economic performance of the four cases are shown in Table. 4.1.

The work in Paper IV compared the influence the STES had on building oper-
ation over a year, with and without STES and PV installed. When comparing
the influence of STES alone, it was apparent that it contributed to decreasing
peak-import during winter. This led to a 23.9% decrease in demand charge cost
over the year, and a 4.6% decrease in yearly cost of operation, when comparing
Case 2 to Case 1. Although the yearly import quantity increased to cover losses
by the STES, this was cost-effective due to the benefits from demand charge
and seasonal RTP-variation. When including PV production, as in Case 4, this
provided an additional source of electricity during the summer. The STES led
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Table 4.1: Average economic results on cost of operation, monthly demand charge
cost, import/export of electricity, and PV production. The table is taken from
Paper IV.

Case Total Monthly Demand Total Total PV

Cost Charge Cost Import Export Generation

[EUR] [EUR] [kWh] [kWh] [kWh]

Case 1:
No PV

No STES 1336.17 209.53 13974.02 0 0
Case 2:
No PV

With STES 1275,15 159.36 14443.96 0 0
Case 3:

With PV
No STES 1026.50 187.07 10029.29 240.86 4294.46
Case 4:

With PV
With STES 950.78 128.03 10361.91 0 4294.46

to decreased export of electricity from the building compared to the case with-
out STES, increasing the self-sufficiency from local production. The increased
benefit of using local production came at a 7.4% yearly cost decrease for Case
4, when compared to Case 3. This cost decrease indicates that, with the STES,
the seasonal variations in PV production came to better use for the building
economically, and contributed to the energy system over the year.

The operation of the STES follows a behavior similar to hydropower operation.
As hydropower make use of seasonal inflow to store and discharge water when
the cost-optimal opportunity is there, it carefully optimizes use of the resources
available. The STES applies the same consideration, using the summer season
to store more heat and provide this during winter. The value of storing heat for
the future is captured during operation, and the system continuously considers
the benefit of storing additional heat. In the EFCCs in Fig. 4.5, the added value
of storing heat is captured, but the marginal value of storing heat is never zero,
despite the operational performance not using the full capacity of the STES. The
cost-optimal strategy found the additional capacity not being necessary during
the year, despite having some future value for operation. It could have made
use of the additional heat, but this would not be cost-optimal toward the cost
of purchasing it. When the PV was included, the SoC increased, since the local
production has zero cost; however, this did not lead to maximum capacity, as
the local production also played a role for the other flexible assets. Thus, we
see a continuous planning of storing and delivering heat over the year, following
similar trends as hydropower does.
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Additional Results regarding Paper IV

The results from Paper IV have been investigated further to see the balance
between the STES and thermal production during winter. Thermal demand can
be covered by both the STES and HP during winter, and the synergy between
them will be shown here. This analysis is not part of the work in Paper IV.

The operational performance for three selected winter days are presented in Fig.
4.11. Here, the thermal energy sources in the buildings are presented, alongside
the indoor temperature for SH. Other thermal demands like DHW are not in-
cluded here but are also covered. The STES is providing much thermal energy
to the system, while the HP is only occasionally providing thermal energy. Typ-
ically, the HP produces during the day, when the EV is not present and load
demand is expected to be lower. The increase in temperature at the end of each
day is primarily to meet the set-point temperature at 22 ◦C, a limitation as the
indoor temperature is not part of the EFCCs.

Figure 4.11: Thermal energy supply and indoor temperature for three selected
days during early winter, for Case 2 in Paper IV.

The STES would supply the system heat during peak-periods, having the role of a
peaker-unit. However, in this analysis, it supplies heat almost continuously. With
no other technologies than the HP to provide heat, the other choices are limited.
And, since the electricity system has a monthly demand charge to consider, and
other load demands, this influences cost from electricity to cover thermal demand.
The demand charge induces a cost-based restriction on high electricity use, which
limits the cost-optimal contribution from the HP. Looking at the EFCC for STES
during winter, shown in Fig. 4.12, the added value of storing heat when the SoC
is very low during winter, is noticeable high. This is dependent on both RTPs

56



Chapter 4: Results and Discussion

during winter, but also the cost from demand charge, should this provoke increase
of peak-import. In a way, these EFCCs act as future fuel cost for the electricity
system to provide heat, and vary significantly depending on the situation for
demand charge, and current STES SoC. Thus, the baseload from the HP can
be very costly, and the STES and the heat it provides is deemed much more
cost-optimal to use.

Figure 4.12: 3D-plot of the marginal EFCC for the STES, for day 280, for Case
2. The picture is taken from Paper IV.

Taking this analysis in the direction of installation of capacity in an energy sys-
tem, the baseload unit, being the HP, has a variable cost derived from RTPs,
while the “installation cost” for baseload during operation is dependent on the
demand charge. The more peak-import capacity is purchased, the more baseload
it can cover. As the peak-import level, which also should cover other electrical
loads, is very costly, it is preferable for the peaker unit, being the STES, to sup-
ply heat most of the time. The installation cost for baseload is set on a monthly
basis, and the case studied has different demand charge costs during summer
and winter. The summer period works with a 4.458 EUR

kW ·month demand charge

cost, and triple that amount at 13.375 EUR
kW ·month during winter, motivating peak-

reduction during the winter period. Operation over the year has a lower demand
charge cost during summer, so the system finds it more cost-effective to purchase
peak-import then, to make the STES more dominant during winter and decrease
baseload-import during that period. As such, the system takes advantage of the
seasonal flexibility, to make the thermal system less dependent on the electricity
system during winter, by purchasing peak-import capacity during summer. With
this strategy, the STES peaker unit has an expected dominant role during winter,
charged up by the baseload unit from earlier in the year.
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4.3 Technical Experiences of Representing Long-
term Value of Flexibility

Representing the future cost of operation involves having a detailed overview over
the change in cost during operation. Each work has investigated at least one long-
term price signal that needs to be represented to improve short-term operation.
The SDP-framework allows for extending the number of state variables, and thus
the number of long-term price signals considered. This enables multiple long-
term price signals to be accounted for at once. In addition, it would be possible
to consider coupling price signals where one is recurring multiple times during the
overall period. Also, the work has encountered some complexity on the monthly
demand charge coupled with other price signals. These topics will be discussed
and presented in this subchapter.

4.3.1 Multi-period Price Signals

The work in Paper IV investigated how to couple two different price signals
in the long-term strategy framework. The STES acts as a long-term flexible
asset, capturing seasonal variations in operation and creating a strategy for yearly
operation, while the monthly demand charge price signals impose a cost on peak-
import levels for each month of the year. The latter price signal reoccurs for
every month of the year, and each demand charge month is independent of each
other. However, these recurring price signals influence the STES, and indirectly
each other through the STES, and as such, this coupling must be captured in
the EFCCs accurately. Representing the long-term strategy over the year makes
it important to adjust the information in the EFCCs during transition between
months. At these points, information on the deactivated price signals, activated
price signals, and the dependencies both have on other price signals, must be
handled correctly. Accounting for this, the need to properly describe the accurate
future value of flexibility, led to the formulation of the extension to the SDP-
framework described in Chapter 3.2.4, Alg. 2. For a detailed description of how
this extension works, refer to Chapter 3.2.4.

This algorithm and extension played a vital role in the results obtained and
discussed in Paper IV. This extension and formulation in Chapter 3.2.4, enabled
the long-term strategy to capture the long-term value of flexibility for both the
STES and every monthly demand charge in the future. Only the present monthly
demand charge is directly captured in the EFCC, but the future demand charge
periods are indirectly captured by the STES future cost. The future value of
flexibility in the STES accounts for the future periods where the monthly demand
charge is renewed, and via the marginal cost of thermal energy storage, can make
the long-term strategy account for lowering future peak-import levels through the
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STES. The strategy, displayed in Fig. 4.6, captures this coupling. The strategy
to increase peak-import levels during summer, to charge the STES, provided
peak-import level reduction during the winter. The long-term value of flexibility
through the STES captures the long-term influence on monthly demand charges.
This coupling between different price signals provides more accurate information
on the future, and the algorithm extension in Alg. 2 enables this to be achieved.
The strategy framework has more tools available for accurately capturing long-
term price signals, to achieve cost-optimal operational performance for longer
periods.

4.3.2 Convexity Issues

During the expansion of the SDP framework to include multiple variables in
the generation of EFCCs, convexity-issues were encountered. This has not been
described in detail within in Paper IV but will be detailed here.

The non-convexity issue stems from coupling the monthly demand charge price
signal with other price signals within the energy system of the building. This
example uses the STES and monthly demand charge as long-term price signals.
When keeping the SOS2-nature of the build up of the EFCC, mathematically
described in Chapter 3.3.8, the EFCC experienced non-convex behavior after a
few decision stages. The MEFCCs for both the monthly demand charge and
STES SoC are shown in Figures 4.13 and 4.14, respectively. Fig. 4.14 shows a
non-convex trend on parts of the overall curve, specifically at lower initial values
for the monthly demand charge state variable. These plots are made up of a
deterministic case study from Paper IV, with 41 discrete demand charge states
between 0-5 kWh

h and 41 discrete STES SoC states between 0-500 kWh. This
example is only meant to explain the behavior.

The influence of the MEFCC for the monthly demand charge state variable,
denoted as highest peak-import level, is shown in Fig. 4.13. At zero initial value
for the highest peak-import level, the marginal cost is zero since it is necessary to
increase the import quantity. It is then influenced by the storage quantity of the
STES, the stochastic variables in the current scenario, and by the indicators from
the EFCC for the future decision stages. The slope of the peak-import level is
very steep when going from zero marginal cost up to the monthly demand charge
cost. This curve illustrates that when trying to find the cost-optimal peak-import
level, the boundary between zero cost and demand charge cost is narrow. This
emphasizes an accurate and detailed representation of this state variable around
the change in marginal cost. If the representation is too coarse with few discrete
states, then it could miscalculate the optimal peak-import level. Should the cost-
optimal peak-import level be between two discrete points, it would achieve a lower
value than the optimal level, due to the convex marginal cost increase. This could
cause readjustment later during operation, where the peak-import level needs to
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Figure 4.13: Marginal expected future cost curve for marginal peak-import level
change.

be increased. If it is increased, the use of flexibility earlier to keep it at the
lower level would have been wasted. This is due to the asymmetrical behavior
of this grid tariff. This was also mentioned in Paper I and Chapter 4.1.1 where
the SDP-algorithm was compared to a simplified strategy where minimizing the
peak-import level was emphasized. This loss of flexibility would then result in an
increased cost of operation compared to what would be possible with an accurate
peak-import level from the start.

The non-convex behavior in Fig. 4.14 is related to the accuracy of discretizing the
state variables within the SDP-algorithm, especially for the peak-import level.
When increasing the number of state variables in the SDP-algorithm, the re-
adjustment of the monthly demand charge peak could be influenced by other
state variables as well. For an increasing STES SoC, there is more thermal energy
available to reduce the electricity need from the grid, which could reduce the
peak-import level during the decision stage. However, if the cost-optimal peak-
import level is between two discrete states, this could lead to undershooting the
optimal value, which would be corrected later. Thus, for each increasing STES
SoC, the optimal peak-import level changes and could be between two discrete
points, leading to an offset. The offset in the peak-import level can be random,
but will be dependent on the accuracy of the discrete points for the peak-import
level. This, in turn, leads to the non-convex behavior in the Fig. 4.14, which is

60



Chapter 4: Results and Discussion

Figure 4.14: Marginal expected future cost curve for marginal STES SoC change.
The curve shows non-convexity at low initial peak-import levels.

the result of different offsets on the peak-import level, caused by discretization
error.

The operational performance is not continuously influenced by the non-convex
behavior in the EFCCs. The non-convex behavior of the plot is primarily ap-
parent during the first decision stage of the month, where there is no historical
peak-import level given. After the first decision stage, the peak-import level
would be at a close level or within the convex region of the EFCC. However, the
strategy set after the first day could be off due to the inaccuracy, which in turn
could lead to re-adjustments later. Thus, having an accurate representation of
the monthly demand charge state variable would still be beneficial to decrease
the offset and improve the strategy within the EFCCs.

There exist multiple ways to deal with this non-convexity in the EFCCs. Remov-
ing the non-convexity in the EFCCs could be achieved by removing the SOS2-
nature when formulating the EFCC in Chapter 3.3.7. This does not solve the
issue with inaccurate measures due to discretization, but convexifies the curve.
Removing the SOS2-nature was done in Paper IV, as the analysis saw almost
no changes in the operational performance over the yearly operation. An exam-
ple of the MEFCC without the SOS2-nature is illustrated in Fig. 4.15. This is
a viable option for a linear programming problem, where the piecewise-linearity
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from the SOS2-nature would not be crucial to capture the future value of flexi-
bility. However, should non-convexity be introduced to the SDP-framework, for
instance, non-convex efficiency on the STES, the SOS2-nature would be neces-
sary. Another alternative to decrease the non-convexity would be to increase the
number of discrete points for the state variables. With an increased accuracy in
the curve, the offset in optimal peak-import level would be decreased. Increas-
ing the number of states increases the computational time use due to a larger
discretization, posing a computational time versus accuracy challenge.

Figure 4.15: Same case as in Fig. 4.14, but where the problem is convexified.
To enable this, the SOS2-nature on the state variables is disabled in the EFCC
formulation in Chapter 3.3.7.
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5 Conclusion and Future Work

Capturing the long-term value of flexibility into operational models for energy
systems in residential buildings will improve overall operation and cost perfor-
mance. Having more information on the long-term impact of operation enables
more accurate decisions to be made. In addition, this provides a possibility of
accurately representing long-term price signals into operational models, where
the long-term value of flexibility on these price signals can also be accounted for.
This thesis has presented and investigated a framework for dealing with the long-
term value of flexibility and how to represent long-term price signals for esidential
building operation.

5.1 Main Results

The results from the work presented have revealed how to represent the long-term
value of flexibility for residential building operation, providing more accurate
operational decisions in the short term. This long-term consideration is not
limited in layout and types of case studies, as it enables long-term price signals
of different characteristics to be embedded, alongside an understanding of how the
future flexibility use performs on the price signals. Within the LOSTFUTURE
toolbox, the long-term strategy is captured and enables all of these factors to be
represented for short-term operational models.

The short-term flexible assets within the building have improved operational
performance with the presence of the long-term strategy framework. Without
considering the long-term value of flexibility, the use of flexible assets will opti-
mize for the short-term period only. But when including the long-term strategy,
as was seen in Paper I, balancing both short- and long-term with the use of
flexibility increases the economic performance. The short-term flexible assets are
not required to be part of the future cost curves to contribute to long-term perfor-
mance, which indicates that not all flexible assets must be part of the long-term
strategy. This was the case in Paper II, where the individual contribution from
BESS, EV charging, and SH were analyzed regarding monthly demand charge.
All flexible assets had a significant contribution to the long-term price signal,
despite only being able to use short-term flexibility within 24-hours at a time.
Regardless of the characteristics behind each flexible asset, they all contributed
to improve long-term performance. This demonstrates the synergy flexible assets
have with both the short- and long-term value of flexibility.

The long-term price signals that can be embedded in the long-term strategy
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framework are not limited in structure. As has been shown in the published
works, different types of price signals can be represented in the generated future
cost curves, based on the overall goal of long-term operation. Grid tariffs for
end-users, internal motivation and goals for operation like emission compensa-
tion, and long-term flexible assets have all been investigated and accurately rep-
resented by this strategy framework. The diversity of the price signals suggest
that the strategy framework is general and can have a wide span of possibilities
for representing long-term price signals. The strategy framework is not limited
by these but could also be extended to consider other types of long-term signals.
This general formulation is valuable considering what energy systems in buildings
could be exposed to now, and in the future.

Long-term flexible assets are provided an opportunity to be operated strategically
in short-term models with the presence of future cost curves. With this frame-
work, their long-term consequence of operation is captured, and this provides
a detailed here-and-now versus long-term impact comparison, making a cost-
optimal use of the flexible asset. This enables seasonal variation to be accounted
for during operation, as this is included in the future cost curve representation.
As for the STES in Paper IV, the long-term value of flexibility on storing heat
is accounted for, and the value this provides is enough to alter other long-term
price signals. The monthly demand charge was increased during summer to re-
duce cost during winter, enabled by the STES. This strategic decision was only
possible due to the STES, and showed a considerate cost-reduction over the whole
year. The long-term flexible asset provided valuable flexibility to influence not
only the energy system but also other long-term price signals, providing flexibility
on multiple signals and considerations during operation.

Coupling multiple long-term price signals is a possibility in the strategy frame-
work, even when they have different characteristics. This was the case in Paper
IV, with several monthly demand charge costs applied together with STES. Ac-
counting for the change in active price signals has been enabled through extending
the SDP-algorithm within the LOSTFUTURE toolbox. This makes it possible
to couple different complex price signals and retain their valuable influence on
each other in the strategy framework. As was also shown, keeping the coupling
between them during price signal transition enables the strategy to account for
future price signals that will be active later. This provides key information on
how to operate the energy system and how to be prepared for these future price
signals.

The behavior of several long-term price signals operating together in the strat-
egy framework proved to complicate the overall operational problem. This was
the case not only in terms of complexity and computation time given the SDP-
algorithm within the toolbox and framework, but also in that non-convex coupling
of price signals could occur. With an asymmetric price signal as the monthly de-
mand charge, strategic planning with this and other price signals together was
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found to complicate the problem with the presence of non-convexity when trying
to enforce a piecewise-linear behavior. Further analysis of such price signals in
the future will provide more understanding on this issue and how best to create
optimal strategies.

