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Abstract

Magnetic susceptibility (χ) is an intrinsic property of all materials describing its tendency to be-
come magnetized when placed under a magnetic field. The distribution of tissues with different
magnetic susceptibility properties within the human body induces field distortions in MRI, which
are typically strong and complex adjacent to abrupt susceptibility interfaces, e.g., air-tissue inter-
faces. The field distortions are hard to remedy with today’s shimming technique, and will generate
imaging artifacts, primarily signal loss and geometric distortions. The problem of field homogen-
eity is magnified in high field MR, as susceptibility-induced magnetic field distortions scale linearly
with the magnetic field strength, and are a limiting factor for the theoretical gain of various high
field MR applications. The ability to achieve accurate subject-specific B0 field inhomogeneity using
a numerical model can provide valuable insight for the work to minimize susceptibility artifacts
through shimming and sequence optimization.

A Fourier-based method was used to rapidly calculate the induced field distortion based on a
subject-specific susceptibility distribution of a human head. The subject-specific susceptibility
map was attained by automatic segmentation of high-resolution anatomical images and by utilizing
the high bone-air contrast of UTE images for further air segmentation. The presence of through-
slice field gradients (Gz,s) was also quantified by a non-linear least-squares fit of the experimental
data from a multi-echo gradient-recalled echo scan onto a signal decay function corrected for the
presence of Gz,s. In addition, Gz,s was quantified by linear fitting of the experimentally measured
field maps and the numerically calculated field offset.

A striking degree of resemblance in shape, extent, and order of magnitude between the simulated
and the experimentally measured frequency offset values, was observed in the prefrontal cortex,
located above the nasal cavity, and the ethmoid and sphenoid sinuses. The same was observed for
the quantified Gz,s-maps. However, the lack of air segmentation in the temporal bone, tympanic
cavity, and parts of the nasal cavity and ethmoid sinuses caused deviations from the experimental
measurements in the brain region adjacent to the mentioned air cavities. In addition, significant
discrepancies between the numerical model and the experimental measurements were observed at
the inferior and superior ends of the brain region, most likely due to the limited jaw, neck, and
shoulder segmentation achieved in the subject-specific susceptibility model.

The Fourier-based method was proven to give valuable information in regions with locally strong
susceptibility-induced field gradients, but some issues remained. The accuracy of the segmentation
step is currently the main limiting factor, but several steps can be taken to improve the achieved
segmentation in future work.
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Sammendrag

Magnetisk susceptibilitet (χ) er en egenskap som alle materialer innehar og beskriver materiales
tendens til å bli magnetisert n̊ar det befinner seg i et magnetisk felt. Den varierende fordelingen
av magnetisk susceptibilitet i menneskekroppen frembringer feltforstyrrelser under MR avbildning.
Magnetiske feltforstyrrelser er vanligvis sterke og komplekse nærme overflater der en br̊a endring
i magnetisk susceptibilitet forekommer, f.eks. ved luft-vev overflater. Et fullsteding homogent felt
er vanskelig å oppn̊a for in vivo m̊alinger med dagens shimming-teknikk, og de gjenværende felt-
forstyrrelsene kan frembringe bildeartifakter, primært signaltap og geometriske forvregninger i det
rekonstruerte bildet. Feltforstyrrelser grunnet forskjeller i magnetisk susceptibilitet er forsterket i
høyfelts MR, da effekten stiger lineært med feltstyrken. Å beregne disse feltforstyrrelsene grunnet
en magnetisk susceptibilitetsfordeling kan gi verdifull informasjon som kan brukes i videreutvik-
ling av shimming-teknikken og bruk av sekvensparametere for å minimalisere tilstedeværelsen av
bildeartifakter som oppst̊ar grunnet induserte feltforstyrrelser.

En Fourier-basert metode ble brukt til å raskt kalkulere de induserte feltforstyrrelsene basert p̊a
en spesifikk susceptibilitetsfordeling til et menneskehode. Susceptibilitetsfordelingen for personen
som blir avbildet, ble anskaffet gjennom automatisk segmentering av anatomiske bilder, og ved å
bruke UTE bilder med høy bein-luft kontrast for videre luftsegmentering. Feltgradienter gjennom
bilde-planet (Gz,s) ble kvantisert ved bruk av ikke-lineær minste kvadraters metode. En korrigert
funksjon som beskriver signalforløpet hvor tilstedeværelsen av Gz,s er tatt hensyn til, ble brukt som
modell i tilpasningen av den eksperimentelle dataen oppn̊add fra en multi-ekko gradient-ekko sek-
vens. Gz,s ble ogs̊a estimert ved lineær approksimasjon av feltkartet oppn̊add ved eksperimentelle
m̊alinger og ved bruk av den numeriske modellen.

En overbevisende grad av likhet i form, utstrekning og størrelsesorden mellom de simulerte og de
eksperimentelt m̊alte frekvensforstyrrelsene ble observert i prefrontal cortex, lokalisert over neseg-
angene, og bihulene etmoid og sphenoid. Det samme ble observert for kartene over kvantiserte
Gz,s verdier. Mangel p̊a luftsegmentering i temporalbeinet, øregangene og deler av nesegangene
og etmoid bihulene, for̊arsaket avvik fra de eksperimentelle m̊alingene i omr̊ader av hjernen nær-
liggende de gitte lufthullene. I tillegg ble det observert betydelige avvik i den nedre og øvre delen
av hjernen mellom resultatene av den numeriske modellen, mest sannsynlig p̊a grunn av begrenset
kjeve-, nakke- og skuldersegmentering.

Den Fourier-baserte metoden ble vist til å kunne gi verdifull informasjon om lokale feltforstyrrelser
som finner sted i deler av menneskehjernen under MR avbildning, men noen begrensninger i de
oppn̊adde resultatene gjenst̊ar. Nøyaktigheten av segmenteringstrinnet er for øyeblikket den viktig-
ste begrensende faktoren, men flere tiltak kan bli tatt for å forbedre den oppn̊adde segmenteringen
i fremtiden.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that exploits a nucleus’s
magnetic property, mainly the hydrogen nucleus (proton), to generate images. MRI has superior
soft-tissue contrast compared to other imaging modalities, e.g., CT, and it has the possibility to
image changes in the metabolic processes giving functional information about the tissues. The
interaction between the nuclear magnetic moment and an applied magnetic field, B0, gives rise
to a nuclear resonance phenomenon that can be utilized to generate radio-frequency signals. The
emitted MR signal from the object is spatially encoded and localized by employing time-varying
spatially linear gradients in each orthogonal direction, giving a linear relationship between the local
field strength and the position of the precessing nucleus along the direction of the gradient. The MR
signal acquisition mechanism assumes that the applied background field is spatially homogeneous
and that the spatial encoding gradients are linear.

The homogeneity of the applied background magnetic field in an MR machine becomes distorted
when a subject is placed within the scanner due to the magnetization of the tissues. A mater-
ial’s tendency to become magnetized when exposed to a magnetic field is described by magnetic
susceptibility (χ), which is a fundamental property of a material (A.D. Elster and J.H. Burdette
2001). χ can be either positive (paramagnetic) or negative (diamagnetic), depending on if the in-
duced magnetization of the tissue aligns or opposes the direction of the applied magnetizing field.
The human body consists of a distribution of tissues with different magnetic susceptibilities, where
most of the human tissues are diamagnetic with χ-values similar to that of water (Marques and
Bowtell 2005). However, the human body is surrounded by air, which has a weak paramagnetic
susceptibility value and embodies internal air cavities, causing interfaces between soft tissues and
air. The difference in magnetization between the tissues gives rise to locally susceptibility-induced
perturbing fields and, thus, causes static field inhomogeneity that is patient-to-patient specific.
The field inhomogeneity will be most pronounced at tissue interfaces with an abrupt change in
susceptibility value, e.g., air-soft tissue and air-bone interfaces. In addition, iron is a strongly
paramagnetic material in the human body that also contributes to strong susceptibility interfaces.

The difference in magnetic susceptibility for biological components can be utilized on a microscopic
scale as a source of contrast. Specifically, blood oxygenation level dependent (BOLD) imaging,
used to generate functional MR images (fMRI), utilizes the change in magnetic susceptibility
between oxygenated and deoxygenated hemoglobin to measure the brain activity of specific parts
of the brain by correlating the temporal evolution of the signal change with an applied stimulus
(Ogawa et al. 1990). However, as well as being a source of contrast, it is also a dominant source
of artifacts in MRI, both on a microscopic and macroscopic scale. The main artifacts caused
by the local susceptibility-induced field inhomogeneity are geometric distortion and signal loss.
Geometric distortions occur in the reconstructed image when the presence of field distortions
induces significant macroscopic field shifts. The induced field shifts disrupt the linearity between
position and local field strength defined by the spatial encoding gradients, and the affected nuclei
will precess at a different frequency than what is assumed by the MR acquisition mechanism,
causing faulty spatial mapping of the MR signal. Signal void is prominent in areas where the local
field variations induce intravoxel dephasing of the individual magnetic moments. The artifacts are
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prominent at tissue interfaces with an abrupt change in susceptibility value. The magnitude of
the field distortions scales linearly with the applied magnetic field (Juchem et al. 2011; Schäfer
et al. 2009). The susceptibility-induced field distortions cause limitations in the theoretical gains of
MRI, especially in fMRI and high field MR measurements (Juchem et al. 2011). The particularly
strong and localized susceptibility artifacts generated at locations near air-tissue interfaces can
significantly compromise the detection of neural activation in nearby brain regions, making it
difficult to obtain reliable information (Wilson et al. 2002). Problematic brain areas affected by
the susceptibility-induced field gradients include the prefrontal cortex and the medial and inferior
temporal lobes (Deichmann, Gottfried et al. 2003; Juchem et al. 2011). In addition, for high-field
imaging where more minor susceptibility differences are exacerbated, the bone-soft tissue interfaces
will also contribute to generating highly variable local field gradients, e.g., around each vertebra
in the spine, causing complications in spinal cord imaging.

Techniques to minimize local magnetic field distortion in MRI include shimming and optimizing
sequence parameters. Shimming is a process that tries to homogenize the B0 field. Improving the
homogeneity of B0 will improve both forms of susceptibility artifacts. Active shimming involves
generating correcting magnetic fields described by spherical harmonic functions on a patient-to-
patient basis. It is applied before imaging by directing current through specific coils localized in
the MR machine system. However, today’s active shimming design is not able to eliminate the
strong and complex variable field distortions, and a residual field inhomogeneity will be present
(Juchem et al. 2011). Today, research is largely done on the use of a multi-coil shimming technique
(Juchem et al. 2011; Stockmann et al. 2016). The localized shimming technique utilizes a number
of individual electrical coils that can emit a set of spherical harmonic basis functions and generates
localized gradient field patterns close to the coils (Juchem et al. 2011). Even though the technique
has been shown to improve the magnetic field homogeneity significantly, it cannot fully homogenize
the entire brain region, and some residual field inhomogeneities will be expected (Juchem et al.
2011). Optimization of sequence parameters can be performed to minimize the signal loss caused
by local field variations (Huang et al. 2015). Sequence optimization involves using spin-echo (SE)
sequences instead of gradient-recalled echo (GRE) sequences, shortening the echo time (TE) and
decreasing the voxel size (Bernstein et al. 2006; Huang et al. 2015). In addition, increasing the
receiver bandwidth can be done to minimize the effect of the local magnetic field gradient across
the imaging voxels, helping both against signal loss and geometric distortion (Huang et al. 2015).
However, sequence parameter optimizations do not come without a cost. Decreasing the voxel
dimension or increasing the receiver bandwidth for the equal resolution will reduce the signal-to-
noise ratio in the image, and T ∗

2 -contrast will effectively be lost by shortening TE (Liang and
Lauterbur 2000; McRobbie et al. 2017). In addition, there are situations where SE sequences
cannot be used instead of GRE sequences to obtain necessary information, e.g., fMRI, which relies
on the rapid signal acquisition and the BOLD effect as imaging contrast.

Currently, the presence of field inhomogeneities cannot be entirely eliminated and will cause lim-
itations in the image quality and, thus, the informative value and the theoretical gain in MR,
especially for scanners using higher field strengths where the problem is magnified (Juchem et al.
2011). Obtaining a fuller understanding of the characteristics of the induced complex field distor-
tions can help optimize the application of shimming, the shim design, and the sequence parameters
to improve the field homogeneity. Especially, it can be proven valuable in the ongoing research
about the use of multi-coil shimming techniques. Therefore, a numerical model that simulates the
magnitude of the inter-subject induced field distortions is desirable. It has recently been introduced
a Fourier-based approach that rapidly simulates the local magnetic field perturbations (Koch et al.
2006; Marques and Bowtell 2005; Schäfer et al. 2009). The model has initially been tested and val-
idated on simple geometrical structures with known analytical solutions for the induced magnetic
field variation and has been proven to be computational fast with sufficient accuracy depending on
the parameters selected (Schmidt 2021). The aim of this study is to establish a pipeline to yield a
detailed and accurate estimate of the local field inhomogeneity in an individual subject, based on
the segmentation of anatomical images. The simulation will further be validated by comparing the
results to experimentally acquired field maps. In addition, through-plane susceptibility gradients
(Gz,s) will be estimated, both from the results of the model and the acquired field maps, and by
fitting experimental data from a multi-echo GRE (ME-GRE) scan onto a Gz,s-corrected signal
decay function.
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Chapter 2

Theory

Inspiration from the previously written thesis, Schmidt 2021, are used in most parts of Section
2.1, 2.5 and 2.6. In addition, most of the information used in the basic MR theory section are
taken from the books written by Liang and Lauterbur 2000, Brown et al. 1999, Dance et al. 2014,
A.D. Elster and J.H. Burdette 2001, McRobbie et al. 2017, and Weishaupt et al. 2008.

2.1 Basic MRI

MRI is a non-invasive diagnostic imaging technique that is preferred over other imaging techniques,
e.g., CT, due to the superior soft tissue contrast in MR images. In addition, MRI can obtain
functional information about the brain. Instead of using harmful radiation, such as in CT, to
produce anatomical images, MRI utilizes a magnetic field. MRI is based on the nuclear magnetic
resonance (NMR) phenomenon, arising from the interaction between an applied magnetic field and
the magnetic moment of a spinning nucleus. The principle of NMR is understood by looking at a
subatomic level where the particle’s behavior follows quantum mechanics. Fortunately, MRI looks
at the collective behavior of an ensemble containing many nuclei of the same type that possess a
net magnetic moment. Hence, the macroscopic effect of the NMR principle is well described by
classical physics. Still, it is beneficial to understand the NMR phenomenon on a quantum level.

Spin is an intrinsic property of a nucleus and is a type of angular momentum. Protons and neutrons
are subatomic particles that constitute the nuclei of atoms and have spin = 1/2 property. If the
total number of subatomic particles in the nucleus is odd, the nucleus will obtain a nonzero spin.
A nucleus, such as 1H, with an electrical charge and a nonzero spin angular momentum, will
generate a nuclear magnetic dipole moment (µ⃗) as the spin angular momentum will cause the
charged particle to spin around its axis. Like any spinning charged object, the spinning charged
particle will induce a magnetic dipole field around the nucleus due to the laws of electromagnetism.
The net bulk magnetization for the ensemble of spinning nuclei will be the sum of their individual
magnetic moments, and it will be zero when no external magnetic field (B0) is applied due to
random thermal motion giving random orientations of the individual magnetic moments. However,
when a magnetic field is applied to the system, the magnetic moments will interact with the field
and try to align with the direction of the field. The interaction between the magnetic moment of
the spinning nucleus and the applied field causes a precessional motion of µ⃗ about B0, which is
illustrated in Fig. 2.1. The precessional motion of the nucleus is described by Larmor’s equation,
and is given as

ω0 = γB0, (2.1)

where ω0 is the induced angular frequency of the nucleus, and is commonly referred to as the Larmor
frequency. γ is a physical constant known as the gyromagnetic ratio and is nucleus-dependent. The
magnetic properties of a hydrogen nucleus are most commonly exploited to generate an image in
MRI. It is largely found in the human body as a compound in water molecules, but also in fat
and other organic molecules. The gyromagnetic ratio for a hydrogen nucleus in water is γ =
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2.675× 108 rad/s/Tesla (γ/2π = 42.58× 106 Hz/Tesla) (Liang and Lauterbur 2000).

Figure 2.1: The interaction between a nuclear spin and the applied magnetic field B0 causes a
precessional motion of the nuclear magnetic moment (µ⃗) about the direction of B⃗0. ϕ describes
the phase of the rotating magnetic moment vector.

The spinning 1H-nucleus can either be in a spin-up (+1/2) or spin-down (−1/2) state, giving the
proton only two possible energy states when placed under a magnetic field: either aligned with the
B⃗0 (in a lower energy state) or anti-parallel (in a higher energy state). The spins will naturally
try to reside in the preferred lower energy state as it is more stable. However, thermal energy will
prevent the magnetic moments from being fully aligned with B⃗0. The distribution of spins in each
energy level at thermal equilibrium is given by the Boltzmann distribution:

N+

N− = exp (ℏω0/kBT ) ,

where N+ is the number of spins in the spin-up state, N− is the number of spins in the spin-
down state, ℏ is Planck’s constant, kB the Boltzmann constant, and T the absolute temperature.
There will be a slightly higher probability for the proton’s magnetic moment to be aligned with
the applied field. The net magnetization vector for an ensemble of proton spins will therefore be
aligned with the direction of the applied field when in an equilibrium state. In addition, the net
magnetization vector in equilibrium will not have a transverse component due to random initial
phases for each µ⃗ causing the transverse components of M⃗ to average out.

2.1.1 Excitation

The net longitudinal macroscopic magnetization vector (M⃗z) is not detectable at equilibrium.

Therefore, M⃗z must be pushed out of its equilibrium orientation. The system is excited out of
equilibrium by applying a second magnetic field (B1) which oscillates at the Larmor frequency,
resulting in optimal energy transfer, and the system will be derived into a state of resonance. For
clinical MR systems, the Larmor frequency will lie in the radio-frequency range. Therefore, the
transmitted magnetic field applied for excitation of the precessing spins is commonly referred to
as an RF pulse. The energy exchange between the spinning nucleus and the oscillating magnetic
field causes the bulk magnetization vector to lose alignment with the B0 and to get tipped into
the transfer plane, giving the system a transverse magnetization component (M⃗xy). The angle at
which the magnetization vector is being tipped away from the z-axis (the axis of B0) is determined
by the magnitude of the applied B1 field and the time interval for which it is applied (tRF ). The
angle is known as the flip angle and is given by

α = γ ·B1 · tRF . (2.2)

After applying the excitation pulse, the generated M⃗xy-component oscillates around the z-axis.
The oscillating nature of the transverse magnetization component makes the magnetization vector
possible to measure as it will induce a current in a nearby receiver coil that is placed within the
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generated oscillating field. The observed signal is known as the MR signal or the free induction
decay (FID) signal and is the transient response of the spin system after the excitation pulse.

