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Abstract

Staying ahead of consumer trends is important for businesses in the retail market
to maintain a competitive advantage. In a world becoming increasingly digital-
ized, retailers who wish to remain competitive must adapt to the technological
changes by incorporating new technological capabilities. Fortunately for retail
banks, they possess a valuable asset that can be leveraged to increase consumer
engagement. This asset is transaction data and may be used to predict future
events.

In this thesis, transaction data is transformed into a pseudo-social network to cap-
ture the inherent similarity among consumers. Several methods for calculating
similarity are explored and further extracted as features into a machine learning
model to predict future buyers. The experiments are conducted on product offer-
ings with varying target response in cooperation with a retail bank to measure the
predictive performance in a realistic setting.

The experimental results show that the features extracted from the pseudo-social
network may significantly increase the predictive performance of predictive mod-
els, especially when used in combination with traditional features from customer
data. Albeit, the significance is determined by the quality of the extracted features.

This thesis provides an extensive evaluation of the application of pseudo-social
networks in predictive modeling. Secondly, it provides new methods for capturing
similarity features from pseudo-social networks that achieve higher quality than
previous studies.
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Sammendrag

Å ligge et steg foran trender er viktig for bedrifter som ønsker å ivareta et konkur-
ransefortrinn. I en verden som blir stadig mer digitalisert, så må bedrifter tilpasse
seg det teknologiske skiftet ved å tilegne seg nye teknologiske kompetanser. Heldigvis
for kommersielle banker har de en verdifull ressurs som kan utnyttes til å ligge et
steg foran. Denne ressursen er transaksjonsdata, og det kan brukes til å predikere
fremtidige hendelser.

I denne oppgaven transformeres transaksjonsdata til et pseudo-sosialt nettverk for
å fange opp de iboende likhetene blant forbrukere. Flere metoder for å beregne
likhet utforskes og anvendes videre i en maskinlæringsmodell for å predikere
fremtidige kjøpere. Eksperimentene utføres på tjenester med varierende oppslut-
ning i samarbeid med en kommersiell bank for å måle modellens prediksjonsevne
i en realistisk setting.

De eksperimentelle resultatene viser at likhet-attributter utregnet fra det pseudo-
sosiale nettverket kan øke den prediktive ytelsen til prediktive modeller betydelig,
spesielt når de brukes i kombinasjon med tradisjonelle attributter fra kundedata.
Økningen i prediktiv ytelse avhenger riktignok av kvaliteten på de utregnede
likhet-attributtene.

Denne oppgaven gir en omfattende evaluering av pseudo-sosiale nettverk i pre-
diktiv analyse. I tillegg fremgår det nye metoder for å måle likhet mellom for-
brukere i det pseudo-sosiale nettverket som oppnår høyere kvalitet enn tidligere.
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Chapter 1
Introduction

This chapter introduces the motivation and research topic. Two research questions
define the scope of the thesis. The main contributions are summarized, followed
by an outline of the remaining chapters.

1.1 Motivation

Marketing campaigns are more likely to succeed if they reach the right consumers.
Knowing which consumers to contact with a product offering is an important
step in a successful marketing campaign. Predictive models can help identify the
most likely buyers in selected target groups. Introducing features from new data
sources to the predictive model pipeline may enhance the predictive performance,
illustrated in Figure 1.1. One such method that has shown promising results is
pseudo-social network targeting [1]. By deriving a pseudo-social network from a
transaction data set, it may be possible to capture behavioral similarities between
consumers. These similarity features may be incorporated with existing predict-
ive models to hopefully increase the predictive performance, thereby aiding the
marketers in reaching the right consumers.

Figure 1.1: Adding new data sources to the predictive modeling pipeline.
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1.2 Pseudo-Social Network Targeting

Most people perhaps think of social media when they hear the term social network.
While social media platforms such as Facebook and Twitter indeed represent so-
cial networks, a social network may be described more generally. Social networks
are social structures generally consisting of social actors in the form of individuals
or organizations and their connections. Analyzing these social structures is known
as social network analysis [2]. Information from social network analysis may be
utilized to target consumers with the intent of selling a product or service, referred
to as social network targeting. Social network targeting in Figure 1.2 is performed
by targeting the social actors that exhibit proximity in the network to the individu-
als of interest, such as the known buyers of a product. Social network targeting
has been justified based on theories of homophily, and social influence [3]. In
the case of homophily, the assumption is that similar individuals are more likely
to make connections [4]. This may be exploited in targeting where individuals
who previously purchased a product would suggest that similar individuals may
be interested in purchasing the same product. In the case of social influence, cus-
tomer satisfaction may propagate among the network in a word-of-mouth fashion,
suggesting that customers that were satisfied (or not satisfied) with a purchased
product might affect whether similar customers will purchase the product them-
selves.

Figure 1.2: Social network targeting.

The premise for social network targeting is naturally a social network. Many com-
panies, however, lack adequate data to construct such a network. An approach
that mimics social network targeting is pseudo-social network targeting. A pseudo-
social network (PSN) is an inferred social network, not a true social network. It
is pseudo because the connected social actors probably do not have social rela-
tionships in real life. The lack of real social relationships weakens the argument
for social influence. However, the underlying assumption is that homophily is still
restored in the inferred network. That is, the network also possesses similarities
between the social actors that may be used to target consumers. In this thesis,
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the constructed pseudo-social networks are based on behavioral data from fine-
grained transaction data. The social actors are the consumers and they are con-
nected in the network if they have made a payment to the same merchant.

1.3 Ethical and Privacy Concerns

This study is completed in collaboration with a medium-sized Norwegian com-
mercial bank who have granted access to sensitive information about consumers’
purchasing patterns. All consumers have consented to the usage of their data, and
respecting their privacy is a primary concern. The data provided by the bank is
fully anonymized, so it is impossible to identify the consumers. The data is se-
curely stored on a virtual machine to lower the risk of information leakage. A
VPN connection is required to access the virtual machine, which is only possible
through enterprise machines provided by the bank. However, these security pro-
tocols restrain the research possibilities.

1.4 Research Questions

The research goal for this thesis is to explore new methods for pseudo-social net-
work targeting by extracting new features from transaction data to be used in
predictive modeling. The following two research questions set the scope for this
thesis to help achieve this goal. The research questions are revisited and answered
in the final chapter.

RQ1: How may fine-grained transaction data be leveraged to increase the predictive
performance of predictive models?

RQ2: What features from pseudo-social networks help increase the predictive per-
formance of predictive models?

1.5 Contributions

The contributions of this thesis are two-fold. Most importantly, this study provides
a more extensive evaluation of pseudo-social network targeting. The results are
interpreted across a broad range of metrics to gain more insights into actual pre-
dictive performance. The results confirm that pseudo-social network targeting is
effective but dependent on data balance and featurization.

Secondly, the proposed methodology extends upon existing methods by extract-
ing new features from transaction data. The results show that a selection of the
new features from the proposed methodology possess significantly more predict-
ive quality than previous features. This study is also the first in its domain to
evaluate the features in more detail.
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1.6 Thesis Outline

Chapter 1 - Introduction This chapter presents the context of the thesis.
This includes motivation, domain, research ques-
tions and contributions.

Chapter 2 - Background This chapter gives an overview of theoretical
background information. This includes graphs,
machine learning and pseudo-social network tar-
geting.

Chapter 3 - Related Work This chapter summarizes the approaches and
findings by previous related studies.

Chapter 4 - Methodology This chapter gives an in-depth explanation of
the proposed methodology to featurization of
pseudo-social networks which extends upon the
research presented in the preceding chapter.

Chapter 5 - Experiments This chapter describes how the experiments were
conducted. This includes a description of the data
used, defining models, experimental setup and
criteria of evaluation.

Chapter 6 - Results This chapter presents, evaluates and discusses
the experimental results.

Chapter 7 - Conclusions The final chapter answer the research questions
and proposes unexplored directions for future
work.



Chapter 2
Background

The chapter will cover graphs, machine learning, and pseudo-social network tar-
geting.

2.1 Graphs

Graphs represent relationships between objects, e.g., a social network. Formally a
graph G can be defined as a pair of disjoint sets (V, E) where V is a set of vertices,
often called nodes, and E is a set of edges where E is a subset of the set V 2 of
unordered pairs of V .

Definition 2.1.1. A graph G = (V, E) is a set of vertices V = {v1, v2, ..., vi} con-
nected pairwise by a set of edges E = {e1, e2, ..., e j}.

u1

U

u2

u3

v1

V

v2

v3

Figure 2.1: A bipartite graph consisting of the two disjoint sets U and V connected
pairwise by the edges E, represented by the black lines.
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2.1.1 Bipartite Graphs

A bipartite graph (or bigraph) is a type of graph in which a graph’s vertices can be
divided into two disjoint and independent sets U and V such that every edge is a
connection between a vertex in U and a vertex in V, illustrated in Section 2.1.1.

Definition 2.1.2. A bipartite graph B = (U , V, E) where U = {u1, u2, ...,ur} is a
set of vertices disjoint to another set of vertices V = {v1, v2, ..., vs}. The edges E
may only contain pair with exactly one vertex from each of the sets U and V .

2.1.2 Graph Representations

Graphs may be represented as an adjacency matrix, adjacency list or an edge list.

Adjacency Matrix

Matrices can represent graphs. Element x i j is a binary indicator of the existence
of an edge between node i and node j. A biadjacency matrix is simply a matrix
representation of a bipartite graph. In the case of a bipartite graph, the repres-
entation is a rectangular N ×M matrix where N is the number of bottom nodes,
and M is the number of top nodes. Because each entry in an adjacency matrix
only occupies one bit, dense data can be represented very compactly. However,
for sparse data, adjacency matrices are inefficient with regard to memory.

