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Abstract

Autonomous navigation in increasingly complex domains presents new challenges that question
the efficiency and capability of traditional model-based methods. Though traditional approaches
have been successful for unstructured environments in the past, uncertain, sensor-degraded, or
dynamic environments cannot be modelled and thus be solved by these approaches. Instead,
learning-based methods have become increasingly popular due to their ability to learn complex
behaviour without explicit programming, where multiple components can be combined into a
single model to tackle the perception, prediction and motion task of autonomous navigation.
In this theme, this thesis explores the use of reinforcement learning for autonomous navig-

ation of a quadrotor through cluttered environments, with only a depth camera. We propose a
two-part deep neural network model comprised of an encoder-CNN and MLP, where the CNN
serves as the perception module while the MLP is the optimal controller. With this framework,
our model receives a quadrotor state and depth image as input and maps this to a velocity and
yaw rate reference to reach a specified goal in three dimensions.
To solve the task, we present the problem as an unsupervised representation learning and

reinforcement learning task. The CNN is trained as an encoder of VAE that learns to reconstruct
depth images, while theMLP learns to utilise the VAE latent code as a depth representation of the
environment, so to be able to navigate the environment. We introduce a custom reconstruction
error for the VAE to specify collision-specific features that should be prioritised in the depth
encoding. We also introduce a novel reward function for the reinforcement learning agent that
motivates both waypoint navigation and collision avoidance.
By further utilising large-scale parallelism, we present the training and evaluation of our final

reinforcement learning policy, which achieves a 92.5% success rate averaged across four known
20×10 environments with varying degrees of clutter. The agent demonstrates good robustness
when a Gaussian multiplicative noise εn ∼N (1, 0.2) is applied to all states and actions, with an
87.5% success rate across the four environments. However, we identify some constraints with
our model – namely dependence on accurate depth representations and a poor generalisation
to larger environments. Finally, as further work, we should train our modules to handle noisy
depth images, add modifications to account for generalisation, and add a prediction module in
the form of an LSTM or Transformer to further improve performance.
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Sammendrag

Autonom navigering i stadig mer komplekse domener byr på nye utfordringer og stiller spørsmål
ved effektiviteten og kapasiteten til tradisjonelle modellbaserte metoder. Selv om tradisjonelle
metoder har vært vellykkede for ustrukturerte miljøer i det siste, kan usikre, sensor-degraderte
eller dynamiske miljøer ikke modelleres og dermed løses med disse metodene. I stedet har
læringsbaserte metoder blitt stadig mer populære på grunn av deres evne til å lære kompleks
atferd uten eksplisitt programmering, der flere komponenter kan kombineres til en enkelt mod-
ell for å takle persepsjons-, prediksjons- og bevegelsesoppgaven til autonom navigering.
I dette temaet utforsker denne oppgaven bruken av forsterkende læring for autonom naviger-

ing av en drone gjennom hinderfylt miljøer, med kun et dybdekamera. Vi foreslår en todelt dyp
nevrale nettverksmodell som består av en koder-CNN og MLP, der CNN fungerer som perseps-
jonsmodulen mens MLP er den optimale kontrolleren. Med dette rammeverket mottar model-
len vår en dronetilstand og et dybdebilde som input og kartlegger dette til en hastighets- og
girhastighetsreferanse for å nå et spesifisert mål i tre dimensjoner.
For å løse oppgaven presenterer vi problemet som en uovervåket representasjonslærings- og

forsterkende læringsoppgave. CNN er opplært som en koder for VAE som lærer å rekonstruere
dybdebilder, mens MLP lærer å bruke VAE latent kode som en dybderepresentasjon av miljøet,
for å kunne navigere i miljøet. Vi introduserer en tilpasset rekonstruksjonsfeil for VAE for å spesi-
fisere kollisjonsspesifikke funksjoner som bør prioriteres i dybdekodingen. Vi introduserer også
en ny belønningsfunksjon for forsterkende læringsmiddel som motiverer både veipunktnavigas-
jon og kollisjonsunngåelse.
Ved ytterligere å bruke storskala parallellisme, presenterer vi opplæringen og evalueringen

av vår endelige forsterkende læringspolicy, som oppnår en suksessrate på 92,5% i gjennomsnitt
over fire kjente miljøer på 20 ganger10 med ulik grad av rot. Agenten viser god robusthet når
en Gaussisk multiplikativ støy εn ∼ N (1,0, 2) brukes på alle tilstander og handlinger, med en
suksessrate på 87,5% på tvers av de fire miljøene. Imidlertid identifiserer vi noen begrensninger
medmodellen vår – nemlig avhengighet av nøyaktige dybderepresentasjoner og en dårlig gener-
alisering til større miljøer. Til slutt, som videre arbeid, bør vi trene modulene våre til å håndtere
støyende dybdebilder, legge til modifikasjoner for å ta hensyn til generalisering, og legge til en
prediksjonsmodul i form av en LSTM eller transformator for å forbedre ytelsen ytterligere.
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Preface

This master’s thesis symbolises the end of 5-years at the Norwegian University of Science and
Technology (NTNU) – the last page of what has been an exciting educational chapter. I had the
pleasure of writing it under the guidance of Prof. Dr. Kostas Alexis and PhD. candidates Dinh
Huan Nguyen and Mihir Kulkarni, who are all a part of the Autonomous Robots Lab (ARL).
As a result, the theme of this thesis follows from their goal – to develop intelligent robotic
systems that can complete tasks under any possible conditions in complex, dynamic and diverse
environments.
The thesis was also part of the lab’s initiative to explore more learning-based methods in

their work and a new simulation framework released last year, Isaac Gym. This meant that the
bulk of the approach had to be written and integrated with Isaac Gym from the ground up,
where I had to learn an entirely new machine learning framework, PyTorch. Admittedly, this
has been worth it. I have been quite fortunate to receive such an exciting topic that builds on
current state-of-the-art methods and tools. Looking forward, there is much to be improved in
the implementation, so hopefully, this thesis (and the code) can come to good use for future
students.
Furthermore, this thesis builds on the project thesis [1] – essentially a crash course in rein-

forcement learning for robotics – where we trained a quadrotor for waypoint navigation with no
obstacles present. Unfortunately, the results were not that promising, which resulted in a scep-
tical and conservative development process during this thesis, being the primary motivation for
the curriculum, which in hindsight served it well.
Since a significant focus of the project was on the theory, multiple sections in the reinforce-

ment learning chapter are taken from the thesis and marked with (*). This is so that the theory
can be presented from the absolute fundamentals, as it is not a part of NTNU’s cybernetics cur-
riculum. Otherwise, this is not the case for the deep learning aspect, as this thesis assumes that
fundamentals here should be known: neural networks, gradient descent, backpropagation, etc.
We also assume the same for estimation and machine learning theory, e.g. maximum likelihood
estimation, Bayesian networks and inference.
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Chapter 1

Introduction

1.1 Motivation

Autonomous navigation of robotic vehicles is a complicated task that has challenged the cyber-
netics community since its inception. It is a research field of substantial focus particularly in
recent years, given its novel applications within commercial sectors [2–4], transportation [5],
search and rescue [6], and defence [7]. As new possibilities for autonomy are increasing, so is
the need to find new, innovative, robust and safe solutions to meet this demand.
The difficulty of autonomous navigation in cluttered and dynamic environments arises from

the combination of three separate tasks: first to perceive the local environment directly from
on-board sensors, then to predict how the environment will evolve, and finally to decide on a
safe and intelligent action based on the inferred information [8]. Each of these tasks presents
its challenges, such as dealing with noise or uncertainty in sensor data or feasible trajectory
planning, but separating these tasks into a threefold process ultimately leads to an increased
latency and compounding of errors in the pipeline [9].
Moreover, as robotic use-cases are becoming more advanced – such as in underwater [10],

forested [9] and subterranean environments [11] – autonomous robots now have to contend
with environments that are: sensor-degraded with limited illumination; long, narrow and multi-
branching; unpredictable and unstructured; isolated from external communications. Though
localisation and mapping techniques based on 3D perception have been successful in unstruc-
tured environments in the past [12], the characteristics of these newer domains present new
challenges for traditional approaches. Specifically, these environments make it difficult to main-
tain an accurate map of the environment, puts the tractability of trajectory planning into ques-
tion and limits the amount of computational resources available to the robot [9, 13–15].
Not to mention, navigation within cluttered environments requires fast, accurate and careful

planning of versatile vehicles – such as in multirotor aerial vehicles (quadrotors) [16]. This
requires a quick mapping from sensor data to action, which makes a high-latency solution non-

1
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viable because of the inherent difficulty of pose estimation when travelling at high speeds [9,
14].
Therefore, these issues prompt the consideration of learning-based methods to directly infer

actions from raw sensor input, as an alternative to the three-subtask, model-based pipeline. The
idea is to remove the necessity for accurate maps, though retaining essential features, and us-
ing this to plan feasible trajectories even in complex edge-case scenarios. Utilising a data-driven
approach should allow an agent to capture the system’s dynamics and the environment’s uncer-
tainties without the need for any explicit programming [17] – thus removing the need for feature
engineering or heuristics to make the navigation task tractable [13]. The processing time dra-
matically decreases due to this direct mapping, as sensor data does not need to be preprocessed
into higher dimensional information [18, 19], maps will not have to be generated or queried,
and exhaustive collision checking is avoided [15]. Instead, a learning approach will be used to
extract high-dimensional information directly, capable of filtering out redundant information in
LiDAR and depth data. Then, the agent can learn collision avoidance based on experience from
these high-level features [13].
The apparent limitation of using learning-based methods is that the amount of data required

to solve complex tasks is proportional to its complexity [20], where varied environments are of-
ten also required in the learning process [21]. Due to this, the question of whether or not a task
was learnable through reinforcement learning became simply a question of time or computa-
tional resources. If these resources were unavailable, more sample-efficient methods had to be
explored, for example: supervised learning through clever use of datasets [22, 23], engineering
of action spaces and learning these in a self-supervised manner [24], or by imitation learning
using an expert planner [9, 15, 25].
However, until recently, the research community has been developing parallel end-to-end

hardware-accelerated (GPU) simulators, such as Isaac Gym, which have provided the opportun-
ity to simulate tens of thousands of environments in parallel and “enables the solving of tasks
with a single GPU that were previously only possible on massive CPU clusters” [26]. This has
opened up a multitude of possibilities for autonomous navigation using reinforcement learning,
thus being the motivation for this thesis.

1.2 Scope

This thesis explores how a mapless navigation policy for collision avoidance can be learned on a
quadrotor without expert demonstrations by leveraging novel ideas in learning-based autonom-
ous navigation combined with a massively parallel learning scheme (Isaac Gym). Specifically,
the aim is to infer a reference velocity and steering angle for the quadrotor given its state and
depth image from a forward-facing depth camera. With this policy, an agent should be able to
navigate through a cluttered environment to some goal specified in three-dimensional space,
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such that it can be combined with some global path planner.
To learn this policy, this thesis will present the theory and implementation of a two-part

deep neural network module. The first module, a variational autoencoder (VAE), is tasked with
extracting the essential information or features from a depth image. The second module will be
a fully-connected neural network (or multi-layer perceptron) and serves as the reinforcement
learning agent. The agent will receive the essential information of the depth image (i.e. its
features), along with the quadrotor state, and decide on a velocity and yaw rate reference for the
quadrotor. To optimise the VAE, we use the Auto-Encoding Variational Bayes (AEVB) algorithm,
while agent is optimised through Proximal Policy Optimisation (PPO). We also define a custom
loss function for the VAE to define important features to be prioritised, and define a reward
function that is conditions an agent to be collision avoidant.
Additionally, as the VAE and MLP modules are written from scratch, the design choices and

training for each module will be presented in detail. For the VAE, this includes the choice of
architecture and loss functions for improvements in the reconstructed images. For the MLP, this
includes simulation setup and gradual training steps (curriculum) to achieve a stable training
process and eventually collision avoidance. Finally, this thesis will evaluate the performance
of the trained policy in a series of standardised tests, ranging from known environments with
varying difficult, robustness tests to noise and finally generalisation to larger domains. We also
present the results for the VAE, training though these are not evaluated to the same degree.

1.3 Outline

The outline of this thesis will be as follows:

• Chapter 1: Introduction
The motivation for this thesis is presented, along with the scope of the task and the content
of this thesis.

• Chapter 2: Theoretical Background The underlying theory for VAE is presented through
the lens of unsupervised representation learning, where fundamental deep learning theory
(like gradient descent) is assumed to be known. Then, a full introduction to reinforcement
learning is provided, so to understand PPO.

• Chapter 3: Related Works The approaches of previous works within learning-based mo-
tion planning are presented to get an overview of the different methods to solve the task.
The motivation for reinforcement learning is put forward in comparison.

• Chapter 4: Problem Formulation The learning task of this thesis is presented from a tech-
nical perspective. The problem is split into two parts – a reinforcement and representation
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learning task.

• Chapter 5: Proposed Approach The two-part deep neural network model is proposed.
The custom rewards, losses, training setup and architecture of the VAE and MLP are
presented and discussed.

• Chapter 6: Implementation The method to prepare and train the proposed network is
presented, along with various software tools and frameworks. This includes the gather-
ing of data for VAE, the simulation setup and implementation details for optimising our
reinforcement learning agent.

• Chapter 7: Navigation Policy Evaluation Studies The step-by-step procedure for training
the agent is presented and the results analysed. The agent performance is then evaluated
in known environments, when exposed to noise, and in larger environments.

• Chapter 8: VAE Evaluation Studies The results of VAE training with different loss func-
tions are presented and their reconstructions analysed.

• Chapter 9: Discussion We explore how a reinforcement learning agent is able to solve
a collision task and why it sometimes fails, and discuss the differences between the loss
functions for the VAE.

• Chapter 10: Conclusions The overall approach, results and discussion points are sum-

marised.



Chapter 2

Theoretical Background

In this chapter, we will cover the relevant theory required to understand our two-part model,
namely a Variational Autoencoder (VAE) combinedwith a reinforcement learning agent – amulti-
layer perceptron (MLP) – trained with Proximal Policy Optimisation (PPO).
First, a gentle introduction of unsupervised learning will be given, along with its use in rep-

resentation learning. Then, we will look into autoencoders as a way of extracting features in
a dataset before finally exploring the theory behind VAEs. Later, in section 2.3, we will begin
with a recollection of fundamental reinforcement learning concepts such as Markov Decision
Processes, returns, value functions and policies. This will serve as a stepping stone to under-
standing the topic of policy optimisation, particularly actor-critics and how PPO builds on this.

2.1 Unsupervised Learning

Machine learning algorithms are broadly classed into four categories: supervised, semi-supervised,
unsupervised and reinforcement learning – depending onwhat kind of experience the algorithms
are allowed to have during the learning process. Though supervised learning has been one of
the most powerful tools of AI, it requires labour-intensive feature engineering and labelling in
order to create datasets in areas such as vision, audio and text [27]. In contrast, unsupervised
techniques learn from unlabelled datasets, where, in a deep learning context, the aim is to learn
the useful properties of the structure of this dataset or even its underlying probability distribu-
tion [28]. The key idea is that by learning the useful properties of our data, we can use this as
a better, more compact representation of our input, significantly reducing its complexity.

2.2 Representation Learning

Representation learning refers to the unsupervised learning of a dataset’s useful structures or
probability distribution in order to make a subsequent learning task easier [28]. In [29], it is

5



Chapter 2: Theoretical Background 6

highlighted that “the performance of machine learning methods is heavily dependant on the
choice of data representation,” and that to “understand the world around us,” it must “learn to
identify and disentangle the underlying explanatory factors hidden in low-level sensory data.”
To explore these ideas, we focus on the use of autoencoders and variational autoencoders as a
means of learning a representation of a dataset.

2.2.1 Autoencoders

Autoencoders are a class of neural networks whose learning objective is an identity mapping
from input to output, under some specific constraint [30]. The mapping is described with two
parts, first a function to describe an encoding z = f (x ), and then a function to describe a
decoding r = g(z). Here, x refers to the input data, while z is the hidden layer of a neural

Figure 2.1: The general structure of an autoencoder showing how an input x is encoded into a
latent code z, before being mapped to a reconstruction r [28].

network that represents a code or latent representation, and r is the reconstructed input mapped
from the code z.
The constraint on an autoencoder is typically placed through its architectural design or its

learning process, where the idea is to restrict autoencoders to prioritise only parts of the inform-
ation in the input when reconstructing the input (mapping x to z and z to r). By doing so, the
prioritised parts of the input will become a more useful, alternative representation of the input
x [28].
In this thesis, we focus on autoencoders that are architecturally constrained. Architecturally

constrained autoencoders are referred to as undercomplete autoencoders as they are designed to
lack the representational power to map inputs to outputs perfectly. Practically, this means that
the hidden layer z has a dimension less than the dimension of the input x or reconstruction r ,
as seen in Figure 2.2a. As a result, undercomplete autoencoders are forced to capture the most
prominent features of the input data in its hidden layer [28].
To train an undercomplete autoencoder, we minimise a loss function,

L (x , g( f (x ))) (2.1)

where we set the target values of the neural network to be equal to the input x . The loss function
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(a) An undercomplete autoencoder: the dimen-
sion of the smallest hidden layer is less than the
input dimension.

(b) For comparison, a sparse autoencoder has
sufficient hidden units but has a sparsity con-
straint imposed on its hidden layer.

Figure 2.2: The difference between an undercomplete and sparse autoencoder.

is normally chosen to be themean-squared error (MSE) between the input and the reconstructed
input,

LMSE =
∑

x i∈x

�

x i − g( f (x i))
�2 (2.2)

and the neural network is optimised through a standard optimisation algorithm, such as mini-
batch stochastic gradient descent. The loss can also be chosen as the binary cross-entropy
between input and reconstruction depending on the task, for example, when encoding Bernoulli
distributed data or one-hot encoded text. For the sake of completeness, a sparse autoencoder
has almost the same objective, but with an added penalty term Ω(z) (e.g. L1 loss) that enforces
sparsity (keep weights close to 0) in the hidden layer z [31].

2.2.2 Variational Autoencoders

Variational autoencoders (VAEs) [32, 33] are related to autoencoders in terms of architecture,
but are in the family of structured probabilistic models. This means that they also have an encoder-
decoder neural network structure but, in contrast, make assumptions on the underlying prob-
ability distribution of the input x and latent code z and wish to model it.



Chapter 2: Theoretical Background 8

A Parametrised Probabilistic Model

Figure 2.3: A graphical model (Bayes net) of the probability model in the VAE. The assumption
is that our observed input data x is generated from the conditional distribution pθ ∗(x | z), with
true parameters θ ∗ unknown. Here, the latent representation z is hidden, while the input x is
observed (grey). N is the number of repetitions (in plate notation), equivalent to the number of
i.i.d. samples of some dataset.

VAEs contain a probabilistic model, with parameters θ , that aims to estimate a joint probability
distribution pθ ∗(x , z) as shown in Figure 2.3. It assumes that our latent variables z are generated
from some prior distribution pθ ∗(z) and that the input x is generated from the conditional
distribution pθ ∗(x | z). Also, it is assumed that the prior pθ ∗(z) and likelihood pθ ∗(x | z) both
come from parametric families of distributions pθ (z) and pθ (x | z), though their true parameters
θ ∗ are unknown [32].
The main use of learning this joint distribution is so that the probabilistic model can perform

probabilistic inference – computing the posterior distribution of the hidden nodes, given the
values of observed nodes [34]:

pθ (z| x ) =
pθ (x | z)pθ (z)

pθ (x )
(2.3)

From a representation learning perspective, being able to learn how to perform posterior infer-
ence requires that a probabilistic model learns the distribution of the data pθ (x ), which then
allows the model to infer the hidden structure or latent code z that best explains our input x

[35].
However, exact inference is often intractable due to pθ (x ) =

∫

pθ (z) pθ (x | z) requiring amar-
ginalisation of over the latent variables (which is exponential in the number of hidden nodes)
and because of the scale of large datasets [32]. Therefore, VAEs instead make use of variational
inference: attempting to approximate the true posterior pθ (z| x ) with a restricted family of dis-
tributions qφ(z| x ), where the goal is to find the settings of the variational parameter φ that
best approximates the true posterior. This transforms a complex inference problem into a high-
dimensional optimisation problem [28, 35].
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So, in machine learning terms, the encoder neural network of a VAE parametrised by φ
represents the approximate posterior qφ(z| x ), and generates a family of distributions – such
as a set of means and variances for Gaussians – for a given datapoint x . Similarly, the decoder
neural network, parametrised by θ , then represents the corresponding likelihood distribution
pθ (x | z) that generates a distribution over values of x for a given latent code z. In the literature,
the probabilistic encoder is also referred to as an inference network or recognition model, while
the probabilistic decoder is referred to as a generative network or generative model.

Optimising the VAE

Now, in order to optimise the parameters of the encoder and decode, wewant to find an objective
function to update parameters φ and θ so that our encoder qφ(z| x ) best approximates the
true posterior pθ (z| x ), and that our generative decoder pθ (x | z) best approximates the true
likelihood pθ ∗(x | z). To do this, we first have to consider a non-negative similarity measure,
the Kullback-Leibler (KL) divergence, that can be used to measure the difference between two
distributions P(x) and Q(x) [28]:

DK L(P ∥Q) = Ex∼P

�

log
P(x)
Q(x)

�

= Ex∼P [log P(x)− logQ(x)] (2.4)

Then, with the goal of minimising the difference between the approximate qφ(z| x ) and true
posterior pθ (z| x ), we can substitute these for P(x) and Q(x) to get:

DK L(qφ(z| x ) ∥ pθ (z| x )) =Ex∼qφ(z| x )
�

log qφ(z| x )− log pθ (z| x )
�

=Ex∼qφ(z| x )

�

log qφ(z| x )− log
pθ (x , z)

pθ (x )

�

=Ex∼qφ(z| x )
�

log qφ(z| x )
�

−Ex∼qφ(z| x )
�

log pθ (x , z)
�

+ log pθ (x ) (2.5)

However, this term cannot be computed directly due to the marginal likelihood pθ (x ) being
intractable as mentioned above. To get around this, we instead rewrite the marginal likelihood
as:

log pθ (x ) = DK L(qφ(z| x ) ∥ pθ (z| x )) +L (θ ,φ; x ) (2.6)

Since the KL divergence is non-negative, the termL (θ ,φ; x ) is referred to as the variational lower
bound or evidence lower bound (ELBO) since it sets a lower bound on the marginal likelihood (or
evidence) [32]:

log pθ (x )≥ L (θ ,φ; x ) = Ex∼qφ(z| x )
�

− log qφ(z| x ) + log pθ (x , z)
�

(2.7)
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This can be rewritten further:

L (θ ,φ; x ) =Ex∼qφ(z| x )
�

− log qφ(z| x ) + log pθ (x | z) + log pθ (z)
�

=−Ex∼qφ(z| x )
�

log qφ(z| x )− log pθ (z)
�

+Ex∼qφ(z| x )
�

log pθ (x | z)
�

=− DK L(qφ(z| x ) ∥ log pθ (z)) +Ex∼qφ(z| x )
�

log pθ (x | z)
�

(2.8)

This ELBO term is particularly interesting because maximising it is equivalent to minimising
the KL divergence between the approximate and true posteriors. Therefore, we choose to optim-
ise this term through a standard optimisation algorithm, such as mini-batch stochastic gradient
ascent. For a single datapoint with L samples, an estimator for the ELBO loss in (2.8) is:

eL (θ ,φ; x (i)) = −DK L(qφ(z| x (i)) ∥ log pθ (z)) +
1
L

L
∑

l=1

�

log pθ (x
(i)| z(i,l))
�

(2.9)

This can be extended to be an estimator for the ELBO loss for the full dataset:

L (θ ,φ; x (i))≃ eLM (θ ,φ; x (i)) =
N
M

M
∑

i=1

�

eL (θ ,φ; x (i))
�

(2.10)

where M is the number of datapoints per mini-batch and N the total datapoints. By choosing
M large enough (e.g. M = 100) allows us to use have one sample per datapoint (L = 1) when
computing (2.9) [32]. We also note for later reference that the first term in (2.9) can be referred
to as a regularisation loss, while the second term can be referred to as a reconstruction loss.