2.1.2 Relaxation Mechanisms

The generated signal will decay rapidly to zero due to spin relaxation mechanisms where the excited
spins seek to fall back to the equilibrium state. The M⃗xy component will consequently disappear

while M⃗z will gradually be restored after an excitation pulse. The energy loss due to proton
interactions occurring when relaxing back to equilibrium is described by two main relaxation
processes: T1 relaxation (longitudinal relaxation time) and T2 relaxation (transverse relaxation
time).

T1 relaxation time describes the restoration of the longitudinal magnetization vector,M⃗z, as a
result of energy exchange between the excited spins and the surrounding medium. After the
excitation pulse, the excited spins seek to fall back to their preferred lower energy state orientation
(equilibrium). The excess energy will be transferred to the surrounding environment through
stimulated emission. The energy emission is stimulated by the fluctuating magnetic fields generated
by the surrounding protons in the molecular environment. Optimal energy transfer will occur if
the surrounding spins generate a magnetic field that fluctuates at the same frequency as the
relaxing spins (the Larmor frequency). The fluctuating magnetic fields in tissues are caused by
many processes, including dipole-dipole interactions and molecular motions of a neighboring spin.
The T1 relaxation times are generally relatively long as the fluctuating magnetic fields are usually
local and random in magnitude. The longitudinal relaxation time (the T1 value) will be tissue-

specific and is defined as the time where approximately 63% of its initial M⃗z-value (M0) is restored.
The difference in T1 value between tissues can be utilized as image contrast when applying pulse
sequences sensitive to variations in T1 relaxation times. The obtained images are commonly referred
to as T1-weighted images.

T2 relaxation time describes the rate at which the net M⃗xy component decays following the excit-
ation pulse. The transverse relaxation results from the loss of phase coherence among the spins
within a voxel due to the spin interaction with the ever-changing environments of molecules. Any
process causing T1 relaxation will also induce T2 relaxation due to the stimulated energy trans-
mission to the tissue, yielding a locally increased thermal energy. The released energy may affect
the angular momentum components of a nearby spin that contributes to the net M⃗xy, causing the
affected spin to lose phase coherence with the other nearby spins and therefore dephase. However,
T2 relaxation may also occur without T1 relaxation due to interactions between magnetic fields of
the spins creating small field inhomogeneities in the field that the spins experiences. The spins can
observe a local time-varying magnetic field either by diffusion along a spatially varying magnetic
field or due to interaction with nearby moving spins associated with a small additional magnetic
field. The spin interactions with the changing magnetic field will alter the affected spins’ preces-
sion rate, causing a dynamic dephasing. The dephasing and, hence, the cumulative loss of phase
coherence between the spins causes parts of the individual magnetization vectors to cancel out,
and the net transverse magnetization vector will start to decay. The evolution of the signal loss
due to the decay of the transverse magnetization vector is characterized by an exponential decay
described on a timescale T2. The tissue-specific time constant T2 is defined as the time for which
the transverse magnetization vector has decayed to approximately 37% of its initial value.

Time-independent field inhomogeneities of the external magnetic field introduce an additional
dephasing of the spins, resulting in an overall signal decay that is faster than what is described
by T2. These stationary field inhomogeneities may result from defects in the magnet itself or
susceptibility differences between tissues. The local field variations induce a static dephasing where
the affected spins precess differently depending on their spatial location. Taking into account the
additional spin dephasing due to local magnetic field inhomogeneities gives the total relaxation
time, denoted T ∗

2 , to be given as
1

T ∗
2

=
1

T2
+

1

T
′
2

,

where the value of T
′

2 accounts for the presence of field inhomogeneities. In vivo values for the
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transverse relaxation times vary significantly depending on the tissue composition. As for T1-
weighted images, MRI sequences sensitive to differences in transverse relaxation time can be applied
to highlight tissues with different T2 or T

∗
2 values in the obtained image. Such images are commonly

referred to as T2- or T
∗
2 -weighted image, depending on if the measured signal follow the T2 or the

T ∗
2 decay.

All biological tissues are heterogeneous, containing various components with their particular re-
laxation time. However, the complex composition is simplified in MRI by looking at the mean
relaxation time of the components within a voxel (Chang et al. 2015). The evolution of the re-
covery of the longitudinal magnetization component (T1 relaxation) and the diminishing of the
transverse component (T2 and T ∗

2 relaxation) after an excitation pulse is illustrated in Fig. 2.2.
Both relaxation mechanisms are independent processes, but occur simultaneously after the excit-
ation of the spins.

(a) (b)

Figure 2.2: (a) The exponential regrowth of the initial longitudinal magnetization vector, described
by the T1 relaxation time. (b) The exponential decay of the transverse magnetization vector,
described by the T2 relaxation time (blue graph), and the T ∗

2 relaxation time (red graph) which
includes the effect of field inhomogeneities.

2.1.3 Spatial Encoding

Based on the information in Section 2.1.1 we know how to generate a detectable signal from a
biological sample. The receiver coil will measure the sum of the induced MR signals from all
parts of the object with excited spins. However, for an anatomical image to be generated, a
differentiation of the spatial origins of the individual local signals constituting the total measured
MR signal must be achieved. To do so, two spatial localization methods, slice excitation, and
spatial encoding, are employed. The spatial localization mechanisms utilize independent linearly
varying magnetic fields (a magnetic field gradient) that are defined in each orthogonal direction
of the MR scanner (x-, y-, and z-direction). For a standard MR scanner, the static magnetic field
is applied along the machine’s bore’s direction, which is conventionally defined as the z-direction.
When a patient is placed in the MR scanner with the head first, the z-direction will correspond to
the inferior-superior direction. The horizontal axis of the MR system is typically referred to as the
x-direction and corresponds to the direction from right to left, and the vertical axis will accordingly
be the y-axis which is set to increase along the anterior-posterior direction of the patient.

Selective Excitation

The MR signal measured by a receiver coil contains information about the total measured mag-
netization vector’s phase, frequency, and amplitude. However, generating an image of a human is
a four-dimensional problem where information about the location of the spins generating a signal
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along the x-,y-, and z-direction is needed in addition to the signal’s amplitude. Therefore, slice
excitation is performed to reduce the problem by one dimension before spatially localizing the
generated signals. Applying slice excitation will selectively excite only spins within a 2D-image
plane at a defined position within the patient, restricting the registered MR signal to originate
only from the excited slice.

Slice selection is achieved by applying a gradient field during the transmission of the excitation
pulse. A linear magnetic field is applied along the slice-select direction (a slice-select gradient) in
addition to the background field to make the Larmor frequency dependent on the position along
the applied gradient. Thus, the Larmor frequencies will now be given as

ω(z) = ω0 + γ ·GS · z,

where GS is the strength of the slice-selective gradient and z a spatial localization along the
direction of the gradient. As the transmitted RF pulse is frequency-selective, applying a slice-
select gradient during the excitation period causes only the spins within a narrow frequency range,
centered at the frequency at which the RF pulse oscillates, to be excited. Thus, the excitation
pulse will now be spatially selective. The width of the excited slice (∆z) is given by

∆z =
∆f

GS · γ
2π

,

where ∆f is the frequency bandwidth of the excitation pulse.

The slice excitation assumes that the magnetization vector is flipped at the center of the applied
RF pulse/slice-select gradient. Consequently, the second half of the slice-select gradient will induce
a through-slice phase dispersion of the spins due to slight deviations in the resonant frequencies
for the spins located along the gradient. The induced phase dispersion occurring in the second
half of the slice-select gradient is corrected by applying a rephasing lobe after the primary slice-
select gradient lobe. Hence, undesired signal loss due to spin dephasing induced by the slice-select
gradient is avoided.

In-plane Localization and k-space

The signal from excited spins within a slice can be manipulated to make a full clinical MR image.
Spatial localization of the MR signal can be obtained by encoding spatial information into the signal
during the free precession period of the transverse magnetization component. As the generated MR
signal is in the form of a complex exponential, spatial information can be encoded into the signal
by altering its phase and frequency information. Hence, frequency-encoding and phase-encoding
are performed for the in-plane localization of the MR signal.

Frequency encoding of the activated MR signal is achieved by applying a linear magnetic field,
commonly referred to as the frequency-encoding gradient (GFE), while the MR signal is sampled
at different time points. Predictably altering the main magnetic field by applying the frequency-
encoding gradient causes the oscillation frequency of the activated MR signal to be dependent on
their spatial origin along the direction of the gradient. When the object experience the homogen-
eous B0 field in addition to the linearly varying field strength,GFE , the Larmor frequency along
the frequency-encoding direction will be given by

ω(r⃗) = ω0 + γGFE · r⃗.

Thus, the received signal sampled at time t after excitation will be the sum of all local frequency-
encoded signals originating from the excited spins and is given by

S(t) =

∫
object

ρ(r⃗)e−iγGFE ·r⃗tdr⃗ (2.3)

when the carrier signal, e−iω0t, is removed (demodulated). ρ(r⃗) is the spin-density at a position
r⃗ in the imaging volume. Sampling the evolving MR signal in real-time will cause each measured
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point to be affected by the gradient moment to a different amount and, hence, correspond to a dif-
ferent resonance frequency. The individual frequencies constituting the total MR signal originating
from the whole body can be uniquely sorted out by using the Fourier transformation. Following
the Fourier transform relation, the signal at each spatial frequency along the frequency-encoding
direction (k⃗FE) is given by

S(k⃗) =

∫
object

ρ(r⃗)e−i2πk⃗·r⃗dr⃗, (2.4)

and the mapping relationship between the spatial frequency and the time at which the signal is
sampled after RF excitation (t) is

k⃗FE(t) =
γ

2π

∫ t

0

GFE(τ)dτ. (2.5)

Thus, the information about the signal intensity for the spatial frequencies is derived directly from
the measured MR signal by utilizing the Fourier transform relation, and the measured raw data is
stored in a matrix known as k-space.

Phase-encoding is also applied to the MR signal to attain spatial information in both in-plane
directions. The phase-encoding is applied in a preparatory period before the sampling of the MR
signal, and it is performed by applying a gradient along the phase-encoding direction (GPE) for
a short time interval (TPE), causing slight variations in the Larmor frequency of the spins along
the gradient direction. Thus, the spins will accumulate a different amount of phase, depending
on their spatial location, and the signal is phase-encoded. The initial phase term attained in the
measured signals is given as

ϕ(r⃗) = −γGPE · r⃗TPE ,

where r⃗ the position along the gradient. Similarly to the frequency-encoding, the effect of the
phase encoding can be described by the Fourier transform, where the phase-encoded signal is
described similarly as in Eq. 2.4, but with the relation between the spatial frequency along the
phase-encoding direction and time t is given as

k⃗PE =
γ

2π

∫ TPE

0

GPE(τ)dτ.

Thus, information about the phase accumulation over the time interval TPE will be stored in k-
space, and both axes of k-space will represent spatial frequencies as frequency is defined as phase
change over time.

Overall, k-space stores the digitized MR signals in the Fourier space during data acquisition and
contains information about the frequency spectrum of the image-space for the two in-plane dir-
ections. The value of kPE will be fixed for each sampling period, while the value of k along the
frequency-encoding direction is a function of time as its value evolves during the sampling period.
Thus, each sampling period will fill a line in k-space along the frequency-encoding direction, and
the applied gradient, GFE , determines the speed of the movement in k-space. A new preparatory
period with a changed phase-encoding gradient strength or TPE is needed to adjust the induced
initial phase angle and, hence, to move along the phase-encoding direction in k-space. In summary,
the in-plane spatial encoding gradients determine the value of k, thus, the movement in k-space,
and ensure that the signals stored in k-space at given frequencies are related to spatial positions
in the image domain. Hence, the spatial encoding mechanism of the sampled MR signals relies
on a homogeneous background field and stable linear gradients to correctly store the raw data in
k-space. When a k-space is fully sampled, the acquired data can be used to reconstruct an image
through the Fourier relationship.

When sampling echoed MR signal, the k-space will be symmetrical with the edges containing high
spatial frequency information, determining the details in the image, and the center of k-space will
include the low-frequency information and determine the contrast in the reconstructed image.
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2.2 MR Acquisition Sequences

The appearance and the information gained from an acquired MR image are largely determined
by the sequence parameters of the applied pulse sequence. This Section will introduce the MRI
sequences employed in this thesis.

2.2.1 Basic Spin Echo and Gradient Echo Sequence

Spin-echo and gradient-recalled echo are the two major pulse sequence families in MRI. The dia-
grams of a basic SE and GRE sequence illustrated in the following paragraphs show the sampling
of the MR signal using a line-by-line k-space trajectory, where the data is sampled along one line
of k-space for each repetition time (TR). The diagrams indicate the generation of an echo signal
together with the applied spatial encoding mechanisms. The time between the center of the excita-
tion RF pulse and the echoed signal is defined as the echo time (TE). The phase-encoding gradient
will be changed for each TR, indicated as the striped lines in the diagrams, to sample the whole
k-space. Each echo signal is sampled at the same moment of time (at TE) such that the spins are
in the same relaxation process state during each signal read-out.

The Spin Echo sequence

The conventional SE sequences generate an echoed signal at TE by utilizing a two-pulse excitation
scheme consisting of a 90° excitation pulse followed by a time delay (TE/2) before the 180° refo-
cusing pulse is applied. Both RF pulses are applied with slice selection gradients. It is assumed
that the refocusing pulse is time symmetrical and that it inverts the magnetization vectors instant-
aneously at the center of the gradient. Hence, no refocusing lobe is required for the 180° RF pulse
as the dephasing occurring in the first half of the applied gradient will be inverted and corrected
for in the second half of the gradient.

The diagram of a basic spin-echo sequence is illustrated in Fig. 2.3a and the evolution of the
magnetization vector in Fig. 2.3b. Before an excitation pulse is applied, the spins contributing to
the net magnetization vector will be in equilibrium and generate a net longitudinal magnetization
vector aligned with the applied field (step 1). Typically, spin-echo sequences use a slice-selective 90°
RF excitation pulse to excite the spins into the transverse plane (step 2). The spins will begin to
dephase relative to each other due to local field variations, causing some spins to precess faster than
others (step 3). The rate of dephasing is described by the transverse relaxation time, T ∗

2 , and the
FID signal will become exponentially dampened by the T ∗

2 relaxation mechanism. The dephasing
caused by the static magnetic field variations will be a reversible process, assuming that the affected
spins are stationary, and the accumulated phase shifts can be corrected. The static dephasing is
reversed by applying a 180° RF pulse after half the echo time (step 4). The 180° refocusing pulse
inverts the phase shifts that the spins have accumulated in the time interval between the excitation
and the refocusing pulse. Thus, the spins that were ahead of the net magnetization vector due
to the faster precession rate (the red arrows in Fig. 2.3b) will be flipped to be behind and vice
versa. The precession rate of the affected spins will be unchanged, as their physical location and
molecular environment are the same before and after the refocusing pulse. Thus, the spins that got
flipped to be behind will still precess faster and catch up with the slower precessing spins that got
flipped to be ahead. The accumulated phase shifts will gradually be reduced and fully refocus as
an echoed signal at TE (step 5) if equal time is given to the system after the refocusing pulse, as it
was given before its application. However, the 180° refocusing pulse will not eliminate the dynamic
dephasing process induced by variable field inhomogeneities generated by spin-spin interactions
(T2). The amplitude of the refocused signal at TE will therefore be brought up to follow the signal
decay function described by the T2 curve (Fig. 2.4).
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(a)

(b)

Figure 2.3: (a) Schematic illustration of a conventional SE sequence, showing timeline for the
RF pulses, the slice-selective and the in-plane localization gradients in addition to the generated
signal. (b) Step-wise illustration of how the spins that have dephased due to B0 inhomogeneities
get refocused into a spin-echo by applying a 180° RF pulse.

Figure 2.4: The spin-echo sequence generates an echoed signal at TE modulated by T2 relaxation.
The blue graph indicates the exponential function that damps the signal due to T2 relaxation.
The red graph shows the apparent signal, which before applying a 180° refocusing pulse, is an FID
signal that is damped by the process described by the T ∗

2 relaxation time.
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Basic Gradient Echo Sequences

Another form of echoed signal frequently applied in MRI is induced by employing gradient coils that
generate time-varying gradient magnetic fields and are known as gradient-recalled echo. A general
scheme of a conventional GRE sequence is indicated in Fig. 2.5a, and the step-wise evolution of
the magnetization vector in Fig. 2.5b. The slice-excitation step in GRE sequences (step 2 in Fig.
2.5a) typically utilizes smaller flip angles than 90◦, and the flip angle is indicated as α in Fig. 2.5a.

(a)

(b)

(c)

Figure 2.5: (a) A schematic illustration of a conventional GRE sequence. (b) Step-wise illustration
of the excited spins evolution during a GRE sequence. (c) A illustration of the phase evolution
for the spins, caused by a magnetic field gradient applied along the frequency-encoding direction
(defined along the x-direction in the figure).
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GRE sequences are based on the dephasing and rephasing of spins through the application of
magnetic field gradients, such that a symmetrical k-space can be filled and used to reconstruct an
image. A symmetrical sampling of k-space is achieved by applying an initial prephase gradient
before the read-out gradient. The purpose of the prephase gradient is to move the initial k-space
location to one of the ends in the k-space by inducing an initial dephasing of the spins, before
acquisition of the MR signal during the read-out gradient. The movement in k-space is determined
by the properties of the applied gradient, as previously mentioned in Section 2.1.3 under In-plane
Localization and k-space. By applying a prephase gradient of half the gradient moment to the read-
out gradient, the initial location in k-space is moved to one of its edges. Following the integral
describing the spatial location in k-space, a negative prephase gradient will move to -kmax, and a
positive gradient will move to +kmax. Thus, the prephase gradient influences the starting point
prior to the sampling of the MR signal. Subsequently, applying the read-out gradient, of opposite
polarity to the prephase gradient, while the MR signal is simultaneously sampled will map the
k-space following the relationship given in Eq. 2.5, where it traverses the k-space in the opposite
direction to the initial movement of the prephase gradient. The initial dephasing of the spins
induced by the prephase gradient will be fully refocused at the center of k-space (kFE = 0), and an
echoed signal is generated at TE. The generation of a gradient-recalled echoed signal is principally
also being done for the SE sequence. However, the initial lobe is of equal polarity to the read-out
gradient due to the presence of the 180° refocusing pulse.

