
O
lav M

ilian Schm
itt G

ran

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Olav Milian Schmitt Gran

Reduced Order Modeling Techniques
for Non-Affine Problems in Solid
Mechanics

Master’s thesis in Industrial Mathematics
Supervisor: Trond Kvamsdal
Co-supervisor: Eivind Fonn, Kjetil A. Johannessen
June 2022M

as
te

r’s
 th

es
is

Olav Milian Schmitt Gran

Reduced Order Modeling Techniques
for Non-Affine Problems in Solid
Mechanics

Master’s thesis in Industrial Mathematics
Supervisor: Trond Kvamsdal
Co-supervisor: Eivind Fonn, Kjetil A. Johannessen
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

To enable the full power of the offline-online concept in Reduced Order Modelling (ROM) the
parametrized problem must be affine under variation of the parameters. However, many relevant
problems, in particular those involving parametrized geometry, are not affine. The present master
project aims to develop techniques for handling such cases applied to solid mechanics. This is
done through the development and testing of the Matrix Least Squares technique, where Matrix
Least Squares refers to a least square fitting problem for matrices.

In the case studies, we study three different cases of geometry deformations on a rectangle using
the plane stress problem of Constant body force in 2D. Here we also restrict ourselves to the cases
where there is some prescribed displacement on parts of the boundary. (i) The body force, (ii) the
prescribed displacement, and (iii) the prescribed traction, on the other parts of the boundary, are
independent of the material parametrization parameters we choose, i.e. the domain and thereby
its boundary depend on the geometric parametrization parameters we choose. This leads us to
testing and observing the effect of the Matrix Least Squares technique on affine and non-affine
problems.

The conclusion from this thesis is that the developed Matrix Least Square technique performs
well when we have enough snapshots and are well within the maximum valid geometry parameter
range for the Taylor expansion. This is because when using it on a problem with over 10 000
degrees of freedom we observed a computational speedup of order 600 and the technique splits
the matrices of an affine problem as desired. We also conclude that the overall objective of the
thesis is achieved since we first thoroughly studied the basic theory behind the reduced basis
methods using finite elements, presented the Matrix Least Square technique, and applied the
theory to our restricted cases of the Linear Elasticity Equations. Then secondly, we built a
solver and tested it, and then finally, we used it to test the Matrix Least Square technique and
studied a simple numerical example using the technique for different non-affine geometries. For
future work, we suggest to investigate the use of sparse snapshot generation, the extension to
the 3D case, even more complex geometry and other partial differential equations.

i

ii

Sammendrag

For å aktivere den fulle kraften til offline-online konseptet i Redusert Ordens Modellering (ROM),
må det parametriserte problemet være affint under variasjon av parameterne. Imidlertid er
mange relevante problemer, spesielt de som involverer parametrisert geometri, ikke affine. Denne
masteroppgaven har som mål å utvikle teknikker for håndtering av slike problemer anvendt
på solidmekanikk. Dette gjøres gjennom utvikling og testing av Matrise Minste Kvadraters-
teknikken, der Matrise Minste Kvadraters refererer til et minste kvadraters tilpasningsproblem
for matriser.

I casestudiene studerer vi tre forskjellige tilfeller av geometrideformasjoner på et rektangel ved å
bruke planspenningstilfelle-problemet med Konstant Volumkraft i 2D. Her begrenser vi oss også
til de tilfellene hvor det finnes foreskrevet forskyvning på deler av randen. (i) Volumkraften, (ii)
den foreskrevne forskyvningen og (iii) den foreskrevne trekkraften, på de andre delene av randen,
er uavhengige av de materielle parametriseringsparametrene vi velger, dvs. domenet og dermed
dets rand avhenger av de geometriske parametriseringsparametere vi velger. Dette fører oss til
å teste og observere effekten av Matrise Minste Kvadraters-teknikken på affine og ikke-affine
problemer.

Konklusjonen fra denne oppgaven er at den utviklede Matrise Minste Kvadraters-teknikken
fungerer godt når vi har nok øyeblikksbilder og er godt innenfor det maksimale gyldige geo-
metriparameterrommet for Taylor-utviklingen. Dette er fordi når vi brukte det på et problem
med over 10 000 frihetsgrader, observerte vi en beregningsmessig tidsbesparelse av størrelsesorden
600 og teknikken deler opp matrisene til et affint problem som ønsket. Vi konkluderer også med
at det overordnede målet med oppgaven er oppnådd siden vi først grundig studerte den grunnleg-
gende teorien bak redusert basis modellering ved bruk av endelige elementer, presenterte Matrise
Minste Kvadraters-teknikken og anvendte teorien på våre begrensede tilfeller av de Lineære Elas-
tisitetsligningene. For det andre bygget vi en løser og testet den, og til slutt bruke vi den til å
teste Matrise Minste Kvadraters-teknikken og studerte et enkelt numerisk eksempel ved å bruke
teknikken for forskjellige ikke-affine geometrier. For fremtidig arbeid foreslår vi å undersøke
bruken av sparsom øyeblikksbildegenerering, utvidelsen til 3D, enda kompleksere geometri og
andre partielle differensiallikninger.

iii

iv

Acknowledgements

I would like to thank my supervisors Trond Kvamsdal, Eivind Fonn and Kjetil A. Johannessen,
who have been guiding and helping me though this Master thesis for the past months. Especially
I would like to thank Fonn for writing a script for disk-storage of matrices and vectors, and an
implementation of the Matrix Least Squares algorithm. This script helped me greatly. However,
all my supervisors deserve a special thanks for keeping me on track with this thesis. Next, I
would like to thank my parents for proofreading the thesis and tips.

v

vi

Contents

Abstract i

Sammendrag iii

Acknowledgements v

Table of Contents viii

List of Tables ix

List of Figures xv

List of Algorithms xvii

Abbreviations xix

1 Introduction 1
1.1 Background . 1
1.2 Objectives and Research Topic . 2
1.3 Research Approach . 2
1.4 Working Method and Report Structure . 2

2 Theory 5
2.1 Parametrized Partial Differential Equations . 5

2.1.1 Strong Formulation . 5
2.1.2 Weak Formulation . 6
2.1.3 Well-posedness of the Weak Formulation 6
2.1.4 Sobolev Spaces . 7
2.1.5 The Energy Norm . 8

2.2 The Galerkin Finite Element Method . 8
2.2.1 Galerkin High-fidelity Approximation . 9
2.2.2 Galerkin Orthogonality . 10

2.3 The Linear Lagrange Rectangle Element . 10
2.4 Reduced Basis Methods . 13

2.4.1 Galerkin Reduced-order Approximation 14
2.4.2 The Affine Parametric Dependence Assumption 15
2.4.3 Error Computations . 16
2.4.4 The Formal Obtaintion of the Galerkin RB Problem 17
2.4.5 The Offline and Online Phases . 18

2.5 Proper Orthogonal Decomposition . 18

vii

CONTENTS

2.5.1 Singular Value Decomposition . 19
2.5.2 Orthogonal Projection Operators . 20
2.5.3 POD for Parametrized Problems . 21
2.5.4 POD with Respect to Energy Inner Product 22

2.6 Matrix Least Squares . 24
2.6.1 The Matrix Least Square Problem . 25
2.6.2 A Simple Matrix Least Square Problem 25
2.6.3 The General Matrix Least Square Problem 27

2.7 The Linear Elasticity Equations . 28
2.7.1 Strong Formulation . 28
2.7.2 Weak Formulation . 29
2.7.3 Mapping to the Reference Domain . 30
2.7.4 The Algebraic System . 34

3 Case Studies 39
3.1 An Introduction to Our Numerical Cases . 39

3.1.1 Case 1 — Scaling of a Rectangle . 39
3.1.2 Case 2 — Dragging One Corner of a Rectangle 40
3.1.3 Case 3 — Dragging All Corners of a Rectangle 42
3.1.4 Some General Notes . 44

3.2 The Patch Test . 44
3.2.1 General Patch Test Setup . 46
3.2.2 Results From the Patch Tests . 46
3.2.3 A Note on the use of Bilinear Elements 49

3.3 Determining the Matrix Least Squares Functions 49
3.3.1 The Reciprocal of the Determinant . 50
3.3.2 Approximating a Function on the Reference Domain 51
3.3.3 Approximating the Determinant and the Numerators of the Encoding Matrix 51
3.3.4 Determining the Matrix Least Squares Functions. 52

3.4 Constant Body Force in 2D . 53
3.5 Discussions . 54

3.5.1 Testing the Matrix Least Squares algorithm; Case 1 — Scaling of a Rectangle 55
3.5.2 Problems with the Geometry Range; Case 2 — Dragging One Corner of a

Rectangle . 59
3.5.3 Geometry Range Changes . 64
3.5.4 Using a Smaller Geometry Range; Case 2 — Dragging One Corner of a

Rectangle . 64
3.5.5 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle 67
3.5.6 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One

Corner of a Rectangle . 72
3.6 Summarizing the Results . 81

4 Conclusion and Future Work 83
4.1 A Summary of the Main Results . 83
4.2 Conclusions . 83
4.3 Recommendations of Future Work . 84

Bibliography 84

viii

List of Tables

3.1 Patch Test — The different test cases for the exact solution uex in the patch tests. 44
3.2 Patch Test: Case 1 — Scaling of a Rectangle; A comparison of the displacement

given by exact solution uex and finite element approximation uh in the one free
node (2, 0.15) for the patch tests considering Case 1 — Scaling of a Rectangle,
section 3.1.1, using Lx = 4 and Ly = 0.3. 46

3.3 Patch Test: Case 2 — Dragging One Corner of a Rectangle; A comparison of the
displacement given by exact solution uex and finite element approximation uh in
the one free node (0.55, 0.45) for the patch tests considering Case 2 — Dragging
One Corner of a Rectangle, section 3.1.2, using µ1 = 0.2 and µ2 = −0.2. 47

3.4 Patch Test: Case 3 — Dragging All Corners of a Rectangle; A comparison of the
displacement given by exact solution uex and finite element approximation uh in
the one free node (0.55, 0.45) for the patch tests considering Case 3 — Dragging All
Corners of a Rectangle, section 3.1.3, using µ1, µ2, µ3 = −0.1 and µ4, µ5, µ6 = 0.1. 48

3.5 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The relative errors between the high-fidelity solution uh(µ) and
the high-fidelity Matrix Least Square solution uh,mls(µ) solving the problem of
Constant Body force in 2D using n = 90 elements along the axes and the geometry
parameter range Ḡqs = (−0.3, 0.3) for order p = 19. 73

3.6 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; Computational details for the high-fidelity (HF) and reduced-order
(RB) model built form solving of the problem of Constant Body force in 2D using
n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3),
order p = 19, µ1 = 0.2 and µ2 = −0.2, and εpod = 10−2 for the proper orthogonal
decomposition (POD) with respect to the energy norm, algorithm 2. *The time for
saving one snapshot is based on saving the snapshot for µ1 = 0.2 and µ2 = −0.2
multiple times, different µ1, µ2 may result in a different time. **The time to save
one snapshot is multiplied by 252 = 625 to get the total time for saving snapshots,
in addition comes the time of one HF assembly for the special mean snapshot.
Note that the use off multiprocessing to save snapshots may speedup the saving
of snapshots. 80

ix

LIST OF TABLES

x

List of Figures

2.1 The linear system in equation (2.25) with Ah(µ) ∈ RNh×Nh ,uh(µ) ∈ RN
h and

f(µ) ∈ RN
h . 9

2.2 Geometric interpretation of the Galerkin orthogonality 10
2.3 Bilinear Lagrange Rectangle Element — Here "•" indicates the nodal value eval-

uation at the point where the dot is located. 11
2.4 The two Lagrange basis functions on the line element [0, 1]. 12
2.5 The Lagrange basis functions on the line [0, 1] divided into 10 elements. 12
2.6 The linear systems of equations (2.41) and (2.45) with Ah = Ah(µ) ∈ RNh×nh ,uN =

uN (µ) ∈ RN ,fh = fh(µ) ∈ RNh , V ∈∈ RNh×N , AN = AN (µ) ∈ RN×N , and
fN = fN (µ) ∈ RN . 15

2.7 The affine reduced basis (RB) workflow at a glance. 18
2.8 The non-affine reduced basis (RB) workflow at a glance. 28

3.1 Patch Test — Domains with n = 2 element along the axes. 45
3.2 Patch Test: Case 1 — Scaling of a Rectangle; The displacement given by the

high-fidelity solutions of two patch tests for Case 1 — Scaling of a Rectangle,
section 3.1.1, using Lx = 4 and Ly = 0.3. The displaced position is shown in
gray with shading, whereas the initial position is shown in light gray without
shading, i.e. the displaced position is the position being displaced to the right.
The solutions were obtained using the mean-values for the Young modulus E and
the Poisson coefficient ν. Please note the different scales on the x and y axes. . . 47

3.3 Patch Test: Case 2 — Dragging One Corner of a Rectangle; The displacement
given by the high-fidelity solutions of two patch tests for Case 2 — Dragging
One Corner of a Rectangle, section 3.1.2, using µ1 = 0.2 and µ2 = −0.2. The
displaced position is shown in gray with shading, whereas the initial position is
shown in light gray without shading, i.e. the displaced position is the position
being displaced to the right. The solutions were obtained using the mean-values
for the Young modulus E and the Poisson coefficient ν. Please note the different
scales on the x and y axes. 48

3.4 Patch Test: Case 3 — Dragging All Corners of a Rectangle; The displacement
given by the high-fidelity solutions of two patch tests for Case 3 — Dragging All
Corners of a Rectangle, section 3.1.3, using µ1, µ2, µ3 = −0.1 and µ4, µ5, µ6 = 0.1.
The displaced position is shown in gray with shading, whereas the initial position
is shown in light gray without shading, i.e. the displaced position is the position
being displaced to the right. The solutions were obtained using the mean-values
for the Young modulus E and the Poisson coefficient ν. Please note the different
scales on the x and y axes. 49

xi

LIST OF FIGURES

3.5 Constant Body force in 2D — A picture of describing the Constant Body force in
2D problem, showing the body force f and boundary conditions on the domain
Ω = Ω̃ = [0, 1]2. 54

3.6 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle;
The two extremes of the geometry range Ḡsr = (0.1, 5.1) for Lx and Ly using
n = 2 elements per axes. 55

3.7 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle;
The relative errors between the high-fidelity solution uh(µ) and the high-fidelity
Matrix Least Square solution uh,mls(µ) solving the problem of Constant Body
force in 2D using n = 20 elements along the axes and the geometry parameter
range Ḡsr = (0.1, 5.1). 56

3.8 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle;
The relative contribution per term solving the problem of Constant Body force in
2D using n = 20 elements along the axes, the geometry parameter range Ḡsr =
(0.1, 5.1) and order p = 2. The terms are ordered as stated in remark 3.14. 57

3.9 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle;
The relative information content for the solving of the problem of Constant Body
force in 2D using n = 20 elements along the axes, the geometry parameter range
Ḡsr = (0.1, 5.1), order p = 2 and εpod = 10−2. 58

3.10 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
singular values for the solving of the problem of Constant Body force in 2D using
n = 20 elements along the axes, the geometry parameter range Ḡsr = (0.1, 5.1),
order p = 2 and εpod = 10−2. 58

3.11 Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
relative errors between the high-fidelity solution uh(µ) and the recovered reduced-
order solution V uN (µ) for solving the problem of Constant Body force in 2D using
n = 20 elements along the axes, the geometry parameter range Ḡsr = (0.1, 5.1),
order p = 2 and εpod = 10−2. The chosen N = 4 is marked by the black dashed
line. 59

3.12 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The two extremes of the geometry parameter range Ḡdr = (−0.49, 0.49) for
µ1, µ2 = −0.49 and µ1, µ2 = 0.49 for n = 2 elements per axes. 60

3.13 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative errors between the high-fidelity solution uh(µ) and the high-
fidelity Matrix Least Square solution uh,mls(µ) solving the problem of Constant
Body force in 2D using n = 20 elements along the axes and the geometry para-
meter range Ḡdr = (−0.49, 0.49). 61

3.14 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative contribution per term solving the problem of Constant Body
force in 2D using n = 20 elements along the axes and order p = 19. 61

3.15 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative information content for the solving of the problem of Constant
Body force in 2D using n = 20 elements along the axes, geometry parameter range
Ḡdr = (−0.49, 0.49), order p = 19 and and εpod = 10−2. 62

3.16 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The singular values for the solving of the problem of Constant Body
force in 2D using n = 20 elements along the axes, geometry parameter range
Ḡdr = (−0.49, 0.49), order p = 19 and and εpod = 10−2. 62

xii

LIST OF FIGURES

3.17 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative errors between the high-fidelity solution uh(µ) and the re-
covered reduced-order solution V uN (µ) for solving the problem of Constant Body
force in 2D using n = 20 elements along the axes, geometry parameter range
Ḡdr = (−0.49, 0.49), order p = 19 and εpod = 10−2. The chosen N = 11 is
marked by the black dashed line. 63

3.18 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The two extremes of the geometry parameter range Ḡdr = (−0.3, 0.3) for
µ1, µ2 = −0.3 and µ1, µ2 = 0.3 for n = 2 elements per axes. 64

3.19 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative errors between the high-fidelity solution uh(µ) and the high-
fidelity Matrix Least Square solution uh,mls(µ) solving the problem of Constant
Body force in 2D using n = 20 elements along the axes and the geometry para-
meter range Ḡdr = (−0.3, 0.3). 65

3.20 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative contribution per term solving the problem of Constant Body
force in 2D using n = 20 elements along the axes and order p = 19. 66

3.21 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative information content for the solving of the problem of Constant
Body force in 2D using n = 20 elements along the axes, the geometry parameter
range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. 66

3.22 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The singular values for the solving of the problem of Constant Body force
in 2D using n = 20 elements along the axes, the geometry parameter range
Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. 67

3.23 Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rect-
angle; The relative errors between the high-fidelity solution uh(µ) and the re-
covered reduced-order solution V uN (µ) for solving the problem of Constant Body
force in 2D using n = 20 elements along the axes, the geometry parameter range
Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. The chosen N = 8 is marked
by the black dashed line. 68

3.24 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; Two of the
extremes for the geometry parameter range Ḡqs = (−0.1, 0.1) for n = 2 elements
per axes using of µ1, µ2, µ5, µ6 = −0.1 and µ3, µ4 = 0.1 for the left figure, and
µ1, µ2, µ5, µ6 = 0.1 and µ3, µ4 = −0.1 for the right figure. 69

3.25 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least
Square solution uh,mls(µ) solving the problem of Constant Body force in 2D using
n = 20 elements along the axes and the geometry parameter range Ḡqs = (−0.1, 0.1). 69

3.26 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
contribution per term solving the problem of Constant Body force in 2D using
n = 20 elements along the axes and order p = 19. 70

3.27 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
information content for the solving of the problem of Constant Body force in
2D using n = 20 elements along the axes, the geometry parameter range Ḡqs =
(−0.1, 0.1), order p = 2 and εpod = 10−2. 71

3.28 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The singular
values for the solving of the problem of Constant Body force in 2D using n = 20
elements along the axes, the geometry parameter range Ḡqs = (−0.1, 0.1), order
p = 2 and εpod = 10−2. 71

xiii

LIST OF FIGURES

3.29 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
errors between the high-fidelity solution uh(µ) and the recovered reduced-order
solution V uN (µ) for the solving of the problem of Constant Body force in 2D using
n = 20 elements along the axes, the geometry parameter range Ḡqs = (−0.1, 0.1),
order p = 2 and εpod = 10−2. The chosen N = 11 is marked by the black dashed
line. 72

3.30 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The relative information content for the solving of the problem of
Constant Body force in 2D using n = 90 elements along the axes, the geometry
parameter range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. 74

3.31 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The singular values for the solving of the problem of Constant Body
force in 2D using n = 90 elements along the axes, the geometry parameter range
Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. 74

3.32 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The relative errors between the high-fidelity solution uh(µ) and
the recovered reduced-order solution V uN (µ) for the solving of the problem of
Constant Body force in 2D using n = 90 elements along the axes, the geometry
parameter range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. The chosen
N = 8 is marked by the black dashed line. 75

3.33 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The two first POD modes for the solving of the problem of Constant
Body force in 2D using n = 90 elements along the axes, the geometry parameter
range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. The plots to the left
show the whole picture, whereas the plots to the right zoom in at the end x = 1. 76

3.34 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The third and fourth POD modes for the solving of the problem of
Constant Body force in 2D using n = 90 elements along the axes, the geometry
parameter range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2. The plots to
the left show the whole picture, whereas the plots to the right zoom in at the end
x = 1. 77

3.35 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The displacement in the high-fidelity (HF) solution uh(µ) for the
solving of the problem of Constant Body force in 2D using n = 90 elements along
the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19, and
µ1 = 0.2 and µ2 = −0.2. The displaced position is shown in gray, whereas the
initial position is shown in black, i.e. the displaced position is the position being
displaced to the right. 78

3.36 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The displacement in the recovered reduced-order (RB) solution
V uN (µ) for the solving of the problem of Constant Body force in 2D using n = 90
elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order
p = 19, εpod = 10−2, N = 8 RB degrees of freedom, and µ1 = 0.2 and µ2 = −0.2.
The displaced position is shown in gray, whereas the initial position is shown in
black, i.e. the displaced position is the position being displaced to the right. . . . 78

xiv

LIST OF FIGURES

3.37 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The recovered von Mises stress in the high-fidelity (HF) solution
uh(µ) for the solving of the problem of Constant Body force in 2D using n = 90
elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order
p = 19, and µ1 = 0.2 and µ2 = −0.2. Note that the von Mises stress approaches
infinity at (0, 0), therefore the plots are limited to a maximum stress of 200 000. . 79

3.38 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The recovered von Mises stress in the recovered reduced-order (RB)
solution V uN (µ) for the solving of the problem of Constant Body force in 2D using
n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3),
order p = 19, εpod = 10−2, N = 8 RB degrees of freedom, and µ1 = 0.2 and
µ2 = −0.2. Note that the von Mises stress approaches infinity at (0, 0), therefore
the plots are limited to a maximum stress of 200 000. 79

xv

LIST OF FIGURES

xvi

List of Algorithms

1 The algorithm for computing the POD basis described in section 6.3.1 of Reduced
Basis Methods for Partial Differential Equations by Quarteroni, Manzoni and
Negri (QMN2016) [1]. 22

2 The algorithm for computing the POD basis with respect to the Xh norm in section
6.3.2 of Reduced Basis Methods for Partial Differential Equations by Quarteroni,
Manzoni and Negri (QMN2016) [1]. 24

3 An algorithm solving problem (2.6.3) by least squares. 27
4 An algorithm to construct the set of Martix Least Square functions Gmls =

{gq(µ)}Qq=0 given the order p, the set of geometry parameters µgeo and the geo-
metry parameter range Ggeo. The order p is interpreted as in remark 3.9. 53

xvii

LIST OF ALGORITHMS

xviii

Abbreviations

dofs — Degrees of freedom

FDM — Finite difference method

FEM — Finite element method

FVM — Finite volume method

HF — High-fidelity

MLS — Matrix Least Square

PCA — Principal component analysis

PDE — Partial differential equation

POD — Proper orthogonal decomposition

RB — Reduced basis

ROM — Reduced order model

SVD — Singular value decomposition

xix

xx

Chapter 1

Introduction

1.1 Background

In several engineering disciplines, partial differential equations (PDEs) are used to describe phys-
ical and simulated problems. The problems may be as simple as for instance the heat transfer
in an object or the airflow around a stationary object. However, the problems may also be as
complicated as adding physical realism to any digital twin [2]. In common for these physical
problems is that the governing equation, i.e. the PDEs, often are driven by the laws of nature.
Due to complexities, the equations need to be solved numerically on computers quite often.
Therefore it is of interest to solve these problems accurately and if possible efficiently.

Conventional methods for solving PDEs include well-established techniques such as Finite Volume
Methods (FVM), Finite Difference Methods (FDM) and Finite Element Methods (FEM). Com-
mon to all these methods is that they give rise to huge systems to accurately model physical
problems, often the number of degrees of freedom will be in the millions or billions [3]. Models
arising from such physical problems are usually classified as high-fidelity models.

This makes the computation of the high-fidelity models quite demanding, even in our time of con-
stantly increasing available computational power, accompanied by the progressive improvement
of algorithms for solving large linear systems [1]. This is at odds with the ever increasing demand
for real-time solutions, which is particularly relevant in optimization, control systems, inverse
and inference problems, and uncertainty quantification [3]. Common for many of these solutions
is that the PDE in question is parametrized by a suitably small number of input parameters.
We usually call these PDEs parametrized PDEs.

This leads to the need for reduction. The main motivation for the reduced basis (RB) or reduced-
order (ROM) methods. As stated in [1] the RB methods represent a remarkable instance of
reduced-order modelling techniques. This is because they exploit the parametric dependence,
i.e. the affinity, of the PDE solution. They do so by combining a handful of high-fidelity solutions
computed for a set of parameter values. They build a basis for approximating the general solution
function space in a low-cost and low-dimensional way, by decreasing the degrees of freedom. This
leads to a great computational speed up, but on the cost of some level of accuracy [2]. However,
many relevant problems, in particular those involving parametrized geometry, are not affine.
This means that when the problem can not be represented affinely, we need an approximated
and affine representation. In the case with geometric parameters, i.e. parametrized geometry,
this can lead to significantly more complicated representations as seen in [3].

As mentioned in both [1] and [2] the RB methods are divided into two stages, the offline and

1

CHAPTER 1. INTRODUCTION

online stages. The offline stage is run only once, and the online stage is run once for each problem
instance to solve. Here we off-load as much work as possible from the online to the offline stage,
making the cost per online execution very small. In other words, this means that the online stage
is cheap and computationally fast, since the slow offline stage has been computed beforehand
and is considered “free” [2].