Definition 2.1.3. An adjacency matrix is a matrix representation of a graph G =
(V, E) consisting of ones and zeroes, where element x i j is a binary indicator of
whether the vertices vi and v j are adjacent or not. The space requirement for an
adjacency matrix is O(|V 2|)

Adjacency List

Adjacency lists can also represent graphs and bipartite graphs. For sparse data,
adjacency lists are more memory efficient than adjacency matrices because they
do not waste space representing edges that are not present.

Definition 2.1.4. An adjacency list is a representation of a graph G = (V, E).
A collection of unordered lists represent the graph, where each unordered list
describes the neighbors of a particular node in the graph. The space requirement
for an adjacency list is O(|V |+ |E|)

Edge List

An edge list can be considered a simpler variation of an adjacency list.

Definition 2.1.5. An edge list is a list representation of a graph G = (V, E). The
graph is represented by a list of its edges E. The space requirement for an edge
list is Θ(|E|).
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2.2 Machine Learning

Machine learning is a broad term with multiple definitions in the literature. Ar-
thur Samuel, a pioneer in computer science, defined machine learning [5] as "a
field of study that gives computers the ability to learn without being explicitly pro-
grammed." Machine learning algorithms need input data to learn. In the era of big
data, the amount of available data is continuously increasing, and new use-cases
for machine learning continuously emerge. With great success, machine learning
has been applied to various fields such as fraud detection, image classification,
and medical diagnosis.

Machine learning is a subfield of artificial intelligence (AI), but the two terms
are not interchangeable. Artificial intelligence refers to intelligence demonstrated
by a machine, as opposed to the natural intelligence that humans and animals
demonstrate. Artificial intelligence differs from machine learning because an AI
does not require the ability to learn and can be explicitly programmed to display
specific behavior. In this section, we focus on machine learning and not other
subfields of AI. Figure 2.2 illustrates three main categories of machine learning
with a highlight on supervised learning, which is the most relevant to this thesis.

Figure 2.2: Categories of machine learning algorithms.

2.2.1 Supervised Learning

Machine learning can be applied to a broad set of problems. Classification and
regression problems reside in the domain of supervised learning. Supervised ma-
chine learning algorithms are used to make future predictions based on labeled
historical data. The algorithm will predict a discrete or continuous value when
presented with new data.

Classification is the task of dividing data into classes. If there are only two pos-
sible classes, it is called a binary classification problem. If there are three or more
possible classes to classify the instances to, the problem is a multinomial classific-
ation problem. Spam detection is a classification problem. An email is classified
as either spam or not spam based on the available information in the email.
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Regression algorithms aim to find a function that maps the input variable to a
continuous output variable. This involves identifying correlations between de-
pendent and independent variables. Regression algorithms can be further divided
into linear and non-linear regression. These are defined mathematically by Equa-
tion (2.1) and Equation (2.2). Regression can be used to predict prices in a market,
the weather, or a person’s height, to name a few use cases.

Logistic regression is a classification algorithm that can be used to solve classi-
fication problems by predicting the probability of an outcome. It uses a sigmoid
function as defined by Equation (2.3) to map the input to a discrete outcome by
rounding values above or below specified thresholds.

Y = β0 + β1X1 (2.1)

Y = f (X ,β) + ε (2.2)

S(X ) =
1

1+ e−X
(2.3)

where

Y = dependent variable you are trying to predict,

β0 = the intercept, the predicted value of Y when X is 0,

β1 = regression coefficient, how much Y is expected to change as X increases,

X1 = independent variable,

X = a vector of p predictors,

β = a vector of k parameters,

f = a known regression function,

ε= the error estimate.

2.2.2 Unsupervised Learning

Unsupervised learning cannot be used directly to solve classification or regression
problems as the input data is unlabeled. Instead, unsupervised learning models
is used to solve clustering and association problems. Unsupervised learning is also
used to reduce the dimensionality of data before feeding it to a supervised model.

Clustering is the process of grouping similar objects into clusters based on some
similarity measure. Clustering is useful for detecting patterns in data that humans
may be unable to identify.
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Association is a method in which the model finds association rules between vari-
ables. A classic example of an association rule is market basket analysis, in which
the model can discover that customers who purchase a specific product are also,
in fact, likely to purchase another specified product.

2.2.3 Semi-supervised Learning

If the collected data contains both labeled and unlabeled data, the task falls in
the final category of semi-supervised learning. The conjunction of labeled and
unlabeled data may lead to improvements in learning accuracy. Labeling data may
be costly, as this is often done by humans. Working with large data sets would
increase this cost, and with a lack of resources it may be a better option to opt for
the semi-supervised approach.

2.2.4 Ensemble Machine Learning Algorithms

The notion of ensemble learning models is to combine multiple weak learners into
a single strong learner to improve the accuracy of the final model. The two al-
gorithms presented below are both ensemble algorithms, and their main differ-
ence is how they combine models.

Gradient Boosting

By default, the algorithm uses decision trees as weak learners combined sequen-
tially to create a single ensemble model. Each weak learner focuses on reducing
the errors made by the previous model by updating the values of the observa-
tions. Boosting refers to the method of combing multiple homogeneous models
sequentially, as illustrated in Figure 2.3. Boosting methods generally reduce bias
in predictions.

Random Forest

Random forest divides data into N subsets, which are then used to train N ho-
mogeneous models independently in parallel. To make a prediction each of the
weak learners are given the test data. In regression problems, the output of all
the weak learners are averaged across for a final output. In classification tasks the
final output is decided by a majority vote of the models. The method of combin-
ing the models in parallel is known as bagging, which is illustrated in Figure 2.4.
Bagging methods are generally used to decrease prediction variance.
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Figure 2.3: Weak learners combined sequentially in gradient boosting.

Figure 2.4: Weak learners combined in parallel in random forest.
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2.3 Pseudo-Social Network Targeting

Previous sections describe essential concepts relevant to pseudo-social network
targeting. This section elaborates on the general methodology for pseudo-social
network targeting and the considerations involved in the different steps of the
methodology.

2.3.1 Creating a Pseudo-Social Network (PSN)

Pseudo-social networks have been used in different domains for network analyt-
ics and predictive modeling [6–8]. A (pseudo)-social network can be represented
as a graph, which is beneficial as it allows for the application of graph theory
and techniques to analyze the network. Whether a graph representation of a so-
cial network is the best model for analysis and measuring similarity is debatable
among mathematicians, and sociologists [2]. However, in a data science context,
it is appropriate.

A pseudo-social network is inferred by projecting a bigraph to a unigraph consist-
ing of only a single type of entity. A unigraph is applicable because no general
network-oriented methodology has been proposed yet to perform classification or
predictive modeling on vertices in bigraphs, and the current techniques do not
scale well in settings of big data [9]. Bipartite network projection is a method
to compress information about bipartite networks. The initial bigraph consists of
entities from two disjoint sets, e.g., consumer vertices and merchant vertices [1].
The resulting (pseudo-social) network, or unigraph after projection, consists of
merely consumer vertices. The edges between the consumer vertices signify that
they share a common neighbor in the bigraph. The projection from a bigraph to
unigraph is visualized in Figure 2.5.

Figure 2.5: A network projection from a bigraph of consumers and merchants to
a unigraph of consumers only.
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2.3.2 Weighting Pseudo-Social Networks

A drawback of the projection from bigraph to unigraph is that the unigraph is
always less informative than the original bigraph [10]. Many properties of the
bigraph are lost in the projection, such as the topology of the network and the
frequency of connections between the vertices in the disjoint sets. It is, therefore,
often required to weigh the network to minimize information loss. The optimal
weighting method should reflect the nature of the specific network and indicate
how strong the connections are between the consumers in the social network.
Stankova et al. [9] present different ways of weighting a pseudo-social network
based on transaction data. Martens et al. [11] and Caigny et al. [12] demon-
strate how different weighting schemes impact the final accuracy of their predict-
ive models based on transaction data – signifying the importance of applying an
appropriate weighting method.

2.3.3 Calculating Similarity Between the Consumers in a PSN

The next step after weighting the network is to measure the similarity among the
consumers to identify which consumers are the most similar to the individuals of
interest. This step is part of the featurization process (also known as feature en-
gineering), which means changing some form of data into a numerical vector (a
feature) that the predictive model can read. Martens and Provost [11] introduce
a behavioral similarity measure they call BeSim-score, which aims to capture the
similarities between consumers based on their interactions with different mer-
chants. Caigny et al. [12] take it a step further by incorporating RFM-values in
their BeSim-scores to discriminate behavior and interactions into three dimen-
sions. In addition to the mentioned similarity measures for graphs derived from
transaction data, general-purpose similarity metrics use an embedding space to
map similarity between two vertices in a graph, such as node2vec [13]. Other
general-purpose similarity metrics attempt to rank vertices based on their role in
the network, such as the centrality measures betweenness, closeness, and degree.
For example, degree centrality refers to how many connections a vertex has in a
graph [14]. The creativity of the designer essentially limits the number of sim-
ilarity features. However, that does not mean continually adding new similarity
features will increase the model’s predictive abilities. While some measures may
fail to capture the essential similarities, others may correlate with one another
[15].
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2.3.4 General Framework for Prediction Using Social Networks

The general framework for prediction on graph data using similarity measures
is demonstrated in Figure 2.6. In their first paper, Martens et al. [1] apply a
similarity-based approach in their walk-through example of identifying likely buy-
ers before turning to the more popular and state-of-the-art learning-based ap-
proach in their experiments. The learning-based approach is more adaptable to
adding multiple similarity features as each new feature becomes another variable
in the input data. By the same argument, it is also easier to include other fea-
tures such as socio-demographic characteristics. This makes the learning-based
approach a good basis for evaluating feature importance when comparing models
using fine-grained data to calculate similarity features with baseline models using
structured data with socio-demographic features [11, 12].

Figure 2.6: The general framework for predictive modeling using similarity meas-
ures. A green vertex in the example implies the consumer is predicted to be a likely
buyer.