Multi-echo GRE Sequence

The same read-out gradient used to create a single gradient echo signal can be repeated to form
several echoed signals after a single RF excitation. By applying read-out gradients of alternating
polarity, the second gradient lobe of the prior read-out gradient will act as a prephase gradient
for the subsequent read-out gradient. Consequently, multiple GRE echoes can be induced after a
single excitation pulse by applying a train of read-out gradient lobes of alternating polarity, as long
as the transverse magnetization vector hasn’t completely diminished due to T ∗

2 relaxation (Fig.
2.6). By sampling multiple echoed signals at different times after the excitation pulse, without
changing the phase-encoding for each TR, the same line of k-space will be filled for each TR. Thus,
multiple images of the same slice taken at different echo times are obtained.

Figure 2.6: A multi-echo gradient echo sequence where the first half of the read-out gradient lobes
rephase (RE) the spins, giving an echo signal, and the last half dephases (DE) them.
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The information obtained from a ME-GRE scheme can be utilized to quantify the value of T ∗
2 for

different tissue compartments. The relaxation of the transverse magnetization vector, and therefore
the height of each gradient echo signal sampled at different echo times, follow an evolution described
by the T ∗

2 relaxation time. T ∗
2 maps can be derived by simply fitting the ME-GRE signal to a

mono-exponential decay curve:

S(TE) = S0 · exp
(
−TE

T ∗
2

)
, (2.6)

where S0 is the signal strength at TE = 0 (Hagberg et al. 2002). Quantifying T ∗
2 maps can

give valuable information about the surrounding environment and the local field inhomogeneities
present which the spins observe.

Field mapping

Information about the field inhomogeneity present within the imaging volume can be achieved by
applying a field mapping imaging sequence. B0 inhomogeneity will induce an additional phase
accumulation term in the signal that accumulates with time after the RF-excitation. The field
mapping sequence acquires two images taken at different echo times. By keeping the image in-
formation in their complex form, the information about the additional phase accumulation that
occurs between the two echo times can be achieved. The phase difference in the signal between
the two echo times can be calculated from

∆ϕ = ∠[S1 · S∗
2 ]

where S1 and S2 are the images obtained at TE1 and TE2, respectively. The subscript ∗ denotes
the complex conjugate of the signal, and ∠ indicates computing the angle of the complex data. The
calculated phase difference will be between ±π. As the accumulated phase of the signal between the
two echo times can exceed the interval between [−π, π] if the susceptibility-induced field gradient
(SFG) is strong enough, the time difference between the two echo times (∆TE) should be kept short
to minimize phase wrapping. The local frequency shift due to B0 inhomogeneity is proportional
to the phase accumulation occurring in the time interval between the two echo times, ∆TE, as
follows:

∆ω =
∆ϕ

∆TE
, (2.7)

where ∆ω is the difference in frequency from the nominal Larmor frequency. The calculated ∆ω
from the above expression is given in radians per second (rad/s).

Inversion Recovery

Inversion recovery (IR) pulse sequences include a 180° magnetization preparation pulse before
applying a conventional SE or GRE sequence. The time between the application of the 180°
pre-pulse and the RF-excitation pulse is known as the inversion time (TI). Applying a 180° RF-
preparation pulse inverts the net longitudinal magnetization vector for the different tissues. The
tissues will still only possess a net longitudinal magnetization vector, but now pointing in the
opposite direction from its direction in equilibrium. The different tissues will regrow their initial
longitudinal magnetization vector differently due to their tissue-specific T1 value (Fig. 2.7). The
tissues with short T1 values (yellow graph) will relax back to their equilibrium state faster than
tissues with longer T1 values (blue graph). Depending on when the excitation pulse is applied,
the tissues with shorter T1 values will generally generate a stronger signal in the obtained image
as a larger part of their initial magnetization vector has been restored before the excitation pulse
is applied. Hence, the tissues with shorter T1 values will have a greater transverse magnetization
component than tissues with longer T1 values for the following read-out of the MR signal. Inversion
recovery can be applied to influence the degree of signal coming from the different tissues. It can
be applied to null out a signal from a certain tissue selectively or to retain T1 contrast in the
image. The suppression of different tissues is achieved by choosing TI when their Mz-component
is at zero.
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Figure 2.7: The regrowth of the initial magnetization vector for tissues with different T1 values
after applying a 180° inversion pulse.

2.2.2 MP-RAGE and MP-2RAGE

MP-RAGE (Magnetization Prepared - RApid Gradient Echo) is a fast pulse sequence that has
become the dominant sequence for obtaining 3D T1-weighted images. The sequence produces high-
resolution images with very good anatomical detail, especially in the brain. MP-RAGE consists of a
magnetization preparation (usually a non-selective 180° inversion pulse for T1-weighting), followed
by rapid spoiled gradient-echo sequences. The magnetization preparation period follows the same
mechanisms as described in Section 2.2.1 under Inversion Recovery. In addition, low flip angles
and short TE are used in MP-RAGE imaging sequences to have rapid read-outs of the signal.
The MP-RAGE sequence consists of a train of excitation pulses with low flip-angles, and short
TEs applied after TI to fill the lines of k-space, and a relatively long repetition time is typical
for MP-RAGE sequences. To ensure that each in-plane line of k-space for an image slice has the
same degree of relaxation, the 3D MP-RAGE acquire all slice encoding ’lines’ of k-space from each
preparation pulse, followed by a time delay between the acquisitions before moving onto the next
in-plane line of k-space. Hence, it is the phase-encoding gradient that is being changed for each
TR.

The MP-2RAGE sequence is based on the same principles as in MP-RAGE, but in contrast, it
applies two bulks of a spoiled-gradient echo sequence read-outs for each inversion pulse, effectively
giving two images with different inversion recovery times. The different inversion recovery times
used for the two acquired images in the MP-2RAGE sequence are optimized such that the combined
image will have a superior grey to white matter contrast.

2.2.3 Ultrashort Echo Time Sequences

For many conventional clinical MR pulse sequences, tissues with short T2 relaxation time will have
minor to no detectable signal (Robson et al. 2004). Bone can, in principle, be a source of MR signal
as its composition includes protons. However, bone contains a high fraction of components with a
very short T2 relaxation time, causing its mean transverse magnetization vector to vanish before
the read-out gradient is applied. Hence, conventional MR sequences will not be able to detect the
decaying signal of bone (Chang et al. 2015). The lack of signal from bone cause problems in the
visualization and differentiation between bone and air as both tissue types are seen as dark areas
in the obtained image. A differentiation between bone and air can be achieved if sequences with
short enough echo times for the signal from bone to be measured can be applied.

Ultrashort Echo Time (UTE) sequence was first introduced by Pauly et al. 1989 and is the general
term for sequences that are able to have ultrashort echo times (TE less than 1ms). Having such
small echo times makes it possible to detect signals from tissues with short (less than 1 − 10ms)
and ultrashort (less than 0.1 − 1ms) transverse relaxation times (Chang et al. 2015). The UTE
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sequence is a gradient-echo-based radial imaging technique. The ultrashort TEs are accomplished
by using a short RF-excitation pulse followed by the acquisition of the data right after the excitation
pulse step. Due to physical limitations of the gradients and using ultrashort echo times, the data
acquisition will occur while the gradient is ramping up, giving a ramped sampling of the data. In
addition, the k-space trajectory for sampling the information of the detected signal in the k-space
is radial from the center out. Hence, no phase-encoding gradient step is used, having the benefit
of making the TE even shorter. The application of very short TE together with relatively small
flip angles causes the UTE sequences to produce heavily proton-density-weighted images.

The tissues with long transverse relaxation time will still be illustrated as bright structures in the
obtained UTE image. It is common to acquire a second image at a later echo time (in the order of
ms) and subtract the acquired image information from the UTE image, such that the tissues with
short T2 values are featured in the obtained image. The tissues with long transverse relaxation
times, and therefore high signal intensity, will in the subtracted image be suppressed as darker
structures while the signal from the tissues with short T2 values will be highlighted. Doing so can
give a better visualization of tissues with short T2 values and, hence, give better air-bone contrast
in the obtained image (Chang et al. 2015).

2.3 Magnetic Susceptibility

The volume magnetic susceptibility is a property inherent in all materials that describes the ma-
terials tendency to become magnetized when placed under a magnetic field. χ is an dimensionless
quantity in the SI unit system and is given by the equation:

χ⃗ =
M⃗

H⃗
, (2.8)

where M⃗ is the degree of the materials macroscopic magnetization and H⃗ is the applied magnetic
field intensity (Duyn and J. Schenck 2016). Therefore, when taking the contribution made by the

magnetization of the tissue into account, the total local magnetic field (B⃗) that the spins within a
bulk of tissue observe is given as

B⃗ = µ0(H⃗ + M⃗) = µ0(1 + χ)H⃗ . (2.9)

The material’s molecular composition determines both the sign and the value of χ. χ can be
negative or positive, reflecting if the material’s magnetization opposes (diamagnetism) or aligns
(paramagnetism) the applied field, respectively. The diamagnetic effect is a property excising in
all substances. For simplicity, the electrons surrounding a nucleus can be seen to move in a circular
orbital motion. The circular orbital motion of an electron surrounding a nucleus generates a mag-
netic moment in the opposing direction to the angular moment (the spin direction) of the electron
(Mulay 1963). When an external magnetic field is applied to the system, the circular motion of
the electrons will be alternated according to Farraday and Lenz’s law, where an electromagnetic
force that tries to oppose the change applied to the system will be induced. The field-induced
alteration of electron orbits causing a net magnetic moment oriented in an opposing direction
to the external field is known as the diamagnetic effect (Duyn and J. Schenck 2016). Electrons
tend to pair up with opposite spin states at each energy state of the atom/molecule. Generally,
diamagnetism is associated with materials that consist of atoms/molecules with paired electrons.
When no external field is applied, these materials will have no net magnetic moment as electrons
of opposite spin states, but at equal energy levels generate equal magnetic moments in opposite
directions that counteract each other. However, when the system is placed under a magnetic field,
the diamagnetic effect induces a total magnetic moment in the opposite direction relative to the
applied field.

Paramagnetism, on the other hand, is generally associated with materials that have unpaired
electrons giving them a net intrinsic magnetic moment. When placed under a magnetic field, the
net magnetic moment of the atom/molecules in the material will experience a torque force given
by

τ⃗ = µ⃗× B⃗0
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that tries to align the net magnetic moments with the direction of the applied field, where the
potential energy is at a minimum (Young and Freedman 2012). However, thermal motion within
the material will prevent the magnetic moments from completely aligning with the direction of the
field. The diamagnetic effect will also be present in paramagnetic materials, further weakening the
extent of the paramagnetic effect.

As a bulk substance, the total induced magnetization of the material will be the sum of all individual
magnetic moments, including the field-induced magnetic moments. The bulk magnetization will
point in the opposite direction of the applied field for materials with diamagnetic properties and
locally reduce the total magnetic field. In contrast, it will align with the direction of the field for
materials with paramagnetic properties and, hence, locally strengthen the total magnetic field.

2.3.1 Magnetic Susceptibility in the Human Body

The human body consists of a distribution of magnetic susceptibility due to different properties
between the tissues. Most biological molecules have even numbers of electrons, making most
human tissues diamagnetic. Typical χ-values for most human tissues are similar to that of water
which is approximately equal to −9 ·10−6 with slight variations due to different tissue compositions
(Marques and Bowtell 2005). However, cortical bone is notably less diamagnetic than, for instance,
soft tissue (Czervionke et al. 1988).

In addition to diamagnetic tissues, there also exist substances and structures with paramagnetic
properties in the human body. The oxygen atom has an unpaired electron in an anti-bonding or-
bit, making the molecule O2 paramagnetic (Boveris 1998). Air has a very low susceptibility value
owning to its low density and is equal to 0.36 ·10−6 under normal temperature and pressure (NTP)
conditions. The anatomy of the human head includes air-filled regions, such as the nasal cavities,
the auditory cavity (including the middle ear), and the sinuses (frontal, maxillary, sphenoid, and
ethmoid). There also exist numerous small air cavities at different locations within the temporal
bone of the brain. Another important substance in the human body with paramagnetic proper-
ties is the chemical element iron. Iron is found in the human body as a free element with high
concentrations in the brain structures red nuclei and substantia nigra, and inside the structure of
hemoglobin, where it plays an essential part in binding oxygen atoms. Deoxyhemoglobin molecules
will, therefore, also show paramagnetic properties due to their unbound iron content.

2.4 Magnetic Susceptibility Artifacts in MRI

When a subject is placed into the MR scanner, the magnetization of the tissues will induce an
additional perturbing field that distorts the B0 field homogeneity. The susceptibility-induced field
distortions will falsify the assumption made by the acquisition mechanism, namely, the homo-
geneous background field and the linearity of the spatial encoding gradients will be distorted,
consequently causing errors in the acquisition of the MR signal. Hence, the susceptibility-induced
B0 inhomogeneity will produce profound artifacts in the MR image. The main artifacts related
to magnetic susceptibility are two-fold: they can be seen as local signal-void and/or geometric
distortions, depending on the properties of the field inhomogeneity and the sequence parameters
used. In addition, the appearance of the susceptibility artifacts largely depends on the direction
of the SFGs, which can be present in all three spatial dimensions. The susceptibility artifacts
observed in MR images are generally a mix of both effects, and the susceptibility effects will cause
more pronounced imaging artifacts at higher field strengths due to the linear dependency between
the susceptibility-induced field and field strength.

2.4.1 Signal Loss

Following the Larmor Equation, given in Eq. 2.1, the hydrogen nuclei precess at a frequency de-
pending on the local magnetic field. Thus, local field variations will induce a position-dependent
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dispersion of the spins’ resonance frequencies, leading to phase shifts. The induced position-
dependent phase term for the individual spins gives rise to a phase dispersion across the affected
voxel (Fig. 2.8c). The unwanted phase term causes mutual cancellation of the dephased magnet-
ization vectors, leading to a reduced magnitude of the reconstructed signal originating from the
affected voxel (Brown et al. 1999). Signal loss is prominent in voxels close to a strong susceptibility
interface where an abrupt change in the local magnetic field is present (Fig. 2.8a).In addition, Fig.
2.8a also indicates the field inhomogeneities on a macroscopic level where the perturbing field oc-
curs at a scale that’s larger than at least a voxel size. Due to their relatively large extent compared
to the voxel dimension, the macroscopic field inhomogeneities can be modeled by linear gradients.
Fig. 2.8b indicates the microscopic field variations occurring over a distance much smaller than
the voxel size. The microscopic field variations are induced by the molecular environment of the
spins and other microscopic sources, but can also be due to highly variable field patterns induced
by tissue compartments with complex geometrical shapes (Brown et al. 1999). The intra-voxel
dephasing leads to a shortening of the apparent transverse relaxation time.

Figure 2.8: (a) Induced local field gradient across a voxel located close to a tissue interface with
an abrupt change in magnetic susceptibility value. (b) Highly variable field distortions over small
distances relative to the voxel dimension, causing intravoxel dephasing. (c) Intravoxel spin deph-
asing due to local field variations.

Effect of Local Through-plane Susceptibility Gradients

A phase dispersion across the slice thickness will be induced by the presence of local through-plane
susceptibility gradients, Gz,s, and a signal intensity variation may occur across the slice, giving
a local signal reduction in the slice integrated signal (Brown et al. 1999). The voxel dimensions
in the slice-select direction are most commonly larger than the in-plane voxel dimensions in MR
imaging. A larger voxel dimension will include a larger spatial extent to which the perturbing
field variation can occur, effectively increasing its effect on the phase dispersion along the voxel’s
dimension. Hence, the imaging voxels are typically sensitive to the presence of through-slice field
inhomogeneities, and will modulate the signal intensity more significantly than the in-plane SFGs
(Deichmann, Josephs et al. 2002). The phase dispersion due to local SFGs across the slice is not
taken into account in the theoretical model for the signal decay, which only considers the decay of
the magnetization vector due to the relaxation processes. Consequently, the susceptibility-induced
signal loss will lead to underestimation of the relaxation time T ∗

2 at the areas strongly affected
by the SFGs. The underestimation of the T ∗

2 value can give rise to problems when interpreting
T ∗
2 maps. It causes difficulties in knowing if the changes in T ∗

2 are due to changes in the tissue
itself or caused by local magnetic field changes (∆B0). Dahnke and Schaeffter 2005 introduced a

17



corrected expression for the MR signal decay in a gradient echo scheme where the background field
inhomogeneity in the slice-selection direction is taken into account. The corrected MR signal in a
gradient echo scheme was written as

S∆B0
(TE) = S0 · exp

(
−TE

T ∗
2

)
· |sinc(γ ·Gz,s ·∆z · TE/2)| , (2.10)

where ∆z is the slice thickness, and S0 is the signal strength at TE= 0 (Dahnke and Schaeffter
2005; Peters et al. 2007). The equation assumes that the dominant effect of the field inhomogeneity
that causes signal loss is in the slice-select direction, and it makes the first-order approximation
where the through-plane susceptibility-induced field gradients are assumed to be linear across the
z-direction (Dahnke and Schaeffter 2005). In addition, the expression assumes an ideal slice profile
for the slice-excitation, where the frequencies included in the voxel in the z-direction are described
by a perfect rectangular function in the frequency domain and a sinc-function of infinite length
in the time-domain. Consequently, the exponential signal decay will be modulated by a sinc-
function. If the assumptions are fulfilled, Eq. 2.10 will give a better representation of the signal
decay in regions strongly affected by field inhomogeneities in the slice-select direction (Dahnke and
Schaeffter 2005; Peters et al. 2007).

In-plane susceptibility gradients lead to a different modulation of the signal behavior than the
through-slice susceptibility gradients. The effect of in-plane susceptibility gradients is further
discussed in Reichenbach et al. 1997.