1.2 Objectives and Research Topic

The tasks for this thesis was given as:

To enable the full power of the offline-online concept in Reduced Order Modelling (ROM)
the parametrized problem must be affine under variation of the parameters. However, many
relevant problems, in particular those involving parametrized geometry, are not affine. The
present master project aims to develop techniques for handling such cases applied to solid
mechanics.

1.3 Research Approach

In this thesis will study geometry deformations whiles solving the Linear Elasticity Equations.
We observe that previous techniques, such as the one presented in [3], are based on mapping
to a reference domain and finding approximated and affine representations of the Jacobian of
the mentioned mapping and its inverse. However, in contrast to previous techniques we find
approximated and affine representations after assembling the high-fidelity systems for different
choices of our parameters. This is done by treating each of the high-fidelity system matrices and
vectors as a snapshot. Choosing a basis for our parameters based on the approximated and affine
representations of the Jacobian and its inverse. This leads to a fitting problem, which we call
Matrix Least Squares. The result of the Matrix Least Squares fit is a set of matrices and vectors
representing an approximated and affine interpolation of the high-fidelity systems. Therefore the
aim of the present master thesis becomes to construct, present and test the Matrix Least Squares
technique.

1.4 Working Method and Report Structure

As seen above, several fields where reduced-order models can be applied, and several approaches
to construct these models exist. Especially for today’s age the use in digital twins is interesting.
However, in many cases, in particular those involving parametrized geometry, the problems are
not affine. Therefore the emphasis of this thesis is to construct, present and test the Matrix
Least Squares technique. This is done by using the Galerkin reduced basis method for the Linear
Elasticity Equations.

To do this we start by presenting the relevant FEM and ROM theory in chapter 2, before
continuing with the construction of the Matrix Least Squares method and the Linear Elasticity
Equations with a mapping to the reference domain. Here we also restrict ourselves to the cases
where there is some prescribed displacement on parts of the boundary. (i) The body force, (ii) the
prescribed displacement, and (iii) the prescribed traction, on the other parts of the boundary, are
independent of the material parametrization parameters we choose, i.e. the domain and thereby
its boundary depend on the geometric parametrization parameters we choose.

In chapter 3 start with an introduction to our numerical case, before preforming the Patch Test.
Continuing with chapter 3 we determine a basis for the Matrix Least Squares method, i.e. the
Matrix Least Squares Functions. We end chapter 3 by presenting the problem of constant body

2

CHAPTER 1. INTRODUCTION

force in 2D and discussing some numerical results, testing and observing the effect of the Matrix
Least Squares technique.

Finally, in chapter 4 we give a summary of the main results, and present our conclusion and
suggestions for further work.

The Python code building the solver, the Python code used in this thesis and the log files can
be found via the doi-link [4].

Finally, I would like to note that parts of this chapter and multiple sections in the theory chapter 2
are reused and partly rewritten or edited from my Specialization Project.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Theory

Since we will be solving the linear elasticity equations we in first section of this chapter present
some relevant theory for solving parametrized partial differential equations. Following Reduced
Basis Methods for Partial Differential Equations by Quarteroni, Manzoni and Negri
(QMN2016) [1] we then will be presenting the Galerkin finite element method and the con-
struction of a reduced-order method based on the Galerkin high-fidelity approximation using
the Proper Orthogonal Decomposition (POD) method. Next, since all the previous five sec-
tions assume that we have an affine problem we present the idea and theory behind the Matrix
Least Squares method. Lastly we apply the presented theory to the Linear Elasticity Equations
by presenting the strong and weak formulation, the mapping to the reference domain and the
resulting algebraic systems.

2.1 Parametrized Partial Differential Equations

As described in chapter 1 of QMN2016 [1], a parametrized partial differential equation (para-
metrized PDE) is a partial differential equation depending on some set of parameters. Let us
denote the input parameters by a vector, µ =

[
µ1 · · · µp

]⊤, which is the input parameters
belonging to the parameter space P ∈ Rp. The parameter space P is a closed and bounded
subset in the Euclidean space Rp, p ≥ 1. Then the exact solution of the parametrized PDE given
by the input parameters µ can be written as u(µ), where u : P → V is the map mapping any
µ ∈ P to the solution u(µ) belonging to a suitable function space V.

2.1.1 Strong Formulation

The strong formulation of a parametrized PDE is defined in section 3.1 of QMN2016 [1];

Let us denote by Ω ⊂ Rd, d = 1, 2, 3 denote the reference domain, V = V(Ω) a suitable
Hilbert space, V′ its dual. For every µ ∈ P let L(µ) : V → V′ denotes [sic] a second-order
differential operator and f(µ) : V → R a linear and continuous form on V, that is an
element of V′. In abstract from, the parametrized problem we focus on can be written as
follows:

given µ ∈ P, find the solution u(µ) ∈ V of

L(µ)u(µ) = f(µ) in V′. (2.1)

5

CHAPTER 2. THEORY

2.1.2 Weak Formulation

For the sake of construction and numerical approximation the weak formulation of problem (2.1)
as stated in section 3.1 of QMN2016 [1] is introduced;

given µ ∈ P, find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (2.2)

where the parametrized bilinear form a(·, ·;µ) : V× V → R is obtained from L(µ),

a(u(µ), v;µ) =V′ ⟨L(µ)u, v⟩V ∀u, v ∈ V, (2.3)

and encodes the differential operator. The linear form f(.;µ) : V → R denotes

f(v;µ) =V′ ⟨f(µ), v⟩V . (2.4)

As stated in chapter 5 in QMN2016 [1] the set of all solutions is called the solution manifold

M = {u(µ) ∈ V : µ ∈ P} ⊂ V. (2.5)

For more details in deriving the weak formulation we refer the interested readers to Numerical
Models for Differential Problems by Quarteroni (Q2009) [5] and the book by Tröltzsch [6].

Remark 2.1. It is possible to find a solution to the problem (2.1) through the weak formulation
even if the solution u is not twice differentiable, as seen in section 3.2.1 in Q2009 [5]. With
the example modelling the equilibrium configuration of an elastic string, where u is its vertical
displacement, and the string is fixed in both ends and pulled with a force at the middle of the
string, forming a V-shape. Here a solution is possible because the weak formulation weakens the
differentiability requirements, moving from a second-order differential problem to a first order
differential problem.

2.1.3 Well-posedness of the Weak Formulation

The well-posedness of the weak formulation (2.2) can in general be established by similar
arguments as in the Lax-Milgram Lemma and Neĉas Theorem, both found in chapter 2 of
QMN2016 [1]. Knowing this we present first present Lax-Milgram Lemma from section 2.2.1
of QMN2016;

Lemma 2.1 (Lax-Milgram). Let V be a Hilbert space, a : V×V → R a continuous, strongly
coercive bilinear form on V×V , and V → R a bounded linear functional on V. Then, the
abstract variational problem (P1) has a unique solution and it satisfies the stability estimate

∥u∥V ≤ 1

α
∥f∥V′ . (2.6)

Here α > 0 is the coercivity constant of a(·, ·) that exists when a(·, ·) is strongly coercive, i.e.

a(v, v) ≥ α∥v∥2V ∀v ∈ V. (2.7)

Next, we present the general well-posedness statement from section 3.1 of QMN2016;

6

CHAPTER 2. THEORY

Assuming that a(·, ·;µ) : V×V → R is continues over V×V for any µ ∈ P, i.e there exists
a constant γ̄ > 0 such that

γ(µ) = sup
v∈V

sup
w∈V

a(v, w;µ)

∥v∥V∥w∥V
< γ ∀µ ∈ P. (2.8)

Since f(µ) ∈ V′ for any µ ∈ P, also f(.,µ) is a continuous from, i.e there exists a constant
γ̄F > 0 such that

γF (µ) = sup
w∈V

f(w;µ)

∥w∥V
< γF ∀µ ∈ P. (2.9)

Here γ(µ) and γF (µ) represent the continuity factors of a(·, ·;µ) and f(.,µ). For stability,
we assume that there exist a constant β0 > 0 such that for each µ ∈ P,

β(µ) = inf
v∈V

sup
w∈V

a(v, w;µ)

∥v∥V∥w∥V
≥ β0, (2.10)

inf
w∈V

sup
v∈V

a(v, w;µ)

∥v∥V∥w∥V
> 0. (2.11)

Where we call β(µ) the inf-sup stability factor and we say that a(·, ·;µ) is inf-sup stable.

Provided that the continuity properties and the stability properties are verified, prob-
lem (2.2) admits a unique solution thanks to Neĉas Theorem. Furthermore, the following
stability estimate holds for all µ ∈ P

∥u(µ)∥V ≤ 1

β(µ)
∥f(.;µ)∥V′ ≤ 1

β0
∥f(.;µ)∥V′ (2.12)

A proof of the Lax-Milgram Lemma above can be seen in e.g section 3.4.1 of [7].

Remark 2.2. Note that the abstract variational problem (P1) not stated here is equal to the weak
formulation in (2.2) if we remove the dependence on µ.

Furthermore, from the general well-posedness statement above we see that the continuity prop-
erties (2.8) and (2.9) establish the continuity of a(·, ·;µ) and f(.;µ), and (2.10) establishes the
weak coercivity of a(·, ·;µ). With regards to the coercivity of a(·, ·;µ) we state the first remark
in section 3.1 of QMN2016 [1];

Remark 2.3. A particular case where the assumptions in (2.10)- (2.11) are verified is
when, for each µ ∈ P, there exists α0 > 0 such that

α(µ) = inf
v∈V

a(v, v;µ)

∥v∥2V
≥ α0. (2.13)

In this case a(·, ·;µ) is coercive and α(µ) is the coercive factor.

2.1.4 Sobolev Spaces

In section 2.1.2 the weak formulation was introduced. For the numerical analysis of the linear
elasticity equations in section 2.7 we need that the solution u(µ) and the test function v lie in
a certain space for the weak formulation to hold. In QMN2016 [1] this space is introduced as
the Sobolev Spaces H1(Ω) and H1

ΓD
(Ω), where ΓD is the Dirichlet part of the boundary Γ of our

domain Ω. To familiarize the reader with the notion of these spaces we refer to [8, 5], and state
the definitions (for k = 1) from section 2.4 in Q2009 [5];

7

CHAPTER 2. THEORY

Definition 2.1. Let Ω be an open set of Rd. We call the Sobolev space of order k = 1 on
Ω the space formed by the totality of functions of L2(Ω) whose (distributional) derivatives
up to the first order (k = 1) belong to L2(Ω):

H1(Ω) =
{
f ∈ L2(Ω) : Df ∈ L2(Ω)

}
. (2.14)

Using the definition above we define H1
ΓD

(Ω) as

H1
ΓD

(Ω) =
{
f ∈ H1(Ω) : f |ΓD

= 0
}
. (2.15)

The Sobolev spaces H1(Ω) are Hilbert spaces with respect to the following inner product

(f, g)H1(Ω) =

ˆ

Ω

fg dΩ+

ˆ

Ω

∇f · ∇g dΩ (2.16)

which induces the H1-norm

∥f∥H1(Ω) =
√
(f, g)H1(Ω). (2.17)

Finally, we define the H1-seminorm

|f |H1(Ω) = ∥∇f∥L2(Ω) (2.18)

2.1.5 The Energy Norm

Following the previous section we also want to define the problem dependent energy norm. We
do this through section 2.2.1 in QMN2016 [1];

When the bilinear form a(·, ·;µ) is symmetric — that is, a(v, w;µ) = a(w, v;µ) ∀v, w ∈ V
— it defines an inner product over V

(v, w)a = a (v, w) (2.19)

and the corresponding norm
∥.∥a =

√
a (., .) (2.20)

induced by this scalar product is called energy norm.

Concerning when the energy norm is defined, we make the following remark;

Remark 2.4. The energy norm is only defined when the bilinear for a(·, ·;µ) is symmetric
positive definite, i.e it is symmetric as described in the quote above and

a(v, v;µ) > 0 ∀v ∈ V \ {0}. (2.21)

2.2 The Galerkin Finite Element Method

In this section we present the details on deriving a linear system from the Galerkin problem as
this sets the foundation for the Galerkin reduced basis problem which we construction from the
Galerkin high-fidelity approximation.

8

CHAPTER 2. THEORY

Ah uh = fh

Figure 2.1. The linear system in equation (2.25) with Ah(µ) ∈ RNh×Nh ,uh(µ) ∈ RN
h and

f(µ) ∈ RN
h

2.2.1 Galerkin High-fidelity Approximation

To discretize problem (2.2) we introduce the approximation space Vh ⊂ V where we seek the
weak solution uh, which we also called the high-fidelity solution. This leads to the Galerkin
high-fidelity approximation of the weak formulation defined in section 3.2 of QMN2016 [1];

find uh(µ) ∈ Vh such that

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Vh. (2.22)

Remark 2.5. Note here that, the subscript h is related to the grid size of the high-fidelity system
and as noted above Vh is some finite-dimensional subspace of V.

Now following section 4.1 in Q2009 [5] we denote by Nh = dim(Vh) and {φi}Nh
i=1 the dimension

and basis for Vh. We can now write uh in therms of the basis

uh(µ) = uh(x;µ) =

Nh∑

j=1

u
(j)
h (µ)φj(x) (2.23)

where uh(µ) =
[
u
(1)
h (µ) . . . u

(Nh)
h (µ)

]⊤
holds the coefficients associated with the degrees

of freedom of uh(µ). Now since equation (2.22) holds for all ∀vh ∈ Vh we can write the test
function as vh(x) = φi(x). Then the Galerkin problem becomes

a

(
Nh∑
j=1

u
(j)
h (µ)φj (x) , φi (x) ;µ

)
= f (φi (x) ;µ)

Nh∑
j=1

a
(
u
(j)
h (µ)φj (x) , φi (x) ;µ

)
= f (φi (x) ;µ)

(2.24)

which must hold for all i = 1, . . . , Nh. Meaning that the Galerkin high-fidelity approximation is
equivalent to solving the linear system

Ah(µ)uh(µ) = fh(µ) (2.25)

where Ah(µ) ∈ RNh×Nh is the stiffness matrix and fh(µ) ∈ RNh is the right-hand side load
vector both depending on depending on µ, and with elements

(Ah (µ))ij = a (φj , φi;µ) 1 ≤ i, j ≤ Nh

(fh (µ))i = f (φi;µ) 1 ≤ i ≤ Nh

(2.26)

One can see the linear system of (2.25) in figure 2.1.

From section 5.1 in QMN2016 [1] we also state the definition of the discrete solution manifold as

9

CHAPTER 2. THEORY

uh

u

u-uh

Vh

V

Figure 2.2. Geometric interpretation of the Galerkin orthogonality

Mh = {uh(µ) ∈ Vh : µ ∈ P} ⊂ Vh, (2.27)

where obviously it is a subset of the exact solution manifold, i.e. Mh ⊂ M. Furthermore, we
assume that choosing the discretization fine enough, or equivalently by choosing h small enough,
we can approximate V by Vh and M by Mh within an acceptable approximation error.

2.2.2 Galerkin Orthogonality

By fixing µ ∈ P such that u(µ) = u, uh(µ) = uh, a(·, ·;µ) = a(·, ·) and f(.;µ) = f(.). We now
present the Galerkin orthogonality as stated in Lemma 4.1 of Q2009 [5];

Lemma 2.2 (Galerkin Orthogonality). The solution of the Galerkin Method satisfies

a(u− uh, vh) = 0 ∀vh ∈ Vh (2.28)

Proof. Since Vh ⊂ V, the exact solution satisfies the weak problem (2.2) for each element
v = vh ∈ V, hence we have

a(u, vh) = f(vh) ∀vh ∈ V. (2.29)

By subtracting side by side (2.22) from (2.29), we obtain

a(u, vh)− a(uh, vh) = 0 ∀vh ∈ V, (2.30)

from which, thanks to bilinearity of the form a(·, ·), the claim follows.

A figure of the geometric interpretation of the Galerkin orthogonality is given in figure 2.2.

Remark 2.6. Because of property (2.29) we could also state Cea’s lemma, see e.g Lemma A.6
in the book by Hesthaven, Rozza and Stamm (HRS2016) [9].

2.3 The Linear Lagrange Rectangle Element

The Finite Element solver used in this thesis is based on a commonly used Bilinear Lagrange
Element and hence we briefly discuss the topic of the Bilinear Lagrange Rectangle Element. First

10

CHAPTER 2. THEORY

L1

L2

z1

z4 z3

z2

Figure 2.3. Bilinear Lagrange Rectangle Element — Here "•" indicates the nodal value evalu-
ation at the point where the dot is located.

we state the definition of a finite element and two lemmas, then we present the example Bilinear
Lagrange Rectangle Element from chapter 3 in The Mathematical Theory of Finite Element
Methods by Brenner and Scott (BS2008) [10];

Definition 2.2. Let

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise smooth boundary
(the element domain).

(ii) P be a finite-dimensional space of functions on K (the space of shape functions)
and

(iii) N = {N1, N2, · · · , Nk} be a basis for P ′ (the set of nodal variables).

Then (K,P,N) is called a finite element.

Lemma 2.3. Let P be a d-dimensional vector space and let {N1, N2, · · · , Nd} be a subset
of the dual space P ′. Then the following two statements are equivalent.

(a) {N1, N2, · · · , Nd} is a basis for P ′.

(b) Given v ∈ P with Ni(v) = 0 for i = 1, 2, · · · , d, then v ≡ 0.

Lemma 2.4. Let P be a polynomial of degree d ≥ 1 that vanishes on a hyperplane L. Then
we can write P = LQ, where Q is a polynomilal of degree (d− 1).

Example 2.1. Let K be any rectangle, P = Q1, and N as depicted in Fig. 2.3.

Suppose that the polynomial P ∈ Q1 vanishes at z1, z2, z3 and z4. The restriction of P
to any side of the rectangle is a first-order polynomial of one variable. Therefore, we can
write P = cL1L2 for some constant c. But

0 = P (z4) = cL1(z4)L2(z4) ⇒ c = 0, (2.31)

since L1(z4) ̸= 0 and L2(z4) ̸= 0. Thus P ≡ 0.

The poof of the lemmas above can be found in chapter 2 of BS2008 [10]. We do here note that
in example 2.1, we could write P = cL1L2 because of lemma 2.4. Furthermore, we verified
lemma 2.2(iii) using lemma 2.3(b), i.e we prove that N determines Q1.

11

CHAPTER 2. THEORY

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0(x) 1(x)

1D Linear Lagrange basis

Figure 2.4. The two Lagrange basis functions on the line element [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0(x)
1(x)

2(x)
3(x)

4(x)
5(x)

6(x)
7(x)

8(x)
9(x)

10(x)

1D Linear Lagrange basis

Figure 2.5. The Lagrange basis functions on the line [0, 1] divided into 10 elements.

12

CHAPTER 2. THEORY

Now, to present a picture of the basis functions on the lines L1 and L2, we show two basis
functions on the 1D line element [0, 1] in figure 2.4. Figure 2.5 shows how the basis functions
behave over multiple elements in a 1D example.

2.4 Reduced Basis Methods

As mentioned in chapter 3 of both HRS2016 and QMN2016 [9, 1] solving the high-fidelity prob-
lem (2.25) for any value of µ ∈ P entails severe computational cost. However, this can be
mitigated by introducing a suitable reduced-order approximation. In this section we present the
Reduced Basis (RB) Method as a way to approximate the high-fidelity solutions as described
above. With the aim of exploiting the µ-dependence of the solution, the following observation
is stated in section 3.3 of QMN2016;

Given the discrete solution set (2.27) of the high-fidelity solutions generated as µ varies over
the parameter domain P, we could expect that any uh(µ) could be well approximated by
linearly combining few elements of Mh. This is true especially when Mh is low-dimensional
and smooth. The idea behind RB methods is to generate an approximate solution to
problem (2.25) belonging to a low-dimensional subspace VN ⊂ Vh of dimension N ≪ Nh.
The smaller N , the cheaper the reduced problem to solve.

For more on the low-dimensionality and smoothness of Mh we refer to chapter 5 in QMN2016 [1].
Furthermore, continuing from section 3.3 in QMN2016 we state precisely what setting a RB
method entails;

1. the construction of a basis of VN . We start from a set of high-fidelity solutions

{uh(µ1), · · · , uh(µN)} , (2.32)

that we call snapshots, corresponding to a set of N selected parameters

SN = {µ1, · · · ,µN} ⊂ P. (2.33)

Then, we generate a set of N functions

{ζ1, · · · , ζN} , (2.34)

called the reduced basis, by orthonormalization of the snapshots with respect to a
suitable scalar product (., .)N , that is

(ζm, ζk)N = δkm, 1 ≤ k,m ≤ N. (2.35)

Typically, (., .)N = (., .)V, the V-scalar product. The functions (2.34) are thefore
called reduced basis functions, and generate the reduced basis space

VN = span {ζ1, · · · , ζN} . (2.36)

The spaces {VN , N ≥ 1} are therfore nested, that is VN ⊃ VN−1, N ≥ 2. By construc-
tion, the reduced basis functions are no longer solutions of the high- fidelity problem.
However,

VN = span {ζ1, · · · , ζN} = span {uh(µ1), · · · , uh(µN)} . (2.37)

2. the computation of the RB solution uN (µ) ∈ VN , expressed as a linear combination
of the reduced basis functions,

uN (µ) =
N∑

m=1

u
(m)
N (µ)ζm (2.38)

13

CHAPTER 2. THEORY

where uN (µ) =
[
u
(1)
N (µ) . . . u

(N)
N (µ)

]⊤
∈ RN denotes the RB coefficients, also

called the generalized coordinates, of uN (µ) in the reduced basis;

3. the setup of a reduced problem for determining the unknown coefficients uN (µ) ∈ RN .

2.4.1 Galerkin Reduced-order Approximation

A setup for determining the unknown coefficients uN (µ) ∈ RN is the Galerkin RB method which
in section 3.3.1 of QMN2016 [1] is defined as;

find uN (µ) ∈ VN such that

a(uN (µ), vN ;µ) = f(vN ;µ) ∀vN ∈ VN . (2.39)

Remark 2.7. Note that the well-posedness of the weak formulation above follows from a similar
argument as for well-posedness of the weak formulation (2.2) in section 2.1.3.

We now consider the Galerkin case stated in section 3.4.1 of QMN2016 [1];

Inserting (2.38) into (2.39) and then choosing vN = ζn, 1 ≤ n ≤ N , we obtain a set of N
linear algebraic equations

N∑

m=1

a(ζm, ζm;µ)u
(m)
N (µ) = f(ζn;µ), 1 ≤ n ≤ N. (2.40)

We denote by AN (µ) ∈ RN×N the matrix with elements (AN (µ))nm = a(ζm, ζm;µ) and
by fN (µ) ∈ RN the vector the vector with components (fN (µ))n = f(ζn;µ). Then, (2.40)
is equivalent to the linear system

AN (µ)uN (µ) = fN (µ). (2.41)

Furthermore, to relate the reduced-order system to the high-fidelity system in section 2.2.1 we
state the description from section 3.4.1 of QMN2016 [1];

Since the basis functions ζm belong to Vh we can compute the RB matrices and vectors
from the corresponding high-fidelity ones. Indeed, expanding each RB basis function with
respect to the basis functions {φi}Nh

i=1,

ζm =

Nh∑

i=1

ζ(i)m φi, 1 ≤ m ≤ N, (2.42)

we can define the transformation matrix V ∈ RNh×N whose columns contain the coefficients
of the RB basis functions in (2.42), that is V =

[
ζ1| · · · |ζN

]
, or equivalently

(V)im = ζ(i)m , 1 ≤ m ≤ N, 1 ≤ i ≤ Nh. (2.43)

It follows that, for 1 ≤ n,m ≤ N ,

aq (ζm, ζn) =

Nh∑

i=1

Nh∑

j=1

ζ(j)m aq (φj , φi) ζ
(i)
n , fq (ζn) =

Nh∑

i=1

fq (φi)ζ
(i)
n . (2.44)

Equivalently, in matrix form

A
(q)
N = V ⊤A

(q)
h V, f

(q)
N = V ⊤f

(q)
h (2.45)

where
(A

(q)
h)ij = aq (φj , φi) , (f

(q)
h)i = fq (φi) , 1 ≤ n ≤ N. (2.46)

14

CHAPTER 2. THEORY

=

=

Ah

AN

VT VT

V fh

uN

uN fN

Figure 2.6. The linear systems of equations (2.41) and (2.45) with Ah = Ah(µ) ∈ RNh×nh ,uN =
uN (µ) ∈ RN ,fh = fh(µ) ∈ RNh , V ∈∈ RNh×N , AN = AN (µ) ∈ RN×N , and fN = fN (µ) ∈ RN .

A figure of how the reduced-order system (2.41) relates to the high-fidelity system (2.25) by the
transformation matrix V introduced above is given in figure 2.6.

Remark 2.8. In this section we have said nothing about the construction of transformation
matrix V . For this we refer to section 2.5.

2.4.2 The Affine Parametric Dependence Assumption

The observant reader may have noted that the last quoted description of Quarteroni, Manzoni
and Negri in section 2.4.1 mentions RB matrices and vectors, and not RB matrix and vector.
This is because of the affine parametric dependence assumption described in e.g both HRS2016
and QMN2016 [9, 1]. We here provide the introduction to the affine parametric dependence
assumption from section 3.4.1 of QMN2016;

Matrix AN is full, whereas the high-fidelity matrix Ah is (in general) sparse. However, since
typically N ≪ Nh, (2.41) is (in principle) much faster and less computationally intensive
to solve than the original high-fidelity linear system (2.25). Unfortunately, the assembly of
the reduced matrix AN (µ) and vector fN (µ) still involves computations whose complexity
depends on Nh.