The LOSTFUTURE toolbox offers an option for short-term models to account
for more information, providing a layout for operational planning of energy sys-
tem operation of a building. As within hydropower, decomposing the operation
of buildings into a short- and long-term aspect enables the expansion of the pos-
sibilities of operation. We can analyze the long-term aspect and make strategies
based on these, and provide the results to short-term models to make the accu-
rate decisions. This work has set the course and shown the value of the long-term
aspect with this toolbox, motivating further work and analysis of how this can
assist short-term models to achieve the common goal: optimal operation of the
energy systems for the end-users and residents in buildings.

5.2 Conclusion

This thesis has created and formulated a long-term strategy framework for oper-
ation of energy systems in buildings. Several long-term price signals have been
formulated and analyzed with this framework, to capture the long-term value of
flexibility. Different flexible assets have been considered to evaluate their influ-
ence on long-term operation. The main conclusions comprising the contributions
of this thesis can be summarized as follows:

• A long-term strategy framework toolbox for building operation has been
created. The toolbox Long-term strategy framework for future build-
ing operation (LOSTFUTURE) calculates the long-term value of flexi-
bility for building operation, and represents this as future cost curves. The
framework allows long-term price signals to be represented and accounted
for, to improve the overall operational decision by considering the long-term
impact.

• By accounting for the long-term value of flexibility during operation, more
cost-optimal flexibility use can be performed in the short-term operation.
The coupling of short- and long-term operation provides more information
on future consequence of operation and also allows long-term price signals
to be accounted for.

• Flexible assets such as batteries, uni-directional EV charging, and space
heating can use their flexibility to balance both the short- and long-term
value of flexibility. With the long-term strategy framework, the flexible
assets are able to react to long-term price signals, leading to more cost-
optimal long-term decisions.
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• Space heating flexibility manages to cost-optimally balance the value of
varying spot prices and monthly demand charge cost during winter months.
With the long-term strategy, cost-optimal peak-import levels are found that
achieve benefits in short-term operation through load shifting. Changing
the indoor temperature boundary, which influences load shifting capacity,
impacts what peak-import levels are cost-optimal, and the system finds
suitable strategies based on the limitations in the energy system.

• When considering emission compensation during operation of a ZEB, a
long-term strategy assists in making more cost-optimal decisions. With
varying penalty costs for leftover emission inventory at the end of the year,
the strategy captures the cost-effective future opportunities based on both
the users’ willingness to pay for compensation and the future scenarios.
These scenarios include seasonal variation in compensation opportunities,
accounting for the different strategies on compensation during summer and
winter.

• Emission compensation during operation of a ZEB is strongly connected to
the correlation between electricity prices and emission intensity in the grid.
The long-term strategy is influenced by this correlation, and a Norwegian
case saw increased import of electricity during peak-hours due to the low
emission intensity during those periods. This can lead to increased risk
of congestion to the system, and also increased cost of operation due to
the conflicts between operational cost and compensation. This behavior
was not seen in a Danish case comparison, where the timing of electricity
prices and CO2eq-intensity in the electricity grid favored compensation by
primarily accounting for variation in electricity prices.

• The operational strategy for seasonal thermal energy storage is represented
with the long-term strategy framework. This enables seasonal impact and
long-term influence on the long-term seasonal storage unit to be captured
and represented for accurate use in the short term. The long-term value of
storing extra energy is presented and assists in making cost-based decisions
on long-term strategy.

• Multi-period monthly demand charge over a year has been captured along-
side seasonal thermal energy storage in the long-term strategy framework.
The coupling between the seasonal storage and each monthly demand charge
is accounted for, so that their dependencies on each other are retained. This
achieves cost-efficient use of seasonal flexibility to influence demand charge
cost for all periods, and reduces overall demand charge cost and cost of
operation.
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5.3 Suggestions for Future Work

The work carried out is fresh in the context of the field of energy systems in build-
ings, and as such further work could be done in several directions. The following
suggestions for new research directions focus not only on the methodological ex-
pansions on the decomposition techniques but also on the energy system described
in the optimization problem.

A key research direction would be to apply the LOSTFUTURE toolbox to a
detailed short-term operational model to analyze its influence on operation. As
this work has mainly focused on capturing the long-term value of flexibility, the
short-term coupling has been simplified. How the LOSTFUTURE toolbox should
be used is also an interesting topic for analysis, for instance, once or multiple
times during a long-term period. Regardless, investigating the long-term value of
flexibility for more sophisticated short-term models is of high interest to progress
this research approach.

Further investigation on the long-term value of flexibility for energy systems with
more uncertainty present can be extended in the future work. Using data from
more extensive scenario generation models would further test the effectiveness of
the long-term strategy.

Extending the energy system to consider multiple buildings or neighborhoods
would provide valuable analysis of long-term influence on operation. For a neigh-
borhood, the long-term value of flexibility would be a means of putting a cost or
value on the internal flexibility, not only in the short-term but also long-term.
This could lead to more accurate use of flexibility and would also enable long-term
seasonal storage to be operated within the neighborhood.

Altering the LOSTFUTURE framework to consider a system perspective is an-
other step that would enable researchers investigate buildings’ contribution of
flexibility to the system. The current energy systems modeled focus on lowering
the cost from the building perspective, ignoring the benefits and interaction with
the surrounding system, with the exception of spot prices and grid tariffs. How-
ever, analyzing the system perspective enables more investigation of the value
of flexibility the buildings can provide to the system, for a system benefit. Es-
pecially when applying the framework to large-scale buildings or neighborhood,
this interaction can be valuable for all parts of the system and act as a source of
local flexibility.

Other important further works relate to investigating other price signals and the
long-term value of flexibility they provide. As the LOSTFUTURE framework is
general, other price signals of different natures could be modeled and represented
as long-term price signals. This could also be applied to incentive-based demand
response programs, where the flexibility of the building could be sold as an asset
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to local markets. These market interactions could be converted and represented
as long-term price signals, to make the most out of the flexibility available in the
system. In addition, coupling multiple long-term price signals, as in Paper IV,
is also an area that could be explored further.

Exploring other decomposition techniques and how they are able to represent the
long-term value of flexibility for energy systems in buildings is important. Using
SDDP within this model formulation would be a natural approach to investigate
going forward, as both SDP and SDDP have clear advantages and disadvantages
compared to each other. Having multiple techniques applied would offer more
context regarding what kind of circumstances favour the different approaches.
There will most likely be valuable uses of both techniques and others within this
field in the future.

Improving the algorithm surrounding multi-period price signals could enhance
the level of detail that can be captured within the EFCCs. The formulation
given in this work was specified for two state variables and providing a general
formulation of this approach could make it more available. Also, Paper IV men-
tioned how the algorithm allows for stochastic initial conditions for price signals,
which could be extended to include this. That would provide more possibilities
in sophisticated price signals. In addition, testing this algorithm with an SDP-
framework outside of the work done in this thesis would verify the value of this
extension. For instance, applying the algorithm to a case study surrounding hy-
dropower scheduling would provide valuable understanding on the value of this
extension.

The framework could be coupled to large-scale seasonal storage, as a means to
portray the long-term value of flexibility. The work in Paper IV introduced
this framework to seasonal storage units and captured the value of representing
the long-term impact of using the seasonal storage. The operational strategy for
large-scale storage does not need to be explicitly toward buildings but could be
used in any setting where a storage unit is needed, for instance, offshore hydrogen
storage.
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Long-term Value of Flexibility from Flexible Assets in Building OperationKasper Emil Thorvaldsen ∗, Magnus Korpås, Hossein Farahmand
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A R T I C L E I N F O
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A B S T R A C T
In this work, we investigate how flexible assets within a residential building influence the long-term impactof operation. We use a measured-peak grid tariff (MPGT) that puts a cost on the highest single-hour peakimport over the month. We apply a mathematical model of a Home Energy Management System (HEMS)together with Stochastic Dynamic Programming (SDP), which calculates the long-term impact of operatingas a non-linear expected future cost curve (EFCC) from the end of the scheduling period to the start. Theproposed model is applied to a case study for a Norwegian building with smart control of a battery energystorage system (BESS), Electric vehicle (EV) charging and space heating (SH). Each of the flexible assets areinvestigated individually with MPGT and for an energy-based grid tariff. The results showed that EV charginghas the highest peak-power impact in the system, decreasing the total electricity cost by 14.6% with MPGTwhen controllable compared to a reference case with passive charging. It is further shown how the EFCC helpsachieve optimal timing and level of the peak demand, where it co-optimizes both real-time pricing and theMPGT.

1. Introduction
With the roll-out of smart meters, it is possible to implement moredynamic price structures so the end-users can react to price signals ontheir own accord. This introduces the potential of participating in price-based Demand Response (DR) programs, which ideally should be ableto represent the grid operators’ actual system cost of operating the grid.However, it is important that the system cost is accurately representedin their programs.The electricity bill from the grid operator for the end-user is cur-rently in a period of transition, where the cost is going from a passivevolumetric charge cost to a combination of volumetric and capacity-based costs, in line with recommendations [1]. The measured-peakgrid tariff (MPGT) and subscribed capacity have been presented by theNorwegian Water Resources and Energy Directorate (NVE) as possiblenew grid tariffs in Norway [2]. MPGT introduces a capacity-basedtariff determined by the highest single-hour energy consumption overan hour for a given period. The MPGT is already implemented forend-users with a total yearly consumption rate over 100 MWh, for amonthly period [3]. If such a grid tariff is implemented for smallerconsumers, a Home Energy Management System (HEMS) can helpconsumers achieve a more cost-optimal utilization of local energyresources in response to such tariffs if they are capable of operatingwhile considering the whole period. However, with a long-term pricesignal such as a monthly MPGT, it is crucial to operate the buildingappropriately over the whole month. This price signal creates a need

∗ Corresponding author.E-mail address: kasper.e.thorvaldsen@ntnu.no (K.E. Thorvaldsen).

to be able to account for the whole period during short-term operation,and thus a long-term operational strategy would assist the HEMS duringoperation.In this study, we focus on the impact of flexible assets in a HEMS,such as battery energy storage system (BESS), thermal flexibility fromspace heating (SH) and electric vehicles (EVs). In [4], different BESSalternatives are investigated in an economic overview for an averageresidential consumer in the US with the overall goal of shaving electri-cal peaks under a Time-of-use demand tariff. A thermal storage tankwas used in [5] for a building consisting of multiple smart homeswith wind production and BESS to reduce peak electricity consumptionfrom the grid. The work in [6] analyzed thermal comfort and tem-perature zoning in residential buildings with user feedback to analyzeperformance. Trying to charge an EV optimally given the uncertaintyin driving pattern was investigated in [7], where the stochastic naturegave a noticeable impact on charging strategies. In [8], the EV was usedtogether with a HEMS and a charge–discharge management frameworkto charge the EV optimally while lowering the PV curtailment andreduce total residential operation cost.A HEMS will operate and control the energy input and output fromthe different flexible assets, adjusting the flow of energy based on whatis deemed the optimal decision for the HEMS to consider. In mostcases, this control of flexible assets is used to optimize the total costof electricity within the period that the HEMS considers. However, the
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Nomenclature
Index sets
𝑔 set of state variables
 Set of time steps within the day
 set of days within the month
Parameters
�̇�𝐵,𝑑𝑐ℎ, �̇�𝐵,𝑐ℎ Discharge/charge capacity for battery [ kWh

h ]
�̇�𝑀𝑎𝑥 Maximum EV charging capacity [ kWh

h ]
�̇�𝑠ℎ Capacity for space heating radiator [ kWh

h ]
𝜂𝐵𝑑𝑐ℎ, 𝜂

𝐵
𝑐ℎ Discharge/charge efficiency for battery [𝑝.𝑢]

𝜂𝐸𝑉
𝑐ℎ EV charging efficiency [𝑝.𝑢]
𝜂𝑃𝑉 Total efficiency for PV system [𝑝.𝑢]
𝑔𝑟𝑖𝑑 DSO energy tariff for imported energy [ EURkWh ]𝑝𝑒𝑎𝑘 DSO capacity-based tariff for highest peakimport [ EURkWh

h
]

𝑖𝑚𝑝
𝑛 Expected future cost for point 𝑛 [EUR]

𝐴𝑃𝑉 PV system area [m2]
𝐶𝑖, 𝐶𝑒 Heat capacity for interior and building enve-lope [ kWh

◦C ]
𝐷𝐸𝑉 EV discharge when not connected [kWh]
𝐸𝐵,𝐶𝑎𝑝 Battery storage capacity [kWh]
𝐸𝐵,𝑚𝑖𝑛, 𝐸𝐵,𝑚𝑎𝑥 Battery SoC limits [kWh]
𝐸𝐸𝑉 ,𝐶𝑎𝑝 EV storage capacity [kWh]
𝐸𝐸𝑉 ,𝑚𝑖𝑛, 𝐸𝐸𝑉 ,𝑚𝑎𝑥 Min/Max EV SoC capacity [kWh]
𝑁𝑃 Number of discrete peak power values
𝑁𝑆 Number of nodes for stochastic variables
𝑃 𝑖𝑚𝑝,𝑚𝑎𝑥 Maximum power import to building [ kWh

h ]
𝑃 𝑖𝑚𝑝
0 Initial peak power [ kWh

h ]
𝑃 𝑖𝑚𝑝
𝑛 Peak power at point 𝑛 [ kWh

h ]
𝑅𝑖𝑒, 𝑅𝑒𝑜 The thermal resistance between the interior-building envelope and building envelope-outdoor area [ ◦C

kWh ]
𝑇 𝑖𝑛,𝑚𝑖𝑛
𝑡 , 𝑇 𝑖𝑛,𝑚𝑎𝑥

𝑡 Lower/upper interior boundary [◦C]
𝑉 𝐴𝑇 Value added tax for purchase of electricity[𝑝.𝑢]
Decision variables
𝛼𝑓𝑢𝑡𝑢𝑟𝑒
𝑝𝑖𝑚𝑝 ,𝑠𝑒𝑡+1

Expected future cost from peak power [ EURkWh
h
]

𝛾 SOS-2 variables for the Expected future costcurve
𝐸𝐵
𝑡 State of charge for Battery for time step t[kWh]

𝐸𝐸𝑉
𝑡 State of charge for EV for time step t [kWh]

𝑝𝑖𝑚𝑝 Peak of imported energy [ kWh
h ]

𝑞𝑠ℎ𝑡 Power usage for space heating [ kWh
h ]

𝑇 𝑖𝑛
𝑡 , 𝑇 𝑒

𝑡 Interior and building envelope temperature[◦C]
𝑦𝐵,𝑐ℎ𝑡 , 𝑦𝐵,𝑑𝑐ℎ𝑡 Power to/from the battery for time step t[ kWh

h ]
𝑦𝐸𝑉 ,𝑐ℎ
𝑡 Input power to EV for time step t [ kWh

h ]
𝑦𝑖𝑚𝑝𝑡 , 𝑦𝑒𝑥𝑝𝑡 Energy imported/exported to household[ kWh

h ]
𝑦𝑃𝑉𝑡 Power produced from PV system [ kWh

h ]
information that the HEMS consider for operation of the energy system,is subject to uncertainty. A literature review was conducted in [9]regarding uncertainty within building energy systems, showcasing how

Stochastic variables
𝛿𝐸𝑉
𝑡 EV connected to building {0, 1}
𝑠𝑝𝑜𝑡
𝑡 Electricity spot price in time step t [ EURkWh ]

𝐷𝑒𝑙
𝑡 Consumer-specific load in time step t [kWh]

𝐼𝐼𝑟𝑟𝑡 Solar irradiation at building in time step t[ kWh
m2 ]