2.4.2 Geometric Distortions

As mentioned in Section 2.1.3, a correct sampling of the MR signal to k-space relies on the linear
relationship between the spin’s position and frequency, established by the applied spatially linear
encoding gradients during the read-out of the MR signal. However, the presence of macroscopic
field variations will distort the linearity and give rise to a local field shift (Fig. 2.9), thus causing the
spins to be wrongly spatially encoded during the read-out of the MR signal. The incorrect spatial
localization of the spins is referred to as image distortion and will be identical for gradient-echo and
spin-echo images. The direction in which the image distortion is dominant in the reconstructed
image depends largely on the trajectory used to sample the cartesian k-space (a line-by-line or a
zig-zag trajectory).

Figure 2.9: The black graph indicates the assumed linear read-out gradient, and the red graph the
actual shape of the field distribution, where the presence of susceptibility-induced magnetic fields
perturbs the linearity of the spatial encoding gradient. x indicates the true position of the spatial
origin of the signal, and x∗ indicates the position from where the MR acquisition mechanisms
assume it originates.
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As the spatial position is frequency-encoded during the read-out of the MR signal in an imaging
process, a frequency shift induced by the field inhomogeneity will cause the origin of the measured
signal to be assigned a different spatial localization along the frequency-encoding direction. The
accumulated phase shift due to the local frequency shift is given by the relation

∆ϕ(t) = γ∆B0t.

where t represents the time after the excitation pulse. For a conventional MR sequence with
a line-by-line trajectory, a single line of k-space is sampled after an applied excitation pulse.
Thus, each point along the phase-encoding direction in k-space will be sampled at equal time
points after the excitation pulse. Consequently, the phase offset due to field inhomogeneity will be
equal between subsequent digitized sampling points along the phase-encoding direction and will
therefore not affect the phase evolution along the direction. Hence, the geometric distortion will
primarily be seen along the frequency-encoding direction for line-by-line k-space trajectories, and
there will technically be no image distortion in the phase-encoding direction. The spatial shift will
correspond to the frequency offset that the wrongly positioned spins possess and will be evident
in the reconstructed image if the induced frequency shift is larger than the defined frequency
bandwidth for the imaging voxels.

MR sequences using a zig-zag k-space trajectory fills multiple lines of k-space after a single ex-
citation pulse. The data points along the phase-encoding direction for equal kFE will now be
sampled at different time points after the RF excitation pulse. The susceptibility-induced phase
errors will accumulate with time along the long echo train, causing the phase evolution along the
phase-encoding direction to be altered. Thus, the field inhomogeneity can cause image distortion in
both the frequency- and phase -encoding direction for MR sequences using zig-zag k-space traject-
ories, e.g., conventional echo-planar imaging (EPI) sequences. However, strong read-out gradients,
corresponding to a high frequency bandwidth, are typically used in EPI sequences to achieve fast
sampling of the MR signal. Thus, the image distortion along the frequency-encoding direction will
largely be reduced. In contrast, due to the relatively slow movement along the phase-encoding dir-
ection, the effective pseudo-gradient along the phase-encoding direction will be significantly lower,
causing the image distortion to almost entirely be along the phase-encoding direction (Deichmann,
Josephs et al. 2002).

2.5 Reduction of Magnetic Susceptibility Artifacts

Approaches utilized to minimize susceptibility artifacts include sequence parameters optimization
and the application of shimming techniques. Optimization of sequence parameters can reduce
the signal loss and somewhat the image distortion in the reconstructed image, depending on the
modification made in the imaging sequence. The signal loss due to local field inhomogeneities can
be largely reduced with a spin-echo pulse sequence, where the acquired signal at TE will evolve
with the intrinsic T2 time. However, distortions during read-out can still occur for SE sequences
(Brown et al. 1999). Depending on the information wanted to be obtained, there are situations
where GRE sequences are required, e.g., BOLD fMRI. Regular GRE sequences do not include a
refocusing pulse and will therefore be more sensitive to susceptibility-induced field variations in
either imaging direction. Signal loss can be reduced in the reconstructed image for GRE sequences
by shortening the echo time and by decreasing the voxel dimensions. Shortening the echo time
will reduce the time at which the spin dephasing occurs, and reducing the voxel dimensions will
limit the influence of field inhomogeneity across the voxel’s dimension. Both parameter changes will
effectively reduce the phase dispersion across the voxel and minimize the induced signal modulation
(Brown et al. 1999). However, sequence parameter optimizations will also have their limitations.
Reducing the echo time will greatly compromise the T ∗

2 -contrast in the image and the information
gained about changes in the T ∗

2 value for different tissues. In addition, reducing the voxel size will
affect the image quality as it effectively decreases the signal-to-noise ratio (SNR).

Sequence optimization can also make SE and GRE sequences more robust against geometric dis-
tortions. Increasing the frequency bandwidth per pixel will effectively decrease the effect that
the susceptibility-induced frequency offset has on the image and thus reduce geometric distortions
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along the frequency-encoding direction. The frequency bandwidth per pixel can be increased by
directly increasing the gradient strength of the read-out gradient or by increasing the voxel dimen-
sion. However, increasing the strength of the read-out gradient for the same FOV and resolution
will reduce the SNR in the image. In addition, increasing the voxel size will allow for more in-
travoxel dephasing, leading to signal loss. Generally, a compromise between geometric distortion
and signal loss must be made when choosing imaging parameters to minimize the susceptibility
effects in the image. Geometric distortions occurring along the phase-encoding direction for MR
sequences using zig-zag k-space trajectories, can also be minimized by utilizing parallel imaging.
Parallel imaging simultaneously collects the MR signals using multiple receiver coils, giving the
possibility to reduce the length of the echo train used in EPI sequences by reducing the number of
phase-encoding steps used, effectively increasing the frequency bandwidth along the phase-encoding
direction (A.D. Elster and J.H. Burdette 2001; Weiskopf et al. 2004). Using parallel imaging can
reduce the accumulated phase error in the measured MR signal and thus the presence of geometric
distortions along the phase-encoding direction.

Both primary forms of susceptibility artifacts (signal loss and geometric distortion) can be reduced
by directly increasing the B0 homogeneity. Shimming is a commonly used technique that tries to
improve the homogeneity of the applied background field by correcting for the present magnetic
field inhomogeneities (A.D. Elster and J.H. Burdette 2001). Active shimming is applied to correct
for the patient-specific field distortions generated due to the magnetization of the different tissues.
Active shimming decomposes the apparent magnetic field into spherical harmonic basic functions
and produces corresponding corrective magnetic fields by directing current through specialized
coils placed in the MR system (Juchem et al. 2011; McRobbie et al. 2017). Field mapping can be
performed to identify the weight needed for each harmonic term of the correcting fields and thus
the current for each shim coil to best homogenize the magnetic field on a per-subject basis (A.D.
Elster and J.H. Burdette 2001). However, the complex perturbing field patterns generated within
the human body are hard to remedy with today’s shimming technology due to their limited shaping
capability (usually only spherical harmonics up to the second-order are available, but sometimes
third-order terms as well) (Juchem et al. 2011). This is especially a problem in the prefrontal
cortex, which is close to the frontal and ethmoid sinuses, and in the areas of the temporal lobes
that are close to the sphenoid sinus, auditory air cavities, and air cavities within the temporal
bone (Juchem et al. 2011). Much higher orders of the spherical harmonics would be needed to
fully compensate for the induced locally highly variable field patterns. The degree of shim order
is largely limited by the space within the MR core, where higher-order shimming needs a larger
number of resistive shim coils (Wachowicz 2014). Thus, there will still be a presence of residual
field inhomogeneity in the B0 field even after the application of active shimming.

Today, research is done on multi-coil shimming techniques where multiple individually driven
electrical shim coils are localized close to the shim volume (Juchem et al. 2011; Stockmann et
al. 2016). The shimming of the volume is achieved through the superposition of each individual
basic field shape created by the individual shim coils. Using a multi-coil system for shimming has
proven to produce more flexible and complex magnetic field shapes, allowing for a repertoire of field
shapes, including localized gradient patterns close to the individual coils (Juchem et al. 2011). This
allows more complex field patterns in the human brain to be corrected. The multi-coil shimming
technique has been shown to significantly reduce the field distortions present in the human brain
at 7T, but some field variations will remain (Juchem et al. 2011; Stockmann et al. 2016).

Obtaining a better understanding of the characteristics of the induced perturbing field can be
beneficial for optimizing the use of sequence parameters and gaining more insight into how the
application and design of shimming techniques can be optimized to minimize the presence of
B0 inhomogeneity. This is especially important at higher field strength, where the generated
perturbing field due to complex susceptibility distributions will be more severe.
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2.6 Simulation of Susceptibility-induced Field Distortions

For optimization of sequence parameters and the shimming technique, it would be valuable to have
a numerical method to rapidly quantify and simulate the susceptibility-induced field distortions
caused by a spatial distribution of magnetic susceptibility. Thus, a numerical model can give valu-
able information for minimizing the susceptibility effects in the obtained images. This study utilizes
a Fourier-based method to simulate the effects of the susceptibility-induced fields in MRI. When
quantifying the induced magnetization, it is convenient to use the volume magnetic susceptibility
given by Eq. 2.8. Consequently, Eq. 2.9 gives the total local magnetic field induction.

When a sample described by a magnetic susceptibility distribution, χ(r⃗), is placed under a strong
magnetic field, B0, the induced field due to the magnetization distribution (M(r⃗)) of the sample
at position r⃗ is given by

B⃗(r⃗) ≈ B⃗d(r⃗) =
µ0

4π

∫
V

1

|r⃗ − r⃗′|3
·

(
3
M⃗(r⃗′) · (r⃗ − r⃗′)

|r⃗ − r⃗′|2
(r⃗ − r⃗′)− M⃗(r⃗′)

)
d3r′. (2.11)

Eq. 2.11 is obtained by solving Maxwell’s equations, and it makes a dipole approximation where
each element of the magnetization distribution is seen as an independent dipole. Therefore, the
equation performs a first-order approximation of the dipole-dipole interaction where the contri-
bution to the magnetic field at a point in the substance from quadratic or higher terms of M⃗ is
neglected. The approximation is generally valid as most susceptibility values found within the
human body are |χ| ≪ 1. In addition, the divergence of the integral evaluation at r⃗ = r⃗′ is solved
through the use of the Cauchy limiting process. Using the Cauchy limiting process effectively
places the hydrogen nucleus in a Lorentzian sphere (Koch et al. 2006). A Lorentz sphere is an
imaginary spherical shell surrounding the point of measurement that separates the field effects
due to its microscopic configuration from the contribution of the surrounding molecules in the
system (Wang and Liu 2015). Discrete atoms, molecules, and nuclei encountered at a microscopic
scale generate susceptibility shifts that disrupt the concept of continuity in Maxwell’s equations.
By placing the point of measurement inside a Lorentz sphere, the field effects due to the discrete
magnetic dipoles in the proton’s immediate environment will be captured inside its interior, where
random fluctuations of these fields are allowed, effectively canceling them out inside the shell.
Hence, the point of measurement is placed inside an imaginary sphere of zero magnetic susceptibil-
ity, and the nearby magnetic environment is approximated by a continuum (Duyn and J. Schenck
2016; Marques and Bowtell 2005). Consequently, the magnetic susceptibility will be continuous
at a microscopic scale, making the condition of continuity in Maxwell’s equations valid both at a
macroscopic and microscopic scale (Koch et al. 2006; Wang, Zhou et al. 2015).

The main magnetic field, B0, is most commonly applied in the z-direction, making the z-component
of the induced magnetization of the material the dominant component that deviates significantly
from zero compared to its transverse magnetization components. Hence, only the z-magnetization
and the z-component of the dipole magnetic field is important (Marques and Bowtell 2005). The

expression for the induced magnetization when the dominance of the static field (B⃗0 = B0ẑ) is
taken into account is given by

M⃗ ≈ Mz = χ
B0

µ0(1 + χ)
≈ χ

µ0
B0. (2.12)

The assumption |χ| ≪ 1, which is generally true for human tissues, is employed in the above
equation. The expression for the z-component of the normalized (B(z,d)/B0) magnetic field per-
turbation due to induced magnetization of different tissues can then be obtained by inserting Eq.
2.12 into Eq. 2.11, which yields

B⃗z,d(r⃗)

B0
=

B⃗d(r⃗) · ẑ
B0

=
1

4π

∫
V

(
3
χ⃗(r⃗′) · (z − z′)2

|r⃗ − r⃗′|5
− χ(r⃗′)

|r⃗ − r⃗′|3

)
d3r′ ≡

∫
V

χ(r⃗′)Dz(r⃗ − r⃗′). (2.13)

Dz(r⃗) is the z-component of the unit dipole field and is given by

Dz(r⃗) =
1

4π

(
3 · z2 − |r⃗|2

|r⃗|5

)
=

1

4π

(
3 · cos2(θ)− 1

|r⃗|3

)
, (2.14)
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where θ is the angle between the direction of B0 and r⃗. The expression for the z-component of the
normalized induced perturbing field given in Eq. 2.13, can easily be recognized as the convolution
between the spatial susceptibility distribution (χ(r⃗)) and the function describing a dipole response
(Dz(r⃗)). By using the convolution theorem, the integral can easily be calculated in the Fourier
domain through multiplication, and the problem is reduced to solving the expression:

Bz(k⃗)

B0
= χ(k⃗)×Dz(k⃗), (2.15)

where k⃗ is the coordinate position in k-space. In addition, χ(k⃗) in the above equation is the 3D

Fourier transform of the susceptibility distribution map while Dz(k⃗) is the Fourier pair of the

dipole unit field that is defined in Eq. 2.14. Dz(k⃗) is defined in k-space as

Dz(k⃗) =

(
1

3
− k2z

k2z + k2ρ

)
, (2.16)

where k2ρ = k2x + k2y (Schäfer et al. 2009). The characteristics of a theoretical point-dipole field
distribution in image space and the k-space definition of the dipole kernel in the kz − kρ plane is
illustrated in Fig. 2.10. Fig. 2.10b indicates the characteristics of the convolution kernel used.

(a) (b)

Figure 2.10: (a) Field lines of a theoretic magnetic point-dipole (Griffiths 1999). (b) Simulated

dipole kernel in k-space, D(k⃗). Eq. 2.16 was employed and the dipole kernel was described on a
570× 570× 570 matrix with an isotropic resolution of 0.75mm. The kernel illustrates variation of
the dipole field with kz and kρ.

Eq. 2.16 is not defined for k equal to zero (the center of k-space) or infinity, and are therefore
not valid in the center of k-space. The value of the dipole kernel at k = 0 effectively specifies
the average value of the dipole field over the whole calculation volume. Hence, Bz(k⃗ = 0) defines
the averaged field offset due to the susceptibility-induced field for the whole calculation volume,
which extends towards infinity for a continuous infinite Fourier transformation (Koch et al. 2006).
In addition, it has been shown that evaluating the integral for the dipole function at k = 0 is
equivalent to the calculation of the Lorenz sphere term (Cheng et al. 2009). As the Lorentz sphere
term is already taken into account in the equation for the susceptibility-induced magnetic field
(Eq. 2.11), it will be consistent with assigning the value of the dipole kernel at the center of

k-space equal to zero. Furthermore, assigning the value of Bz(k⃗ = 0) to zero makes the reasonable
assumption that the perturbing magnetic field infinitely far away is zero, which, conveniently, will
have the consequence of satisfying the boundary conditions at the edges of the calculation volume.

The Fourier-based method can easily simulate the induced field that alters the homogeneity of
B0 by multiplying the 3D representation of the dipole kernel with the 3D spatial susceptibility
distribution in the Fourier domain and subsequently taking the 3D inverse Fourier transform back
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to the spatial domain. The 3D map of the susceptibility distribution includes the geometry of
structures included in the sample. In addition, the dipole interaction described in Eq. 2.14 changes
as (3 · cos(θ)− 1), where θ includes the information about the orientation of the structure relative
to B0. The induced field distortions will therefore depend both on the shape of the structure, and
its angle to B0, which was further noticed in the previous study made (Schmidt 2021).

2.6.1 Digitization and Discretization Effects

The expressions for the dipole kernel and the susceptibility-induced magnetic field distribution
described in Section 2.6 were attained based on infinite field-of-view (FOV), corresponding to
the integration over an infinitely large space. However, in practice, the description of the input
susceptibility distribution used in the Fourier-based method is discretized onto a matrix of finite size
and resolution. The expression for the dipole kernel must also be defined on a discretized matrix to
obtain consistency with the discrete input susceptibility distribution. Thus, to rapidly calculate the
susceptibility-induced magnetic field over a finite range, the Fourier-based method utilizes discrete
fast Fourier-transformation (DFFT), having the consequence of violating the continuum analysis
within the solution space (Koch et al. 2006). The finite arbitrary susceptibility distribution and
Fourier transformation will introduce errors in the FFT calculation seen as (a) aliasing and (b)
truncation artifacts in the obtained images:

(a) Aliasing corresponds to the overlapping of signals outside the FOV onto the image near its edges.
Applying FFT over a limited calculation volume introduces a periodicity in the reconstructed image
function. The introduced periodicity of the solution space can give rise to aliasing artifacts where
periodic neighboring images influence the obtained image. The artifact is most evident at the
edges of the calculation volume. As the dipole field, which is utilized in the Fourier-based method,
is relatively long-range, the method will be prone to aliasing artifacts. Generally, the aliasing
effect will become more noticeable and affect the obtained values of the calculated field offset more
significantly when the object size becomes comparable to the size of the FOV.

(b) Truncation artifacts, also known as Gibbs-ringing artifacts, arise in the Fourier-based method
due to the input susceptibility-map being a finite matrix representing, resulting in a truncation
of the Fourier series used to reconstruct the image function (Liang and Lauterbur 2000). There
will be insufficient data to perfectly reconstruct the image function, and the FFT calculation error
due to truncated Fourier series will manifest itself as amplitude oscillation of alternating higher
and lower intensities throughout the computation volume (Liang and Lauterbur 2000). Gibbs-
ringing artifacts are most pronounced adjacent to the sharp interfaces. The discrete nature of
the susceptibility boundaries of the input susceptibility-map will significantly increase the Gibbs-
ringing artifact as the discretization of boundaries effectively increases the surface areas (Koch
et al. 2006). The discretized surface boundaries will also obtain angles to the applied field, B0,
causing interference between the generated intensity oscillation artifacts (Koch et al. 2006).