2.3.5 Choice of Learning Model

The next step after featurization is to choose a learning model, specifically a binary
classification model. Classification is a type of supervised learning model where
the categories are predefined, and the model’s predictive task is to categorize
new probabilistic observations into said categories. It goes to show that predictive
modeling using pseudo-social networks can be applied in a broad range of other
domains such as predicting anti-money laundering [16], credit scoring [7], and
product attrition [6].

There are several considerations when deciding which model to implement, both
from a technical and business perspective. Scalability is a desired property when
working with big data sets, especially in the absence of GPUs. Another technical
aspect to consider is the quality of data and how it affects the performance of dif-



Chapter 2: Background 14

ferent classification models. Kaur et al. [17] present several limitations of popular
learning models in the case of noisy data, imbalanced data sets, and the short-
comings of different models when features correlate. There are ways to combat
some of these limitations, such as random oversampling or undersampling in the
case of imbalanced data sets [18], but there is no model that is perfect for every
setting.

In terms of a business perspective, there is commonly an explainability require-
ment. The model must be easy to interpret and comprehend for managerial ap-
proval and deployment policies. Linear models predict the target as a weighted
sum of the feature inputs, such that the coefficients (significance) of the fea-
tures are directly interpretable. Both Martens et al. [1, 11] and Caigny et al. [12]
emphasize their choices of linear models concerning the explainability and com-
prehensibility requirements. Other research suggests that a non-linear model can
provide better results at classification using transactional and social network data
[6] while being able to explain the importance of features [19].



Chapter 3
Related Work

This section presents the practices and results from related work in pseudo-social
network targeting, with an emphasis on (1) weighting of networks, (2) similarity
measures and network features, and (3) different learning models.

3.1 Weighting Projected Unigraphs

Given a bipartite graph G = (U , V, E), the general method for weighting the pro-
jected unigraph is to capture information about the vertices in set V of the initial
bigraph that is lost in the projection and further pass it along to the unigraph.
Stankova et al. [9] entitle the vertices in V as the top nodes and present sev-
eral weighting functions to capture their significance in the initial network. The
weighting functions are designed in a posteriori fashion in which the functions
utilize known (observed) information about which vertices in U are the indi-
viduals of interest (namely the targets), except for the simple weighting function,
which assigns equal weights between the vertices in U in the unigraph based on
the existence of shared connections between the vertices in U and V . In their
experiments, the weighting function combining beta distribution yields the best
overall performance on different datasets. The optimal parameters for beta and
alpha were discovered using a grid search on the specific dataset that provides
the best predictive performance (AUC-score) on a held-out validation set. Both
Martens et al. [11], and Caigny et al. [12] apply the beta weighting function in
their research on transaction data and compare it with other weighting functions
such as the unnuanced simple weighting, the empiric probability weighting, and
an inverse frequency weighting method. Caigny et al. [12] show that the beta-
distribution and inverse frequency yields the best predictive results in predicting
customer life events. The results from Martens et al. [11] show that the beta-
distribution yields the best predictive scores when predicting customer purchases.
However, they also remark how the shape of the beta-distribution conforms to that

15
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of the inverse frequency measure, indicating that they encapture the notion that
merchants with many connections should be down-weighted as they provide little
discriminativeness. The functions do, however, output quite different weights. It is
apparent from prior research that the beta-distribution weighting method is gen-
erally the best. Nevertheless, it requires much more computation as it requires
fine-tuning parameters using the specific cross-validation holdout technique. The
second-best weighting method using inverse frequency might be a better option
when considering scalability.

The next step after weighting the top nodes in the bigraph is determining the link
weights in the projection. This step contemplates several aggregation functions
that calculate the weights of the edges between the vertices in the unigraph as an
aggregation of the weights from the shared top nodes. Stankova et al. [9] present
several of these aggregation functions, such as the sum of shared nodes, the max-
imum of shared nodes, cosine-similarity, and Jaccard-similarity. They observe that
the aggregation functions Jaccard-similarity, cosine-similarity, and maximum of
shared nodes do not scale well to data sets with high dimensionality. Their gen-
eral results show that the cosine function and the sum of shared nodes are the
most suitable methods. However, they conclude that the latter is more favorable
because it can be combined with specific classifier models to scale easily with
very large data sets. Martens et al. [11] and Caigny et al. [12] also opted for the
aggregation function that is the sum of shared nodes in their experiments.

3.2 Similarity Measures and Network Features

Martens et al. [11] introduce a versatile and scalable behavioral similarity meas-
ure BeSim that identifies those consumers most similar to the individuals of in-
terest. Their results show that the BeSim-model and the traditional model cap-
ture complementary information and, in combination, are better at predicting
which consumers have a higher response than the average response. Caigny et al.
[12] expand the BeSim-score to include the dimensions of recency, frequency, and
monetary value RFM of transactions when calculating the similarity between con-
sumers in the unigraph. The scores are calculated by first aggregating the values of
the consumer’s transactions across the given dimensions between the respective
consumer and its connected merchants in the bigraph, secondly calculating the
deviation between the respective consumer’s value with the average value of the
known buyers and the average value of the known non-buyers. Finally, they apply
a penalty function that yields a higher score to the consumers more similar to the
known buyers and a lower score to those consumers more similar to the known
non-buyers. Their results show that the models incorporating BeSim-scores on
RFM-values deliver an increased predictive performance compared to the mod-
els using the standard BeSim-score from Martens and Provost [11]. Nonetheless,
both papers support that using fine-grained data to calculate similarity features
enhances predictive performance. These similarity measures are calculated in an a
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posteriori manner, as they both require known information about who purchased
the offered product.

Lismont et al. [6] deduce several other similarity features from their network in
their prediction of product attrition, which they refer to as network features. They
also compare the significance of network features to the local features derived
from structured data and finally to a hybrid model comprising both local and
network features. Their network features incorporate another angle: measuring
a consumer’s influence in the network, using a modified PageRank algorithm on
the bigraph, and centrality measures on the unigraph. In all cases except for their
neural network model, the models that apply network features and hybrid features
outperform the models using local features. Another interesting approach in their
research is that they include the time period as a categorical variable in their
models to encapsulate the dynamic aspect of the network as it evolves, as opposed
to the BeSim-feature from Martens et al. [11] which looks at the network as a
static graph. Caigny et al. [12] also compute their BeSim-scores on a static graph
in which the time period for the basis of calculation is set to a year.

Munoz-Cancino et al. [20] perform extensive techniques in their search for bet-
ter network features when attempting to predict loan defaulters. The transaction
dataset consists of 7.65 million people and 245 thousand firms. They apply com-
plex techniques from graph representation learning [21] such as graph embed-
dings (node2vec), graph convolutional networks, and graph autoencoders. The
purpose of using methods from graph representation learning is to train the mod-
els to capture the important features themselves, replacing the featurization pro-
cess, which usually requires domain knowledge. Another great benefit is that the
feature vectors are dynamic and encapture the network’s evolution. Their results
show that the best-performing model comprises both traditional features from
structured data and graph representation learning features. However, it should
be noted that the runtime of feature extraction from the graph embedding and
the graph convolution network alone was approximately 15 thousand minutes.
Although their research is impressive, their methods require more powerful com-
puter specifications than standard so scalability could become a concern in general
settings.

3.3 Learning Models

Martens et al. [11] use both linear and non-linear SVMs in their experiments, of
which the linear SVM is the best performing model, which is promising in terms
of the explainability requirement for managerial approval. However, as their res-
ults show, it does not scale with big data sets as its training complexity is highly
dependent on the size of the data set. Caigny et al. [12] apply logistic regression.
Lismont et al. [6] evaluate different learning models and show that the ensemble
method using random forests outperforms neural networks, decision trees, and
namely logistic regression in all cases using both local features, network features,
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and the hybrid model. Stankova et al. [9] apply relational classifiers for node
classification over bipartite graphs, which captures information about the entire
network instead of just local information. Another benefit of relational classifiers
is that they are easily scalable when working with big data sets. Oskarsdottir et al.
[7] show that non-relational classifiers enriched with network features, without
collective inference, using binary weights and undirected networks provide bet-
ter predictive performance on credit scoring. The non-relation classifiers in their
experiments included logistic regression, neural networks, and random forests.
Munoz-Cancino et al. [20] opted for regularized logistic regression, random forest,
and gradient boosting. The latter delivered consistently better results. Regarding
the requirement of explainability, gradient boosting models can easily be com-
bined with SHAP-values to describe feature importance [19]. In general, ensemble
learning algorithms (random forest and gradient boosting) seem to provide the
best performance across the domains using big data in predictive modeling. Gradi-
ent boosting may capture more complex patterns in data than random forest but
is also more prone to overfit if the data is noisy. This problem may be mitigated
by using cross-validation to tune the hyper-parameters but ensuring data quality
remains a focal point.



Chapter 4
Methodology

This chapter describes the proposed methodology for targeting consumers using
transaction data.

4.1 General Framework

The general overview of the framework is illustrated in Figure 4.1, and the fol-
lowing sections describe each phase in-depth. The first phase involves the pre-
processing of transaction data to represent a bigraph. The second step includes
calculating the similarity between the consumers in the bigraph. The third step
is the construction and weighting of the pseudo-social network. Finally, the last
step presents the feature collection from the featurization process, which will be
used for feature selection for the different models. The structured data also re-
quire some preprocessing to extract features. However, these steps are not expan-
ded in this chapter, as the motivation for this chapter is to extract features from
transaction data. The features from structured data are however included in the
total feature collection in Table 4.6 in Section 4.5, and are further elaborated in
Chapter 5 along with the extraction of targets.
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Figure 4.1: General framework for targeting consumers using transaction data.