𝑇 𝑜𝑢𝑡
𝑡 Outdoor temperature in time step t [◦C]

weather effects, the modeling of the building envelope, and occupantbehavior are different kinds of input data uncertainty that shouldbe accounted for. In [10], an overview over DR-programs and theirdevelopment was done, commenting on the importance of smart con-trol systems for residential buildings to participate efficiently in theseprograms. In addition, different modeling techniques for a residentialbuilding and control algorithms for a HEMS were presented. However,they also raised the issue that appropriate tariff structures depend onthe end-users capability of controlling their own consumption.Within the operation of a HEMS, multiple optimization methods andapproaches have been presented in the research literature. A mixed-integer linear problem (MILP) definition was defined within a HEMSin [11]. The HEMS included photovoltaics (PV), BESS and EV with bi-directional power flow, and the model optimizes the system operationwith dynamic pricing and peak power limits. Another approach wasused for a smart building consisting of PV, heat pump, thermal storageand BESS in [12], where the authors used a model predictive control(MPC) approach on a stochastic problem to optimize each of the flexibleassets. A rolling horizon strategy was deployed in [13] to operate anenergy management system for a microgrid. The microgrid consistedof PV, wind turbines, a diesel generator and a BESS, together withdemand-side management (DSM). A HEMS with a bi-level optimization-based bidding strategy in [14] was used to schedule the loads andflexible assets within a smart building. This approach minimized costassociated with day-ahead energy commitment, while accounting foruncertainty in loads, prices and local production.The authors in [15] apply a deterministic dynamic programming(DP) model to analyze the cost-optimal control for a building withvarying degree of PV installed. The application resulted in cost sav-ings compared to a rule-based approach which maximizes PV self-consumption. The work presented in [16] developed a deterministic DPmodel that optimized the state-of-charge for either a BESS or EV batteryover a year for a household with PV. For a power-based grid tariff, costsavings at 13.3% with optimal battery control, or 16.6% for optimalEV battery control were achieved. The use of stochastic DP (SDP) in aHEMS has been investigated in [17], where the authors utilized SDPto optimize both EV charging and frequency regulation bids giventhe expected future costs calculated by SDP. A smart building modelis presented in [18] that used SDP to optimize energy managementfor EV and PV with uncertainty in generation, consumption and EVavailability. The approach found potential cost savings of almost 500%for a Tesla Model S compared to no optimal control, and load shiftingpotential for interaction with the grid. The work was further carriedon in [19] where the authors analyzed several operating modes of theEV, such as V2G, V2H and G2V. The study found that by utilizingV2G in a grid with real-time pricing (RTP) and limited bi-directionalgrid capacity during certain times of the day, 75.5% cost savingscould be achieved compared to a case without a plug-in EV. Ref [20]investigated an energy consumption scheduling problem with uncertainfuture prices. The SDP algorithm was used to describe an optimalscheduling algorithm for non- and interruptible loads based on pricethresholds.Most of the work here using SDP considers a short-time horizonof up to a day, except for [15,16], both considering a year, but notindicating that their models could be used as a short-term operational
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Fig. 1. Overview over the coupling of long-term future cost curves generated by the SDP framework in this work and in [22], and a short-term operational model. Alg. 1 will befurther explained in Section 2.
model. One of the most valuable takeaways from the use of SDP is thatthe scheduling period is decomposed into smaller decoupled segments,only coupled through expected future cost curves which depict thefuture consequence of altering the state variables. Therefore, SDP cancontribute on foreshadowing the expected impact of the system beyondthe current scheduling horizon.Based on a review of the literature, the relationship between long-term and short-term value of energy flexibility has not yet been speci-fied or investigated in full detail. To the best of the authors’ knowledge,the inclusion of long-term price signals in building operational modelswas first introduced in [21], where the monthly MPGT was introducedas an operational problem. Their work presented a HEMS dealing withthe long-term cost for peak import using a metaheuristic method. Theobjective was to find the potential cost increment for MPGT at theend of the month, when the value from RTP and MPGT was balancedduring operation. This work used a user-defined weighting constantas a signal for how costly the future could be, and did not take intoaccount any information about what the building could expect in thefuture regarding operation.Another approach to this problem regarding long-term price signalswas done in [22], which is the basis for the work presented in thispaper. There, we applied SDP in a MPGT setting over a month tocalculate the operational strategy to deal with the long-term pricesignal. The methodology presented decomposed one month (long-termhorizon) into smaller daily stages (short-term horizon) and generatednon-linear expected future cost curves (EFCC). The EFCC describes thefuture consequence of flexibility utilization within a HEMS at eachstage, and can be given as an input to a detailed short-term operationalmodel. This approach is quite different compared to the metaheuristicmethod in [21], which did not use information about the future to setthe appropriate import peak level. In [22], we compared the currentoperational decision to what could occur in the future, to make a globaloptimum operation. Therefore, there is more accuracy and informationon what happens beyond the real-time operation with the use of SDPto represent the future cost of operation. The coupling of the proposedlong-term operation to a short-term operating model is showcased inFig. 1.The SDP algorithm is used to generate EFCCs, showcasing thechange in the expected cost beyond the decisions taken up to eachstage. The SDP algorithm determines how a HEMS would react to anumber of possible future scenarios, and calculates the cost-optimaldecision backward, which then is put together into a weighted futurecost curve and used in a short-term operational model. This approachis similar to hydropower scheduling, where long- and medium-termmodels are used to generate cost curves as showcased in Ref. [23],which are given as input to a short-term operational model [24]. Thispaper focuses on the generation of these future cost curves.

There exist other decomposition techniques than SDP, that could beapplied to assist in foreshadowing the expected impact for a system.One such method is stochastic dual-dynamic programming (SDDP),which represents EFCCs as linear cuts generated in an iterative processby going back and forth in the scenario tree to represent the future costof operation [25]. In Ref. [26], a receding horizon control optimizationalgorithm was developed to operate a community with a shared BESS,to reduce an MPGT cost for the shared community over one month.To deal with a potentially large scenario tree, the horizon beyondthe control horizon was simplified into three scenarios to capture thelong-term influence needed to account for the MPGT cost.For capturing the long-term effects of operation for a HEMS, theSDP method is suitable for this kind of problem. It decomposes a biggeroptimization model into smaller deterministic problems consisting ofmultiple stages, scenarios, and discrete values of the long-term variable.This approach allows the possibility of choosing finer state variableresolution, and adjusting for increased accuracy. The SDP algorithmcan also solve non-linear problems, whereas other models such as SDDPrequire linearity in the problem to be solvable. However, the SDPmethod has some short comings, for instance the curse of dimensional-ity if the number of discrete values, scenarios and stages are too many.Also, the method will lose some information when decomposing theproblem, since variables except the state variables must have a fixedstart/end parameter value at the start/end of each stage to be feasiblefor transition.Expanding on the work presented in [22], the main contributionshere are as follows:
• We present a general SDP framework for optimal energy manage-ment of HEMS exposed to a monthly MPGT. The HEMS considersthat SH, EV charging and a BESS can be utilized to keep the peakimport at the cost-optimal level, influenced by the implicationsgiven by the EFCC calculated
• The output of the SDP framework is further analyzed for eachindividual flexible asset, to capture the different characteristicseach asset contains in a long-term operational setting
• In a numerical case study based on real Norwegian conditions,the model is applied to two different electricity grid tariffs, andtested where each flexible asset can be controlled individually.The analysis showcases their impact and value of flexibility basedon the peak import level, and each asset and the different schemesare compared against each other
The paper progresses as follows. Section 2 introduces the SDPframework methodology of the HEMS. The case study used for theanalysis is presented in Section 3, while the results and discussionare found in Section 4. The conclusion and future work are given inSection 5.
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2. Methodology

The overall objective of a HEMS is to minimize the expected totalelectricity cost from interaction with the distributional grid, consistingof electricity purchase and grid tariff payments. The scheduling horizondepends on the value of utilizing load shifting over longer periods, andthe duration of any long-term price signals that are included. This workconsiders the long-term price signal from the MPGT, paid at the end ofthe horizon. Thus, the objective will be to find the optimal operation toobtain the minimum expected operating cost for the HEMS, as shownin Eq. (1):
𝑚𝑖𝑛E{

𝑇𝑠𝑢𝑏∑
𝑡=1

[𝑠𝑝𝑜𝑡
𝑡 ⋅ (𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 ) + 𝑔𝑟𝑖𝑑 ⋅ 𝑦𝑖𝑚𝑝𝑡 ] +𝛷(𝑝𝑖𝑚𝑝)} (1)

We deal with this issue in a similar fashion to hydropower schedul-ing [27], by assuming that we only want to optimize the HEMS for apre-determined period between 𝑡 = 1 and 𝑇𝑠𝑢𝑏 of the total horizon. Forthis pre-determined period to be capable of operating optimally andstill consider the cost paid at the end of the horizon, the future impactmust be included. Here, the function 𝛷(𝑝𝑖𝑚𝑝) represents the cost forthe peak import beyond the present period, into the future. Thus, thepeak import 𝑝𝑖𝑚𝑝 is coupled in time, giving a dynamic connection of theoptimization problem. Hence, the formulation represents a multi-stagemulti-scenario optimization problem, and we can apply decompositiontechniques to simplify the problem. We utilize an SDP approach formulti-stage in a backwards procedure [28]. The function 𝛷(𝑝𝑖𝑚𝑝) fromEq. (1) is represented as a piecewise-linear future cost curve calculatedthrough an SDP algorithm.The original problem is decomposed into several smaller single-stage deterministic problems to decrease the computational complexity.The decomposition is performed through a set of state variables 𝑔 ,which consists of all information that is carried over between thedecision stages 𝑔−1 to 𝑔. This set consists of two unique subsets; subset𝑆,𝑔 , which consists of realized values for the stochastic variables foreach decision stage 𝑔, and subset 𝑃 ,𝑔 , which contains state variables inthe optimization problem. Based on the set 𝑔 , a decomposed decisionproblem for the HEMS to solve is defined based on the state 𝑠𝑠𝑔 , 𝑠
𝑝
𝑔 ∈𝑔 for a decision stage 𝑔, which is given by the current schedulingfor that decision stage, and the weighted impact of the future costfor all scenarios. The decomposed decision problem is presented inSection 2.1.To perform valid coupling between the stages, the conditions at theend of one stage to the next corresponding stage must be identical. Ifnot ensured, the transition is not feasible and will result in inaccurateresults. In a building, this would be connected to the energy levels andconnectivity of certain shiftable units. If these variables are not tiedto the state variable subset 𝑃 ,𝑔 , such that the future impact of anychanges are included, then it is possible to lock their start/end valuesbetween stages to make the transition feasible. This work has a setstart/end condition for each stage for the flexible assets, described inSection 2.2.The stages are considered to be decoupled from each other, whilethe scenarios between stages are tied together through a transitionprobability, represented as a Markov decision process (MDP). To enablea method for generating future cost curves in a backwards DP strategy,the problem is represented as a Markov decision [29]. The scenariosgenerated specify the uncertain parameters in the system, referred toas stochastic variables. For a specific stage and scenario, the stochasticvariables are realized as input for the HEMS. The future impact beyondthe stage is affected by transitioning the scenarios forward and theirprobabilities. The transition probabilities are assumed to have a Markovproperty, which specifies the stochastic process is memoryless [30]. Thetransitioning scenarios and their impact in the future are represented asthe future cost 𝛷(𝑝𝑖𝑚𝑝), making it an MDP. Therefore, the impact of thefuture scenarios in the MDP can be represented in the present scenarioas an EFCC. By combining the different discrete scenarios 𝑆 in 𝑆,𝑔+1,the EFCC illustrates the weighted cost-based impact towards the future.

Fig. 2. Overview of building structure and energy system.

2.1. Decomposed decision problem
The decomposed decision problem is formulated as an optimizationmodel for a given stage 𝑔, scenario 𝑠𝑠𝑔 , and initial peak import power

𝑃 𝑖𝑚𝑝
0 . The optimization model described in this subsection consists ofa residential building connected to the power grid with bi-directionalpower flow capability, as illustrated in Fig. 2, operated through aHEMS. The electric-specific demand and heat demand from a watertank must be met at all times and these are treated as non-shiftableloads 𝐷𝐸𝑙

𝑡 . The smart control covers SH, BESS control, EV charging,and a roof-mounted photovoltaic (PV) system.
2.1.1. Objective functionThe objective function in (2) minimizes the total electricity costfor the end-user. The electricity cost is the cost or benefit of import-ing/exporting electricity from the grid, respectively, and the futurelong-term cost for operating beyond this stage based on the highestsingle-hour peak import power 𝑝𝑖𝑚𝑝, based on the EFCC. The objectivefunction will co-optimize both short-term and long-term implications,where it balances the marginal cost increase of short-term operationversus the marginal cost savings in the long-term when lowering thepeak import.
𝑚𝑖𝑛{

∑
𝑡∈

[𝑠𝑝𝑜𝑡
𝑡 ⋅ (𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 ) + 𝑔𝑟𝑖𝑑 ⋅ 𝑦𝑖𝑚𝑝𝑡 ] + 𝛼𝑓𝑢𝑡𝑢𝑟𝑒

𝑝𝑖𝑚𝑝 ,𝑠𝑠𝑔+1
} (2)

2.1.2. Energy balanceThe electric energy balance of the house is given in (3). The ex-change between the grid, together with production from the PV systemand interaction from the BESS, must cover the needed load for thebuilding.
𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 + 𝑦𝑃𝑉𝑡 + 𝑦𝐵,𝑑𝑐ℎ𝑡 = 𝐷𝐸𝑙

𝑡 + 𝑦𝐸𝑉 ,𝑐ℎ
𝑡 + 𝑞𝑠ℎ𝑡 + 𝑦𝐵,𝑐ℎ𝑡 ∀𝑡 (3)

2.1.3. Expected future cost curveThe EFC for this problem is depicted within (4a) to (4f). Thehighest amount of power that is imported to the building is denotedby 𝑝𝑖𝑚𝑝, which is bounded by the highest peak within the decisionstage (4b) and the initial value from earlier periods (4a). The peakimport power achieved at the end is used to set the EFC included in theobjective function, which consists of discretized values of 𝑃 𝑖𝑚𝑝
𝑛 𝑛 ∈ 𝑃represented through SOS-2 variables [31].

𝑝𝑖𝑚𝑝 ≥ 𝑃 𝑖𝑚𝑝
0 (4a)

𝑝𝑖𝑚𝑝 ≥ 𝑦𝑖𝑚𝑝𝑡 ∀𝑡 (4b)
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𝛼𝑓𝑢𝑡𝑢𝑟𝑒
𝑝𝑖𝑚𝑝 ,𝑠𝑠𝑔+1

=
∑

𝑛∈𝑃

𝛾𝑛 ⋅ 𝑖𝑚𝑝
𝑛 (4c)

𝑝𝑖𝑚𝑝 =
∑

𝑛∈𝑃

𝛾𝑛 ⋅ 𝑃
𝑖𝑚𝑝
𝑛 (4d)

∑
𝑛∈𝑃

𝛾𝑛 = 1 (4e)
𝛾𝑛 ≥ 0 ∀𝑛, 𝑆𝑂𝑆-2 (4f)
2.1.4. Electric vehicleThe behavior of the EV is formulated in (5a) to (5c). The EV is mod-eled as a uni-directional battery that can be charged at a continuousrate, with an availability pattern based on the stochastic variable 𝛿𝐸𝑉

𝑡 .If the EV is not available at the building, the EV cannot be chargedand a constant load discharges the battery to simulate consumptionfrom driving. The EV must stay within a specific range in its state-of-charge (SoC) in (5c), whereas the boundary is time-dependent toinclude traveling preferences.
𝐸𝐸𝑉
𝑡 − 𝐸𝐸𝑉

𝑡−1 = 𝑦𝐸𝑉 ,𝑐ℎ
𝑡 𝜂𝐸𝑉

𝑐ℎ 𝛿𝐸𝑉
𝑡 − 𝐷𝐸𝑉 (1 − 𝛿𝐸𝑉

𝑡 ) ∀𝑡 (5a)
0 ≤ 𝑦𝐸𝑉 ,𝑐ℎ

𝑡 ≤ �̇�𝑀𝑎𝑥 ∀𝑡 (5b)
𝐸𝐸𝑉 ,𝑚𝑖𝑛
𝑡 ≤ 𝐸𝐸𝑉

𝑡 ≤ 𝐸𝐸𝑉 ,𝑚𝑎𝑥
𝑡 ∀𝑡 (5c)

2.1.5. Battery energy storage systemA bi-directional BESS is available within the building with thecharacteristics shown in (6a) to (6d). The battery can be dischargedand charged at a continuous rate, with limitations on power capacityand a storage capacity range to ensure optimal operation without riskof damage.
𝐸𝐵
𝑡 − 𝐸𝐵

𝑡−1 = 𝑦𝐵,𝑐ℎ𝑡 𝜂𝐵𝑐ℎ −
𝑦𝐵,𝑑𝑐ℎ𝑡

𝜂𝑏𝑑𝑐ℎ
∀𝑡 (6a)

0 ≤ 𝑦𝐵,𝑐ℎ𝑡 𝜂𝐵𝑐ℎ ≤ �̇�𝐵,𝑐ℎ ∀𝑡 ∈  (6b)
0 ≤ 𝑦𝐵,𝑑𝑐ℎ𝑡 ≤ �̇�𝐵,𝑑𝑐ℎ ∀𝑡 ∈  (6c)
𝐸𝐵,𝑚𝑖𝑛 ≤ 𝐸𝐵

𝑡 ≤ 𝐸𝐵,𝑚𝑎𝑥 ∀𝑡 (6d)
2.1.6. Photovoltaic systemA roof-mounted PV system is connected to the electrical systemthrough a controllable system. The HEMS is assumed to change thepower output in a similar fashion to the work presented in [32].
0 ≤ 𝑦𝑃𝑉𝑡 ≤ 𝐴𝑃𝑉 ⋅ 𝜂𝑃𝑉 ⋅ 𝐼𝐼𝑟𝑟𝑡 ∀𝑡 ∈  (7)
2.1.7. Space heatingAll considerations regarding heating of the building are formulatedin (8a) to (8d). The building has an electric radiator for SH that can beoperated continuously. The heat dynamics in the building are shownas a gray-box model, in which the physical behavior is formulatedusing linear state–space models [33,34]. The dynamics between theinterior temperature and the outdoor temperature can be capturedalongside disturbances as heat input, which will include the impact oftime-dependent temperature deviations. Thus, the heat system can berepresented through an RC-network model. In an RC-network model,resistors (R) represents thermal resistance between measuring points,capacitors (C) capture the heat capacity of the measuring point, and 𝑞𝑠ℎis the heat flux from heat sources. In addition, the outdoor temperatureimpact is included as a voltage source (𝑇 𝑜𝑢𝑡).The RC-network layout depends on the number of zones and inputsinto each existing zone [34]. This optimization problem utilizes a 2R2Cmodel, which divides the system into three zones: the interior or indoorof the building, the envelope acting as the physical separator betweenthe interior and outdoors, and the outdoor area. The layout is shownin Fig. 3. The interior temperature is measured by the control systemfor the building, which can utilize the electric heater to regulate the

Fig. 3. RC-network for the SH dynamics given in Eqs. (8c) to (8d).

temperature in response to impact from the envelope and outdoortemperature.
0 ≤ 𝑞𝑠ℎ𝑡 ≤ 𝑄𝑠ℎ ∀𝑡 (8a)
𝑇 𝑖𝑛,𝑚𝑖𝑛
𝑡 ≤ 𝑇 𝑖𝑛

𝑡 ≤ 𝑇 𝑖𝑛,𝑚𝑎𝑥
𝑡 ∀𝑡 (8b)

𝑇 𝑖𝑛
𝑡 − 𝑇 𝑖𝑛

𝑡−1 =
1

𝑅𝑖𝑒𝐶𝑖
[𝑇 𝑒

𝑡−1 − 𝑇 𝑖𝑛
𝑡−1] +

1
𝐶𝑖

𝑞𝑠ℎ𝑡 ∀𝑡 (8c)
𝑇 𝑒
𝑡 − 𝑇 𝑒

𝑡−1 =
1

𝑅𝑖𝑒𝐶𝑒
[𝑇 𝑖𝑛

𝑡−1 − 𝑇 𝑒
𝑡−1] +

1
𝑅𝑒𝑜𝐶𝑖

(𝑇 𝑜𝑢𝑡
𝑡−1 − 𝑇 𝑒

𝑡−1) ∀𝑡 (8d)