Aliasing and Gibbs ringing artifacts can be minimized in the Fourier-based method by increasing
FOV and the spatial resolution, respectively. However, increasing both FOV and the spatial
resolution will dramatically increase the computation time as it effectively increases the matrix
size of the computation volume. Compromises must therefore be made. The effects of FOV and
resolution on the accuracy of the Fourier-based method were analyzed in the thesis by Schmidt
2021.
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Chapter 3

Methods

Experimental data for this thesis was acquired on a 7T Siemens MAGNETOM Terra scanner
located at St. Olav’s hospital in Trondheim, Norway. A 32-channel head coil was used for signal
reception for all measurements performed. The acquired DICOM images was converted to NiFTi
files using MRIcrone. All simulations were implemented and performed in MATLAB R2020a (The
Mathworks Inc., Natick, MA), on a Windows 10 Home PC with 2.10 GHz AMD Ryzen 5 mobile
processor and with 6.94 GB usable RAM. The main functions used for the simulations are found in
Appendix A. Imaging of, in total, three healthy volunteers were carried out with informed consent.
The first two measurements were used to optimize the acquisitions and sequence parameters, and
thus only results from the last measurement is shown in the thesis (Appendix B).

3.1 Segmentation of Anatomical Image

The Fourier-based model is based on a subject-specific input susceptibility map for calculating the
frequency offset. Thus, information about the location and shape of the different tissues is needed
in the model and was obtained by applying a segmentation tool to a high-resolution anatomical
dataset of the subject.

For a healthy volunteer, a MP-2RAGE sequence was acquired to obtain detailed anatomical images.
Isotropic resolution of 0.75mm and a FOV of 168mm× 255mm× 252mm was used. The TE and
TR values were set to be 1.99ms and 4300ms, respectively, and the applied sequence used TI1/TI2
of 840/2370ms. The image slices were acquired with no initial rotation, and the acquired images
with distortion correction of the spatial gradients turned off was used. Subsequently, the high-
resolution anatomical images was used for differentiation and localization of the main different
tissue types present within a human head. For this thesis, the Statistical Parametric Mapping 12
(SPM12) software was used to segment the T1 weighted anatomical MP-RAGE image acquired
with the second inversion time. The segmentation toolbox in SPM12 uses an in-build algorithm
that classifies the subject’s data into several different tissue types according to the tissue probability
map (TPM). TPM defines the probability of finding a tissue at a given location.

Before applying the segmentation algorithm, some preprocessing was performed on the image to
improve the accuracy of the anatomical image segmentation. In SPM12, the origin of the template
space, the location [0, 0, 0], is set at the anterior commissure. The anterior commissure is a white
matter tract connecting both brain hemispheres. To better align the input anatomical image
(subject space) with the TPM (template space), the origin of the anatomical image was reset to
be located at the same relative position within the human brain as for the template space. Thus,
the origin of the subject space was reset to be located at the anterior commissure. The position of
the anterior commissure was identified using the combined image achieved from the MP-2RAGE
sequence due to its superior grey to white matter contrast. However, it is the MP-RAGE image
with the second inversion time that was being used in the segmentation step.
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After the pre-processing step of the anatomical images, the segmentation of the images into dif-
ferent tissue types was achieved by applying the segmentation algorithm in SPM12. Several input
parameters to the segmentation algorithm can be specified. Finding the best input parameters
is a matter of empirical exploration and will be dependent on the desired outcome one wishes to
achieve from the segmentation. As emphasized in Appendix C, the results of the segmentation
step are relatively largely affected by choice of the initial parameters. A relatively smooth intens-
ity modulation artifact was observed across the acquired MP-RAGE image. Thus, a lighter bias
regularisation was chosen to account for this artifact in the segmentation algorithm. Doing so
will prevent the algorithm from modeling the intensity variations as being due to different tissue
classes. However, choosing very light regularisation will give poor results for the air segmentation
(Appendix C). The parameters that were used in the segmentation step for the final results are
indicated in Table 3.1. The tissue probability map used in the segmentation step was the TPM.nii,
which is included in the SPM12 software package. TPM.nii classifies the tissues of the anatomical
image into grey matter, white matter, cerebrospinal fluid (CSF), bone, soft tissue, and air/back-
ground (Ashburner et al. 2021). Accurate segmentation between bone, air, and soft tissue is mainly
focused on in this thesis. Grey matter, white matter, and CSF are assumed to have susceptibility
values of soft tissue, and precise segmentation between these tissue compartments is therefore not
heavily weighted.

Table 3.1: Input parameters for the segmentation algorithm in SPM12.

Parameter Value

Bias regulation Very light regularisation (0.0001)

Bias FWHM 60mm cutoff

Tissue Probability map TPM.nii

Number of
Gaussians

Grey Matter: 2

White Matter: 2

CSF: 2

Bone: 3

Soft tissue: 4

Air: 2

Native tissue Native space

Clean Up Light Clean

Affine Regularisation
ICBM space template - European
brains

Sampling distance 3

Deformation Fields Forward

The SPM12 segmentation toolbox gives the probability maps for the location of each tissue type
segmented as output. Due to partial volume effects, a voxel can be given a relatively high probab-
ility for multiple tissue types. Thus, the obtained probability maps from the SPM12 segmentation
step were later compared with each other, voxel by voxel, where the voxel was given the tissue
type with the highest probability.

3.1.1 Segmentation Using UTE Dataset

Segmentation between air and bone is difficult to achieve with data from conventional MR se-
quences, e.g., MP-RAGE, as air produces no signal while bone produces little to no detectable
signal. The differentiation between the two compartments is especially challenging in brain regions
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with anatomical air cavities surrounded by bone tissue (e.g., sinuses, auditory cavities, and air
cavities within the temporal bone). Consequently, correct segmentation between air and bone will
be hard to achieve with conventional MP-RAGE images and the SPM12 segmentation program.
Using an UTE sequence with TE values that are remarkably less than those of conventional se-
quences allows tissues with very short T2 values to be detected, and differentiation between air
and bone can be achieved. Thus, a single echoed UTE sequence was applied in addition to the
MP-2RAGE sequence to obtain further information for the segmentation of tissues.

A non-clinical UTE sequence under development (Stefan Sommer, Siemens Healthineers), was
acquired with a 0.75mm isotropic resolution and an isotropic FOV of 252mm in each spatial
dimension. The repetition time and echo time were 3.25ms and 0.05ms, respectively, and a small
flip angle of 4° was used. Coronal images with no initial rotation were acquired, and distortion
correction of the gradients was turned off to prevent any image scaling caused by the correction.
The imaging volume was set to have an equal initial position as set in the MP-RAGE sequence to
ensure structural alignment of the brain structures between the two subject spaces. However, a
scaling of the reconstructed UTE images was observed when compared to the acquired MP-RAGE
images. As described in Appendix D, a modification of the resolution in the DICOM header file
was executed to achieve structural alignment between the two acquired images. The resulting UTE
image showed a significant overlay with the MP-RAGE image and could be used for further air
segmentation.

The probability map for the air segmentation obtained from the SPM12 was overlaid onto the mod-
ified UTE images, where the superior air-bone contrast in the UTE images was utilized for further
air segmentation. The 3D slicer software was used for the manual segmentation. The software was
also used to remove extrusions, fill holes and smoothen the achieved bone and air segmentations.
A median smoothing filter of 1.5mm was applied. As a final product, a relatively representable
subject-specific tissue map defining the location of the segmented tissues was achieved.

The established pipeline for deriving a subject-specific tissue distribution map is indicated in Fig.
3.1. The top row indicates the automatic tissue segmentation performed on the MP-RAGE image
using SPM12, and the bottom row the use of the UTE data to refine the air segmentation manually.
The spatial resolution of the anatomical images on which the segmentation was performed was
unchanged, and the structure of the tissues was therefore defined using cubic voxels of 0.75mm.

Figure 3.1: The pipeline for the segmentation of the main brain tissues. The output is a sus-
ceptibility map where air, bone and soft tissue (including grey matter, white matter and CSF) is
spatially segmented and given their corresponding susceptibility value.
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3.2 Frequency Offset

The achieved subject-specific tissue map, defining the voxel-wise positions for each tissue class
segmented, was used to construct a three-dimensional matrix representing the spatial distribution
of the magnetic susceptibilities within the subject (Output in Fig. 3.1). The susceptibility values
for grey matter, white matter, CSF, and soft tissue deviates only slightly from each other, and
their susceptibility effects are most often not apparent in the obtained MR images (Collins et al.
2002; Schäfer et al. 2009). Thus, the locations for grey matter, white matter, CSF, and soft
tissue obtained from the segmentation step were all given the susceptibility value of soft tissue.
The susceptibility values that were used in this thesis are in accordance with those found in J.F.
Schenck 1996 and are presented in Table 3.2.

Table 3.2: Susceptibility values of bone, soft tissue and air, presented in parts-per-million (ppm)
(J.F. Schenck 1996)

Structure χ [ppm]

Bone −8.86

Soft tissue −9.05

Air 0.36

Before applying the numerical model to the susceptibility distribution characterizing the subject,
χ(r⃗), the effective FOV for the subject-space was increased. The FOV was changed to be 427.5mm
×427.5mm×427.5mm by adding a buffer region between the object of interest and the edge of the
simulation matrix, effectively increasing the matrix size, without changing the spatial resolution.
The matrix size was increased to 570× 570× 570. The padding of the original three-dimensional
matrix containing the information about χ(r⃗) is performed to minimize the aliasing effect, caused
by the infinite repetition of the susceptibility distribution generated by using the discrete fast
Fourier transformation (Section 2.6.1). Thus, applying a buffer region will move the repeated
images further away from the central region of interest. Due to computational limitations, large
matrix sizes could only be achieved by using single precision instead of double-precision matrices as
it requires less computational memory. The difference in using single versus double precision and
smaller versus larger matrix sizes with an equal resolution of 0.75mm, was analyzed in Appendix
E. The difference in the quantified frequency offset values when using single compared to double
precision was insignificant compared to the gain achieved by using a larger matrix size. Thus,
single-precision matrices are used for the model in this thesis, such that aliasing effects can be
minimized.

The susceptibility-induced field distribution given in Eq. 2.13 was calculated at each point using
the Fourier transformation. The description of the susceptibility map in the Fourier domain (χ(k⃗))
was achieved by applying a three-dimensional DFFT. The spatial resolution, ∆r, of the matrix, was
0.75mm (unchanged from the MP-RAGE dataset) in each spatial direction. Truncation effects,
which are enhanced by the discretization effects of the model, were reduced through apodization
of χ(k⃗). The apodization of χ(k⃗) was achieved by element-wise multiplication of χ(k⃗) with a
raised cosine filter. The raised cosine filter was set to have a roll-off value (β) equal to 0.9, giving
an almost Gaussian low-pass filter that effectively smoothens the susceptibility distribution in k-
space. In addition, the filter is described using polar coordinates, making it rotationally uniform.
Subsequently, following Eq. 2.15, Bz(k⃗) was calculated by element wise multiplication of the
kernel describing the field distribution for a theoretical dipole in Fourier domain (Eq. 2.16) with

χ(k⃗). The value of the dipole field at the center of k-space, D(k⃗ = 0), is undefined and was set
equal to zero, such that the total map of generated field distortions averages to zero in real-space
(Schäfer et al. 2009). Finally, the inverse Fourier transformation was applied, and the susceptibility-
induced field distortions in real space were obtained. The results were scaled to Hertz by using the
Larmor relationship given in Eq. 2.1. Thus, the simulated frequency offset is obtained. The main
magnetic field was orientated in the inferior-superior direction for the performed simulations using
the Fourier-based method.

27



Two field maps, one with standard shim mode and the other with a tune-up shim mode, were
acquired to validate the results from the numerical model. Field maps measure the in vivo field
inhomogeneity present and will therefore be the ground truth for the frequency offset map. The
tune-up shim mode does not involve any additional subject-specific shimming, whereas the standard
shim mode includes the application of the subject-specific static shimming. Field maps with
tune-up shim modes were acquired as the numerical model does not include any effects from
shimming. However, the acquired field map with no subject-specific shimming will also include
field inhomogeneities caused by other factors than the susceptibility differences. Thus, a field map
with standard shimming was also acquired. Other than the difference in shim mode, the two field
maps had equal acquisition parameters with 1.5mm isotropic resolution and TR=901ms. The
two complex images were acquired at the echo times TE1 = 4.08ms and TE2 = 5.1ms, giving an
echo spacing of 1.02ms. The read-out bandwidth for both sequences was 402Hz/Px. As for the
MP-RAGE image, the acquired slice images in the field maps sequences were taken in the sagittal
plane with no initial rotation. Equal orientation and position between the field maps and the
MP-2RAGE scans were ensured such that image slices at corresponding positions in the scanner-
based coordinate system could more easily be attained and compared. The reconstructed field map
image was scaled to have values in the interval [-π,π], before the frequency offset was attained by
utilizing Eq. 2.7. The corresponding magnitude images were used to remove the noise outside the
imaging volume in the field map images. In addition, due to strong phase-wrapping observed in
the tune-up dataset, a phase-unwrapping algorithm found in the FSL software was applied for at
the tune-up dataset. Thus, unwrapped images for the brain region were derived for the tune-up
field map dataset. The mask of the brain region used in the phase-unwrapping step was saved and
applied for later masking of the brain region.

To be able to calculate the difference between the reference frequency offset value (field map) from
the simulated value (model), the 3D matrix storing the information from the field map imaging
sequences was interpolated using the in-build Matlab function, interp3. The cubic interpolation
method was used. The FOV was unchanged, but the resolution was increased to 0.75mm by
the interpolation step. The mask of the brain region obtained from the phase-unwrapping step
was also interpolated to gain a mask of the brain region that can be applied to the numerical
model. After the interpolation step, the 3D matrix containing the simulated frequency offset was
re-scaled to the size of the 3D matrix storing the interpolated field map data, such that each matrix
contained the information from corresponding positions in the scanner-based anatomical coordinate
system (Brainder n.d.). Subsequently, the error of the model’s estimation was calculated by taking
the difference between the reference value, defined by the field map, and the model’s estimated
frequency offset value.

To better compare the numerical solution with the experimental values, the root-mean-square error
(RMSE) was calculated for defined regions of interest (ROIs), for each transverse image slice, and
for the whole brain region. Two ROIs were defined in a narrowed region within the transverse
image slice, located above the nasal cavity, and the sphenoid and ethmoid sinuses, where strong
frequency offset values are expected. ROI1 was taken at a level in the inferior-superior direction
close to the air cavities. ROI2 was taken at an equal in-plane position but for a transverse slice
located at a more superior position compared to ROI1. In addition, the RMSE was evaluated over
the entire brain within the transverse slices for four ROIs divided in the inferior-superior direction:
a region covering the lower brain region, the cerebellum, a region right above the nasal cavity, the
sphenoid, and the ethmoid sinuses, a region covering the superior orbitofrontal cortex, and the
upper brain region.

A flowchart showing the main steps performed for calculating the frequency offsets, both from the
model and from the acquired field maps, is indicated in Fig. 3.2.
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Figure 3.2: A flowchart indicating the step-wise procedure of calculating the in vivo frequency
offset maps from the field map dataset (ground truth), and the model (simulation). A description
of the different functions used during the calculation steps can be found in Appendix A.

3.3 Through-Slice Susceptibility Gradients

In addition to quantifying the frequency offset, estimation of the presence of in vivo through-slice
susceptibility gradients, Gz,s, was performed. The value of Gz,s was calculated using three different
methods: (I) Non-linear least-squares fit of the acquired experimental data from a ME-GRE scan
onto the corrected signal decay function given in Eq. 2.10, (II) linear fit of the acquired field map
data, and (III) linear fit of the field offset predicted by the numerical model. A flowchart for the
three different methods used to quantify the present Gz,s is shown in Fig. 3.3.

Figure 3.3: A flowchart indicating the step-wise procedure of obtaining Gz,s-maps from the ME-
GRE dataset, the field map dataset, and the model (simulation). A description of the different
functions used during the calculation steps can be found in Appendix A.

3.3.1 Quantifying Gz,s From a Multi-Echo GRE Scan

As previously mentioned in Section 2.4.1, the theoretical model for the signal decay (Eq. 2.6)
does not take into account the enhanced signal modulation induced by through-slice susceptibility
gradients. Thus, an underestimation of the T ∗

2 will occur in regions where relatively strong Gz,s

is present when applying exponential fit to the theoretical model. This is especially a problem for
imaging sequences with larger slice thickness, as larger slice thickness will make the sequence more
sensitive to field inhomogeneities along the slice-select direction, causing the signal to decay more
rapidly than described by the theoretical model. A modified signal decay function, corrected for
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the presence of through-slice susceptibility-induced gradients, was introduced in Section 2.4.1 and
is given in Eq. 2.10. The parameter Gz,s in the given equation can be estimated by applying a
non-linear least-squares fit of the experimental data acquired from a ME-GRE sequence onto the
Gz,s-corrected signal decay function. The value of S0 was not fixated to allow some flexibility in
the model fit. However, to make the fit more focused towards the estimation of Gz,s, the value of
T ∗
2 was fixated. Thus, the value of T ∗

2 was initially estimated by performing a fit to the simple
monoexponential decay function within a defined region where little to no field inhomogeneity was
expected. The initial estimate of S0 and T ∗

2 in the model fit was calculated using the expression
found in Hagberg et al. 2002 which is a geometric approximation of the area under the theoretical
signal decay curve. By assuming that corresponding tissue types have equal T ∗

2 value, the value
of T ∗

2 in the Gz,s-corrected model fit was conveniently fixated to the mean value of the T ∗
2 values

calculated within the defined region with field homogeneity.

After fixating the value of T ∗
2 , maps of the estimated Gz,s and S0 values was derived for an

image slice where an region with enhances signal loss was observed. The implemented non-linear
least-squares fitting model for the ME-GRE datasets was initially validated and performed on
a phantom before being applied to in vivo data (Appendix F). A ME-GRE scan with 0.75mm
isotropic resolution and an echo train ranging from 4ms to 38.38ms with an echo spacing of 3.82ms
was used in the phantom measurement. In addition to validation of the method, the difference
in the obtained results when assuming a perfect, but not physically achievable, rectangular slice
profile and when assuming a gaussian slice profile was also investigated in Appendix F. Only minor
differences in the obtained results were observed. However, a small slice thickness was used in the
phantom measurement, and the difference in the result is expected to be greater for larger slice
thicknesses. In the continuing analysis, the sinc-corrected signal decay function, where a perfect
rectangular slice profile is assumed, was used.