4.2 From Transaction Data to a Bigraph

The first phase involves manipulating the transaction data into a graph represent-
ation for the initial bigraph. In its modest form, the transactions (money transfers)
in the transaction data consist of a source and a target. The source shall be referred
to as the consumer, and the target shall be referred to as the merchant. All tuples
in the transaction data indicate the merchants at which different consumers have
made payments. This information may be utilized to construct a bigraph of con-
sumers and merchants. Previous studies have represented this bigraph using an
adjacency matrix [1, 11, 12], in which a value of 1 indicates that the given con-
sumer has made a payment to the corresponding merchant, and 0 if the consumer
has not made a payment to that specific merchant. Although this representation
perhaps makes it conceptually easier to visualize the connections in the bigraph, it
is not the most memory-efficient representation when working with big data sets
and sparse graphs. Other alternative representations that are more efficient for
sparse graphs are an adjacency list or an edge list. This proposed implementation
applies edge lists to represent the connections in the bigraph, thereby avoiding the
necessity to represent the connections that are not present. The edge list can easily
be generated from the list of transactions simply by dropping duplicate entries. An
example comparison of the representations are demonstrated in Figure 4.2. No-
tice that both representations yield the same resulting bigraph, despite the edge
list requiring fewer representations of connections in the network.
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Figure 4.2: Edge list compared to adjacency matrix for creating a bigraph.

4.3 Capturing Information from the Bigraph

In the general methodology for pseudo-social network targeting presented in Sec-
tion 2.3 the order is to first project and weight the unigraph before calculating
similarity among the consumers. These steps may be interchangeable because the
bigraph also possesses information that may be used to calculate similarity. The
second phase in the proposed methodology begins with capturing information
from the bigraph by weighting the merchants, removing noise in the data set, and
finally calculating similarity features.

4.3.1 Weighting the Merchants

It is important to look at the properties of the consumers’ adjacent vertices in the
bigraph because their significance in the network should be a factor when cal-
culating consumer similarity. This assumption is derived from the idea of homo-
phily: that the consumers with shared merchants in the bigraph indicate similarity.
Merchants may be weighted with respect to their connecting consumers who are
known to have purchased the target product. A selection of the general weighting
methods of top nodes from Stankova et al. [9] are shown in Table 4.1, in which
the top nodes are equivalent to merchants in this specific bigraph.
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Table 4.1: Weighting methods for merchants.

Weighting Function Formula Description

Simple w= 1 Simple weighting with no nuance

Inverse degree w= 1
Ci

Each merchant is weighted based on
the inverse of its amount of con-
sumers

Inverse frequency w= log10(
N
Ci
) Each merchant is weighted based on

the log of the total amount of con-
sumers in the graph N , divided by its
amount of consumers

Empiric probability w= KBi
Ci

Each merchant is weighted based on
its amount of known buyers of the
target product, divided by its total
amount of consumers

The first equation for simple weighting is exemplified in Figure 4.2, in which the
weight of the merchant nodes and their edges between consumers are unnuanced
and simply 1 if there exists a connection between the consumer and merchant. The
second equation inverse degree attempts to capture the uniqueness of a merchant
concerning how many connections a given merchant has. This notion of unique-
ness is further expanded in the third equation inverse frequency or inverse consumer
frequency (ICF), which looks at the bigraph altogether to capture the discriminat-
iveness of merchants. The idea of inverse frequency stems from a common metric
used in information retrieval, namely the inverse document frequency (IDF) [22].
This weighting function down-weights merchants connected to many consumers
because they provide little discriminativeness and rewards merchants connected
to few consumers because they provide more discriminativeness. To illustrate the
point in case, consider the simple bigraph consisting of the two merchants Tax
Office and Guitarshop: most consumers pay their taxes and will therefore be con-
nected to the Tax Office in the bigraph, but the number of consumers interested
in guitars should be substantially less, so comparatively few will be connected
the Guitarshop. By this assumption, the consumers who share the merchant Gui-
tarshop as a common neighbor in the bigraph should generally indicate more sim-
ilarity compared to the consumers who share Tax Office as a common neighbor.
The number of consumers connected to the Tax Office will be far greater, sug-
gesting a higher diversity and thus less discriminativeness between its connected
consumers.

The final equation empiric probability differs as a weighting function compared to
the other equations. We refer to it as an a posteriori method because it utilizes
empiric evidence about which consumers are known to have purchased the target
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product. This weighting function requires special care when preparing the data
for modeling because it can lead to data leakage. Data leakage is essentially the
leakage of information about the target variable, which should not be legitimately
available beforehand [23]. The empiric probability must be calculated using only
the consumers in the training data set and thus isolated from the consumers in the
test set. These considerations are further elaborated in the experimental setup in
Section 5.3. Table 4.2 shows what the different weighted values for each merchant
would be from the running example using the latter three weighting functions.

Table 4.2: The different weighted values of merchants.

Consumers Merchant Inv Deg Inv Freq Empiric Probability

Andy, Birk Amazon 0.50 0.30 0.50

Andy, Dana IKEA 0.50 0.30 1.0

Andy, Birk HBO 0.50 0.30 0.50

Birk, Chris, Dana Wolt 0.33 0.13 0.33
The consumers denoted in bold are the known buyers.

Stankova et al. [9] concluded that the beta-distribution density function was the
best general alternative for weighting top nodes. However, related research issues
its scalability concerns [11]. Therefore, the proposed methodology applies the
following weighting functions: inverse frequency and empiric probability. Both
functions are less computationally expensive than the beta distribution function
and have shown better performance for prediction based on transaction data [12].

4.3.2 Removal of Noise

The weightings of merchants may help remove noise in the bigraph, such as the
notion of discriminativeness in the inverse frequency weighting function. How-
ever, such functions are inadequate to ensure data quality, and scalability remains
an important point in terms of utility. Merchants with considerably more con-
sumers than the average are removed from the bigraph to eliminate noise. Thus
a merchant like Tax Office could typically be removed. Other merchants are re-
moved based on the two following axioms:

1. Remove merchants with one or fewer consumers
2. Remove merchants without any known buyers

The removal of merchants by the two axioms is not only beneficial for scalability
reasons. Firstly, these merchants’ connecting consumers can not be connected to
the known buyers in the projected unigraph, as they share no merchants in the
bigraph. Secondly, the purpose of calculating similarity among the consumers is



Chapter 4: Methodology 24

ultimately to measure a consumer’s similarity to a known buyer. In the running
example from Figure 4.3, the merchant Guitarshop would also be removed from
the bigraph, as it has no connecting known buyers.

Figure 4.3: The green consumers are the known buyers of the target product.

4.3.3 Calculating Similarity in the Bigraph

Let us now expand the representation of transactions introduced in Section 4.2 to
its true form, which along with source and target, includes: the date of the trans-
action, the monetary value of the transaction, and the category of transaction.
These values can be exploited to calculate similarity along different dimensions.
Although the binary links between consumers and merchants indicate similarity
through shared neighbors, they do not give the whole picture. Table 4.3 shows
the diversity of behaviors that can exist between consumers despite having shared
neighbors in the bigraph. Birk, Chris, Dana, and Erin would be connected in the
pseudo-social network derived from Table 4.3, suggesting they are similar. How-
ever, further inspection of their transactions reveals that Birk is more alike Erin,
and Chris is more alike Dana. It is known that Dana is a known buyer, which
suggests that Chris is more likely to purchase the target product in this simplified
example because he is more similar to a consumer who has purchased the product.
The goal of the behavioral similarity measures should be to capture these nuances
and thus reward those consumers that are more similar to the known buyers.
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Table 4.3: Edge list of transactions with monetary value.

Consumer Merchant Monetary Value $

Birk Wolt 90
Chris Wolt 850
Dana Wolt 700
Erin Wolt 140

The consumers denoted in bold are the known buyers.

Aggregating the transactions allows for calculating behavioral similarity scores
for the dimensions recency, frequency, and monetary value (RFM). Caigny et al.
[12] incorporates these RFM-dimensions in their behavioral similarity scores, and
their work is the inspiration for how the proposed methodology calculates simil-
arity scores along these dimensions. All three dimensions may be calculated in the
same fashion, in which the transactions are aggregated for every consumer with
its connecting merchants. In the case of recency, the date of the last transaction
between consumeri and merchant j is added to the initial edge list. For frequency,
the aggregated count of transactions between consumeri and merchant j is ad-
ded to another separate edge list. Equally for monetary value, which is the total
amount spent at merchant j by consumeri .

After all person-level data has been summarized for every merchant, the next
step is to evaluate each consumer with respect to the known buyers and known
non-buyers by calculating their deviation from the mean. That is, how similar is
a given consumer compared to the average known buyer and the average non-
known buyer of a merchant’s consumers. The first calculation is demonstrated
in Table 4.4 using monetary value, and the second calculation comparing specific
consumers to the monetary value averages for the merchant Wolt is demonstrated
in Table 4.5.

Table 4.4: Aggregated sums and averages of monetary value (MV) for known
buyers (KB) and known non-buyers (KNB).

Consumers Merchant
∑

MVKB
∑

MVKNB MVKB MVKNB

Andy, Birk, Erin Amazon 25000 30000 25000 15000
Andy, Dana, June IKEA 60000 3000 30000 3000
Andy, Birk, Gael HBO 7000 2500 7000 1250
Birk, Chris, Dana, Erin Wolt 700 1080 700 360

The consumers denoted in bold are the known buyers.
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Table 4.5: Comparing consumer similarity to known buyers (KB) and known non-
buyers (KNB) using monetary value (MV) for Wolt.

Consumer Merchant MVi |MVi −MVKB| |MVi −MVKNB|

Birk Wolt 90 610 270
Chris Wolt 850 150 490
Dana Wolt 700 0 340
Erin Wolt 140 560 220

It can be observed from the results of the calculations in Table 4.5 that each con-
sumer is assigned a distance from the average monetary value. These distances
indicate the similarity between known buyers and known non-buyers and will be
further used to calculate similarity features. The procedure is the same for the
recency and frequency dimensions.

The category type is the next similarity measure that can be derived from the bi-
graph. As previously mentioned, each transaction is labeled with a category, e.g.,
travel, health, and groceries. By grouping the consumers’ transactions on category
type, it is easy to derive the category distribution for a consumer’s spending. The
assumption is that consumers similar to the known buyers will have similar spend-
ing habits and generally be interested in the same products. The category type
features are included in Table 4.6 in Section 4.5.