The Reparametrisation Trick

However, since z is a random variable sampled from the distribution qφ(z| x ), how are we able
to find deterministic gradients of the ELBO with respect to the parameters φ of the distribution
qφ(z| x )? To solve this, [32] introduced a reparametrisation trick where, for a datapoint x (i), the
continuous random variable z(i,l) ∼ qφ(z| x (i)) is expressed as a deterministic variable:

z(i,l) = gφ(ε
(i,l), x (i)), where ε(l) ∼ p(ε) (2.11)

and ε being a noise variable with marginal distribution p(ε). By reparametrising z through a
differentiable transformation gφ(ε(i,l), x (i)) and ε, we ensure that the parameters of the distri-
bution still remain learnable while the VAE remains stochastic through ε. To give an example,
in most cases, we assume the variational approximate and true posteriors to be a multivariate
Gaussian. To sample z(i,l) using the reparametrisation trick would be done as:

z(i,l) = µ(i) +σ(i) ⊙ ε(l), and ε(l) ∼N (0, I) (2.12)
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with⊙meaning the element-wise product. In this example, themean µ(i) and standard deviation
σ(i) of the Gaussian would then become learnable parameters of the encoder, each having their
own deterministic gradients that can be calculated in backpropagation.

Understanding ELBO and the VAE Latent Space

Finally, using a VAE gives the learned latent representation z, for a given input x , some desirable
properties that distinguish it from ordinary autoencoders.
First, by observing the structure of (2.9), we note that to maximise the ELBO loss requires

that we minimise the KL divergence between the approximate posterior qφ(z| x ) and the latent
prior pθ (z). When we assume both to be multivariate Gaussians, qφ(z| x ) is essentially penalised
for being “different” from a Gaussian distribution. Then, by forcing the approximate posterior
distribution to be similar to some pre-decided prior distribution pθ (z), we can sample z from this
prior and generate synthetic data through the decoder pθ (x | z). To visualise how the latent space
influences the generated data, we can also perform a systematic sampling of the latent space,
such as in a [−1,1] area for a Gaussian two-dimensional latent space, to generate a manifold (or
prior predictive distribution) as shown in Figure 2.4. Therefore, by placing the prior assumption

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 2.4: The predicted manifolds generated from sampling latent variables z in a linearly
spaced [−1,1] area when pθ (z) is 2D Gaussian. Both images are obtained from [32].

on the underlying distribution of our approximate posterior and latent space distribution, VAEs
are capable of being generative models.
To understand the ELBO loss further, [32] refers to the first KL divergence term in (2.9) as

a regulariser, while the second term can be thought of as a reconstruction error. Looking first at
the reconstruction term, we recall that the objective of most machine learning models is that
of maximum likelihood estimation (MLE) (minimising the negative log-likelihood might sound
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familiar). The goal of MLE is to find the parameters of a model that maximises the likelihood
that they generated the data – or, in this case, finding the best θ so that pθ (x | z)most accurately
describes the process that generated our data, which was assumed to be the unknown likelihood
distribution pθ ∗(x | z). So, by maximising the log-likelihood in (2.9), we are doing MLE, which is
equivalent to finding the best model parameters thatminimises the reconstruction error between
a target – the input generated from pθ ∗(x | z) – and output generated from our decoder pθ (x | z).
Next, the KL divergence term can be considered a regulariser by first remembering that it

penalises the encoder for being “different” from a Gaussian prior. Further, given that it is not
entirely likely that the true unknown posterior pθ ∗(z| x ) follows a Gaussian distribution, it will
be natural to incur an information loss (and so a high KL divergence) when we assume that
our approximate posterior is. Therefore, there is a trade-off between learning a proper input
reconstruction (when the approximate posterior deviates from a Gaussian) versus staying close
to the Gaussian prior. This constraint can be thought of as limiting the generative capacity of the
VAE when compared to having no KL divergence loss in the ELBO, but its regulatory effect places
emphasis on the VAE having to learnmeaningful and statistically independent latent factors [36].
In other words, it is expensive for the latent variables to deviate from the Gaussian prior, so the
latent variables that do deviate should hold meaningful and independent information – i.e. they
each describe their own features of the input – so that a reduction in the reconstruction error
compensates for their incurred cost.
To summarise, the goal of VAEs is to minimise the KL divergence between the true and

approximate variational posteriors, DK L(qφ(z| x ) ∥ pθ (z| x )). This was intractable due to the
marginal likelihood pθ (z), and so it was shown that this was equivalent to maximising the ELBO
loss in (2.9). The effect of formulating the objective function in this way had two consequences.
Firstly, the VAE achieved a desirable, well-formed latent space (most often close to a Gaussian
prior). This allowed VAEs to be generative since, to generate “synthetic” data, we could sample
latent variables following the prior distribution and compute pθ (x | z). Second, the KL divergence
term served as a regulariser which motivated latent variables in the VAE to hold meaningful
representations of the input distribution.

2.2.3 Convolutional Variational Autoencoders

Convolutional variational autoencoders are VAEs that utilise convolutional neural networks (CNNs)
to parametrise the encoder and some deep generative deconvolutional network (DGDN) to para-
metrise the decoder [37]. The theory behind this is that for structured data, convolutional op-
erations are best suited for feature extraction, being “tremendously successful” in practice [28].
Therefore, when tasked with learning an unsupervised representation of (for example) images,
we can use these instead of fully-connected VAEs.
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Convolution

CNNs are simply NNs that use the convolution operation (∗) instead of general matrix multi-
plication in at least one of their layers [28]. If we consider a function x(t), convolutions can
be understood as a an operation (w ∗ x) that describes how one function x(t) is affected by a
second function w(t). Intuitively, we can think of x(t) as our input and w(t) as some weighting
for our input x(t), where the weights w(t) are the weights of our neural network. Explicitly,
convolution for one-dimensional inputs where both functions are a function of time t, produces
a function s [28]:

s(t) = (x ∗w) (t) =
∞
∑

a=−∞
x(a)w(t − a) (2.13)

Note that if w(t) is a weighted average function, convolution resembles Bayesian smoothing.
Convolutions can also be extended to two-dimensional inputs. In this case, we normally refer

to the first argument as input I , and the second as a filter or kernel K. This gives a feature map
S:

S (i, j) = (I ∗ K) (i, j) =
∑

m

∑

n

I(m, n)K(i −m, j − n) (2.14)

Though in practice, we actually use cross-correlation to represent convolution [28]:

S (i, j) = (K ∗ I) (i, j) =
∑

m

∑

n

I(i +m, j + n)K(m, n) (2.15)

This operation is perhaps most familiar to us, where we recognise that for a kernal K of size
m× n, the output at index (i, j) is given by a simple matrix multiplication of the kernal with a
specific region of the input. This is also how [38] represents convolution:

y l = W x l + bl (2.16)

where x is an m× n-by-1 vector that represents co-located m× n pixels, and W l is a d-by-m× n

matrix where d represents the number of kernels for convolution.

Deconvolution

Mathematically, deconvolution is defined as the inverse of convolution. However in the literature,
deconvolution is also used to describe a series of convolution-unpooling (convolution-upsampling)
operations [37] or transposed convolutions1. For the purpose of this thesis, we focus on the use
of transposed convolutions to represent deconvolution.
Transposed convolutions are designed by swapping the forward and backward passes of a
1The authors of [39] provide a very tidy visualisation of transposed convolutions at: https://github.com/

vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
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convolution. As mentioned, the forward pass of a convolution operation can be expressed as the
matrix multiplication of a set of co-located pixels x l with a kernel W l . When calculating the
gradient of y l w.r.t. the kernel W l in backpropagation, this becomes instead a multiplication of
the featuremap y l with the transposed kernelW⊤

l . So, in another sense, transposed convolutions
can be thought of as a function applied on a feature map such that its output is the initial input
used to create the initial feature map [39]. Therefore, transposed convolution layers make use
of this idea as a sort of pseudo-inverse of convolution and allows it to also recover the shape of
the input.

The Encoder and Decoder of a Convolutional VAE

As mentioned earlier, convolutional VAEs are comprised of a CNN as an encoder and some de-
convolution network that serves as the decoder. Here, the CNN uses the convolution operation
in place of a full matrix multiplication, while the deconvolution network applies transposed con-
volutions as a pseudo-inverse to the convolution operation. Apart from this technical distinction,
convolutional VAEs are optimised in exactly the same way as fully-connected ones – using the
loss specified in (2.9) and (2.10) – such that the CNN parametrises the approximate posterior
distribution qφ(z| x ), while the deconvolution network parametrises the likelihood distribution
pθ (x | z).

2.2.4 A Practical Note on the VAE Reconstruction Loss

When implementing the VAE loss function (2.9), we can represent the reconstruction loss either
through the binary cross-entropy (BCE) or mean-squared error (MSE), though these are not en-
tirely equivalent. The reason for this is that both loss functions are actually founded in MLE and
minimising them is also equivalent to minimising the negative log-likelihood of our data pdata(x )
given our model pθ (x ) [28]. The main difference for their use lies in the what we assume the
distribution of our data pdata(x ) to be, as this assumption lays the ground for how we optim-
ise for θ . To see how we can extend the theory from Section 5.5 of [28] to two fundamental
examples.
Essentially, in MLE we define the conditional maximum likelihood estimator θ for predicting

observed targets y (i) from samples x (i) to be:

θML = arg max
θ

m
∑

i=1

log pθ (y
(i) | x (i)) (2.17)

where m is the number of samples available. When assuming pdata(y (i) | x (i)) follows a Gaussian
distribution N (y; ŷ (i),σ), where ŷ (i) is the predicted mean for a Gaussian distributed x (i) (with
fixed σ for simplicity), we can rewrite the log-likelihood based on the well-known Gaussian
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probability distribution function (PDF):
m
∑

i=1

log pθ (y
(i) | x (i)) = m logσ−

m
2

log(2π)−
m
∑

i=1

|| ŷ (i) − y (i)||
2σ2

(2.18)

From this we can identify the similarity with the MSE loss:

LMSE =
1
m

m
∑

i=1

|| ŷ (i) − y (i)||
2σ2

(2.19)

Alternatively, if we assume that our data-generating distribution pdata(y (i) | x (i)) follows a
Bernoulli distribution Ber(y (i); p̂(i)), with y (i) ∈ {0,1} as the observed class and p̂(i) ∈ (0, 1) as
the predicted probability of y (i) in class 1, its less-known probability mass function (PMF) is
given by:

pθ (y
(i) | x (i)) = p̂(i)

y(i)

(1− p̂(i)
1−y(i) ) (2.20)

Then, we can rewrite the maximum likelihood objective in (2.17) using this:
m
∑

i=1

log pθ (x
(i)) =

m
∑

i=1

log
�

p̂(i)
y(i)�

1− p̂(i)
1−y(i)�
�

(2.21)

=
m
∑

i=1

y (i) log p̂(i) + (1− y (i)) log(1− p̂(i)) (2.22)

From which we identify the BCE loss:

LBCE =
1
m

m
∑

i=1

y (i) log p̂(i) + (1− y (i)) log(1− p̂(i)) (2.23)

So from these examples, we see that BCE is generally used when we assume our data is
Bernoulli distributed, e.g. a (black-white) pixel value is either 0 or 1, while MSE is used when
we assume that our data is Gaussian distributed, e.g. the heights of students in Trondheim.
To apply this to VAEs, since we wish to optimise the parameters of our generative network

θ to reconstruct our input x (i), we replace the observed targets y (i) with our input x (i), while
the reconstructions r (i) ∼ pθ (x | z) serve as the model prediction x̂ (i). The choice for the loss
function, however, is unclear. Whether one chooses to assume that the data-generating distribu-
tion pθ ∗(x | z) with unknown parameters θ ∗ is best approximated through a family of Gaussians
or family of Bernoulli distributions is left as a design choice, as we have no indication of the
true shape of its distribution. Though as consolidation, the optimal parameters θ for our model
pθ (x | z) are the same no matter which loss function is used, only the loss values are different
[28].
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2.3 Reinforcement Learning

Reinforcement learning is a learning-based method for discovering complex behaviour without
explicit programming. It allows an agent to capture the dynamics of a system and the uncer-
tainties of the environment through a data-driven approach, using a high-abstraction, evaluative
feedback or reward [17].
To get an overview of the basics of reinforcement learning, we can begin by looking into its

definition and goal. Sutton and Barto [40] states, “reinforcement learning is learning what to do
– how to map situations to actions – so as to maximise a numerical reward signal.” Further, [17]
adds, “reinforcement learning enables a robot to autonomously discover an optimal behaviour
through trial-and-error interactions with its environment." From these, there are many terms
that could be examined, such as, situations, actions, rewards, behaviour, trial-and-error interac-
tions and environment. We can ask ourselves, “what exactly is an optimal behaviour and how to
we express this?”. Throughout this section, we will cover these central concepts, where in the
end, we will explore how temporal-difference learning, policy-gradient methods, actor-critics and
proximal policy optimisation algorithms enable us to discover an optimal behaviour.
As reinforcement learning was the central theme of the project thesis, much of the funda-

mental theory in the following sections is shared with that in the project [1]. As a result, many
of the following subsections are taken from the project thesis, being only partially rewritten and
marked with an asterisk (*).

2.3.1 Finite Markov Decision Processes*

Finite Markov Decision Processes (MDPs) are a way of formalising how an agent interacts with
the environment, serving as a standardised learning framework for reinforcement learning.
MDPs are often depicted as an iterative diagram as shown in Figure 2.5, comprising of five
elements: the agent, environment, state St , action At and reward Rt . MDPs are an extension of

Environment

Agent

state actionreward 

Figure 2.5: The interaction between agent and environment in an MDP, from [40].
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stochastic Markov chains, where state transitions from St to St+1 are now influenced by a choice
in action At , and each transition also yields a reward Rt .
To go into detail, an agent has a task of learning how to solve a specific task, whereby im-

proving its performance through experience – simply a set of repeated state-action interactions
with the environment. The environment contains the task to be solved and essentially everything
an agent interacts with, for example, the system dynamics and the rewards for being in certain
states. From a cybernetics perspective, the agent serves as a controller while the environment
can be understood as the plant or process to be controlled. The situations that an agent finds
itself in is referred to as states or observations. Each of the states in an MDP also has the Markov
Property, which means that all the information in state St is only dependent on the previous
state St−1 and action At−1. For any state St ∈ S, the agent can take an action At ∈ A(s), where
S represents the state-space or set of possible states and A(s) the action-space or set of possible
actions for St . Actions generally refer to anything that transitions an agent into a new state and
may vary largely from task to task. An example of this could be a control signal from a controller,
such as the torques for each rotor on a quadrotor, though it could also be reference signals from
an optimal controller, such as velocity references for a controller to follow.
Moreover, the states that an agent finds itself is determined by the initial state distribution

p(s), while the states the agent moves to follows the state-transition distribution p(s′, r | s, a).
The state-transition distribution is a function of four arguments that captures the dynamics of
the MDP and describes the probability of a specific transition within the environment [40]:

p(s′, r | s, a) = P(St = s′, Rt = r |St−1 = s, At−1 = a) (2.24)

Here, St , Rt and At are random variables with well-defined probability distributions while the
lower case letters s, r and a refer to specific values of these variables. The value s′ is commonly
used to denote the value of the next state from s.
Lastly, we see that for each state transition an agent receives a numerical reward Rt ∈R ⊂ R,

which can be interpreted as an evaluative feedback for a choice of action At . The reward is
commonly a function of the current state and action values, R(s, a), and is often the main tool
used to shape agent behaviour in the environment [17].

2.3.2 Returns*

Now that we have formalised agent-environment interactions, we can imagine that by trying
enough actions in different states, the agent will discover an optimal behaviour - essentially
choosing the “best” action for every possible state St ∈ S. Yet, what exactly is the “best” action
for each state St? Is it the state-action pair with the highest reward Rt?
To answer this, we can start by defining the goal of reinforcement learning. As mentioned at

the beginning of the section, reinforcement learning aims to, informally, “maximise a numerical
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reward signal”. The reward signal, in this case, is a scalar received every time step at each
new state and serves as an immediate feedback for the agent’s action. Yet, if we consider the
formulation of MDPs more carefully, taking a certain action in a particular state does not only
affect the state the agent transitions to in the next time step, but also all consequent states
and rewards for all following time steps. This illustrates the concept of delayed reward, which
suggests that receiving a high reward now does not necessarily mean receiving a high reward
later.
Therefore, it is important to define the goal of reinforcement learning in the context of

reward more precisely. As such, the return Gt is defined as a function of a specific sequence of
rewards, Rt+1, Rt+2, Rt+3 .... For example, the simplest return can be defined as the sum of the
reward sequence [40]:

Gt = Rt+1 + Rt+2 + ...+ RT (2.25)

With this, we generally seek to maximise the expected return over some time horizon:

J = E [Gt] = E

� T
∑

k=t+1

Rk

�

(2.26)

Here, T represents the time of termination and is a random variable that normally varies with
each episode. An episode in this case refers to a sequence of timesteps for which an agent is
performing a task until the agent reaches a terminal state.
However, in control tasks, we see that there is often no defined terminal state but rather

an indefinite continuing process, such as in process control. Therefore, it is common to instead
maximise the discounted return [40]:

J = E [Gt] = E

� T
∑

k=0

γkRk+t+1

�

(2.27)

where γk ∈ [0, 1) is referred to as the discount factor – an exponentially decreasing weight on
future rewards, often chosen to be 0.99. The discount factor ensures that for any timestep t

the infinite sum of rewards is finite, allowing the agent to evaluate returns that are defined for
each time step. Another interesting property that should be noted – and will be important for
concepts later – is the recursive expression for the return Gt :

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + γ

3Rt+4...

Gt = Rt+1 + γ(Rt+2 + γRt+3 + γ
2Rt+4...)

Gt = Rt+1 + γGt+1 (2.28)

So, with the goal of reinforcement learning defined more clearly in terms of maximising the
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expected discounted return, we now need to have a formal definition for the agent behaviour
before we can optimise it.

2.3.3 Policies and Value Functions*

First, the behaviour that an agent learns is referred to as a policy π. Policies define a mapping
of states to probabilities of selecting each possible action, π(s | a) = P(a | s) [40]. Despite this, a
policy π can also be deterministic, resulting in the same action for a state every time, written as
a = π(s) [17].
Initially, we can imagine that policies are quite random and non-idea. Then throughout

the learning process, the agent will receive rewards Rt , accumulate returns Gt , and update its
policy π consequently. So, when we think about an optimal policy π∗, we imagine an agent
performing the actions that result in the best result. Hence, we can say that in order to solve the
reinforcement learning problem, we need to “solve” the MDP by finding this optimal policy π∗.
The method forward is to define a state-value function Vπ, which indirectly tells us how good

it is to be in a particular state. For MDPs, the state-value function can be defined as the expected
return for being in a state s and following a policy π thereafter [40]:

Vπ(s) = Eπ[Gt |St = s] = Eπ

�∞
∑

k=0

γtRt+k+1

�

�

�

�

St = s

�

∀s ∈ S (2.29)

Similarly, we can define an action-value function (or Q-function), as the expected return for being
in a state s and taking an action a, and following a policy π thereafter [40]:

Qπ(s, a) = Eπ[Gt |St = s, At = a] = Eπ

�∞
∑

k=0

γtRt+k+1

�

�

�

�

St = s, At = a

�

(2.30)

In other words, these value functions represent the total reward you can expect by following a
policy π (e.g. until the end of an episode), from a particular state s. Informally, the state-value
function is simply referred to as the value function V (s), and is how we refer to it throughout
this thesis. The difference between the value function V and the Q-function is that the value
function gives the expected return for a state s assuming the agent takes the action a decided
by π, whereas the Q-function evaluates the expected return for different choices of actions a, at
a state s.
A fundamental property of value functions is that they also possess the recursive property
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similar to that of returns in (2.28):

Vπ(s) = Eπ[Gt |St = s]

= Eπ[Rt+1 + γGt+1 |St = s]

=
∑

a

π(a | s)
∑

s′

∑

r

p(s′, r | s, a)
�

r + γEπ[Gt+1 |St+1 = s′]
�

=
∑

a

π(a | s)
∑

s′,r

p(s′, r | s, a)
�

r + γVπ(s′)
�

(2.31)

as shown in [40]. First, we expand according to (2.28). Then, we expand the expectation to Rt+1

and Gt+1, and use the definition of the expectation. This yields a sum over the possible actions,
next states and rewards for a certain state, where the return for that outcome is weighted with
its probability. The weight for each possible outcome is given by the product of the probability
of selecting action a given s, π(a | s), and transitioning to state s′, or p(s′, r | s, a). Finally, we
recognise the value function term for the next state s′. Equation (2.31) is also referred to as the
Bellman equation for Vπ [41].

2.3.4 Optimal Policies and Value Functions*

Optimal policies can be defined as a policy π whose expected return is greater than or equal
to all other policies π′ ∀s ∈ S [40]. By the theory of [41], we know that there is at least one
optimal value function that follows π∗. We denote an optimal value function as:

Vπ
∗
(s) =max

π
Vπ(s) (2.32)

while an optimal Q-function is denoted:

Qπ
∗
(s, a) =max

a
Qπ(s, a) (2.33)

This optimal Q-function is defined as the expected return of a state s and taking an action a,
then following the optimal policy thereafter:

Qπ
∗
(s, a) =max

π
E
�

Rt+1 + γVπ
∗
(St+1)
�

�St = s, At = a
�

(2.34)
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Going further, we see that the optimal value function is identical to the optimal Q-function when
taking the best action:

Vπ
∗
(s) = max

a∈A(s)
Qπ

∗
(s, a) (2.35)

=max
a
E
�

Rt+1 + γVπ
∗
(St+1)
�

�St = s, At = a
�

=
∑

s′,r

p(s′, r | s, a)
�

r + γVπ
∗
(s′)
�

(2.36)

where the last step comes from the definition of the expectation, similar to (2.31). Following
the same reasoning for the action-value function Q, we get:

Qπ
∗
(s, a) =
∑

s′,r

p(s′, r | s, a)
�

r + γmax
a′

Qπ
∗
(s′, a′)
�

(2.37)

which comes from using (2.36) and inserting (2.35) for the optimal value function. Equations
(2.36) and (2.37) are known as the Bellman optimality equations.

2.3.5 Temporal-Difference Learning

Temporal-difference (TD) learning is a method used for solving the Bellman Optimality Equa-
tions. It exists at the intersection between dynamic programming and Monte Carlo methods,
using a combination of both ideas in order to effectively estimate the value functions V (s) or
Q(s, a).

A Brief Note on Dynamic Programming and Monte Carlo Methods

The Bellman optimality equations are essentially a set of nonlinear equations, one for each state
in an MDP. If we had full access to the state-transition dynamics p, we could be able to solve the
whole MDP through dynamic programming (DP), essentially iterating the state space multiple
times and improving our estimate of the value functions according to (2.36), seen in the update
rule (2.38) for the policy iteration algorithm:

vk+1(s) = Eπ
�

Rt + γvk(St+1) |St = s, At = π(s)
�

=
∑

s′, r

p
�

s′, r | s,π(s)
� �

r + γvk(s
′)
�

(2.38)
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or the update rule (2.39) for value iteration [40]:

vk+1(s) =max
a
E
�

Rt + γvk(St+1) |St = s, At = a)
�

=max
a

∑

s′, r

p(s′, r | s, a)
�

r + γvk(s
′)
�

(2.39)

After iterating enough times and find the optimal value function V ∗(s), the policy π would then
reduce to a greedy strategy where we choose the action a, that yields the highest expected return
for a state s [40]:

π(s) = arg max
a

∑

s′, r

p(s′, r | s, a)
�

r + γV ∗(s′)
�

(2.40)

However, one of the problems that exist for DP methods is that we often only have an imperfect
model of our system and lack the knowledge of the state-transition dynamics for this system.
Hence, the task of learning the value function through (2.36) is no longer possible, as the state-
transition dynamics p is no longer available. We normally refer to these problems of incomplete
knowledge asmodel-free problems, where model-free methods do not rely on a priori information
in the form of transition dynamics and the reward structure of an MDP.
In these types of problems, methods will have to instead rely on sampling to estimate the

value function V (s) for a given state, based on the return it achieves after visiting that state.
The difference with DP is that in model-based problems, having access to p allows us to update
V (s) considering the expected return for all possible next states, as we see in (2.36). On the
other hand, Monte Carlo methods have to instead visit each individual state in order to sample
the return before it can update the value function. This difference is also seen through each
method’s backup diagram as in Figure 2.6.
By sampling the return, Monte Carlo methods are then able to update their value function

V (St) – the expected return for being in a state St – using the sampled return from that state:

V (St)← V (St) +α
�

G − V (St)
�

(2.41)

where α is some step-size parameter.