Two ME-GRE scans were performed on a healthy volunteer, one with standard and the other
with a tune-up shim mode. Both ME-scans had a 0.75mm isotropic in-plane resolution and a
slice thickness of 4.5mm, thus minimizing the effect of in-plane compared to the through-plane
susceptibility gradients on the signal modulation. TR was set to 1200ms, and a long echo train of
ten echoes ranging from 3.10ms to 40.95ms with an echo spacing of 3.97ms was used. The read-
out bandwidth for each echo was 400Hz/Px and the datasets with distortion correction turned off
were used. The value of T ∗

2 was estimated within a defined 2D-region of size 50×17 voxels located
in the superior part of the brain where little to no field inhomogeneity was expected. The mean
value of the estimated T ∗

2 values over the defined region was calculated and used for the model
fit to the corrected signal decay function. Subsequently, the values of Gz,s and S0 were estimated
for the entire imaging volume within a transverse image slice. The fitting process used an initial
estimate of Gz,s that was set equal to 1 · 10−8T/m (close to zero). The inferior-superior position
at which the maps of Gz,s were derived was located at a level of the inferior frontal lobe, above the
nasal cavity, and the ethmoid and sphenoidal sinuses. Thus, in an area where strong Gz,s values
are expected to be present.

The RMSE and the R2 value for each performed fit were saved, and their mean value was calculated.
For the estimation of Gz,s the mean value of the goodness-of-fit statistics was calculated both for
the entire masked brain region and for a defined ROI at size 172× 47 located in the region above
the nasal cavity, the ethmoid and sphenoidal sinuses, where the strong susceptibility gradients are
expected.

3.3.2 Quantifying Gz,s From the Numerical Model and a Field Map Scan

The in vivo values of Gz,s were also quantified using the results from the numerical model and
the datasets from the same two field map sequences used in Section 3.2. The method described
in Section 3.3.1 assumed that the field gradients are linear across the voxel in the slice direction,
which is a reasonable assumption for macroscopic field inhomogeneities. By assuming that the
same assumption holds true over a distance equal to the slice thickness of the ME-GRE scan, a
linear least-squares curve-fitting was performed on the datasets from the numerical model and the
field map sequences to estimate the value of Gz,s. The applied linear model fit was a first-order
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polynomial given as
y = p1 · x+ p2

where x is the position along the inferior-superior direction and y is the value of the field inhomo-
geneity at position x obtained from the numerical model and the field map datasets. Thus, p1 will
be the parameter Gz,s that one wishes to quantify. The value of p2 was not fixated to allow flexib-
ility in the model fit. The field offset (field inhomogeneity) was given in µT for both the numerical
model and the field map dataset, and the position of the slices, x, was given in the scanner-based
anatomical coordinate system with units of m. Consequently, the estimated value of Gz,s from the
linear fits was given in units µT/m. Different slice thickness of 1.5mm and 0.75mm was used for
the field maps and in the numerical model, respectively. Thus, a linear fit of six data points was
made for the numerical model, and a fit with three data points for the field map datasets, having
the consequence of estimating Gz,s across a spatial distance of in total 4.5mm (a distance equal
to the slice thickness for the ME-GRE scans). The derived Gz,s-maps from the different datasets
were calculated at the approximately equal inferior-superior position defined in the scanner-based
coordinate system.

The mean RMSE and R2 for the achieved linear model fits were calculated both for the entire
brain region and within the same region of interest as defined in Section 3.3.1.

3.3.3 Comparison Between the Estimated Gz,s-maps

To evaluate the difference in the methods used to quantify the values of Gz,s, the difference between
the acquired Gz,s-maps was attained. To do so, the Gz,s-maps obtained from the field map
sequences were, to start with, interpolated to have the identical in-plane resolution as for the
numerical model and the ME-GRE scan, which is of 0.75mm. The difference in the numerical
model’s estimation of Gz,s and the derived Gz,s-maps from the ME-GRE and field map datasets
was attained, in addition to the difference between the ones obtained from the field maps against
the ME-GRE datasets with similar shim mode. The non-linear least-squares model fit performed
onto the ME-GRE dataset estimates the magnitude of the Gz,s and does not give any information
about its direction. Thus, the absolute value of the Gz,s-map derived from the numerical model
and from the field maps were used when comparisons against the Gz,s-maps attained from the ME-
GRE dataset was made. The difference between the estimated values for Gz,s was calculated over
the entire brain region at approximately equal locations in the scanner-based coordinate system. In
addition, the RMSE between the estimated Gz,s-maps was evaluated over the whole brain region
and for the previously defined ROI located above the nasal cavity, the ethmoid and the sphenoid
sinus.

Histogram plots of the difference in estimated Gz,s values, rounded to their nearest 50th value,
were derived for each comparison made.

31



Chapter 4

Results

4.1 Segmentation

The air segmentation produced by the SPM12 software and the final air segmentation when ad-
ditional information from the UTE images is used, is indicated in Fig. 4.1. A poor segmentation
is observed for the one achieved using SPM12, where only minor parts of the frontal sinus are
segmented as air. A significantly improved air segmentation is observed when adding manual
air segmentation of the UTE images, with an especially clear benefit for the segmentation of the
sphenoid sinus located below the temporal lobe, but also for the frontal sinus.

Figure 4.1: The probability map for the air segmentation obtained from SPM12, and the manual
air segmentation obtained when utilizing the UTE data.

Fig. 4.2 indicates the air segmentation shown in the transverse plane in the location of the frontal
sinuses and the corresponding generated frequency offset when the un-processed, heavily pixelated
air segmentation is used compared to a smoothed air segmentation. The air segmentation obtained
from SPM12 was heavily pixelated with multiple singular voxels segmented as air (see blue arrow
Fig. 4.2). A heavily pixelated air segmentation in the numerical model is observed to induce
multiple singular dipole fields generating highly variable and abrupt field variations in the affected
area(blue arrow in bottom row Fig. 4.2). A noticeable improvement in the calculated field offset
was observed when the extrusions were removed, and a uniform smoothing kernel of 1.5mm was
applied to the air segmentation. More smoothly varying field patterns are now observed around
the air cavities. Thus, the additional processing of the air segmentation showed to be beneficial
against discretization effects. However, care should be taken when applying such smoothing, as
some extrusions can be due to anatomical structures and not caused by the pixelation of the air
segmentation attained from SPM12.
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Figure 4.2: Segmentation of air and the corresponding simulated field offset shown in parts-per-
million (ppm) for both a pixelated and a smoothed air segmentation. The arrows indicate the
location of pixelation effects.

Figure 4.3: The high-resolution T1 weighted MP-RAGE image, together with acquired UTE im-
ages and the susceptibility map for corresponding slices. The slices are taken at positions where
the temporal bone region, the auditory cavities (the tympanic cavities), and the frontal sinus is
indicated. The arrows indicate the position of air cavities surrounded by bone.
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Fig. 4.3 illustrates the acquired MP-RAGE and UTE image in the transverse plane, together with
the constructed tissue distribution map, at three different positions along the inferior-superior
direction. The images in Fig. 4.3 are taken at positions indicating the temporal bone (the red
arrows), the auditory cavities (blue arrows), also known as the tympanic cavities, together with the
nasal cavity (purple arrows), ethmoid and the sphenoid (green arrows) sinuses, and at a position
indicating the frontal sinuses (yellow arrows). Intensity modulation artifact is seen to be present
in both the MP-RAGE and the UTE images. As expected, little to no differentiation between
bone and air cavities is achieved by visual inspection for the conventional MP-RAGE images. A
significantly improved air-bone contrast is observed in the UTE images, especially towards the
anterior side of the human head. A differentiation between bone and air can now be visually
achieved with the UTE images for most parts of the imaging volume (see purple, green and yellow
arrows in Fig. 4.3). The benefit of the increased bone-air contrast in the UTE images is seen
in the tissue segmentation map, where air cavities have been segmented for the corresponding
regions. However, difficulties in differentiation between bone and air are still seen in the area of
the tympanic cavity and within the temporal bone (see blue and red arrows in Fig. 4.3), which
consequently affects the segmentation map where no air is segmented in these regions. In addition,
some information about the localization of air is observed to be lost in the model for the nasal cavity
and the ethmoid sinuses (see purple arrows in Fig. 4.3). The air cavities in these regions often
have highly irregular surfaces and are relatively small, making it difficult to segment manually.

4.2 Frequency Offset

The acquired magnitude image, together with the original field map images with standard and
tune-up shim mode, are shown in Fig. 4.4. The field map images are scaled to frequency and
are shown in Hz. For both field maps, a strong positive frequency offset is evident in the regions
adjacent to the sphenoid sinus (see blue arrows in Fig. 4.4). The observed frequency offset in the
region is more extensive and prevalent for the field map sequence with standard shim mode. In
addition, a long-range field gradient variation is observed along the inferior-superior direction for
the tune-up field map, giving a pronounced negative frequency shift in the inferior parts of the
brain and a noticeably large positive frequency shift at the superior end of the brain. The long-
ranged gradient is significantly less present in the field map with standard shim mode, indicating
that the application of subject-specific shimming corrected for the long-ranged field inhomogeneity.

Figure 4.4: The magnitude and field map images, one with standard and the other tune-up shim
mode, taken in the sagittal plane. The arrows indicate regions and features of interest in the
images.

A clear phase wrapping is observed in the tune-up field maps in the lower parts of the brain,
largely affecting the region where the cerebellum is located. The significant phase wrapping will
give incorrect information about the frequency shift in the affected areas. Thus, the FSL’s phase
unwrapping algorithm was applied to the tune-up field map dataset. The original field map im-
age and the resulting unwrapped image are indicated in Fig. 4.5. A clear improvement in the
information about the frequency offset in the cerebellum region is observed.
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Figure 4.5: The original tune-up field map image and the obtained unwrapped image shown within
the brain region.

Fig. 4.6 shows the frequency offsets calculated using the numerical model based on the subject-
specific susceptibility map. A clear dipole field pattern is observed outside the imaging volume, with
a more distorted quadrupole at the inferior end (see blue arrow in Fig. 4.6). The observed distorted
quadrupole in the neck region is a consequence of the lack of segmentation of the anatomical
structures in the region below the head and is not expected to be present in the actual situation
where the upper body part is present. In addition, noticeable negative frequency offsets, giving a
slight axial gradient, are observed at the posterior end of the neck region that has been segmented
(green arrow in Fig. 4.6). The gradient seems to affect the inferior end of the brain region
slightly. Furthermore, strong, positive frequency offsets are observed in the regions adjacent to
the segmented air cavities, e.g., the nasal cavity, the sphenoid, and the ethmoid sinuses (see white
arrows in Fig. 4.6). Frequency offsets due to curved facial structures (mainly at the anterior end)
and the shape of the head (mostly seen at the posterior end) are also observed, indicating how the
curvature of the head surface can induce frequency offsets. However, the frequency offset caused
by anterior facial structures does not seem to extend into the brain region.

Figure 4.6: Simulated frequency offset obtained from the Fourier-based model where the input
susceptibility map has been padded to a matrix of size 570 × 570 × 570. The arrows indicate
regions and features of interest in the images.

4.2.1 Comparison Between Field Maps and Numerical Model

The high-resolution anatomical MP-RAGE images are indicated in the top row in Fig. 4.7. The
four transverse image slices are taken at different positions along the inferior-superior direction
with an equal spatial distance between the image slices of 12mm. The first two images are taken
at levels indicating the temporal bone (light blue arrows in Fig. 4.7), and the tympanic cavities
(light purple arrow in Fig. 4.7) together with the nasal cavity, ethmoid and sphenoid sinus (light
green arrow in Fig. 4.7).
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Figure 4.7: Transverse images at different positions indicating the location of the temporal bone
and the auditory cavities (the tympanic cavity), in addition to the brain region right above and at a
more distant level from the nasal cavity, the sphenoid and ethmoid sinuses. The top row indicates
the high-resolution T1 weighted anatomical images. The following rows indicate the measured
frequency offset from field maps with standard and tune-up shim mode and the simulated frequency
offset. The brain region of the FM with tune-up indicates the unwrapped data. The last two rows
indicate the difference between the field map and the values obtained from the model evaluated
within the brain region. The arrows indicate regions and features of interest in the images.
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The last two image slices are taken at superior positions to the mentioned air cavities, more
specifically at the level of the inferior frontal lobe and at a level of the upper part of the orbitofrontal
cortex, where the frontal sinus is located in close proximity. The following rows indicate the
measured frequency offset (both with standard and with tune-up shim mode) and the simulated
frequency offset, together with the difference images taken between the field maps and the model’s
prediction within the brain region. The unwrapped data attained within the brain region is overlaid
onto the original image for the field map with tune-up shim mode.

Noticeable positive frequency offsets are observed in the locations above the nasal cavity, the
ethmoid, and the sphenoid sinuses (see dark green and white arrows in Fig. 4.7) for both measured
field maps and for the model. General agreement in the shape, extent, and order of magnitude are
observed for the induced frequency offsets between the datasets in the mentioned regions. However,
looking at the difference images, the model seems to slightly underestimate the frequency offset for
the locations above the nasal cavity and the ethmoid sinuses. In addition, the limitation of the air
segmentation in the subject-specific susceptibility model for the temporal bone and tympanic cavity
is clearly visible in Fig. 4.7, where the model strongly underestimates the presence of frequency
offsets above these regions (see dark blue and dark purple arrows in Fig. 4.7). The underestimation
is less prevalent when the model is compared to the experimental data with tune-up shim mode, and
only a minor difference is seen above the tympanic cavity (see purple arrow in bottom row Fig. 4.7).
Following the same observations made in Fig. 4.4, generally stronger local susceptibility-induced
frequency offsets are observed for the field map with standard shim mode compared to both the
field map with tune-up shim mode and the model’s prediction, giving stronger underestimations of
the model when looking at the difference images. When looking at the difference images between
the model and the field map with standard shim mode, an underestimation of the frequency offset
for the numerical model is seen throughout the brain region. In contrast, for the comparison
against the field map with tune-up shim mode, an overestimation is observed for the numerical
model. The observed overestimation is stronger for the more inferior slices indicated in Fig. 4.7.
In addition, regions where the model slightly overestimated the frequency offset are seen in certain
areas within the brain, indicated by the black arrows in Fig. 4.7.

Further analysis was made in the two ROIs indicated in Fig. 4.7, to evaluate the significance of
the difference in estimated frequency offset between the numerical model and experimental values
in more detail. The RMSE value evaluated over the two ROIs is shown in Table 4.1. A noticeably
lower RMSE value is observed when the model is compared against the field map with tune-up
shim mode.

Table 4.1: The RMSE values for the model’s prediction of frequency offset compared against
measured field maps (both with standard and tune-up shim mode), evaluated over two defined
ROIs located above the nasal cavity, the sphenoid, and ethmoid sinuses.

Shimming ROI1 [Hz] ROI2 [Hz]

Standard 170 127

Tune-up 84 47

The RMSE values evaluated over the whole brain region for each transverse image slice were also
calculated and are indicated as a bar plot in Fig. 4.8. The position of the image slices along the
inferior-superior direction is given relative to the imaging volume’s isocenter (position 0). A more
uniform distribution of the RMSE values is seen for the situation when the model is compared to
the field map with standard shim mode (the subplot to the left in Fig. 4.8). Much larger variations
in RMSE values for each transverse image are evident for the comparison between the model and
the field map with tune-up shim mode (the subplot to the right in Fig. 4.8). A more U-shaped
distribution with significantly larger RMSE values towards the inferior and the superior ends of the
brain is observed. The red dashed lines indicate the region where the model’s prediction correlates
better with the tune-up field map dataset compared to the one with standard shim mode, as
indicated by their lower RMSE values within the region.
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Figure 4.8: Bar plots of the RMSE values for the model’s prediction of frequency offset compared
to measured field maps (both with standard and tune-up shim mode) evaluated over the brain
region for each transverse image slice. The area between the red dashed lines indicate the region
where the model’s prediction correlates better with the tune-up field map.

In addition, the total RMSE taken over the entire brain region was calculated for both comparisons
made against the model’s prediction and is indicated in Table 4.2. Slightly lower RMSE is observed
for the comparison of the model against the field map with standard shim mode. The max value of
RMSE, when calculated for each transverse image slice, and its corresponding spatial position along
the inferior-superior direction relative to the isocenter of the imaging volume, is also presented in
Table 4.2. The maximum RMSE is significantly larger for the comparison against the tune-up field
map, and the position of the transverse image slices where the highest RMSE was evaluated are
located in the inferior brain region (at the edge of the cerebellum) for both comparisons.

Table 4.2: The total RMSE value evaluated over the entire brain region, and the max RMSE value
with its corresponding spatial position along the inferior-superior direction, for the comparisons of
the model’s prediction against the measured field maps (both standard and tune-up shim mode).

Shimming Total RMSE [Hz] Max RMSE [Hz] Pos. Max RMSE

Standard 98 166 ∼ −21mm

Tune-Up 111 306 ∼ −29mm

(a) (b)

Figure 4.9: High-resolution T1 weighted image indicated in the sagittal image plane. The isocenter
is indicated with a green cross. (a) the red dashed lines indicate the region where the model’s
prediction of frequency offset correlates better with the tune-up field map. (b) the four ROIs
divided along the inferior-superior direction, for which RMSE values are evaluated.
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The red dashed line in Fig. 4.9a indicates the anatomical region where the model corresponds
better with the tune-up field map dataset than with the field map with applied shimming and
are the same lines as the ones indicated in Fig. 4.8. The region is observed to cover important
brain regions prone to strong and local magnetic field artifacts, e.g., the prefrontal cortex and the
temporal lobes.

For further analysis, the RMSE value evaluated for the model against the field maps was evaluated
over four regions of interest taken in the inferior-superior direction. The ROIs are indicated in Fig.
4.9b. An ROI covering the lower brain area where the cerebellum is located and an ROI covering the
upper brain region relatively far away from air-tissue interfaces found within the head are defined,
together with an ROI covering the brain region close to the air-tissue interfaces present in the
lower brain region (ROI3) and an ROI more distant but still affected by the susceptibility-induced
field gradients (ROI4). The attained RMSE values for the four different ROIs are presented in
Table 4.3. Noticeably high RMSE values are observed for the comparison between the model and
the field map with tune-up shim mode at the lower and upper brain regions. However, noticeably
lower values of RMSE are seen for the same comparison in ROI3 and ROI4.

Table 4.3: The RMSE values for the model’s prediction of frequency offset compared against the
measured field maps, both with standard and with a tune-up shim mode, evaluated over four ROIs
divided along the inferior-superior direction.