2.2. Solution strategy
Algorithm 1: The SDP algorithm
1 for 𝑔 = , − 1, .., 1 do
2 for 𝑛 ∈ 𝑃 do
3 𝑃 𝑖𝑚𝑝

0 ← 𝑃 𝑖𝑚𝑝
𝑛4 for 𝑠𝑠𝑔 ∈ 𝑆 do5 {𝑠𝑝𝑜𝑡

𝑡 , 𝐷𝐸𝑙
𝑡 , 𝛿𝐸𝑉

𝑡 , 𝐼𝐼𝑟𝑟𝑡 , 𝑇 𝑜𝑢𝑡
𝑡 } ← 𝛤 (𝑔, 𝑠𝑠𝑔)6 𝑖𝑚𝑝

𝑖 ← 𝛷(𝑖, 𝑠𝑠𝑔 , 𝑔 + 1) for 𝑖 = 1..𝑃7 𝑠𝑠𝑔 ,𝑛 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(2)–(8)
8 for 𝑠𝑠𝑔−1 ∈ 𝑆 do
9 𝛷(𝑛, 𝑠𝑠𝑔−1, 𝑔) =

∑𝑆
𝑠𝑠𝑔=1

𝑠𝑠𝑔 ,𝑛 ⋅ 𝜌(𝑔, 𝑠𝑠𝑔|𝑠𝑠𝑔−1)

The complete optimization problem is solved through the SDPalgorithm solution strategy as shown in Algorithm 1. This process willgenerate EFCCs for every stage of the overall problem.The SDP algorithm initiates at the last stage of the horizon, andcomputes the overall cost of the decomposed decision problem inSection 2.1 for the number of discrete points of the state variable
𝑛 ∈ 𝑃 , and the number of scenarios 𝑠𝑠𝑔 ∈ 𝑆 . For each scenario, werealize the stochastic variables with values from 𝛤 in line 5 as input intothe specific problem, and in line 6 the EFCC for the future schedulingday 𝑔 + 1 is realized for each discrete point in 𝑖𝑚𝑝

𝑖 . 𝛤 contains therealized stochastic variables based on the scheduling day 𝑔 and scenario
𝑠𝑠𝑔 . The EFCC used are the results from the previous stage 𝑔+1, and forthe initial case 𝑔 = , the end cost for peak import by the MPGT is used.In line 7, the optimization problem for the HEMS is solved in orderto find the objective function value, which is affected by both the costfor operating within the stage and the resulting EFC beyond the period.To enable a feasible transition between stages, 𝑇 𝑖𝑛

𝑡 , 𝑇 𝑒
𝑡 , 𝐸𝐸𝑉

𝑡 and 𝐸𝐵
𝑡have a start/end condition the optimization problem must hold. Thereis a high penalty cost included for the SH variables if this conditioncannot be met, but this penalty cost is not included in the generationof EFCCs as it has no further influence on the decision-making.The result from the problem is then used to derive the EFCC

𝛷(𝑛, 𝑠𝑒𝑔−1, 𝑔) for 𝑛 ∈ 𝑃 . The calculation of the EFCC is performed in
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line 8–9, where the EFC for a specific state variable point is derived.For a state variable value 𝑛, the EFC representation for stage 𝑔 iscalculated as the weighted future cost value for all scenarios that canoccur in this stage, to be used in the previous stage 𝑔 − 1. The EFC iscalculated for each scenario that occurs in stage 𝑔 −1 through the loopin line 8, and the weight of each EFC is based on the correspondingtransition probabilities 𝜌(𝑔, 𝑠𝑠𝑔|𝑠𝑠𝑔−1), which depends on the probabilityof arriving at scenario 𝑠𝑠𝑔 when originally at scenario 𝑠𝑠𝑔−1. This processis performed for all state variables until the whole EFCC has beencalculated for all scenarios 𝑠𝑠𝑔−1 ∈ 𝑆 . These results are then used asthe basis for stage 𝑔 − 1, until we have arrived at the first stage andhave derived EFCCs for all stages and scenarios.
3. Case study

The presented model has been applied to a realistic case study ofa Norwegian building in which the presented MPGT is included in theelectricity bill. The building is a single-family house (SFH) placed inthe south-eastern part of Norway, and the HEMS controls the differentflexible assets available. The analysis is for January 2017 with hourlytime resolution per day, and the stochastic variables consist of historicaldata or synthetic data from supporting literature.
3.1. Building structure

The PV system on the roof consists of 4.65 kW installed capac-ity, connected through an MPP inverter with a combined constantconversion and MPP efficiency at 95% [35].The inelastic demand originates from two sources: The electric-specific electricity consumption from users, and non-flexible domestichot water (DHW) consumption covered by a water tank. The datafor the electric-specific electricity are obtained from the DistributionalOperator (DSO) Ringerikskraft from January 2017 [36]. The DHW-consumption profile is based on measurement of 49 water heatersat Norwegian households through the ‘‘Electric Demand Knowledge -ElDek’’1 research project by SINTEF Energy Research [37]. The RTPelectricity prices from bidding zone NO1 in Nordpool for year 2017are used [38]. As the end-user is a small consumer in the grid, the spotprices are given as input, and we assume the end-user is a price-taker.
3.1.1. Heat dynamicsThe layout in Fig. 3 represents the heat dynamics of the building,and is based on observed values from the Living Lab building builtby Zero Emission Building (FME ZEB)2 and NTNU [39,40]. The LivingLab is a pilot project used to study various technologies and designstrategies with the overall goal of reaching the zero emission target andanalyzing thermo-physical properties [41]. The space heating is per-formed through a 3 kW radiator, which can operate continuously. Thedefault temperature boundary that the HEMS uses is a range of 20–24
◦C, which from Ref. [6] is the threshold end-users find comfortable.
3.1.2. Electric vehicleA 24 kWh EV is selected for this study, with an operational rangebetween 20%–90% of total capacity at all times, with a range between60%–90% when departing to prevent range anxiety. The EV consumeselectricity from the battery when it has departed to simulate driving.The EV consumption rate over a weekday has been simplified as adeterministic input. Based on [42], the mean driving distance of 52km has been used, under the assumption that the EV consumes 18kWh/100 km, which puts the hourly discharge rate at 1.02 kWh/h for
𝐷𝐸𝑉 with a 9-hour offline timeframe. The EV is assumed to alwaysbe connected during stage transition, and as the optimization model inSection 2.1 has deterministic info for each stage and scenario analyzed,the HEMS can charge the EV so it ensures enough SoC for the trip.

1 https://www.sintef.no/prosjekter/eldek-electricity-demand-knowledge/.2 www.fmezen.no/.

3.1.3. Battery energy storage systemThe BESS installed in this system is based on a battery from Son-nenBatterie [43] with a rated power input/output of 2.5 kW measuredat the output of the inverter. The tolerated SoC is set at between 10%–100% SoC, and a round-trip efficiency of 85% in line with efficiencysettings from [44]. Any cost or performance associated with batterydegradation is left out of this analysis.
3.1.4. Initial conditionsAs mentioned in Section 2.2, the following variables have beengiven a start/end value to enable a feasible stage transition: 𝑇 𝑖𝑛

0 = 22 ◦C,
𝑇 𝑒
0 = 20 ◦C, 𝐸𝐸𝑉

0 = 14.4 kWh, 𝐸𝐵
0 = 2.5 kWh.

3.1.5. Grid tariff structureThe grid tariff structure consists of multiple layers of payment. Aconversion rate of 1 EUR = 10 NOK has been used for this work. Thefirst is a fixed consumer cost given as a volumetric cost at 0.024 EUR
kWh in2017. The rest contains the cost provided by the DSO, which dependson the tariff scheme. In 2017, the DSO Ringerikskraft provided onlya volumetric cost at 0.02425 EUR

kWh . With the proposed MP capacity-based grid tariff from NVE, accumulated for a monthly period [2], thevolumetric cost would be at 0.00625 EUR
kWh , and a monthly capacity-basedcost at 7.2075 EUR

𝑘𝑊𝑝𝑒𝑎𝑘
.

3.2. Scenario generation
The HEMS together with the SDP algorithm allows the possibilityfor multiple input data to be uncertain in the period of operation. Tolimit the range of uncertainty, the work here considers uncertaintywithin the EV behavior, outdoor temperature and solar irradiation.Information such as electricity price and electric-specific demand isconsidered deterministic.In total, 9 scenarios per day have been generated for this case study,where 3 scenarios have been generated from both weather effects andEV behavior. It is assumed that the sources are independent of eachother, resulting in 9 combinations. The stochastic nature of the inputdata is based on a normal distribution with the mean and standarddeviation as the discrete scenarios, giving a probability distribution at

𝜌𝜇 = 68.2%, 𝜌𝜎 = 15.9% for each source.The normal distribution of EV behavior for a weekday is basedon [42], with an expected departure/arrival time from 9 AM to 5 PM,and a standard deviation of 90 min (as this work considers an hourlytime step, the standard deviation is rounded up to 2 h). Moreover,authors in [45] show that the expected arrival time when chargingnear home does not change dramatically between weekdays and week-ends. Thus, we assume the same departure/arrival time pattern for theweekend.Data for both the outdoor temperature and solar irradiation havebeen obtained from Rygge weather station in South-east Norway [46].Hourly data from 2014–2019 for the month of January have beenused to create hourly normal distributions, to generate three discretescenarios.
3.3. Model cases

The scope of this work will be to investigate the flexibility contribu-tion each flexible asset can provide, both for MPGT and energy-basedgrid tariff (EBGT) structures, both given 𝑀𝑃𝐺𝑇 and 𝐸𝐵𝐺𝑇 as casenames, respectively. This extends the analysis in [22] by investigatingthe long-term value each flexible asset offers individually instead ofcombined. For each case with a specified flexible asset, the other assetswill have a passive behavior. The passive manner for each of the assetsis the following: The BESS is turned off, the EV charging will charge tomax capacity at 90% whenever it can and has an initial condition of
𝐸𝐸𝑉
0 = 22.6 kWh during transition. The space heating will maintain aconstant indoor temperature at 𝑇 𝑖𝑛

𝑡 = 22 ◦C ∀𝑡. Moreover, the flexible
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Table 1Flexible asset parameters for the different cases. Values in bold are default values whenconsidering the asset as passive.Component Parameter(s) Cases
Battery energy storage system 𝐸𝐵,𝐶𝑎𝑝 5 kWh, 10 kWhSpace heating 𝑇 𝑖𝑛,𝑚𝑖𝑛 , 𝑇 𝑖𝑛,𝑚𝑎𝑥 [20, 24], [21, 23]Electric Vehicle �̇�𝑀𝑎𝑥 2.3 kW, 3.7 kW

assets will be investigated for several input parameter values to analyzethe change of impact, as showcased in Table 1.The analysis will be carried out by first generating the EFCCs foreach case using the SDP algorithm in Alg. 1. The state variable subset
𝑃 ,𝑔 will consist of 100 discrete initial values of 𝑝𝑖𝑚𝑝, ranging from 0–10 kWh

h . This leads to 27 900 unique decomposed problems to solveper case. After this, the value of the EFCCs will be analyzed througha simulation phase, where each day is run sequentially for the wholemonth to see the overall economical performance, where the peakimport level will be carried over between stages and the final gridtariff cost is set at the end. To account for the range of uncertaintyin the input data, the simulation phase analyze this month 1000 timeswith different stochastic scenario realizations based on their scenarioprobability. The sequential coupling between two stages is done byrandomly drawing a future scenario for the next stage transition, wherethe odds for each scenario is based on their probability. This leads tomultiple scenario combinations per month.
4. Results & discussion

The SDP algorithm showcased in Algorithm 1 creates EFCC from thelast day of the month, and by working backwards to create an accurateEFCC for the first stage, that presents the future cost associated with thepeak import state variable. To obtain an overview of the capabilitiesand potential given by the generation of the EFCCs, case 𝑀𝑃𝐺𝑇 willbe analyzed first, with the economic performance and EFCCs presentedin Section 4.1. Furthermore, 𝑀𝑃𝐺𝑇 will be compared to 𝐸𝐵𝐺𝑇 inSection 4.2.
4.1. Long-term price signal performance 𝑀𝑃𝐺𝑇

4.1.1. Economic performanceAs the case study presented here involves uncertainty, the economicperformance will vary based on the sequence of scenario realizations.To capture the tendencies and dispersion of the data, the expected totalcost for the month based on the different cases is plotted as a boxplotin Fig. 4. Within the boxplot, the median value is indicated by theorange line, whereas the box specifies the interquartile range (IQR) ofthe results. The lines outside the boxes are whiskers, representing the1.5*IQR, while the outliers show the few results that are outside of the1.5*IQR.Fig. 4 illustrates how every flexible asset manages to decreasethe cost in comparison to the reference case. Both EV charging caseshave the highest impact with an expected cost decrease of 14.6%compared to the reference case, with 𝑆𝐻20,24 being the second bestwith a 10.9% decrease, in which the latter had a noticeable positivecost change compared to the other SH case. The 10 kWh BESS had a9.6% cost reduction, coming up close to the best SH case. The rangeof possibilities in total cost due to the uncertainty, shows that the costhas a specific span of possible results, in which all cases have a similarIQR and whisker range.As the economic performance in Fig. 4 is affected by the MPGT inaddition to RPT, the ending peak level for each case is showcased inFig. 5 to illustrate the MPGT impact. All cases achieve a reduction inending peak level, although the amount depends on which flexible assetis activated.

Fig. 4. Boxplot of expected monthly total cost for the different cases for scheme
𝑀𝑃𝐺𝑇 .

Fig. 5. Overview of expected ending peak for the different cases for 𝑀𝑃𝐺𝑇 . The staris the initial peak import level from day 1.

For the BESS cases, they can charge/discharge strategically to re-duce the peak import as shown in Fig. 5. The battery is not a naturalload within the building, making the value of flexibility unique com-pared to the rest with no risk of any rebound effect. With an inverterof 2.5 kW, the expected peak reduction from the reference case isat 2.20 kW and 2.50 kW for the 5 and 10 KWh BESS, respectively.Thus, there is a correlation to not only power capacity, but also storagecapacity, indicating that the peaks last for multiple hours. However,the 5 kWh BESS manages to reduce a relatively large proportion ofthe peak compared to the 10 kWh BESS. For the EV charger cases, theflexible contribution provides the highest peak import reduction, withan expected peak import cut by 3.54 kW. As the peak result is similarfor both capacities, with the reference case utilizing a 3.7 kW charger,this showcases how significant an impact the passive EV chargingstrategy has, and how vital flexible EV charging is. As it is possibleto charge for 15 h per day, there is a high range of flexibility to choosefrom, making the charging capacity minor if flexible. However, as theEV is uni-directional, it can only decrease peak from its own demand.For space heating, the performance improves as the indoor temper-ature boundary increases. The heater is used diligently during this coldwinter month to keep the temperature in check. Case 𝑆𝐻21,23 has thelowest total cost reduction and peak import reduction compared to theother cases. The cost decrease is derived from both the peak reduction,and by the utilization of flexibility for RTP adjustments, whereas thelatter seems to have the most impact. However, by looking at the peakimport, the capability of load shifting in peak hours for 𝑆𝐻21,23 isdeemed less critical in the long run. If the boundary was increasedfurther to 20–24 ◦C, the total cost will be reduced as well as the peak isdeclined further. The deviation between the two SH cases shows howthe temperature boundary affects the load shifting capability, where ahigher boundary gives more capacity of pre-heating the interior beforepeak hours while avoiding high RTP hours as a rebound effect, allowinga longer idle period. Based on the differences, the 21–23 ◦C boundary,



International Journal of Electrical Power and Energy Systems 138 (2022) 107811

8

K.E. Thorvaldsen et al.

Fig. 6. Duration curve for the specified space heating cases over a month, with theuncertainty of scenarios included.

with the limitations in continuous idle hours, shows it to be morecost-optimal to increase peak to decrease RTP costs. Both cases findthe threshold for peak power that gives the optimal balance of MPGTand RTP costs seen together, and continuously considers the marginalMPGT increase vs decreasing RTP costs for each scheduling day.An interesting takeaway from the SH results, is the peak import forboth cases, which from Fig. 5 is likely to change during schedulingfrom the initial point. Case 𝑆𝐻21,23 has a much wider range of endingpeak import than the other. In 𝑆𝐻20,24, the first and third quartiles,as well as the whiskers, are very tight for the peak import, indicatingthat the added flexibility gives it more room to reach the same endingpeak import, almost regardless of the scenarios realized. Moreover, thedeviation from the initial point is smaller than for 𝑆𝐻21,23, which showsthe latter case is more prone to scenario realizations, as that wouldaffect RTP costs. For 𝑆𝐻20,24, these results show how adjustable SH canbe regarding peak import, since as the total cost has a wider spread, itkeeps the peak import stable, and instead utilizes load shifting whichincreases RTP costs, but which is deemed as less costly than the in-creased grid tariff cost. It is worth mentioning that when increasing thetemperature boundary beyond 𝑆𝐻20,24, the changes are marginal, indi-cating that this boundary gives the most valuable flexibility capabilityincrease for this case, fitting well with the observation from [6].Moreover, Fig. 6 illustrates the import duration curve for the refer-ence and the two SH cases. The most prominent behavior is how case
𝑆𝐻20,24 manages to cut the peak through the use of flexibility, whereascase 𝑆𝐻21,23 has higher peak demand as some critical scenarios makesa higher peak more beneficial than increasing RTP cost as a reboundeffect, overlapping with the reference case at the peaks.For SH, which has considerable consumption during this wintermonth, variation in RTP influences operation. RTP impacts how costlythe load shifting to reduce peak should be, and if the highest peakshould be adjusted to increase RTP benefits. As the current problemhas uncertainty in ambient temperature, low temperatures and highthermal demand influences the appropriate peak level. However, thevariation in RTP for each day would play a bigger role if it wasstochastic. If RTP had multiple scenarios at each stage, the future costcurves would include information on how much load shifting benefitthere is in the future, based on both variation in RTP in each scenarioand the ambient temperature. With high RTP variation, increasing thepeak would be more beneficial to counter the cost of load shifting, andwith lower variation the need for increased peak is reduced.
4.1.2. Marginal expected future cost curvesTo demonstrate how the EFCC changes, the different cases areshown in Fig. 7, plotted as marginal EFCC (MEFCC) to make a bettercomparison of the marginal change based on the peak import.