The last similarity measure from the bigraph is inspired by degree centrality. This
feature is the aggregation of merchants connected to every consumer. That is,
the total amount of distinct merchants in which a specific consumer has made a
payment. This feature’s goal is to capture a consumer’s activity level and influence
in the bigraph.

4.4 Constructing and Weighting the PSN

The third phase is the construction and weighting of the pseudo-social network.
The construction is performed by bipartite network projection, in which the res-
ulting unigraph is the pseudo-social network. Although there are many variants
for weighting the consumers in the unigraph, previous research indicates that the
sum of shared nodes is the state-of-the-art method [1, 9, 11, 12]. Figure 4.4 shows
an example of how the pseudo-social network can be weighted using the sum of
shared nodes for inverse frequency. Notice that the weight between Andy and Birk
is the sum of the inverse frequency values for their shared merchants, which are
Amazon and HBO.
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Figure 4.4: Bipartite network projection using sum of shared nodes for inverse
frequency.

The sum of shared nodes is used to calculate the behavioral similarity score SIC F .
The calculation of this similarity measure follows the steps in prior research by
Martens et al. [1, 11] and is demonstrated in Equation (4.1). This measure rep-
resents the binary connections between consumers and merchants and does not
incorporate the nuances that may reside in their relationships.

SIC F (x i) =
∑

E( j)× IC F( j) (4.1)

SRF M (x i) =
∑

Ri j (4.2)

SRF M (x i)IC F =
∑

Ri j × IC F( j) (4.3)

SRF M (x i)E×IC F =
∑

Ri j × (E( j)× IC F( j)) (4.4)

in which

x i = the specific consumer i,

Ri j = the deviation value for consumer i with respect to the average for the merchant j,

IC F( j) = the inverse frequency for merchant j connected to x i ,

E( j) = the empiric probability for merchant j connected to x i

In the same fashion, it is possible to calculate the similarity measures for RFM by
summing their values across the common neighbors, such as in Equation (4.2),
Equation (4.3) and Equation (4.4). Caigny et al. [12] show that these scores can
further be scaled (weighted) with respect to the weighted merchants in the same
manner. Early results in Appendix A in Table A.1 showed however that the best
models with RFM features did not use scaling.
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Alternative Approaches

Caigny et al. combine the BeSim-scores using a penalty function with two inputs.
The consumers’ similarity distances between the average known buyers and av-
erage known non-buyers for every merchant are combined as demonstrated in
Equation (4.5). The output of this function is a single-value feature for each RFM
dimension in which the consumers resembling known non-buyers are scored neg-
atively, and the consumers more similar to known buyers are scored positively.
This was an important step in their method when using logistic regression because
the model assumes absence of multicollinearity. Intuitively, this penalty function
seems reasonable, but the outputted single-value feature lowered the AUC score
when compared to the models using two features for similarity to known buyers
and similarity to known non-buyers. This is likely because the two-sided features
capture different nuances.

SRF M (x i) =
∑

log(
DCi j + 1

DSi j + 1
) (4.5)

in which

DCi j = the deviation from the consumer x i to the average known non-buyers

DSi j = the deviation from the consumer x i to the average known buyers

4.5 Feature Selection

After calculating similarity measures and extracting features, there are 30 fea-
tures, of which 26 are derived from transactional data. The last four features are
from structured data, which required little preprocessing. All features are enlisted
in Table 4.6 and will form the basis for the feature selection for each model in
Chapter 5.
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Table 4.6: Feature collection.

Subset Name Description

SD

Alder_Y The age of the consumer
Kjonn_cd The (categorical) gender of the consumer
Utlaan_Sum_Amt The consumer’s total loan
Innskudd_Sum_Amt The consumer’s total deposit

PSN S_icf The BeSim-score using ICF times E

RFM

S_r_kb Recency BeSim-score (from KB mean)
S_r_knb Recency BeSim-score (from KNB mean)
S_f_kb Frequency BeSim-score (from KB mean)
S_f_knb Frequency BeSim-score (from KNB mean)
S_m_kb Monetary Value BeSim-score (KB mean)
S_m_knb Monetary Value BeSim-score (KNB mean)

TF

E The aggregated sum of empiric probability
BiDegree The degree centrality for every consumer
Tr_Count The amount of transactions
Cat_1 Entertainment (% of Tr_Count)
Cat_2 Groceries (% of Tr_Count)
Cat_3 Transport (% of Tr_Count)
Cat_4 Restaurant (% of Tr_Count)
Cat_5 ATM (% of Tr_Count)
Cat_6 Children (% of Tr_Count)
Cat_7 Home (% of Tr_Count)
Cat_8 Cosmetics (% of Tr_Count)
Cat_9 Financial Services (% of Tr_Count)
Cat_10 Transfer (% of Tr_Count)
Cat_11 Health (% of Tr_Count)
Cat_12 Travel (% of Tr_Count)
Cat_13 Professional Services (% of Tr_Count)
Cat_14 Taxes (% of Tr_Count)
Cat_15 Services (% of Tr_Count)
Cat_16 Pets (% of Tr_Count)
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Figure 4.5 shows the correlation between all features using the Pearson Correla-
tion Coefficient ρ [24]. The correlation value lies in the range of [-1, 1], in which
a correlation of -1.0 indicates a perfect negative correlation, and a correlation of
1.0 indicates a perfect positive correlation. The feature Produktbredde (Product
Range) was omitted as it had a medium positive correlation with the target vari-
able has_purchased of ρ = 0.41. An interesting observation from this correlation
matrix is the high correlation between the different similarity features derived
from transaction data (located in the second quadrant). It is well known that em-
pirical estimation of a linear model, be it linear or logistic, may suffer from multi-
collinearity. On the other hand, tree-based ensemble models can treat correlated
covariates (features) without any problems [25]. The next chapter will appoint a
classification model and define different models using a selection of these features
to measure their predictive quality.

Figure 4.5: Feature correlation matrix.



Chapter 5
Experiments

This chapter describes the data used to define the models, the experimental setup,
and the criteria for evaluating the models.

5.1 The Data

This section briefly describes the data. The first data set is a debit transaction
log, referred to as (fine-grained) transaction data. The second data set contains
structured and socio-demographic information about the consumers, referred to
as structured data (SD).

5.1.1 Fine-grained Transaction Data

This data set is a log of debit transactions spanning two years. Approximately
100,000 unique customers and 1,370,000 unique merchants can be observed
from the 110,000,000 transactions. However, many merchants identified from the
transactions yield no value. These merchants were removed with respect to the
two axioms presented in Section 4.3.2, reducing the complexity of the PSN and
the memory required. The format of the transactions is shown in Table 5.1.

Table 5.1: Format of fine-grained transaction data.

CustomerID MerchantID Date Amount Category

100001 102 2019-12-14 989.0 Transport
100002 105 2019-12-15 438.6 Groceries
100003 103 2019-12-15 438.6 Entertainment
100004 101 2019-12-17 32.0 Transport

All values are fictional.
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5.1.2 Structured Data

Initially, this data set had 1,700,000 entries, but there are only 100,000 consumers
because each consumer has one entry per month. This format enables more ad-
vanced analysis of the consumers, as the changes in customer data over time are
observable. However, such analysis is out of scope for this study. This research
actively ignores the temporal dimension of the data by reducing the number of
entries to one per customer. This was effectively done by keeping the most recently
observed information about each customer. The original format of the structured
data can be seen in Table 5.2.

Table 5.2: Format of structured data.

CustomerID Period Deposit Sum Loan Sum Age Sex Fund

100001 2020M1 34962.0 2653098.0 42 M 0
100001 2020M2 31029.0 2638238.0 42 M 1

...
...

...
...

...
...

...
200000 2021M11 14923.0 0.0 23 F 1

All values are fictional.

5.1.3 Target Variables

Two target variables were selected from the bank product offerings to perform the
method described in Chapter 4. All potential target variables are listed in Table 5.3,
which may be extracted from the structured data. The consumers who purchased
the products are the known buyers, and the consumers who did not are the known
non-buyers. These variables are binary indicators that receive the value of 1 if
a consumer has purchased the product and 0 otherwise. Predicting the value of
these variables will be the predictive task for the models in this experiment and
thus be the basis for evaluating the five predictive models.

At first, the target variables were extracted by selecting the consumers with an
observed change for the product variable during the 24 months. However, this
sampling method granted very few positive target labels and was discarded in
favor of a more straightforward extraction method. The current targets use the
most recent entry for each consumer as their final target label. This changed the
predictive task to predicting which consumers have purchased the offered product,
compared to predicting which consumers will purchase the offered product. As
mentioned in Section 5.1.2, this would effectively discard most of the data for
each customer and ignore the time dimension.
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Product 1

The first target variable is a savings fund. It was selected to measure the perform-
ance on a reasonably balanced data set. It has 44% known buyers, the highest
percentage of all the product offerings. The savings fund will be referred to as
Product 1

Product 2

The second target variable is a disability insurance, with 17% known buyers. It
was selected to measure the performance of an imbalanced data set. The disability
insurance will be referred to as Product 2.

Table 5.3: Potential target variables.

Feature Incidences

Savings Fund 44%
Vehicle Insurance 33%
Property Insurance 31%
Travel Insurance 28%
Life Insurance 25%
Disability Insurance 17%
Child Insurance 8%

Selected target variables are boldfaced.

5.1.4 Data Preparation

Low-quality data leads to low-quality results. Characteristics of low-quality data
may be that it is incomplete, noisy, and inconsistent. An important step before
conducting any experiment is analyzing the data and processing it accordingly.
All data preparation was executed before any further implementation.

The fine-grained transaction data included 110,000,000 transactions. Transac-
tions with missing values were deemed incomplete and removed. The fine-grained
transaction data required no further preprocessing. Irrelevant merchants and their
received transactions were also removed.