Shimming Lower Brain Area [Hz] ROI3 [Hz] ROI4 [Hz] Upper Brain Area [Hz]

Standard 120 107 90 76

Tune-Up 159 65 43 114

4.3 Simulation of Through-slice Susceptibility Gradients

4.3.1 Non-Linear Least-Squares Fitting to the Sinc-Corrected Signal
Decay Function

The magnitude images acquired at every third echo time from the ME-GRE scans with standard
and tune-up shim mode are indicated in Fig. 4.10. A noticeable enhanced signal loss is observed
above the nasal cavity, the sphenoid, and ethmoid sinuses for both measurements (see green arrow
in Fig. 4.10). Thus, the indicated transverse image slice was used to quantify Gz,s.

Figure 4.10: Transverse gradient-echo images acquired from the ME-GRE sequence (both with
standard and tune-up shim mode) taken superior to the sphenoid sinus and the orbits. The green
arrow indicates the region where a more rapid signal loss is observed.
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Fig. 4.11 indicates the magnitude image acquired at the first echo taken in the superior region of
the brain, together with the narrow area in which field homogeneity was assumed (the blue square
in Fig. 4.11). Furthermore, the maps of the estimated S0 and T ∗

2 values for the narrow region are
also indicated. A pattern resemblance is observed between the magnitude image and the estimated
S0 map. Somewhat varying values of T ∗

2 are observed, where most of the values seem to lie in the
range between approximately 25ms and 35ms. The mean value of the goodness-of-fit parameters
for the performed fits is indicated in Table 4.4, together with the mean calculated T ∗

2 value. The
observed outstanding goodness-of-fit values for the model fit indicate that the estimated values for
S0 and T ∗

2 are credible.

Figure 4.11: The transverse gradient-echo image acquired at the first echo time at TE = 3.1ms
taken in the superior brain region, in addition to a narrow region where non-linear least-squares
fit to the monoexponential signal decay was performed. The maps of the estimated parameters,
S0 and T ∗

2 , are also indicated.

Table 4.4: The mean value of goodness-of-fit variables over the region where T ∗
2 was estimated,

together with the mean calculated T ∗
2 value.

RMSE [intensity] R2 Mean T ∗
2 [ms]

9 0.997 29.7

Fig. 4.12 shows the result of the sinc-corrected model fit applied within the brain region for the
image slice where an enhanced signal loss was observed. Maps of the RMSE, R2, estimated S0 and
Gz,s are indicated from left to right in the figure, respectively. The top row shows the result of
the fits made to the ME-GRE dataset with standard shimming, and the bottom row for the model
fit to the ME-GRE dataset with no static shimming applied (tune-up). In addition, the region
of interest located above the nasal cavity, the ethmoid, and the sphenoid sinuses, is highlighted
by a dashed blue box indicated in each image. The mean values of the goodness-of-fit statistics,
evaluated over the entire region and within the defined ROI, for both model fits are shown in Table
4.5, together with the mean values of Gz,s taken over the defined ROI.

In general, low RMSE and high R2 values are seen for most parts of the brain region, with exceptions
at locations where the ventricles and CSF tissue or blood vessels are expected to be located (see
green arrows in Fig. 4.12). The regions of worse goodness-of-fit statistics are more prevalent for
the model fit performed on the ME-GRE dataset with standard shim mode. Thus, worse goodness-
of-fit statistics are obtained for both model fits when evaluated over the entire brain region than
within the ROI. High correspondence between the two maps with estimated S0 values is observed,
and they show a pattern similar to what was seen for the magnitude image. In addition, high
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values of Gz,s are observed within the ROI, with a pattern similar to the one observed for the
induced signal loss in the acquired magnitude images. As expected from previous results, the
mean value of quantified Gz,s within the ROI is seen to be higher for the dataset with standard
shim mode (Table 4.5). Tissue contrast is observed in both Gz,s-maps, mainly outside the ROI,
following a similar pattern to what is observed in the S0 map. When comparing the two acquired
Gz,s-maps, higher values of Gz,s are seen to be estimated in most parts of the brain region for the
model fit to the ME-GRE dataset with tune-up shim mode, as expected due to the presence of
the large-scaled gradient. An area above the temporal bone with slightly lower values of Gz,s is
observed and is most likely due to the direction of the local susceptibility-induced field gradient
being in the opposite direction of the long-ranged gradient, causing them to counteract each other.

Figure 4.12: Maps of the RMSE, R2 and estimated S0 and Gz,s values for the non-linear least-
squares fits performed to the sinc-corrected signal decay function.

Table 4.5: The mean value of goodness-of-fit variables for the non-linear least-squares fit made to
the ME-GRE datasets (both stand. shim and tune-up), evaluated over the brain region and for
the ROI. In addition, the mean value of the estimated Gz,s evaluated over the ROI is indicated.

Shim Mode
RMSE [intensity] R2 Estimated Gz,s[µT/m]

Brain ROI Brain ROI ROI

Standard 21 27 0.67 0.94 194

Tune-Up 20 25 0.89 0.97 132

Fig. 4.13 indicates the non-linear least-squares model fits, both to the sinc-corrected (red curve)
and the monoexponential (green curve) signal decay function, performed in a single voxel located
in a region where a homogeneous field is assumed (4.13a), and for a voxel where a relatively strong
value of Gz,s was estimated (4.13b-c). A high degree of similarity is observed for the model fits in
the voxel with a homogeneous field, where both seem to follow the evolution of the experimental
data equally well. However, clear differences are observed between the two model fits for a voxel
with a relatively strong Gz,s present. The experimentally measured data shows a small re-growth
in signal in the approximate time interval between 0.01 s and 0.025 s. The oscillations observed at
later echo times seems to be most likely a noise floor as only small variations around relatively low
intensities are seen. The monoexponential curve fit does not follow this feature and gives a rapid
signal decay with unrealistically low values of T ∗

2 (3.9ms and 5.3ms for the fit to the shimmed and
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tune-up dataset, respectively). A clear improvement is observed when applying the sinc-corrected
model fit, which follows the shape of the re-growth in signal magnitude around the same time
interval as where it was observed for the experimentally measured data.

(a)

(b) (c)

Figure 4.13: Results of the Non-Linear Least-Squares fitting performed in a single voxel to the
experimental data obtained from a ME-GRE sequence. The green dashed curve is the fit made
with a simple monoexponential decay model, the red curve is the result of the fitting made with
a sinc-corrected signal decay function, and the blue crosses are the experimental data. (a) the
results of the model fit in a voxel with a homogeneous field. (b) and (c) indicates the model fits in
a voxel where a relatively strong value of Gz,s is estimated to the dataset with standard shimming
and tune-up, respectively.

4.3.2 Linear Fits

In addition to estimating the in vivo values of Gz,s from ME-GRE scans, the presence of Gz,s was
quantified from linear fitting to the measured (field maps) and simulated (numerical model) field
offset over an equal distance as the slice thickness used in the ME-GRE sequences. The goodness-
of-fit statistics for the performed linear fits are shown in Table 4.6 together with the mean value
of Gz,s evaluated over the defined ROI. The linear fitting to the field offset attained from the
numerical model shows far better goodness-of-fit statistics than for the fit made to the field map
datasets. However, the RMSE value for the linear fit to both field map datasets is strikingly low
compared to the order of the estimated Gz,s values. Following the same trends as before, the
mean value of Gz,s is noticeably higher for the linear fit to the field map with standard shim mode
compared to the other performed linear fits.
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Table 4.6: The mean value of goodness-of-fit variables for the linear fit made for the measured field
maps (both stand. shim and tune-up) and the model. The values are evaluated over the brain
region and for the ROI. The mean value of the estimated Gz,s evaluated over the defined ROI is
also indicated.

Datasets
RMSE [µT] R2 Estimated Gz,s [µT/m]

Brain ROI Brain ROI ROI

FM Stand. 0.2 0.1 0.63 0.80 146

FM Tune-Up 0.2 0.09 0.79 0.73 72

Model 0.02 0.01 0.91 0.95 94

4.3.3 Comparisons Between Derived Gz,s-Maps

The maps of quantified Gz,s values from the different datasets are shown in Fig. 4.14. The
absolute value of the Gz,s-map derived from the numerical model is also indicated. The bottom
row in Fig. 4.14 indicates the difference between the Gz,s-map acquired from the numerical model
(top row) taken against the Gz,s-maps acquired from experimentally measured data (middle row).
The absolute value of the Gz,s-map from the numerical model is used for the comparison against
the estimated Gz,s-maps from the ME-GRE dataset. The same ROI as defined in Section 4.3.1 is
indicated in Fig. 4.14. The model’s error in estimating Gz,s compared to the other derived Gz,s-
maps are only indicated within the brain region in the bottom row in Fig. 4.14. Significant offset
values are seen close to the edges of the segmented brain region, especially for the comparisons
made to the estimated Gz,s-maps derived from the field map datasets. The observation indicates
that the masking of the brain region includes parts of the surrounding cortical bone, giving a
noise-like pattern on the edges. Too little signal is measured from bone, giving a low SNR value,
and a proper model fit in these regions can thus not be achieved.

The pattern of the quantified Gz,s values within the ROI shows a striking similarity in the distribu-
tion pattern and order of magnitude between each Gz,s-map attained from the different datasets.
However, some distinct differences are seen within the ROI for each comparison, including the no-
ticeable overestimated value of Gz,s for the numerical model at the location indicated by the green
arrow in Fig. 4.14, and the underestimation seen towards the upper left part of the ROI (see white
arrows in Fig. 4.14). The observed underestimated Gz,s values within the ROI are most distinct
when compared to the datasets with standard shim mode. In addition, the numerical model seems
to overestimate the value of Gz,s over a larger area in the ROI at the location above the sphenoid
sinus when compared to the datasets with tune-up shim mode (see black arrows in Fig. 4.14).

When looking at the whole brain region, a greater heterogeneity of quantified Gz,s values are
seen in the maps obtained directly from experimental measurements (field map and ME-GRE),
compared to the one obtained from the numerical model. This is further highlighted when looking
at the difference images. Particular areas where the numerical model seems to more noticeably
underestimate the Gz,s values are indicated by the green, blue and purple arrows in Fig. 4.14,
and are located at correspondingly approximately equal locations in each comparison. However,
for the difference image between the numerical model and ME-GRE dataset with tune-up shim
mode, a slight overestimation of the gradient strength is observed in the region indicated by the
blue arrow. In addition, the model underestimates the strength of Gz,s throughout most parts of
the brain region compared to tune-up shim datasets (both for field map and ME-GRE).
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Figure 4.14: The Gz,s-maps attained from the model, the field map datasets, and the ME-GRE
datasets. The absolute value of the quantified Gz,s values from the numerical model is also indic-
ated. The bottom row indicates the difference of the estimated Gz,s value from the model against
the other predicted Gz,s-maps for the brain region. The values are shown in µT/m, and the arrows
indicate features of interest in the images.

Figure 4.15: The difference in estimated Gz,s values obtained from the linear fit of the field map
datasets against the value obtained from the non-linear least-squares fitting to ME-GRE datasets,
evaluated between the datasets with corresponding shim mode (Stand. or tune-up). The values of
Gz,s are shown in units µT/m.

A better correspondence is observed between the Gz,s-maps obtained from the experimental meas-
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urements, where the difference images taken between the Gz,s-maps from the experimental meas-
urements with equivalent shim mode are shown in Fig. 4.15. Only minor differences are observed
within the ROI where the Gz,s-map from the ME-GRE dataset with tune-up shim mode seems
to overestimate the Gz,s in a small region above the nasal cavity and ethmoid sinuses (see black
arrow Fig. 4.15). In addition, more noticeable variations are observed within the ROI indicated
by the white arrows but occur only over a small region. Some variations following patterns similar
to tissue structures are also observed for the brain region in the difference images indicated in Fig.
4.15.

The above observations are further highlighted in Table 4.7 indicating the RMSE value for the
different comparisons made. Generally, higher RMSE values are observed when evaluated over
the entire brain region, most likely due to the presence of the observed noise-like pattern at the
edges of the masked brain region. However, the comparisons between the model and the ME-GRE
datasets show noticeably lower RMSE values evaluated over the brain region compared to the
other comparisons. The lowest RMSE values, assessed over the ROI, are observed for comparisons
between the Gz,s-maps attained from the experimentally measured datasets. However, only slightly
higher RMSE values are seen for the other comparisons except for the comparison between the
model and the ME-GRE dataset with tune-up shim mode.

Table 4.7: The RMSE values for the models’ prediction of Gz,s against the Gz,s-maps obtained
from the field map and ME-GRE datasets (both stand. and tune-up), in addition to the RMSE
values for the comparison of the field map against ME-GRE datasets with corresponding shim
mode. The RMSE value is evaluated over the entire brain region within the investigated image
slice and a defined ROI.

Datasets RMSE Brain [µT/m] RMSE ROI [µT/m]

Model - FM stand. 267 94

Model - FM Tune-Up 286 91

Model - ME-GRE stand. 104 123

Model - ME-GRE Tune-Up 120 93

FM - ME-GRE (stand.) 223 70

FM - ME-GRE (Tune-Up) 235 51

Histogram plots indicating the fraction of voxels within the ROI with a given difference in estimated
Gz,s for each comparison made are indicated in Fig. 4.16. In general, the histogram plots for the
comparisons made against the model indicates that the model underestimates the value of Gz,s

for most of the voxels within the ROI, except for the comparison against the field map with tune-
up shim mode, where the model seems to overestimate for almost 50% of the voxels in the ROI.
In addition, a more uniform distribution of the histogram plot is observed for the comparison of
the model against the field map with tune-up shim mode. Nearly 56%, 55%, 41%, and 61% of
the voxels show a difference in estimated Gz,s of ±50 µT/m when comparing the model against
field map standard shim, field map tune-up, ME-GRE standard shim, and ME-GRE tune-up,
respectively. In addition, for the same comparisons, 21%, 18%, 13% and 19% of the voxels have
estimated equal values of Gz,s. Furthermore, it is also observed that the comparisons made against
the model generally show bars extending to larger values than what is observed for the comparison
made between the experimentally measured datasets.

The histogram plots attained for the comparisons of the field maps against the ME-GRE with equal
shim mode show a far more peaked distribution than the other indicated plots, where 76% and
93% of the voxels have a difference of ±50 µT/m for the comparisons made between the datasets
with standard and tune-up shim mode, respectively. Most of the observed offset values for the
presented comparisons are negative. 29% and 44% of the voxels in the ROI show a difference of
estimated Gz,s equal to zero for the comparisons made against the experimental datasets with
standard and tune-up shim mode, respectively, and the distribution of the histogram plots for the
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presented comparison show a peak value correspondingly at −50 µT/m and 0 µT/m.

Figure 4.16: Histogram plots indicating the number of voxels within the ROI with a given difference
in estimated Gz,s for each comparison made. The number of voxels is given in percentage of the
total number of voxels within the ROI.
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Chapter 5

Discussion

5.1 Quantification of Frequency Offset

A Fourier-based method for calculating frequency offset from susceptibility maps has been de-
scribed and tested on in vivo experimental datasets. A remarkable degree of resemblance was
observed between the numerical calculations and experimentally measured field maps. Several fea-
tures observed in the experimental field maps were reproduced by the numerical model, especially
in the regions above the nasal cavity, and the sphenoid and ethmoid sinuses. The numerical model
was able to replicate both the shape, extent and order of magnitude of the induced frequency offset
in the affected area. In addition, the numerical model reproduced the same pattern of frequency
offsets at the back of the head (the posterior side), as observed for the measured field map with
tune-up shim mode. The induced frequency offset value in the mentioned area indicates how the
shape of the head is close to, but not perfectly spherical, and will induce slight frequency offsets
due to its interface to the surrounding air. However, apparent differences between the numerical
model and measured field maps were also seen to occur, affecting the accuracy of the model. Most
noticeable was the difference in frequency offset above the temporal bone and the tympanic cavity,
where the experimental data indicated significant frequency offsets, whereas no similar pattern was
seen in corresponding regions for the numerical simulations.

Higher quality air segmentation was achieved by using UTE images. However, limitations were still
found for the segmentation of air cavities within the temporal bone and tympanic cavities. The poor
bone-air contrast in the mentioned areas was mainly caused by the intensity modulation artifact
observed in the acquired images, which was most pronounced towards the inferior parts of the
imaging volume. Thus, the observed artifact caused significant limitations for the air segmentation
in the affected areas. The observed intensity modulation is most likely due to B1 inhomogeneity, a
well-known disadvantage of acquiring images at higher field strength, where an uneven excitation
of nuclei within the imaging volume occurs, giving rise to shading areas. In addition, slightly higher
frequency offsets were measured from the field maps in the locations above the nasal cavity and
ethmoid sinuses, compared to the predicted values from the numerical model, which is most likely
also a consequence of the poor air segmentation in the area. The partly lost air segmentation in
the nasal cavity and ethmoid sinuses, was mainly limited by the spatial resolution used to segment
air cavities manually. The many small air cavities with highly uneven surfaces were challenging
to mask out with the resolution of 0.75mm. Thus, the difficulty in attaining anatomically correct
and detailed air segmentation is a limitation of the model, and a source of error for the calculated
frequency offset. This underlines how the validity of the numerical model is heavily dependent
on having anatomically correct segmentation of the different tissues present, where the shape,
orientation, and susceptibility difference between the bulk tissues, largely affect the simulated
frequency offsets.

An improved air segmentation may be achieved by applying a dual-echo UTE imaging sequence.
Applying a dual echoed UTE sequence could improve the accomplished differentiation between
bone and air in the acquired image, as tissues with high T2 values are suppressed, making the
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tissues with shorter T ∗
2 values more visible. In addition, interpolation of the anatomical images to

higher spatial resolution can be performed to increase the accuracy of the manual segmentation
performed on the UTE images, where more complex interfaces and smaller air cavities can now be
more easily masked as air. A higher spatial resolution of the susceptibility map will also improve the
numerical model results at the interfaces between tissue compartments, as it effectively reduces the
discretization effects in the numerical model. Another possible approach to attain more accurate
segmentation of air and bone is to utilize a deep learning-based image-to-image translation network
(Ladefoged et al. 2020).

Larger field offsets and stronger local field gradients were observed in the regions adjacent to the
sinuses and nasal cavities in the standard field map compared to both the tune-up field map and
the model. To understand this observation, one can note that the local susceptibility-induced field
gradients above the sinuses and the nasal cavities oppose the long-range gradient in the inferior-
superior direction in the tune-up field map. The subject-specific shimming compensates well for the
long-range gradient but will consequently exacerbate the local field gradient above the sinuses and
the nasal cavities in the standard field map due to the limitation of spherical harmonic shimming
which cannot compensate for the local complex field distortions. Thus, a larger error is observed
within the ROI located above the nasal cavities when the model is compared to the standard field
map.