Fig. 7. Plot of the MEFCC for the different cases on day 1.

In general, the curves can be divided into three main areas. Formarginal cost increase at 0, the initial peak power will not be eco-nomically suitable to stay at this level, either because of the lack offlexibility potential, or through costly use of flexibility that is not worthit. Likewise, for the part where the marginal cost increase is equal tothe grid tariff cost at 7.25 EUR
𝑘𝑊𝑝𝑒𝑎𝑘

, there is no future cost–benefit otherthan the increasing grid tariff at the end. Between these two areas,the curve is increasing in cost from 0 to the grid tariff cost, whichshows the value of enabling more flexibility from peak import levels.This area is influenced by the reaction of flexible assets towards peaklevels, and the uncertainty of the problem. In comparison to the flexibleassets, all assets manage to shift this intersection towards the left, thushighlighting the capability to cut peak import.The 10 kWh BESS decreases the peak import by charging duringnon-peak hours, and discharge during critical hours, cutting the peakby around 2.5 kW compared to the reference case. The curve has amarginal cost increase with increasing peak power, which shifts to theright to a higher degree than all the other cases, due to scenario real-izations and efficiency loss savings with less usage. By increasing theinverter capacity, the peak shaving could be more substantial, howeverthis could lead to the situation with the 5 kWh BESS where the power-energy rating would come into question for the behavior of the MEFCC.The MEFCC of EV charger has the highest peak import level reductioncompared to the reference case. The EV charger cuts the peak levelsubstantially by being flexible in charging, which is primarily due tothe significant impact the charger gives if being passive, such as in thereference case. Finally, the MEFCC for both 𝑆𝐻20,24 and 𝑆𝐻21,23 havedifferent behavior. As stated in Section 4.1, the temperature boundaryaffected the peak demand level and the variance significantly, whichis confirmed by the shape of the curves. The 𝑆𝐻21,23 curve has thesmallest peak level decrease from the reference case, and is scenariosensitive with the shift towards the right, whereas the 𝑆𝐻20,24 curveshows little scenario impact due to the almost vertical cost increase.
4.2. The economic comparison of 𝑀𝑃𝐺𝑇 and 𝐸𝐵𝐺𝑇

The economic performances of all cases are found in Table 2,showing the average total cost.By analyzing each scheme separately, we can see how the expectedtotal cost decreases compared to the reference case when the flexibleassets are enabled to be controlled. For 𝐸𝐵𝐺𝑇 , the cost decrease is tiedto the load-shifting capability to utilize the RTP deviations. For thiselectricity scheme, it is mostly defined for the SH cases, as the highuse for heating during winter months leads to increased consumption,which gives higher cost saving potential if controllable.
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Table 2The economic performance of all sensitivity cases on both electricity schemes. Valuesgiven in EUR.Case \ Scheme EBGT MPGT
Reference 169.49 188.95BESS 5 kWh 169.07 173.02BESS 10 kWh 168.86 170.77EV 2.3 kW 167.49 161.44EV 3.7 kW 167.45 161.44
𝑆𝐻20,24 155.87 168.23
𝑆𝐻21,23 158.6 175.0

When comparing the schemes, it is evident that the average costof 𝑀𝑃𝐺𝑇 is higher than for 𝐸𝐵𝐺𝑇 , except when activating smart EVcontrol, which achieves the lowest expected total cost with the 𝑀𝑃𝐺𝑇scheme. In addition, 𝑆𝐻20,24 manages to achieve the next best result in
𝑀𝑃𝐺𝑇 despite having a higher ending peak than the batteries, due toload shifting to balance peak power and RTP costs. The utilization ofload shifting for RTP is also seen in the 𝐸𝐵𝐺𝑇 scheme, demonstratingthe high potential in cost reduction by utilizing flexibility for both peakpower and RTP. The 10 kWh BESS has a marginal contribution to RTPalone in the 𝐸𝐵𝐺𝑇 scheme, but provides a much higher cost reductionwithin the 𝑀𝑃𝐺𝑇 scheme by reducing the peak import.However, what these two electricity schemes provide is an overviewof the future value of the flexibility that the assets can offer. With the
𝐸𝐵𝐺𝑇 scheme that only benefits RTP deviations, the cost decrease ofsmart control is generally lower than with the MPGT, compared to thereference cases. Given that the grid tariff is needed to reflect the costof operating more accurately, more time-based cost deviations mightoccur or be presented, which as presented here can provide much morecost savings than if we remain with the default behavior. Flexible assetsare valuable even during current operation, however their potential canonly increase in the future, both in regards to short- and long-term pricesignals as we have presented here.
5. Conclusion

We have presented a model that aims to illustrate the expectedfuture cost for a building operation model with a long-term price signal.The future cost is based on the expected succeeding cost for operationfor a building and the long-term price signal, in this work being ameasured-peak grid tariff. This model was applied to a Norwegianhousehold. The primary goal was to analyze the contribution from abattery energy storage system (BESS), a smart Electric vehicle (EV)charger, and controllable space heating (SH) individually with varyinginput parameters, to see how they react to cope with the long-termprice signal. The performance was compared to two electricity schemes,with and without the long-term price signal.The results from the generation of expected future cost curvesshowed that all flexible assets contribute to lower the peak importlevel compared to a reference case, but revealed that their flexibilitycharacteristics affect the long-term performance. The generation ofexpected future cost curves enables us to represent the future impactof current short-term decision-making, which can provide more cost-optimal flexibility usage over the total period. The controllable EVmanaged to cut expected cost by 14.6% compared to the reference case,by load shifting the EV charging to reduce peak import. In second cameSH, which reduced the expected cost by 10.9% compared to the refer-ence case, despite having the lowest peak import reduction compared toboth EV and BESS. Despite SH having the lowest peak import reduction,the load shifting gave additional savings from considering the addedvalue from real-time prices of electricity import.The work here has shown a general method for representing thelong-term value building operation, which can increase the accuracyof operation when combined to a short-term operational model. Themethod is not limited to a specific case and is adjustable to temporal

changes as well as different structures for electricity cost. Therefore,the work here promotes and makes it possible to further investigatethe value of this approach with different price structures and temporallocations. Other potential future work includes the long-term valueof flexible assets under different price signals, to acquire a broaderunderstanding of their capabilities. In addition, comparing this SDPapproach to other decomposition techniques would give more addedvalue on solving long-term operational problems.
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A B S T R A C T
The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operationalphase. This paper presents a stochastic planning model comprising an emission inventory for the operationof ZEBs. The operational planning methodology uses stochastic dynamic programming (SDP) to analyze andrepresent the expected future cost curve (EFCC) for operation based on the electricity price and accumulated
𝐶𝑂2𝑒𝑞 -inventory during the year. Failing to compensate for net zero emission makes the leftover amount subjectto a penalty cost at the end of the year. This renders the overall problem multi-objective optimization includingemission compensation and cost of operation. The model is applied to a case study of a Norwegian building,tested for a range of penalty costs for leftover 𝐶𝑂2𝑒𝑞 -inventory. The results show that, for a ZEB, includingemission compensation demonstrates a significant impact on the operation of the building. The penalty costputs a limit on how much the operational cost increase for additional compensation should be, influencing theend 𝐶𝑂2𝑒𝑞 -inventory. Increasing penalty costs decreases the end inventory, and a penalty cost of 10 𝐸𝑈𝑅

𝑘𝑔𝐶𝑂2𝑒𝑞resulted in zero emission. The case achieving zero emission had an operational cost increase of 4.8% comparedto operating without a penalty cost. This shows the importance of accounting for emissions during the operationof a ZEB, and the value of having an operational strategy that presents the future impact of operation.
1. Introduction

In the European Union (EU), buildings account for up to 80% of thetotal energy consumption [1]. Overall, the building stock amounts to36% of the total CO2𝑒𝑞-emissions in the EU [1].
1.1. Zero emission buildings

A considerable volume of research has been conducted on newsolutions for Zero Emission Buildings (ZEBs) based on the definitionfrom the Directive on Energy Performance of Buildings (EPBD) [2].The Zero Emission Building research center1 has explored how toincrease the market penetration of buildings with low or net zerogreenhouse gas (GHG) emissions over their lifetime [3]. The net zeroemission goal considers the following phases of a building during itslifetime: construction, materials, operation, and end-of-life [4]. Thecritical phase for net zero emission is the operational phase, whereemission compensation is required to cover the other phases [4]. In [5],
∗ Corresponding author.E-mail address: kasper.e.thorvaldsen@ntnu.no (K.E. Thorvaldsen).1 https://www.zeb.no.

the authors investigated existing definitions and calculation methodolo-gies for ZEBs and zero energy buildings, identifying critical issues thatshould be addressed for a common ZEB definition and regulation. Onespecific issue identified concerned the period of calculating the energyand emission balance, where most methodologies presented used anannual balance.As described and discussed in [6], the operational phase of a ZEBis affected by building location, energy sources in both the grid andon-site production, and the design choices for the buildings. It wasobserved that the emission compensation realized through the exportof on-site renewable power generation depends on the electricity mixin the grid.Most previous research on ZEBs uses annual average CO2𝑒𝑞-intensities of the grid electricity. The authors in [7] optimized thedesign of a school building for different energy technologies, designedto be a zero energy building. In addition, emission compensation wasincluded in the analysis through primal energy indicators for eachtechnology. The results showed how the annual average CO2𝑒𝑞-intensity
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Nomenclature
Index sets
 Set of time steps within a week
𝐺 Set of weeks within the year
Parameters
�̇�𝐵,𝑑𝑐ℎ, �̇�𝐵,𝑐ℎ Discharge/charge capacity for battery[ kWh

h ]
�̇�𝑀𝑎𝑥 Maximum EV charging capacity [ kWh

h ]
�̇�𝑠ℎ Capacity for space heating radiator [ kWh

h ]
𝜂𝐵𝑑𝑐ℎ, 𝜂

𝐵
𝑐ℎ Discharge/charge efficiency for battery [%]

𝜂𝐸𝑉
𝑐ℎ EV charging efficiency [%]
𝜂𝑃𝑉 Total efficiency for PV system [%]
𝑔𝑟𝑖𝑑 DSO energy tariff for imported energy[ EURkWh ]
CO2𝑒𝑞
𝑛 Expected future cost for point 𝑛 [EUR]

CO2𝑒𝑞
Penalty cost for negative end inventory atend of year [ EUR

kgCO2𝑒𝑞
]

𝐴𝑃𝑉 PV system area [m2]
𝐶𝑖, 𝐶𝑒 Heat capacity for interior and buildingenvelope [ kWh

◦C ]
𝐷𝐸𝑉 EV discharge when not connected [kWh]
𝐸𝐵,𝐶𝑎𝑝 Battery storage capacity [kWh]
𝐸𝐵,𝑚𝑖𝑛, 𝐸𝐵,𝑚𝑎𝑥 Battery SoC limits [kWh]
𝐸𝐸𝑉 ,𝐶𝑎𝑝 EV storage capacity [kWh]
𝐸𝐸𝑉 ,𝑚𝑖𝑛, 𝐸𝐸𝑉 ,𝑚𝑎𝑥 Min/Max EV SoC capacity [kWh]
𝐸0
CO2𝑒𝑞

Initial accumulated CO2𝑒𝑞-inventory[kgCO2𝑒𝑞]
𝐸𝑛,𝑝
CO2𝑒𝑞

Accumulated CO2𝑒𝑞-inventory at point 𝑛[kgCO2𝑒𝑞]
𝑁𝑃 Number of discrete CO2𝑒𝑞-inventory values
𝑁𝑆 Number of nodes for stochastic variables
𝑅𝑖𝑒, 𝑅𝑒𝑜 The thermal resistance between theinterior-building envelope and buildingenvelope-outdoor area [ ◦C

kWh ]
𝑇 𝑖𝑛,𝑚𝑖𝑛
𝑡 , 𝑇 𝑖𝑛,𝑚𝑎𝑥

𝑡 Lower/upper interior boundary [◦C]
𝑉 𝐴𝑇 Value added tax for purchase of electricity[p.u]
Decision variables
𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠

𝑠
𝑔+1

Expected future cost from end accumulated
CO2𝑒𝑞-inventory [EUR]

𝛾 SOS-2 variables for the expected future costcurve
𝐸𝐵
𝑡 State of charge for battery at t [kWh]

𝐸𝐸𝑉
𝑡 State of charge for EV at t [kWh]

𝑒CO2𝑒𝑞
End accumulated CO2𝑒𝑞-inventory at cur-rent decision stage [kgCO2𝑒𝑞]

𝑞𝑠ℎ𝑡 Power usage for space heating at t [ kWh
h ]

from the grid affected the installation of energy carriers, based on netzero emission targets.The work in [7] is extended in [8], comparing the use of hourly
CO2𝑒𝑞-intensities from the grid to yearly average for designing a ZeroEmission Neighborhood (ZEN) in Norway. The findings showed thathourly emission intensity did not change the results significantly com-pared to using yearly average values.

𝑇 𝑖𝑛
𝑡 , 𝑇 𝑒

𝑡 Interior and building envelope temperatureat t [◦C]
𝑦𝐵,𝑐ℎ𝑡 , 𝑦𝐵,𝑑𝑐ℎ𝑡 Power to/from the battery at t [ kWh

h ]
𝑦𝐸𝑉 ,𝑐ℎ
𝑡 Input power to EV at t [ kWh

h ]
𝑦𝑖𝑚𝑝𝑡 , 𝑦𝑒𝑥𝑝𝑡 Energy imported/exported at t [ kWh

h ]
𝑦𝑃𝑉𝑡 Power produced from PV system at t [ kWh

h ]
Stochastic variables
𝛿𝐸𝑉
𝑡 EV connected to building {0, 1}
𝑠𝑝𝑜𝑡
𝑡 Electricity spot price at t [ EURkWh ]

𝐷𝐸𝑙
𝑡 Consumer-specific load at t [kWh]

𝑓
CO2𝑒𝑞
𝑡 CO2𝑒𝑞-intensity of electricity at t [ kgCO2𝑒𝑞

kWh ]
𝐼𝐼𝑟𝑟𝑡 Solar irradiation at building at t [ kWh

m2 ]
𝑇 𝑜𝑢𝑡
𝑡 Outdoor temperature at t [◦C]

In recent years there has been a development in the calculation of
CO2𝑒𝑞-intensities from the electrical grid. The authors in [9] calculatedyearly average and marginal emission values for different zones inEurope based on future scenarios. In [10], average CO2𝑒𝑞-intensities onan hourly resolution have been calculated for different bidding zones inEurope, by tracing the origin of electricity back to the generating unit.Similar work is presented in [11].A building can be operated by a control system that adjusts flexibleassets to shift their consumption. If the operation considers emis-sion compensation, the CO2𝑒𝑞-intensities can impact how the flexibleresources are used. A yearly average CO2𝑒𝑞-intensity offers no in-centive for load shifting within the year, as the only focus for gridinteraction lies in the net exchange over the year. With hourly aver-age intensities, the timing of grid exchange within the year becomesmore important. Use of flexible assets to adjust the grid interactionwill provide short-term value for emission compensation. Moreover,hourly average intensities will promote import from the grid whenthe electricity mix in the grid has a low CO2𝑒𝑞-intensity, i.e., has ahigher share of renewable energy. Likewise, the export will be morefavorable when there is a high CO2𝑒𝑞-intensity in the grid. The defi-nition in Norway regarding emission compensation for buildings usestime-dependent interaction [12], promoting operation considering thehourly CO2𝑒𝑞-intensity as a means of achieving net zero emission.
1.2. Long-term building operation