TD Value Prediction

So, to generate an estimate for the value function V (s), we saw that DP methods use one-step
updates for V (s) while Monte Carlo methods update V (s) for each state only at the end of an
episode. TD methods are similar to Monte Carlo methods since they sample states to update
V (s). However, instead of waiting until the end of an episode, TD methods update V (s) at every
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(a) DP methods (b) Monte Carlo methods

Figure 2.6: The backup diagrams for V (s) for DP and Monte Carlo methods. These diagrams
show how information transfers back to a state from its successor states. DP methods update
V (s) using information from one-step transitions, while Monte Carlo samples a return G from an
entire episode, stopping only at a terminal state. [40].

timestep, similar to DP methods. This is seen more clearly in the simplest TD update [40]:

V (St)← V (St) +α
�

Rt+1 + γV (St+1)− V (St)
�

(2.42)

where the value estimates of consecutive timesteps are used as an update rule. The backup
diagram of this is shown in Figure 2.7. The idea of updating an estimate through another es-

Figure 2.7: Backup diagram for TD methods. Value estimates for state s, V (s), are bootstrapped
to V (s′).

timated value is called bootstrapping, where in this case, we say that the current state value
estimate V (St) is bootstrapped to the next-state value estimate V (St+1). Bootstrapping is at the
core of DP methods, where we see that the Bellman optimality equations in (2.36) and (2.37)
also follow this bootstrapping form [40]. The term in the brackets in (2.42) is also referred to
as the TD-error δt :

δt = Rt+1 + γV (St+1)− V (St) (2.43)

which will be important later in Section 2.3.10.
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To summarise, the point of the update rules for Vπ(s) in equations (2.38), (2.39), (2.41)
and (2.42), is that we wish that our value function reaches the optimal value function Vπ(s)→
Vπ

∗
(s), after enough updates. This is similar to any optimisation problem, where we wish to

minimise the error between our current value estimate Vπ(s) and some target value estimate
Vπ

∗
(s). For TD learning, this error is the TD-error (2.43), where the target value is the estimate

Rt+1 + γV (St+1), which exploits the recursive nature of the optimal value function given by the
Bellman optimality equations in (2.36), similar to DP methods. For Monte Carlo methods, we
can see that the target value for the expected return V (s) is the sampled return G in (2.41);
and since the sampled return G is not an estimate per se, Monte Carlo methods also do not
bootstrap.

2.3.6 Exploration versus Exploitation

Now that we have seen how agents can learn optimal value functions, it is important to spe-
cify that model-free methods more commonly rely on learning the action-value function Q(s, a)
instead of V (s). The reason is that learning the Q-function allows the agent to solve the rein-
forcement learning problem by simply selecting the action with the greatest return, without
needing to consider possible next-states or the dynamics of the environment [40].
However, learning the Q-function in sampling-based methods requires that we specify what

action to take in our target Q-function estimate. Unlike model-based methods, sampling-based
methods require an adequate exploration of all actions a ∈ A(s) in a given state s in order to
achieve an accurate state-action value Qπ(s, a) for that state. However, the goal of the reinforce-
ment agent is also to maximise its expected return, which means to greedily choose actions a as
shown in (2.40) in value iteration. The question of whether and when an agent should exploit
its current knowledge of the value of actions, or attempt to explore actions that might yield
a higher return in the long run, is referred to as exploration versus exploitation [40]. For TD
learning, handling this question brings us to the topic of on-policy and off-policy methods.

2.3.7 On-policy and Off-policy methods*

Generally speaking, the difference in on-policy and off-policy methods lies in the action-value
function update step, specifically how the current action value estimate is bootstrapped to the
action value estimates of consecutive states. The best way to visualise this is through the use of
an example, where we will look at two fundamental methods, SARSA [40] and Q-learning [42]:

On-policy – The update step for SARSA:

Qπ(St , At)←Qπ(St , At) +α
�

Rt+1 + γQ
π(St+1, At+1)−Qπ(St , At)

�

(2.44)
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Off-policy – The update step for Q-learning:

Qπ(St , At)←Qπ(St , At) +α
�

Rt+1 + γmax
a

Qπ (St+1, a)−Qπ (St , At)
�

(2.45)

In both cases, the policy π is an arbitrary policy, e.g. choosing a random action with ε probability
and the max action with probability 1− ε (ε-greedy). SARSA is dubbed an on-policy algorithm
as the next state-action value estimate is based on exactly the same policy as the agent’s current
one. This means that when updating the current state-action value pair, the value of the next
state-value pair is evaluated to be the expected returnQπ(St+1, At+1 from a state St+1 after taking
an action At+1 under the same behaviour policy π. It can also be said that the target policy for
on-policy methods is the same as its current policy, if we think of the update as an error between
the current and target policies.
In contrast, Q-learning uses an update step of maxa Qπ (St+1, a), while its behaviour policy

could be for example, ε-greedy. As a result, the actions chosen in the subsequent states will
always be greedy choices and not actions chosen under its behaviour policy π, which was only
greedy with probability 1 − ε (ε-greedy). So, methods that bootstrap current value estimates
(under behaviour policy π) to estimates derived from a different target policy π′ are referred
to as off-policy methods. In these cases, the behaviour policy is often denoted as β , while the
target policy can be denoted as π(a|s) if stochastic or π(s) if deterministic.
Going back to the question of exploration versus exploitation, the result of updatingQπ(St , At)

with a greedy target policy, like in off-policy Q-learning, is that the learned policy is more likely
to suggest taking actions that follow this “optimal”, greedy trajectory, rather than exploring
the action space more in order to find another more optimal approach. Off-policy methods try
to overcome this by explicitly choosing a behaviour policy β that is exploratory by nature, for
example, a random policy or one with added noise. The after-effect of choosing a highly explor-
atory action is that many obvious “bad” actions could be taken – unnecessarily slowing learning.
This is especially true when state and action spaces are large, as we want the agent to explore
actions close to an optimal trajectory rather than waste time exploring actions far from the op-
timal solution. In contrast, on-policy methods avoid this issue by not updating estimates with
greedy strategies in the first place, though they still have the potential to suffer from insufficient
exploration. A reverse problem for on-policy methods is that, by definition, they do not have a
behaviour policy that they can specify explicitly. Hence, they are limited to defining a target
policy that incorporates some degree of randomness so as to prevent converging to some locally
optimal solution.
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2.3.8 An Extension to Continuous Control*

So far, the methods that we have seen have only been applicable to MDPs; tabular solution
methods like DP, Monte Carlo, and TD learning only work in environments with a relatively
small, finite set of discrete states and actions [40]. However, for most of the interesting control
problems in cybernetics, we deal with continuous state and action spaces. In these problems,
a simple question of how one should represent the state space S or the action space A(s) can
quickly become challenging. For example, the discretisation of these continuous spaces has a
severe limitation: namely the curse of dimensionality, where the number of both state and action
combinations grows exponentially by the number of degrees of freedom [41]. Thus, methods
that rely on finding the maximum action in order to update its action-value function, such as in
(2.45) in Q-learning, will then require an iterative optimisation process at each step due to the
large set of possible actions [43], which is impractical if not infeasible.
As a result, these high-dimensional continuous state and control problems strictly restricts

us to finding an only approximate solution for the policy and value functions, which motivates
the use of approximate solution methods – methods that focus on generalisation through function
approximation [40]. This restriction is also a motivation for the relevance of policy search, as
policies require less representational power than a value function approximation [44] and can
frankly, just be simpler to approximate [40]. So, finding an adequate parametrisation of these
functions has also become a key focus in reinforcement learning in recent years. Fortunately for
us, there has been a clear parametrisation of choice for both value function and policy in recent
years, through the use of neural networks (NNs) as universal function approximators, initially
inspired by the success of Deep Q-Networks (DQNs) [45] and later, Deep Deterministic Policy
Gradients (DDPG) [43]. In the literature, we refer to all methods that learn a parametrised policy
πθ (a | s), through the gradient of some performance measure J(θ ) with respect to parametrised
policy parameters θ as policy gradient methods.

2.3.9 Policy Gradient Methods

Policy gradient methods are a form of policy search, where we have a vector of d parameters
θ ∈ Rd that parametrises our policy π:

πθ (a | s) = P (At = a |St = s,θ t = θ ) (2.46)

Policy gradient methods have a goal of optimising a certain objective function J(θ ), with respect
to these parameters θ . A typical objective function could be the expected return at a particular
state under the parametrised policy πθ , or simply the value function (2.31):

J(θ ) = Vπθ (s) (2.47)
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As the objective function also depicts a performance measure that we wish to maximise, rather
than a loss, we aim to maximise it through gradient ascent [40]:

θ t+1 = θ t +αÛ∇θ J(θ t) (2.48)

Here, the gradient term of the objective J(θ ), with respect to the policy parameters θ t , is repres-
ented byÛ∇θ J(θ t) and is a stochastic estimate. So, we describe all methods that use a paramet-
risation of the policy π as policy gradient methods, and what normally varies is how we define
the objective function J(θ ).
If we use the value function as the performancemeasure as in (2.47), we obtain the key result

in policy gradient methods, the policy gradient theorem, where we can express the gradient of
the objective function, with respect to the policy parameters θ as [40]:

∇θ J(θ )∝
∑

s

p(s)
∑

a

Qπ(s, a)∇θ πθ (a | s) (2.49)

= Eπ, St∼p(s)

�

∑

a

Qπθ (St , a)∇θ πθ (a |St)

�

(2.50)

where p(s) is the on-policy state distribution, as mentioned in Section 2.3.1, which represents
the probability distribution of states under π, and can be thought of as the fraction of time spent
at a state s, where

∑

s p(s) = 1 [40]. Then, as p(s) serves as a weighting for states s, we see that
(2.49) can be simplified to just an expectation in (2.50).
The policy gradient theorem in (2.50) is a central result in reinforcement learning because

it summarises how a parametrised policy πθ (a | s) can be optimised without the need for any
model information. Intuitively, the policy performance should depend on both the probability of
actions and the distribution of states for which the actions are taken in, i.e. the state distribution
p – though this is impossible to know in a model-free setting. Nevertheless, we see that the
gradient does not depend on the state distribution p but only on the expected return and the
gradient of the policy parameters.
As a result, algorithms have been derived that attempt to estimate this expectation through

a sample-based approach, though a question for policy gradient methods has been on finding
a good sample for Qπθ (s, a) [46]. The issue is that the sampled returns for episodes can vary
greatly, leading to high-variance updates in the policy space that can lead to convergence diffi-
culties. This makes it difficult to simply use the sampled return as an estimate for Qπθ (s, a) [40].
Thus, as an extension to mend this problem, we have actor-critic methods.

2.3.10 Actor-Critics*

Actor-Critic methods follow the same idea as policy gradient methods but also include a para-
metrisation of the action-value function Q(s, a). In other words, these methods aim to concur-
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rently learn a policy π(a | s) and the action-value function Q(s, a). The actor refers to the para-
metrisation of the policy π(a | s) through θ , while the critic refers to the parametrisation of the
action-value functionQ(s, a) through a vector w [40]. The critic could also parametrise the value
function V (s) instead, as in PPO [47].

Updating the Actor Parameters

To make use of this critic, we incorporate it into the update step for the actor in the form of
a baseline, b(s). By comparing the estimate to this baseline, we can reduce the variance of the
actor updates significantly and beneficially [40]. A simple baseline can be added to the gradient
as so:

∇θ J(θ )∝
∑

s

p(s)
∑

a

�

Qπθ (s, a)− b(s)
�

∇θ πθ (a | s) (2.51)

However, to get this expression into the form we desire, we have to simplify the expression
into just an expectation, similarly to (2.50). This is done by adding the missing weight for each
actions, which is the stochastic policy π(a|s):

∇θ J(θ ) = Eπ, St∼p(s)

�

∑

a

πθ (a |St)
�

Qπθ (St , a)− b(s)
�

∇θ
πθ (a |St)
πθ (a |St)

�

= Eπ, St∼p(s), At∼π

�

�

Qπθ (St , At)− b(s)
� ∇θ πθ (At |St)
πθ (At |St)

�

= Eπ, St∼p(s), At∼π

�

�

Gt − b(s)
� ∇θ πθ (At |St)
πθ (At |St)

�

(2.52)

Here, Gt is the return with the same expectation as the Qπθ (St , At) value. Yet, two observations
should be made to this result: first, this gradient assumes we can sample the return (like a
Monte Carlo method), and second, the baseline is strictly not a critic in the fact that it does
incorporate information from the consecutive time steps [40]. Thus, there is one more step that
has to be taken in order to achieve the result we desire. To both bypass the need to sample the
return and be considered an actor-critic method, actor-critics borrow ideas from TD learning by
bootstrapping its action value estimate to the next-state action value estimate:

∇θ J(θ ) = Eπ, St∼p(s), At∼π

�

δt
∇θ πθ (At |St)
πθ (At |St)

�

(2.53)

δt = Rt+1 + γQ
πθ
w (St+1, At+1)−Qπθw (St , At) (2.54)

where we recognise δt as the TD error from (2.58). So finally, the actor update can be repres-
ented as:

θ t+1 = θ t +α
θδt
∇θ πθ (At |St)
πθ (At |St)

(2.55)
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Updating the Critic Parameters

As for the critic, we aim to take a step in the direction that reduces the error between the
approximate value Qπθ (s, a |w ) and the true value Qπθ (s, a). This is known as theMean Squared
Value Error, V E [40]:

V E (w ) = Eπ, St∼p(s), At∼π

�

�

Qπθ (St , At)−Qπθw (St , At)
�2� (2.56)

The way forward is quite similar to the value prediction methods we have seen before, where we
have to choose how to represent our target Qπθ (s, a). We can choose this to be the Monte Carlo
sample Gt , though we instead choose it to be the bootstrapping target Rt+1 + γQ

πθ
w (St+1, At+1).

Then, we can minimise this error through stochastic gradient descent, where we take the
gradient of the V E with respect to the parameters w . This gives us the update rule in Semi-
gradient TD(0):

w t+1← w t +α
wδt∇wQπθw (St , At) (2.57)

δt = Rt+1 + γQ
πθ
w (St+1, At+1)−Qπθw (St , At) (2.58)

with δt as the TD-error. So, by using a “bootstrapping critic”, we can introduce a bias – injecting
information based on the assumption that our critic should be in a value function form, i.e.
it follows a recursive nature with optimal form as (2.37). Moreover, this allows for every-step
updates as mentioned in Section 2.3.5, and, “typically enables significantly faster learning” of
the value function [40].
Lastly, compared to Monte Carlo policy gradient methods that sample the return, we also

see that by taking the TD-error in the actor gradient, the same benefit of reduced variance of
gradient updates and accelerated learning is applied [40].

2.3.11 Proximal Policy Optimisation*

In light of the advancements within deep reinforcement learning from [45] and [43], a new fam-
ily of methods was developed to curb the problem of instability and divergence when training
agents using NNs. These are called trust-region based policy optimisation methods, stemming
from Trust-region Policy Optimisation (TRPO) [48]. PPO [47] is heavily inspired by this, where
the overarching idea is that in order to maintain stability in training, the new, updated policy
should be within a specific trust-region of the old policy, hence the name proximal policy. As
for its other characteristics, PPO is also a model-free, on-policy and actor-critic method, para-
metrising a stochastic policy π(a | s) and a value function V (s). Finally, it introduces a uniquely
defined objective function to optimise this.
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The Advantage Function

Earlier, we defined the policy gradient in (2.53). This can be implemented in practice as:

Û∇θ Jt(θ ) = Êt

�∇θ πθ (a | s)
πθ (a | s)

Ât(s, a)
�

(2.59)

where Êt represents the empirical average over a finite batch of samples of actions a and states
s. Also, we introduce a colloquial term Â, called the advantage function A : S × A → R, that
represents how well an action did compared to some baseline estimate:

Â(s, a) = Q ( s, a )
︸ ︷︷ ︸

discounted return

− Vθ ( s )
︸ ︷︷ ︸

estimate

(2.60)

The baseline in this case is the parametrised value function Vθ . Note that the first term shows
the rewards that was actually received, while the second is an estimate of what we expected
to receive in that state – the critic. Hence, the advantage gives an idea of whether the action
performed was better or worse than expected by the critic.

PPO-Clip Objective

PPO ensures that the new policy is close to the old one by using one of two tricks: clipping
or an adaptive KL divergence penalty term. Primarily, the one that is used is the clipped sur-
rogate objective version of PPO, which is also used in this thesis. In this version, the authors
prevent substantial changes to the policy parametrisation by basically flattening the policy ob-
jective function to a certain maximum value. To visualise this, we can look at the novel objective
function used.
PPO takes the surrogate objective function used by TRPO, whose gradient is equivalent to

(2.59):
Jt(θ ) = Êt

�

πθ (a | s)
πθ old(a | s)

Ât(s, a)

�

= Êt

�

rt(θ ) Ât(s, a)
�

(2.61)

and clips it by a maximum value bounded by a hyperparameter ε to obtain the actor objective
function:

JC LI P
t (θ ) = Êt

�

min (rt(θ ) Ât(s, a), clip (rt(θ ), 1− ε, 1+ ε) Ât(s, a)
�

(2.62)

This clipping aims to remove the incentive from deviating more than ε away from the old policy
[47] and can be visualised in Figure 2.8. Also, the ratio rt(θ ) =

πθ (a | s)
πθold (a | s)

can be understood as
the change in probability of selecting actions compared to the old policy, πθ old(a | s), such that
rt(θ old) = 1.
The way to understand the clipped surrogate objective is to first remember that we are per-

forming gradient ascent in the objective function, w.r.t. the policy parameters θ . This means that
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Figure 2.8: Visualising the clipped surrogate objective function for positive and negative advant-
ages A. The figure is recreated from the original paper [47].

we essentially choose the direction in which rt(θ ) should move in (2.62) and Figure 2.8. When
the agent performs better than expected, i.e. the advantage is positive, we wish to increase the
probability of doing those actions again, which is equivalent to increasing rt(θ ). So, we adjust
the parameters θ such that the probability ratio rt(θ )moves to the right. However, since we are
taking the minimum and the objective is clipped at 1+ε, there is no added benefit of increasing
rt(θ ) beyond this clipped point. Similarly, when the agent performs worse than expected, i.e.
the advantage is negative, we wish to lower the probability of those actions happening again,
which is equivalent to reducing the probability ratio rt(θ ). Again, since we clip the value at
1− ε and the objective function is taking the minimum, there is no benefit of decreasing rt(θ )
beyond the clipped point. Therefore, by aiming to maximise the performance objective in (2.62)
by gradient ascent, the authors manage to prevent the new policy from deviating too far from
the old one, as seen by rt(θ ) being discouraged from moving beyond [1− ε, 1+ ε].

Actor-Critic Structure

With the key idea from PPO presented, we can delve into the actor-critic structure of PPO.
As shown above, the policy gradient is based on the advantage term Ât . As a result, PPO uses a
parametrisation of the value function V (s) as a critic, so to produce an estimate for the advantage
Ât in (2.60). Similarly to before (2.56), the parametrised value function can be optimised by
minimising the mean squared value error V E:

JV F
t (θ ) = Et

�

(Vθ t
(s)− V targt )2
�

(2.63)
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where the target value function V targt that was implemented in the code of [47] is defined as:

V targt = Rt + γVθ t
(s′) (2.64)

Lastly, there is an entropy term S[πθ ](s) that is also added to the objective function, which
serves as an exploration term.
So combined, the overall objective function for PPO with the actor objective function in

(2.62), critic loss in (2.63) and entropy term, is:

JC LI P+V F+S
t (θ ) = Êt

�

JC LI P
t (θ ) + c1JV F

t (θ ) + c2S[πθ ](s)
�

, (2.65)

where c1 and c2 are coefficients. PPO also assumes that some automatic differentiation software
is used, such that the software is able to keep track of how each objective function is computed
in order to backpropagate the gradients appropriately. This also allows PPO to simply combine
the objective functions like above.
In the PPO implementation, the parameters θ characterise the whole actor-critic model,

though “under the hood” it can also be two different NNs that receive their own respective
gradients, such as in [20] or [49]. However, they have made this generalisation in the case where
parameter-sharing is desired, where the “bottom” hidden layers are the same, and the network
heads are different – such as in this thesis, which will be discussed briefly in Section 5.1.3.
Moreover, since the actor is parametrising a stochastic policy, the head of the actor network
outputs the parameters of the policy distribution, which for continuous cases is normally chosen
to be a Gaussian distribution.
Furthermore, one of the things to keep in mind is that PPO is also an on-policy algorithm.

This means that when the agent is sampling experiences, these samples are gathered under
its current policy πθ (a | s). Hence, in its actor-critic implementation, a sample trajectory T is
first collected under a policy πθ (a | s) for T timesteps before updates are made to the actor and
critic parameters θ . This means after T timesteps, we have also received the rewards for each
timestep and can compute the advantage estimates Ât for every timestep t = 1, 2, ..., T . Then,
when we are optimising the performance objective, we have the opportunity to define howmany
epochs K were in that trajectory of size T , which means that we can specify how many gradient
updates to do using the same batch of experiences. After the updates are completed, we discard
this trajectory of experiences and begin sampling a new one to ensure that the new experiences
occur under the new policy πθ . Conceptually, we can view the whole update process in Figure
2.9. Here, we first see that a trajectory is sampled based on the current policy given by the actor
before the loss terms are calculated. Finally, the gradient of the objective function w.r.t. to the
actor and critic weights is used to update the actor and critic networks.



Chapter 2: Theoretical Background 33

Environment

Critic

Actor

Actor-Critic PPO

Minibatch of samples

Update the policy using the
gradient of the clipped objective

Update the value function estimate
using the gradient of the critic loss

Trajectory 

Figure 2.9: An overview of how the actor and critic networks are updated in PPO. Once the loss
terms are calculated, the gradients ∇JC LI P

t (θ ) and ∇JV F
t (θ ) are used to update the actor and

critic respectively.

Summary

PPO can solve a vast variety of continuous reinforcement learning problems by being a model-
free, actor-critic method and using neural networks as function approximators. It is also an
on-policy method, meaning the sampled trajectory of experiences is collected under its current
policy πθ (a | s). The algorithm is able to achieve state-of-the-art performances through its ad-
aptation of the trust-region based method, TRPO, where the idea is to take the largest possible
step in the right direction while ensuring that the new policies, after an update, stay close (or
are proximal) to the old one. In turn, as stated in TRPO [48], this should guarantee a monotonic
improvement of the policy.
In terms of implementation, it is relatively simple compared to its counterpart, TRPO. It uses

a clipped surrogate objective to define its proximal policy aim rather than a hard constraint
that requires second-order methods to optimise. Also, as it assumes we are using an automatic
differentiation software, we can combine the objective functions for both the policy and the
value function parametrisations, where the software is able to keep track of how to compute the
gradients (perform backpropagation) for the respective parameters.
Also, since it is on-policy, it retains its high data efficiency and reliable performance. This

is particularly significant for problems with high-dimensional state and action spaces since the
agent can focus on exploring actions along its current policy instead of calculating less gradients
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from actions in states that are very uncommon. This is also why it is more data-efficient, as it
can converge to an optimal behaviour faster.
Though conversely, since PPO is on-policy, the overall degree of exploration is based mainly

on its stochastic policy πθ (a | s), with the exception of the entropy term. As discussed in Sec-
tion 2.3.8, this means that the agent may suffer from a lack of exploration if its policy does not
incorporate some degree of randomness. Yet, by the nature of optimisation, PPO will progress-
ively increase probabilities of doing “good” actions and decrease probabilities of doing “bad”
ones, based on its estimate of advantage and value function. This means that over time, the
agent will exploit the environment more, irrespective of how accurate its estimate of the policy
and value function is, and could become trapped in a local optimum.
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Related Works

In the complex task of autonomous navigation, learning what to do or which actions to take –
such as the optimal velocity and steering angle for a given input image – can be challenging to
express explicitly. In this chapter, we will explore some related learning-based methods to tackle
this problem, covering methods that utilise expert demonstrations in supervised or imitation
learning, or those that rely on a reinforcement learning approach to learn an optimal behaviour.