A key ingredient to overcome this drawback is to make the affine parametric dependence
assumption. As anticipated in Chap.1, in this case we require both the parametric bilinear
form a and the parametric linear form f to be affine (or separable) with respect to the
parameter µ, that is

a(w, v;µ) =

Qa∑

q=1

θ(q)a (µ)aq(w, v) ∀v, w ∈ V,µ ∈ P, (2.47)

f(v;µ) =

Qf∑

q=1

θ
(q)
f fq(v) ∀v ∈ V,µ ∈ P. (2.48)

Here θ
(q)
a : P → R, q = 1, · · · , Qa and θ

(q)
f : P → R, q = 1, · · · , Qf are µ-dependent

functions, whereas aq : V× V → R, fq : V → R are µ-independent forms.

This will lead to that the high-fidelity system (2.25) matrix and vector can be written as

Ah(µ) =

Qa∑

q=1

θ(q)a (µ)A
(q)
h , fh(µ) =

Qf∑

q=1

θ
(q)
f (µ)f

(q)
h (2.49)

15

CHAPTER 2. THEORY

where

(A
(q)
h)ij = aq(φj , φi), (f

(q)
h)i = fq(φi). (2.50)

Similarly for the reduced-order system (2.41) we can write

AN (µ) =

Qa∑

q=1

θ(q)a (µ)A
(q)
N , fh(µ) =

Qf∑

q=1

θ
(q)
f (µ)f

(q)
N (2.51)

where

(Aq
N)nm = a(q)(ζm, ζn), (f

(q)
N)i = fq(ζn). (2.52)

2.4.3 Error Computations

Picking up from where we left in section 2.4.1, we now want to look at the error computations
between the high-fidelity and RB solution. We denote by eh(µ) = uh(µ) − uN (µ) ∈ Vh this
error, as defined in section 3.6 of QMN2016 [1], and note that by the triangle inequality we have
that

∥eh(µ)∥ = ∥u(µ)− uN (µ)∥ ≤ ∥u(µ)− uh(µ)∥+ ∥uh(µ)− uN (µ)∥. (2.53)

Hence if for desired accuracy, the grid parameter h is small enough, i.e. chose h such that
∥u(µ)− uh(µ)∥ < εtol, then the accuracy of how good the RB solution approximates the exact
solution depends on how good the RB solution approximates the high-fidelity solution.

Now, using (2.38) and (2.42) we can write uN (µ) as

uN (µ) =

N∑

m=1

Nh∑

j=1

u
(m)
N (µ)ζ(j)m φj =

Nh∑

j=1

N∑

m=1

u
(m)
N (µ)ζ(j)m φj , (2.54)

which together with (2.23)gives eh(µ) as

eh(µ) =

Nh∑

j=1

(
u
(j)
h (µ)−

N∑

m=1

ζ(j)m u
(m)
N (µ)

)
φj . (2.55)

This leads us to the to definition of the discrete error between the recovered RB solution and
high-fidelity solution in section 3.7.1 in QMN2016 [1];

eh(µ) = uh(µ)− V uN (µ), (2.56)

Now defining the vector Φ =
[
φ1 . . . φNh

]⊤ we have eh(µ) = Φ⊤eh(µ), and can write the
X-norms induced by some V-inner product as

∥eh∥2X = (eh, eh)X = (Φ⊤eh(µ),Φ
⊤eh(µ))X =

eh(µ)
⊤(Φ,Φ⊤)Xeh(µ) = eh(µ)

⊤Xheh(µ),
(2.57)

where Xh ∈ RNh×Nh is a symmetric positive definite matrix defined by the respective V-scalar
product, which in case of the energy norm form section 2.1.5 is Xh = Ah(µ).

16

CHAPTER 2. THEORY

2.4.4 The Formal Obtaintion of the Galerkin RB Problem

Inspired by the computations in section 2.4.3 we subtract the RB weak formulation (2.39)
from the high-fidelity one (2.2) and we get the error representation defined in section 3.6.1
of QMN2016 [1];

a(eh(µ), v;µ) = f(v;µ)− a(uN (µ); v;µ) ∀v ∈ Vh, (2.58)

Continuing form the same section we set

r(v;µ) = f(v;µ)− a(uN (µ), v : µ) ∀v ∈ Vh, (2.59)

as the residual, between the RB and high-fidelity solutions. This gives rise to the discrete residual
defined in section 4.1.2 of QMN2016;

rh(uN ;µ) = fh(µ)−Ah(µ)V uN (µ), (2.60)

Following the mentioned section of QMN2016 we state the lemma providing the main algebraic
connections between the RB and high-fidelity Garlerkin approximations and the formal oblation
of the Galerkin RB problem (2.41) for a given matrix V of reduced bases;

Lemma 2.5. The following algebraic relations hold:

Ah(µ)eh(µ) = rh(uN ;µ) (2.61)

V ⊤Ah(µ)uh(µ) = fN (µ) (2.62)

V ⊤rh(uN ;µ) = 0. (2.63)

In summary, for a given matrix V of reduced bases, the Galerkin RB problem (2.41) can
be formally obtained as follows:

Galerkin Reduced Basis (G-RB) problem

1. consider the Galerkin high-fidelity problem (2.25);

2. set uh(µ) = V uN (µ) + eh(µ), where uN ∈ RN has to be determined and the error
eh is the difference between uh and V uN ;

3. left multiply (2.25) by V ⊤ to obtain

V ⊤Ah(µ)V uN (µ)− V ⊤fh(µ) = −V ⊤Ah(µ)eh,

that is
V ⊤Ah(µ)V uN (µ)− V ⊤fh(µ) = −V ⊤rh(uN ;µ);

4. require uN to satisfy V ⊤rh(uN ;µ) = 0, or equivalently

V ⊤Ah(µ)V uN (µ) = V ⊤fh(µ). (2.64)

This coincides with what we found in section 2.4.1, where the relationship between (2.41)
and (2.64) is shown in figure 2.6.

17

CHAPTER 2. THEORY

Parametrized PDE

1. Offline Phase, Nh-dependent

High fidelity discretization:

Ah(µ)uh(µ) = fh(µ)

Affine Mapping:

Ah(µ) =
∑Qa

q=1 θ
q
a(µ)A

q
h

fh(µ) =
∑Qf

q=1 θ
q
f (µ)f

q
h

⇓
Generation of solution snapshots {uh(µj)}j

by POD algorithm;

construction of the matrix V .

⇓
Projection:

A
(q)
N = V ⊤A(q)

h V

f
(q)
N = V ⊤f (q)

h

µ

2. Online Phase, N-dependent

⇓
Assembling RB system:

AN (µ) =
∑Qa

q=1 θ
q
a(µ)A

q
N

fN (µ) =
∑Qf

q=1 θ
q
f (µ)f

q
N

⇓
Solve RB system

AN (µ)uN (µ) = fN (µ)

⇓
Error estimation

∥uh − V uN∥

Evaluate error and choice of N

Figure 2.7. The affine reduced basis (RB) workflow at a glance.

2.4.5 The Offline and Online Phases

Going back to section 2.4.2 we see that from a computational standpoint, we can take advantage
of the affine parametric dependence property by splitting the assembly of the reduced matrices
and vectors in two different phases. In the first phase, we perform offline once and for all, doing
the computation of all the Nh-dependent and µ-independent matrices A

(q)
h and vectors f (q)

h . In
the second phase, to be performed online for any given value of µ ∈ P, we assemble and solve
the RB system. Which has a cost depending only on N , as stated in section 3.5 of QMN2016 [1].
For further reading, see the computational complexity section 3.5 of QMN2016 for the Galerkin
RB case.

Figure 2.7, inspired by the figure in chapter 1. of QMN2016 [1], shows the algebraic workflow
for the affine RB workflow. The process Proper Orthogonal Decomposition (POD) algorithm
for constructing V and choosing N has not been presented yet, but will be introduced in the
following and discussed in further detail in section 2.5.

2.5 Proper Orthogonal Decomposition

There are multiple ways to create the reduced basis from which the reduced-order model can
be constructed. In QMN2016 [1] both the Proper Orthogonal Decomposition (POD) and the
Greedy methods are discussed. For this project, POD was chosen, which is discussed in detail
in section 6.3 of QMN2016. From that section we note that POD is a numerical technique for
compressing and approximating a high-dimensional data set by an orthonormal basis. For the
finite element case, this means that the original variables uh, are transformed into a new set of

18

CHAPTER 2. THEORY

uncorrelated variables, called POD modes or principal components, where the first few modes
ideally retain most of the energy present in all of the original variables. This means that POD
is Principal Component Analysis(PCA) used in mechanical engineering. For more on PCA we
refer the reader to e.g [11, 12].

2.5.1 Singular Value Decomposition

Before we can apply POD to parametric PDEs the concept of singular value decomposition
(SVD) is needed. Therefore we present the singular value decomposition as stated in section 6.1
of QMN2016 [1];

if A ∈ Rm×n is a real matrix, there exist two orthogonal matrices.

U =
[
ζ1| . . . |ζm

]
∈ Rm×m, Z =

[
ψ1| . . . |ψn

]
∈ Rn×n (2.65)

such that
A = UΣZ⊤, with Σ = diag(σ1, · · · , σr) ∈ Rm×n (2.66)

and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, for p = min(m,n).

The matrix factorization (2.66) is called singular value decomposition (SVD) of A and the
numbers σi = σi(A) are called singular values of A. ζ1, · · · , ζm are called left singular
vectors of A, whereas ψ1, · · · ,ψm right singular vectors of A, as

Aψi = σiζi, AT ζj = σjψj , i, j = 1, · · · , n.

Now, since the singular values of a matrix are related to its norm, we state the definition of the
two relevant norms for matrices from section of QMN2016 [1];

∥A∥2 = σmax = max
i=1,...,p

σi, ∥A∥f =

√√√√
p∑

i=1

σ2
i . (2.67)

where the Frobenius norm is defined as

∥A∥f =

√√√√
m∑

i=1

n∑

j=1

|aij |2. (2.68)

For the complex version of the SVD, more on matrix norms and a proof for the 2-norm in (2.67)
see section 1.9 and 1.11 in [7]. Moreover, if A ∈ Rm×n has r positive singular values, then
rank(A) = r. As stated in section 6.1.1 in QMN2016 [1] a particular feature of SVD arises;

if A ∈ Rm×n has rank equal to r, then it can be written as the sum of r rank-1 matrices

A =

r∑

i=1

σiζiψ
⊤
i (2.69)

Formula (2.69) is very useful, since it allows us to compute low-rank approximations of a matrix,
which is thanks to properties (2.67). This leads to Schmidt-Eckart-Young Theorem and a similar
result for the 2-norm in section 6.1.1 of QMN2016 [1];

19

CHAPTER 2. THEORY

Theorem 2.1 (Schmidt-Eckart-Young). Given a matrix A ∈ Rm×n of rank r, the matrix

Ak =

k∑

i=1

σiζiψ
⊤
i , 0 ≤ k ≤ r, (2.70)

satisfies the optimality property

∥A−Ak∥f = min
B ∈ Rm×n

rank(B) ≤ k

∥A−B∥f =

√√√√
r∑

i=k+1

σ2
i . (2.71)

A similar result holds by considering the 2-norm instead of the Frobenius norm: for any
0 < k ≤ r, the matrix Ak defined in (2.70) is also such that

∥A−Ak∥2 = min
B ∈ Rm×n

rank(B) ≤ k

∥A−B∥2 = σk+1. (2.72)

For a proof of (2.71) Quarteroni, Sacco and Saleri refer to [13], while for the proof of the optimality
with respect to the 2-norm they refer to [14, 15]. Using the theorem and result from above we
see that there is no better rank-k approximation with respect to the energy of the system.

2.5.2 Orthogonal Projection Operators

We now want to provide a brief note on Orthogonal Projection Operators. To learn more about
orthogonal projectors please see e.g section 1.12 in [16]. From (2.35) and (2.43) we see that
columns of V are orthonormal with respect to a V-scalar product, i.e V ⊤XhV = IN , where
Xh ∈ RNh×Nh is a symmetric positive definite matrix defined by the respective V-scalar product,
which in case of the energy norm is Xh = Ah(µ).

Now, we for simplicity assume that V ⊤V = IN and state proposition 4.1 from section 4.2.4 in
QMN2016 [1];

Proposition 2.1. The following results hold:

1. the matrix P = V V ⊤ ∈ RNh×Nh is an orthogonal projector from the whole space RNh

onto the subspace VN ;

2. the matrix I − V V ⊤ ∈ RNh×Nh is a projector from the whole space RNh onto the
subspace V⊥

N , the subspace of RNh orthogonal to VN ;

3. the residual rh(uN ;µ) satisfies

Prh(uN ;µ) = 0, (2.73)

that is, it belongs to the orthogonal space V⊥
N .

Remark 2.9. Note that the proposition also holds in the case when V ⊤XhV = IN , by defining
Y = X

1/2
h V because this gives Y ⊤Y = IN .

20

CHAPTER 2. THEORY

2.5.3 POD for Parametrized Problems

The starting point for the POD approach is a parameter sample set {µ1, . . . ,µns} ⊂ P for which
high-fidelity solutions {uh(µ1), . . . , uh(µns)} are calculated. Therefore we define the snapshot
matrix S ∈ RNh×ns as

S =
[
u1| · · · |uns

]
, (2.74)

and utilizing the SVD in section 2.5.1 we get the statement in section 6.3.1 of QMN2016 [1];

According to (2.66), the SVD decomposition of S reads

S = UΣZ⊤, (2.75)

where U =
[
ζ1| . . . |ζm

]
∈ RNh×Nh and Z =

[
ψ1| . . . |ψn

]
∈ Rns×ns are ortho-

gonal matrices, and Σ = diag(σ1, · · · , σr) ∈ RNh×ns with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Here
r ≤ min(Nh, ns) denotes the rank of S, which is strictly smaller than ns if the snapshot
vectors are not all linearly independent. Then, we can write

Sψi = σiζi, ST ζi = σiψi, i = 1, · · · , r. (2.76)

or, equivalently
S⊤Sψi = σ2

iψi, SST ζi = σ2
i ζi, i = 1, · · · , r. (2.77)

i.e.σ2
i ζi, i = 1, · · · , r are the nonzero eigenvalues of the matrix S⊤S (and also of SS⊤),

listed in nondecreasing order.

Now, by defining the correlation matrix C = S⊤S ∈ Rns×ns by its elements as

Cij = u
⊤
i uj , i, j ≤ i, j ≤ ns, (2.78)

we provide the next statement in section 6.3.1 QMN2016 [1];

For any N ≤ ns, the POD basis V ∈ RNh×N of dimension N is defined as the set of the
first N left singular vectors ζ1, · · · , ζN of U or, equivalently, the set of vectors

ζj =
1

σj
Sψj , 1 ≤ j ≤ N (2.79)

obtained from the first N eigenvectors ψ1, · · · ,ψN of the correlation matrix C.

From this we have V =
[
ζ1 · · · ζN

]
as described in point one of what precisely setting a RB

method entails in section 2.4.

Inspired our discussion of orthogonal projectors in by section 2.5.2 and that by construction the
POD basis is orthonormal, we define

PWx =
N∑

j=1

(x,wj)2wj = WW⊤x (2.80)

as a projector onto the subspace spanned by W =
[
w1| · · · |wN

]
∈ RNh×N , and state the

proposition given in section 6.3.1 QMN2016 [1];

Proposition 2.2. Let VN =
{
W ∈ RNh×N : W⊤W = IN

}
be the set of all N -dimensional

orthonormal bases. Then,
ns∑

i=1

∥∥∥ui − V V ⊤ui

∥∥∥
2

2
= min

W∈VN

ns∑

i=1

∥∥∥ui −WW⊤ui

∥∥∥
2

2
=

r∑

i=N+1

σ2
i . (2.81)

21

CHAPTER 2. THEORY

For the proof of the proposition we refer to section 6.3.1 QMN2016, but note that it is by
Theorem 2.1 in section 2.5.1. Furthermore, this means that the POD basis minimizes the sum of
the squares of the errors between each snapshot vector ui and its projection onto the subspace
spanned by W . It also follows that the error in the POD basis is equal to the sum of the squares
of the singular values corresponding to the neglected POD modes. This gives us a suitable
criterion to select the minimal POD dimension N ≤ r such that the projection error is smaller
than a desired tolerance εpod, as suggested in section 6.3.1 QMN2016 [1];

It is sufficient to choose N as the smallest integer such that

I(N) =

N∑
i=1

σ2
i

r∑
i=1

σ2
i

≥ 1− ε2pod, (2.82)

that is the energy retained by the last r −N modes is equal or smaller than εpod.

Remark 2.10. I(N) represents the percentage of energy of the snapshots captured by the first
N POD modes, and it is referred to as the relative information content of the POD basis.

Lastly, we here also state one remark by Quarteroni, Sacco and Saleri in section 6.3.1
QMN2016 [1];

Computing of the POD basis by solving an eigenvalue problem for the correlation matrix
C yields inaccurate results for the modes associated to small singular values. This is due
to the roundoff errors introduced while constructing C and the fact that κ(C) = (κ(S))2.
In such cases it is recommended to construct the POD basis by means of stable algorithms
for the computation of the SVD.

This is important in algorithm 1, for computing the POD basis described in section 6.3.1 of
QMN2016 [1].

Algorithm 1 The algorithm for computing the POD basis described in section 6.3.1 of Re-
duced Basis Methods for Partial Differential Equations by Quarteroni, Manzoni and Negri
(QMN2016) [1].

1: function V = POD(S, εpod)
2: if ns ≤ Nh then
3: from the correlation matrix C = S⊤S
4: solve the eigenvalue problem Cψi = σ2

iψi, i = 1, · · · , r
5: set ζi = 1

σi
Sψi

6: else
7: form the matrix K = SS⊤

8: solve the eigenvalue problem Kζi = σ2
i ζi, i = 1, · · · , r

9: end if
10: define N as the minimum integer such that I(N) ≥ 1− ε2pod
11: V =

[
ζ1| · · · |ζN

]

12: end function

2.5.4 POD with Respect to Energy Inner Product

Since the snapshot functions uh(µi) belong to the space Vh ⊂ V, it becomes natural to seek a
POD basis minimizing the norm defined by a inner product of V, which is usually the energy

22

CHAPTER 2. THEORY

norm and energy inner product which we defined in section 2.1.5. In particular as stated in
section 6.3.2 in QMN2016 [1];

We seek a basis W ∈ VXh
N , with

VXh
N =

{
W ∈ RNh×N : W⊤XhW = IN

}
,

which minimizes the squares of the Xh-norm of the error between each snapshot vector ui

and its Xh-orthogonal projection onto the subspace spanned by W , i.e.

min
W∈V

Xh
N

ns∑

i=1

∥∥∥ui − PXh
W ui

∥∥∥
2

Xh

. (2.83)

Therefore as in section 2.5.3 and our discussion of orthogonal projectors in by section 2.5.2 we
define the Xh-orthogonal projector

PXh
W x =

N∑

j=1

(x,wj)Xh
wj = WW⊤Xhx, (2.84)

remembering that for the energy norm and energy inner product Xh = Ah(µ) as stated in
section 2.4.3. Then by (2.84) we have

ns∑

i=1

∥∥∥ui − PXh
W ui

∥∥∥
2

Xh

=

ns∑

i=1

∥∥∥ui −WW⊤Xhui

∥∥∥
2

Xh

=

ns∑

i=1

∥∥∥X1/2
h ui −X

1/2
h WW⊤Xhui

∥∥∥
2

2
=
∥∥∥X1/2

h S −X
1/2
h WWXhS

∥∥∥
2

f
,

(2.85)

which leads us to the proposition deduced from Schmidt-Eckart-Young Theorem 2.1 and Pro-
position 2.2 stated in section 6.3.2 in QMN2016 [1];

Proposition 2.3. Let S =
[
u1| · · · |uns

]
∈ RNh×ns be a given matrix of rank r ≤

min(Nh, ns), Xh ∈ RNh×Nh a symmetric positive definite matrix, S̃ = X
1/2
h S and S̃ =

ŨΣZ̃⊤ its singular value decomposition, where

Ũ =
[
ζ̃1| . . . |ζ̃Nh

]
∈ RNh×Nh , Z̃ =

[
ψ̃1| . . . |ψ̃ns

]
∈ Rns×ns (2.86)

are orthogonal matrices and Σ = diag(σ1, · · · , σr) ∈ RNh×ns with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
Then, for N ≤ r, the POD basis V =

[
X

−1/2
h ζ̃1| · · · |X−1/2

h ζ̃N

]
is such that

ns∑

i=1

∥∥∥ui − V V ⊤Xhui

∥∥∥
2

Xh

= min
W∈V

Xh
N

ns∑

i=1

∥∥∥ui −WW⊤Xhui

∥∥∥
2

Xh

=

r∑

i=N+1

σ2
i . (2.87)

Now, since for ns < Nh we have

S̃⊤S̃ψ̃i = σ2
i ψ̃i, i = 1, · · · , r, (2.88)

we can obtain the POD basis without forming the matrix X
1/2
h , as described in section 6.3.2 in

QMN2016 [1];

23

CHAPTER 2. THEORY

We first compute the correlation matrix C̃ = S̃⊤S̃ = S⊤XhS and its first N eigenvectors
ψ̃1, · · · , ψ̃N . Then, we define the POD basis as V =

[
X

−1/2
h ζ1| · · · |X−1/2

h ζN

]
, where

ζi = X
−1/2
h ζ̃i = X

−1/2
h

1

σi
S̃ψ̃i =

1

σi
Sψ̃i. (2.89)

Using this we present algorithm 2, for computing the POD basis with respect to the Xh norm
in section 6.3.2 in QMN2016 [1].

Remark 2.11. For algorithm 2, we make the same note as in section 2.5.3 about the computation
of the POD basis. i.e that solving the eigenvalue problem for the correlation matrix C̃ yields
inaccurate results for the modes associated with small singular values.

Algorithm 2 The algorithm for computing the POD basis with respect to the Xh norm in section
6.3.2 of Reduced Basis Methods for Partial Differential Equations by Quarteroni, Manzoni and
Negri (QMN2016) [1].

1: function V = POD(S,Xh, εpod)
2: if ns ≤ Nh then
3: from the correlation matrix C̃ = S⊤XhS
4: solve the eigenvalue problem C̃ψ̃i = σ2

i ψ̃i, i = 1, · · · , r
5: set ζi = 1

σi
Sψ̃i

6: else
7: form the matrix K̃ = X

1/2
h SS⊤X

1/2
h

8: solve the eigenvalue problem K̃ζ̃i = σ2
i ζ̃i, i = 1, · · · , r set ζi = X

−1/2
h ζ̃i

9: end if
10: define N as the minimum integer such that I(N) ≥ 1− ε2pod

11: V =
[
X

−1/2
h ζ1| · · · |X−1/2

h ζN

]

12: end function

2.6 Matrix Least Squares

In section 2.4.2 we introduced the affine parametric dependence assumption that gives rise to
the affine notation of the high-fidelity system (2.49),

Ah(µ) =

Qa∑

q=1

θ(q)a (µ)A
(q)
h , fh(µ) =

Qf∑

q=1

θ
(q)
f (µ)f

(q)
h . (2.90)

However, this only holds if the problem is affine. If the problem is not affine we do not have this
splitting, i.e.

Ah(µ) ̸=
Qa∑

q=1

θ(q)a (µ)A
(q)
h , fh(µ) ̸=

Qf∑

q=1

θ
(q)
f (µ)f

(q)
h . (2.91)

Since the affine mapping does not exists, both the projection and the assembly of the reduced-
order system will fail, i.e. the workflow in figure 2.7 breaks down.

In this section we present our suggested technique to for solving non-affine problems where we
do not have an affine mapping. Our technique consists of turning the “mapping” around to get

24

CHAPTER 2. THEORY

a fitting problem, i.e.
Q∑

q=0

gq(µk)A
(q)
h := Ah(µk), 1 ≤ k ≤ n,

Q∑

q=0

gq(µk)f
(q)
h := fh(µk), 1 ≤ k ≤ n,

(2.92)

where q starts at 0 because we by g0(µ) denote the constant function 1. The goal with this is to
find an approximate affine decomposition for the matrices A(µk) and vectors fh(µk) to be used
in reduced order methods.

2.6.1 The Matrix Least Square Problem

Generalizing the fitting problem (2.92) we get the matrix problem

Q∑

q=0

gq(µk)Aq := A(µk), 1 ≤ k ≤ n, (2.93)

where A(µk) and Aq are matrices of size N × m and the functions {gq(µ)}Qq=0 are assumed
known.

2.6.2 A Simple Matrix Least Square Problem

To get an introduction, we look at the simple case where Q = 3, the vector of parameter µ only
has the component µ and the functions {gq(µ) = µq}Qq=0. This gives us the problem

A0 + µkA1 + µ2
kA2 + µ3

kA3 := A(µk), 1 ≤ k ≤ n, (2.94)

where A(µk) and Aq are matrices of size N ×N .

To solve this by least squares we start by defining the matrix M ∈ Rn×4 as follows

M =




1 µ1 µ2
1 µ3

1
...

...
...

...
1 µn µ2

n µ3
n


 . (2.95)

Next we define the block matrices

X =




A0

A1

A2

A3


 ∈ R4N×N , B =




A(µ1)
...

A(µn)


 ∈ RnN×N . (2.96)

From here we see two methods, either mapping the matrices to vectors and minimizing the 2-
norm or working with the matrices we have and minimizing the Frobenius norm. In the following
sections we look at both methods and see that they give the same result.

25

CHAPTER 2. THEORY

2.6.2.1 Method 1 — Mapping to vectors.

For this method we start by mapping the matrices in X and B from (2.96) to vectors giving us

x = vec(X) =




vec(A0)
vec(A1)
vec(A2)
vec(A3)


 ∈ R4N2

, b = vec(B) =




vec(A(µ1))
...

vec(A(µn))


 ∈ RnN2

. (2.97)

Next up we define the matrix M̄ = M ⊗ IN2 ∈ RnN2×4N2 to set up the minimization problem

min
x

∥b−Mx∥22 . (2.98)

This minimization problem has the known solution of

x̂ =
(
M̄⊤M̄

)−1
M̄⊤b. (2.99)

Next note that by the rules for the Kronecker product we have

M̄⊤ = M⊤ ⊗ IN2

M̄⊤M̄ =
(
M⊤ ⊗ IN2

)
(M ⊗ IN2) =

(
M⊤M

)
⊗ IN2

(
M̄⊤M̄

)−1
=
(
M⊤M

)−1
⊗ IN2

(
M̄⊤M̄

)−1
M̄⊤ =

((
M⊤M

)−1
⊗ IN2

)(
M⊤ ⊗ IN2

)
=

((
M⊤M

)−1
M⊤

)
⊗ IN2 .