In Norway, the optimal yearly strategy for emission compensationwith hourly CO2𝑒𝑞-intensity depends on the season. During winter,flexible assets can shift electricity import to time steps with lower
CO2𝑒𝑞-intensity, lowering inventory increase. During summer, local pro-duction can export electricity to reduce the CO2𝑒𝑞-inventory. However,it is important to find a way of presenting the necessary contributionduring the year, to reach the net zero emission goal. In addition, theuncertainty in operation needs to be accounted for. Uncertainty withinload demand and local power production creates further uncertaintyin the potential for emission compensation during the year. Providingthe long-term impact of operational strategy is a vital tool for accurateperformance when considering emission compensation, while includingthe uncertain impacts.To the authors’ knowledge, only a few studies consider the useof long-term price signals to optimize the short-term operation ofbuildings. However, this methodology is frequently applied to optimizethe operation of other types of dispatchable assets in the power system,such as hydropower. Water values have been defined in hydropowerscheduling to represent the future value of storing water in a reser-voir, created through long-term scheduling models [13]. The generated
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water values can be given as input for short-term scheduling mod-els to consider the consequences of operation beyond the short-termhorizon [14,15].For long-term signals of buildings’ operation, different clusteringmethods were tested in [16] for a ZEN over a year, finding the optimaldesign to achieve zero emission during operation. In [17], a stochas-tic dynamic programming (SDP) framework calculated and generatedlong-term price signals for the operation of a residential building.Future cost curves were generated to represent the change in future costbased on a measured-peak grid tariff (MPGT). The MPGT is a cost basedon the highest single-hour peak import over a month. The future costcurves provided information about the full expected cost change for thefuture, balancing costs for increasing peak consumption and benefitsfrom consumption adjustment with real-time pricing (RTP) costs. Thesame model was used in [18] to evaluate the individual value of flexi-bility from different flexible assets within the residential building usingthe same MPGT. The results showed the value of controlling flexibleassets such as a stationary battery, electrical vehicle (EV) charging,and space heating (SH), and how the assets have different flexibilitycontributions.The SDP framework from [17] could be implemented for the opera-tion of a ZEB. However, the crucial point to enable this layout would be:How to tie emission compensation into the future cost curves? For theoperation of a smart residential building, the overall goal is to minimizethe total cost of operation. During operation of a ZEB, it is important toinclude both costs of operation and emission together, tying emissioncompensation into the objective function through a conversion factor,making the problem multi-objective. Some previous work has managedto combine the economic performance with emissions through multi-objective models. In [19], a planning framework for a local energysystem is proposed, which included conversion factors for emission dur-ing operation. Emission reduction was focused upon when the authorsin [20] wanted to look at how operating conditions for a cutting processcould be tied to emissions, by using a conversion factor for emissionbased on carbon taxes.The SDP framework can include the impact of emission compensa-tion through the multi-objective layout, having the future cost curvebased on both cost of operation and the penalty cost from net emissioninventory. If disregarding the penalty cost for emission, the future costonly represents the expected cost of operation to minimize electricitycost over the year. Adding the penalty cost results in a future costthat co-optimizes operational cost and emission compensation. The SDPframework will generate curves throughout the year to highlight thepenalty for emission at the end, generating a plan of operation tominimize the multi-objective cost while accounting for the seasonalvariations and current point in time. The operational strategy gener-ated could be given as input into a short-term operational model, sothe long-term aspect of operation beyond the short-term horizon isincluded.
1.3. Our contribution

In this paper, we present a modified version of the SDP frameworkderived in [17], adjusted to capture the long-term economic impactof emission compensation for a ZEB during operation. The goal isto generate future cost curves showing the cost-optimal operationalplan for achieving zero emission during building operation. The overalloptimization model will be multi-objective, balancing both operationalcost for electricity exchange and a penalty cost at the end of the yearfor remaining deviation from zero emission in the CO2𝑒𝑞-inventory. Ourcontributions are the following:
• We include the future cost of emission compensation based onthe current CO2𝑒𝑞-inventory in building operation for a ZEB us-ing SDP. The SDP framework defines an operational strategythroughout the year for cost-optimal emission compensation

• We investigate how the CO2𝑒𝑞 penalty cost for leftover CO2𝑒𝑞-inventory puts an upper cost limit for emission compensation,and how a varying penalty cost changes the operational strategythroughout the year
• We look at how a finer resolution of the CO2𝑒𝑞-intensity gives anadded value to the use of flexible assets within the ZEB, where theflexible assets are controlled to increase emission compensationbased on the variance in hourly CO2𝑒𝑞-intensity
The remainder of the paper will be organized as follows: Section 2describes the mathematical formulation of the multi-objective opti-mization model and the SDP framework. Section 3 will present thecase study, while Section 4 presents and discusses the results andperformance. Finally, a conclusion is given in Section 5.

2. Model description
The overall objective of the presented framework is to minimize theexpected total operational cost of an all-electric residential building,while taking into account the cost of leftover CO2𝑒𝑞-inventory at theend of the year. The horizon for this work is the course of a year andincludes seasonal variation in emission compensation.

2.1. Model overview
A long-term operation model for a residential building is used tooptimize the operational strategy of a ZEB over a one-year planninghorizon. As mentioned in Section 1.2, the operating strategy acquiredthrough the SDP framework can be used as input for a short-term op-erating model, to reach optimum long-term operation. The schedulinghorizon depends on the long-term targets that the residential buildingis expected to reach. For instance, the MPGT investigated in [17] hada horizon of one month as the tariff was set based on the consumptionover one month. The scope of this work considers a one-year horizonto capture the seasonal variations of CO2𝑒𝑞-emissions. The problemis solved for weekly decision stages. For each week, the stochasticvariables are known from the start of the week and throughout theweek. This work considers the following stochastic variables: outdoortemperature, solar irradiation, electricity prices, hourly CO2𝑒𝑞-intensity,consumer-specific load and EV availability.Over the course of a year, we control the flexible assets within thebuilding to adjust the import and export of electricity from the electric-ity grid in each week. The exchange of electricity directly impacts the

CO2𝑒𝑞-inventory, which is supposed to be net zero, otherwise a penaltyshould be paid for the leftover emission. The objective over the yearis to minimize the total operating cost from the import and export ofelectricity, and the cost associated with the emission penalty:
𝑚𝑖𝑛E{

8760∑
𝑡=1

[𝑠𝑝𝑜𝑡
𝑡 ⋅ (𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 ) + 𝑔𝑟𝑖𝑑 ⋅ 𝑦𝑖𝑚𝑝𝑡 ] +𝛷(𝑒CO2𝑒𝑞

)} (1)
𝛷(𝑒CO2𝑒𝑞

) represents the cost for leftover accumulated emissionsthroughout the year. The inventory variable 𝑒CO2𝑒𝑞
keeps track of theemissions we receive during import of electricity from the grid, andthe emissions compensated when exporting to the grid. A negative

𝑒CO2𝑒𝑞
inventory means that we have compensated more than we haveacquired from import, while a positive inventory implies that we needto increase compensation to reach net zero emission at the end. Thecost function for emission inventory is shown in Eq. (2), where we put acost on having insufficiently compensated to reach our target emissioninventory, 𝑋. Any extra emission compensated gives no further benefit,whereas any leftover emission results in a cost based on the leftover andthe penalty cost CO2𝑒𝑞

.
𝛷(𝑒CO2𝑒𝑞

) =

{CO2𝑒𝑞
⋅ (𝑒CO2𝑒𝑞

−𝑋), if 𝑒CO2𝑒𝑞
≥ 𝑋

0, otherwise (2)
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As the 𝑒CO2𝑒𝑞

is varying throughout the year and the initial valueper week changes the strategy, this variable is coupled in time. Withthe time-coupling of the inventory, the optimization problem has adynamic nature, making the overall problem in Eq. (1) a multi-stagestochastic optimization problem.We apply SDP to solve the multi-stage stochastic optimization prob-lem. With the use of dynamic programming, representing the expectedfuture cost as a piecewise-linear cost curve, the overall problem can bedecomposed into weekly deterministic subproblems. Each scenario perweek comprises a unique subproblem to be solved. The SDP framework,further explained in Section 2.5, is solved in a backward procedure; westart at the last week of the year, and analyze backwards to the start ofthe year. With a backward procedure, we generate an operating strat-egy for each week that captures the future consequences, representedby expected future cost curves (EFCCs).Using the SDP framework presented in [17] to find the optimalstrategy for emission compensation allows us to decouple the year intomultiple stages. Decoupling into stages decreases the complexity ofeach unique case that must be run. However, having too many stagesor very high levels of detail in the future cost curves can lead to highrun time. Another advantage of the SDP framework is the possibilityto include uncertainty in the problem, which the clustering methodfrom [16] did not include.To enable coupling between the decision stages, we formulate aset 𝑔 that contains information regarding everything that is carriedover between decision stages. Within this set lies two subsets; 𝑆,𝑔contains information on stochastic variables for the decision stage 𝑔,while 𝑃 ,𝑔 comprises the state variables in the optimization problemfor formulating the future cost curve. The state variables comprise thediscrete number of points for initial CO2𝑒𝑞-inventory for each weekthat we investigate to find the change of the future cost curve withchanging inventory values. The range of the discrete initial CO2𝑒𝑞-inventories provides a good overview of what strategy one shouldimplement during the year, both when the inventory is very negativeor positive. Combined, a decomposed decision problem is defined byboth subsets 𝑠𝑠𝑔 , 𝑠
𝑝
𝑔 ∈ 𝑔 , which indicates that, for a decision stage 𝑔,we analyze for a specific scenario and state variable for all combina-tions. State variables and the EFCC for each decision problem will beexplained in Section 2.4.2, while the stochastic variables are describedin Section 2.2.

2.2. Stochastic behavior
The stochastic scenarios that can occur throughout the year increasethe complexity of the overall problem. In addition, uncertainty withinweather has a serial correlation. This serial correlation makes it difficultto use a backward procedure, as history defines the current scenarios.To deal with the serial correlation, the scenarios are treated as a Markovdecision process (MDP) using discrete states per scenario. The MDPassumes that scenarios are memoryless, meaning they have no informa-tion concerning how they got here, but do have information about theirnext scenario transition and the corresponding probabilities [21,22].The MDP with the SDP framework makes the backward procedurepossible. The coupling between the decision stages and scenarios isimplemented as shown in Fig. 1, where a given scenario only containsand considers information on the future scenarios that can occur.The scenarios represented in Fig. 1 are based on MDP behavior.For each decision stage, we have a finite number of discrete scenarios

𝑠𝑠𝑔 ∈  that can occur. Each of these scenario nodes contains valuesfor the stochastic variables in the decomposed decision problem, eachhaving a unique characteristic of the stochastic input. The transitionprobability 𝜌(𝑔, 𝑠𝑠𝑔|𝑠𝑠𝑔−1) of transitioning from scenario node 𝑠𝑠𝑔−1 to 𝑠𝑠𝑔during week 𝑔 − 1 to 𝑔 is based on the probability function valuebetween the two scenarios.

Fig. 1. Illustration of the scenario coupling between stage transition.

2.3. Decision stages
A given decision week 𝑔 has an hourly time resolution. For eachhour, the electricity demand must be met through exchange with thegrid and the use of flexible assets to adjust consumption. At the startof each week, the electricity prices from the grid and all stochasticvariables are assumed to be known. The flexible assets have identicalstart and end values on their energy levels for each decision stage,which for this problem includes a battery, EV, and indoor temperature.This simplification is introduced to ensure that the decision stagetransition is feasible with equal values during transition, as their changein energy level and the corresponding future impact is not included inthe future cost curve.

2.4. Decomposed decision problem
The decomposed decision problem is formulated as an optimizationmodel for operating a ZEB with bi-directional power flow to the powergrid. Different flexible assets are being controlled by the optimizationmodel, so the flow of electricity within the building can be adjustedaccordingly. The presented optimization model operates for a singledeterministic stage of the overall SDP framework, for a given decisionstage 𝑔, scenario 𝑠𝑠𝑔 , and initial CO2𝑒𝑞-inventory from the state variable

𝑠𝑝𝑔 . Within the building, there are several assets that the optimizationmodel can control: a battery energy storage system (BESS), an EVcharger, indoor space heating, and a roof-mounted photovoltaic (PV)system. Each flexible asset is modeled as a constraint-based asset,meaning they cannot operate outside of their given boundaries. Thenon-flexible electric-specific demand and heat demand for the watertank are assumed to be non-shiftable loads 𝐷𝐸𝑙
𝑡 , in which their demandmust be met at all time steps.

2.4.1. Objective functionThe objective function for the multi-objective problem is to min-imize the total electricity cost for the end-user, while consideringthe expected future cost 𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠
𝑠
𝑔+1

associated with the accumulated
CO2𝑒𝑞-inventory at the end of the stage. The cost is then tied to thetime-dependent energy demand for the ZEB, RTP, CO2𝑒𝑞-intensity overthe stage, and the initial CO2𝑒𝑞-inventory from the start of the week.
𝑚𝑖𝑛{

∑
𝑡∈

[𝑠𝑝𝑜𝑡
𝑡 ⋅ (𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 ) + 𝑔𝑟𝑖𝑑 ⋅ 𝑦𝑖𝑚𝑝𝑡 ] + 𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠

𝑠
𝑔+1

} (3)
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2.4.2. Emission compensation and future costThe constraints regarding emission compensation and the setup forthe expected future cost are presented in (4a) to (4e). The accumu-lated CO2𝑒𝑞-inventory for this stage is showcased in (4a), where theaccumulated inventory is based on the initial inventory value, and thesum of import and export with the time-dependent CO2𝑒𝑞-intensities inthe grid. The accumulated total sets the expected future cost variable
𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠

𝑠
𝑔+1

in (4b).
The 𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠

𝑠
𝑔+1

variable is set up using SOS-2 variables for thediscrete values 𝐸𝑛,𝑝
CO2𝑒𝑞

𝑛 ∈ 𝑃 to create a piecewise-linear cost curvebased on the accumulated CO2𝑒𝑞-inventory [23], named expected futurecost curve (EFCC). The EFCC is made up of a number of discreteend CO2𝑒𝑞-inventories, and a corresponding future cost based on theemission inventory, representing the expected future cost for the re-maining period of the year. Uncertainty from future scenario nodesdescribed in Fig. 1 is included, as the weighted cost is displayed in theEFCC. The EFCC is generated through the SDP framework, presented inSection 2.5.
𝑒CO2𝑒𝑞

= 𝐸0
CO2𝑒𝑞

+
∑
𝑡∈

(𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 ) ⋅ 𝑓CO2𝑒𝑞
𝑡 (4a)

𝛼𝑓𝑢𝑡𝑢𝑟𝑒𝑒CO2𝑒𝑞 ,𝑠
𝑠
𝑔+1

=
∑

𝑛∈𝑃

𝛾𝑛 ⋅ CO2𝑒𝑞
𝑛 (4b)

𝑒CO2𝑒𝑞
=

∑
𝑛∈𝑃

𝛾𝑛 ⋅ 𝐸
𝑛,𝑝
CO2𝑒𝑞

(4c)
∑

𝑛∈𝑃

𝛾𝑛 = 1 (4d)
𝛾𝑛 ≥ 0 ∀𝑛, 𝑆𝑂𝑆-2 (4e)
2.4.3. Energy balanceThe energy balance for the electrical system in the building is givenin (5). This includes import and export of electricity, local productionfrom PV, charge and discharge from the BESS, load from SH and EVcharging, and the non-elastic electrical demand.
𝑦𝑖𝑚𝑝𝑡 − 𝑦𝑒𝑥𝑝𝑡 + 𝑦𝑃𝑉𝑡 + 𝑦𝐵,𝑑𝑐ℎ𝑡 = 𝐷𝐸𝑙

𝑡 + 𝑦𝐸𝑉 ,𝑐ℎ
𝑡 + 𝑞𝑠ℎ𝑡 + 𝑦𝐵,𝑐ℎ𝑡 ∀𝑡 (5)

2.4.4. Electric vehicleThe EV system is formulated as shown in Eqs. (6a) to (6c). TheEV has a uni-directional charging capability at a continuous rate, andavailability for charging is given by the stochastic variable 𝛿𝐸𝑉
𝑡 . Duringtime steps where it is not at the building, a constant discharge 𝐷𝐸𝑉from the EV battery is occurring to simulate discharge from driving.The EV battery has a specified state-of-charge (SoC) range given in Eq.(6c), which is time-dependent to enable time-specific SoC preferences.

𝐸𝐸𝑉
𝑡 − 𝐸𝐸𝑉

𝑡−1 = 𝑦𝐸𝑉 ,𝑐ℎ
𝑡 𝜂𝐸𝑉

𝑐ℎ 𝛿𝐸𝑉
𝑡 − 𝐷𝐸𝑉 (1 − 𝛿𝐸𝑉

𝑡 ) ∀𝑡 (6a)
0 ≤ 𝑦𝐸𝑉 ,𝑐ℎ

𝑡 ≤ �̇�𝑀𝑎𝑥 ∀𝑡 (6b)
𝐸𝐸𝑉 ,𝑚𝑖𝑛
𝑡 ≤ 𝐸𝐸𝑉

𝑡 ≤ 𝐸𝐸𝑉 ,𝑚𝑎𝑥
𝑡 ∀𝑡 (6c)

2.4.5. Battery energy storage systemThe building has a bi-directional stationary battery available, whichis controllable based on Eqs. (7a) to (7d). Power flow can be operatedboth ways at a continuous rate, where the limitation lies in powercapacity and storage capacity. The storage capacity has a range toensure optimal operation without damaging the battery.
𝐸𝐵
𝑡 − 𝐸𝐵

𝑡−1 = 𝑦𝐵,𝑐ℎ𝑡 𝜂𝐵𝑐ℎ −
𝑦𝐵,𝑑𝑐ℎ𝑡

𝜂𝑏𝑑𝑐ℎ
∀𝑡 (7a)

0 ≤ 𝑦𝐵,𝑐ℎ𝑡 𝜂𝐵𝑐ℎ ≤ �̇�𝐵,𝑐ℎ ∀𝑡 (7b)
0 ≤ 𝑦𝐵,𝑑𝑐ℎ𝑡 ≤ �̇�𝐵,𝑑𝑐ℎ ∀𝑡 (7c)
𝐸𝐵,𝑚𝑖𝑛 ≤ 𝐸𝐵

𝑡 ≤ 𝐸𝐵,𝑚𝑎𝑥 ∀𝑡 (7d)

2.4.6. Photovoltaic systemA roof-mounted PV system is connected to the electrical systemthrough a controllable system that allows the possibility to decreasepower output if necessary.
0 ≤ 𝑦𝑃𝑉𝑡 ≤ 𝐴𝑃𝑉 ⋅ 𝜂𝑃𝑉 ⋅ 𝐼𝐼𝑟𝑟𝑡 ∀𝑡 (8)
2.4.7. Space heatingSH of the building is formulated in (9a) to (9d). Heating of thebuilding is done through an electric radiator with continuous outputup to the rated capacity. Heat dynamics are represented as a grey-box model, so the physical behavior is formulated through linearstate–space models [24,25].The SH dynamics are presented as a 2R2C model, dividing thesystem into three thermal zones: the interior or indoor of the building,the envelope, and the outdoor area. The heat dynamics of the buildingare modeled without considering internal gains, solar gains or otherheating gains except for a radiator. The control system can measure theinterior, envelope and outdoor temperature, and operate the radiator toregulate the indoor temperature accordingly.
0 ≤ 𝑞𝑠ℎ𝑡 ≤ �̇�𝑠ℎ ∀𝑡 (9a)
𝑇 𝑖𝑛,𝑚𝑖𝑛
𝑡 ≤ 𝑇 𝑖𝑛