3.1 Motion Planning with Supervised Learning

The first learning-based method for navigation is to supervise the learning process by compil-
ing a set of expert demonstrations. The idea here is that we have some deep NN – typically a
CNN – that will learn to directly predict optimal actions (or action sequences) based on some
input – typically an image from an RGB or depth camera or laser range findings from a LiDAR
sensor. In this approach, the navigation problem is essentially a prediction problem. The main
challenge is defining the optimal target action for each input when compiling the dataset of
expert demonstrations.
In [25], they proposed the first target-oriented end-to-end navigation model for a robotic

platform, capable of predicting steering commands – translational and rotational velocities –
from raw 2D-laser range findings and a target position. They use a CNN with residual blocks
inspired from [50], which takes in the LiDAR data and concatenates this feature output with
the target position to serve as an input to a fully connected NN. Then, comparing the action
prediction from this model to targets from a global planner – serving as an expert – allowed
[25] to train their model in an end-to-end fashion. By using a global planner, the authors also
avoided requiring a human expert to tediously provide steering commands at a large scale.
In [23], they introduced DroNet – an efficient CNN with a ResNet8 architecture also from

[50] – that can guide a quadrotor in urban environments by predicting steering angles and
corresponding collision probabilities from single image inputs. To manage this, [23] utilised

35
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a dataset created from cars and bicycles to train their CNN instead of compiling their own
dataset. From this, they achieved safe navigation that was highly generalisable and avoided the
high sample complexity required for reinforcement learning algorithms.
In autonomous drone racing, one requires a fast perception system capable of real-time de-

tection and pose estimation of gates. This problem can also be approached with a CNN, which
then requires the design of a custom dataset due to highly varying race tracks and possible
actions. In [51], they proposed a method of generating a labelled dataset using an expert tra-
jectory and policy. First, an optimal trajectory can be generated through all gates if their poses
are known. With this trajectory, an expert policy can be used to generate a desired direction and
speed to follow the trajectory. Finally, by collecting sampling state estimates and corresponding
images, one could use the expert policy to label the images to create a labelled dataset. This
allowed [51] to train a CNN – a DroNet from [23] – to learn the desired direction and speed
output for each image input.

3.2 Motion Planning with Semi-Supervised Learning

Self-supervised learning techniques are closely related to supervised methods, requiring a la-
belled dataset so to be able to learn desirable actions for inputs. However, this approach does not
depend on some expert planner’s demonstrations. In contrast, these methods rely solely on a
robot’s retrospective self-experience to learn the environment’s physical attributes. For example,
[52] relies on learning a navigation policy through crashing. They equipped a 720p camera to
a quadrotor and tasked it with flying in a straight line until collision. Based on the experience
gathered from this simple behaviour, they compiled an image dataset full of positive and negat-
ive collision examples and used this to train a CNN to predict whether or not to go straight. By
further cropping the images into left and right halves, they created a turning mechanism that
allowed the quadrotor to navigate cluttered indoor environments.
The work done in [53] takes this concept further, teaching a mobile ground robot through

self-supervision to navigate in “real-world urban and off-road environments with geometrically
distracting obstacles” with only a camera. The Berkeley autonomous ground robot, BADGR,
gathers off-policy data in real-world environments from a random control policy and uses this
to train a deep model – a CNN and Long Short-Term Memory [54] model – to predict all future
navigational events, such as reaching a goal, collisions or driving over bumpy terrain. Based on
the predicted future events, BADGR then finds an optimal action sequence using a stochastic
optimiser [55] and executes the first action in an MPC-like fashion.
Following a similar approach, [24] proposed ORACLE, a motion primitives-based naviga-

tion planner for a quadrotor using a deep collision predictor. The deep collision predictor is
an uncertainty-aware NN model that predicts the collision cost of a predefined set of motion-
primitives (action sequences), given some depth image and only the quadrotor linear and an-
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gular velocities. As for data collection, a quadrotor is deployed in simulation with a random
velocity and steering angle (within the quadrotor field-of-view). Data is collected until colli-
sion, and the sequence of state-actions and their collision labels are recorded. This dataset then
allows the end-to-end training of the deep collision predictor, where it learns to predict the
collision probability of an action for each time step of the action sequence. Further, it makes
its predictions uncertainty-aware by filtering depth image observations, taking the unscented
transform for the quadrotor partial state, and having Monte Carlo dropout in the CNN. By doing
this, [24] also achieved a successful sim-to-real transfer.

3.3 Imitation Learning using Expert Planners

In the cases where we have direct access to expert planners, we can also apply supervised learn-
ing ideas to reinforcement learning to achieve imitation learning. This is a sequential task where,
given a dataset of demonstrations, an agent tries to find the best way to learn a policy that
achieves an action that is most similar to the expert [56]. Ideally, this should be very sample
efficient and should allow the agent to instantly generalise its policy to new situations of the
same task.
In 2013, [57] used a novel imitation learning technique with data aggregation, or DAgger

[58], to train a reactive heading policy for a quadrotor based on the demonstration of an ex-
pert human pilot. In contrast to a supervised technique, their approach iteratively learned and
exploited corrective input from a human pilot to boost the overall performance of the predictor.
This meant that initially, the agent learns a policy based on the data provided by the expert, but
it replays this policy in several training iterations to gather more data, specifically where a hu-
man pilot could provide correct steering commands when observing undesired behaviour from
the quadrotor, e.g. when it turns towards a tree. Using this method, [57] managed to learn a
policy capable of navigating a quadrotor through cluttered forest environments at 1.5ms−1 using
only a single, cheap camera.
In 2021, [9] proposed an end-to-end approach for high-speed flight in natural environments,

training solely from simulation. Their student policy is learned via privileged learning, whereby
imitating an expert with access to privileged information. In this case, the expert is a sampling-
based planner with access to the perfect state and 3D map and samples a set of collision-free
trajectories conditioned towards some global collision-free trajectory. Then, from this set, the
best three trajectories are chosen the student policy. The result is a CNN that learns how to
map simulated noisy depth images directly to collision-free trajectories in a range of real-world
environments, including a forest and urban environment where the quadrotor had 100% success
rates for speeds up to 5ms−1 and 7ms−1 respectively.
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3.4 Motion Planning with Reinforcement Learning

The approach most related to this thesis is reinforcement learning for motion planning. This
approach does not rely on the existence of an expert planner or the need to define target actions
for some supervised prediction model. Instead, this is an iterative training process where the
reward function is used to define the optimal desired behaviour.
Using reinforcement learning for navigation is not a new concept, with [59] demonstrating

in 2005 a method for high-speed obstacle avoidance using monocular vision and reinforcement
learning. In this work, a linear model was first used to learn depth from encoded images, which
was then combined with a reinforcement learning algorithm to learn steering commands for
an RC car. Since then, [60] extended this work to deep learning, using a CNN to predict depth
from monocular images, and proposed a duelling architecture based deep Q-Network (D3QN)
to output command steering and linear velocities for a robot from the depth images. Using this
approach, they could train a model entirely in simulation capable of navigating a ground robot
in cluttered real-world environments, even with very noise depth predictions.
Another paper that achieves zero-shot transfer from simulation to reality is the work done

in [22]. Here, the authors propose a learning-based algorithm for directly mapping monocu-
lar images to collision-free quadrotor motor commands, called CAD2RL. Here, a reinforcement
learning agent chooses one of 41x41 image grid bins to travel to, which is then transformed into
a velocity vector. To learn the correct actions, the agent learns a Q-function – parametrised by
a CNN with VGG16 architecture [61] – via a custom-made policy iteration algorithm, whereby
simulating multiple-step rollouts and performing a Monte Carlo policy evaluation.
The methods mentioned above make use of discretised action spaces to simplify the rein-

forcement learning problem, though as discussed in Section 2.3.8, this does not scale to high-
dimensional problems with many degrees of freedom. To amend this, the authors in [62] in-
troduced a method for continuous control for mapless navigation of mobile robots, using an
end-to-end asynchronous deep reinforcement learning approach. They use an asynchronous
form of DDPG [43], where a sparse set of 10 range findings, previous action and target position
are mapped to continuous steering commands in the actor-network.
However, in a more complex, dynamic environment, having a state representative to repres-

ent the world can be beneficial for control tasks [63]. This is especially relevant for problems
where an agent’s states are only partially observed – known as partially observed MDPs (POM-
DPs) – as not all the information of the environment can be deduced in one observation as not
all states hold the Markov property. For these cases, a recurrent neural network (RNN), such as
a Long-Short Term Memory (LSTM) [54], can be used to encode the temporal relationship of
observation sequences.
The work done by [64] leveraged this idea, proposing the use of a Long-Short Term Memory

to encode the observations of an arbitrary number of other agents in an environment into a
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fixed-length vector. To achieve collision avoidance on their ground robot in the presence of
other agents, they combined this representation with their robot’s own state vector and used
this as an input to their actor-critic networks. From this, the agent was able to command steering
angles and speeds to be able to navigate amongst humans at walking speed.
Having the same idea for image observations, the authors of [65] proposed a network ar-

chitecture that combines a VAE with a Mixture Density Network (MDN) and RNN (MDN-RNN)
to create a representation of OpenAI Gym [66] environments. Using this architecture, they feed
the latent code of the VAE and the RNN hidden state to a very simple linear model that outputs
an action. With this, [65] managed to solve a range of tasks, among them a race car navigation
problem from pixels that had previously not been solved.
Then, in [67], the authors proposed a principled training procedure for unifying latent rep-

resentation learning with reinforcement learning. In contrast to end-to-end learning methods,
[67] suggests separating the two tasks: first relying on variational inference to learn a latent
representation, then training the reinforcement learning agent using the learned latent space.
From this, their experiments show that their algorithm successfully learns complex continuous
control tasks from raw images in the OpenAI Gym and DeepMind Control Suite Environments.
Taking inspiration from [65], the authors in [14] also proposed a three-part deep model,

but for robotic navigation in dynamic human environments. Their model included a VAE to
reconstruct a LiDAR state, an LSTM to predict future state sequences and a 2-layer perceptron
taking in the representations of the first two modules as input. Their work focused on testing
different variations of this network for the navigation task: altering the LiDAR representation,
switching the LSTM to a transformer [68], and training their model jointly in an end-to-end
approach or separately as in [65], and [67]. Finally, they demonstrated the performance of one
of their models on a real robot, where it reached its goal 100% of the time, albeit with some
room for improvement in its behaviour.
Lastly, the work that has been most inspirational for this thesis the most is that of [13]. Here,

the authors learn a state representation from depth images and camera trajectories and use
this to train a policy for navigation in cluttered and dynamic environments. They use a VAE to
encode depth images and feed the latent vector with camera trajectories to an LSTM to generate
a hidden state. Then, a simple MLP acting as the policy receives this state representation and
a goal as input, decides on velocities in x and y, and a yaw rate. This model achieved only a
3% failure rate in their tests and was successful in sim-to-real transfer. A key feature of [13]
is that they trained their VAE to perform simple depth completion by comparing reconstructed
depth images with a filtered target depth image. By doing so, they minimised the shortcomings
of real depth images compared to simulated ones and reduced the complexity of depth images.
This idea is also useful when we wish to limit the generative capacity of the VAE to only a small
latent dimension. Finally, other similarities of this work with our thesis include using Isaac Gym
as a simulation environment and PPO as the reinforcement learning algorithm of choice.
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Problem Formulation

The overarching task for this thesis is the autonomous navigation of an aerial robot in a cluttered
environment without any access to a global map but equipped with some device for perception:
monocular, RGB or depth camera, or LiDAR.We also assume that we have access to the quadrotor
state but not its shape nor its dynamics, and that there exists some goal state to reach (e.g. a
specified waypoint from some global planner). In this context, we wish to design a safe, local
planner that is capable of both collision avoidance and reaching a specified goal in 3-dimensional
space.
From the previous chapter we have seen that there are many ways of approaching this prob-

lem, with some of them either requiring a dataset for training some prediction network [23], an
offline map of the environment to generate a reference trajectory [51], access to expert plan-
ners [9, 59], or access to a model-based control library [24]. Otherwise, some approaches were
also to a finite set of discrete actions [52, 59, 60]. However, in this thesis, we do not assume to
have access to these resources and choose to not limit ourselves to discrete action spaces. The
latter will serve to not impede the scalability of our method to higher dimensional problems
(e.g. navigation in 3-dimensions) and also upholds the versatility and navigational efficiency of
the aerial robot to a higher degree. Last, we aim to maintain a simple and flexible simulation
environment that does not need to be heavily customised, e.g. with high texture [9, 22], to
demonstrate the robustness of the learning method.
To address the above-mentioned points, we model the problem as two-fold: an unsupervised

representation learning task, followed by a model-free reinforcement learning task in simula-
tion. Specifically, we first wish to learn a representation of the depth images and then find a
control policy that is capable of guiding a quadrotor towards a goal in an obstacle-filled en-
vironment. The control policy should then be capable of deciding the motion of the quadrotor
through a reference velocity and a steering angle, based on a depth image representation and
the quadrotor state. Framing the problem in this way guarantees a minimum amount of feature
engineering (with the exception of the reward function) and allows the training methodology

40
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to be generalised to other domains.

4.1 The Reinforcement Learning Task

The learning task for navigation in a reinforcement learning context is to find the parameters
θ of a stochastic policy, πθ (a | s, z), that maximises the expected return Gt under the induced
trajectory distribution pπ. The policy should map observations St to a probability distribution
across actions At , where the sampled actions At should allow our quadrotor state s t to converge
towards some goal state s∗ as t → T , where T is the end of an episode.
Since we are dealing with a navigation task with access to the quadrotor state and a depth

image representation, we can specify the agent observations and actions as:

St =
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z t
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∈ R3 (4.1)

Here, s t ∈ R13 is the quadrotor state, z t ∈ R64 is the depth image representation, v d
t ∈ R

2 is the
desired velocity in the x and z axes of the body frame, rd

t ∈ R is the desired yaw rate.
The quadrotor state s t consists of the position p t ∈ R3, velocity v t ∈ R3, orientation q t ∈ R4

and angular velocity ωt ∈ R3:
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where (following notation from [69]),
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The position p t , linear velocity v t and angular velocity ωt are expressed in the body frame B
with respect to the goal frame I, while the orientation q t denotes the rotation of quadrotor
body frame B with respect to the goal frame I, represented in quaternions. Also, the goal frame
I is stationary and represents an approximate inertial frame. To simplify the task of reaching
the target, we choose the desired goal state to always be the centre of the goal frame, such that
p t should converge to 0 as t → T .
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As for the action space, the desired velocity v d
t is:

v d
t =

�

ud

wd

�

∈ R2 (4.4)

Where ud and wd are the desired velocities of the quadrotor along the body x and z axes, with
respect to the goal frame I (the notation is omitted for clearness).

4.2 The Representation Learning Task

Next, to obtain a good representation for the depth images d, we can first assume that these
depth images are generated from the conditional distribution pθ (d| z), where z is some hidden
continuous random variable. Based on this assumption, we are interested in finding z as this code
serves as a latent representation of our depth data d. To do this, we attempt to learn the true
posterior distribution pθ (z|d) through variational inference, where we attempt to approximate
pθ (z|d) with a family of parametric distributions qφ(z|d). We then aim to optimise for the
variational parameters φ, such that the approximate posterior qφ(z|d) best approximates the
true posterior distribution pθ (z|d).
Furthermore, since our intention is to use this model in combination with a reinforcement

learning agent for fast navigation on a small, robotic platform – we are restricted to a light-
weight inference network for representing qφ(z|d). Moreover, to ensure training a relatively
quick convergence of our navigation policy, we also wish to restrict the dimension of our latent
space to a maximum of R64 so that we minimise the complexity of the observation-action map-
ping space. As a result of this, a model will have a constrained representational capacity and
lack the ability to represent all details of a given depth image – and so the ability to reproduce
them in reconstruction. Therefore, we identify a list of some important characteristics of depth
images that are essential for collision avoidance for which a model should prioritise in its latent
representation:
1. Geometric shapes – Certainly, a depth reconstruction should resemble its original depth
image input to some degree. Thus, we expect that a model should be able to estimate the
rough shape of seen obstacles. This should also help the model to generalise to unseen
obstacles.

2. Clear, close obstacles – In a very cluttered environment, it may be too demanding to
expect the reconstructions of all shapes in the environment. For collision avoidance, it is
critical that at least very close objects are detected and represented clearly.

3. Thin obstacles – Wires, poles and thin pillars are examples of obstacles that could easily
be missed in a depth reconstruction. It is important that a quadrotor is not blind to these
when it approaches them.
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As it is impossible to meet all these demands simultaneously, we can compromise that the
reconstruction fidelity should be a function of its distance – simply put, we wish to observe
shapes generally, but the closer it is, the sharper we wish the reconstruction to be. Equally, we
accept that obstacles far away can go missing, such that a model instead prioritises those that
are close.
As for thin obstacles, we can reason that this might be a too difficult task in general as

reproducing a thin wire can be considered a very fine detail. Thus, we can also compromise in
this aspect by stating that it is not important that reconstructions of these thin obstacles are
clear, only that these are not missed.
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Proposed Approach

In this chapter, we present the methodology for solving the autonomous navigation task outlined
in the previous chapter. Overall, we propose a CNN-MLP model where, given a depth image d t

and the quadrotor states s t , it decides a continuous velocity v d
t and steering rd

t command that
should avoid obstacles in a cluttered environment, while travelling towards some goal in 3-
dimensional space. We will present and discuss this two-part model’s design choices, starting
with the MLP module for learning the navigation policy, then later the encoder-decoder-based
CNN inference network used for representation learning. An overview of the model is shown in
Figure 5.1.

Actor-Critic
Network 
(MLP)Latent code

Quadrotor states

Actions

Depth Image, 
480x270 

Mean & s.d. of
approx. posterior

Inference Network 
(CNN) 

Figure 5.1: An overview of our two-part model. The inference network (encoder) learns an ap-
proximate posterior distribution qφ(z|d), parametrised by a set of Gaussian distributions with
an input-dependent mean µt and diagonal covariance matrix σ t . We then sample this to get the
latent representation z t . With s t and z t , our agent – a model-free actor-critic – learns a policy
θ θ (at | s t , z t) which outputs a desired velocity v d

t and yaw rate rd
t .
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5.1 Learning the Navigation Policy

Starting first with the navigation task, we solve the reinforcement learning problem through the
use of PPO. Following the theory in Section 2.3.11, we aim to concurrently learn a critic value
function Vθ (s) and actor policy πθ (a | s, z), parametrised with parameters θ . To train our actor-
critic for collision avoidance, we define a custom reward function and incorporate a curriculum
[20] during training.

5.1.1 Reward Function

The reward function is one of the most powerful design tools within reinforcement learning.
Using it to formalise the idea of a goal is also one of its most distinctive features [40], since
by deciding the reward structure of the environment, we can indirectly manipulate the learned
agent behaviour to match the behaviour we hope to observe in testing. Though, for a navig-
ational task, proper care must be taken to balance the rewards for different behaviours, such
that an agent remains careful but also navigationally efficient. This is because the complex be-
haviour that an agent learns is based directly on the idea of maximising the total reward, which
includes exploiting the environment and its reward function. Hence, any undesired behaviour
that is observed during test time is often a consequence of a poorly designed reward function.
By weighing these considerations, we construct a reward function that builds on the imple-

mentation in [26], but with additional rewards R and penalties P to shape the agent behaviour
for collision avoidance. First, wemotivate the agent to minimise its distance to goal by rewarding
its inverse distance to goal:

Rpos (St) =
Kpos

1+ ||p t ||2
(5.1)

Then, we define a set of desired behaviours we wish to see when the agent is close to goal:
remain still Rvel, stay upright Rup and do not spin Rspin:

Rvel (St) =
Kvel

1+ ||v t ||2
(5.2)

Rup (St) =
Kup

1+
�

�1− Iz(q t)
�

�

2 , Iz(q t) =
ε2
p

1−η2
(5.3)

Rspin (St) =
Kspin

1+ r2
(5.4)

Here, we use Iz(q t) to denote the upwards-ness of the quadrotor, where the idea is to represent
the quadrotor orientation q t in axis-angle form and then find the normalised z-component of
the axis. For Rspin, r denotes the quadrotor yaw rate as shown in (4.3).
As for the conservative behaviour, we specify three penalties terms: one for velocities in the
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blind directions of the quadrotor (vertical and backward) Pvel, one for being too close to an
obstacle Pdepth, and the last for collision Pcollision:

Pvel (St) = αvert ·w2 +αback · v2
back vback =







v if v ≤ 0

0 else
(5.5)

Pdepth(St) = µdist ·max
�

0, dε − dobst(St)
�2 (5.6)

Pcollision(St) =















Kcollision if dobst(St)≤ dcollision

Kcollision if contact force detected
0 else

(5.7)

The depth penalty Pdepth is a simple one-sided quadratic barrier function taken from [70], con-
sisting of a scaling parameter µdist and safety margin dε. Intuitively, this means that quadrotor
receives no penalty if it is further than dε, but is penalised an obstacle within dε is in sight. Thus,
this should motivate the agent to stop moving closer to an obstacle, and to turn elsewhere. Visu-
ally, the depth penalty is shown in Figure 5.2.

Figure 5.2: The depth penalty Pdepth displaying the penalty for when an obstacle is closer than
dε = 1.0m, when µdist = 0.1. Diagram recreated from [70].

To find the distance to the closest obstacle dobst, we project a point cloud from a depth
image and take the norm of each point in the point cloud with the camera position and find the
minimum. However, since we can only detect forward-facing collisions with the depth camera,
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we also detect collisions with a force sensor in simulation.
From these, the full reward function is the sum of all rewards and penalties:

R (St , At) = Rpos + Rpos (Rvel + Rup + Rspin) + Pvel + Pdepth + Pcollision (5.8)

where we specify Rvel , Rup and Rspin to only be important near goal by multiplying it with Rpos.
Finally, the reward gains, penalty coefficients and distance parameters used for the reward
function are listed in Table 5.1.

Reward Parameter Value
Kpos 2.0
Kvel 1.0
Kup 1.0
Kspin 1.0

Kcollision -2
αvert -0.1
αback -0.01
µdist -0.1

dcollision 0.2

Table 5.1: List of reward gains, penalty coefficients and distance parameters used in the reward
function.

We note that each of the reward terms are at maximum when p t , v t = 0, r = 0 and the
quadrotor is upright. At this point, the quadrotor is directly on the goal, with a reward of Rmaxt =
Kpos+Kpos(Kvel+Kup+Kspin) = 8 at every timestep, assuming that we avoid all penalties. However,
when the quadrotor is very far from the goal, e.g. > 10m, this goal-motivating reward begins to
be very sparse. Combined with the conservative penalties, we can imagine that it will be difficult
to train a policy end-to-end in a large cluttered environment due to negligible positive rewards
for flying towards a goal and considerable negative rewards for going near obstacles. This is also
why we propose to use curriculum learning, which will be discussed in the next section.

5.1.2 Curriculum Learning

The success of this thesis’ approach can largely be attributed to the setup and procedure for train-
ing the reinforcement learning agent. The term curriculum was introduced by [20] and is used
to describe the idea of training a policy at levels of increasing difficulty. For collision-free nav-
igation, we leveraged this idea by training the quadrotor in progressively larger environments
with an increasing density of obstacles. The reason for this can be justified by two reasons: first,
training a randomly initialised policy in a very difficult environment with sparse rewards can
be extremely time-consuming if not impossible; and second, collision avoidance is very general-
isable – once a quadrotor has learned to avoid one obstacle, it should not be difficult to extend
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this knowledge to two, and eventually many.
We assert that before a quadrotor can learn collision avoidance, it must first learn to fly

towards the goal. Our primary concern is that reinforcement learning is generally considered
sample-intensive, where learning a complicated policy may just come down to waiting for a
lucky sequence of actions to be repeatedly executed. In this thesis, we aim to minimise this “luck
factor” and instead propose a three-step process that should guarantee successful training:
1. First, learn to fly towards the goal with no obstacles present.
2. Then, learn basic obstacle avoidance by spawning the quadrotor and goal on opposite
sides of one obstacle, with the quadrotor facing the obstacle.

3. Last, gradually increase the number of obstacles, the environment size and the episode
length T to obtain an advanced collision avoidance policy.