Analysis of the structured data revealed that this data had a greater number of
missing values. The values for the target variables were not registered in the final
month and thus discarded as missing values. A small number of the consumers
were missing information for most of their variables in an inconsistent pattern.
These consumers were dropped, as they only accounted for a couple of hundred
consumers. As the final step of preparation, all consumers that could not be ob-
served in the transaction log were also filtered out because it would be impossible
to derive their features. About 2000 consumers were removed on this basis.
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5.2 Models

Four feature subsets are defined to measure the effect of using fine-grained data
in predictive models. These feature subsets are summarized in Table 5.4. A more
detailed description of these subsets are presented in Table 4.6.

Table 5.4: Summary of the four features sets.

Feature Set Description

SD Structured Data

PSN Behvaioral Similarity (BeSim) scores

RFM BeSim scores for Recency, Frequency and Monet-
ary Value

TF Transaction Features

These subsets are the defining features of five different models. The first model
SD, uses no features from the fine-grained transactions. This model will be the
baseline for comparison with the other models to evaluate the influence of fine-
grained transaction data for predictive accuracy. The models PSN and RFM both
use exclusively features derived from transaction data but are compared to evalu-
ate the significance of the different similarity features. The two remaining models
use a combination of structured and transaction data features to assess the pre-
dictive accuracy using complementary features. All five models and the subsets
that define them are listed in Table 5.5.

Table 5.5: Models defined by feature subsets.

Model Feature Subsets Structured Data Transaction Data

SD {SD} Ø
PSN {PSN+ TF} Ø
RFM {RFM+ TF} Ø
PSN+SD {SD+ PSN+ TF} Ø Ø
RFM+SD {SD+ RFM+ TF} Ø Ø

Classification Model

This experiment is executed by a binary classifier using the gradient boosting al-
gorithm. The hyperparameters are tuned manually. The predictive task is to clas-
sify consumers as buyers or non-buyers.

Results from related work indicate that random forests and gradient boosting are
the best models in terms of predictive performance. Both learning algorithms were



Chapter 5: Experiments 35

explored in this study’s initial stages, but the gradient boosting models consist-
ently outperformed the random forest models. The comparison of the models for
a subset of features is included in Table A.2 in Appendix A, and the results are
supported by the findings of Muñoz-Cancino et al. [20]. Another benefit is that
the retail bank of which this thesis is written in cooperation with also operate
gradient boosting in much of their work, making it more applicable.

5.3 Experimental Setup

The setup for this experiment is similar to that of previous research. The data is
split into training and testing sets. For this study, the data is divided into 80% for
training the models and the remaining 20% for testing the models. The models are
trained using stratified cross-validation with ten splits, such that each set contain
approximately the same percentage of samples for the target variables.

The experiment for Product 1 and Product 2 are carried out sequentially. This will
be the basis for assessing how the models with features derived from the proposed
methodology perform in different settings of balanced and imbalanced data sets.

The behavioral similarity scores for the consumers in the test set must be estimated
using the information from the training set to avoid data leakage. That is, the
test set must be treated as an isolated and unobserved state before prediction.
The similarity features for the consumers in the test set are thereby calculated
using only the merchants observed in the training set, and for the RFM similarity
features using observed averages from the consumers in the training set.

5.4 Environment

All experiments in this study were conducted on a virtual machine set up by the
bank. The hardware specifications for the machine is shown in Table 5.6. Pro-
cessing of data and implementation of models is done in Jupyter1 notebooks with
Python 3, utilizing scikit-learn2, LightGBM3 and Pandas4.

Table 5.6: Hardware specifications.

Memory 64GB
CPU Intel(R) Xeon(R) Silver 4114 CPU
CPU Cores 4
CPU Frequency 2.19GHz
OS Windows 10 Enterprise

1https://jupyter.org/
2https://scikit-learn.org/stable/
3https://lightgbm.readthedocs.io/en/latest/
4https://pandas.pydata.org/
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5.5 Evaluation Criteria

This section presents the evaluation metrics to be used to interpret and evaluate
each model’s performance. These metrics capture different aspects of performance
and give varied insights into the strengths and weaknesses of the different models.
The results in Chapter 6 will primarily be discussed in terms of these evaluation
metrics. The metrics are elaborated beforehand to help the reader understand the
metrics before the results from the experiments are presented.

Confusion Matrix

A confusion matrix is a table that makes for an easier interpretation of the per-
formance of a predictive model. Several performance metrics may be derived from
a confusion matrix. A general template for a confusion matrix is illustrated in Fig-
ure 5.1

Figure 5.1: Confusion matrix template.

Performance Metrics

The definitions presented below are performance metrics commonly used in ma-
chine learning. These metrics form the basis for more advanced metrics and are
derivable from confusion matrices.

Definition 5.5.1. Sensitivity, or true positive rate (TPR), is the fraction of posit-
ives that were correctly predicted to be positive. Sensitivity can be considered the
probability that a positive prediction is correct.

Sensitivity= T P
P =

T P
T P+FN .

Definition 5.5.2. Specificity, or true negative rate (TNR), is the fraction of neg-
atives that were correctly predicted to be negative.
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Specificity= T N
N =

T N
T N+F P

Definition 5.5.3. Precision is the fraction of predicted positives that were cor-
rectly predicted to be positive.

Precision= T P
T P+F P

Definition 5.5.4. False negative rate (FNR) is a measure of what proportion of
the data was incorrectly classified as negatives.

FNR= FN
P =

FN
FN+T P

Definition 5.5.5. False positive rate (FPR) is a measure of what proportion of the
data was incorrectly classified as positives.

FPR= F P
N =

F P
F P+T N

Definition 5.5.6. Accuracy is the proportion of correct predictions among all pre-
dictions made.

Accuracy= T P+T N
T P+T N+F P+FN

ROC Curve

Receiver Operating Characteristic (ROC) is a graphical plot that illustrates the
diagnostic ability of a binary classifier system [26]. ROC curves can be created
by plotting the TPR against the TNR. Generally, the closer the curve is to the top
left corner, the better. However, if the ROC curve is too steep, this may be a sign
of overfitting. Figure 5.2 illustrates how a ROC curve may look for a classifier
performing better than random guessing.
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Figure 5.2: Example ROC curve. Dotted line illustrates random guessing.
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AUC

The Area Under the ROC Curve (AUC) is equal to the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen neg-
ative instance. AUC is one of the most widely used single-value evaluation metrics
to measure the performance of binary classifiers [27]. The AUC score always lies
in the interval between 0 and 1. The higher the value, the better the model pre-
dicts 0 classes to be 0 and 1 classes to be 1. An AUC score of 0.5 indicates that the
classifier is no better than random guessing, while an AUC score of 1 represents a
perfect model.

Lift

Lift is most often used in data mining and association rule learning to measure
the performance of a targeting model compared against a random choice model
[28]. Mathematically lift is defined by Equation (5.1). For example, if a data set
initially contains 5% positive instances, but the model can identify a segment of
the data with 25% positive instances, then the achieved lift is 5 (= 25%

5% ).

Lift=
P(A∩ B)

P(A)× P(B)
(5.1)

Lift will be used in the evaluation by looking at the lift rates for the consumers
assigned with the highest probability of being known buyers. The lift rates are
considered for the top 1%, 5%, and 10%.

Feature Importance

SHapley Additive exPlanations (SHAP) [29] is commonly used to discover the re-
lative importance of each feature when working with non-linear models. SHAP
calculates the importance of each feature by comparing the prediction made by
the model with and without the feature. SHAP values make it easier to explain
and interpret machine learning models by visualizing the importance of each in-
dividual feature. This is an important metric for the explainability requirement
for managerial approval discussed in Section 2.3.5 in Chapter 2. The SHAP al-
gorithm that evaluates feature importance for the experimental models is called
Tree SHAP and is a fast and exact method to estimate SHAP values for tree models
and ensembles of trees under several different possible assumptions about feature
dependence 5.

5https://shap.readthedocs.io/en/latest/generated/shap.explainers.Tree.html



Chapter 6
Results and Discussion

This chapter presents the experimental results from Product 1 and Product 2. The
results are interpreted using the evaluation criteria defined in Section 5.5 and sub-
sequently discussed in more detail. Finally, the overall performance is summarized
and compared with the results of related work.

6.1 AUC and Lift

The AUC-scores from the experimental results are listed in Table 6.1, along with
their corresponding ROC curves in Figure 6.1 and Figure 6.2. The lift rates from
the experimental results are listed in Table 6.2 and Table 6.3. The results from
Table 6.1 show that all five models are better than the random guessing model
with AUC scores above 0.5, suggesting that both structured data and transaction
data have inherent predictive quality. In both experiments from Product 1 and
Product 2, it is apparent that the best performing model is the RFM+SD model
compromising features from both structured and transaction data.

Product 1

The results from Table 6.1 are striking regarding the influence of transaction data.
The best-performing model for Product 1 is the RFM+SD model. There is a notice-
ably increase in performance for the PSN+SD model as well, compared to their
stand-alone PSN and SD models. This indicates that the models using structured
data and the models using transaction data capture complementary information.
Although the PSN model being outperformed by the baseline SD model would
suggest that structured data possess more predictive quality, the best performing
stand-alone model is the RFM model. The RFM model even marginally outper-
forms the PSN+SD model.

39
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Table 6.1: AUC scores.

Target SD PSN RFM PSN+SD RFM+SD

Product 1 0.61797 0.59315 0.63818 0.63775 0.66450
Product 2 0.76577 0.60629 0.67861 0.75230 0.76748

The highest scores are denoted in bold

(a) SD, RFM and RFM+SD. (b) SD, PSN and PSN+SD.

Figure 6.1: ROC curves Product 1.

(a) SD, RFM and RFM+SD. (b) SD, PSN and PSN+SD.

Figure 6.2: ROC curves Product 2.
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Table 6.2: Lift for Product 1.