𝑡 ≤ 𝑇 𝑖𝑛,𝑚𝑎𝑥
𝑡 ∀𝑡 (9b)

𝑇 𝑖𝑛
𝑡 − 𝑇 𝑖𝑛

𝑡−1 =
1

𝑅𝑖𝑒𝐶𝑖
[𝑇 𝑒

𝑡−1 − 𝑇 𝑖𝑛
𝑡−1] +

1
𝐶𝑖

𝑞𝑠ℎ𝑡 ∀𝑡 (9c)
𝑇 𝑒
𝑡 − 𝑇 𝑒

𝑡−1 =
1

𝑅𝑖𝑒𝐶𝑒
[𝑇 𝑖𝑛

𝑡−1 − 𝑇 𝑒
𝑡−1] +

1
𝑅𝑒𝑜𝐶𝑖

(𝑇 𝑜𝑢𝑡
𝑡−1 − 𝑇 𝑒

𝑡−1) ∀𝑡 (9d)

2.5. Solution strategy
Algorithm 1: The SDP algorithm to generate EFCCs per decisionstage.
1 for 𝑔 = , − 1, .., 1 do
2 for 𝑛 ∈ 𝑃 do
3 𝐸0

CO2𝑒𝑞
← 𝐸𝑛,𝑝

CO2𝑒𝑞4 for 𝑠𝑠𝑔 ∈ 𝑆 do
5 {𝑠𝑝𝑜𝑡

𝑡 , 𝐷𝐸𝑙
𝑡 , 𝑓

CO2𝑒𝑞
𝑡 , 𝛿𝐸𝑉

𝑡 , 𝐼𝐼𝑟𝑟𝑡 , 𝑇 𝑜𝑢𝑡
𝑡 } ← 𝛤 (𝑔, 𝑠𝑠𝑔)

6 CO2𝑒𝑞
𝑖 ← 𝛷(𝑖, 𝑠𝑠𝑔 , 𝑔 + 1) for 𝑖 = 1..𝑃7 𝑠𝑠𝑔 ,𝑛 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (3) − (9)

8 for 𝑠𝑠𝑔−1 ∈ 𝑆 do
9 𝛷(𝑛, 𝑠𝑠𝑔−1, 𝑔) =

∑𝑆
𝑠𝑠𝑔=1

𝑠𝑠𝑔 ,𝑛 ⋅ 𝜌(𝑔, 𝑠𝑠𝑔|𝑠𝑠𝑔−1)

To find the optimal strategy for minimizing electricity cost whileperforming emission compensation, the SDP algorithm showcased inAlgorithm 1 is used in a backwards procedure, starting at the last stageof the horizon. The presented SDP algorithm will for every decisionstage 𝑔 ∈ , every discrete point of the state variable 𝑛 ∈ 𝑃 , andevery scenario 𝑠𝑠𝑔 ∈ 𝑆 optimize the decision problem described inSection 2.4 and calculate the economic performance. For each state ofan initial CO2𝑒𝑞-inventory and scenario given a decision stage 𝑔, werealize the stochastic variables with scenario-specific values from 𝛤 inline 5. In line 6, the EFCC for the next decision stage 𝑔 + 1 is specified.For the initial case of 𝑔 = , the EFCC is made up of a discrete numberof states from Eq. (2). Using these values as input, the multi-objectiveproblem is solved in line 7 to find the objective function value, whichis the total cost from that stage and the expected future cost based onemission compensation.As discussed earlier, transition between stages must be feasible.Therefore, the flexible assets and their energy levels 𝑇 𝑖𝑛
𝑡 , 𝑇 𝑒

𝑡 , 𝐸𝐸𝑉
𝑡 and

𝐸𝐵
𝑡 , have a constant start/end condition that must be encompassed bythe optimization problem. For SH, a high penalty cost is included formissing the target, but is not included in the EFCC calculation.
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The objective function results in line 7 are part of what makes up theEFCC points 𝛷(𝑛, 𝑠𝑒𝑔−1, 𝑔) for 𝑛 ∈ 𝑃 . The EFCC values are calculated inlines 8–9, where each specific state variable point is derived. The futurecost for a given state variable node 𝑛 is calculated as the weightedfuture cost value for all scenarios that can occur in stage 𝑔, whichwill be representing this stage and state variable for stage 𝑔 − 1. Thefuture cost connects stage 𝑔−1 to stage 𝑔, coupling the stage transitionas shown in Fig. 1. We use the transition probabilities 𝜌(𝑔, 𝑠𝑠𝑔|𝑠𝑠𝑔−1) tofind the weighted future cost based on the current scenario node from

𝑔 − 1. After finding the weighted future cost for each scenario and forall discrete state variables, the complete EFCC is calculated.After calculating the EFCC for a given stage, the next stage 𝑔 − 1 iscalculated with the new EFCCs as input for this stage, until arrivingat the first stage of the problem. All the generated EFCCs providean overview of the future cost with a change of operational strategy,capturing the long-term effects of emission compensation at the currenttime of the year.
3. Case study

The model presented has been applied to a residential buildinglocated in Southern Norway. This single-family house (SFH) has acontrol system for the flexible assets, and tracks the import and exportof electricity and the corresponding hourly average CO2𝑒𝑞-intensity inthe grid. The period analyzed is the year 2017, with an hourly timeresolution per week over 52 weeks and historical data making up thestochastic variables.The SFH house is assumed to be part of a ZEN, and that only thecommunity has any limitations on the export of electricity. The demandin the ZEN is assumed to be significant enough that our ZEB can exportelectricity to any neighboring building without causing any potentialharm to the whole electricity system.
3.1. Building structure
3.1.1. PV systemThe PV system on the roof has an installed capacity of 18.6 kW,which is connected to an MPP inverter with a combined constantconversion and MPP efficiency at 95% [26].
3.1.2. Inelastic consumer demandThe inelastic demand originates from two sources: The passiveand user-specific electric-specific electricity consumption, and demandfrom passive domestic hot water (DHW) consumption. The DHW-consumption profile is based on the measurement of 49 water heatersat Norwegian households through the ‘‘Electric Demand Knowledge -ElDek’’2 research project by SINTEF Energy Research [27].
3.1.3. Heat dynamicsThe heat dynamics of the building are represented as a single-roombuilding with a 2R2C layout. The characteristics of the building arebased on observed values from the Living Lab building built by FMEZEB and NTNU [28,29]. The Living Lab is a pilot project used tostudy various technologies and design strategies with the overall goalof reaching the zero emission target and analyzing thermo-physicalproperties [30]. Heating is performed through a 3 kW radiator whichcan operate continuously. The control system operates the radiator tokeep the indoor temperature between 20–24 ◦C, based on the workin [31].
3.1.4. Stationary batteryThe stationary battery is from SonnenBatterie [32] with a ratedpower input/output of 2.5 kW measured at the output of the inverter.The installed capacity is at 10 kWh, with a tolerated SoC set at between10%–100% SoC. The round-trip efficiency is set to 85% from [33].

2 https://www.sintef.no/prosjekter/eldek-electricity-demand-knowledge/.

3.1.5. Electric vehicleA 24 kWh EV is selected for this study, with an operational rangebetween 20%–90% of total capacity at all times. At departure, the SoCmust be between 60%–90% as a countermeasure to range anxiety. TheEV consumes electricity from the battery during the time it is offline tosimulate driving. For each day, the EV is assumed to leave at 9 AM andarrive at 5 PM, which was found to be the expected departure/arrivaltime during weekdays for EVs in Norway [34], with an hourly averagedischarge rate at 𝐷𝐸𝑉 = 1.08 kWh. Moreover, the authors of [35] foundsmall changes on arrival time between weekdays and weekends, andthus we assume the same departure/arrival time for the weekend.
3.1.6. Initial conditionsAs mentioned in Section 2.5, the following variables have beengiven a start/end value to enable a feasible stage transition: 𝑇 𝑖𝑛

0 = 22
◦C, 𝑇 𝑒

0 = 20 ◦C, 𝐸𝐸𝑉
0 = 14.4 kWh, 𝐸𝐵

0 = 5 kWh.
3.1.7. Grid tariff costThe residential building is assumed to have an energy-only gridtariff with the local DSO, in this case being Ringerikskraft [36]. Thetotal volumetric cost for purchasing electricity in 2017 was at 0.03572
EUR
kWh when including both the consumer energy cost and grid tariff cost,plus 25% VAT. The RTP cost of electricity comes in addition to this.
3.1.8. CO2𝑒𝑞-intensity and electricity costThis work has used hourly average CO2𝑒𝑞-intensities acquired by themethodology presented in [10], to analyze the average intensities in aselection of bidding zones in NordPool. The method was extended toconsider 36 bidding zones, and the input data were generalized to allowthe possibility of acquiring data for multiple years. This work utilizesthe average intensities for NO2 during the year 2017. The RTP usedfor the analysis are also for the year 2017 and NO2, acquired fromNordPool [37].
3.2. Scenario generation

The control system together with the SDP algorithm allows thepossibility for multiple input data to be uncertain in the period ofoperation. To limit the range of uncertainty, the work here considersuncertainty within weather effects, more specifically the outdoor tem-perature and solar irradiation. Information such as electricity price,
CO2𝑒𝑞-intensity, EV departure/arrival time, and electric-specific de-mand is considered deterministic for the year. Multiple scenarios inelectricity price and CO2𝑒𝑞-intensity would affect the EFFCs as theyshow the weighted future cost. For EV departure/arrival, differentscenarios would influence the timing of charging. However, as foundin [18], the EV has long periods where it can charge between traveling,and thus could more easily load-shift to more convenient time steps.Varying electric-specific demand scenarios would influence the totaldemand and need for compensation, and could lead to more need topeak-shave with the BESS in hours with higher CO2𝑒𝑞-intensity.In total, three scenarios per week have been generated. The threescenarios are based on a normal distribution of the weather effects,with the mean and standard deviation as the discrete scenarios. With anormal distribution, the probability distribution is at 𝜌𝜇 = 68.2%, 𝜌𝜎 =
15.9% for the three scenarios. The probability distribution for the futurescenario nodes is the same regardless of the current operating scenario.Data for the weather effects have been obtained from Renew-ables.ninja [38]. This website offers country-level data on an hourlytime resolution for the period of 1980–2019 using the MERRA-2 tool[39], in which a population-weighted factor for the data was chosen forNorway. The historical data were then used to create hourly normaldistributions on both outdoor temperature and solar irradiation, togenerate three discrete scenarios per week, consisting of the mean andthe standard deviation in both directions.
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3.3. Model cases

The scope of this work is to investigate the operational strategyfor a ZEB with a goal of achieving net zero emission. To achieve zeroemission, a cost-optimal strategy regarding CO2𝑒𝑞-inventory over thecourse of the year must be generated. Through generated EFCCs withthe SDP framework, we find the cost-optimal strategy on emissioncompensation for each decision week. To obtain an accurate descriptionof the EFCC, the state variables are made up of 400 discrete points,with step sizes of 1 kgCO2𝑒𝑞 in the boundary −200 to 200 kgCO2𝑒𝑞 .With three scenarios and a total of 52 weeks, the total number ofcombinations to analyze amounts to 62,400 per case. In addition, weseek to analyze how the penalty cost for leftover emission plays arole in the operational strategy. The penalty cost will put an upperlimit on the cost increase for emission compensation, and affect theend inventory at the end of the year. Therefore, the analysis willinvestigate the SDP framework for multiple penalty cost values. Thepenalty costs considered are between 0 and 10 EUR
kgCO2𝑒𝑞

. In comparison,the highest cost for CO2𝑒𝑞-quotas in 2019 was at 0.029 EUR
kgCO2𝑒𝑞

[40].Putting a penalty cost up to 10 EUR
kgCO2𝑒𝑞

, will result in operation wherenet zero emission is the most crucial goal and electricity prices play asmaller role. Another work has explored a price interval for externalcompensation of CO2𝑒𝑞 between 0 to 2 EUR
kgCO2𝑒𝑞

[8].The impact of the penalty costs will be investigated in a simulationphase, where the economic performance over a year is analyzed weekby week sequentially. We investigate the yearly performance 1000times, each year with different scenario combinations. The initial startinventory is at 0 for each year.In addition to the Norwegian case, we will compare the performanceof this model and framework for the Danish bidding zone DK1. Thecomparison will provide a sensitivity analysis on how the strategy isinfluenced by location and temporal changes. For the Danish case, wehave the same range of penalty costs, and a step size of 10 kgCO2𝑒𝑞between −1000 to 3000 kgCO2𝑒𝑞 . Input data for the weather are fromthe same source as for the Norwegian case, and the same regardingelectricity and hourly CO2𝑒𝑞-intensities, adjusted for the DK1 biddingzone.
4. Results & discussion

This section presents the results from the case study, and discussesthe contributions and implications the results provide. As described inSection 2.5, the SDP framework generates expected future cost curves(EFCCs) for each stage during the course of a year. These curvesrepresent the future costs for increased emission compensation, basedon the CO2𝑒𝑞-inventory. The future cost for compensation is influencedby the penalty cost at the end of the year, setting the threshold forhow costly a marginal compensation increase should be. Either thecompensation is performed through shifting load consumption, or it isdealt with at the end of the year as a penalty. Therefore, the penaltycost is crucial to the operational strategy throughout the year.The results of the operational strategy from the EFCCs are presentedin Section 4.1. Furthermore, the economic performance alongside net
CO2𝑒𝑞-inventory is found in Section 4.2, while the operational perfor-mance is showcased in Section 4.3. Finally, the performance for theDanish case study in DK1 will be investigated in Section 4.4.
4.1. Generation of expected future cost curves

The higher the penalty cost at the end of the year, the more theEFCC reflects the value of emission compensation throughout the year.Therefore, the future presents an opportunity to co-optimize opera-tional cost and emission compensation. To illustrate the behavior of thecurves over the whole year, and make them comparable, the EFCCs willbe presented as marginal EFCCs (MEFCCs) in this section. The MEFCCs

Fig. 2. MEFCCs for different penalty costs at week 0.

represent the marginal future cost of higher emission inventory, whichis also the future cost saving if emission compensation is used todecrease the inventory marginally. Fig. 2 shows the MEFCCs for week0 (which is the start of the year), for different penalty costs.The MEFCCs in Fig. 2 capture how the future cost is affected bythe change in CO2𝑒𝑞-inventory, and that the inventory highly affectsthe marginal cost for emission compensation. On the far left of thefigure, the marginal cost for inventory is 0. This 0 marginal cost istied to the CO2𝑒𝑞-inventory being at a satisfying level, where no futurecompensation that would increase cost of operation is needed to reachnet zero emission. However, as the inventory increases, the net zeroemission goal cannot be met without changing the operational strategyto include emission compensation during the year.For a non-zero marginal value on the MEFCCs, the future costportrays the expected future cost for the marginal CO2𝑒𝑞-inventoryincrease. Some time in the future, there is a potential opportunityto increase compensation to decrease the inventory. This compen-sation opportunity and the corresponding cost are presented as thismarginal cost, which we compare to the increased cost of increasingcompensation at the current decision stage we are in. The optimizationmodel finds the cost-optimal decision: Wait for the future, or adjustthe operational plan now to increase compensation. For an increasinginventory, the marginal future cost increases, due to the increased emis-sion compensation that is needed in the future for reaching net zeroemission. Based on the current inventory, the MEFCC shows the highestmarginal cost increase that should be considered for the decision stage.The increase of marginal cost for the MEFCCs is tied to the penaltycost, which puts a limit on how much the marginal compensationincrease should cost. As seen with the different penalty costs in Fig. 2,the future marginal cost flattens out at the penalty cost with increasing
CO2𝑒𝑞-inventory. This flat part represents the cost limit for compensa-tion. If the marginal cost is equivalent to the penalty cost, increasedcompensation would reduce the penalty cost paid at the end. However,if the operational cost increase for decreasing the inventory is higherthan the cost increase from the EFCCs, it is cost-wise better to pay thepenalty at the end. Operating in the inventory level with a constantmarginal cost indicates that the net zero emission goal will not be met,and that any further cost-optimal compensation increase only decreasesthe final penalty cost. Thus, the penalty cost influences our thresholdfor reaching zero emission. Note that the different MEFCCs start at thesame point on the left side of the 𝑥-axis, but as the inventory increases,each one breaks off and flattens. The higher the penalty cost, the morecost-optimal opportunities exist, to cover the higher end cost. However,as the framework includes uncertainty, each MEFCC is a weightedfuture cost based on the weighted emission compensation in the future.The role of uncertainty is why the curves break off from the shared
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path and slowly ascend towards the penalty cost; the weighted marginalcost is a combination of scenarios with different costs for compensationpotential. Some scenarios would have cost-efficient compensation, andsome scenarios find the specific penalty cost more cost-efficient.The future marginal costs in the MEFCC in Fig. 2 present a futurecompensation opportunity that has not yet occurred. The boundarybetween marginal penalty cost and 0 decreases as the year progresses,due to fewer upcoming opportunities. This change in boundary meansthe curves also represent the range of how much the CO2𝑒𝑞-inventorycan vary while still achieving net zero emission at the end. Since thestart of the year is plotted in Fig. 2, the boundary range shows the initialinventories we can start the year at to achieve zero emission withoutpaying the penalty at the end. For a penalty cost above 0.5 EUR

kgCO2𝑒𝑞
,an initial CO2𝑒𝑞-inventory at 0 or less should reach near zero emissionwithout any penalty, although this is subject to uncertainty. Becauseof the potential for some penalty costs achieving zero emission evenwith a positive initial inventory level, the curves show the potential ofcovering embodied emission during operation.As the MEFCCs are generated for each week during the year, thecurves will change behavior to reflect the future potential given theweeks considered. Not only will the possible opportunities for com-pensation decrease as the year progresses, but the CO2𝑒𝑞-inventoryboundary between marginal penalty cost and 0 will shift on the 𝑥-axis.An inventory at 0 kgCO2𝑒𝑞 might be manageable at the beginning of theyear for certain boundaries, but not necessarily possible without payinga penalty if we are in a later week. The seasonal variations for theMEFCCs are presented as heatmaps in Fig. 3 for four different penaltycosts.The heatmaps of the MEFCCs over the year capture the cost changein emission compensation, based on both the time of year and in-ventory. For a given curve, the change in where the marginal cost isbetween 0 and the penalty cost represents the seasonal variations. Anincreasing inventory during winter is expected from the figures dueto high energy demand. The summer period expects high export todecrease the inventory again from, for example, high PV production.The seasonal variations of the inventory are present for all penaltycosts. However, the penalty cost area is pushed up with increasingpenalty cost, increasing the boundary where there exist future potentialfor compensation. With increasing penalty cost, more cost-optimalopportunities for compensation exists in the future, giving a broaderrange of acceptable inventory levels. If operating a ZEB to optimizecost while achieving zero emission, the MEFFCs show the range ofacceptable inventory levels throughout the year to avoid paying thepenalty cost.