(2.100)

This gives us

x̂ =

[((
M⊤M

)−1
M⊤

)
⊗ IN2

]
b. (2.101)

2.6.2.2 Method 2 — Minimizing the Frobenius Norm

For this method we define the matrix M̃ = M ⊗ IN ∈ RnN×4N to set up the minimization
problem

min
X

∥∥∥M̃X −B
∥∥∥
2

f
. (2.102)

To solve this minimization problem we use the Frobenius inner product ⟨A,B⟩f = tr(A⊤B) to
find when the Fréchet derivative of X is zero.

∥∥∥M̃(X +H)−B
∥∥∥
2

f
=
∥∥∥(M̃X −B) + M̃H

∥∥∥
2

f

=
∥∥∥M̃X −B

∥∥∥
2

f
+ 2

〈
M̃X −B, M̃H

〉
f
+
∥∥∥M̃H

∥∥∥
2

f〈
M̃X −B, M̃H

〉
f
= tr

((
M̃X −B

)⊤
M̃H

)

= tr

((
M̃⊤

(
M̃X −B

))⊤
H

)
=
〈
M̃⊤

(
M̃X −B

)
, H
〉

f
.

(2.103)

In (2.103) H is the Fréchet derivative of X and it is zero when M̃⊤
(
M̃X −B

)
= 0 giving us

X̂ =
(
M̃⊤M̃

)−1
M̃⊤B. (2.104)

By using the same rules for the Kronecker product as shown in (2.100) we get

X̂ =

[((
M⊤M

)−1
M⊤

)
⊗ IN

]
B. (2.105)

26

CHAPTER 2. THEORY

2.6.2.3 The Resulting Algorithm

Looking at the results form the two methods in (2.101) and (2.105) we see that they are equal
taking the vector mapping into consideration. This is as expected since the Frobinus norm for
matrices is equivalent to the 2-norm, i.e

⟨A,B⟩f = tr
(
A⊤B

)
= vec(A)⊤ vec(B). (2.106)

Furthermore both (2.101) and (2.105) use the matrix C =
(
M⊤M

)−1
M⊤ ∈ R4×n for the

Kronecker product with the corresponding identity matrix. This means that in both cases we
can compute the matrices in X̂ as follows

X̂q =
n∑

k=1

CqkA(µk). (2.107)

Remark 2.12. For Method 1 — Mapping to vectors this means that we do not map to vectors
physically, but implement the effect on the matrices via (2.107).

Redefining X and B as vectors of matrices,

X = [A0, A1, A2, A3] ∈ R4×N×N , B = [A(µ1), · · · , A(µn)] ∈ Rn×N×N , (2.108)

and generalizing from Q = 3 and Aq, A(µk) ∈ RN×N gives rise to the following Least Squares
algorithm, 3.

Algorithm 3 An algorithm solving problem (2.6.3) by least squares.

1: function X̂ = MLS(M,B)
B ∈ Rn×N×m,M ∈ Rn×(Q+1)

2: compute the matrix C =
(
M⊤M

)−1
M⊤

3: for q = 0 to Q do

4: compute the matrix X̂q =
n∑

k=1

CqkBk

5: end for
6: end function

2.6.3 The General Matrix Least Square Problem

Going back to the general problem in (2.93),

Q∑

q=0

gq(µk)Aq := A(µk), 1 ≤ k ≤ n, (2.109)

where A(µk) and Aq are matrices of size N ×m. The matrix M⊤M , in algorithm 3, represents
the matrix of discrete inner products between the functions {gq(µ)}Qq=0. Furthermore, it is well
known that in case when the functions {gq(µ)}Qq=0 are orthogonal, the matrix M⊤M will have
a low condition number. This is important, because the higher the condition number, the more
noise our data has. As a consequence, we need considerably more matrices A(µk) than functions
{gq(µ)}Qq=0. For more specifics on how we obtain the functions {gq(µ)}Qq=0 we refer to section 3.3.

27

CHAPTER 2. THEORY

Parametrized PDE

1. Offline Phase, Nh-dependent

High fidelity discretization:

Ah(µ)uh(µ) = fh(µ)

Matrix least squares:
∑Q

q=0 gq(µk)A
(q)
h := Ah(µk), 1 ≤ k ≤ n,

∑Q
q=0 gq(µk)f

(q)
h := fh(µk), 1 ≤ k ≤ n,

⇓
Generation of solution snapshots {uh(µj)}j

by POD algorithm;

construction of the matrix V .

⇓
Projection:

A
(q)
N = V ⊤A(q)

h V

f
(q)
N = V ⊤f (q)

h

µ

2. Online Phase, N-dependent

⇓
Assembling RB system:

AN (µ) =
∑Q

q=1 gq(µ)A
q
N

fN (µ) =
∑Q

q=1 gq(µ)f
q
N

⇓
Solve RB system

AN (µ)uN (µ) = fN (µ)

⇓
Error estimation

∥uh − V uN∥

Evaluate error and choice of N

Figure 2.8. The non-affine reduced basis (RB) workflow at a glance.

Remark 2.13. In general one needs n+ 1 snapshots in each direction for an approximation of
order n.

Using Matrix least squares instead off an affine mapping in the RB workflow described in figure 2.7
would give a new non-affine RB workflow shown in figure 2.8.

2.7 The Linear Elasticity Equations

In this section we present The Linear Elasticity Equations as our equations of interest for building
a reduced-order model. We start by presenting the strong and weak formulations of the problem,
and then present the mapping to the reference domain. Lastly we present our general algebraic
system by restricting the problem arising from The Linear Elasticity Equations with the potential
non-affine mapping to the reference domain.

2.7.1 Strong Formulation

The linear elasticity equations are described in terms of the stress tensor σ : Rd → Rd×d, the
strain tensor ε : Rd → Rd×d, the body force f : Rd → Rd and the displacement field u : Rd → Rd,
where the latter is the unknown of the problem. Using this notation, we can describe linear elastic
deformations of an isotropic solid occupying the domain Ω ⊂ Rd as presented in section 2.1.2 in
QMN2016 [1];

The governing equations consist of an equation stating the equilibrium of forces

−div(σ) = f in Ω, (2.110)

28

CHAPTER 2. THEORY

the strain-displacement relation

ε(u) =
1

2

(
∇u+∇u⊤

)
(2.111)

and the constitutive law, which in the linear isotropic case takes the form

σ = 2µε(u) + λ(div(u))I. (2.112)

Here µ and λ are the Lamé coefficients, which can be expressed in terms of the Young
modulus E and the Poisson coefficient ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.113)

The equilibrium problem for a linear elastic material can therefore be written as follows:




−div
(
µ
(
∇u+∇u⊤

)
+ λ(div(u))I

)
= f in Ω

u = g on Γd

σn = h on Γn.

(2.114)

Note that on the Dirichlet boundary Γd we impose a prescribed displacement,whereas
on the Neumann boundary Γn we impose that the normal stress σn equals a prescribed
traction vector h.

Here (2.114) denotes the strong formulation of our problem. Using the Lamé coefficients in (2.113)
we solve the plane strain case. However, if we want solve the plane stress case we need to replace
the Lamé coefficient λ in (2.113) with λ̄ as described by Hughes in [17], whereas µ stays the same
as before,

λ̄ =
2λµ

λ+ 2µ
=

Eν

1− ν2
, µ =

E

2(1 + ν)
. (2.115)

2.7.2 Weak Formulation

To derive the weak solution we multiply (2.114) by a test function v ∈ V and integrate by parts.
Noting that we can substitute ∇v with ε(v) because ε(v) is the symmetric part of ∇v and the
product of the symmetric stress tensor and the anti-symmetric part of ∇v is zero. This gives us
the weak formulation of our problem as described in section 2.3.2 in QMN2016 [1];

The weak formulation of problem (2.114) reads: find u ∈ V =
[
H1

Γd
(Ω)
]d such that

a(u,v) = f(v) v ∈ V (2.116)

where we have defined the bilinear form a : V× V → R as

a(u,v) =

ˆ
Ω
2µε(u) : ε(v) dΩ+

ˆ
Ω
λ div(u) div(v) dΩ, (2.117)

and the linear form f : V → R as

f(v) =

ˆ
Ω
f · v dΩ+

ˆ
Γn

h · v dΓ− a(rg,v). (2.118)

Here rg ∈
[
H1

Γd
(Ω)
]d is a lifting vector function such that rg|Γd = g; the solution to

problem (2.114) is then obtained as u+ rg.

29

CHAPTER 2. THEORY

Here ε(u) : ε(v) denotes the tensor scalar product

ε(u) : ε(v) =

d∑

i=1

d∑

j=1

ε(u)ijε(v)ij . (2.119)

Furthermore, the bilinear form (2.117) is symmetric and strongly coercive, owing to Korn’s
inequality. Therefore problem (2.114) can be cast in the form (P1) and admits a unique solution
u ∈ V thanks to Lax-Milgram Lemma 2.1, which we discussed in section 2.1.3. We here note
that if we have a pure traction problem, i.e Γd = ∅, f and h must satisfy some compatibility
conditions, which is out of scope for this thesis. For the full computations, the Korn’s inequality
and the mentioned compatibility conditions, we refer the interested reader to chapter 11 in The
Mathematical Theory of Finite Element Methods by Brenner and Scott (BS2008) [10].

2.7.3 Mapping to the Reference Domain

In this section we look at the mapping to a reference domain in case of The Linear Elasticity
Equations. The mapping may be non-affine, which then will make the whole problem non-affine.

2.7.3.1 General notation

We denote by Ω the real domain, by Ω̃ the reference domain and by Φ the coordinate mapping
the reference coordinates (x̃1, x̃2) to the real coordinates (x1, x2). For more specifics on how the
mapping Φ looks we refer to section 3.1. We also denote the displacement vector and its gradient
as

u =

[
u1
u2

]
, ∇u =

[
∂u1
∂x1

∂u2
∂x1

∂u1
∂x2

∂u2
∂x2

]
. (2.120)

The symmetric gradient and the divergence are defined as

ε(u) =
1

2

(
∇u+∇u⊤

)
, div(u) = tr(∇u) = ∂u1

∂x1
+

∂u2
∂x2

. (2.121)

Using this, we can now express the differentials

∂u1
∂x1

=
∂ũ1
∂x̃1

∂x̃1
∂x1

+
∂ũ1
∂x̃2

∂x̃2
∂x1

(2.122)

∂u1
∂x2

=
∂ũ1
∂x̃1

∂x̃1
∂x2

+
∂ũ1
∂x̃2

∂x̃2
∂x2

(2.123)

∂u2
∂x1

=
∂ũ2
∂x̃1

∂x̃1
∂x1

+
∂ũ2
∂x̃2

∂x̃2
∂x1

(2.124)

∂u2
∂x2

=
∂ũ2
∂x̃1

∂x̃1
∂x2

+
∂ũ2
∂x̃2

∂x̃2
∂x2

(2.125)

by the Jacobian

J =

[
∂x̃1
∂x1

∂x̃1
∂x2

∂x̃2
∂x1

∂x̃2
∂x2

]
, (2.126)

of the coordinate mapping Φ. Meaning that we can write the real gradient ∇u in terms of the
reference gradient ∇ũ as

∇u = J−⊤∇ũ, (2.127)

or simply
∂ui
∂xj

= J1j
∂ũi
∂x̃j

+ J2j
∂ũi
∂x̃2

(2.128)

30

CHAPTER 2. THEORY

Next we denote the inverse of the Jacobian and its entries by

J−1 =

[
J11 J12
J21 J22

]
, (2.129)

for simplicity, and by |J | we denote the determinant of the Jacobian

|J | = det(J) =
∂x̃1
∂x1

∂x̃2
∂x2

− ∂x̃1
∂x2

∂x̃2
∂x1

, (2.130)

and note that
Area(Ω) =

ˆ
Ω
dΩ =

ˆ
Ω̃
|J | dΩ̃ (2.131)

and ˆ
Ω
g · v dΩ =

ˆ
Ω̃
g(Φ) · ṽ|J | dΩ̃ (2.132)

Remark 2.14. All index-mappings in the following sections assume a 1-indexing. If 0-indexing
is used a shift is needed.

2.7.3.2 The Symmetric Gradient Terms and the Encoding Matrix

Looking at the term ε(u) : ε(v) we have

ε(u) : ε(v) =
1

4
tr
((

∇u+∇u⊤
)(

∇v +∇v⊤
))

(2.133)

=
1

4

[
tr (∇u∇v) + tr

(
∇u∇v⊤

)
+ tr

(
∇u⊤∇v

)
+ tr

(
∇u⊤∇v⊤

)]
(2.134)

=
1

2

(
∇u : ∇v +∇u : ∇v⊤

)
(2.135)

Using (2.128) for the fist term, we get

∇u : ∇v =

2∑

i,j=1

∂ui
∂xj

∂vi
∂xj

(2.136)

=
2∑

i,j=1

(
J1j

∂ũi
∂x̃1

+ J2j
∂ũi
∂x̃2

)(
J1j

∂ṽi
∂x̃1

+ J2j
∂ṽi
∂x̃2

)
(2.137)

=

2∑

i,j=1

(
∂ũi
∂x̃1

J2
1j

∂ṽi
∂x̃1

+
∂ũi
∂x̃1

J1jJ2j
∂ṽi
∂x̃2

+
∂ũi
∂x̃2

J2jJ1j
∂ṽi
∂x̃1

+
∂ũi
∂x̃2

J2
2j

∂ṽi
∂x̃2

)
(2.138)

=
2∑

i=1

(
∂ũi
∂x̃1

(J2
11 + J2

12)
∂ṽi
∂x̃1

+
∂ũi
∂x̃1

(J11J21 + J12J22)
∂ṽi
∂x̃2

(2.139)

+
∂ũi
∂x̃2

(J21J11 + J22J12)
∂ṽi
∂x̃1

+
∂ũi
∂x̃2

(J2
21 + J2

22)
∂ṽi
∂x̃2

)
. (2.140)

This gives us ˆ
Ω
∇u : ∇v dΩ =

2∑

i,j,k=1

ˆ
Ω̃

∂ũi
∂x̃j

Wjk
∂ṽi
∂x̃k

dΩ̃, (2.141)

where W = J−1J−⊤|J |. This result corresponds with what is presented in section 8.2.1 in
QMN2016 [1].

31

CHAPTER 2. THEORY

Using (2.128) for the second term, we get

∇u : ∇v⊤ =
2∑

i,j=1

∂ui
∂xj

∂vj
∂xi

(2.142)

=

2∑

i,j=1

(
J1j

∂ũi
∂x̃1

+ J2j
∂ũi
∂x̃2

)(
J1i

∂ṽj
∂x̃1

+ J2i
∂ṽj
∂x̃2

)
(2.143)

=
2∑

i,j=1

(
∂ũi
∂x̃1

J1jJ1i
∂ṽj
∂x̃1

+
∂ũi
∂x̃1

J1jJ2i
∂ṽj
∂x̃2

+
∂ũi
∂x̃2

J2jJ1i
∂ṽj
∂x̃1

+
∂ũi
∂x̃2

J2jJ2i
∂ṽj
∂x̃2

)
(2.144)

=
∂ũ1
∂x̃1

J2
11

∂ṽ1
∂x̃1

+
∂ũ1
∂x̃1

J12J11
∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

J11J12
∂ṽ1
∂x̃1

+
∂ũ2
∂x̃1

J2
12

∂ṽ2
∂x̃1

(2.145)

+
∂ũ1
∂x̃1

J11J21
∂ṽ1
∂x̃2

+
∂ũ1
∂x̃1

J12J21
∂ṽ2
∂x̃2

+
∂ũ2
∂x̃1

J11J22
∂ṽ1
∂x̃2

+
∂ũ2
∂x̃1

J12J22
∂ṽ2
∂x̃2

(2.146)

+
∂ũ1
∂x̃2

J21J11
∂ṽ1
∂x̃1

+
∂ũ1
∂x̃2

J22J11
∂ṽ2
∂x̃1

+
∂ũ2
∂x̃2

J21J12
∂ṽ1
∂x̃1

+
∂ũ2
∂x̃2

J22J12
∂ṽ2
∂x̃1

(2.147)

+
∂ũ1
∂x̃2

J2
21

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

J22J21
∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

J21J22
∂ṽ1
∂x̃2

+
∂ũ2
∂x̃2

J2
22

∂ṽ2
∂x̃2

. (2.148)

This gives us
ˆ
Ω
∇u : ∇v⊤ dΩ =

2∑

i,j,k,l=1

ˆ
Ω̃

∂ũi
∂x̃k

Zî(k,l),ĵ(i,j)

∂ṽj
∂x̃l

dΩ̃, (2.149)

where the encoding matrix

Z =
(
J−1 ⊗ J−1

)
|J | = 1

|J |




J2
11 J11J12 J12J11 J2

12

J11J21 J11J22 J12J21 J12J22
J21J11 J21J12 J22J11 J22J12
J2
21 J21J22 J22J21 J2

22


 (2.150)

encodes all information form the Jacobian, and the mappings î and ĵ are defined as follows

î(k, l) = l + 2δ2k, ĵ(i, j) = i+ 2δ2j . (2.151)

Noticing that the element Wjk corresponds to two entries in Z, where i = j in the mapping
ĵ(i, j), we have

Wjk = Zî(j,k),ĵ(1,1) + Zî(j,k),ĵ(2,2). (2.152)

This gives us
ˆ
Ω
∇u : ∇v dΩ =

2∑

i,j,k,l=1

ˆ
Ω̃

∂ũi
∂x̃j

Zî(j,k),ĵ(l,l)

∂ṽi
∂x̃k

dΩ̃. (2.153)

Now finally combining the terms we get

ˆ
Ω
ε(u) : ε(v) dΩ =

1

2

2∑

i,j,k,l=1

ˆ
Ω̃

(
∂ũi
∂x̃j

Zî(j,k),ĵ(l,l)

∂ṽi
∂x̃k

+
∂ũi
∂x̃k

Zî(k,l),ĵ(i,j)

∂ṽj
∂x̃l

)
dΩ̃. (2.154)

32

CHAPTER 2. THEORY

2.7.3.3 The Divergence Terms

We now look at the term div(u) div(u). Using (2.128) we get

div(u) div(u) =

(
∂u1
∂x1

+
∂u2
∂x2

)(
∂v1
∂x1

+
∂v2
∂x2

)
(2.155)

=
∂u1
∂x1

∂v1
∂x1

+
∂u1
∂x1

∂v2
∂x2

+
∂u2
∂x2

∂v1
∂x1

+
∂u2
∂x2

∂v2
∂x2

=
2∑

i,j=1

∂ui
∂xi

∂vj
∂xj

(2.156)

=
2∑

i,j=1

(
J1i

∂ũi
∂x̃1

+ J2i
∂ũi
∂x̃2

)(
J1j

∂ṽj
∂x̃1

+ J2j
∂ṽj
∂x̃2

)
(2.157)

=
2∑

i,j=1

(
∂ũi
∂x̃1

J1iJ1j
∂ṽj
∂x̃1

+
∂ũi
∂x̃1

J1iJ2j
∂ṽj
∂x̃2

+
∂ũi
∂x̃2

J2iJ1j
∂ṽj
∂x̃1

+
∂ũi
∂x̃2

J2iJ2j
∂ṽj
∂x̃2

)
(2.158)

=
∂ũ1
∂x̃1

J2
11

∂ṽ1
∂x̃1

+
∂ũ1
∂x̃1

J11J12
∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

J12J11
∂ṽ1
∂x̃1

+
∂ũ2
∂x̃1

J2
12

∂ṽ2
∂x̃1

(2.159)

+
∂ũ1
∂x̃1

J11J21
∂ṽ1
∂x̃2

+
∂ũ1
∂x̃1

J11J22
∂ṽ2
∂x̃2

+
∂ũ2
∂x̃1

J12J21
∂ṽ1
∂x̃2

+
∂ũ2
∂x̃1

J12J22
∂ṽ2
∂x̃2

(2.160)

+
∂ũ1
∂x̃2

J21J11
∂ṽ1
∂x̃1

+
∂ũ1
∂x̃2

J21J12
∂ṽ2
∂x̃1

+
∂ũ2
∂x̃2

J22J11
∂ṽ1
∂x̃1

+
∂ũ2
∂x̃2

J22J12
∂ṽ2
∂x̃1

(2.161)

+
∂ũ1
∂x̃2

J2
21

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

J21J22
∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

J22J21
∂ṽ1
∂x̃2

+
∂ũ2
∂x̃2

J2
22

∂ṽ2
∂x̃2

(2.162)

This gives us ˆ
Ω
div(u) div(u) dΩ =

2∑

i,j,k,l=1

ˆ
Ω̃

∂ũi
∂x̃k

Zî(k,l),̂i(i,j)

∂ṽj
∂x̃l

dΩ̃. (2.163)

Do note that we here use the mapping î(i, j) instead of ĵ(i, j) for the second index of Z, because
this gives the difference from ∇u : ∇v⊤.

2.7.3.4 Needed Computations

Which combinations of ũ, Z and ṽ do we need? Many of the 16 components in the three
computations are equal. Firstly all the 8 components in the “left” and “right” columns of all
terms are equal. Furthermore, considering that JijJkl = JklJij , the 4 components in middle of
the “top” and “bottom” rows in the terms ∇u : ∇v⊤ and div(u) div(u) are equal. In other words
what seams to be 48 total components are in reality 28 unique components. This should be
exploited.

Inspired by this we define

I1 =

ˆ
Ω̃

2∑

i,j,k=1

∂ũi
∂x̃j

Zî(j,k),k̂(i)

∂ṽi
∂x̃k

dΩ̃, (2.164)

I2 =

ˆ
Ω̃

2∑

i,j,k=1

∂ũi
∂x̃j

Zî(j,k),ĥ(i)

∂ṽi
∂x̃j

dΩ̃, (2.165)

I3 =

ˆ
Ω̃

2∑

i,j=1

∂ũi
∂x̃j

Zk̂(j),n̂(i)

∂ṽl̂(i)

∂x̃k
dΩ̃, (2.166)

33

CHAPTER 2. THEORY

I4 =

ˆ
Ω̃

2∑

i,j=1

∂ũi
∂x̃j

Zm̂(i),n̂(j)

∂ṽl̂(i)

∂x̃l̂(j)
dΩ̃, (2.167)

I5 =

ˆ
Ω̃

2∑

i,j=1

∂ũi
∂x̃j

Zm̂(i),m̂(j)

∂ṽl̂(i)

∂x̃l̂(j)
dΩ̃, (2.168)

where
l̂(i) = 1 + δ1i, n̂(i) = 2 + δ1i,

m̂(i) = 2 + δ2i, ĥ(i) = 1 + 3δ1i
(2.169)

and
k̂(i) = î(i, i) = ĵ(i, i) = 1 + 3δ2i. (2.170)

Then ˆ
Ω
∇u : ∇v dΩ = I1 + I2,

ˆ
Ω
∇u : ∇v⊤ dΩ = I1 + I3 + I4,

(2.171)

giving ˆ
Ω
ε(u) : ε(v) dΩ = I1 +

1

2
(I2 + I3 + I4) ,

ˆ
Ω
div(u) div(u) dΩ = I1 + I3 + I5.

(2.172)

Meaning that our two bilinear forms are defined by five main integrals, which will simplify the
needed computations greatly, especially taking remark 2.17 into account.

2.7.4 The Algebraic System

In this section we restrict our problem and then deduce and present our algebraic systems
resulting from the Linear Elasticity Equations, the mapping to the reference element and the use
of matrix least squares.

2.7.4.1 Restricting the Problem; Our Cases and the Affine Parametization of the
Problem

Noting the definition of the weak formulation (2.116) for our problem in section 2.7.2, we define
our parameters of interest. Our chosen parameters of interest are split into two groups, µ =[
µmat µgeo

]⊤. The first group consist of the Young modulus E and the Poisson coefficient ν,
µmat =

[
E ν

]⊤, i.e the affine material parameters in our problem. The second group, µgeo,
consists of the geometry parameters mapping the reference domain Ω̃ to our real domain Ω will
be discussed in section 3.1.

Continuing with just our affine material parameters µmat, the relation (2.112), gives us our affine
parametric dependence as described in section 2.4.2. Furthermore, we restrict ourselves to the
cases where the body force f , the prescribed displacement g on Γd, and the prescribed traction
vector h on Γn do not depend on the choice parameters µmat, and Γd ̸= ∅. However, as we show
in section 3.1, the domain Ω and thereby the boundaries Γd and Γn will depend on µgeo.

Using the restrictions above we can affinely parametrize our problem for the material para-
meters by defining our µmat-dependent functions and µmat-independent forms for the bilinear

34

CHAPTER 2. THEORY

form (2.117) and linear form (2.118). We do this by setting Qa = 2 and

2µ = θ(1)a (µmat) =
E

(1 + ν)
, a1(u,v) =

ˆ
Ω
ε(u) : ε(v) dΩ,

λ̄ = θ(2)a (µmat) =
Eν

1− ν2
, a2(u,v) =

ˆ
Ω
div(u) div(v) dΩ.

(2.173)

for the bilinear form a(·, ·;µ), and Qf = 4,

θ
(1)
f (µmat) = 1, f1(v) =

ˆ
Ω
f · v dΩ,

θ
(2)
f (µmat) = 1, f2(v) =

ˆ
Γn

h · v dΓ,

θ
(3)
f (µmat) = −θ(1)a (µmat), f3(v) = a1(rg,v),

θ
(4)
f (µmat) = −θ(2)a (µmat), f4(v) = a2(rg,v),

(2.174)

for the linear form f(.;µ). Note that we in (2.173) used the plane stress Lamé coefficient
from (2.115).