5.1.3 Network Architecture

Moving on, the actor-critic network is chosen to be a shared three-layer MLP with two separate
output heads: the policy head and the value function head. Its architecture is shown in Fig-
ure 5.3. The policy θ θ (at | s t , z t) is modelled by the actor-network, which outputs a Gaussian
distribution over actions for a given quadrotor state s t and latent code z t . The value function is
parametrised by the critic network that predicts the expected return (state value) for the same
input.

Linear, 
256, ELU

Linear, 
128, ELU Linear, 

64, ELU

Linear, 
3, NoneQuadrotor states

State value 

Latent code

Linear, 
1, None 

Actions 

Actor-critic heads
Shared MLP

Figure 5.3: The actor-critic network architecture. The actor and critic are parameterised by a
shared base network comprised of a three-layer MLP with output dimensions [256,128, 64] and
ELU activation functions, and two linear (fully-connected) output heads with linear activation
functions. The actor parametrises a policy θ θ (at | s t , z t) that outputs a Gaussian distribution over
actions, while the critic parametrises a value function Vθ (s t , z t) which predicts the expected
return Vt .
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Shared Parameters in the Actor-Critic

The concept behind using a shared structure in the actor-critic networks is that the base network
learns the features our input so that these can be used by the network heads for task-specific
prediction or classification. Essentially, it is the same as representation learning, where the last
layer of the shared MLP contains the representation of features of the input. We can assume
that in order to produce a correct velocity and yaw rate reference, the model should have some
understanding of the agent-relative surroundings. Though in a similar vein, to be able to predict
the expected return for a particular state requires the same understanding. So, in general, if
two output tasks are largely related but utilise the same input, it makes sense to have a shared
parametrisation for the base network with two task-specific heads.

Size of the Network

The size of the network was largely chosen according to other baseline models in [26], and from
previous experience from the project, thesis [1]. From [26], we noted that many examples utilise
much larger networks, but these were also applied to tasks with “more difficult” observation-
action mappings [49, 71] – in essence, just having a much higher dimensional observation and
action space. This idea of using larger networks is that they have a larger generalisation potential,
thus enabling them to do well in more complicated tasks. Moreover, recent research also states
that over-parametrization of neural networks might even be necessary to have robust results
[72]. However, from experience in the project thesis, we found that larger networks take longer
to train and do not necessarily produce better results immediately, therefore motivating a more
conservative approach which is more in line with machine learning teachings: starting simple
and increasing the complexity underway. From this, we found that a base network with size
[256, 128, 64] was reasonable, along with 64 neurons for each head.

Activation Functions

In Figure 5.3, we note the use of two types of activation functions, the exponential linear unit
(ELU) and linear (None), were most noteworthy is the choice of the linear activation function for
the final network layer. Traditionally, we choose the final activation function based on the type
of problem we have – like sigmoid for logistic regression (prediction or binomial classification
tasks), or softmax for multinomial logistic regression (multi-class classification). For continuous
control problems with normalised action spaces, we often wish to limit our actions to a range of
[−1,1], which actually makes tanh the most suitable activation function. Nevertheless, the de-
cision to use the linear activation function was large as a result of the baseline implementations
in [26]. Instead, as an implementation detail, actions were left unbounded from the network
but were clipped if their values exceeded [−1, 1].
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Next, the exponential linear unit [73] was also used due to being the default implementation
in [26] – with it also being used to solve other difficult tasks [20, 71]. An alternative for MLPs is,
of course, the widely popular rectified linear unit (ReLU) [74], but the ELU differs slightly as it
has negative values for inputs less than zero. This is shown more clearly in (5.9) and Figure 5.4.

fELU(x) =







x if x > 0

α (exp (x)− 1) if x ≤ 0
, (5.9)

fReLU(x) =







x if x > 0

0 if x ≤ 0
(5.10)

ReLU
ELU

-2-4 2

2

-2

Figure 5.4: Visualising the difference between the exponential linear unit (ELU) (with α = 1)
and rectified linear unit (ReLU) activation functions.

The primary reason for using ELU rather than ReLU is that one of the most significant prob-
lems of ReLU is that of dead neurons. This problem occurs when a neuron is pushed to a negative
weight (e.g. from a large update), because the gradient of the ReLU activation (its output) w.r.t
the negative neuron weight will always be zero. To illustrate clearly, consider the perceptron
y = ReLU(W x + b). When the a positive input x is multiplied with negative weights W , the out-
put y is zero, and so too the gradient δ y

δW . Conversely, if the input x and weightsW are negative,
the output y is non-negative but the gradient of the output w.r.t the weights δ y

δW = ReLU′(x) is
still zero because the ReLU gradient ReLU′ is zero for negative inputs. As a result, the network
weight will never be able to update itself as the gradient will be zero indefinitely, irrespective
of the input data. The benefit of ELU is that its gradient is non-zero for negative inputs close to
zero. This helps to solve the dead-neuron problem as it produces non-zero gradients that help to
nudge network weights in the right direction, despite them having negative inputs.
However, it can be argued that having some sparsity in the network (due to dead neurons)

is actually an advantage, which is why ReLU is the default recommendation by [28] for modern
neural networks and is also used in [49] for its actor-critic MLP. Then again, too much sparsity
can result in the network losing some of its generalisation capacity.
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5.2 Learning the Depth Representation

To tackle the unsupervised representation learning problem, we use a convolutional VAE to
learn the latent representation for the depth data d. We use the method presented by [32] for
optimising the VAE, whose theory is outlined in Section 2.2.2. Additionally, to both deal with the
constrained dimension of the latent space and make our VAE suitable for collision avoidance, we
introduce a custom loss function that allows us to specify which depth characteristics the VAE
should prioritise in its reconstructions and choose a lightweight network architecture inspired
from [24], and [75].

5.2.1 Ideal Depth Reconstruction With a Customised Reconstruction Loss

We first recall that the reconstruction loss in (2.9) defines the learned behaviour of our generative
network pθ (d| z). In a vanilla VAE, it defines that the decoder pθ (d| z) should learn to reconstruct
d t from z t , where z t is the sampled latent code from our encoder qφ(z|d) for a given d t . Now,
the key insight is that in order to properly reconstruct d t , any features of d t that should be
reconstructed must be present in z t – from which the VAE learned to do through the joint
optimisation of the encoder and decoder in (2.10). This implies that if we define certain features
of d t to be more costly than others, their loss will be over-represented in the reconstruction loss,
and the VAEwould prioritise learning these in its latent space so that these specific features could
be reconstructed, and the VAE loss minimised.
Thus, our approach is to alter the reconstruction loss such that the VAE learns which features

of the depth image distribution to prioritise in its latent space. With this, we attempt to prioritise
the features in Section 4.2 in the latent space by presenting the following modifications:
1. Filtered targets – Instead of using the input d t as the target reconstructions of our gener-
ative model pθ (d| z), we use a filtered depth image d f as the target. This means that for
a given depth image d t , the generative network instead learns a probability distribution
pθ (d

f
t | z t), where d f

t = f (d t) is given by a deterministic filtering process f of the depth
image d t , and z t ∼ qφ(z|d) is the sampled latent code from our encoder with input d t .

2. Depth weighting – We weigh the pixel-wise reconstruction error by a function of its ob-
served depth. This means that the reconstruction error for pixels showing close obstacles
in d f

t are weighed more than pixels of far obstacles.
3. Added edge loss – We add the an additional mean-absolute error (MAE) term to the
reconstruction error of filtered-obstacle edge pixels.

To go more in detail, the filtering process is the IP-Basic algorithm [76] for dilation and hole
closing, as used in [13] and [24]. Its implementation is a result of a few benefits for our task.
First, minimising the complexity of depth images by rounding shapes emphasises only learning
rough shapes. Also, as dilation increases obstacle sizes, filtering provides an extra layer of safety
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regarding collision avoidance. Finally, filtering also removes noise, which can be important when
testing this framework on a real robotic system. Then, to avoid the extra computational load
of pre-filtering depth images on the robot, we use filtered images as reconstruction targets for
some depth input, such that the VAE learns to implicitly perform the filtering process in its
forward-pass [13].
As for the depth weighting, we multiply the pixel-wise error of a reconstruction with the

bounded depth gain Kdepth(di, j), a function of the filtered-depth pixel value di, j:

Kdepth(di, j) = αdepth ·min

�

1
di, j + 0.5

,1

�

for i, j ∈ dim (d f
t ) (5.11)

which is illustrated in Figure 5.5. The idea for the depth weighting is that if we increase the re-

Figure 5.5: The depth gain to weigh the pixel-wise reconstruction error. Reconstruction errors
for very close obstacles (pixel values di, j < 0.16) are weighed the same, with αdepth = 10.0.

construction error according to its closeness, the pixel-wise loss of close obstacles should domin-
ate the pixel-wise loss of obstacles far away. So close obstacles should be prioritised in the latent
space representation. Intuitively, this is particularly important for collision avoidance: we wish
to distinguish between pixel-wise errors for obstacles far away compared to those immediately
nearby. For example, a 1m error for an obstacle 7m away should be considered less important
than the same as a 1m error for an obstacle 1.5m away.
We also see that thin obstacles are expected to be reconstructed when they are close by

combining depth weighting with filtered targets. This is because their reconstruction targets
are more prominent, as many more pixels will produce a high loss, particularly at close range.
Finally, we used a simple homemade procedure to implement the added edge loss. First, we

used a Canny edge detector [77] to find the obstacle edges in d f
t . After, we used a Gaussian filter

to dilate the edges – taking any pixel value over 0 as an edge. Finally, the pixel-wise MAE of
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filtered depth reconstruction was multiplied by this image-edge mask to achieve the edge loss.
Since we motivated this for clearer reconstructions, the Gaussian filter had to be used to dilate
the edges of the image-edge mask. This is because, for the MAE loss to account for the object’s
shape, it is essential to add the pixel-wise error along the edges of obstacles and the pixel-wise
error of neighbouring pixels.

5.2.2 Network Architecture

With the loss function covered, what remains is the architecture of the VAE. As mentioned, our
VAE design was mainly inspired by the work of [24] and [75], where we utilise a convolution-
based encoder-decoder structure. The overall structure of the VAE is shown in Figure 5.6 and
its parameters are detailed in Appendix B.

Depth Image, 
480x270 

Mean and s.d
of approximate

posterior

Inference Network 
(CNN) 

Latent 
code

Generative Network 
(ConvT NN) 

Reconstruction, 
480x270 

Figure 5.6: The VAE network architecture. The encoder is parametrised by a CNN, while the
encoder is parametrised by a transposed CNN (ConvT NN). Given a depth image d t , we can
sample from the inference network qφ(z|d) to obtain a latent code z t . The generative network
pθ (d

f | z) then learns to construct the filtered depth image d f
t = f (d t) from the latent codez t .

Inference Network

Our encoder is follows the CNN design of [24], though utilises instead two convolution layers
before a ResNet8 [50], with two fully-connected layers at the end. Its structure is shown in
Figure 5.7, while the residual blocks are depicted in Figure 5.8.
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Figure 5.7: The encoder network architecture. It comprises two convolution layers, with 32
5 × 5 filters with a stride of 2, three residual blocks with [32,64, 128] output filters, and two
fully connected layers with output dimensions [128,128]. The dimension of the feature map is
(roughly) halved for each convolution layer and residual block due to the 2-strided convolutions.
The size of the feature map after the last convolution is 15× 9. (See Appendix B.1 for details)

Figure 5.8: The residual block architecture. A convolution by a 1×1 filter (kernel), with stride 2
is applied to the shortcut connection. Out represents the number of filters of the residual block.

Regarding our design choices, these were primarily motivated by two factors – we desired a
lightweight network and wished to reduce the dimension of the feature map to be small enough
but not too small. The ResNet8 was suitable to satisfy the first aspect, while the depth of the
network (through stridden convolutions) was decided to satisfy the other. We also found during
testing that reducing the feature dimension below 15 × 9 (to 8 × 5) resulted in a much worse
reconstruction output, discouraging the use of another residual block or stridden convolution
layer. However, this choice resulted in a dramatically sized linear layer that accounted for 86% of
the encoder weights – (128 · 15× 9) · 128 connections. Nevertheless, this was unavoidable since
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128 was the minimum number of neurons in the linear layer (64 means and log-variances),
which left the alternatives: to either reduce the feature dimension or the number of filters.
Though, both options were tested and did not improve results, leaving the conclusion that this
is a feature and not a disadvantage of our encoder.

Generative Network

The generative network is inspired from [75], with an additional linear layer and transposed
convolution layer. Its architecture is shown in Figure 5.9. The primary design rule for autoen-

Linear, 
128x15x9, ReLU

Linear,
128, ReLU

Latent 
code, 64 

5x5 ConvT, 
64 | 2, 
ReLU

6x6 ConvT, 
64 | 2, 
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6x6 ConvT, 
32 | 2, 
ReLU

5x5 ConvT, 
32 | 2, 
ReLU

6x6 ConvT, 
16 | 2, 
ReLU

5x5 ConvT, 
1 | 1, 
ReLU

74

Reconstruction, 
480x270 

521 63

3x3 ConvT, 
128 | 1, 
ReLU

Figure 5.9: The decoder network architecture comprises two linear layers and seven transposed
convolution layers. Each strode transposed convolution roughly the dimension of the feature map
to achieve the final dimension feature map dimension 480× 270. (See Appendix B.2 for details)

coders is that the decoder should be a mirror of the encoder so that the network resembles an
hourglass. As a result, we followed the encoder with two linear layers, including the large linear
layer that connects 128 neurons to 128, 9×5 filters. As for the transposed convolutions, this is a
relatively simple but effective design. The only design choice here was the filter size and number
of filters, though these were chosen primarily to match the layer-wise feature dimensions of the
encoder and their overall sizes.
Vigorous testing was also done with a ResNet8 decoder, which was designed to mirror our

encoder. However, despite its more advanced structure – with batch normalisation and short-
cut connections – no significant performance gain was observed in training. Conversely, check-
erboard artefacts and divergence in training were often observed when training on the whole
dataset due to uncertain reasons, though it could be to the layer-wise stacking of stridden trans-
posed convolutions with identical filter dimensions [78]. Therefore, a final decision was made
to use the decoder in Figure 5.9.
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Implementation

This chapter presents the implementation details and software frameworks used in this thesis.
Beginning with the training setup for our VAE and MLP, we include the procedure for collecting
a depth images dataset for VAE training, and how we define our quadrotor task in the Isaac
Gym framework. Finally, we present how we define our CNN-MLP model using a reinforcement
learning library, RL Games [79], and discuss some details of the PPO implementation. Our code
is written using PyTorch as a machine learning software framework, being the framework most
used in the research community, and allowing for easy integration with Isaac Gym.

6.1 Collecting a Filtered Dataset of Depth Images

To collect the depth for VAE training, we used a pre-existing simulator that had been developed
in [24]. This is the RotorS [80] simulator, which is an extension to the simulation framework,
Gazebo [81]. Here, Gazebo is an open-source physics-based robotics simulator that allows us
to design and test custom robotic models. RotorS is then a quadrotor simulator that builds on
this, providing various packages ranging from quadrotor models to controllers to sensors.
To use RotorS for their task, [24] added a quadrotor model resembling their real-life re-

silient micro-flyer (RMF) to RotorS, equipped with a simulated depth camera with the same
specifications as an Intel RealSense Depth Camera D455m, which has camera properties:
• Resolution: 480× 270

• Field-of-view: 1.5 rad (85.94°)
• Minimum range: 0.2
• Maximum range: 10.0
Using this, their quadrotor was flown with random velocities and steering angles in a ran-

domised environment in Gazebo until collision to generate a dataset. While [24] was interested
in the state-action-collision labelled image dataset, we simply used this framework to collect

56
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the depth images.
Then, since we are only interested in the depth images, we flip these along their vertical axis

to double the total. With over 200,000 depth images, we filtered each of these with the IP-basic
algorithm [76] and batched them into TensorFlow Record files. Finally, we wrapped the record
files in a PyTorch Iterable Dataset to ensure that not all depth images would be loaded into
memory when iterating through the dataset.

6.2 Quadrotor Task in Isaac Gym

We utilise Isaac Gym [26] as a large-scale parallel hardware-accelerated (GPU) simulator to ini-
tialise and run 512 environments simultaneously. Its end-to-end GPU simulation avoids perform-
ance bottlenecks in CPU-GPU data transfers and allows for a high performance and simulation
throughput on a single GPU.
To use Isaac Gym for our task, we first have to define an MDP-like quadrotor task that we

can perform reinforcement learning in – similar to any standard gym environment in OpenAI
Gym [66]. Essentially, we have to create a quadrotor model and then define its states, actions,
the state-transition dynamics and the rewards an agent receives per state-action timestep. For-
tunately for us, there was a related task, namely Quadcopter example in Isaac Gym, that we
could adapt to our task. From this, we could use the existing quadrotor model and its states but
redefine its observation and action spaces, the reward function and environment.

6.2.1 Agent

Beginning with the agent, we wished to have an observation space St = [s t ,d t] consisting of
the quadrotor state and depth images. To obtain the depth images, Isaac Gym allows us to
add camera sensors with specific properties. Choosing its properties to model the same depth
camera used to collect the VAE images, we attached the camera to the quadrotor body using
Isaac Gym’s API with a follow transform to obtain depth images d t in simulation.
As for the state of the agent s t , Isaac Gym’s API allows us to obtain the states of all actors

(Isaac Gym assets) through a root tensor, where every state contains 13 floats, matching (4.2):
3 floats for the position, 4 for quaternion, 3 for linear velocity, and 3 for angular velocity. By
indexing the quadrotor asset, we could then access the true quadrotor state at every time step.
As for the action space, Isaac Gym allows us to control an actor by specifying its motion

directly or through its control tensors, such as by applying forces to a robot’s degrees of free-
dom. Though not recommended, we opted for the first option due to simplicity – simply altering
the quadrotor state in the root tensor to be the desired action velocity and yaw rate. This is,
of course, non-physical behaviour since we override Isaac Gym’s physics engine, meaning that
changes in velocities would be instantaneous. To provide some compensation for this, we adjus-
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ted the simulation timestep to be dt = 0.2 seconds, which ensures that there is a suitable band-
width separation between the reinforcement learning agent “action frequency” and an eventual
closed-loop control system bandwidth, so that we can expect that an underlying control system
has time to set v t = v d

t at each timestep. Nonetheless, since our thesis aims to demonstrate
motion planning, this choice was considered reasonable (given the time constraints).

6.2.2 Environment

With the agent ready, we now had to define the environment in which the quadrotor was to
operate. The obstacles used in this thesis were loaded as Isaac Gym assets through Unified Ro-
botic Description Format (URDF) files. Most importantly, these described the visual and collision
geometry of various shapes, including our quadrotor model and goal. In Figures 6.1 and 6.2 we
show the quadrotor, goal and added obstacles to our environment.

(a) Quadrotor (b) Goal

Figure 6.1: Quadrotor and goal assets in our Isaac Gym environment. These are both standard
assets already present in Isaac Gym, and are borrowed for this task. The quadrotor does not
collide with the goal, nor is the goal visible in the depth images.

With defined collision geometries, we could then enable collisions in the environments by
placing obstacles in the same environment in the same collision group and setting their collision
filters to be 1. Since we do not want collisions with the goal, we removed its collision geometry,
rendering it invisible to the depth camera and removing the possibility for collision.
Finally, to place these obstacles nicely in our environment, we could change the object di-

mensions in the URDF files and do further scaling of objects in Isaac Gym. Then, through the
root tensor, we adjusted their poses through rotations and randomised their position.
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(a) Fence (b) Pine tree

(c) Simple U-shape (d) Chair

(e) Simple stone (f) Simple pyramid

Figure 6.2: Various obstacles are imported to our Isaac Gym environment through their URDF
files. Their defined collision geometries allows them to be visible in the depth images and allows
the physics engine to simulate collisions with them. By altering their dimensions and root tensors,
we could fit them nicely in our environments, with randomised poses.
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6.2.3 Parallel Initialisation

Regarding the parallel initialisation of the environments, this depends on which stage of the
curriculum we are training on. In the first scenario, with no obstacles, we initialise each en-
vironment to have a quadrotor and goal with random positions in an area x , y ∈ [−3, 3], with
z ∈ [−0.2, 2]. Furthermore, we add a ground plane at z = 0 and mimic “far obstacles” by con-
fining each quadrotor to a 16× 8 enclosure. This serves to bias the agent to initially ignore the
depth representation input while it learns to map the quadrotor states to correct actions.
Then, for 1-obstacle environments, the quadrotor and goal for each environment are now

placed at each end of their enclosure, with an obstacle placed in the middle. Their initialised x

positions are fixed (along the long axis) but are randomised in y (short axis). Also, the quad-
rotors and goals are slightly randomised in z. Then, we extend this design to n-obstacle en-
vironments, where we gradually increase the number of obstacles between a quadrotor and
goal while ensuring that a quadrotor always has 3m of open space before the first obstacle. An
example is shown in Figure 6.3b.

(a) 512 environments are initialisation in parallel, with randomised
obstacles along y. (b) Quadrotor, goal and

obstacle positions are random-
ised in y for each environment.

Figure 6.3: An example of the parallel initialisation of environments and their obstacle place-
ments with Isaac Gym [26]. We simulate 512 environments in parallel, where the quadrotor and
goal is initialised at each end of a corridor-like enclosure with obstacles placed in between. Po-
sitions of each item are fixed in the x (long axis), but randomised in y (short axis). Quadrotor
and goal heights (in z) are also slightly randomised.
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6.3 Model Implementation and PPO in RL Games

Now that the reinforcement learning framework was prepared, we used a reinforcement learn-
ing library called RL Games [79] to implement our CNN-MLP network to be trained with PPO.
The RL Games integration with IsaacGym follows a strictly hierarchical structure where all spe-
cific algorithms and models inherit from general base implementations. In this way, the training
setup is defined through configuration files managed by Hydra1.

6.3.1 Implementing our Model

To integrate our model with RL games, we identified that the main challenge is not how to
implement PPO with our model but how to integrate our custom network into RL Games. If
we could solve this, we could then specify that our model should use our custom network in
configuration, and this should allow it to be seamlessly optimised with PPO. So to solve this,
we first wrapped our custom network in a network builder. From here, we could use a model
builder to register our network in RL Games’ network registry during initialisation. As a result,
our network was now a part of RL games and could be chosen for any reinforcement learning
task.
Then, to use it in our custom quadrotor task, we define two configuration files, one for the

setup of the quadrotor task and the other to define the model. Here, the task configuration is
quite standardised, including the dimension of observation and action space, simulation para-
meters like dt, but also the number of obstacles, environment size and episode length. In con-
trast, the training file provided our model definition, consisting of the optimisation algorithm
and its hyperparameters (batch size, learning rate, trajectory length, etc.), and our network
and its hyperparameters (size, activation functions, normalised actions, separate actor-critic
networks, etc.).

6.3.2 Normalised and Clipped Observation and Action Space

Next, there are some noteworthy details of our model implementation that is relevant to our
task. The first is that normalising the observation and action spaces is of particular importance in
RL Games, first introduced in [43] and also iterated in the documentation of Stable-Baselines3,
“normalising input features may be essential to the successful training of an RL agent” [82].
Normalising can mean two different things in reinforcement learning, either by scaling obser-
vations to [0,1] or to have 0 mean and 1 standard deviation. The perspective this thesis takes
is that image values are scaled while everything else is normalised. So, to normalise the obser-
vation space in our quadrotor task, RL Games keeps track of our running mean and standard
deviation through its RunningMeanStd class, which calculates its values throughout the training

1See how IsaacGymEnvs uses Hydra at https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
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process. We also alter the code slightly to ensure that our depth images are not affected. The
consequence of this is that when we gradually increase the environment size to larger values,
i.e. greater p t from the goal, this should not alter the policy performance. For the actions, these
are not normalised but instead clipped if their values exceed 1, which was also why we avoided
using a non-linear activation function for our actor-critic. For good measure, the observations
space is also clipped to a max value of 5 before being normalised, in case of, e.g. anomaly ob-
servations.