Model Lift 1% Lift 5% Lift 10%

SD 1.37669 1.35124 1.34314

PSN 1.33042 1.31653 1.30149
PSN+SD 1.63121 1.49238 1.44032

RFM 1.66591 1.57568 1.46924
RFM+SD 1.74689 1.61964 1.53981

The highest scores are denoted in bold.

Table 6.3: Lift for Product 2.

Model Lift 1% Lift 5% Lift 10%

SD 2.15224 2.32088 2.24316

PSN 1.65104 1.41383 1.35119
PSN+SD 2.12276 2.15010 2.09891

RFM 2.65345 2.35622 2.06064
RFM+SD 2.77138 2.62718 2.40212

The highest scores are denoted in bold.

The lift rates from the experiment in Table 6.2 strongly suggest that structured
data combined with transaction data possess more predictive quality. The highest
possible lift score for Product 1 is 2.27, of which 44% are positive incidences
(2.27= 1

0.44). The models incorporating RFM similarity features are superior across
all percentiles, with the RFM+SD model performing best.

Product 2

The results in Table 6.1 vary in consistency with the results from Product 1. The
best performing model is still the RFM+SD model, however the best stand-alone
model is the SD model, and the difference in the AUC score is insignificant. The
RFM model is again better than the PSN model, but both are significantly worse
than the SD model. An interesting result is that the PSN+SD model performs
worse than the stand-alone SD model.

The lift rates from the experiment on Product 2 are listed in Table 6.3. The highest
possible lift score for Product 2 is 5.88, of which 17% are positive incidences
(5.88 = 1

0.17). The lift rates for Product 2 tell a different story than the AUC
scores. Even though the PSN and PSN+SD models are consistently worse than the
SD model, the best-performing models incorporate RFM similarity features from
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transaction data. The stand-alone RFM model performs better than the SD model
for all percentiles except the top 10%, while the RFM+SD model is consistently
better across all percentiles.

Summary

Although the AUC scores and lift rates indicate an enhanced effect using transac-
tion data, the results indicate that the models strongly depend on balanced data
sets. The results must be further inspected and evaluated using other metrics that
capture different insights.

6.2 More Performance Metrics

This section interprets model performance with performance metrics derived from
the confusion matrices listed in Appendix A.2. These metrics may provide more
insights into the performances of the models.

Product 1

Table 6.4 lists multiple performance metrics for all models from Product 1. The
RFM+SD model has the best overall performance. It performs best in terms of pre-
cision and accuracy and second-best in terms of sensitivity. The best stand-alone
model is yet again the RFM model. It achieves the second-best precision and spe-
cificity, and in terms of accuracy, it performs practically equal to the PSN+SD
model. The RFM model is significantly better than the PSN model for all metrics
besides specificity, in which the PSN model scores best out of all the models. How-
ever, high specificity by itself yields little value. A model that predicts all instances
to be negatives will achieve a specificity of 100%. The RFM and PSN models both
have higher precision and specificity than the SD model. This is a strong indicator
that the features derived from fine-grained transaction data capture more predict-
ive quality compared to the traditional features from structured data, at least for
balanced data sets.

Table 6.4: Performance metrics of all models for Product 1.

Model Precision Sensitivity Specificity Accuracy

SD 54.7% 40.6% 73.4% 59.0%
RFM 60.9% 27.3% 86.2% 60.2%
PSN 57.6% 12.1% 93.0% 57.3%

PSN+SD 60.0% 29.8% 84.3% 60.3%
RFM+SD 62.8% 33.8% 84.2% 62.0%

The best scores are denoted in bold.
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Product 2

Table 6.5 reports the same performance metrics from the experiment on Product 2.
The model performances are not consistent with Product 1. Interestingly, both the
SD and PSN models have a precision of 0%. The confusion matrices in Appendix
A.2 reveal that this is because the SD model does not predict any consumer to
be a buyer. The PSN model only makes one positive prediction, which was an
incorrect prediction. Despite the lack of precision, the SD model and the PSN
model still achieve the highest accuracy, which is approximately the same across
all the models. This shows that accuracy can be a misleading performance metric
in the case of imbalanced data sets and that high AUC scores and lift rates do not
necessarily mean the model is useful.

For Product 2, the RFM+SD model is still the model with the highest precision,
followed by the RFM model. However, the low sensitivity for both models reveals
that they make very few positive predictions. The sensitivity is still significantly
higher compared to the SD and PSN models, which again shows that the RFM
similarity features from transaction data are much more capable of identifying
buyers for an imbalanced data set.

Table 6.5: Performance metrics of all models for Product 2.

Model Precision Sensitivity Specificity Accuracy

SD 0% 0% 100% 82.7%
RFM 44.3% 3.1% 99.2% 82.6%
PSN 0% 0% 99.9% 82.7%

PSN+SD 36.1% 0.4% 82.7% 82.6%
RFM+SD 49.1% 4.8% 99.0% 82.7%

The highest best are denoted in bold.

Summary

From a business perspective, one might say that precision is more important than
specificity because it indicates how capable a model is at identifying the actual
buyers. In general, it is believed to be more costly to miss the products of interests
than the other way around. Therefore, precision may be a more relevant metric.
By this argument, the RFM+SD model is significantly better than the SD model
for the experiment on Product 2, despite little difference in AUC score.

The results using performance metrics from confusion matrices also indicate that
the similarity features for the RFM model are superior to the similarity features for
the PSN model. The RFM feature subset possess more predictive quality for both
fairly balanced and imbalanced data sets. Analyzing the feature importance for
the PSN+SD model and the RFM+SD model may grant further insights into the
influence of each feature subset from the fine-grained transaction data.
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6.3 SHAP: Feature Importance

The analysis and evaluation of feature importance are primarily centered around
the experiment on Product 1 in which both models using the feature subsets PSN
and RFM performed the best. However, the best performing models on Product 2
from Section 6.2 are also evaluated and compared.

Product 1

The most important features for the RFM+SD model and the PSN+SD model from
Product 1 are listed respectively in Figure 6.3 and Figure 6.6 in terms of Shapley
values. The summary plots explain the effect each feature has on the target predic-
tion. That is, to what degree a feature influences the prediction of being a buyer.
The most important feature(s) for both models are derived from the pseudo-social
network. The fact that features from transaction data outperform the structured
data features in terms of feature importance is auspicious and emphasizes the
potential in the featurization of fine-grained transaction data.

RFM+SD Model

The empiric probability feature E in Figure 6.3 is the feature with the most sig-
nificant impact on the predictions by the RFM+SD model. As the summary plot
indicates, a higher empiric probability value reflects positively on the likelihood
of being a buyer. However, the impact of the feature E does not continuously in-
crease in Figure 6.4 although its feature value may increase. It reaches a plateau
at which its impact is constant.

Figure 6.3: Most important features for the RFM+SD model from Product 1.
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The RFM similarity features are also important for the RFM+SD model. The SHAP
values of the similarity features S_r_kb and S_r_knb in Figure 6.3 illustrate that
the decision of using two features for each RFM dimension instead of combining
them to a singular feature is indeed appropriate. The feature correlation matrix in
Chapter 4 showed that the RFM similarity features were strongly correlated. This
is substantiated by Figure 6.5, in which the inverse shape of the SHAP values for
S_r_kb resembles the shape of the SHAP values for S_r_knb. This indicates that
they capture related information, which is respectively the similarity and dissimil-
arity to known buyers. The S_r_knb feature negatively impacts the model output
when the feature value increases, suggesting that being similar to a known non-
buyer decreases the likelihood of being a buyer. By the same argument, the S_r_kb
feature indicates that being more similar to the known buyers increases the like-
lihood of being a buyer.

Figure 6.4: The most important feature for RFM+SD from Product 1.

(a) S_r_kb. (b) S_r_knb.

Figure 6.5: Recency similarity features for RFM+SD from Product 1.
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PSN+SD Model

Figure 6.6 shows that the transaction data features are among the most important
features for the PSN+SD model. The S_ICF is the most important feature, which
combines the empiric probability and inverse frequency of merchants. It is not a
big surprise that its shape in the dependence plot in Figure 6.7a resembles that
of E for RFM+SD in Figure 6.4. The importance of E is also much less important
for the PSN+SD model, which is likely because its predictive quality is already
included in S_ICF. It seems that the RFM similarity features combined with E
possess more predictive quality than the S_ICF feature alone when comparing the
AUC scores of the RFM+SD and PSN+SD models.

Figure 6.6: Most important features for the PSN+SD model from Product 1.

The most important feature from SD for both models is Innskudd_Sum_Amt. Fig-
ure 6.7b shows that in the case of the PSN+SD model, consumers who have de-
posited about 1 million NOK are more likely to be buyers.

The similarity feature based on degree centrality BiDegree is also more influential
in the PSN+SD model than in the RFM+SD model. Both models also have Tr_count
among their most important features.
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(a) Most important feature for PSN+SD. (b) 2nd most important feature for PSN+SD.

Figure 6.7: The two most important features for PSN+SD model from Product 1.

Product 2

The results from the confusion matrices reveal that the best performing models on
Product 2 are the models using RFM similarity features. This section, therefore,
evaluates the feature importance of the RFM and RFM+SD model.

RFM+SD Model

Figure 6.8 shows the feature importance for the RFM+SD model from Product
2. The RFM similarity features dominate importance as they do for Product 1.
However, the most important feature stems from the SD feature subset, namely
Alder_Y. The dependence plot in Figure 6.9 shows the feature’s impact as a con-
sumer’s age increases. The model evaluates consumers over the age of 50 to be
less likely buyers, as the impact on model output changes at this point. This may
indicate that Product 2 heavily depends on consumer age or that the model over-
fits and has a strong bias toward age. The latter is more likely given the fact that
the RFM+SD model’s predictions of buyers are correct approximately 50% of the
time.
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Figure 6.8: Most important features for RFM+SD model from Product 2.

Figure 6.9: Most important feature for RFM+SD model from Product 2.