Remark 2.15. If we zero prescribed traction, i.e h = 0, or only Dirichlet conditions, then the
second linear form is zero, i.e f2(µ) = 0. If also the mentioned Dirichlet conditions are zero, i.e
g = 0, then the two last linear forms are zero too, and effectively Qf = 1.

Finally we define the parameter space Pmat = E × ν ⊂ R2, where we use

E ∈ [10, 310] GPa,
ν ∈ [0, 0.4],

(2.175)

for all numerical examples.

Remark 2.16. Since we for all our numerical examples will consider plane stress in 2D, we use
the Lamé coefficient in (2.115) as described by Hughes in [17];

λ̄ =
2λµ

λ+ 2µ
=

Eν

1− ν2
, µ =

E

2(1 + ν)
. (2.176)

gives us the ranges
λ̄ ∈ [0, 147.6] GPa
µ ∈ [3.6, 155] GPa.

(2.177)

for the Lamé coefficients.

2.7.4.2 The High-Fidelity System

Before using our definitions for the µmat-dependent functions and µmat-independent forms in
section 2.7.4.1 and the Galerkin high-fidelity approximation in section 2.2.1 to assemble our
high-fidelity system, we need two more definitions. First, since we have a vector test function
ṽ, we need to define an index mapping, mapping the d dimensions to one single running index.
This can be done through defining the mapping j = d · ĵ + dj where ĵ is the node number in the
triangulation and dj is the vector component of the function.

Example 2.2. In 2D (d = 2) the mapping defined above gives

φ̃j=2ĵ+1 =

[
φ̃ĵ

0

]
, and φ̃j=2ĵ+2 =

[
0
φ̃ĵ

]
, (2.178)

where φĵ is the normal 1D basis function.

35

CHAPTER 2. THEORY

With this we can write

uh(x;µ) =

Nh∑

j=1

u
(j)
h (µ)φ̃j(x̃j) (2.179)

where uh(µ) =
[
u
(1)
h (µ) . . . u

(Nh)
h (µ)

]⊤
. Second, we define the discrete lifting function

rgh(x;µgeo) =
∑

j∈Γ̄d

g(ϕ(x̃j ;µgeo))φ̃j(x̃j), Γ̄d =
{
j : x̃j ∈ Γ̃d

}
(2.180)

as the approximation of g on the boundary ΓD, as described in section 4.5.1 of Numerical Models
for Differential Problems by Quarteroni (Q2009) [5], using the reference Dirichlet boundary Γ̃d.

Now, having defined the index mapping and discrete lifting function above, we can assemble our
high-fidelity system affinely for our material parameters µmat as described in section 2.4.2;

Ah(µ) = 2µA
(1)
h (µgeo) + λA

(2)
h (µgeo),

fh(µ) = f
(1)
h (µgeo) + f

(2)
h (µgeo)

− 2µB
(1)
h (µgeo)rgh(µgeo)− λB

(2)
h (µgeo)rgh(µgeo),

(2.181)

where for i, j = 1, · · ·Nh

(A
(1)
h (µgeo))ij = a1(φ̃j , φ̃i;µgeo), (A

(2)
h (µgeo))ij = a2(φ̃j , φ̃i;µgeo),

(f
(1)
h (µgeo))i = f1(φ̃i;µgeo), (f

(2)
h (µgeo))i = f2(φ̃i;µgeo),

(2.182)

and for j ∈ Γ̃d and i = 1, · · ·Nh

r(j)gh
(µgeo) = g(ϕ(x̃j ;µgeo)),

(B
(1)
h (µgeo))ij = a1(φ̃j , φ̃i;µgeo), (B

(2)
h (µgeo))ij = a2(φ̃j , φ̃i;µgeo).

(2.183)

This gives us the high-fidelity system

Ah(µ)ůh = fh(µ), (2.184)

where the high-fidelity solution is obtained as uh = ůh + rgh .

Remark 2.17. When using (2.172) to assemble the local matrices A(1)(µgeo) and A(2)(µgeo) on
an element, one should exploit the symmetry of these matrices. Furthermore, if we in 2D use the
basis functions

φ̃i0 =

[
φ̃i

0

]
and φ̃i1 =

[
0
φ̃i

]
(2.185)

we see that
I1(φ̃i0, φ̃i0) = I2(φ̃i1, φ̃i1), I2(φ̃i0, φ̃i0) = I1(φ̃i1, φ̃i1),

I3(φ̃i0, φ̃i1) = I3(φ̃i1, φ̃i0), I4(φ̃i0, φ̃i1) = I5(φ̃i1, φ̃i0)
(2.186)

and
I5(φ̃i0, φ̃i1) = I4(φ̃i1, φ̃i0). (2.187)

This symmetry should also be exploited. All in all, reduces the number of integral per node of an
element from 10 to 5. This gives a total reduction of

48− 28 · 5
10

48
= 70.8% (2.188)

per node of an element.

36

CHAPTER 2. THEORY

2.7.4.3 The Matrix Least Squares High-Fidelity System

Studying the high-fidelity system in section 2.7.4.2 we see that the affine mapping is not inde-
pendent of the chosen parameters µ, since the affinity only applies to the material part µmat
and not the geometry part µgeo. To solve this we generate multiple snapshots of the matrices
A

(1)
h (µgeo) and A

(2)
h (µgeo), and the vectors

f
(0)
h,mls(µgeo) = f

(1)
h (µgeo) + f

(2)
h (µgeo),

f
(1)
h,mls(µgeo) = B

(1)
h (µgeo)rgh(µgeo),

f
(2)
h,mls(µgeo) = B

(2)
h (µgeo)rgh(µgeo),

(2.189)

and apply the matrix least squares algorithm, algorithm 3, on each of them,

A
(1)
h (µgeo) =

Q∑

q=1

gq(µgeo)A
(1,q)
h,mls, A

(2)
h (µgeo) =

Q∑

q=1

gq(µgeo)A
(2,q)
h,mls

f
(0)
h,mls(µgeo) =

Q∑

q=1

gq(µgeo)f
(0,q)
h,mls,

f
(1)
h,mls(µgeo) =

Q∑

q=1

gq(µgeo)f
(1,q)
h,mls, f

(2)
h,mls(µgeo) =

Q∑

q=1

gq(µgeo)f
(2,q)
h,mls.

(2.190)

This gives us

Ah,mls(µ) = 2µ

Q∑

q=1

gq(µgeo)A
(1,q)
h,mls + λ

Q∑

q=1

gq(µgeo)A
(2,q)
h,mls,

fh,mls(µ) =

Q∑

q=1

gq(µgeo)f
(0,q)
h,mls − 2µ

Q∑

q=1

gq(µgeo)f
(1,q)
h,mls − λ

Q∑

q=1

gq(µgeo)f
(2,q)
h,mls,

(2.191)

leading to the matrix least squares high-fidelity system

Ah,mls(µ)ůh,mls = fh,mls(µ), (2.192)

where the solution is obtained as uh,mls = ůh,mls + rgh .

Remark 2.18. We have here chosen to use the affine splitting from section 2.7.4.2 giving us two
matrices and three vectors to preform matrix least squares on. This choice was made to reduce
the number of functions gq(µgeo) and thereby the number of snapshots needed, since now each
snapshot can represent multiple high-fidelity systems given the material parameters µmat.

2.7.4.4 The Reduced-Order System

We can now assemble the reduced-order system. We do this by first constructing the transform-
ation matrix V by the Proper Orthogonal Decomposition (POD) algorithm with respect to the
energy inner product, algorithm 2, and then projecting the matrices and vectors from the matrix
least squares high-fidelity system with it,

A
(1,q)
N,mls = V ⊤A

(1,q)
h,mlsV, A

(2,q)
N,mls = V ⊤A

(2,q)
h,mlsV

f
(0,q)
N,mls = V ⊤f

(0,q)
h,mls,

f
(1,q)
N,mls = V ⊤f

(1,q)
h,mls, f

(2,q)
N,mls = V ⊤f

(2,q)
h,mls.

(2.193)

37

CHAPTER 2. THEORY

This gives us

AN (µ) = 2µ

Q∑

q=1

gq(µgeo)A
(1,q)
N,mls + λ

Q∑

q=1

gq(µgeo)A
(2,q)
N,mls,

fN (µ) =

Q∑

q=1

gq(µgeo)f
(0,q)
N,mls − 2µ

Q∑

q=1

gq(µgeo)f
(1,q)
N,mls − λ

Q∑

q=1

gq(µgeo)f
(2,q)
N,mls,

(2.194)

resulting in the reduced-order system

AN (µ)ůN = fN (µ), (2.195)

where the recovered reduced-order solution is obtained as ūN = V ůN + rgh .

Remark 2.19. It is important to note that for the POD algorithm with respect to the energy
inner product, algorithm 2, we need the matrix Xh = Ah(µ) to be independent of the choice of
parameters. We do this by setting Xh = Ah(µmean),

µmean =
[
Emean νmean µ1,mean µ2,mean · · ·

]⊤
, (2.196)

where µi,mean is the mean value of geometry parameter µi.

38

Chapter 3

Case Studies

In this chapter we present our case studies on the linear elasticity equations for three different
cases of a mapping to the reference domain. First we start by giving an introduction to our
three numerical cases. Then we implement a solver in Python and test it using the Patch Test.
Next, knowing that our solver works, we study how to determine the Matrix Least Squares
functions {gq(µ)}Qq=0. Then we do some problem analysis to study the effect of the Matrix Least
Squares algorithm 3 depending on (i) different choices of the order p of approximation for the
Matrix Least Squares functions {gq(µ)}Qq=0 and (ii) the choice of geometry parameter range Ḡgeo
inside the maximum ranges found under the study how to determine the Matrix Least Squares
functions {gq(µ)}Qq=0. Finally we end the problem analysis by doing a final analysis where we
use more than 10 000 degrees of freedom to get a picture of the computational of the non-affine
reduced-order workflow in figure 2.8.

The Python code building the solver, the Python code used in this thesis and the log files can
be found via the doi-link [4].

3.1 An Introduction to Our Numerical Cases

As an introduction to our numerical cases, we present the computational results for three cases
of the coordinate mapping Φ, mapping from the reference domain Ω̃ to the real domain Ω, as
mentioned in section 2.7.3. The three cases are:

Case 1 — Scaling of a Rectangle,

Case 2 — Dragging One Corner of a Rectangle, and

Case 3 — Dragging All Corners of a Rectangle.

These three cases are of interest since they cover most of the geometry deformations that can
happen on a rectangle.

Remark 3.1. By geometry deformations we mean deviations from the reference geometry, i.e
the reference domain Ω̃.

3.1.1 Case 1 — Scaling of a Rectangle

In this section we look at the case where the real domain Ω is a scaling of the reference domain
Ω̃ = (0, 1)2, i.e Ω = (0, Lx)× (0, Ly), giving us the coordinate mapping

Φ(x̃) =

[
x0 + Lxx̃1
y0 + Lyx̃2

]
, (3.1)

39

CHAPTER 3. CASE STUDIES

where x0 = y0 = 0 in our case, since we do not translate the whole real domain away from the
origin. The Jacobian of the coordinate mapping is

J =

[
Lx 0
0 Ly

]
(3.2)

and |J | = LxLy. This gives

J−1 =
1

|J |

[
Ly 0
0 Lx

]
(3.3)

and the encoding matrix

Z =
(
J−1 ⊗ J−1

)
|J | =




Ly

Lx
0 0 0

0 1 0 0
0 0 1 0

0 0 0 Lx
Ly


 . (3.4)

Using the equations in section 2.7.3.4 this gives

I1 =
Ly

Lx

ˆ
Ω̃

∂ũ1
∂x̃1

∂ṽ1
∂x̃1

dΩ̃ +
Lx

Ly

ˆ
Ω̃

∂ũ2
∂x̃2

∂ṽ2
∂x̃2

dΩ̃ = I11 + I12, (3.5)

I2 =
Ly

Lx

ˆ
Ω̃

∂ũ2
∂x̃1

∂ṽ2
∂x̃1

dΩ̃ +
Lx

Ly

ˆ
Ω̃

∂ũ1
∂x̃2

∂ṽ1
∂x̃2

dΩ̃ = I21 + I22, (3.6)

I3 = 0, (3.7)

I4 =

ˆ
Ω̃

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃2

)
dΩ̃ (3.8)

and

I5 =

ˆ
Ω̃

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃1

)
dΩ̃. (3.9)

All in all this gives us 6 unique integrals, since I1 and I2 split in two and I3 = 0. The computation
of our two bilinear forms now follows from (2.172), giving us

ˆ
Ω
ε(u) : ε(v) dΩ =

Ly

Lx

(
I11 +

1

2
I21

)
+

Lx

Ly

(
I12 +

1

2
I22

)
+

1

2
I4,

ˆ
Ω
div(u) div(u) dΩ =

Ly

Lx
I11 +

Lx

Ly
I12 + I5.

(3.10)

Remark 3.2. For this case we note that if the determinat of the Jacobian, |J |, of the coordinate
transformation Φ is constant with respect to the spacial coordinates x̃1 and x̃2, the problem will
still be affine.

3.1.2 Case 2 — Dragging One Corner of a Rectangle

In this section we look at the case where the real domain Ω is the reference domain Ω̃ = (0, 1)2

and the real domain Ω has the vertices (0, 0), (1, 0), (a, b), (0, 1) where a and b are parameters
dragging one corner of the rectangle. This gives us the coordinate mapping

Φ(x̃) =

[
x0 + x̃1x̃2µ1 + x̃1
y0 + x̃1x̃2µ2 + x̃2

]
, (3.11)

40

CHAPTER 3. CASE STUDIES

where µ1 = a−1 and µ2 = b−1, i.e. the deviation from the reference domain. Also, x0 = y0 = 0
in our case, since we again do not translate the whole real domain away from the origin. The
Jacobian of the coordinate mapping is

J =

[
x̃2µ1 + 1 x̃1µ1

x̃2µ2 x̃1µ2 + 1

]
(3.12)

and |J | = µ1x̃2 + µ2x̃1 + 1. This gives

J−1 =
1

|J |

[
x̃1µ2 + 1 −x̃1µ1

−x̃2µ2 x̃2µ1 + 1

]
(3.13)

and the encoding matrix Z =
(
J−1 ⊗ J−1

)
|J | results in 10 unique entries, taking the symmetries

into account.
(x̃2µ1 + 1)2 , − x̃2µ2 (x̃2µ1 + 1) ,

−x̃2µ2 (x̃1µ2 + 1) , − x̃1µ1 (x̃2µ1 + 1) ,

(x̃1µ2 + 1)2 , x̃1x̃2µ1µ2,

x̃22µ
2
2, (x̃1µ2 + 1) (x̃2µ1 + 1) ,

−x̃1µ1 (x̃1µ2 + 1) , x̃21µ
2
1.

(3.14)

Using the equations in section 2.7.3.4 this gives

I1 =

ˆ
Ω̃

[
x̃21µ

2
1

|J |

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃1

)
+

x̃22µ
2
2

|J |

(
∂ũ1
∂x̃2

∂ṽ1
∂x̃2

)
(3.15)

+
(x̃1µ2 + 1)2

|J |

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃1

)
+

−x̃2µ2 (x̃1µ2 + 1)

|J |

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

∂ṽ1
∂x̃1

)
(3.16)

+
(x̃2µ1 + 1)2

|J |

(
∂ũ2
∂x̃2

∂ṽ2
∂x̃2

)
+

−x̃1µ1 (x̃2µ1 + 1)

|J |

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ2
∂x̃1

)]
dΩ̃, (3.17)

I2 =

ˆ
Ω̃

[
x̃21µ

2
1

|J |

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃1

)
+

x̃22µ
2
2

|J |

(
∂ũ2
∂x̃2

∂ṽ2
∂x̃2

)
(3.18)

+
(x̃1µ2 + 1)2

|J |

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃1

)
+

−x̃2µ2 (x̃1µ2 + 1)

|J |

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ2
∂x̃1

)
(3.19)

+
(x̃2µ1 + 1)2

|J |

(
∂ũ1
∂x̃2

∂ṽ1
∂x̃2

)
+

−x̃1µ1 (x̃2µ1 + 1)

|J |

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

∂ṽ1
∂x̃1

)]
dΩ̃, (3.20)

I3 =

ˆ
Ω̃

[−x̃2µ2 (x̃2µ1 + 1)

|J |

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃2

)
(3.21)

+
−x̃1µ1 (x̃1µ2 + 1)

|J |

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃1

)]
dΩ̃, (3.22)

I4 =

ˆ
Ω̃

[
x̃1x̃2µ1µ2

|J |

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃1

)
(3.23)

+
(x̃1µ2 + 1) (x̃2µ1 + 1)

|J |

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃2

)]
dΩ̃ (3.24)

41

CHAPTER 3. CASE STUDIES

and

I5 =

ˆ
Ω̃

[
(x̃1µ2 + 1) (x̃2µ1 + 1)

|J |

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃1

)
(3.25)

+
x̃1x̃2µ1µ2

|J |

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃2

)]
dΩ̃, (3.26)

where
|J | = µ1x̃2 + µ2x̃1 + 1, (3.27)

All in all this gives us 18 unique components, for “something” over |J |. The computation of our
two bilinear forms now follows from (2.172).

3.1.3 Case 3 — Dragging All Corners of a Rectangle

In this section we look at the case where the real domain Ω is the reference domain Ω̃ = (0, 1)2 and
the real domain Ω has the vertices (0, 0), (a2, b2), (a3, b3), (a4, b4) where ai and bi are parameters
dragging three corners of the rectangle. The last corner, (0, 0), is not directly dragged, since
dragging this corner is equivalent to translating the whole rectangle away from (0, 0) to (x0, y0)
for the lower left corner.

This gives us the coordinate mapping

Φ(x̃) =

[
x0 + x̃1µ1 (1− x̃2) + x̃1x̃2µ3 + x̃2µ5 (1− x̃1) + x̃1
y0 + x̃1µ2 (1− x̃2) + x̃1x̃2µ4 + x̃2µ6 (1− x̃1) + x̃2

]
, (3.28)

where
µ1 = a2 − 1, µ2 = b2,

µ3 = a3 − 1, µ4 = b3 − 1,

µ5 = a4, µ6 = b4 − 1,

(3.29)

i.e. the deviation from the reference domain. Here again x0 = y0 = 0 in our case, since we again
do not translate the whole real domain away from the origin, i.e. do not move the lower left
corner. The Jacobian of the coordinate mapping is

J =

[
x̃2 (µ3 − µ1 − µ5) + µ1 + 1 x̃1 (µ3 − µ1 − µ5) + µ5

x̃2 (µ4 − µ2 − µ6) + µ2 x̃1 (µ4 − µ2 − µ6) + µ6 + 1

]
(3.30)

and
|J | = 1 + µ1 + µ6 − µ2µ5 + µ1µ6

+ x̃1 (µ4 − µ2 − µ6 + µ1µ4 − µ1µ6 − µ2µ3 + µ2µ5)

+ x̃2 (µ3 − µ1 − µ5 − µ1µ6 + µ2µ5 + µ3µ6 − µ4µ5) .

(3.31)

This gives

J−1 =
1

|J |

[
x̃1 (µ4 − µ2 − µ6) + µ6 + 1 −x̃1 (µ3 − µ1 − µ5)− µ5

−x̃2 (µ4 − µ2 − µ6)− µ2 x̃2 (µ3 − µ1 − µ5) + µ1 + 1

]
(3.32)

and the encoding matrix Z =
(
J−1 ⊗ J−1

)
|J | again resulting in 10 unique entries, taking the

42

CHAPTER 3. CASE STUDIES

symmetries into account.

(x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) ,
− (x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) (x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1) ,

(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)2 ,

(x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2)
2 ,

− (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) (x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1) ,
− (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1) ,
(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1) (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1) ,

(x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)2 ,
− (x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1) ,

(x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5)
2 .

(3.33)

Using the equations in section 2.7.3.4 this gives

I1 =

ˆ
Ω̃

1

|J |

[
(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)2

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃1

)
(3.34)

+(x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5)
2

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃1

)
(3.35)

− (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) (x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

∂ṽ1
∂x̃1

)
(3.36)

− (x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ2
∂x̃1

)
(3.37)

+(x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2)
2

(
∂ũ1
∂x̃2

∂ṽ1
∂x̃2

)
(3.38)

+ (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)2
(
∂ũ2
∂x̃2

∂ṽ2
∂x̃2

)]
dΩ̃, (3.39)

I2 =

ˆ
Ω̃

1

|J |

[
(x̃1µ1 − x̃1µ3 + x̃1µ5 − 1µ5)

2

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃1

)
(3.40)

+(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)2
(
∂ũ2
∂x̃1

∂ṽ2
∂x̃1

)
(3.41)

− (x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) (x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)

(
∂ũ1
∂x̃1

∂ṽ1
∂x̃2

+
∂ũ1
∂x̃2

∂ṽ1
∂x̃1

)
(3.42)

− (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) (x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)

(
∂ũ2
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ2
∂x̃1

)
(3.43)

+(x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)2
(
∂ũ1
∂x̃2

∂ṽ1
∂x̃2

)
(3.44)

+ (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2)
2

(
∂ũ2
∂x̃2

∂ṽ2
∂x̃2

)]
dΩ̃, (3.45)

I3 =

ˆ
Ω̃

1

|J |

[
− (x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) · (3.46)

(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1)

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃1

)
(3.47)

− (x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2) · (3.48)

(x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃2

)]
dΩ̃, (3.49)

43

CHAPTER 3. CASE STUDIES

I4 =

ˆ
Ω̃

1

|J |

[
(x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) · (3.50)

(x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2)

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃1

)
(3.51)

+(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1) · (3.52)

(x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃2

)]
dΩ̃, (3.53)

and

I5 =

ˆ
Ω̃

1

|J |

[
(x̃1µ2 − x̃1µ4 + x̃1µ6 − µ6 − 1) · (3.54)

(x̃2µ1 − x̃2µ3 + x̃2µ5 − µ1 − 1)

(
∂ũ1
∂x̃1

∂ṽ2
∂x̃2

+
∂ũ2
∂x̃2

∂ṽ1
∂x̃1

)
(3.55)

+(x̃1µ1 − x̃1µ3 + x̃1µ5 − µ5) · (3.56)

(x̃2µ2 − x̃2µ4 + x̃2µ6 − µ2)

(
∂ũ1
∂x̃2

∂ṽ2
∂x̃1

+
∂ũ2
∂x̃1

∂ṽ1
∂x̃2

)]
dΩ̃ (3.57)

where
|J | = 1 + µ1 + µ6 − µ2µ5 + µ1µ6

+ x̃1 (µ4 − µ2 − µ6 + µ1µ4 − µ1µ6 − µ2µ3 + µ2µ5)

+ x̃2 (µ3 − µ1 − µ5 − µ1µ6 + µ2µ5 + µ3µ6 − µ4µ5) ,

(3.58)

All in all 18 unique components, for “something” over |J |. The computation of our two bilinear
forms now follows from (2.172).

3.1.4 Some General Notes

As the observant reader may note Case 1 — Scaling a Rectangle is still affine as mentioned in
remark 3.2, while Case 2 — Dragging One Corner of a Rectangle and Case 3 — Dragging All
Corners of a Rectangle are not. This can be seen in the determinant of the Jacobian, |J |, of the
coordinate transformation Φ. Furthermore, since the coordinate mapping Φ is bilinear in the
special coordinates x̃1 and x̃2, as seen in Case 2 and Case 3, the use of bilinear elements, as the
bilinear rectangle element 2.3, is recommended.

3.2 The Patch Test

For the following sections we need to implement a solver for the 2D case of the Linear Elastic
Problems satisfying the restrictions described in section 2.7.4.1. So the goal of this section is to
take a step to the side and test the implemented solver for all three cases mentioned in section 3.1.
This was done by performing the Patch Test for all three cases. Focus was on testing that the
solver solves linear problems exactly, even under our bilinear mapping Φ from the reference
domain.

Remark 3.3. For more information on the Patch Test we refer the reader to [18].

Test Case 1. 2. 3. 4.

uex
[
x 0

]⊤ [
0 y

]⊤ [
y 0

]⊤ [
0 x

]⊤

Table 3.1. Patch Test — The different test cases for the exact solution uex in the patch tests.

44

CHAPTER 3. CASE STUDIES

(a) The reference domain Ω̃ = [0, 1]2.
(b) The real domain Ω in Case 1 — Scaling of a
Rectangle using Lx = 4 and Ly = 0.3.

(c) The real domain Ω in Case 2 — Dragging One
Corner of a Rectangle using µ1 = 0.2 and
µ2 = −0.2.

(d) The real domain Ω in Case 3 — Dragging All
Corners of a Rectangle using µ1, µ2, µ3 = −0.1 and
µ4, µ5, µ6 = 0.1.

Figure 3.1. Patch Test — Domains with n = 2 element along the axes.

45

CHAPTER 3. CASE STUDIES

Test Case 1. 2.

uex(2, 0.15)
[
2 0

]⊤ [
0 0.15

]⊤

uh(2, 0.15)
[
0.55 18.6 · 10−18

]⊤ [
7.8 · 10−18 0.45

]⊤

Test Case 3. 4.

uex(2, 0.15)
[
0.45 0

]⊤ [
0 0.55

]⊤

uh(2, 0.15)
[
0.45 2.0 · 10−18

]⊤ [
−3.5 · 10−18 0.55

]⊤

Table 3.2. Patch Test: Case 1 — Scaling of a Rectangle; A comparison of the displacement
given by exact solution uex and finite element approximation uh in the one free node (2, 0.15)
for the patch tests considering Case 1 — Scaling of a Rectangle, section 3.1.1, using Lx = 4 and
Ly = 0.3.