6.3.3 Experience and Optimisation

In order to perform optimisation, recall from Section 2.3.11 that PPO requires data (experience)
sampled by its current policy in a trajectory T , where each experience element is given by a tuple
< St , At , Rt , St+1. In the parallel learning scheme, observations St = [s t ,d t] from each environ-
ment is compiled into an observation buffer O t for each time timestep. As mentioned, these
observations are then clipped and normalised before being sent to the actor to provide actions
for the current policy π. Though we simulate 512 environments, there is only one network – for
each timestep, we batch the 512 observations into an input tensor of shape [512,129613] and
compute the forward-pass for the whole batch. The batched depth images are sent separately
to the VAE, which produces the latent code with dimension [512, 64]. Then, by concatenating it
with the quadrotor state tensor to get [512,64], our actor-critic outputs a batched action tensor
of shape [512,3]. Finally, our agent observes rewards Rt with dimension [512, 1] to which it can
compare to its value estimates Vt to calculate the advantage estimate Ât .
Throughout this process, an experience buffer collects the state-action pairs as the trajectory.

We define the horizon or size of the trajectory T to be 8, such that our batch size is 512·8= 4096.
We also define a minibatch size of M = 1024 and a number of mini-epochs K = 8. Overall, we
first simulate our environment in parallel for 8 timesteps to collect a trajectory. With this, we
optimise for our PPO loss in mini-batches and repeat the optimisation on the trajectory for K = 8

mini-epochs. Finally, we discard the trajectory and run the simulation for 8 timesteps to collect
a new trajectory and so on. Lastly, when calculating the gradients for the trajectory, we also
utilise truncated gradients where the gradients are scaled according to Pytorch’s GradScaler and
clipped by their norm. These gradients are then used to optimise our network weights through
the Adam optimiser [83].

6.3.4 Reset Handling

When calculating gradient updates, the PPO critic value is used to calculate the advantage
bAt =Q(s, a)− Vθ (s), where Vθ (s) is the predicted infinite sum of discounted rewards (predicted
return). In our experiments, we specify a max episode length T that resets environments at this
timestep. However, fromwhat is seen in the experience buffer, resets count as a state-“transition”
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for which the action performed suddenly leads to a drastic change in reward. Since these resets
cannot be predicted, this can lead to inferior critic updates as the prediction error in (2.63) for
these resets are severely incorrect. To handle this, the target of the critic is bootstrapped with
its own prediction during resets, such that the critic error is only the reward obtained for the
first timestep in the next episode.



Chapter 7

Navigation Policy Evaluation Studies

This chapter presents and evaluates our approach to developing an efficient collision-free nav-
igation policy. Our approach is presented in the context of the curriculum, where we share the
step-by-step decisions and thought processes for training our policy. The final policy is then eval-
uated, where we assess its performance in its training environment and its ability to generalise
to new environments.
For our thesis, training and simulation were done on an Intel(R) Core(TM) i9-10940X CPU

@ 3.30GHz desktop PC with a NVIDIA GeForce RTX 3090 GPU.

7.1 Policy Performance along the Learning Curriculum

In this section, we analyse the training characteristics of our navigation policy in progressively
difficult environments. In total, our curriculum is composed of 7 levels, with an initial pretraining
stage. An overview of the training time and environment setup is shown in Figures 7.1 and
7.2 respectively. For each environment, the policy performance will be briefly analysed in the

Level No. of Obstacles Iterations Time
0 0 - Pretraining 97 12m
1 0 95 11m
2 1 808 1h 40m
3 3 652 1h 22m
4 5 1498 3h 12m
5 9 3500 7h 38m

Table 7.1: The learning curriculum for the navigation policy. The total time for training is all
seven policies is 14h 15m, with 6650 total iterations. One iteration is given by the length of the
trajectory T , defined as 8 simulation timesteps.

context of average return across all environments, and the episode end information for the last

64
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Level No. of obstacles Env. Size Obst. Area Space per obst.
(m2 / obst.)

0 & 1 0 16, 8 - -
2 1 16, 8 32 32.0
3 3 20, 10 80 26.67
4 5 20, 10 80 16.0
5 9 20, 10 80 8.89

Table 7.2: Environments used in the curriculum. We specify the “openness” per environment as
a more intuitive measure for clutter rather than obstacle density. The obstacle area begins 6m
from each end of the enclosure to allow space for the quadrotor and goal. Thus, the obstacle area
is given by A= (X − 12) · Y .

1000 episode ends.

Understanding the Average Return and End Info Plots

The average return, in this case, is given by the average accumulated rewards across all envir-
onments, indicating the robot’s overall navigational efficiency as the reward function is centred
around the quadrotor reaching its goal. However, to ensure that robots are constantly explor-
ing the environment dynamics and learning collision avoidance, we specify an end episode
timestep T that resets the environment and places the quadrotor back to its initial position.
This significantly changes the average rewards in the scenario that multiple environments are
reset, producing sharp drops or spikes in the average return plots.
Since the reward is centred around reaching a goal, there is a good chance that the learned

policy is not exactly ideal in terms of collision avoidance. Thus, we include the episode end label
as a continuous abstract indicator of the collision rate for the current policy. We can expect that
if both the collision rate and average return are high, the quadrotor is quite aggressive in flying
towards the goal, sacrificing some collisions to exploit high rewards near the goal. In contrast,
if both are low, we can imagine that the policy does not have an idea of how to exploit the
reward system but avoids collisions, meaning it is overly conservative and does not reach the
goal, despite not crashing. In the extreme case where the reward is very low, and the collision
rate is high, this suggests that the policy has diverged – i.e. the weights of the network are so
far from its optimal configuration space that it is unable to perform meaningful actions. Most
clearly, the desired policy is the opposite of this: with maximum return and minimal collision. In
addition, since the end information is averaged over 1000 episodes, there is a small delay when
observing the collision avoidance properties from a current policy. As a result, the policies that
are collision avoidant should either have positive slopes for timeout episodes or maintain their
low collision rates for subsequent episode ends.
Finally, we specify bounds on the quadrotor height, where the quadrotor is reset if z-position
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goes beyond [0,3]. Hence, there are three ways an episode can end: through this out of bounds
in z, through timeout after T timesteps, or collisions where an obstacle is < 0.2m away from it,
or there is contact on the sides.

7.1.1 Without Obstacles
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Figure 7.1: Initialising the navigation policy. The quadrotor and goal is randomly initialised in a
[−3, 3] area with heights z ∈ [0.2,2.0]. The best model is selected at 97 iterations.

As stated in Section 5.1.2, before a quadrotor learns collision avoidance, it must first learn to fly
towards a goal. Given that our observation-action mapping space is quite large (R77→ R3), our
initial guess was that navigating toward a waypoint could already be quite challenging, given
that we are in the continuous domain. With this expectation, we trained our policy with results
in Figure 7.1. From this figure, we can observe that pretraining is very successful, where the
quadrotor steadily increases its average return at the same time its collision rate drops. By just
30 iterations (4 minutes), we see that the agent reaches its goal 100% of the time andmaximises
its potential reward for most of the episode.
The next step taken is to initialise the quadrotor and goal in its new environment setup,

where each are placed at the end of the environment. This is a relatively simple training stage
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Figure 7.2: Conditioning the policy to its new state distribution. The best model is selected at 95
iterations.

that we expect should be completed with ease. From Figure 7.2, we see that this is true, where
we mostly observe timeouts.

7.1.2 1 Obstacle

Before the first obstacle is added, the agent does not necessarily have to learn to avoid close
obstacles. In this situation however, obstacles are placed directly in between the quadrotor and
goal, such that to achieve a low collision rate, some degree of collision avoidance is necessary.
Despite this new challenge, we see that the quadrotor does well to cope – steadily decreasing its
collision rate to about 4% in about 160 iterations (20minutes), and to aminimum of about 2% at
600 iterations. Though, in regards to policy performance, we note that the average return follows
a very oscillatory behaviour which is reflected very slightly in the collision rate. Intuitively, this
can be explained by the agent exploring its state-space, which consequently can be good or bad
– the quadrotor cannot know that colliding with an obstacle always leads to a negative reward
until it has experienced it repeatedly from various positions. However, since we did surround
the quadrotor in a rectangular enclosure, it was observed that the quadrotor managed to learn
to not crash into walls quite early, albeit to a small degree. Just simply stopping and turning,
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Figure 7.3: Training with 1 obstacle. The best model is selected at 808 iterations, with an average
return of 422 and timeout rate of 95.6%.

though, is enough to pass this level.
We observe that it is not until the third oscillation in the average return that the agent finds

an optimal policy which combines high total rewards with low collision rates. After this, we
do observe that the collision probability falls even lower, but so too does the reward gained.
Thus, we remind ourselves that we want both navigational efficiency and conservativeness in
our policy. For this training stage, we selected the model at 808, which had a good combination
of both.
An early behaviour that was also observed during training is that the quadrotor learned to

pick a “favourite side” when avoiding obstacles – sometimes it always passed on the left, other
times always on the right, despite it being more open on the other side. To try and explain this,
we have to remember that neural networks are function approximators. In some sense, we can
think of “seeing the obstacle” as a variable that is sometimes positive (or zero) in the latent
code. If it is not there, we go straight, but if it is there, we turn to one side – deterministically.
We can imagine that if the agent is directly in front and in the middle of an obstacle unless the
policy is randomised to a significant extent, the same values in the input should result in the
same action.
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7.1.3 3 Obstacles

Continuing onwards to three obstacles, we expect that, similar to one obstacle, we should ob-
serve oscillations in the return as the agent explores different approaches to solving the nav-
igation task. We also expect that since the obstacle has learned how to avoid one obstacle, it
should be straightforward to generalise this to three – particularly when the objects are placed
far apart. From Figure 7.4, we see that these expectations are largely matched – with the aver-
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Figure 7.4: Training with 3 obstacles. The best model is selected at 652 iterations, with an
average return of 514 and timeout rate of 89.7%.

age accumulated reward varying significantly and the collision rates steadily increasing. From
this, we observe that the good combination of both is just about between 600 and 700 iterations,
such that we choose the best model at 652 iterations.
One of the most pertinent differences that we can observe in this scenario is that the highest

timeout rates are consistently lower than before. We can accept that since the agent is essentially
re-learning a more complex state-action mapping – e.g. meeting obstacles at the edge of the
environment after turning – we do not expect high timeout rates immediately. Yet, eventually,
we do expect that if it can reach the goal > 95% of the time for 1-obstacle environments, it
should be able to do the same here, given a similar “optimal” policy. However, this reasoning is
slightly unfair since the agent now has to perform three times more collision-free manoeuvres
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than in the previous case. Thus, if the agent can manoeuvre past one obstacle with 95% success,
it is only fair to assume a success rate of 95%3 ∼ 85% for the three obstacle environment. From
this perspective, we then see that the policy is improving since it does achieve an over 90%

timeout rate at its best point.

7.1.4 5 Obstacles

When approaching more cluttered environments, an effective navigation policy has to learn to
carefully judge actions as a function of more than one visible obstacle. It cannot simply navigate
to one side of an obstacle but base the extent and direction of its turns from what it sees. This
is a natural consideration that even takes time to learn, even for humans. We thus expect that
policy learning will progressively take longer in more complex environments as the agent learns
to fine-tune this behaviour. Based on this assumption, we train the policy for significantly longer
(≈ 6800 iterations) and increase the end episode timestep T to compensate for manoeuvring
time. The result of which is shown in Figure 7.5. Once again, we observe from the figure a sim-
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Figure 7.5: Training with 5 obstacles. The best model is selected at 1498 iterations, with an
average return of 720 and timeout rate of 94.8%.

ilar pattern for the return in the first 1000 iterations. However, unlike the 3-obstacle case, we
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recognise that the environment is indeed more difficult, resulting in a more complex optimisa-
tion space that causes higher fluctuations in the accumulated rewards when the agent explores
different trajectories. This is also more pronounced due to the longer episode times, such that
if a policy does well to reach the goal, it will accumulate significantly more rewards than one
that does decent but does not reach the goal as closely or as often.
Another promising feature of this training plot is that the timeout rates are consistently

higher than for the 3-obstacle case, even when the reward is high. The reason for this is quite
indirect, though it will be discussed later in Section 9.1.2. Keeping this optimistic perspective,
we can then move on to 9-obstacles.

7.1.5 9 Obstacles

The most difficult environment of the training process consists of 9 obstacles in a 20×10 envir-
onment. Accounting for the quadrotor and goal – a 6m spacing as seen in – the effective area
for obstacles is an 8×10 square, or an obstacle every metre for 8m. For perspective, we provide
two images in Figure 7.6.

(a) 9 obstacles are placed
from along x ∈ [−4,4]. (b) Agent must display collision avoidant properties to pass.

Figure 7.6: An example environment with 9 obstacles, with size 20× 10.

Following the same idea for the 5 obstacle case, we provided ample time for policy training
and kept the episode length T the same to obtain the results in Figure 7.7. Here, we see that the
average return follows an upwards trend to about 1500 iterations, which reflects the difficulty of
the environment as the agent takes a much longer time to fine-tune its behaviour. Interestingly,
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Figure 7.7: Training with 9 obstacle. The best model is selected at 3500 iterations, with an
average return of 700 and timeout rate of 84.7%.

we see that this trend also applies to the timeout rate but only to about 1000 iterations. This
suggests that the rewards for collision avoidance and goal-reaching are aligned to some degree,
but at some point, the rewards motivate the agent to learn risky behaviour – prioritising to reach
the goal in situations where it could be more careful.
However, after extensive sampling, we see that the agent policy begins to learn very prom-

ising collision avoidance attributes between iterations 3200 ∼ 3600, where we select our best
model at 3500 iterations. In this situation, we also note that the average return varies dramatic-
ally. To reason for this, we can assume that when the agent is learning to navigate carefully, i.e.
the policy is aware of state-actions pairs that cause collisions, the conservative behaviour could
mean reaching a goal is unlikely. This is in contrast to the policy at around 1500 iterations which
learned to “consistently” reach the goal, though ironically with crashes. So in our situation, we
can view the model at 3500 iterations as having a good balance of both, where the policy has
“stumbled upon” a favourable locally optimal solution with good navigational abilities.
The reason that conservative policies have a hard time reaching goals is also linked to the

observation that collision rates are relatively high. Unfortunately, this is expected and can be
explained by the agent having to manoeuvre past more obstacles in the previous case. Moreover,
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due to the more cluttered nature of the environment, the agent can also experience getting
stuck in between obstacles where there is no clear way forward. An example of this is shown
in Figure 7.6, where we see a corner-type situation on the left side in between the tree and U-
shape and can observe a quadrotor flying. Of course, we can think that a quadrotor getting stuck
in this situation is unlikely, seeing that it could go right, for example. Yet, with 512 randomly
generated environments, we can imagine that these corner-type situations could exist in many
forms, both on the left and right side. We can also argue that after passing an obstacle on the
left, the optimal path may be to turn and look to the right, but the quadrotor will not see this due
to a limited field-of-view (86°) of the camera sensor. As a result, it will enter a corner situation,
(and possibly pass) as the agent shown in Figure 7.6b.
So, from this corner situation, if the policy is conservative, an agent will lie and wait as

to avoid collision. If it is more aggressive, it will enter and risk collision. Thus, on average, a
policy that remains stuck in these unlikely situations will gather much less return than one that
collides, and proceeds to find the goal in the next episode – which provides an explanation to
why higher timeout rates do not equal higher rewards. However, by chance, a policy that is both
conservative and can escape corner situations could appear, which is the case for our policy at
3500 iterations shown in Figure 7.6b.

7.2 Evaluating the Learned Navigation Policy

With a policy selected from the curriculum, we can now evaluate its performance in the form of
standardised tests in known and unknown environments, along with assessing its robustness to
noise. For the known environments, we aim to present three variations of the environment with
an increasing degree of clutter, while for unknown environments we increase the environment
size. From this, we should be able to gauge its overall performance and more interestingly its
ability to generalise to unseen domains and uncertainty.

7.2.1 Known Environments

For the known environments, we test the agent in an environment of size [20,10], where we
increase the number of obstacles from 7 to 12, as shown in Table 7.3. Unlike training, we use
a non-randomised environment such that we can visualise the behaviour of different policies
in a standardised context. We then run our policy in each environment for 1000 episodes and
document the episode end label.
From the table, it is clear that the reinforcement learning agent is extremely successful in

navigating known cluttered environments, though its performance is bounded by the available
space to some extent. Compared to our expectations from training, these are certainly impress-
ive results, given that the timeout rate for the 9-obstacle environment is 96.5% timeout rate
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Level No. of Space per obst. Timeouts Collisions Out. of Timeout
obstacles (m2 / obst.) bounds rate (%)

Easy 7 11.4 980 21 0 97.9
Medium 9 8.89 967 33 2 96.5
Hard 12 6.67 771 230 0 77.0

Table 7.3: For the known environments, we evaluate the agent’s response to a variation in the
cluttered-ness of the environment. We choose an environment size of [20, 10], which is an 8×10
or 80m2 effective obstacle area.

compared to 84.7% in Figure 7.7. An explanation for why we did not see such a high timeout
rate in training is because the end information plots are averaged over 1000 episode ends. Fol-
lowing this, an indication which shows very good collision avoidance in the policy is that the
slope of the timeout rate is very high at 3500 iterations – indicating a much higher timeout rate
under the current policy, which pushes the average up. Otherwise, it could also be that the en-
vironments in training are randomised, which suggests that the environments used for testing
are “too easy”. To see for ourselves, we can look at Figures 7.8, 7.9 and 7.10.
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Figure 7.8: The environment with an easy difficulty with a timeout rate of 97.9%. There are
7 objects in this environment, where multiple are placed in the the agent’s line-of-sight so that
collision-avoidance is necessary for all trajectories. Despite this, openings are relatively spacious
compared to difficult environments.

From these, it is evident that the degree of clutter is increasing, but also the number of
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Figure 7.9: The environment with an medium difficulty with a timeout rate of 96.5%. 9 obstacles
are placed so to reduce the size of openings and increase the average number of obstacles to pass
per trajectory. This results in a large trajectory distribution and roughly 50% more collisions than
the easy environment.
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Figure 7.10: The environment with an hard difficulty with a timeout rate of 77.0%. We test
the agent’s leftward bias by reducing opening sizes further on the left side. Turns are also much
sharper, which induces many pass-by collisions.
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obstacles that the agent is forced to avoid in order to reach the goal. For the easy environ-
ment, we see that any chosen trajectory must avoid on average 3-4 obstacles, which increases
to roughly 4 in the medium environment, and to roughly 5 in the most dense environment.
We also note that the size of the openings along the agent trajectories significantly decreases
for each environment. However, we do recognise that there are no corner-like situations, where
we intentionally trap the quadrotor. From these observations, it is plausible that the existence
of these corner-situations account for the majority of collisions, since we see that the policy is
more than capable of navigating past 4 obstacles with a timeout rate of 96.5%.
To look more into the detail of the quadrotor behaviour, we observe that the policy is heavily

biased to making left-turns, despite it being unnatural or completely unnecessary. This can be
seen the easy plot, where after avoiding the first pyramid the simple-u in the center, the quad-
rotor decides to turn extensively to the left despite being able to move straight towards the goal.
The result of this bias is of course collisions, as we can see in Figure 7.8, where all collisions are
caused by forcing entry through the tight space between the simple-u and the pine tree.
Another, quite unexpected, behaviour that the quadrotor has learned is to be able to reverse.

We see when the quadrotor spawns directly in front of the simple pyramid, quite a few of the
trajectories first go backwards, before reaching goal and being marked as green. This behaviour
is unexpected because we provide no rewards for reversing, except for a < 1m from obstacle
penalty. In fact, we actually provide penalties for reversing – thus actually discouraging it. So
surprisingly, we see that this behaviour has been learned completely learned through sampling,
where the policy decides that if its vision is completely blocked by an obstacle – it should reverse
in order to reach goal.
The obvious consequence of this behaviour, however, is that it induces potential crashes

due to blindness. This is most visible in Figure 7.10, where the quadrotor collides with the
chair on the left side after reversing due to the tight placement of obstacles. Perhaps unclear,
in Figure 7.9, some of the collisions are a result of the quadrotor reaching goal, but reversing
slightly to adjust its placement. However, sometimes this results in excessive reversing, to which
the the quadrotor collides with the wall.
Another common reason why collisions occur is not due to the necessity of collision avoid-

ance, but rather to an uncareful approach to goal. As we see in Figure 7.9, many trajectories do
reach goal but seem to result in collisions. By doing a quick investigation, it can be seen that
these are either from reversing or from descending. The need for descending is a result of the
quadrotor attempting to fly as high as possible during the obstacle course, as most obstacles are
become thinner with height, while the goal is between z ∈ [0.5,1.5]. Yet, though it is effective
to fly above these obstacles, its decent is still imperfect, which results in collisions either with
the ground near goal, or with e.g. a chair in Figure 7.10.
However, the two most dominating causes for collisions is a result of pass-by collisions and

tight collisions. The pass-by collisions can be described as when the agent is forced to fly around
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an obstacle when approaching it parallelly, while the tight collisions are when the quadrotor
aims to enter a narrow opening, but executes it imprecisely. Examples of these are seen in
Figure 7.10, where the agent crashes with the fence, simple stone and pyramid in the early
center and the pyramid at the end. To identify possible reasons why these occur, we can imagine
that in pass-by collisions, just about when the quadrotor passes an obstacle, it disappears from its
field of view. Normally this is fine, but when the quadrotor approaches it parallelly, the obstacle
is so close that when the quadrotor turns or descends while moving forward, a collision can
occur. Tight collisions are very related, as they require an agent to pass directly through the
center from a perpendicular approach. If coming from an angle, this requires turning through
the center but may result in a pass-by collision. We can link these two through the concept of
space, which we discuss in the next section.

Effects of Obstacle Placement

As mentioned, one of the most significant differences between the hard environment compared
to the easy and medium ones is not the number of obstacles, but rather the availability of space
when passing obstacles. We see this quite clearly in Figure 7.10, where the agent chooses among
four very tight trajectories on the left, and does not exploit the open space on the right. This is of
course a result of its learned behaviour, where it simply maps various obstacle representations
in its latent space to a positive yaw rates.
We can expect that therefore, if we create an artificial corner on the left side – i.e. obstacles

tightly placed together – we can dramatically reduce its performance as we exploit the policy’s
weakness. Conversely, if we facilitate navigation on the left side through slightly larger openings,
we can postulate that the collision rates will significantly drop, regardless of the number of
obstacles it must pass on the way. To evaluate this theory, we perform another test on the hard
environment, where we switch the simple stone (pillar) with the less obstructive chair on the
left side (for reference see the out of bounds plot in Figure 7.10). From just this modification,
keeping everything else constant, we obtain the results in Table 7.4. The results do confirm

Level No. of Space per obst. Timeouts Collisions Out. of Timeout
obstacles (m2 / obst.) bounds rate (%)

Hard, swapped 12 6.67 987 14 0 98.6

Table 7.4: By replacing the simple stone with the chair, we allow a larger opening in the center
that significantly impacts our results. We note specifically a drop in the number of collisions, from
230 down to only 14 when simulating for 1000 episodes.

our hypothesis, and to a very large extent. We can also see its effect on the distribution of
trajectories in Figure 7.11. As a result of the switch, almost all the trajectories pass through the
center opening, directly above the chair. Following this, the quadrotor is no longer forced into
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Figure 7.11: The hard environment where the chair on the left is swapped with the simple stone
in the centre. This results in a timeout rate increase from 77.0% to 98.6% despite the agent
having to account for the same number of obstacles.

a position where it has to pass the end pyramid from a parallel approach, which eliminates the
collision probability substantially. We can also assume that simply shifting the simple stone half
a metre (half a square) to the right, we will obtain a similar result. This shows that facilitating
space along an an apparent quadrotor path is more important than the number of obstacles the
quadrotor has to pass.
Of course, it will be interesting to evaluate the performance of the policy further – blocking

off paths, etc. – though in light of the purpose of this thesis, i.e. we must remind ourselves that
we are designing a policy for local motion planning in cluttered environments and not a path
planner through extremely dense ones. From a practical aspect, we can thus emphasise that it
is important to weigh the strengths of a local motion planner when for example combining it
with some global waypoint planner.

7.2.2 Robustness to Noise in States and Actions

With overall very successful results, an important evaluation that must be done is one of the
performance of the quadrotor when presented with uncertainty. To add noise to our quadrotor
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states and actions, we follow the documentation in Isaac Gym1 and emulate Gaussian noise εn ∼
N (1, 0.2) with mean of 1 and variance of 0.2, which we multiply to all quadrotor observations
and actions. Multiplicative noise was chosen as opposed to additive due to the fact that we
do not normalise our states directly (we leverage IsaacGym’s implementation as mentioned in
Section 6.3.2), such that we obtain we ensure proper scaling of noise to all variables. We also
ensure that the depth images are noise-free at this stage. With this added noise, we obtain the
results in Table 7.5.