4.2. Economic operational performance
The economic operational performance is investigated by comput-ing a year sequentially week by week, which is performed 1000 timesto account for uncertainty. The EFCCs are given as input to guide themodel throughout the year to make cost-optimal decisions regardingemission compensation. Table 1 presents the yearly average total costfor the ZEB and the ending CO2𝑒𝑞-inventory, for penalty costs between0 and 10 EUR

kgCO2𝑒𝑞
.The trend in Table 1 shows that an increasing penalty cost leadsto increasing operating cost. Disregarding the penalty cost gives thelowest operating cost and highest ending CO2𝑒𝑞-inventory, since onlycosts from grid interaction are prioritized. Increasing penalty cost leadsto more focus on dealing with emission costs. The flexible assets changetheir consumption pattern to participate in emission inventory reduc-tion through the indications from the EFCCs, increasing operationalcosts. In addition, the total cost when including the penalty cost alsoincreases for increasing penalty costs. An increasing penalty cost taxesthe ending inventory more, affecting total cost, and promoting reduc-tion of inventory. The end inventory is decreasing for higher penaltycost, saturating towards 0 the higher the penalty cost. Starting at 0.5

Table 1Average total operating cost with/without the penalty cost, and average endingCO2𝑒𝑞 -inventory.Penalty cost Operating cost Operating cost + Penalty Ending CO2𝑒𝑞 -inventory[ EURkgCO2𝑒𝑞
] [EUR] [EUR] [kgCO2𝑒𝑞]

0 459.7 459.7 146.50.01 459.8 461.1 130.00.02931 460.2 463.4 108.50.05 460.8 465.4 92.10.1 462.7 469.4 66.50.2 466.6 474.6 40.10.5 477.2 480.2 6.00.75 479.7 480.9 1.71 480.5 481.2 0.712 481.3 481.5 0.0903 481.5 481.6 0.02910 481.7 481.8 0.0045

EUR
kgCO2𝑒𝑞

, the penalty cost contributes to achieving an inventory close to0, indicated by the decrease in penalty paid at the end of the year. Thisthreshold indicates that the ZEB during operation on average is closeto achieving net zero emission. The ending CO2𝑒𝑞-inventory is plottedfor the penalty costs as a boxplot in Fig. 4 to illustrate this behavior.Fig. 4 shows the range of ending CO2𝑒𝑞-inventory for the operationof a ZEB over a year, based on the penalty cost used. As the problemincludes uncertainty, the end value is influenced by the scenariosrealized, indicated by the spread of end inventory values for eachcase. For an increasing penalty cost, the inventory level decreases andslowly approaches net zero emission. From 1.0 EUR
kgCO2𝑒𝑞

, the expectedrange and both whiskers are close to zero emission. However, there aresome few rare outliers present that affect the penalty at the end. Theoutliers decrease with increasing penalty, showing that higher penaltycost ensures more cases reaching net zero emission with operationthroughout the year.Looking at the spread of end CO2𝑒𝑞-inventory in Fig. 4, it is first froma penalty cost of 0.5 EUR
kgCO2𝑒𝑞

that the zero emission goal is achievable.The 0.5 EUR
kgCO2𝑒𝑞

penalty cost has the lower whisker of the boxplotflattened around zero emission. This observation corresponds well withthe details from Table 1, where the total cost increase started to flattenout at the same penalty cost. In addition, the same observation wasmade regarding the MEFCC for this penalty cost in Fig. 2. The figureshowed that a start inventory at 0 could achieve zero emission forthe 0.5 EUR
kgCO2𝑒𝑞

, since the marginal future cost was not equal to thepenalty cost. However, as mentioned in Section 4.1, the uncertaintyinfluences this interval, where some scenarios would have compen-sation opportunities, and some would result in a penalty paid at theend. This observation fits with how the boxplot for this penalty cost isrepresented in Fig. 4. For the favorable scenarios, the zero emission goalis within reach and the end inventory saturates at this level. However,the ill-favored scenario realizations lead to a range of inventory levelsup to 25 kgCO2𝑒𝑞 .Case 𝐸𝐿 = 0 in Fig. 4 ignores any consideration of electricitycost, only focusing on achieving zero emission during operation. This
𝐸𝐿 = 0 case shows that the ZEB is capable of achieving this goal ifdisregarding the cost of operation. When comparing to the cases withmulti-objective focus, the output is similar to the highest penalty coststested. For a penalty cost between 1–10 EUR

kgCO2𝑒𝑞
, the end inventory isclose to zero emission while also accounting for ill-favored scenarios.From Table 1, the 10 EUR

kgCO2𝑒𝑞
and 1 EUR

kgCO2𝑒𝑞
penalty costs come at anoperational cost increase of 4.8% and 4.5% compared to no penaltycost, respectively. The low cost increase difference between the twoaforementioned penalty costs shows that the operational cost increase isnot directly increasing in correspondence to the penalty cost. However,increasing penalty cost leads to fewer situations where one would riska possible future scenario leading to an increased penalty at the end.
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Fig. 3. Heatmap of the MEFCCs over a year with different penalty costs.

Fig. 4. Boxplot of the ending CO2𝑒𝑞 -inventory for the different penalty costs.

4.3. Operation of the building
The operation of a ZEB will change based on the future implicationsgiven by the EFCC included as input. With an increasing penalty cost,the primary goal for the multi-objective optimization problem shifts tofocus more on how to deal with the penalty cost at the end of the year.The EFCC changes the operational strategy regarding operational costfrom grid interaction for the ZEB, shown in Fig. 5.For the first day of the year 2017 in this analysis, as shown in Fig. 5,the grid interaction changes for a varying penalty cost. With a lowerpenalty cost, the operation focuses more on variation in electricityprice, shifting electricity import more towards the night and afternoon

Fig. 5. The operational strategy during the first day for different penalty costs for aspecific scenario. All cases have the same initial CO2𝑒𝑞 -inventory at start of operation.

where the electricity prices are normally lower. This strategy adjustswhen the penalty cost increases, as the hourly CO2𝑒𝑞-intensities have adifferent pattern than the electricity price for this day. With a higherintensity during the night and morning, the operational strategy forincreasing penalty cost avoids high import of electricity for this period.In addition, there are periods where the import is lowered to 0 for thehigh penalty costs, which is to avoid high import of CO2𝑒𝑞 emission.The decrease of import causes a rebound effect later during the day,
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Fig. 6. Overview of hourly CO2𝑒𝑞 -intensities for the Nordic bidding zones in 2017.

where the import increases with two high spikes during the eveningfor the 1 EUR
kgCO2𝑒𝑞

penalty cost.The operational strategy in Fig. 5 is during the first day of the yearduring winter. Periods of 0 import and high import spikes during theevening show an abnormal import strategy. This strategy indicates im-port during hours where there is increased risk of congestion in the grid.As discussed in [10], Norwegian bidding zones have tendencies wherethe electricity price and CO2𝑒𝑞-intensity have opposite peaks duringoperation. The prices are low when the intensity is high and vice versa.This correlation is tied to the high amount of dispatchable hydropowersources available, which can store their water for production based onwhen the prices are highest, which then gives a high share of renewableenergy when the electricity is needed the most. During hours withlower prices, the demand can be met with import from other biddingzones outside of Norway. NO2 is connected to both the Netherlandsand Denmark, which when exporting to NO2 can give higher CO2𝑒𝑞-intensity. Thus, this indicates that Norway with hydropower requiresZEBs to implement strategies that might go against a common strategyfor the use of flexible assets, if hourly CO2𝑒𝑞-intensities are to be used.
4.4. Comparison of emission compensation in DK1

Hourly average CO2𝑒𝑞-intensity for bidding zones is tied togetherwith the energy mix and interconnectors between each bidding zone.The energy mix is what not only comprises the CO2𝑒𝑞-intensity onintensity levels, but also in the variation of intensity as some energysources are intermittent and depend on the weather and other factors.The variations in the Nordic countries are shown in Fig. 6, where wesee that both Norway and Sweden have the lowest intensity values.The intensity levels and variation in Norway are influenced by thehigh hydropower production [41]. For Denmark, the CO2𝑒𝑞-intensity ishigher and with more variation, due to a large amount of intermittentwind power and non-renewable energy sources [41]. Therefore, thevalue of operating a ZEB in DK1 and NO2 while considering emissioncompensation will have a different impact in each respective biddingzone. Not only will the variation in CO2𝑒𝑞-intensity play an importantrole, but also how the variation is tied together with the electricityprices.The Danish bidding zones experience more fluctuation in pricesand CO2𝑒𝑞-intensities than the Norwegian bidding zones for the year2017, as shown in Fig. 7. NO2 shows lower variation and expectedvalue of the CO2𝑒𝑞-intensity over the year, from the high share ofhydropower. DK1, with more intermittent wind power and interconnec-tions to continental Europe, is more prone to both variation and higherintensity levels in its electricity mix. Denmark has a high proportionof wind power, but other energy sources with higher emission outputare present, in addition to exchange with Germany and Norway. Thevariation in wind power output affects the average intensity during theyear, and these variations would promote load shifting of a ZEB for

Fig. 7. Overview of hourly CO2𝑒𝑞 -intensities and electricity prices for DK1 and NO2for the year 2017.

emission compensation to a higher degree than the NO2 bidding zonecan achieve.The performance of the SDP framework for DK1 is presented inFig. 8, where we include the MEFCC for different penalty costs atweek 0, and a heatmap for the penalty cost of 0.1 EUR
kgCO2𝑒𝑞

. The mainobservation from both figures is the CO2𝑒𝑞-inventory levels; a net zeroemission goal for operation can be achieved without considering apenalty cost at all. The MEFCC has a 0 marginal cost at an initialinventory at 0 kgCO2𝑒𝑞 in both figures, showing that there is sufficientcompensation when only considering cost of operation to achieve theemission goal. In addition, the MEFCC curve shows that there is highpotential to increase compensation further, where one could have aninitial value at 2000 kgCO2𝑒𝑞 with a penalty of 3 EUR
kgCO2𝑒𝑞

and still beclose to achieving zero emission. This high compensation potential isdespite relatively lower CO2𝑒𝑞-intensities during the summer periodwhere there is high PV production compared to the rest of the year. Thevariation in CO2𝑒𝑞-intensity promotes to a larger degree load shiftingthrough flexible assets to increase compensation.The economic performance for the different penalty costs ended onaverage with an inventory of −666 kgCO2𝑒𝑞 regardless of the penaltycost, which illustrates the zero emission goal is achieved with normaloperation without emission penalty. The ZEB used for this case studyhas sufficient PV production, together with flexible assets, to adjustimport and export of electricity to cost-optimal time periods, withoutconsidering the emission inventory. Fig. 9 presents the correlationbetween CO2𝑒𝑞-intensity and electricity price for NO2 and DK1 overweek 7 in 2017. Week 7 was chosen as it had varying CO2𝑒𝑞-intensityand electricity prices in DK1 during late winter, where negative pricesoccurred for some hours.For DK1 in Fig. 9, the correlation with intensity and price fits anoperational strategy trying to minimize cost of operation; the intensityin the grid is high with high prices, and the intensity decreases morewhen the price decreases. Due to the intermittent wind production,more wind and lower intensity pushes the price down, favoring moreconsumption in terms of cost savings and emission inventory. For NO2,this trend is not shown, rather, the opposite trend is occurring morefrequently due to the dispatchable hydropower. Therefore, operationin NO2 would require more change of operational strategy when con-sidering emission inventory than for DK1. In addition, an operationalstrategy with an increasing focus on emission compensation wouldrequire higher operational costs for NO2 than for DK1. The observationshows that a ZEB with a zero emission goal is influenced to a greater ex-tent by both the location, type of renewable generation in the electricitymix, and the temporal CO2𝑒𝑞-intensity. The Danish case shows that withhigher variation of CO2𝑒𝑞-intensity, and correlation between electricityprices and CO2𝑒𝑞-intensity, a ZEB is more capable of achieving net zeroemission. In addition, the ZEB will have more capacity to deal withembodied emissions during operation, compensating for other phasesduring the ZEB’s lifetime.
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Fig. 8. Results of the SDP framework for DK1.

Fig. 9. Correlation between electricity prices and CO2𝑒𝑞 -intensities in NO2 and DK1 for week 7.
4.5. Limitations in this work

The work and results for the Danish and Norwegian cases havedemonstrated the value of the optimization model and SDP-algorithmfor building operation taking into account emission compensation.However, it is important to note the limitations of the presented ap-proach, and what needs to be considered to implement this approachin practice.Applications for automatic demand response with flexible assets arelimited in real-world systems. Today, there exist pilot projects and localmarkets to promote end-user flexibility. However, they vary in differentdegrees depending on the regions and countries that the end-usersare located in. In Norway, hourly electricity prices for end-users hasbeen implemented through the roll-out of smart meters to residentialand small business customers, while in France, flexibility markets forend-users are emerging and increasing in participation [42]. Enablingefficient market designs and price mechanisms for end-user flexibilityis expected to increase the role of demand-side management on theend-user level in the future, which in turn can enable compensating
CO2𝑒𝑞-emissions from end-users.Currently, real-time tracking CO2𝑒𝑞-intensity and -inventory for end-users are not accounted completely during the power system operation.The power sector is primarily accounting for production-based emis-sions [11]. However, the consumer-based accounting methods, e.g., theproposed SDP-algorithm can assist end-users in tracking their emissionimpact over an operating year, based on both previous achievementsand future compensation potential. This will particularly be relevant forZero Emission Buildings and Neighborhoods, which has set clear long-term goals for the climate footprint: These users require operational

tools to ensure that their day-to-day energy use is in line with thelong-term goals.
5. Conclusion

Operating a zero emission building (ZEB) while accounting for bothcost of operation and the hourly average grid CO2𝑒𝑞-intensities over thecourse of a year requires the incorporation of a long-term strategy intothe short-term operational decision-making process. Optimal operationof a ZEB requires accurate representation of both the CO2𝑒𝑞-inventoryto handle seasonal variations, and the cost-optimal time to use availableflexible assets to increase emission compensation. We present a modelthat optimizes the operational strategy for emission compensation overa year, when trying to cost-optimally achieve zero emission for aZEB during operation. Using a stochastic dynamic programming (SDP)framework, expected future cost curves (EFCCs) are generated, rep-resenting the future cost based on the current CO2𝑒𝑞-inventory. TheEFCC provides an overview of the marginal future value for increasing
CO2𝑒𝑞-compensation now versus later, throughout the year.The proposed model was applied to a realistic Norwegian buildinglocated in the Norwegian bidding zone NO2 for the year 2017, tofind the cost-optimal strategy for net zero emission. The operationalstrategy was tested for varying penalty costs at the end of the year.With an increasing penalty cost, the emission compensation increased,to counteract the penalty cost paid at the end. This is achieved byutilizing the available flexible assets in the ZEB to shift electricityimport and export based on the variations in hourly average CO2𝑒𝑞-intensity. A higher penalty cost made the flexible assets play a more
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critical role, where they balanced the increased cost of operation toincrease emission compensation against the future savings showed bythe EFCCs. In addition, the temporal variation of the energy mix indifferent bidding zones impacts the operational strategy. DK1 showeda higher possibility of emission compensation, due to both highervariation in CO2𝑒𝑞-intensity and better correlation between electricityprices and CO2𝑒𝑞-intensity, compared to NO2.When analyzing the economic performance over a year in NO2,the results showed that a penalty cost of 10 EUR

kgCO2𝑒𝑞
met the net zeroemission requirement at an expected total cost increase of 4.8% com-pared to not considering emission compensation. Without consideringthe emission compensation, the end CO2𝑒𝑞-inventory was on average at146.5 kgCO2𝑒𝑞 . Net zero emission was achievable from a penalty costof 0.5 EUR

kgCO2𝑒𝑞
and above. When increasing the penalty cost further, theaverage ending inventory reached closer to net zero emission and morecases reached zero emission, despite dealing with uncertainty duringoperation such as thermal demand and local production.The operational strategy provided higher peaks of import withhigher penalty costs, which could be at times when the electricity pricesare high. With higher peaks at times with higher prices, this unnaturalstrategy could counteract congestion management, promoting furtherstudies into how emission compensation can be performed from gridinteraction. For instance, the introduction of marginal CO2𝑒𝑞-intensitiescould be investigated. In addition, looking into embodied emissions forother phases during the lifetime of a ZEB would place more emphasison the potential within the operational phase for compensation.
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