3.2.1 General Patch Test Setup

Testing the solver in all three cases mentioned above is achieved by prescribing Dirichlet boundary
conditions compatible with a linear exact solution uex. Since we do not have any Neumann
boundary conditions, i.e., Γn = ∅ and we set the body force f = 0. The components ux and uy
of the displacement vector u are then both of the form c1 · 1 + cx · x+ cy · y where c1, cx, cy ∈ R.
This gives us the problem {

−div (σ) = 0 in Ω

u = uex on Γd.
(3.59)

For the Patch Test we choose as few elements as possible for easing the search for any bugs.
Thus, we have chosen a mesh with n = 2 elements along the axes shown on the reference domain
in figure 3.1a, where the node located at (0.5, 0.5) is the only free node, giving two degrees of
freedom (dofs). Furthermore, the Patch Test is considered passed if the exact solution uex and
the high-fidelity approximation uh are exactly equal within machine precision on the patch.

Remark 3.4. Since all three test cases depend on their respective geometry parameters the Patch
Test is done for multiple values form the cross product of the parameters ranges Ggeo.

3.2.2 Results From the Patch Tests

Now, having briefly discussed the Patch Test, we consider the four test cases of uex in table 3.1

Because the exact solution uex is linear and we are using the Bilinear Lagrange Rectangle Element
introduced in section 2.3, our four patch tests are considered passed if the exact solution uex

and the high-fidelity approximation uh coincide in the one free node.

3.2.2.1 Case 1 — Scaling of a Rectangle

We now look at Case 1 — Scaling of a Rectangle described in section 3.1.1. Choosing the values
Lx = 4 and Ly = 0.3 gives the real domain Ω shown in figure 3.1b with the free node at (2, 0.15).
Performing the patch tests gives the results summarized in table 3.2. The patch tests are all
considered passed since all values for the numerical solution uh are within machine tolerance
of their respective values for the exact solution uex in the free node (2, 0.15). We also see in
the plots of the displacement given by the high-fidelity solution in test cases 1 and 3, shown in
figures 3.2a and 3.2b respectively, that the displacement of the node (2, 0.15) is as expected given
the exact solution. With this we mean that in test case 1, it moved x = 2 to the right, when in
test case 3, it moved y = 0.15 to the right.

46

CHAPTER 3. CASE STUDIES

0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) Patch Test — Test Case 1.

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Patch Test — Test Case 3.

Figure 3.2. Patch Test: Case 1 — Scaling of a Rectangle; The displacement given by the high-
fidelity solutions of two patch tests for Case 1 — Scaling of a Rectangle, section 3.1.1, using
Lx = 4 and Ly = 0.3. The displaced position is shown in gray with shading, whereas the initial
position is shown in light gray without shading, i.e. the displaced position is the position being
displaced to the right. The solutions were obtained using the mean-values for the Young modulus
E and the Poisson coefficient ν. Please note the different scales on the x and y axes.

Test Case 1. 2.

uex(0.55, 0.45)
[
0.55 0

]⊤ [
0 0.45

]⊤

uh(0.55, 0.45)
[
2 1.9 · 10−18

]⊤ [
−3.8 · 10−20 0.15

]⊤

Test Case 3. 4.

uex(0.55, 0.45)
[
0.45 0

]⊤ [
0 0.15

]⊤

uh(0.55, 0.45)
[
0.15 −1.7 · 10−19

]⊤ [
4.6 · 10−18 2

]⊤

Table 3.3. Patch Test: Case 2 — Dragging One Corner of a Rectangle; A comparison of the
displacement given by exact solution uex and finite element approximation uh in the one free
node (0.55, 0.45) for the patch tests considering Case 2 — Dragging One Corner of a Rectangle,
section 3.1.2, using µ1 = 0.2 and µ2 = −0.2.

Remark 3.5. The patch tests also pass when performing them on all values for Lx and Ly in
the cross product of the range (0.1, 5.1).

3.2.2.2 Case 2 — Dragging One Corner of a Rectangle

We now look at Case 2 — Dragging One Corner of a Rectangle described in section 3.1.2.
Choosing the values µ1 = 0.2 and µ2 = −0.2 gives the real domain Ω shown in figure 3.1c and
the free node at (0.55, 0.45). Again performing the patch tests gives the results summarized
in table 3.3. Again the patch tests are all considered passed since all values for the numerical
solution uh are within machine tolerance of their respective values for the exact solution uex in
the free node (0.55, 0.45). We also see in the plots of the displacement given by the high-fidelity
solution in test cases 1 and 3, shown in figures 3.3a and 3.3b respectively, that the displacement
of the node (0.55, 0.45) is as expected given the exact solution. With this we mean that in test
case 1, it moved x = 0.55 to the right, when in test case 3, it moved y = 0.45 to the right.

Remark 3.6. The patch tests also pass when performing them on all values for µ1 and µ2 in
the cross product of the range (−0.49, 0.49).

47

CHAPTER 3. CASE STUDIES

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

(a) Patch Test — Test Case 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Patch Test — Test Case 3.

Figure 3.3. Patch Test: Case 2 — Dragging One Corner of a Rectangle; The displacement
given by the high-fidelity solutions of two patch tests for Case 2 — Dragging One Corner of a
Rectangle, section 3.1.2, using µ1 = 0.2 and µ2 = −0.2. The displaced position is shown in
gray with shading, whereas the initial position is shown in light gray without shading, i.e. the
displaced position is the position being displaced to the right. The solutions were obtained using
the mean-values for the Young modulus E and the Poisson coefficient ν. Please note the different
scales on the x and y axes.

Test Case 1. 2.

uex(0.475, 0.525)
[
0.55 0

]⊤ [
0 0.45

]⊤

uh(0.475, 0.525)
[
0.475 −3.0 · 10−17

]⊤ [
−3.3 · 10−17 0.525

]⊤

Test Case 3. 4.

uex(0.475, 0.525)
[
0.45 0

]⊤ [
0 0.15

]⊤

uh(0.475, 0.525)
[
0.525 −5.4 · 10−17

]⊤ [
−2.4 · 10−17 0.475

]⊤

Table 3.4. Patch Test: Case 3 — Dragging All Corners of a Rectangle; A comparison of the
displacement given by exact solution uex and finite element approximation uh in the one free
node (0.55, 0.45) for the patch tests considering Case 3 — Dragging All Corners of a Rectangle,
section 3.1.3, using µ1, µ2, µ3 = −0.1 and µ4, µ5, µ6 = 0.1.

3.2.2.3 Case 3 — Dragging All Corners of a Rectangle

We now look at Case 3 — Dragging All Corners of a Rectangle described in section 3.1.3.
Choosing the values µ1, µ2, µ3 = −0.1 and µ4, µ5, µ6 = 0.1 gives the real domain Ω shown in
figure 3.1d and the free node at (0.55, 0.45). Again performing the patch tests gives the results
summarized in table 3.4. Again the patch tests are passed since all values for uh are within
machine tolerance of their respective exact solution uex in the free node (0.475, 0.525). We also
see in the plots of the displacement given by the high-fidelity solution in test cases 1 and 3,
shown in figures 3.4a and 3.4b respectively, that the displacement of the node (0.475, 0.525) is as
expected given the exact solution. With this we mean that in test case 1, it moved x = 0.525 to
the right, when in test case 3, it moved y = 0.475 to the right. It is also worth mentioning that
the lower right corner in test case 3 moves to the left since it initially had a negative y-value.

Remark 3.7. The patch tests also pass when performing them on all values for µ1, µ2, µ3, µ4, µ5

and µ6 in the cross product of the range (−0.16, 0.16).

48

CHAPTER 3. CASE STUDIES

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.0

0.2

0.4

0.6

0.8

1.0

(a) Patch Test — Test Case 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.2

0.4

0.6

0.8

1.0

(b) Patch Test — Test Case 3.

Figure 3.4. Patch Test: Case 3 — Dragging All Corners of a Rectangle; The displacement given
by the high-fidelity solutions of two patch tests for Case 3 — Dragging All Corners of a Rectangle,
section 3.1.3, using µ1, µ2, µ3 = −0.1 and µ4, µ5, µ6 = 0.1. The displaced position is shown in
gray with shading, whereas the initial position is shown in light gray without shading, i.e. the
displaced position is the position being displaced to the right. The solutions were obtained using
the mean-values for the Young modulus E and the Poisson coefficient ν. Please note the different
scales on the x and y axes.

3.2.3 A Note on the use of Bilinear Elements

An important note here is the use of a bilinear element, in particular the Bilinear Lagrange
Rectangle Element presented in section 2.3. If we would have used a linear element, e.g. the
Linear Lagrange Triangle Element, see section 3.2 in BS2008 [10], all patch tests would have
passed for Case 1 — Scaling of a Rectangle, since the coordinate mapping Φ from the reference
domain Ω̃ is still linear in the spacial coordinates x̃1 and x̃2. However, for Case 2 — Dragging
One Corner of a Rectangle and Case 3 – Dragging All Corners of a Rectangle the patch tests
would only pass when the parameters µi are such that they in principle just scale the rectangle.
As a conclusion we state that the use of linear elements is unsuitable for our solver because we in
general have a bilinear coordinate mapping Φ, which means we need bilinear elements in general.

3.3 Determining the Matrix Least Squares Functions

In this section we go back to the Matrix Least Square problem in section 2.6.3

Q∑

q=0

gq(µk)Aq := A(µk), 1 ≤ k ≤ n, (3.60)

where A(µk) and Aq are matrices of size N ×m. More specifically we study the approximations
needed for determining the Matrix Least Square functions {gq(µ)}Qq=0.

We do this by first studying how to approximate the reciprocal of the determinant 1
|J | , then

studying how to approximate a function in general on the reference domain, and finally using
this study, we determine the Matrix Least Squares functions {gq(µ)}Qq=0.

Remark 3.8. By general function we refer to the function g(ϕ) for the prescribed displacement
g in the discrete lifting function

rgh(x;µgeo) =
∑

j∈Γ̄d

g(ϕ(x̃j ;µgeo))φ̃j(x̃j), Γ̄d =
{
j : x̃j ∈ Γ̃d

}
(3.61)

49

CHAPTER 3. CASE STUDIES

for the evaluation of the bilinear form a(rgh ,v) on the reference domain, and the functions f(ϕ)
and h(ϕ) for the body force f , and the prescribed traction vector h in the integrals

ˆ
Ω
f · v dΩ =

ˆ
Ω̃
f(Φ) · ṽ|J | dΩ̃, (3.62)

and ˆ
Ω
h · v dΩ =

ˆ
Ω̃
h(Φ) · ṽ|J | dΩ̃ (3.63)

on the reference domain.

3.3.1 The Reciprocal of the Determinant

In general the reciprocal of the determinant takes the form

1

k + c⊤x̃
, (3.64)

which has the Taylor expansion

1

k + c⊤x̃
=

1

k
− c⊤x̃

k2
+

(c⊤x̃)2

k3
− · · · , for |c⊤x̃| < |k|. (3.65)

3.3.1.1 Case 1 — Scaling of a Rectangle

In this case we know from section 3.1.1 that |J | = LxLy and that Lx, Ly > 0. This gives
k = LxLy and c = 0 in (3.65), resulting in an invalid Taylor expansion. However, this is not a
problem since the determinant is constant and Lx, Ly > 0. This gives us the possible range for
the geometry parameters Lx and Ly as Gsr = (0,∞) and the term

{
1

LxLy

}
(3.66)

for the Matrix Least Squares functions {gq(µ)}Qq=0.

3.3.1.2 Case 2 — Dragging One Corner of a Rectangle

In this case we know from section 3.1.2 that |J | = 1 + µ1x̃2 + µ2x̃1, giving us k = 1 and
c =

[
µ1 µ2

]⊤. This results in the Taylor expansion

1

k + c⊤x̃
= 1− (µ1x̃2 + µ2x̃1) + (µ1x̃2 + µ2x̃1)

2 − · · · , for |c⊤x| < 1, (3.67)

giving us the possible range for the geometry parameters µ1 and µ2 as Gdr = (−0.5, 0.5) since
|x̃i| ≤ 1 on the reference domain and the terms

{
1, µ1, µ2, µ

2
1, µ1µ2, µ

2
2, · · ·

}
(3.68)

for the Matrix Least Squares functions {gq(µ)}Qq=0.

Remark 3.9. We count the term µiµj , i ̸= j as a second order term, and similar for higher
order terms.

50

CHAPTER 3. CASE STUDIES

3.3.1.3 Case 3 — Dragging All Corners of a Rectangle

In this case we know from section 3.1.3 that

|J | = 1 + µ1 + µ6 − µ2µ5 + µ1µ6

+ x̃1 (µ4 − µ2 − µ6 + µ1µ4 − µ1µ6 − µ2µ3 + µ2µ5)

+ x̃2 (µ3 − µ1 − µ5 − µ1µ6 + µ2µ5 + µ3µ6 − µ4µ5) ,

(3.69)

giving us k = 1 + µ1 + µ6 − µ2µ5 + µ1µ6 and

c =

[
µ4 − µ2 − µ6 + µ1µ4 − µ1µ6 − µ2µ3 + µ2µ5

µ3 − µ1 − µ5 − µ1µ6 + µ2µ5 + µ3µ6 − µ4µ5

]
(3.70)

This results in the Taylor expansion

1

k + c⊤x̃
=

1

k
− c⊤x̃

k2
+

(c⊤x̃)2

k3
− · · · , for |c⊤x̃| < |k|, (3.71)

giving us the possible range for the geometry parameters µ1, µ2, µ3, µ4, µ5 and µ6 as Gqs =
(−0.16̄, 0.16̄) since |x̃i| ≤ 1 on the reference domain. Concerning the terms for the Matrix Least
Squares functions {gq(µ)}Qq=0,

(
c⊤x̃

)p will give the polynomial terms

{
1, µ1, µ2, µ3, µ4, µ5, µ6, µ

2
1, µ1µ2, µ1µ3, µ1µ4, µ1µ5, µ1µ6, µ

2
2, µ2µ3,

µ2µ4, µ2µ5, µ2µ6, µ
2
3, µ3µ4, µ3µ5, µ3µ6, µ

2
4, µ4µ5, µ4µ6, µ

2
5, µ5µ6, µ

2
6, · · ·

}
. (3.72)

However, 1
kp+1 gives problems since k depends on multiple µi. This also makes it difficult to

orthogonalize the 1
kp+1 to the polynomial terms. As a solution to this problem we choose to only

use the polynomial terms for the Matrix Least Squares functions {gq(µ)}Qq=0, noting that this
will correspond to further expanding 1

kp+1 in µ1, µ2 and µ5, which is valid beyond our geometry
parameter range Gqs.

3.3.2 Approximating a Function on the Reference Domain

In general, since we do not know what kind of functions g, f and h are, we do not know what
kind of functions g(ϕ), f(ϕ) and h(ϕ) are, in terms of the the geometry parameters Li or µi.
However, both components of coordinate mapping ϕ in all the cases are linear in the geometry
parameters Li or µi. This means that the function components are multivariate polynomials
of degree p in the spatial coordinates x̃1 and x̃2, and we get multivariate polynomials p in the
geometry parameter. For instance, if the function components are multivariate polynomials of
degree p = 2 in the spatial coordinates x̃1 and x̃2, and we have the geometry parameters µ1 and
µ2, i.e. case 2, we get the terms

{1, µ1, µ2, µ1µ2} (3.73)

for the Matrix Least Squares functions {gq(µ)}Qq=0.

3.3.3 Approximating the Determinant and the Numerators of the Encoding
Matrix

We know that in general the determinant |J | is a “bilinear” polynomial and the numerators of
the encoding matrix Z, (2.150) are second order, p = 2, polynomials in the geometry parameters,
i.e they take the forms

a0 · 1 +
∑

i

biµi +
∑

i ̸=j

cijµiµj , (3.74)

51

CHAPTER 3. CASE STUDIES

and
a0 · 1 +

∑

i

biµi +
∑

ij

cijµiµj , (3.75)

respectively. Which for case 2 gives the terms
{
1, µ1, µ2, µ

2
1, µ1µ2, µ

2
2

}
(3.76)

for the Matrix Least Squares functions {gq(µ)}Qq=0.

3.3.4 Determining the Matrix Least Squares Functions.

To put all the terms from the previous sections together we need to “multiply” them, i.e. “Mul-
tiplying” (3.73) using order p = 2 and (3.76) would give the set

{
1, µ1, µ2, µ

2
1, µ1µ2, µ

2
2, µ

3
1, µ

2
1µ2, µ1µ

2
2, µ

3
2

}
(3.77)

and “multiplying” (3.66) and (3.76) using Li would give the set
{
1, Lx, Ly, L

2
x, LxLy, L

2
y,

1

LxLy
,
1

Ly
,
1

Lx
,
Lx

Ly
,
Ly

Lx

}
. (3.78)

Observe that the approximation set, (3.76), for the determinant and the numerator of the encod-
ing matrix in general always is of order p = 2. Also observe that the reciprocal of the determinant
may reduce the order of the resulting set. Therefore we suggest that we always compute the
p+ 2 polynomial set of terms for the approximation of a general function, the determinant and
the numerator of the encoding matrix. This may then be “multiplied” with the non-polynomial
terms of the set order p for the reciprocal of the determinant, if the non-polynomial terms are
few and simple. Lastly we get the Matrix Least Squares function set from the resulting set by
cutting out the terms higher than p in absolute value. This means that the p = 2 order set for
Case 1 — Scaling of a Rectangle would be

{
1,

1

Ly
,
1

Lx
, Ly, Lx,

1

LxLy
,
Ly

Lx
, L2

y,
Lx

Ly
, LxLy, L

2
x,

L2
y

Lx
,
L2
x

Ly

}
. (3.79)

Remark 3.10. The order of appearance of the terms in (3.79) are given to match the order of
appearance in figure 3.8.

Furthermore, as mentioned in section 2.6.3, the functions should be close to orthogonal. So we
will be using the Legendre polynomials shifted to the currently used geometry parameter range
Ggeo. This makes it more efficient to store the order of the the terms, i.e for each term a list of
the order for each geometry parameter, in the mentioned sets above. Then when “multiplying”
instead “add” the orders of the terms together, cut off the terms higher than p in absolute value
and then compute the resulting Matrix Least Square function set Gmls = {gq(µ)}Qq=0. This
results in algorithm 4.

Remark 3.11. It is not always necessary to make all the functions {gq(µ)}Qq=0 orthogonal to
each other. Here we have the orthogonal set of shifted Legendre polynomials L̃(x) on the interval
[a, b] , a, b > 0 and the functions P̃n(x)

x . Making 1
x orthogonal to P̃n(x) would give the function

1
x − Tn(x), where Tn(x) is a polynomial. Hence, as mentioned above we see the case of Scaling a
Rectangle to have simple non-polynomial parts in the set for 1

|J | . However, in general we would
only recommend to not use an orthogonal basis when we know that we have a good matrix least
square fit for few matrix least square functions {gq(µ)}Qq=0, as seen in section 3.1.1.

52

CHAPTER 3. CASE STUDIES

Algorithm 4 An algorithm to construct the set of Martix Least Square functions Gmls =
{gq(µ)}Qq=0 given the order p, the set of geometry parameters µgeo and the geometry parameter
range Ggeo. The order p is interpreted as in remark 3.9.

1: function Gmls = FuncsMLS(p, µgeo, Ggeo)
2: Compute the set, Cmls, of all orders of the all terms in the p+ 2 polynomial set
3: if the set for 1

|J | will have simple non-polynomial parts then
i.e, case: scaling of a rectangle

4: Compute the set, Kmls, of all orders of all terms in the p order set of non-polynomial
terms in the p order set for 1

|J | , i.e
{

1
LxLy

}

5: “Add” Cmls and Kmls to from Ḡmls
6: else
7: Ḡmls = Cmls
8: end if
9: Cut out the lists where the absolute value of the sum of the entries is higher than p, the

sum of the positive entries is higher than p and sum of the negative entries is smaller
than −p from Ḡmls

10: for list of orders of the geometry parameters in Ḡmls do
11: Construct gq(µ) by using Legendre polynomials shifted to Ggeo for positive

orders of the geometry parameters, use the negatives as they are.
12: end for
13: end function

3.4 Constant Body Force in 2D

Before we can start our analysis we need a problem to study. For this analysis we use the case
of Constant Body force in 2D or more precisely the case where one component of the body force
f is a constant, we have homogeneous Dirichlet boundary conditions on the west side of the real
domain Ω, i.e a clamped down side, and the rest of the boundary has homogeneous Neumann
boundary conditions, i.e a traction free boundary. The proposed problem then becomes





−div (σ) = f =

[
α
0

]
in Ω = [0, 1]2

u = 0 on Γd

σn = 0 on Γn

(3.80)

A picture of the proposed problem given on the domain Ω = Ω̃ = [0, 1]2 can be seen in figure
3.5.

Furthermore, to get our field we set

α = ρ · 100g · t = 8 · 103 kg/m3 · 100 · 9.81m/s2 · 0.01m = 784.8 · 102 N/m, (3.81)

approximately equal to the mass density of steal times 100 the gravitational acceleration times
the thickness t = 1 cm.

Remark 3.12. For Case 1 — Scaling of a Rectangle and Case 2 - Dragging one corner of a
rectangle the boundary conditions and the body force f are given on the real domain Ω. However,
for Case 3 — Dragging all corner of a rectangle the boundary conditions and the body force f
are given on the reference domain Ω̃ because here the left side deviates from the line x = 0.

53

CHAPTER 3. CASE STUDIES

ΩΓd
u = 0

Γn
σn = 0

Γn
σn = 0

Γn
σn = 0

(0, 0) (1, 0)

(0, 1) (1, 1)

-

f

-

f

-

f

-

f

-

-

f

-

-

f

-

-

f

-

f

-

f

-

f

-

Figure 3.5. Constant Body force in 2D — A picture of describing the Constant Body force in
2D problem, showing the body force f and boundary conditions on the domain Ω = Ω̃ = [0, 1]2.

3.5 Discussions

In this section we discuss the three cases presented in section 3.1. We do this by studying
the relative errors between the high-fidelity solution uh(µ) and the high-fidelity MLS solution
uh,mls(µ),

∥uh(µ)− uh,mls(µ)∥a
∥uh(µ)∥a

, (3.82)

for orders p of approximation for the matrix least square functions {gq(µ)}Qq=0. Then, having
determined good choice for the order p, we study the relative contribution per term for the
matrices from the MLS algorithm 3

∥gq(µ)Ai,q∥f

∥Ai∥f
, i = 1, 2, (3.83)

and the relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order
solution V uN (µ),

∥uh(µ)− V uN (µ)∥a
∥uh(µ)∥a

, (3.84)

for different N , to see the effect of the MLS algorithm on the reduced-order solution constructed
by the Proper Orthogonal Decomposition (POD) algorithm with the energy norm, algorithm 2.

We start by testing the Matrix Least Squares algorithm using Case 1 — Scaling a rectangle,
then study Case 2 — Dragging one Corner of a Rectangle and Case 3 — Dragging all Corners
of a Rectangle. In all these studies we are using the problem of Constant Body force in 2D,
discussed in section 3.4, with n = 20 elements along the axes. Moreover, from some small scale
testing for when the matrix M⊤M has large condition numbers, given different orders p, in the
Matrix Least Squares algorithm 3, we find that a 25 × 25 uniform gird works. This is a good
compromise between accuracy and computational time given we have two geometry parameters
as in Case 1 — Scaling of a Rectangle and Case 2 — Dragging all Corners of a Rectangle. This
gives 252 = 625 snapshots of matrices and vectors. For Case 3 — Dragging all Corners of a
Rectangle we use a 3× 3× 3× 3× 3× 3 uniform grid, giving 36 = 729 snapshots of matrices and
vectors. This may seem as too few snapshots, however, 56 = 15 625 would be the next alternative
and this is too much considering computational time for this analysis.

54

CHAPTER 3. CASE STUDIES

(a) Lx = 0.1, Ly = 5.1 (b) Lx = 5.1, Ly = 0.1

Figure 3.6. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
two extremes of the geometry range Ḡsr = (0.1, 5.1) for Lx and Ly using n = 2 elements per
axes.

Finally, we study Case 2 — Dragging one Corner of a Rectangle again using what we have learned
from the previous studies, i.e. we have chosen the order p of approximation for the matrix least
square functions {gq(µ)}Qq=0. Moreover, we still use the problem of Constant Body force in 2D
discussed in section 3.4 and a 25× 25 uniform grid for µ1 and µ2. However, we are using n = 90
elements along the axes to give us Nh = 16 380 degrees of freedom (dofs) or free nodes. This
is more than ns = 15 625 = 25 × 25 × 5 × 5 , which is the number of solutions in the snapshot
matrix (2.74) in the POD algorithm. Having more than 10 000 degrees of freedom here give us
a good example to study the computational times.

The Python code building the solver, the Python code used in this thesis and the log files can
be found via the doi-link [4].

Remark 3.13. In this section we have used Emean and νmean for our material parameters µmat.

3.5.1 Testing the Matrix Least Squares algorithm; Case 1 — Scaling of a
Rectangle

As mentioned in section 3.1.1 the case of scaling a rectangle is still affine, see (3.2). Therefore
we are using this case to test the Matrix Least Squares algorithm, algorithm 3. Furthermore, we
are restricting us to the geometry range Ḡsr = (0.1, 5.1) for Lx and Ly, where the two extremes
of Lx = 0.1, Ly = 5.1 and Lx = 5.1, Ly = 0.1 are shown in figure 3.6 for n = 2 elements per axes.