Level No. of Space per obst. Timeouts Collisions Out. of Timeout
obstacles (m2 / obst.) bounds rate (%)

Noisy Easy 7 11.4 987 13 0 98.7
Noisy Medium 9 8.89 959 34 7 95.9
Noisy Hard 12 6.67 804 262 0 75.4
Noisy Hard, 12 6.67 831 207 4 79.8
swapped

Table 7.5: For the noisy environments, we evaluate the agent’s response to induced noise in all of
the quadrotor states and actions, where each state is multiplied with εn ∼N (1,0.2). We perform
this test to all known environments.

Surprisingly, the agent does very well to adapt to noise, having more-or-less the same col-
lision statistics. We note that the main difference is in the hard-swapped environment, where
the number of collisions has increased from 14 to 207. Otherwise, we also see a slight increase
in the number of out-of-bounds events. To get a better understanding, we can examine Figures
7.12, 7.13, 7.14 and 7.15.
The first consequence of noise is that we observe a greater distribution of trajectories taken

towards goal. If we consider what states the quadrotor has, the ones which are the most signific-
ant for waypoint navigation are the position, velocity and yaw rate. Since we add noise to these
states, we can imagine that the quadrotor applies corrective behaviour to its action in response
to changes in its state, which explains a more raggedness in the trajectories of the quadrotor.
However, the a possible risk is the combination of corrective actions along with noise in the
action – which could lead to imperfect manoeuvring and thus collision.
From the easy environment in Figure 7.12, we note that the increased risk of collision is

almost non-existent, as the collision rates have actually dropped in comparison to before. This
affirms the quadrotor conservative behaviour where it does not necessarily take risky behaviours
and maintains a reasonable distance from obstacles. However, in more cluttered environments,
we see that the quadrotor is more susceptible to collisions simply because it is forced to take
narrow routes. This is also apparent in Figure 7.15, where previously it could navigate fine

1See domain randomisation: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/domain_
randomization.md

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/domain_randomization.md
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/domain_randomization.md
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Figure 7.12: Noisy easy environment, with a timeout rate of 98.7%. The significance of noise is
not as prevalent in the collision statistics for open-space environments.

through the opening at the end, though suffers the bulk of its collision there in the noisy case.
Another feature of noise is that we see a greater display of reversing, particularly in the hard

environment by comparing Figure 7.10 and Figure 7.14. This suggests that the quadrotor has
learned not only to reverse when the path ahead seems blocked, but also in the case of poor
quadrotor placement in regards to obstacles. Rather than risking a collision, it was observed
that the agent would simply oscillate back and forth as an attempt to reorient itself or find new
paths. This also illustrates why a conservative policy would gather less rewards, while managing
to maintain low collision rates.
Despite the reasonable noise in the agent states and actions – a > 60% chance of more than

a 10% noise factor – the quadrotor still outperforms our expectations, where see that it is only
in the very tight spaces where we observe the adverse effects of noise. As mentioned, this can
be attributed to the quadrotor deciding on conservative paths to avoid being close to obstacles
and it backing away if it perceives the path to be too risky. However, another justification is that
PPO makes use of a stochastic policy from which actions are sampled. This means that there
is already a layer of randomness in the agent actions, which the policy has has accounted for
to ensure robust performance, which therefore minimises the effects of additional noise in the
action space.
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Figure 7.13: Noisy medium environment, with a timeout rate of 95.9%. The policy is still capable
of entering tight spaces when approaching them directly.
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Figure 7.14: Noisy hard environment, with a timeout rate of 75.4%. The effects of noise are more
prevalent when careful navigation is required. A larger distribution of trajectories is observed
along with much more reversing.
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Figure 7.15: Noisy hard environment with swapped simple stone and chair, and a timeout rate
of 79.8%. The policy performance in very tight spaces is significantly impacted due to small
variations in observed state and actions. As a result, many more collisions occur in along the
formerly optimal path.

7.2.3 Robustness to Noise in Depth Images

Another possible reason for why the policy adapted well to noise in the previous chapter is be-
cause the depth images were still perfect. We justified that the positions, velocities and yaw rate
observations were perhaps not that important since the quadrotor has planned good paths that
account for stochastic behaviour. But what happens if we add noise to the agent’s main tool
for motion planning? To explore this, we perform another robustness test, this time to both the
depth images, and the state and actions of the agent. We also choose the noise to be additive
white Gaussian noise instead of multiplicative, with the noise parameters εn ∼ N (0,0.05). Ef-
fectively, due to the “naive” processing of depth images in our agent, this results in many white
and black speckles in the depth images received by our VAE, seen clearly in Figure 7.16.
We can observe that the simulated noise is not that realistic, as compared to e.g. the ones

in [9], as is by no means an example on how to train a quadrotor for zero-shot transfer to real
environments. Yet, since the agent has never experienced any effects of noise to depth images,
it serves to illustrate the consequence of suddenly experiencing it.
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(a) Input depth image (b) Input depth image

(c) Noise added (d) Noise added

(e) Decent reconstructed output (f) Poor reconstructed output

Figure 7.16: The effects of additive Gaussian white noise εn ∼ N (0,0.05) to our depth images
received by our network. Their reconstructed depth images are also shown. Recall that the VAE
reconstructs a filtered version of inputs. We observe that in some cases performs decently, while
other times imagining “phantom obstacles” that are very close.

We see the adverse effect of noise in Figure 7.17, where the performance of the agent is
severely impeded. First, we can note a very varied trajectory distribution and substantial amount
of collisions. We see that this test demonstrates the importance of accurate depth images for
motion planning whereby the agent struggles to map the noisy depth images to proper actions.
As a result, we observe excessive turning in all directions, and also a lot of reversing. This results
in a lot of collisions as the experiences many pass-by collisions and reversing collisions.
Interestingly, a rare behaviour that was not previously observed was the policy’s ability to
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Figure 7.17: The swapped hard environment with Gaussian white noise εn ∼N (0,0.05) added to
depth images, agent states and actions. The timeout rate is now at 31.0%, dramatically reduced
from previous cases.

travel backwards (opposite of p t) so to navigate past obstacles and reach the goal. This can be
seen in the timeout plot where the agent frequently attempted to make its way around a pine
tree. However, we see that in many cases this resulted in crashing directly into the top of the
tree.
Overall, this performance is expected since we have never exposed either our VAE our nav-

igation policy to noisy depth images. This leads to a propagation of error through our model,
since we are unaware of the consequence this noise has in our latent space, nor the effect this
noise-in-the-latent-space has on our agent actions. Nevertheless, similarly to [13], this can be
mitigated by training the VAE to also learn how to filter real or noisy depth images, such that
it performs both dilation and denoising. Otherwise, we can also simulate noise our simulation
depth images and train a policy which receives these noisy depth images as input, such that it
learns to account for this in some degree, like in [9].

7.2.4 Larger Environments

For our final evaluation study, we attempt to run the policy in larger environments. This should
demonstrate the generalisation capability of the policy when introduced to a new state-space
distribution. Particularly, we have observed that the agent is capable in decently sized environ-
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ments, adept at navigating through 8m of obstacles. In this case, we set the environment size to
be 30×15, such that the effective obstacle area is 18 ·15= 270, and set the number of obstacles
to be 25. With this, we obtain the results in Figure 7.18.
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Figure 7.18: The large environment with 25 obstacles in an area [30, 15] area. The timeout
rate is 26.2%.

Based on the results, we see that the policy has performed poorly, colliding with obstacles
73.3% of the time. There could be several reasons for this, the first of which is a poor general-
isation to larger environments, for example through seeing obstacles relatively early and much
later. This means that because there is a lack of experience in these states-obstacle combina-
tions, we cannot expect that the policy provides as finely-tuned actions as in the normal cases.
We also can observe that the trajectories taken by the agent are mostly confined in y ∈ [−5, 5].
This further suggests that our agent has learnt to exploit the small environment – essentially
“over-fitting” it – which comes at the cost of lack of generalisation.
A more straightforward reason could be that we overestimated the policy ability to navigate

past obstacles, such that when tasked to avoid roughly seven obstacles per trajectory more mis-
takes occur along the way. Though not so easily visible, we should also note that many of the
collisions were early on as a result of trying to fly over the simple-u but not having the height
to manage it. This could be due to the low spawn point of the quadrotor at roughly 1m while
needing to ascent to about 3m to pass above the simple-u. An alternative to passing the simple-u
is to reverse and descend, such that it can go under the it. However, since the quadrotor is so
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low during the start, this also resulted in many crashes. This behaviour can also be seen by the
simple-u on the left, where we see many back-and-forth motions as the quadrotor descends,
unfortunately into the chair.
Nevertheless, we expected the policy to be much better than observed here, since it had

essentially no problems before – apart from too-tight spaces, though this is not the case here.
So, to demonstrate the potential of this approach, we added two more levels to the curriculum,
this time in environments of size [24, 12] and later [30,15], as shown in Figure C.2. By testing
the new policy in the same environment, we obtained the result in Section 7.2.4.
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Figure 7.19: The new policy in a large environment, with timeout rate of 85.7%. Training it
required 7500 extra iterations compared to the 9-obstacle policy.

Here, we observe a large progression in policy performance, where the agent attains a
timeout rate of 85.7%. Despite not matching the statistics from the earlier tests, we reason
that due to the increased number of additional turns per trajectory, this is acceptable. From
the figure, we note that collisions are still caused by similar factors which we have discussed
before – namely attempting to fly over or under simple-u’s, reversing into obstacles and corner
situations such as on the right at [5,−6]. Otherwise, another similar behaviour that it has is a
favourite side, though this time predisposed to making right turns.
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VAE Results

In this section, we will briefly evaluate the the performance of our VAE model in regards to its
reconstruction ability. We aim to explore the effects of the different modifications to the loss
function, as presented in Section 5.2.1. To do this, we will begin with a plain reconstruction
error, before adding a depth weighting, and finally edge loss. Moreover, we explore these im-
plementations to both MSE and BCE loss.
An overview of the best models with their modified losses, best epoch and their time-to-train

is shown below:

ID Model Epoch Time
1 Vanilla MSE 40 19h 4m
2 Vanilla BCE 50 1d 14h 36m
3 Depth Weighted MSE 60 3d 4h 52m
4 Depth Weighted BCE 60 1d 13h 54m
5 Depth Weighted MSE with Edge Loss 100 1d 22h 49m
6 Depth Weighted BCE with Edge Loss 100 3d 3h 37m

Table 8.1: List of VAE models.

8.1 Training

We train our networks on 202,558 depth images for 100 epochs, where we present their training
and test plots. We also train these two at a time, which slightly reduces their training times.
Overall, not much can be seen from the training plots, apart from ensuring that training is
stable and the models do not over-fit. Normally, the approach would be to compare the losses of
each side by side, but since the scale of the losses are dissimilar, we provide this as an indication
of how the changes to the reconstruction affect the loss values and training plots.

87
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8.1.1 Vanilla Loss Function

Beginning first with the vanilla reconstruction loss, the overall loss function for a batch B of m

of samples is:

eLB (θ ,φ;d(i),d f (i)) =
1
m

m
∑

i=1

�

log pθ (d
f (i)| z(i,l))− DK L(qφ(z|d(i)) ∥ log pθ (z))

�

(8.1)

Then, the reconstruction loss L(i)REC = log pθ (d̂ f (i)| z(i,l)) can be replaced with the vanilla MSE
and BCE, which is implemented in practice as:

L(i)MSE =




 d̂ f (i) − d f (i)




 (8.2)

L(i)BCE = d f (i) logσ
�

d̂ f (i)
�

+ (1− d f (i)) logσ
�

1− d̂ f (i)
�

(8.3)

where σ is used to denote the sigmoid activation function. With this, we present the training
curves in Figure 8.1. From the figures, we observe a slight over-fitting for both models, where
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Figure 8.1: Training and test loss for the vanilla MSE and BCE models.

the MSE begins to over-fit beyond 40 epochs, and the BCE around 50.
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8.1.2 Depth Weighted Loss

With the vanilla models trained, we now implement the depth weighting according to the input
depth image d f (i):

L(i)MSE = Kdepth(d
f (i)) ·




 d̂ f (i) − d f (i)




 (8.4)

L(i)BCE = Kdepth(d
f (i)) ·
�

d f (i) logσ
�

d̂ f (i)
�

+ (1− d f (i)) logσ
�

1− d̂ f (i)
�

�

(8.5)

where the depth gain Kdepth is given by Equation (5.11). Using this loss, we train our models to
obtain the plots in Figure 8.2. Following a very close pattern with the vanilla training plots, we
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Figure 8.2: Training and test loss for the depth weighted MSE and BCE models.

observe essentially a doubling in the total loss for the MSE, while the BCE loss increases by a
factor of 10. Otherwise, both models also show a slight tendency of over-fitting, at around 60
epochs.
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8.1.3 Depth Weighted Loss With Edge Loss

Finally, to implement the depth weighted losses with edge loss, we add the mean absolute error
(MAE) between the edges of the depth filtered image and reconstruction:

L(i)MSE = Kdepth · d f (i) ·
�





 d̂ f (i) − d f (i)






2
+L(i)edge

�

(8.6)

L(i)BCE = Kdepth · d f (i) ·
�

�

d f (i) logσ
�

d̂ f (i)
�

+ (1− d f (i)) logσ
�

1− d̂ f (i)
�

�

+L(i)edge

�

(8.7)

where the edge loss is given by:

L(i)edge = Kedge · E
�

d f (i)
�

·




 d̂ f (i) − d f (i)






1
(8.8)

where E
�

d f (i)
�

is a function that finds the edge pixels of the filtered depth image through
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Figure 8.3: Training and test loss for the depth weighted MSE and BCE models when adding an
edge loss term.

a canny edge detector [77], applies a Gaussian filter over it, and masks all values over 0 as
edges. We also choose the edge gain to be Kedge = 100. Training our models for a final time
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yields the plots in Figure 8.3. Unlike the previous training plots, the MSE and BCE test loss does
not increase even to 100 epochs, indicating that our model is not over-fitting our input data.
Otherwise, we see that the addition of the MAE term adds a loss value of about 6000 to both
MSE and BCE plots.

8.2 Testing

So, from the training plots, it is hard to deduce the reconstruction ability of the VAE. This is
because we judge this metric quite qualitatively, such that one must instead simply inspect the
images either throughout or at the end of the training process. With this, we can examine the
reconstruction ability of all models in Figure 8.4.
From the figure, we can note very clear differences in the different loss functions, and also a

difference from using MSE compared to BCE as loss functions. We see first that the reconstruc-
tions for the vanilla loss functions are much more blur than the depth weight ones, even when
we do not add the edge weight. This can be explained by the fact that we consider the ‘blurness’
as an inability to reconstruct objects – in this case obstacles – in images. However, all objects in
the scene have a depth that is much closer than the background, such that if we weight the the
loss according to the closeness of pixels, the VAE be motivated to reconstruct obstacles with a
higher fidelity.
Moving onwards, we see that by adding edge losses to the depth images, we confirm our

expectations that we obtain clearer edges along close obstacles to some degree. This is most
prevalent for the MSE reconstructions 6) and 7), where we see that the middle pillar depth is
more accurately captured than the non-edge-loss one.
Another big difference is that of the BCE and MSE plots, where we see that the BCE loss

performs much better overall in terms of clarity. However, the we can also note BCE plots also
assume obstacles are closer thanwhat they actually are, in we look at plots 5) and 8) and observe
the colour of the middle grey pillar. Nonetheless, for the purpose of collision avoidance, we chose
the last model, the depth weighted BCE with edge loss to serve as our inference network for our
model.
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(a) Caption (b) Caption (c) Caption

Figure 8.4: Viewing the some sample reconstructions of our trained models. The downwards
order of images are: 1) Input 2) Target 3) Vanilla MSE 4) Vanilla BCE 5) Depth weighted BCE 6)
Depth weighted MSE 7) Depth weighted MSE with edge loss 8) Depth weighted BCE with edge
loss. Note the flipped order for 5) and 6).
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Figure 8.5: Reconstruction of a thin wire observed in our training dataset. We choose the two
MSE and BCE models with edge loss, corresponding to the third and fourth reconstruction re-
spectively.
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Discussion

9.1 Learning Collision Avoidance

When designing a complex navigation policy, a combination of multiple factors ultimately shape
and facilitate the convergence of the training process. Along the curriculum, we observed several
features worth discussion, such as the oscillation of the average return during training, the
existence of poor policy configuration spaces and the seemingly bounded timeout rates. In the
following sections, we aim to uncover the underlying factors which could give rise to these
features, and consider possible improvements.

9.1.1 Oscillations and Low Returns Despite Low Collisions Rates

Two of the most prominent features seen in almost all the figures of Section 7.1 are the os-
cillations of the average return, and the combination of low returns with low collision rates.
Beginning with oscillations, we mentioned that intuitively, these can be accredited to the ex-
ploratory nature of a reinforcement learning agent, such that attempting poor actions are a part
of the learning process. But, what does this mean exactly? We can ask ourselves – why were the
oscillations so large, or why did the policy not just continue improving after finding the goal?
These may sound like naive questions, but are in fact a part of large, central themes of deep

reinforcement learning, primarily the questions of exploration and stability during training – to
which a multitude of algorithms have been developed to “solve”. Taking for example the novel
on-policy PPO, some of its benefits include faster training by, “ignoring uninteresting parts of
the space” and “faster initial planning” [40], better data-efficiency [47], and also “stronger
convergence results” when sampling on-policy [40] and the supposed, “guaranteed monotonic
improvement” from trust-region based policy optimisation [48].
To try and explain the oscillations, we have to remember that we have a very complicated

state-action space, along with a few loss functions in e.g. actor-critics, that results in a very com-

94
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plex optimisation space. We can provide the common analogy that the policy space is like hills
on a grassland, where we wish to perform gradient ascent to reach the highest peak. An example
given in Section 7.1.2 was that we observed an early behaviour where the agent had learned to
avoid obstacles by passing them always on one side. This example could correspond to a locally
optimum solution for that environment – or a hill. However, in progressively cluttered envir-
onments, this locally optimal solution does not hold and results in crashes that push the agent
away from that locally optimum solution. In a more complicated optimisation space, the hills
becomes a mountain range which have sharp maxima due to the high-dimensional optimisation
space. So in this situation, if we move away from a locally optimal solution, the agent policy
can either diverge if the actions performed are exceedingly poor – resulting in high actor losses
and gradient updates that push the policy completely off the mountain – or it could find itself
converging to a new locally optimum solution – to the neighbouring mountain. But in between
mountain peaks, the observed policy performance would be poor, such that we observe large
dips in the average return. In addition, due to accidents and the random nature of our stochastic
policy, small deviations that motivate our policy to keep exploring the policy space is inevitable.
However, this theory does not explain how the collision rate stays low in between locally

optimal policies. This is a more difficult question, as we cannot simply excuse the good perform-
ance to random exploration as we did for the average return. To provide justification to this, we
can attempt to explain it through the reward function.

9.1.2 Converging to an Optimal Policy with Sparse Rewards

The only feedback signal an agent receives while searching its complex optimisation space is
the notion of the reward. We can think of the reward as the guide for providing gradients in this
optimisation space, and the reward function as the one which shapes it. In hindsight, a rather
clear aspect of the reward that was not apparent during its design was the problem of sparse
rewards combined with heavy penalty shaping. Sparsity in this context refers to the amount of
states in the state distribution that actually provide a reward, while shaping refers to the notion
of adding extra reward terms to shape the final behaviour of the quadrotor. In our case, the
positive rewards only applied to the states very close to goal, while the added penalties could
apply to all states, as seen in Section 5.1.1.
This concept can therefore explain why collision rates were consistently quite low, while

“optimal” policies were less common. Since we shape the reward function with many penalties,
the task of avoiding an obstacle is well-defined meaning that with enough experience, the agent
will understand to not crash into obstacles due to its prevalent penalties. In contrast, state-action
pairs that should deserve to trigger reward (by passing obstacles safely or to mark progress)
do not get rewarded, which can result in the quadrotor having to sample the environment
intensively in order to find those rewards to obtain gradients to push it back to a locally optimal
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solution space – reflected through the significant, relatively low-frequency oscillations of the
reward function.
Though this motivates us to shape the reward function more, it can be argued that ideally

we wish to avoid doing so. The main reason is that reward shaping is a adds a layer of human
bias on an already very complicated task, which could lead to sub-optimal performance unless
those rewards were engineered by some expert in the task. Otherwise, added features could lead
to unexpected consequences – as mentioned in Section 5.1.1, “any undesired behaviour that is
observed in test-time is often a consequence of a poorly designed reward function”. Nonetheless,
despite having sparse rewards, we did observe that the agent managed to learn how to solve
its training task to a great extent at specific iterations, such as the best policy in for 9 obstacles
in Section 7.1.5 which proved to be optimal for its task during evaluation. But then a natural
follow-up would be: with such sparsity in the reward function, how did the agent learn how to
perform so well across its entire state-space distribution?
A more theoretical explanation follows from the definition of the problem task, and how

reinforcement learning agents learn optimal policies. We first note that an optimal policy does
not need to learn how tomaximise its return from all states, but only the states under the induced
trajectory distribution pπ. This is important since PPO is on-policy, such that due to it limited
exploration it could perform quite poorly in states uncommon under its current policy πθ . This
was also observed to some extent in the large environment in Figure 7.18, where the a large
proportion of crashes occurred in states which were uncommon. Next, we have to recall that
by definition, maximising its return means to maximise the infinite sum of discounted reward.
This means that even though we have sparse rewards, the expected return for states-action
pairs far away from goal are non-zero. In fact, if we take a simple example where the reward
function is just +8 if goal is reached, and we assume it takes 160 timesteps to reach goal (the
length of our episodes), the expected return for being in its current state should be evaluated
to be 8 ∗ 0.99160 = 1.6, where we choose the discount factor γ = 0.99. In this example, the
sum of discounted rewards was simply the last timestep of the whole episode, though for our
training setup the reward is much more significant since we allow the reward to be gathered
until timeout (on timeout we also bootstrap the critic estimated return to the reward), while
the penalties are quite low with the exception of the collision penalty. This means that while
PPO is training, even though actions do not produce rewards immediately, the critic network
should have an idea of the value of certain states, such that it can calculate the advantage bAt

and provide correct gradient feedback to the policy. Therefore, if certain actions incur penalties
straight away, but the trajectory ultimately leads to goal, the policy will be updated to increase
the probability of doing these actions again (given that the critic did not expect them to reach
goal).
Yet, if we continue to larger and more complicated tasks, we can approach a problem where

these rewards are very rarely sampled. Thus, if a policy continuously samples a trajectory where
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all actions lead to a collision, the critic will evaluate any action at all as bad, since the expected
return is less than just remaining still. Therefore, another detail to keep in mind is that the
number of timesteps cannot be too low such that the quadrotor has no time to reach goal. If we
increase the episode length, the agent will be less “rushed” to reach the goal, and can so take
more careful or elaborate routes to obtain the reward. This can also explain why we observed
the timeout rates to be higher in the training plots for the 3-obstacle rate compared to the 1-
obstacle, as we increased the number of timesteps from 100 to 160. However, the number of
timesteps to set should be upper bounded, due the the discounted nature of the return.
To summarise, the expected value of states far away from rewards must be non-zero, such

that gradients for actions performed in these states can be evaluated. Then to ensure this, we
identify two important factors:
• The number of timesteps between start and goal cannot be too large (> 400t imesteps).
Otherwise, the expected return for early states would be negative due to the heavily dis-
counted reward and prevalence of penalties in the environment.

• Despite being sparse, rewards cannot be too sparse to the extent they are never experi-
enced. Otherwise, the policy will never be able to motivate any choice of action.

To deal with the first point, we can limit the size of the environment to some maximum size
or increase the discount factor to a larger value, such as 0.998 in [49]. As for the second, we
can ensure that the agent always has time to reach goal by increasing the episode length some
minimum value. However, this is not always necessary if we include a curriculum.