RFM Model

The feature importance for the RFM model is shown in Figure 6.10. The summary
plot resembles the feature importance in Figure 6.3, in which the most import-
ant feature is E. For Product 2, however, the feature E is more influential in the
RFM model than in the RFM+SD model. Nevertheless, the precision of the RFM
model is lower than the RFM+SD model, which indicates that the stand-alone
RFM model is indeed better when combined with features from SD.
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Figure 6.10: Most important features for RFM model from Product 2.

6.4 Overall Performance

The results presented in this chapter show that the RFM+SD model is superior to
all the other models when it comes to predictive performance.

The results from the experiment on Product 1 imply that predictive models using
structured data experience an enhanced effect when combined with transaction
data. Martens et al. [11] discovered similar results from their experiments, in
which their PSN+SD model compromising features from both data sets yielded
a higher AUC score than the stand-alone models PSN and SD. In addition, their
stand-alone PSN model using SICF as a similarity feature performed worse than
the SD model, which is also consistent with the findings in this research. Another
important notice from their study is that they use 10% of the test data to estimate
the similarity features for the remaining consumers in the test set. This is problem-
atic because the measure incorporates information about the targets it is trying to
predict, thus potentially causing data leakage. The test set must remain unseen
before the prediction takes place to give a more realistic performance result. The
different data and testing procedures makes a direct comparison of AUC scores
and lift rates indifferent.

The stand-alone model from this study using RFM similarity features outperforms
the SD model and the PSN+SD model for Product 1. This result is profound in
terms of applicability. It means that companies that do not possess adequate struc-
tured data for all consumers may also apply predictive modeling if they possess
transaction data for those missing consumers. Another interesting result regard-
ing the RFM similarity features is that they provide better results when they are
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not combined to single-value features. This is exemplified by the summary plots of
feature importance in Section 6.3. This method deviates from the proposed meth-
odology by Caigny et al. [12], but the results in terms of predictive performance
are clear. Figure A.4 in Appendix A also shows that combining the features in the
function they proposed yield lower AUC scores and lift rates. A major benefit of
using ensemble methods like gradient boosting compared to logistic regression
is that ensemble methods are robust to multicollinearity problems [30]. Logistic
regression on the other hand assumes absence of multicollinearity, which is an
important case for single-valued RFM features.

Caigny et al. [12] and Martens et al. [11] also presented several ways of scaling
the pseudo-social networks using both ICF and S_ICF as scaling factors. Despite
the difference in methods, the results from Caigny et al. [12] also suggest that
the RFM+SD model is generally superior to all the other models. These results
coincide with the indication that the featurization phase is of great importance in
harnessing predictive quality from transaction data.

The AUC scores from the experiments on Product 2 indicate that the difference
between models using only structured data and structured data in combination
with transaction data is much less significant. This opposes the results of Martens
et al. [11] in which the combined models are significantly better across both
of their target products. However, in line with their results, the experiments on
Product 1 and Product 2 show an increase in AUC scores when the imbalance
of the data sets increases. The same adheres to the lift rates, which experience
an increase on Product 2. Closer inspection using more informative performance
metrics reveals that these results are likely because the models are biased toward
predicting non-buyers for the imbalanced data sets. These results is an example of
how AUC can be a misleading measure of the performance of predictive models
[31].

The problem with imbalanced data sets for the models incorporating features from
transaction data is the size of the projected pseudo-social networks. The second
axiom in Chapter 4 says to remove merchants that do not have connecting known
buyers. For Product 2, of which 17% of the consumers are known buyers, it means
that the pseudo-social network is notably smaller than for Product 1. Thus, the
data basis for deriving the similarity features from the pseudo-social network is
also substantially less. In essence, although the summary plots for both RFM and
RFM+SD from Product 2 suggest that the RFM similarity features are important,
their predictive quality may be ineffectual compared to the RFM similarity features
derived from the pseudo-social network from Product 1.
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Conclusions and Future Work

Reports by McKinsey show that commercial banks could see reductions in revenue
between 10% to 40% by 2025 if they fail to react accordingly to increasing com-
petition [32]. Predictive modeling is increasingly becoming a part of businesses’
targeting methods because staying a step ahead of consumer trends is essential to
maintaining a competitive advantage. Introducing new data sources could poten-
tially increase predictive performance.

This research incorporates fine-grained transaction data as a new data source.
By inferring a pseudo-social network from the transaction data, it is possible to
extract features that improve predictive performance. Higher predictive perform-
ance facilitates more accurate targeting and may further assist marketing decision-
making.

7.1 Conclusions

This study set out to explore the domain and existing literature before proposing
a new methodology for pseudo-social network targeting that extends upon the
approaches in previous research. Multiple features were derived from the pseudo-
social network and divided into feature subsets. The four subsets laid the founda-
tion of the five models used in the experiments to measure the predictive quality
of the features derived from the pseudo-social network compared to the features
from structured data. The models were tested on two data sets to measure how
the models adapt to different settings, one being a fairly balanced data set and
the other an imbalanced data set. Finally, the results were presented, evaluated,
and discussed.
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The two research questions raised in the introduction defined the scope of this
thesis. The following answers are meant to complement the findings from the
experimental results in a concise matter.

RQ1 How may fine-grained transaction data be leveraged to increase the predictive
performance of predictive models?

The proposed methodology in Chapter 4 shows how a pseudo-social network may
be constructed from fine-grained transaction data to further derive new features
to predictive models. The experimental results show that fine-grained transac-
tion data can significantly increase the overall predictive performance. The best-
performing models incorporate features from structured data combined with fea-
tures from the pseudo-social network. However, the effect of including different
features from the pseudo-social network also shows that the increase in predictive
performance is dependent on the predictive quality of the extracted features.

RQ2 What features from pseudo-social networks help increase the predictive perform-
ance for predictive models?

This study primarily explores two methods of deriving similarity features from a
pseudo-social network. The overall performance concludes that both the model
using the PSN feature subset and the model using the RFM feature subset help
increase the predictive performance when combined with structured data. The
PSN models are, however, outperformed by the RFM models. A merit result from
the experiments is that the stand-alone RFM model is better than both the PSN
and PSN+SD models. This shows that the similarity features in the RFM models
capture more predictive quality from the pseudo-social network than the similarity
feature in the PSN models.

7.2 Future Work

This section presents the limitations of this research and points to new directions
in which future work could yield better results and new insights into pseudo-social
network targeting as a method in predictive modeling.

The experimental results show the significance of adding a new data source to
the predictive model pipeline. While the results indicate a boost in predictive per-
formance, they are limited to the predictive quality that exists in the two data
sources of transaction data and structured data. Extracting features from new data
sources such as more descriptive social-demographic data and social network data
may further excel the predictive performance. Exploring alternative calculations
of RFM similarity features in the proposed methodology may further enhance the
predictive performance when using transaction data.

A major contribution of this thesis is the extensive evaluation of pseudo-social
network targeting as a method in predictive modeling. Although evaluating the
results using more classification performance metrics provides a better picture of
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predictive performance, it does not reflect the true performance in a real-world
setting. This research is limited by using historical data collected by the bank.
However, the testing phase should incorporate new data [33]. Deployment of the
model in production systems would provide new data and give more insights into
how well the model actually fares in real-world applications.

The security protocols enforced by the bank predetermined the software and hard-
ware used in this research. State-of-the-art machine learning methods such as
graph convolutional networks [34] could potentially be used for more extensive
analysis of the pseudo-social networks and further increase predictive perform-
ance. Such methods are computationally expensive and rarely feasible without
access to a GPU for more efficient computations.

True social networks are dynamic structures that are likely to change over time.
New connections are likely to appear while others disappear. The methodology
proposed in this thesis constructs a static pseudo-social network that does not ac-
count for the temporal dimension. Some consumers have longer/shorter relation-
ships with the bank at different intervals. Future work may extend the proposed
implementation with temporal information to create dynamic networks. Such net-
works may enable more advanced network analysis and potentially broaden the
spectrum of applications for pseudo-social networks.
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Additional Material

A.1 Alternative Methods

RFM Similarity Features with Scaling Factors

Table A.1: AUC using scaled RFM features for the RFM+SD model.

No scaling ICF Scaling S_ICF Scaling

AUC 0.66450 0.66211 0.62392

Figure A.1: Comparison of scaling factors for RFM features using the best model.
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Random Forest vs. Gradient Boosting

Table A.2: Early results for Random Forest and Gradient Boosting.

Classification Algorithm AUC Lift 1% Lift 5% Lift 10%

Random Forest 0.62567 1.37344 1.47022 1.43995
Gradient Boosting 0.63703 1.61732 1.59316 1.48347

(a) Random Forest with RFM-features (b) Gradient Boosting with RFM-features

Alternative RFM Computation

Table A.3: AUC and Lift using alternative RFM features.

AUC Lift 1% Lift 5% Lift 10%

0.55749 1.34198 1.27026 1.22399
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Figure A.3: ROC curve using alternative RFM features.

Using Only Single-Valued RFM Similarity Features

Table A.4: AUC and Lift using single-valued RFM features.

AUC Lift 1% Lift 5% Lift 10%

0.51593 1.21473 1.15457 1.14763

Figure A.4: Feature importance RFM+SD with single-valued RFM features.
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A.2 Confusion Matrices

Figure A.5: Confusion matrix for the SD model from Product 1.

Figure A.6: Confusion matrix for the PSN model from Product 1.
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Figure A.7: Confusion matrix for the RFM model from Product 1.

Figure A.8: Confusion matrix for the PSN+SD model from Product 1.
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Figure A.9: Confusion matrix for the RFM+SD model from Product 1.

Figure A.10: Confusion matrix for the SD model from Product 2.
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Figure A.11: Confusion matrix for the PSN model from Product 2.

Figure A.12: Confusion matrix for the RFM model from Product 2.
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Figure A.13: Confusion matrix for the PSN+SD model from Product 2.

Figure A.14: Confusion matrix for the RFM+SD model from Product 2.
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