3.5.1.1 The Relative Errors Between the High-fidelity Solution and the High-
fidelity Matrix Least Squares Solution

Studying the relative errors in figure 3.7 we see that the errors are below 10−9 from order p = 2
until p = 8, and from p = 8 until p = 10 they increase again. This is as expected since the
term LxLy, i.e. the determinant of the coordinate transformation Φ in this case, is considered
a second order term and therefore is not included before order p = 2. This term is important

55

CHAPTER 3. CASE STUDIES

2 4 6 8 10
p, order

10 12

10 9

10 6

10 3

100

103
Relative Errors, ||uh() uh, mls()||a/|uh()||a

max
mean

min

Figure 3.7. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
relative errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square
solution uh,mls(µ) solving the problem of Constant Body force in 2D using n = 20 elements along
the axes and the geometry parameter range Ḡsr = (0.1, 5.1).

because we need to evaluate the integral
ˆ
Ω
f · v dΩ =

ˆ
Ω̃
f(Φ) · ṽ|J | dΩ̃, (3.85)

where the body force f is constant and |J | = LxLy as shown in section 3.1.1. The increases in
the errors from p = 8 until p = 10 can be explained by noise form the inverting of the matrix
M⊤M in Matrix Least Squares algorithm 3, since the condition numbers here are above 105,
which we use as our noise limit.

3.5.1.2 The Relative Contribution per Term

From the previous section we note that order p = 2 is a good choice for the order, we study
the relative contributions per term for the affine matrices, (2.181), A1(µ) and A2(µ) shown in
figure 3.8.

Remark 3.14. The terms in figure 3.8 are ordered as follows
{
1,

1

Ly
,
1

Lx
, Ly, Lx,

1

LxLy
,
Ly

Lx
, L2

y,
Lx

Ly
, LxLy, L

2
x,

L2
y

Lx
,
L2
x

Ly

}
, (3.86)

and the polynomial terms and the numerator of the non-polynomial terms use Legendre polyno-
mials shifted to Ḡsr = (0.1, 5.1). This is not shown here for simplicity.

Taking remark 3.14 into account, when studying the relative contributions per term in figure 3.8
we see that the terms 1, Ly

Lx
and Lx

Ly
are relevant as expected from (3.10). However, the terms 1

Lx

56

CHAPTER 3. CASE STUDIES

0 2 4 6 8 10 12
q

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Relative contribution per term

||gq()A1q||/||A1()|| ||gq()A2q||/||A2()||

Figure 3.8. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
relative contribution per term solving the problem of Constant Body force in 2D using n = 20
elements along the axes, the geometry parameter range Ḡsr = (0.1, 5.1) and order p = 2. The
terms are ordered as stated in remark 3.14.

and 1
Ly

are also relevant. This is because of the use of shifted Legendre Polynomials which shifts

the term Ly

Lx
to Ly+k

Lx
and therefore makes the term k · 1

Lx
relevant, and similar for Lx

Ly
. From this

we conclude that the Matrix Least Squares algorithm 3 does split the affine matrices A1(µ) and
A2(µ) in the desired way for an affine problem.

3.5.1.3 The Relative Errors Between the High-fidelity Solution and the Reduced-
order Solution

Finally we want to study the relative errors between the high-fidelity solution uh(µ) and the
recovered reduced-order solution V uN (µ). For this we use the Proper Orthogonal Decomposition
(POD) algorithm with the energy norm, algorithm 2, with εpod = 10−2 to capture at least 99.99%
of the energy in the system. Studying the relative information content, I(N), and the singular
values in figures 3.9 and 3.10 respectively, we observe that the capture of at least 99.99% of the
energy in the system is achieved for N = 4 singular values. We also observe that the singular
values decrease rapidly until approximately N = 75 where the decrease flattens out.

Next we study the relative errors between the high-fidelity solution uh(µ) and the recovered
reduced-order solution V uN (µ) in figure 3.11. Here we observe that the mean error for N = 2
is a bit above 10−2. However, more interesting is that the max and mean errors flatten out from
around N = 60, where we observe that the max error flattens out at approximately 10−4 and
the mean error at approximately 10−6. Here we also observe that the min error preforms well
and flattens out below 10−8. Interestingly, when studying the log files from running the python
scrip to plot the figures in this section, we observe that max error in general is achieved in the
endpoints of the geometry parameter range ḠSR for Li.

57

CHAPTER 3. CASE STUDIES

0 100 200 300 400 500
N

0.9996

0.9997

0.9998

0.9999

1.0000

I(N
)

Relative information content, I(N)

(N, I(N)) = (4, 0.99992)

Figure 3.9. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
relative information content for the solving of the problem of Constant Body force in 2D using
n = 20 elements along the axes, the geometry parameter range Ḡsr = (0.1, 5.1), order p = 2 and
εpod = 10−2.

0 100 200 300 400 500
i

10 9

10 7

10 5

10 3

10 1

i

Singular values, scaled to 1

Singular Values, i.

Figure 3.10. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
singular values for the solving of the problem of Constant Body force in 2D using n = 20 elements
along the axes, the geometry parameter range Ḡsr = (0.1, 5.1), order p = 2 and εpod = 10−2.

58

CHAPTER 3. CASE STUDIES

0 20 40 60 80 100 120
N

10 8

10 6

10 4

10 2

100
Relative Errors, ||uh() VuN()||a/||uh()||a

max
mean

min
N=4

Figure 3.11. Testing the Matrix Least Squares algorithm: Case 1 — Scaling of a Rectangle; The
relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order solution
V uN (µ) for solving the problem of Constant Body force in 2D using n = 20 elements along the
axes, the geometry parameter range Ḡsr = (0.1, 5.1), order p = 2 and εpod = 10−2. The chosen
N = 4 is marked by the black dashed line.

3.5.2 Problems with the Geometry Range; Case 2 — Dragging One Corner
of a Rectangle

In this section we study the non-affine case of dragging one corner of a rectangle discussed
in section 3.1.2 and the effect of the Matrix Least Squares algorithm 3. More specifically we
study the problems that occur when the chosen geometry parameter range is too close to the
singularities of the expansion, which in this case are the singularities at µi = ±0.5, as seen in
section 3.3.1.2. Therefore we use the geometry parameter range Ḡdr = (−0.49, 0.49) where the
two extremes of µ1, µ2 = −0.49 and µ1, µ2 = 0.49 are shown in figure 3.12 for n = 2 elements
per axes. Looking at figure 3.12a especially, we see what will happen at the singularity of
µ1, µ2 = −0.5 where we get a triangle.

3.5.2.1 The Relative Errors Between the High-fidelity Solution and the High-
fidelity Matrix Least Squares Solution

Studying the relative errors in figure 3.13 we see that the max and mean errors are decreasing
until order p = 24 and that the min error decreases until order p = 18, however, form here they
increase quite rapidly. This is because for order p = 25 the matrix M⊤M in Matrix Least Squares
algorithm 3 can be considered singular since the condition number is above 10−17. This is not
a surprise since a 25× 25 grid should only allow approximations up to order p = 24 since n+ 1
snapshots in each direction are needed for order n as mentioned in remark 2.13. Furthermore,
the increase in the min error from p = 20 can also be explained by the condition number of the
matrix M⊤M , since it from here is higher than our noise limit of 105, and increases to above
1010. Because of this we choose order p = 19 for further analysis. Another observation is that

59

CHAPTER 3. CASE STUDIES

(a) µ1, µ2 = −0.49 (b) µ1, µ2 = 0.49

Figure 3.12. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The two extremes of the geometry parameter range Ḡdr = (−0.49, 0.49) for µ1, µ2 = −0.49 and
µ1, µ2 = 0.49 for n = 2 elements per axes.

for order p = 19 the max and mean errors are right above 10−3 and around 10−4 respectively,
which is a bit higher than we would have hoped for.

3.5.2.2 The Relative Contribution per Term

From the previous section we note that order p = 19 is a good choice for the order, we do a short
study of the relative contributions per term for the affine matrices, (2.181), A1(µ) and A2(µ)
shown in figure 3.14. Here we observe that the terms do decrease, but none of the terms are
irrelevant in contrast to the affine case in section 3.5.1.2. Furthermore, the decrease may be a
bit slow since relative contributions only decrease to below 10−4.

3.5.2.3 The Relative Errors Between the High-fidelity Solution and the Reduced-
order Solution

Lastly we again want to study the relative errors between the high-fidelity solution uh(µ) and
the recovered reduced-order solution V uN (µ). For this we again use the Proper Orthogonal
Decomposition (POD) algorithm with the energy norm, algorithm 2, with εpod = 10−2 to capture
at least 99.99% of the energy in the system. Again studying the relative information content,
I(N), and the singular values in figures 3.15 and 3.16 respectively, we observe that the capture
of at least 99.99% of the energy in the system is achieved for N = 11 singular values. We also
observe that the singular values do not decrease as rapidly as in section 3.5.1.3, however, the
decrease begins to flatten at approximately N = 150.

Now, studying the relative errors between the high-fidelity solution uh(µ) and the recovered
reduced-order solution V uN (µ) in figure 3.17, we observe that the mean error for N = 11 is
approximately 10−2. However, more interesting, the max and the mean errors flatten out form
N = 50. Here the max error flattens out above 10−3 and the mean error below 10−4, which is
quite close to the max and mean relative error between the high-fidelity solution uh(µ) and the
high-fidelity Matrix Least Square solution uh,mls(µ) in section 3.5.2.1. This makes sense since we

60

CHAPTER 3. CASE STUDIES

0 3 6 9 12 15 18 21 24
p, order

10 11

10 9

10 7

10 5

10 3

10 1

101

103
Relative Errors, ||uh() uh, mls()||a/||uh()||a

max
mean

min

Figure 3.13. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least
Square solution uh,mls(µ) solving the problem of Constant Body force in 2D using n = 20
elements along the axes and the geometry parameter range Ḡdr = (−0.49, 0.49).

0 25 50 75 100 125 150 175 200
q

10 6

10 5

10 4

10 3

10 2

10 1

100
Relative contribution per term

||gq()A1q||/||A1()|| ||gq()A2q||/||A2()||

Figure 3.14. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative contribution per term solving the problem of Constant Body force in 2D using n = 20
elements along the axes and order p = 19.

61

CHAPTER 3. CASE STUDIES

0 100 200 300 400 500 600
N

0.9996

0.9997

0.9998

0.9999

1.0000
I(N

)
Relative information content, I(N)

(N, I(N)) = (11, 0.99991)

Figure 3.15. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative information content for the solving of the problem of Constant Body force in 2D
using n = 20 elements along the axes, geometry parameter range Ḡdr = (−0.49, 0.49), order
p = 19 and and εpod = 10−2.

0 100 200 300 400 500 600
i

10 9

10 7

10 5

10 3

10 1

i

Singular values, scaled to 1

Singular Values, i.

Figure 3.16. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The singular values for the solving of the problem of Constant Body force in 2D using n = 20
elements along the axes, geometry parameter range Ḡdr = (−0.49, 0.49), order p = 19 and and
εpod = 10−2.

62

CHAPTER 3. CASE STUDIES

0 50 100 150 200 250 300 350
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
Relative Errors, ||uh() VuN()||a/||uh()||a

max
mean

min
N=11

Figure 3.17. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order
solution V uN (µ) for solving the problem of Constant Body force in 2D using n = 20 elements
along the axes, geometry parameter range Ḡdr = (−0.49, 0.49), order p = 19 and εpod = 10−2.
The chosen N = 11 is marked by the black dashed line.

can estimate the error between the high-fidelity solution uh(µ) and the recovered reduced-order
solution V uN (µ) by

∥uh(µ)− V uN (µ)∥a ≤ ∥uh(µ)− uh,mls(µ)∥a + ∥uh,mls(µ)− V uN (µ)∥a, (3.87)

using the triangle inequality. Moreover, again when studying the log files from running the
python scrip to plot the figures in this section, we observe that max error in general is achieved
in the endpoints of the geometry parameter range ḠDR for µi. Noting this, we here hypothesise
that the max and mean errors are dominated by the high-fidelity error.

3.5.2.4 Discussion

We have studied the relative errors between the high-fidelity solution uh(µ) and the high-fidelity
Matrix Least Square solution uh,mls(µ), the relative contribution per term and the relative errors
between the high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ) in the
previous sections. We see that our concerns around flattening out of the max and mean errors in
section 3.5.2.1, and decrease of the relative contribution per term in section 3.5.2.2 result in the
max and mean errors in section 3.5.2.3 being dominated by the high-fidelity error. Going back,
we defined our geometry parameter range as Ḡdr = (−0.49, 0.49) in section 3.5.2 and noted that
this is close to the singularities at µi = ±0.5, as seen in section 3.3.1.2. Noting that Taylor
expansions are most accurate when we are well within our maximum range, we conclude that
we here may have been too close to the singularities and that smaller geometry ranges than the
maximum ranges should be used.

63

CHAPTER 3. CASE STUDIES

(a) µ1, µ2 = −0.3 (b) µ1, µ2 = 0.3

Figure 3.18. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The two extremes of the geometry parameter range Ḡdr = (−0.3, 0.3) for µ1, µ2 = −0.3 and
µ1, µ2 = 0.3 for n = 2 elements per axes.

3.5.3 Geometry Range Changes

Again making the note that Taylor expansions are most accurate when we are well within our
maximum range, we want to make our ranges smaller. So we will use the range Ḡdr = (−0.3, 0.3)
for Case 2 — Dragging One Corner of a Rectangle, and Ḡqs = (−0.1, 0.1) instead of Gqs =
(−0.16̄, 0.16̄).

Remark 3.15. The maximum ranges for our geometry parameters in all three cases where found
in section 3.3.

3.5.4 Using a Smaller Geometry Range; Case 2 — Dragging One Corner of
a Rectangle

In this section we again study the non-affine case of dragging one corner of a rectangle discussed
in section 3.1.2 and the effect of the Matrix Least Squares algorithm 3. More specifically we
study the problems that occur when the chosen geometry parameter range is well within the
our maximum range as mentioned in section 3.5.3. Therefore we use the geometry parameter
range Ḡdr = (−0.3, 0.3) where the two extremes of µ1, µ2 = −0.3 and µ1, µ2 = 0.3 are shown in
figure 3.18 for n = 2 elements per axes.

3.5.4.1 The Relative Errors Between the High-fidelity Solution and the High-
fidelity Matrix Least Squares Solution

Studying the relative errors in figure 3.19 we see that the max and mean errors are decreasing
until order p = 19 and that the min error decreases until order p = 18, however, form here
they again increase quite rapidly, even more so than in figure 3.13. Again, this is because for
order p = 25 the matrix M⊤M in Matrix Least Squares algorithm 3 can be considered singular
since the condition number is above 10−17. The increase from p = 20 can be explained by the
condition number of the matrix M⊤M , since it from here is higher than our noise limit of 105,

64

CHAPTER 3. CASE STUDIES

0 3 6 9 12 15 18 21 24
p, order

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Relative Errors, ||uh() uh, mls()||a/||uh()||a

max
mean

min

Figure 3.19. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least
Square solution uh,mls(µ) solving the problem of Constant Body force in 2D using n = 20
elements along the axes and the geometry parameter range Ḡdr = (−0.3, 0.3).

and increases to above 1010. Because of this we again choose order p = 19 for further analysis.
Another observation here is that for order p = 19 the max and mean errors are right above 10−11

and right below 10−11 respectively, which is really small and considerably lower than what we
observed before in section 3.5.2.1.

3.5.4.2 The Relative Contribution per Term

From the previous section we note that order p = 19 is a good choice for the order, we again do
a short study of the relative contributions per term for the affine matrices, (2.181), A1(µ) and
A2(µ) shown in figure 3.20. Here we observe that the terms do decrease, and we have some terms,
mostly after approximately q = 150, that are close to irrelevant. Furthermore, the decrease is
better than in section 3.5.2.2 since relative contributions decrease to below 10−10.

3.5.4.3 The Relative Errors Between the High-fidelity Solution and the Reduced-
order Solution

Finally we again want to study the relative errors between the high-fidelity solution uh(µ) and
the recovered reduced-order solution V uN (µ). For this we again use the Proper Orthogonal
Decomposition (POD) algorithm with the energy norm, algorithm 2, with εpod = 10−2 to capture
at least 99.99% of the energy in the system. Again studying the relative information content,
I(N), and the singular values in figures 3.21 and 3.22 respectively, we observe that the capture
99.99% of the energy in the system is achieved for N = 8 singular values and not N = 11 as in
section 3.5.2.3. We observe that the singular values decrease as in section 3.5.2.3, however, the
decrease begins to flatten at approximately N = 100.

65

CHAPTER 3. CASE STUDIES

0 25 50 75 100 125 150 175 200
q

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Relative contribution per term

||gq()A1q||/||A1()|| ||gq()A2q||/||A2()||

Figure 3.20. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative contribution per term solving the problem of Constant Body force in 2D using n = 20
elements along the axes and order p = 19.

0 100 200 300 400 500 600
N

0.9996

0.9997

0.9998

0.9999

1.0000

I(N
)

Relative information content, I(N)

(N, I(N)) = (8, 0.99991)

Figure 3.21. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative information content for the solving of the problem of Constant Body force in 2D
using n = 20 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order
p = 19 and εpod = 10−2.

66

CHAPTER 3. CASE STUDIES

0 100 200 300 400 500 600
i

10 9

10 7

10 5

10 3

10 1
i

Singular values, scaled to 1

Singular Values, i.

Figure 3.22. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The singular values for the solving of the problem of Constant Body force in 2D using n = 20
elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19 and
εpod = 10−2.

Now, again studying the relative errors between the high-fidelity solution uh(µ) and the recovered
reduced-order solution V uN (µ) in figure 3.23, we observe that the mean error for N = 8 is
approximately 10−2, i.e. the same as we had for N = 11 in section 3.5.2.3. However, more
interesting, the max and the mean errors flatten out form N = 100, and the max error flattens
out right below 10−6 and the mean error right below 10−7, which is much better than in figure 3.17
from section 3.5.2.3. Moreover, as in section 3.5.2.3, when studying the log files from running
the python scrip to plot the figures in this section, we observe that max error in general is
achieved in the endpoints of the geometry parameter range ḠDR for µi. Noting this, we confirm
our hypothesis from section 3.5.2.3 about the max and mean errors being dominated by the
high-fidelity error.

3.5.4.4 Discussion

During the study of this example and though the comparison with the previous example in
section 3.5.2, we conclude that the use of a smaller geometry parameter range, i.e. a range
well within the maximum geometry parameter range form section 3.3, is impor.e.tant for the
performance of the Matrix Least Square algorithm 3. This is because otherwise the relative error
high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ) may be dominated
by the relative error between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least
Square solution uh,mls(µ) as hypothesised in section 3.5.2.3 and confirmed in section 3.5.4.3

3.5.5 Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle

In this section we study the non-affine case of dragging all corners of a rectangle discussed
in section 3.1.3 and the effect of the Matrix Least Squares algorithm 3. More specifically we
study the problems that occur when the chosen geometry parameter range is well within our
maximum range as mentioned in section 3.5.3. Therefore we use the geometry parameter range

67

CHAPTER 3. CASE STUDIES

0 50 100 150 200
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Relative Errors, ||uh() VuN()||a/||uh()||a

max
mean

min
N=8

Figure 3.23. Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle;
The relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order
solution V uN (µ) for solving the problem of Constant Body force in 2D using n = 20 elements
along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19 and εpod = 10−2.
The chosen N = 8 is marked by the black dashed line.

Ḡqs = (−0.1, 0.1) where two of the extremes are shown in figure 3.24 for n = 2 elements per
axes using of µ1, µ2, µ5, µ6 = −0.1 and µ3, µ4 = 0.1 for the left figure, and µ1, µ2, µ5, µ6 = 0.1
and µ3, µ4 = −0.1 for the right figure.

3.5.5.1 The Relative Errors Between the High-fidelity Solution and the High-
fidelity Matrix Least Squares Solution

Studying the relative errors in figure 3.25, we see that the max and mean errors are decreasing
until order p = 2 before increasing. This is again because for order p = 3 the matrix M⊤M
in Matrix Least Squares algorithm 3 can be considered singular since the condition number is
above 10−17. This is again caused by having 3 snapshots in each of our 6 directions, meaning
that order p = 2 is the best order we can achieve, noting remark 2.13. Order p = 2 is less
than we would have wished for, however, increasing the number of snapshots from 36 = 729 to
56 = 15 625 or more will give longer computational times as motioned in section 3.5. Because of
this we are again choosing order p = 2 for further analysis here. Another observation is that for
order p = 2 the max and mean errors are right above 10−2 and right above 10−3 respectively,
which is still is quite large and may lead to the relative errors between the high-fidelity solution
uh(µ) and the high-fidelity Matrix Least Square solution uh,mls(µ) dominates the relative errors
between the high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ). Just
as previously seen from the study in section 3.5.2.

68

CHAPTER 3. CASE STUDIES

(a) µ1, µ2, µ5, µ6 = −0.1 and µ3, µ4 = 0.1 (b) µ1, µ2, µ5, µ6 = 0.1 and µ3, µ4 = −0.1

Figure 3.24. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; Two of the
extremes for the geometry parameter range Ḡqs = (−0.1, 0.1) for n = 2 elements per axes
using of µ1, µ2, µ5, µ6 = −0.1 and µ3, µ4 = 0.1 for the left figure, and µ1, µ2, µ5, µ6 = 0.1 and
µ3, µ4 = −0.1 for the right figure.

1 2 3
p, order

10 3

10 1

101

103

Relative Errors, ||uh() uh, mls()||a/||uh()||a

max
mean

min

Figure 3.25. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution
uh,mls(µ) solving the problem of Constant Body force in 2D using n = 20 elements along the
axes and the geometry parameter range Ḡqs = (−0.1, 0.1).

69

CHAPTER 3. CASE STUDIES

0 4 8 12 16 20 24 28
q

10 3

10 2

10 1

100
Relative contribution per term

||gq()A1q||/||A1()|| ||gq()A2q||/||A2()||

Figure 3.26. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
contribution per term solving the problem of Constant Body force in 2D using n = 20 elements
along the axes and order p = 19.

3.5.5.2 The Relative Contribution per Term

Having chosen p = 2 in the previous section we again do a short study of the relative contributions
per term for the affine matrices, (2.181), A1(µ) and A2(µ) shown in figure 3.26. Here we observe
that the terms do decrease, however none are close to irrelevant. Furthermore, the decrease
happens in distinct steeps after q = 0 and q = 6. Looking at the log files we see that the
step after q = 1 is the barrier between 0-order term 1 and the 1-order terms, and that the
step after q = 6 is the barrier between the 1-order terms and 2-order terms. The fact that the
relative contribution of all terms is above 10−3 again indicates that the relative errors between
the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution uh,mls(µ) will
dominate the relative errors between the high-fidelity solution uh(µ) and the recovered reduced-
order solution V uN (µ) because of too few snapshots.

3.5.5.3 The Relative Errors Between the High-fidelity Solution and the Reduced-
order Solution

Finally we again want to study the relative errors between the high-fidelity solution uh(µ) and
the recovered reduced-order solution V uN (µ). For this we once more use the Proper Orthogonal
Decomposition (POD) algorithm with the energy norm, algorithm 2, with εpod = 10−2 to capture
at least 99.99% of the energy in the system. Studying the relative information content, I(N),
and the singular values in figures 3.27 and 3.28 respectively, we observe that the capture of at
least 99.99% of the energy in the system is achieved for N = 11 singular values. We also observe
that the singular values decrease slower than in section 3.5.2.3, and the decrease begins to flatten
at approximately N = 200.

Now, studying the relative errors between the high-fidelity solution uh(µ) and the recovered
reduced-order solution V uN (µ) in figure 3.29, we observe that the mean error for N = 11

70

CHAPTER 3. CASE STUDIES

0 100 200 300 400 500 600 700
N

0.9996

0.9997

0.9998

0.9999

1.0000

I(N
)

Relative information content, I(N)

(N, I(N)) = (11, 0.99990)

Figure 3.27. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
information content for the solving of the problem of Constant Body force in 2D using n = 20
elements along the axes, the geometry parameter range Ḡqs = (−0.1, 0.1), order p = 2 and
εpod = 10−2.

0 100 200 300 400 500 600 700
i

10 9

10 7

10 5

10 3

10 1

i

Singular values, scaled to 1

Singular Values, i.

Figure 3.28. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The singular
values for the solving of the problem of Constant Body force in 2D using n = 20 elements along
the axes, the geometry parameter range Ḡqs = (−0.1, 0.1), order p = 2 and εpod = 10−2.

71

CHAPTER 3. CASE STUDIES

0 20 40 60 80 100
N

10 3

10 2

10 1

Relative Errors, ||uh() VuN()||a/||uh()||a

max
mean

min
N=11

Figure 3.29. Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle; The relative
errors between the high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ)
for the solving of the problem of Constant Body force in 2D using n = 20 elements along the
axes, the geometry parameter range Ḡqs = (−0.1, 0.1), order p = 2 and εpod = 10−2. The chosen
N = 11 is marked by the black dashed line.

is approximately 10−2. However, more interesting, the max and the mean errors flatten out
form N = 20 and here the max error flattens out above 10−2 and the mean error below 10−2,
which is quite bad. Taht is close to the max and mean errors for the relative errors between
the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution uh,mls(µ) in
section 3.5.5.1. Moreover, when studying the log files from running the python scrip to plot the
figures in this section, we observe that max error in general is achieved in the endpoints of the
geometry parameter range Ḡqs for µi. Noting this we confirm our hypothesis from section 3.5.5.1
and section 3.5.5.2 about the max and mean errors in figure 3.17 being dominated by the high-
fidelity errors.

3.5.5.4 Discussion

During the study of this example we concluded that the relative errors between the high-fidelity
solution uh(µ) and the recovered reduced-order solution V uN (µ) are dominated by the relative
errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution
uh,mls(µ) because we have too few snapshots. We also observed the effect of this in figure 3.26
where we had two distinct steps showing the decrease in relevance of the terms as the order p of
the term gets larger. From this we see that too few snapshots is a problem to take into account.