9.1.3 The Role of the Curriculum

In situations where it is desirable to have sparse rewards, we can utilise a curriculum to solve
the problem. In this context, curriculum learning enables us to utilise a simple reward function
for learning a complicated task by defining goals of appropriate difficulty for the current policy
[84]. Particularly, in regards to robotic tasks, searching directly in the policy space is difficulty,
because “it deals simultaneously with complex environmental dynamics and a complex policy”
[43]. That is also why [64] states that pretraining is necessary for them, or otherwise the robot
wanders around and never accumulates reward. This motivates us to use a curriculum, though
at the cost where the curriculum must be defined.
As we observed in the navigation evaluation studies, the learned policy could do well in

for tasks it had trained for, though this had taken over 14 hours to learn. The overall initial
concern is that reinforcement learning is generally sample-intensive, which is why learning a
policy from scratch almost always demands the use of a simulator. This was due to the nature of
optimisation, where the policy cannot learn how to solve a complicated task unless the policy
repeatedly attempts some “lucky” sequences of actions which have high reward, and provides a
large gradient to initially push the policy network in the right direction. This was also discussed
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in the training stage, where despite having a curriculum, choosing policies sometimes amounted
to hoping for lucky combinations of good navigational ability and careful collision avoidance.
Therefore, rather than waiting for a lucky sample trajectory, the curriculum places the policy

is an ideal policy space such that the return for states in its state distribution pπ is well defined.
So for our task, with only rewards near goal, we essentially solve the problem of sparse rewards
when we pretrain the policy to navigate towards goal. Intuitively, sparse rewards are defined as
rewards that only influence very few states – but under a waypoint reaching policy, the states
near goal are now a large part of the policy’s state distribution.
As a result of this, we can see for example in Figure 7.3, we can create a navigation policy

that knows how to avoid one obstacle over 80% of times is just 30 minutes. However, learning
this as quickly would not possible for end-to-endmethods, unless we provided amore descriptive
reward function that provided feedback to all states.

9.1.4 Exploration with Parallel Sampling

The underlying idea with the curriculum is that we wish to experience the most common states
such that we can learn the best actions for these states quickly. In other words, we compensate for
the limited exploratory nature of on-policy PPO by explicitly aiding the exploration of the policy.
Yet, simply introducing a curriculum to train a generalisable policy is not straightforward since
we might artificially limit what it can explore, such that the policy converges to a strictly local
optimal solution. The benefit of parallel initialisation and sampling is that we can have varied
environments, such that we facilitate exploring multiple states simultaneously. This addresses
three things: first, to converge to an optimal solution we require very accurate gradients, second,
for stability PPO requires that sampled data is from a very recent policy [85], and third, to learn
a complex behaviour requires a wide variety of challenges [21].
To solve the first task, obtaining accurate gradients is synonymous with reducing variance in

gradient updates. One of the most direct ways of reducing variance is through large batch sizes.
Parallel sampling allows us to sample very large batch sizes, while making it computationally
efficient to do so. Second, since PPO is based on a proximal policy, our policy gradient is affected
by a clipping so to not move too far from some recent policy. This requires that gradient updates
are made in small increments, very often to maintain stability – data collected from a very
old policy cannot be used to calculate gradients for a new policy [85]. With parallel sampling
with Isaac Gym, we avoid this problem since a recent policy is always used to sample data,
and through its end-to-end simulation, we avoid asynchronous update schemes such that data
is only sampled after the policy has been updated. Finally and most intuitive, by exposing our
policy to many environments simultaneously, the learned behaviour can instantly be applied to
all those settings. The mentioned benefits are also in line with [86], which give credit to three
main reasons for their success with PPO: 1) parallel sampling scheme 2) distributed initialisation
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strategy 3) random track curriculum.

9.2 Collisions in an Otherwise Optimal Policy

Now that we have seen some of the reasons for how our agent has learned an optimal policy, we
can delve into some possible reasons why certain behaviours were displayed during evaluation.
Namely, we will look more closely into the causes of collisions, why our results could not readily
be generalised to larger environments and possible improvements.

9.2.1 Collisions by the Goal

Evident in almost all test plots are the collisions that occur when the quadrotor are at goal. These
are also the most unintuitive and difficult to explain. The first possible explanation is that due
the the very parallel sampling scheme, by pure randomness in the sampled actions of the policy,
the agent might accidentally collide with the ground. This can be unlikely since we observed
high robustness to noise in the robustness test, and collisions were no-more likely in the noisy
case than for the normal cases.
Conversely, it was observed post-testing that many of these ‘collisions’ occurred while the

quadrotor was in the air, which further added to the confusion. However, if we recall from how
we detect collisions in the first place, this was either through a contact force measurement or
being less than 0.2m from an obstacle. From this we can identify that the quadrotor does not
necessarily have to collide with the ground, but only be within 0.2m of it. So then, since the agent
has no idea of its height with respect to the global coordinate frame, only with respect to the
target, we can see how collisions can occur when the target is initialised to have z ∈ [0.5,1.5],
as the agent has only a 0.3m margin from collision when the goal is initiated at its lowest.
We can see that this explanation does make collisions near goal more plausible due to small

margins, but it does not explain why the quadrotor descends so low. For this, we can recall
from the evaluation studies that descending was a response to two events: either to reach goal
from recently flying over an obstacle, or when reversing when the path ahead is blocked. Fol-
lowing this, we can imagine that when the quadrotor is very high and the goal is initialised at
the bottom, this could result in collision, as mentioned in the evaluation. Furthermore, when
flying through the environment, the quadrotor position is generally quite high. If we consider
Figure 7.15, we can see that all out of bounds events are right by goal suggesting that its posi-
tion is very high even here. Furthermore, we can justify over-descent since we observe the agent
over-shooting the goal, such that it has trajectory very often goes beyond the plotted targets.
Yet, by overshooting the goal, this leads to another unintended consequence, namely going

to close to the edge such that it starts to reverse and descend. As already mentioned, this is a
an adverse behaviour that the policy has learnt for unknown reasons – most likely just to pass
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beneath simple-u obstacles. Nevertheless, we see that if the quadrotor position is quite lowwhen
it approaches the edge wall, a collision can occur too. This behaviour was also observed when
we (accidentally) ran the depth robustness test with multiplicative Gaussian white noise – since
the depth images were set to 0 the quadrotor would reverse in circles until collision with the
ground.
So, even though our policy is optimal in the sense of collision avoidance, it is not optimal in

all aspects. To fix this problem is fortunately quite straightforward, we can increase the target
and quadrotor minimum initialisation position, to be e.g. between 1.0 and 2.0 such as in Isaac
Gyms Ingenuity example.
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9.2.2 Difficulty of Simple-U’s

(a) First input (b) First reconstruction: a table

(c) Second input (d) Second reconstruction: a stone

(e) Third input (f) Third reconstruction: a stone

Figure 9.1: Visualising the difficulty to reconstruct simple-U’s. This difficulty suggests that the
obstacle is not represented properly in the VAE latent space.

Another challenging aspect of the quadrotor performance seemed to be the collision avoidance
of the simple-U obstacles. We can also observe, for example in Figure 7.8, that the agent opts
to fly around these when it is simpler to fly through them. Intuitively we can accept this since
the agent does risk colliding with the sides and the top of the arch when passing through,
which is not in line with a conservative policy. However, it other cases, such as in the large
environment, this behaviour led to many collisions as the quadrotor instead attempted to pass
a narrow opening to the left of the simple-U instead of going through.
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To explain the difficulty of this obstacle, we found out during the depth tests that this is
most likely due to the VAE not properly being able represent the simple-U in its latent space.
From Figure 9.1, we see that due to the filtered nature of the VAE, the arches become coloured
in, such that they more closely represent a rounded stone than an arch. So the reason for not
properly being able to navigate through these obstacles is not necessarily due to poor motion
planning, but rather due to not being able to clearly see it.

9.2.3 Lack of Normalisation in Larger Environments

Initially, the performance of the agent in the large environments were largely unexpected. We
explained that this is more likely due to a lack of generalisation, yet a simple change in en-
vironment size should be compensated for due to normalisation. Generally, if we wish to use a
single architecture for a variety of tasks, we should normalise the input and outputs of the agent
[43]. When we analysed the implementation of Isaac Gym’s normalising method – the Running-
MeanStd class – we realised the once the agent training had been completed, the means and
variances of our observation and action spaces are fixed by parameters, which are then loaded
in at test time.
Since we did not normalise our observation space in our environment definition, through

e.g. dividing the x and y observations by a function of the environment size, this resulted in
the quadrotor receiving much higher value observations for its position than normal. Thus, as
discussed in Section 9.1.4, by not having the opportunity to explore this state-space leads to
inferior performance. This goes in combination with our prior explanation for poor performance
in the evaluation, where we reasoned that the the agent was not used to seeing obstacles so early
on its state-space.
Thus, in future implementations, we should also normalised the observation and action

spaces as a function of their max value so that the performance of the policy is unaffected
by changes in the environment at test time.

9.2.4 A Reactionary Policy

Despite good performances, there is still room for improvement. As we saw in the evaluation
studies, even with a near perfect score in the known environments, the policy could still crash
even in the easy environment, seen in Figure 7.8. Otherwise, we saw that in the hard envir-
onment in Figure 7.10, the agent was subject to many pass-by and tight collisions, mainly as
a result of an indirect approach and turning into a collision due to “not remembering” that an
obstacle is right next to them. Since this is a problem that the agent cannot predict, it can also
lead to inferior training performance.
From the evaluation, we observed that the policy couldmend this problem itself by producing

actions that do not put it too close to obstacles. However, in situations where we cannot decide
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on the environment before hand, such as in a random test environment in real-life, how can we
prevent this? This leads use to the main improvement that should be done with this approach,
which is to included some form for internal memory. This was proposed already quite early
on, in works such as [25] and implemented in [65], where we use the RNN hidden state rather
than the VAE latent code as a representation of the world. The discussion from [25] summarises
this very well, stating “we observed that the deep planner is able to avoid small dead ends if it
approaches them from the outside. Once the robot enters a convex dead-end region, it is not
capable of freeing itself. In addition to that, the robot’s heading sometimes fluctuates before
avoiding an obstacle. This issue will be further analyzed and might be solved by using recurrent
neural networks with internal memory”. These were points were also discussed in the form of
corner-situations and the concept of a favourite side for passing obstacles in the evaluation. By
introducing a memory state, we also avoid this blindness problem when passing by obstacles
and can more precisely pass obstacles in both pass-by scenarios but also tight ones. Moreover,
since the agent being able to predict not just one time-step ahead (in a state-action mapping)
policy, but also be able to predict its position and actions for future time steps, it should be able
to more carefully judge which actions should be taken in the current timestep.
Generally, this approach has been widely adopted for local motion planning [13, 24, 53]

such that we can expect to gain an even better performance, particularly for the hard and larger
environments. However, a paper which found that this should not be taken for granted as from
their tests, only marginal performance was gained in using an LSTM hidden state, where they
concluded the most important design choice was to include the use of a latent code from a VAE
as a representation.

9.3 Learning a Latent Space for Collision Avoidance

In the VAE results, we saw that despite the training curves being uninformative, the use of differ-
ent reconstruction errors resulted in very image outputs. We explain some of the consequences
and some why they are so different.

9.3.1 MSE versus BCE

Though perhaps less clear than the modifications to the loss functions, is why the MSE and
BCE had so different output reconstructions. To explain this, we can recall that the the main
difference in the losses is what distribution they assume the input data distribution to be. Both
methods do maximum likelihood estimation, but BCE assumes that our data is Bernoulli distrib-
uted, while MSE assumes it is Gaussian. What this means is that the since Bernoulli distributed
variables are either 0 or 1, our BCE has a bias to pushing pixels a more contrastive difference
– black or white. On the other hand, MSE assumes that our data is centered around 0.5, and
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that pixel values are less likely to be at the extreme values. This shows why the BCE sometimes
imagined that obstacles were closer than they were and had high contrast, while MSE had blur
reconstructions, though could on average be more accurate in terms of depth.

9.3.2 Depth Gain and the Edge Loss

Though less apparent in the results is the difference between the depth gain and edge loss
models. The main motivations for the edge loss was to curb the adverse effect of over-blurring
the depth images. Since we specified that it was important to at least detect close obstacles, the
VAEwas inclined to create very large obstacles, or even phantom obstacles. This occurred because
the VAE only incurred a high loss if it did not detect a close obstacle, but not if it misdetected
one. In comparison, the edge loss did improve the resolution (contrast) of the reconstructions,
so that they are not over-blurred as a result of filtering. In a sense, it provides an extra loss signal
to give the VAE a direction on how to filter depth images implicitly.

9.3.3 Latent Over-Fitting

A consequence of learning how to minimised edge reconstruction error is the possibility of over-
fitting. In other words, due to the large weight of the edge loss, the VAE will indirectly learn
what objects have what edges. In our training plots, we see that this is not an issue for the edge
losses – but we have to remember that the training and test sets both have the same depth data
distribution, such that no new obstacles are seen at test time. Therefore, there is a possibility
that the VAE has been over-fitting the depth data distribution, such that it generalises poorly to
unseen ones, despite having no increase in test loss.
This is also a possible reason why the simple-U’s were reconstructed poorly, as they were not

part of the input dataset. To mitigate this, we could simply ensure that our simulated dataset has
the same distribution of shapes and obstacles that we will have at test time (real environments
or otherwise). However, the more correct approach is to simply reduce the possibility of over-
fitting by introducing some form or regularisation in the VAE network, such as Monte Carlo
dropout done in [23] and [24].
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Conclusions

Learning-based approaches to autonomous navigation in cluttered environments are becom-
ing increasingly popular due to being able to learn flexible, complex behaviours that can solve
various challenging tasks without the need to explicitly program them. Due to their ability to
represent complex functions through deep architectures, they are able to direct map raw sensor
inputs to actions which, combined with the fast parallel computing hardware, allows them to
plan and execute actions at a speed at which a model-based pipeline cannot compete. Further,
when presented with a novel task with no prior demonstrations and an optimal solution that
is hard to formulate, reinforcement learning provides a method to learn this through only the
specification of an abstract reward function.
In this thesis, we thus explored the ability of reinforcement learning to solve a collision avoid-

ance task for a quadrotor using only a depth camera. We proposed the use of a two-part CNN-
MLP model, where the CNN is the inference network of the VAE, while the MLP serves as the
reinforcement learning agent actor-critic. To shape our model for collision avoidance, we then
introduced a novel reward function for the reinforcement learning agent and a novel loss func-
tion for the VAE. The reward function was shaped with penalties to demotivate risky behaviour,
which in hindsight may not have been optimal due to the inherent sparsity of rewards. Similarly,
the customised reconstruction error of the VAE enabled us to prioritise collision-relevant features
of depth images, though it potentially resulted in over-fitting of the depth data distribution.
Nonetheless, the evaluation studies showed that the overall approach was successful at its

task, achieving 98.6% in the hard environment which accounted for tight space. The approach
also showed promising robustness to noise in the quadrotor state and actions, where its adverse
effects were most present in tight paths, such as in the hard environment. Despite these results,
the study also showed that much could be improved, both in the proposed approach and the
implementation of our model. Specifically, it was shown that many pass-by collisions occur due
to blindness when turning, the agent frequently reversed or descended into collisions, and the
agent maintained a bias when navigating past obstacles. It was discussed that to alleviate these

105
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problems, the concept of an internal memory had to be added to the policy, through, for example,
the hidden state of an RNN, such that the agent is capable of predicting collisions more than
one timesteps ahead, remembering passed obstacles, and finally capable of deciding more fine-
tuned actions which account for these. Otherwise, implementation errors included a too small
margin between the goal height and ground, and a lack of normalisation in the environment
setup.
Moreover, this thesis demonstrated the importance of a meaningful and well-formed latent

space, where we saw that the latent code captured the placements of obstacles and their edges.
By adding the filtering operation to be implicitly learned in the forward pass of the VAE, we
simplify the complexity of the depth images such that the VAE focuses only on rough shapes,
and we achieve a layer of safety when navigating close to obstacles. However, we saw that the
navigation policy is highly dependent on accurate depth images, such that in the future, we
should account for noisy depth images by training the VAE to perform denoising.
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Appendix A

Algorithms

A.1 One-step Actor-Critic

Algorithm 1 One-step Actor-Critic, from [40]
1: Input: a differentiable policy parameterisation π(a | s,θ
2: Input: a differentiable state-value function parameterisation v̂(s, w )
3: Parameters: step sizes αθ > 0, αw > 0 (learning rates)
4: Initialize policy parameters θ ∈ Rd ′ and state-value weights w ∈ Rd

5: for each episode do
6: Initialize S (first state of episode)
7: I← 1
8: while S is not terminal do
9: A ∼ π(̇|S,θ )
10: Take action A, observe S’, R
11: δ← R+ γv̂(S′, w )− v̂(S, w )
12: w ← w +αwδ∇v̂(S, w )
13: θ ← θ +αθ Iδ∇ lnπ(A | S,θ )
14: I ← γI
15: S← S′

16: end while
17: end for

This implementation is taken from the Sutton & Barto’s book [40].
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A.2 Proximal Policy Optimization

Algorithm 2 PPO Actor-Critic style, from [47]
1: for iteration = 1, 2, ... do
2: for actor = 1, 2, ..., N do
3: Run policy πθold

in environment for T timesteps
4: Compute advantage estimates Â1, ..., ÂT
5: end for
6: Optimize surrogate L with respect to θ , with K epochs and minibatch size M ≤ N T
7: θold ← θ
8: end for

This implementation is acquired from the original paper [47]. Note that in our implementation
we have N = 512 actors.

Algorithm 3 PPO-Clip, from Spinning Up, OpenAI
1: Input: initial policy parameters θ0, initial value function parameters φ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute the return R̂t .
5: Compute advantage estimates, Ât based on the current value function Vφk

6: Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

min

�

πθ (at |st)
πθk
(at |st)

Aπθk (st , at), g(ε, Aπθk (st , at))

�

,

typically via a stochastic gradient ascent algorithm with Adam.
7: Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

�

Vφ(st)− R̂t

�2
,

typically via some stochastic gradient descent algorithm.
8: end for

Algorithm 3 is acquired from OpenAI’s Spinning Up documentation:
https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html
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A.3 Auto-Encoding Variational Bayes

Algorithm 4Minibatch version of Auto-Encoding Variational Bayes (AEVB) algorithm, from [32]
θ ,φ← Initialise parameters

2: repeat
X M ← Random minibatch of M datapoints (drawn from the full dataset)

4: ε← random samples from noise distribution p(ε)
g ←∇θ ,φLM (θ ,φ; X M ,ε) calculate gradients of minibatch estimator (2.10)

6: θ ,φ← g Update parameters using gradients g
until convergence of parameters

This implementation is acquired from the original paper [32]. We chose a Gaussian distribution
N (ε; 0, 1) for the noise distribution p(ε), and updated our parameters using Adam [83].



Appendix B

VAE

The parameters and output shapes of each layer in the VAE are presented in detail. Their format
follows the PyTorch convention, where for example, [-1, 32, 135, 240] represents the batch
dimension, number of filters and dimension of the feature map. The outputs are generated from
the torchsummary package at https://github.com/sksq96/pytorch-summary.

B.1 VAE Encoder

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d-1 [-1, 32, 135, 240] 832

Conv2d-2 [-1, 32, 68, 120] 25,632

BatchNorm2d-3 [-1, 32, 68, 120] 64

Conv2d-4 [-1, 32, 34, 60] 9,248

BatchNorm2d-5 [-1, 32, 34, 60] 64

Conv2d-6 [-1, 32, 34, 60] 9,248

Conv2d-7 [-1, 32, 34, 60] 1,056

BatchNorm2d-8 [-1, 32, 34, 60] 64

Conv2d-9 [-1, 64, 17, 30] 18,496

BatchNorm2d-10 [-1, 64, 17, 30] 128

Conv2d-11 [-1, 64, 17, 30] 36,928

Conv2d-12 [-1, 64, 17, 30] 2,112

BatchNorm2d-13 [-1, 64, 17, 30] 128

Conv2d-14 [-1, 128, 9, 15] 73,856

BatchNorm2d-15 [-1, 128, 9, 15] 256

Conv2d-16 [-1, 128, 9, 15] 147,584
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Conv2d-17 [-1, 128, 9, 15] 8,320

Linear-18 [-1, 128] 2,211,968

Linear-19 [-1, 128] 16,512

================================================================

Total params: 2,562,496

Trainable params: 2,562,496

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.49

Forward/backward pass size (MB): 16.16

Params size (MB): 9.78

Estimated Total Size (MB): 26.43

----------------------------------------------------------------

B.2 VAE Decoder

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Linear-1 [-1, 1, 128] 8,320

Linear-2 [-1, 1, 17280] 2,229,120

ConvTranspose2d-3 [-1, 128, 9, 15] 147,584

ConvTranspose2d-4 [-1, 64, 17, 30] 204,864

ConvTranspose2d-5 [-1, 64, 34, 60] 147,520

ConvTranspose2d-6 [-1, 32, 68, 120] 73,760

ConvTranspose2d-7 [-1, 32, 135, 240] 25,632

ConvTranspose2d-8 [-1, 16, 270, 480] 18,448

ConvTranspose2d-9 [-1, 1, 270, 480] 401

================================================================

Total params: 2,855,649

Trainable params: 2,855,649

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.00

Forward/backward pass size (MB): 28.22

Params size (MB): 10.89

Estimated Total Size (MB): 39.11

----------------------------------------------------------------
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B.3 VAE

Note that the two Lambda layers simply perform amiddle split of the last layer of the encoder ac-
cording the the dimension of z t . This is to recover the mean and covariance of the parametrised
approximate posterior qφ(z|d), as shown in Figure 5.7.

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d-1 [-1, 32, 135, 240] 832

Conv2d-2 [-1, 32, 68, 120] 25,632

BatchNorm2d-3 [-1, 32, 68, 120] 64

Conv2d-4 [-1, 32, 34, 60] 9,248

BatchNorm2d-5 [-1, 32, 34, 60] 64

Conv2d-6 [-1, 32, 34, 60] 9,248

Conv2d-7 [-1, 32, 34, 60] 1,056

BatchNorm2d-8 [-1, 32, 34, 60] 64

Conv2d-9 [-1, 64, 17, 30] 18,496

BatchNorm2d-10 [-1, 64, 17, 30] 128

Conv2d-11 [-1, 64, 17, 30] 36,928

Conv2d-12 [-1, 64, 17, 30] 2,112

BatchNorm2d-13 [-1, 64, 17, 30] 128

Conv2d-14 [-1, 128, 9, 15] 73,856

BatchNorm2d-15 [-1, 128, 9, 15] 256

Conv2d-16 [-1, 128, 9, 15] 147,584

Conv2d-17 [-1, 128, 9, 15] 8,320

Linear-18 [-1, 128] 2,211,968

Linear-19 [-1, 128] 16,512

Dronet-20 [-1, 128] 0

Lambda-21 [-1, 64] 0

Lambda-22 [-1, 64] 0

Linear-23 [-1, 128] 8,320

Linear-24 [-1, 17280] 2,229,120

ConvTranspose2d-25 [-1, 128, 9, 15] 147,584

ConvTranspose2d-26 [-1, 64, 17, 30] 204,864

ConvTranspose2d-27 [-1, 64, 34, 60] 147,520

ConvTranspose2d-28 [-1, 32, 68, 120] 73,760

ConvTranspose2d-29 [-1, 32, 135, 240] 25,632

ConvTranspose2d-30 [-1, 16, 270, 480] 18,448
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ConvTranspose2d-31 [-1, 1, 270, 480] 401

ImgDecoder-32 [-1, 1, 270, 480] 0

================================================================

Total params: 5,418,145

Trainable params: 5,418,145

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.49

Forward/backward pass size (MB): 45.37

Params size (MB): 20.67

Estimated Total Size (MB): 66.53

----------------------------------------------------------------
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Training Plots

C.1 Large Environment Policy
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Figure C.1: Training the navigation policy with 15 obstacles in an environments of size [24, 12].
The best model is selected at 4410 iterations.
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Figure C.2: Training the navigation policy with 25 obstacles in an environment of size [30, 15].
The best models were selected at 6550 iterations.
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Environments

D.1 Known Environments with Varied Clutter

Each of the following environments have a dimension of [20, 10].

Figure D.1: The easy environment, with 7 obstacles.
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Figure D.2: The medium environment, with 9 obstacles.

Figure D.3: The hard environment, with 12 obstacles.
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Figure D.4: The hard-swapped environment, with 12 obstacles. The chair and simple stone in
the center are swapped to not artificially block the agent.

D.2 Large Environment

Figure D.5: The large environment, with a dimension of [30, 15] and 25 obstacles.
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