3.5.6 More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One
Corner of a Rectangle

In this section we do a final analysis on the case of dragging one corner of a rectangle. From
the studies in section 3.5.2 and section 3.5.4 we learned that order p = 19 is a good choice for

72

CHAPTER 3. CASE STUDIES

max mean min
∥uh(µ)−uh,mls(µ)∥a

∥uh(µ)∥a 1.2 · 10−10 3.3 · 10−12 2.7 · 10−13

Table 3.5. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The relative errors between the high-fidelity solution uh(µ) and the high-fidelity
Matrix Least Square solution uh,mls(µ) solving the problem of Constant Body force in 2D using
n = 90 elements along the axes and the geometry parameter range Ḡqs = (−0.3, 0.3) for order
p = 19.

the order of approximation for the Matrix Least Squares functions {gq(µ)}Qq=0. Furthermore, we
observed that the geometry parameter range Ḡdr should bee chosen well within the maximum
geometry parameter range mentioned in section 3.3. Therefore we will use Ḡdr = (−0.3, 0.3).
Next, as mention in section 3.5, we use n = 90 elements along the axes to get Nh = 16 380
degrees of freedom (dofs) or free nodes which is more than ns = 15 625 = 25× 25× 5× 5, which
is the number of solutions in the snapshot matrix (2.74). Since we have chosen order p = 19
for the Matrix Least Squares functions {gq(µ)}Qq=0 we present the max, mean and min relative
errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution
uh,mls(µ) in table 3.5. Here we see that errors are approximately equal to the errors for p = 19
in figure 3.19 in section 3.5.4.1.

3.5.6.1 The Relative Errors Between the High-fidelity Solution and the Reduced-
order Solution

Having chosen order p = 19 for the Matrix Least Squares functions {gq(µ)}Qq=0 we now study the
relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order solution
V uN (µ). For this we again use the Proper Orthogonal Decomposition (POD) algorithm with
the energy norm, algorithm 2 with εpod = 10−2 to capture at least 99.99% of the energy in the
system. Studying the relative information content, I(N), and the singular values in figures 3.30
and 3.31 respectively, we observe that the capture of at least 99.99% of the energy in the system is
achieved for N = 8 singular values, as in section 3.5.4.3. This gives us an approximate reduction
factor of 2 000 in the degrees of freedom. We also observe that we have more singular values than
for n = 20 elements along the axes and that they decrease rapidly until 10−9 for approximately
N = 200, before beginning to flatten out.

Remark 3.16. In all figures of the relative information and the singular values all singular
values larger than 0 from the Proper Orthogonal Decomposition (POD) algorithm with the energy
norm, algorithm 2, have been plotted.

Studying the relative errors between the high-fidelity solution uh(µ) and the recovered reduced-
order solution V uN (µ) in figure 3.32, we observe that the mean error for N = 8 is approximately
10−2. More interesting, the max and the mean errors decrease slower than in figure 3.23. How-
ever, in the end at N = 200 the errors are lower, i.e right below 10−8 versus right below 10−6.
This leads to the conclusion that more degrees of freedom slows down the decrease of the errors,
but in the end gives lower errors. Furthermore, when studying the log files from running the
python script to plot the figures we observe that max error in general is achieved in the endpoints
of the geometry parameter range Ḡdr for µi.

Finally, studying the four POD modes in figures 3.33 and 3.34 we notice that the deformations get
smaller and smaller in the zoomed-in plots to the left. This corresponds nicely to the reduction
in the singular values. Furthermore, we observe that the first mode is traction free, whereas the
following modes all display some traction.

73

CHAPTER 3. CASE STUDIES

0 2000 4000 6000 8000
N

0.9996

0.9997

0.9998

0.9999

1.0000
I(N

)
Relative information content, I(N)

(N, I(N)) = (8, 0.99991)

Figure 3.30. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of a
Rectangle; The relative information content for the solving of the problem of Constant Body force
in 2D using n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3),
order p = 19 and εpod = 10−2.

0 2000 4000 6000 8000
i

10 11

10 9

10 7

10 5

10 3

10 1

i

Singular values, scaled to 1

Singular Values, i.

Figure 3.31. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The singular values for the solving of the problem of Constant Body force in 2D
using n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order
p = 19 and εpod = 10−2.

74

CHAPTER 3. CASE STUDIES

0 50 100 150 200
N

10 8

10 6

10 4

10 2

100
Relative Errors, ||uh() VuN()||a/||uh()||a

max
mean

min
N=8

Figure 3.32. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The relative errors between the high-fidelity solution uh(µ) and the recovered
reduced-order solution V uN (µ) for the solving of the problem of Constant Body force in 2D
using n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order
p = 19 and εpod = 10−2. The chosen N = 8 is marked by the black dashed line.

3.5.6.2 Displacement and Recovered von Mises Stress

In this section we want to study the displacement and recovered von Mises stress in the high-
fidelity (HF) solution uh(µ) and the recovered reduced-order (RB) solution V uN (µ). We chose
to use µ1 = 0.2 and µ2 = −0.2. We get the recovered von Mises stress by doing simple stress
recovery, inspired by [19]. This is done by first getting the stress at the nodal values, by averaging
the stresses over all neighbouring elements, and then interpolate linearly within each element
using the basis functions for the displacement. With the recovered stress σ we compute the
recovered von Mises stress σm as

σm =

√
3

2
s : s, (3.88)

where s is the deviatoric stress tensor

s = σ − 1

3
tr(σ)I, (3.89)

as in [20].

Studying the displacement plots in figures 3.35 and 3.36 respectively, we do not see differences.
Making us conclude that the RB solution for N = 8 will approximate the HF solution quite good
for N = 8 POD modes.

Next, studying the recovered von Mises stress in figures 3.37 and 3.38 respectively, we see a small
difference. Here the orange and yellow colored areas in the HF plot reach higher on the y-axis
than in the RB plot, i.e. the HF plot has yellow above 0.4 and orange closer to 0.2 than the RB
plot. Besides this the plots are pretty similar.

75

CHAPTER 3. CASE STUDIES

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) POD mode — N = 1

0.94 0.96 0.98 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) POD mode — N = 1 zoomed in

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) POD mode — N = 2

0.94 0.96 0.98 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(d) POD mode — N = 2 zoomed in

Figure 3.33. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of
a Rectangle; The two first POD modes for the solving of the problem of Constant Body force
in 2D using n = 90 elements along the axes, the geometry parameter range Ḡdr = (−0.3, 0.3),
order p = 19 and εpod = 10−2. The plots to the left show the whole picture, whereas the plots
to the right zoom in at the end x = 1.

76

CHAPTER 3. CASE STUDIES

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) POD mode — N = 3

0.94 0.96 0.98 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) POD mode — N = 3 zoomed in

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) POD mode — N = 4

0.94 0.96 0.98 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(d) POD mode — N = 4 zoomed in

Figure 3.34. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The third and fourth POD modes for the solving of the problem of Constant
Body force in 2D using n = 90 elements along the axes, the geometry parameter range Ḡdr =
(−0.3, 0.3), order p = 19 and εpod = 10−2. The plots to the left show the whole picture, whereas
the plots to the right zoom in at the end x = 1.

77

CHAPTER 3. CASE STUDIES

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.35. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The displacement in the high-fidelity (HF) solution uh(µ) for the solving of the
problem of Constant Body force in 2D using n = 90 elements along the axes, the geometry
parameter range Ḡdr = (−0.3, 0.3), order p = 19, and µ1 = 0.2 and µ2 = −0.2. The displaced
position is shown in gray, whereas the initial position is shown in black, i.e. the displaced position
is the position being displaced to the right.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.36. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The displacement in the recovered reduced-order (RB) solution V uN (µ) for the
solving of the problem of Constant Body force in 2D using n = 90 elements along the axes, the
geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19, εpod = 10−2, N = 8 RB degrees
of freedom, and µ1 = 0.2 and µ2 = −0.2. The displaced position is shown in gray, whereas the
initial position is shown in black, i.e. the displaced position is the position being displaced to the
right.

78

CHAPTER 3. CASE STUDIES

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

0

25000

50000

75000

100000

125000

150000

175000

200000

Figure 3.37. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner
of a Rectangle; The recovered von Mises stress in the high-fidelity (HF) solution uh(µ) for the
solving of the problem of Constant Body force in 2D using n = 90 elements along the axes,
the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19, and µ1 = 0.2 and µ2 = −0.2.
Note that the von Mises stress approaches infinity at (0, 0), therefore the plots are limited to a
maximum stress of 200 000.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

0

25000

50000

75000

100000

125000

150000

175000

200000

Figure 3.38. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of a
Rectangle; The recovered von Mises stress in the recovered reduced-order (RB) solution V uN (µ)
for the solving of the problem of Constant Body force in 2D using n = 90 elements along the
axes, the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19, εpod = 10−2, N = 8 RB
degrees of freedom, and µ1 = 0.2 and µ2 = −0.2. Note that the von Mises stress approaches
infinity at (0, 0), therefore the plots are limited to a maximum stress of 200 000.

79

CHAPTER 3. CASE STUDIES

High-fidelity model
Number of HF dofs Nh 12 960
Number of Snapshots 625
MLS components Q 210
MLS fit time ≈ 9 min
Time for saving one snapshot* ≈ 2 min 30 s
HF assembly time ≈ 1 min 52 s
HF solution time ≈ 0.9 s

Reduced-order model
Number of RB dofs N 8
Dofs reduction 4 095 : 2
Build RB model by POD time ≈ 15 min
Offline CPU time** ≈ 24 hours
Online CPU (RB solution) time ≈ 1.3 ms

Table 3.6. More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of a
Rectangle; Computational details for the high-fidelity (HF) and reduced-order (RB) model built
form solving of the problem of Constant Body force in 2D using n = 90 elements along the axes,
the geometry parameter range Ḡdr = (−0.3, 0.3), order p = 19, µ1 = 0.2 and µ2 = −0.2, and
εpod = 10−2 for the proper orthogonal decomposition (POD) with respect to the energy norm,
algorithm 2. *The time for saving one snapshot is based on saving the snapshot for µ1 = 0.2 and
µ2 = −0.2 multiple times, different µ1, µ2 may result in a different time. **The time to save one
snapshot is multiplied by 252 = 625 to get the total time for saving snapshots, in addition comes
the time of one HF assembly for the special mean snapshot. Note that the use off multiprocessing
to save snapshots may speedup the saving of snapshots.

Remark 3.17. The von Mises stress approaches infinity in the corner of (0, 0) of the clamped
boundary of x = 0, therefore the plots are limited to a maximum stress of 20 000.

3.5.6.3 Computational Performance

We now test the computational performance of our solver for this case. As stated in section 3.5.6
we use n = 90 elements along the axes to get Nh = 16 380 degrees of freedom (dofs) which is
more than ns = 15 625 = 25 × 25 × 5 × 5, which is the number of solutions in the snapshot
matrix (2.74). This means that we have an approximate reduction factor of 2 000 in the degrees
of freedom and that we use a 25× 25 uniform grid for the geometry parameters µ1 and µ2, and
a 5 × 5 uniform grid for the material parameters E and ν. Studying the computational details
and times show in table 3.6 we see that we get a speedup of order 600 for the online stage. This
is quite good taking into account that the Matrix Least Square algorithm gives Q above 200,
meaning that since we here have homogeneous Dirichlet boundary conditions will need to sum
above 200 matrices for A

(1)
N (µ) and A

(2)
N (µ), and above 200 vectors for f (0)

N (µ) in (2.194).

Remark 3.18. The times in table 3.6 show the mean of 1 000 runs of the high-fidelity (HF) and
reduced-order (RB) solutions, 50 runs of the HF assembly and saving of one snapshot, and 10
runs for the Matrix Least Square fit and the building of the RB model by the POD algorithm. The
results where obtained on a private computer using a AMD Ryzen 9 5950x 16-Core Processor @
3.4/4.9 GHz CPU and 32 GB RAM on an ASUS ROG Strix X570-F Gaming Motherboard with
an AMD RX 6800XT Sapphire Nitro+ GPU. The computer was set to run with only Python
(Anaconda3 + Pycharm) running in the foreground.

80

CHAPTER 3. CASE STUDIES

3.5.6.4 Discussion

During the study of this example we concluded that decrease in the relative errors between the
high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ) slows down because
of the higher number of degrees of freedom than in the previous examples. Furthermore, in
section 3.5.6.2 we observed that the reduced-order solution for N = 8 POD modes approximates
the high-fidelity solution quite good since the displacement and recovered von Mises stress are
similar. Using N = 8 POD mode lead to an approximate reduction factor of 2 000 in the degrees
of freedom, which ultimately resulted in a speedup of order 600 for the online stage. This is quite
good taking into account that the Matrix Least Square algorithm gives Q above 200, meaning
that since we here have homogeneous Dirichlet boundary conditions will need to sum above 200

matrices for A
(1)
N (µ) and A

(2)
N (µ), and above 200 vectors for f (0)

N (µ) in (2.194).

3.6 Summarizing the Results

In section 3.2 we tested and observed that our implemented solvers work. In section 3.3 we sat
up algorithm 4 to determine the Matrix Least Square functions {gq(µ)}Qq=0 and in section 3.4 we
presented the problem of a Constant Body force in 2D. We used both in the studies in section 3.5.

In section 3.5.1 we tested the Matrix Least Squares algorithm 3 and concluded that it does split
the affine matrices A1(µ) and A2(µ) in the desired way for an affine problem.

In sections 3.5.2 and 3.5.4 respectively, we observed what happens when being too close to the
singularities of the maximum valid range for the Taylor expansion, and how this effects the
relative errors between the high-fidelity solution uh(µ) and the recovered reduced-order solution
V uN (µ). First in section 3.5.2, we hypothesised that the relative errors between the high-fidelity
solution uh(µ) and the recovered reduced-order solution V uN (µ) are dominated by the relative
errors between the high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution
uh,mls(µ). We confirmed this in section 3.5.4 by using a smaller geometry parameter range well
within the maximum geometry parameter range.

Next, we observed in section 3.5.5 that we had too few snapshots leading to the relative errors
between the high-fidelity solution uh(µ) and the recovered reduced-order solution V uN (µ) being
dominated by the relative errors between the high-fidelity solution uh(µ) and the high-fidelity
Matrix Least Square solution uh,mls(µ). This was caused by having 3 snapshots in each of our 6
directions, meaning that order p = 2 is the best order we can achieve, noting remark 2.13.

Finally, in section 3.5.6 we observed the effect of having more than 10 000 degrees of freedom,
which lead to N = 8 POD modes for the reduced-order solution leading to an approximate
reduction factor of 2 000 in the degrees of freedom. This, ultimately resulted in a computational
speedup of order 600 for the online stage. That is quite good taking into account that the
Matrix Least Square algorithm gives Q above 200, meaning that since we here have homogeneous
Dirichlet boundary conditions, we will need to sum more than 200 matrices for A

(1)
N (µ) and

A
(2)
N (µ), and more than 200 vectors for f (0)

N (µ) in (2.194).

The results regarding the geometry parameter range are as expected, since we know that the
Taylor expansion is more accurate when well within the valid range for the parameters. However,
the results regarding few snapshots in each direction are both expected and unexpected. Expec-
ted because we know we need n + 1 snapshots in each direction for approximations of order n.
Unexpected because we would have hoped for better results for low orders. Studying the other
cases, we observe that the results are similar to the low orders in these other cases , making the
result expected. Finally, the results when studying the effect of over 10 000 degrees of freedom
are expected in the form that we expected there to be little difference between the high-fidelity

81

CHAPTER 3. CASE STUDIES

solution and the reduced-order solution when capturing 99.99% of the energy in the system.
Furthermore, the computational speedup of order 600 for the online stage is as expected, since
the reduced-order solution needs to add over Q = 200 matrices and vectors three times.

As we have seen, tweaking the input parameters on how many snapshots we have in each direction
greatly effects the results. This would also, to a lesser degree, be the case for our affine parameter
E and ν, which we here only have used a 5× 5 uniform grid for. Moreover, changing εpod form
10−2 to 10−3 to now capture 99.9999% of the energy in the system would only make the reduced-
order solution closer to the high-fidelity solution. Changing the way the Matrix Least Square
functions {gq(µ)}Qq=0 are determined would change the results. But a bad choice of functions
will lead to that the relative errors between the high-fidelity solution uh(µ) and the high-fidelity
Matrix Least Square solution uh,mls(µ) do not decrease or decrease quit slowly. We experienced
such a result when we ran a bugged analysis, not shown in this thesis, where some of the functions
depending on µ1 where missing.

82

Chapter 4

Conclusion and Future Work

In this chapter we first present the summary of the main results, then conclusions of our study
on the Matrix Least Square technique. Finally, we state some recommend potential further work
for continued studies.

4.1 A Summary of the Main Results

In section 3.5.1 we tested the Matrix Least Squares algorithm 3 and concluded that it does split
the affine matrices A1(µ) and A2(µ) in the desired way for an affine problem. Studying the results
section 3.5.2 we hypothesised that the relative errors between the high-fidelity solution uh(µ) and
the recovered reduced-order solution V uN (µ) where dominated by the relative errors between the
high-fidelity solution uh(µ) and the high-fidelity Matrix Least Square solution uh,mls(µ) because
we were too close to the singularities of the maximum valid range for the Taylor expansion.
This we confirmed in section 3.5.4 by using a smaller geometry parameter range well within the
maximum geometry parameter range. Next, in section 3.1.3 we observed that this domination
also occurs when we had to few snapshots because we need n + 1 snapshots in each of our
directions for approximations of order n, noting remark 2.13. Finally, in section 3.5.6 we observed
the effect of having more than 10 000 degrees of freedom, which lead to N = 8 POD modes for
the reduced-order solution leading to an approximate reduction factor of 2 000 in the degrees of
freedom. This, ultimately resulted in a computational speedup of order 600 for the online stage.

4.2 Conclusions

The main conclusion from these results is that the developed Matrix Least Square technique
preforms well when we have enough snapshots and are well within the maximum valid geometry
parameter range for the Taylor expansion. The technique also splits the matrices of an affine
problem as desired. Furthermore, when using it on a problem with over 10 000 degrees of freedom
we observed a computational speedup of order 600. Using this observation we conclude that the
Matrix Least Square technique has a great potential for reduced basis modelling, even if the
number of snapshots needed may increase greatly with the increase of number of non-affine
parameters as observed in section 3.1.3. We conclude this even if we did restrict our problems
heavily and thereby made them simple.

The overall objective of the thesis was the construction, presentation and testing of the Matrix
Least Square technique for non-affine problems. We consider this objective achieved since we
first through chapter 2 thoroughly studied the basic theory behind the reduced basis methods
using finite elements, presented the Matrix Least Square technique, and applied the theory to our

83

CHAPTER 4. CONCLUSION AND FUTURE WORK

restricted cases of the Linear Elasticity Equations. Then secondly, though chapter 3, we built a
solver and tested it, and finally we used it to test the Matrix Least Square technique and studied
a simple numerical example using the technique for different non-affine geometries.

4.3 Recommendations of Future Work

As mentioned in the conclusions in section 4.2 our study was done on a simple example for
different non-affine geometries. However, all these cases are of great interest and have their
applications in areas such as design, optimization and real-time control [9]. Therefore, we suggest
to investigate the use of sparse snapshot generation, especially for problems containing a large
number of design parameters. The impact of this on the performance is expected to be that we
do not need as many snapshots as now, while still maintaining the order of approximation for
the Matrix Least Square technique.

We also suggest to investigate the extension to the 3D case. This would give more geometry
design parameters and it would be interesting to observe the speedup gain. Furthermore, we
would like to see if results of this thesis extend to more complex geometry deformations and
other partial differential equations.

Looking at physical applications of reduced-order modelling, especially modeling non-affine geo-
metries, could be useful in for instance modeling a bridge that is about to collapse, like the one
dividing northern Norway in half [21]. This could be a complex geometry problem in 3D with
many design parameters.

84

Bibliography

[1] A. Quarteroni, A. Manzoni and F. Negri. Reduced Basis Methods for Partial Differential
Equations An Introduction. Springer, 2016.

[2] A. Rasheed, O. San and T. Kvamsdal. ‘Digital Twin: Values, Challenges and Enablers From
a Modeling Perspective’. In: IEEE Access 8 2020, pp. 21980–22012. doi: 10.1109/ACCESS.
2020.2970143.

[3] E. Fonn et al. ‘Fast divergence-conforming reduced basis methods for steady Navier–Stokes
flow’. In: Computer Methods in Applied Mechanics and Engineering 346 2019, pp. 486–512.
issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2018.11.038.

[4] O.M.S. Gran. OlavMSG/Code-Master-Thesis-Spring-2022: v1.0.1. 6th June 2022. doi: 10.
5281/zenodo.6617578.

[5] A. Quarteroni. Numerical Models for Differential Problems. 2nd ed. Springer, 2009.
[6] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen. 2nd ed. Vieweg &

Teubner, 2010. isbn: 978-3-8348-9357-4.
[7] A. Quarteroni, R. Sacco and F. Saleri. Numerical Mathematics. 2nd ed. Springer, 2007.
[8] R. Adams and J. Fournier. Sobolev Spaces. 2nd ed. Elsevier Science, 2003. isbn: 978-0-12-

044143-3.
[9] J.S. Hesthaven, G. Rozza and B. Stamm. Certified Reduced Basis Methods for Parametrized

Partial Differential Equations. Springer, 2016.
[10] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. 3rd ed.

Springer, 2008.
[11] J. Gareth et al. An Introduction to Statistical Learning. 2nd ed. Springer, 2013.
[12] W.K. Härdle and L. Simar. Applied Multivariate Statistical Analysis. 4th ed. Springer,

2015.
[13] G.W. Stewart. ‘On the early history of the singular value decomposition’. In: Siam review

35(4), 1993, pp. 551–566.
[14] G.H. Golub and C.F. Van Loan. Matrix Computations. 4th ed. Baltimore: The John Hop-

kins University Press, 2013.
[15] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Philadelphia: Society for Industrial

and Applied Mathematic, 1997.
[16] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Siam, 2003. isbn: 978-0-

89871-534-7.
[17] T.J.R. Hughes. The Finite Element Method. Linear Static and Dynamic Finite Element

Analysis. Dover Publications Inc., 2012.
[18] C.A. Felippa, B. Haugen and C. Militello. ‘From the individual element test to finite element

templates: Evolution of the patch test’. In: International Journal for Numerical Methods
in Engineering 38.2 1995, pp. 199–229. doi: https://doi.org/10.1002/nme.1620380204.

[19] Programming project in TMA4220 - part 2. 2020. url: https://wiki.math.ntnu.no/
tma4220/2020h/project (visited on 10/12/2021).

85

https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/https://doi.org/10.1016/j.cma.2018.11.038
https://doi.org/10.5281/zenodo.6617578
https://doi.org/10.5281/zenodo.6617578
https://doi.org/https://doi.org/10.1002/nme.1620380204
https://wiki.math.ntnu.no/tma4220/2020h/project
https://wiki.math.ntnu.no/tma4220/2020h/project

BIBLIOGRAPHY

[20] Solving PDEs in Python -
 The FEniCS Tutorial Volume I. url: https://fenicsp
roject.org/pub/tutorial/html/._ftut1008.html (visited on 07/12/2021).

[21] Bro svikter på E6 i Troms: – Norge er delt i to. url: https://www.vg.no/i/34a52v
(visited on 04/06/2022).

86

https://fenicsproject.org/pub/tutorial/html/._ftut1008.html
https://fenicsproject.org/pub/tutorial/html/._ftut1008.html
https://www.vg.no/i/34a52v

O
lav M

ilian Schm
itt G

ran

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Olav Milian Schmitt Gran

Reduced Order Modeling Techniques
for Non-Affine Problems in Solid
Mechanics

Master’s thesis in Industrial Mathematics
Supervisor: Trond Kvamsdal
Co-supervisor: Eivind Fonn, Kjetil A. Johannessen
June 2022M

as
te

r’s
 th

es
is

	Abstract
	Sammendrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abbreviations
	Introduction
	Background
	Objectives and Research Topic
	Research Approach
	Working Method and Report Structure

	Theory
	Parametrized Partial Differential Equations
	Strong Formulation
	Weak Formulation
	Well-posedness of the Weak Formulation
	Sobolev Spaces
	The Energy Norm

	The Galerkin Finite Element Method
	Galerkin High-fidelity Approximation
	Galerkin Orthogonality

	The Linear Lagrange Rectangle Element
	Reduced Basis Methods
	Galerkin Reduced-order Approximation
	The Affine Parametric Dependence Assumption
	Error Computations
	The Formal Obtaintion of the Galerkin RB Problem
	The Offline and Online Phases

	Proper Orthogonal Decomposition
	Singular Value Decomposition
	Orthogonal Projection Operators
	POD for Parametrized Problems
	POD with Respect to Energy Inner Product

	Matrix Least Squares
	The Matrix Least Square Problem
	A Simple Matrix Least Square Problem
	The General Matrix Least Square Problem

	The Linear Elasticity Equations
	Strong Formulation
	Weak Formulation
	Mapping to the Reference Domain
	The Algebraic System

	Case Studies
	An Introduction to Our Numerical Cases
	Case 1 — Scaling of a Rectangle
	Case 2 — Dragging One Corner of a Rectangle
	Case 3 — Dragging All Corners of a Rectangle
	Some General Notes

	The Patch Test
	General Patch Test Setup
	Results From the Patch Tests
	A Note on the use of Bilinear Elements

	Determining the Matrix Least Squares Functions
	The Reciprocal of the Determinant
	Approximating a Function on the Reference Domain
	Approximating the Determinant and the Numerators of the Encoding Matrix
	Determining the Matrix Least Squares Functions.

	Constant Body Force in 2D
	Discussions
	Testing the Matrix Least Squares algorithm; Case 1 — Scaling of a Rectangle
	Problems with the Geometry Range; Case 2 — Dragging One Corner of a Rectangle
	Geometry Range Changes
	Using a Smaller Geometry Range; Case 2 — Dragging One Corner of a Rectangle
	Too few Snapshots; Case 3 — Dragging All Corners of a Rectangle
	More than Ten Thousand Degrees of Freedom; Case 2 — Dragging One Corner of a Rectangle

	Summarizing the Results

	Conclusion and Future Work
	A Summary of the Main Results
	Conclusions
	Recommendations of Future Work

	Bibliography