A higher degree of agreement between the numerical model and the tune-up field map is expected
throughout the brain region as the numerical model does not include the effect of subject-specific
shimming. However, when evaluating the RMSE value over the entire brain region within the
imaging volume, a slightly higher RMSE value was attained for the comparison against the tune-
up field map than when compared to the field map with standard shim mode (Table 4.2). From the
analysis of the RMSE values calculated for each transverse image slice, a clear U-shape distribution
with significant RMSE values towards the ends of the brain region in the inferior-superior direction
was observed. By visual comparison between the tune-up field map (Fig. 4.5) and the results of
the numerical model (Fig. 4.6) presented in the sagittal image plane, an apparent discrepancy is
observed along the inferior-superior direction of the imaging volume, where the presence of the
long-range field gradient is not as recognizable in the results of the numerical model as it is for
the tune-up field map. Only slight tendencies of its presence are visible in the numerical model
at the inferior and superior ends of the brain region. Thus, the noticeably high RMSE values
observed at the inferior and superior ends of the brain region primarily result from the absence of
the long-range field gradient in the calculated frequency offset.

A head coil was used for all measurements performed in this thesis. Anatomical structures down
to the shoulder region could therefore not be imaged. In addition, a strong intensity modulation
artifact was observed in the measured anatomical images and was most prevalent at the more
inferior parts of the imaging volume. Thus, only parts of the neck and jaw were able to be
segmented, and the numerical model greatly lacked accurate information about the susceptibility
distribution in the shoulder, neck, and jaw regions. The presence of the substantial interface
between the external surface of the body and the surrounding air has previously been reported to
induce a global offset value of the field within the brain, and the inclusion of the jaw and neck
to be of importance for the presence of a field gradient across the brain in the inferior-superior
direction (Koch et al. 2006). Thus, the lack of segmentation of more inferior body parts, from the
jaw and down to the shoulder region, was shown to be a considerable limitation in the accuracy
of the numerical model, especially at the inferior and superior ends of the brain region. A drastic
improvement is expected in the agreement between the measured tune-up field map and computed
frequency offset if information about the inclusions and anatomical structures of the shoulder, neck,
and jaw region is included in the subject-specific susceptibility model. An increased segmentation
of the mentioned body parts can be achieved by utilizing a cross-modality registration between a
reference image, not specific to the subject, and the acquired image for the subject (Koch et al.
2006).

The RMSE values for the comparison against the tune-up field map evaluated over four regions
divided in the inferior-superior direction, clearly showed higher errors of the model in the lower
and upper brain regions, corresponding to the areas where the long-range field gradient induced
significant frequency offsets. However, relatively low RMSE values were observed for the two ROIs
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located in the areas with local susceptibility-induced field gradients present. Thus, even though
the results of the numerical model lacked the prediction of an increasing long-range field gradient
in the inferior-superior direction, high accuracy was still observed for the model’s estimation of
frequency offset in the two ROIs located in proximity to the nasal cavity, sphenoid and ethmoid
sinuses. Thus, the model showed high accuracy in areas where more complex field distortions are
generated, which are the areas of primary interest in this thesis, as today’s shimming technique
has problems in correcting for these field distortions. The frequency offset values generated by the
long-ranged gradient were less substantial and more equal to the one estimated by the numerical
model in this area, most likely being the reason for the observed higher accuracy in the ROIs.

However, even with the improvements of the subject-specific susceptibility model, some deviations
between the measured field maps and the numerical model are still expected to be observed, mainly
due to other sources of B0 inhomogeneity not taken into account in the numerical model. The
measured field maps include external magnetic field perturbations (e.g., due to main magnet im-
perfections), susceptibility-induced field distortions generated from less substantial interfaces, and
dynamic B0 field inhomogeneity. The measured field maps include the slight field distortions caused
by the susceptibility interfaces between, e.g., grey matter, white matter, and CSF. These tissues
were, for simplification, all set to the susceptibility value of soft tissue in the numerical model, as
they have nearly identical susceptibility properties. In addition, the dynamic B0 inhomogeneity
induced by displacement of structures with different magnetic susceptibilities, was not taken into
account in the numerical model, but is present in the measured field maps. The respiration cycle
has been proven to cause a time-varying field distortion that can extend into the brain region due
to changes in the spatial position of several large structures surrounding the lungs, in addition to
changes in air density within the lungs (change in its effective susceptibility value) (Marques and
Bowtell 2005; Raj et al. 2000; Van de Moortele et al. 2002). Furthermore, the effect of rotations
during imaging can also cause deviations between the calculated and measured field inhomogeneity
(Marques and Bowtell 2005). For the numerical model, the main magnetic field is applied in the
inferior-superior direction, and no rotational effects of the imaging volume between the acquisition
of the anatomical MP-RAGE image and the acquisition of the reference field map are taken into
account. However, the effect of rotation can easily be incorporated into the simulation in future
work by rotating the direction of the main magnetic field in the numerical model. A rotation of the
main magnetic field can be introduced when calculating the susceptibility-induced field distortion
in k-space by using the expression

Dz(k⃗) =
1

3
− (kzcosθ − kysinθ)

2

k2x + k2y + k2z

for the dipole field, where the angle θ corresponds to rotation of the coordinate system (a clockwise
rotation about the x-axis) (Marques and Bowtell 2005).

Another essential feature of the numerical model that may affect its accuracy is its dependency
on the value of susceptibility. As previously emphasized, results from the numerical model are
largely influenced by the susceptibility values given to the various bulk tissues. Thus, a possible
reason for the variation observed in the calculated frequency offset from the measured field maps
can also be due to the values assigned to the tissues in the model. The magnetic susceptibility
values depend not only on the intrinsic composition of the tissue, but also on the temperature
and other physiological variables (Collins et al. 2002). These values are not often measured, and
uncertainties exist in the choice of susceptibility values. The values used are taken from J.F.
Schenck 1996. However, the values used in a later published article written by Koch et al. 2006
use a slightly different value of susceptibility of soft tissue but a more noticeably different value for
bone. In addition, the application of the filter in k-space to avoid truncation artifacts and minimize
the discretization effect in the results has been proven in a previous paper published by Schäfer
et al. 2009 to affect the results of the frequency offset as it attenuates regions of the dipole field.
However, the filter kernel was shown to have the most prominent effects on the contrast between
grey and white matter, which is not considered in the susceptibility model used in this thesis.
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5.2 Quantification of Through-slice Susceptibility-induced
Gradients

Through-slice susceptibility gradients were quantified from non-linear least-squares fitting of ex-
perimental data to a sinc-corrected signal decay function and linear fitting of both the measured
and computed field inhomogeneity across a distance of 4.5mm (equal to the slice thickness used
in the ME-GRE scan). From the results indicated in Table 4.4 and Fig. 4.11, highly accurate
non-linear least-squares fitting of the monoexponential signal decay function was achieved in the
narrow region, which supported the assumption that the field is homogeneous in that area. In
addition, the mean T ∗

2 value was found to be between the value of grey and white matter when
compared to the values found in Peters et al. 2007, with only a slight elevation from the one given
for white matter. However, variations in estimated T ∗

2 values were observed within the narrow
region. Possible reasons for the observed variation of estimated T ∗

2 values include partial volume
effect, presence of weak susceptibility gradients due to tissue interfaces between grey and white
matter, or due to the direction of the nerve fibers present in white matter. Relatively large slice
thickness was used in the ME-GRE sequence to ensure that the through-slice field gradients are the
dominant contributor to signal modulation compared to in-plane susceptibility gradients. How-
ever, having a larger slice thickness increases the partial volume effect where different tissues are
averaged together in a slice, resulting in erroneous signal intensity. From inspection of the intens-
ity image for the narrow region, the grey matter seems to be present in small parts of the region.
Thus, a weak susceptibility interface between the two tissues is most likely present and alters the
measured signal in the affected regions. Interfaces between grey and white matter in neighboring
slices can also induce weak gradients affecting the illustrated image slice. In addition, the narrow
region was chosen in an area mainly including white matter, which consists of numerous nerve
fibers directed along a tract. The T ∗

2 value has shown to be dependent on the orientation of these
white matter fibers and can therefore also be a reason for the observed variations in estimated T ∗

2

values.

The model fit to the sinc-corrected signal decay function was observed to describe the evolution
of the experimentally measured data noticeably well, especially within the ROI. In addition, the
acquired Gz,s-maps from the model fit followed the same trends as observed for the field maps,
where larger and stronger local field gradients were quantified for the standard ME-GRE dataset.
However, significantly worse goodness-of-fit statistics at specific regions of the brain and tissue
contrast in the calculated Gz,s-maps were observed when evaluating the model fit over the entire
brain region. The observations indicate an important limitation of the model fit, namely that the
whole brain region was given the same value of T ∗

2 , despite the presence of heterogeneous tissue
distribution. Thus, the tissues with different T ∗

2 than what was assumed by the model will not be
appropriately described by the model fit and give an incorrect estimation of the Gz,s values. This
was especially observed for locations in CSF as it has an appreciably lower T ∗

2 value than what was
assumed by the model fit. The minor difference in the T ∗

2 value for grey and white matter to the
one assumed by the model fit gives relatively high goodness-of-fit statistics, but slight deviations
in estimated Gz,s values, and are most likely the reason for the observed tissue contrast in the
Gz,s-maps.

Even though the anatomical pattern observed in the results from the sinc-corrected model fit is
most likely an erroneous feature, it is important to keep in mind that some susceptibility-induced
gradients are expected between grey and white matter. The presence of underlying/overlying
anatomy can affect the superior/inferior image slices. Thus, some anatomical features may appear
projected into the neighbor slice. However, these patterns would have followed more or less the
pattern of the interfaces between the structures and not an elevated value throughout the tissue
types. A mixture of both susceptibility-induced field gradients due to the tissue interfaces and the
erroneous anatomical feature may be present in the results but is difficult to differentiate in the
obtained Gz,s map.

When comparing the quantified Gz,s map calculated from the numerical model with the maps
obtained from the field map and the ME-GRE datasets, a striking degree of similarity in pattern,
extent, and order of magnitude is evident in the ROI located above the nasal cavity, ethmoid
and sphenoid sinuses (see Fig. 4.14). In addition, the absolute value of the model is able to
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resemble the slightly lower value of Gz,s surrounding the area of strong gradients. This was also
observed for the Gz,s-map obtained from the tune-up ME-GRE dataset. From further analysis
of the maps indicating the difference between the model and the experimental measurements
(bottom row Fig. 4.14), regions of noticeable difference were observed within the ROI, and a
higher degree of heterogeneity was seen throughout most parts of the brain region. As previously
discussed, the experimental data is a direct measurement of the subject and will be affected by
other factors than only the susceptibility differences, e.g., external field inhomogeneity and dynamic
field inhomogeneity. It will also include a higher degree of anatomical information about the local
tissue variation with different intrinsic T ∗

2 values, explaining the larger degree of heterogeneous
distribution of Gz,s values seen for the maps calculated from the experimental datasets. Thus,
many of the observed deviations result from the numerical model being a simplified version of
reality, whereas the experimental data directly measures the total system.

In addition, as previously discussed, the limitations of the numerical model exist in the ROI
above the ethmoid and nasal cavity due to poor air segmentation and are observed as a negative
deviation when compared to the Gz,s maps calculated from the experimental data in Fig. 4.14.
The deviation is larger when the model is compared to the experimental data with standard shim
mode, corresponding to the previous finding where the local susceptibility gradient is increased for
the datasets where subject-specific shimming has been applied. Furthermore, the missing long-
range gradient for the numerical model is also affecting the resemblance of its Gz,s map with the
ones attained from the experimental datasets with tune-up shim mode, where a relatively strong
overestimation of the Gz,s was observed for the numerical model throughout the brain region,
except the part above the ethmoid and nasal cavities.

A noticeably higher degree of similarity between the Gz,s-maps calculated from the field map and
the ME-GRE datasets were observed, where the primary amount of voxels within the ROIs show
either relatively low or no deviations in the comparison against the experimental data. This shows
how the model used to fit the signal decay to the ME-GRE data is a reasonable model, even though
it has made assumptions simplifying the reality, e.g., field linearity across the slice thickness and
ideal slice profiles.
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Chapter 6

Future Work

The results suggest that the largest improvement in the model’s accuracy could be obtained by
improving the segmentation. Thus, improving the segmentation step in the established pipeline
should be investigated in future work. Possibilities of improving the segmentation step include
applying dual-echo UTE imaging and interpolating the anatomical MP-RAGE image to obtain
a higher resolution for the manual segmentation. Furthermore, a deep learning algorithm for
differentiation between the localization of bone and air can also be utilized. In addition, cross-
modality registration between reference images, not specific to the subject, and the subject-specific
anatomical images can be used to improve the segmentation of the inclusions in the jaw, neck, and
shoulder area. It is also expected to be beneficial to gain further insight into the effect of rotation
on the accuracy of the numerical model against the acquired field maps and the cost of applying
the low-pass filter in k-space to see if the filter affects the quantity of calculated frequency offset.

Generally, high accuracy of the numerical model was achieved in the regions of interest, with the
greatest resemblance to the tune-up field map, and it was proven to be a valid method for simulating
frequency offset. Thus, the method can be further extended by including the effect of shimming and
comparing the results to the field maps with standard shim mode. For this thesis, the calculated
frequency offset was used to quantify the presence of through-slice field gradients, whose presence
induced signal loss. However, the results of the numerical model can also, in principle, be used to
predict geometric distortions for EPI sequences, which are sensitive to susceptibility effects.

B0 field inhomogeneity is a major limitation of the theoretical gain in spinal cord imaging at higher
field strength, due to the highly variable field gradients induced around each vertebra in the spine.
Applying the numerical method and testing its validity in spinal cord imaging is also of interest, as
gaining further insight into the susceptibility-induced field gradient can help improve the shimming
technique for the mentioned area. However, discretization effects will most likely be increased due
to the highly variable anatomical structures. Future work should also focus on improving the
spatial resolution and thus the discretization effect of the numerical model when going into spinal
cord imaging.
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Chapter 7

Conclusion

This work established a pipeline for calculating the subject-specific B0 field inhomogeneity based
on anatomical images. The results of the numerical model were validated by comparing them to
experimentally measured field maps. In addition, through-slice susceptibility-induced field gradi-
ents were quantified from the experimentally measured field maps and the simulated field offset. A
non-linear least-squares model fit of the experimental dataset from a ME-GRE scan to a corrected
signal decay function was also performed to quantify the presence of Gz,s.

The numerical model showed promising results when compared to experimental measurements,
where the numerical model reproduced many of the same features observed in the experimental
data. This was especially seen within the brain region with the highest susceptibility-induced
field distortions, e.g., above the nasal cavities, ethmoid and sphenoid sinuses. The model showed
the highest degree of similarity to the tune-up field map in the regions above the mentioned air
cavities. Similar analyses were made for the obtained maps indicating the quantified Gz,s values.
However, some issues affecting the validity of the model remained. The largest discrepancies from
the experimental data were observed at the inferior and superior ends of the brain region. The
accuracy of the segmentation is currently the main limiting factor, but several steps can be taken
to improve this in the future.

An accurate subject-specific B0 field inhomogeneity achieved using the numerical model has the
potential to provide helpful information in work to minimize susceptibility artifacts through shim-
ming or sequence optimization. The work performed in this thesis lays a solid foundation for future
studies where improvements and further model development can be made, such that further insight
into how shimming and sequence optimization affects susceptibility-induced field distortion can be
obtained.
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Schäfer, A. et al. (2009). ‘Using magnetic field simulation to study susceptibility-related phase
contrast in gradient echo MRI’. In: NeuroImage 48, pp. 126–137.

Schenck, J.F. (1996). ‘The role of magnetic susceptibility in magnetic resonance imaging: MRI
magnetic compatibility of the first and second kinds’. In: Medical Physics 23, pp. 815–850.

Schmidt, A. (2021). ‘Modeling of the Susceptibility-induced Magnetic Field Distortion by Using a
Fourier-based Method at 7 Tesla’. PhD thesis. Norwegian University of Science and Technology.

Sommer, S. (2022). Siemens Healthineers. personal communication.
Stockmann, J.P. et al. (2016). ‘A 32-Channel Combined RF and B0 Shim Array for 3T Brain

Imaging’. In: Journal of Magnetic Resonance 75, pp. 441–451.
Trungo, T. et al. (2002). ‘Three-dimensional numerical simulations of susceptibility-induced mag-

netic field inhomogeneities in the human head’. In: Magnetic Resonance Imaging 20.
Van de Moortele, P.F. et al. (2002). ‘Respiration-induced B0 fluctuations and their spatial dis-

tribution in the human brain at 7 Tesla’. In: Magnetic Resonance in Medicine 47, pp. 888–
895.

Wachowicz, K. (2014). ‘Evaluation of active and passive shimming in magnetic resonance imaging’.
In: Research and Reports in Nuclear Medicine 4, pp. 1–12.

55



Wang, Y. and T. Liu (2015). ‘Quantitative Susceptibility Mapping (QSM): DecodingMRI Data for
a Tissue Magnetic Biomarker’. In: Magnetic Resonance in Medicine 73.

Wang, Y., D. Zhou and P. Spincemaille (2015). ‘What is the Lorentz sphere correction for the MRI
measured field generated by tissue magnetic susceptibility: the spatial exclusivity of source
and observer and the Cauchy principal value’. In: Proceedings of the International Society for
Magnetic Resonance in Medicine 23.

Weishaupt, D., V.D. Kochli and B. Marincek (2008). How does MRI work?: An Introduction to
the Physics and Function of Magnetic Resonance Imaging. 2nd. Springer.

Weiskopf, N. et al. (2004). ‘Single-shot compensation of image distortions and BOLD contrast
optimization using multi-echo EPI for real-time fMRI’. In: NeuroImage 24, pp. 1068–1079.

Wilson, J.L., M. Jenkinson and P. Jezzard (2002). ‘Optimization of Static Field Homogeneity
in Human Brain Using Diamagnetic Passive Shims’. In: Magnetic Resonance in Medicine 48,
pp. 906–914.

Young, H.D and R.A Freedman (2012). University physics with modern physics. 13th. Pearson
Education.

56



Appendix

A Main Functions

%%Fourier-based method

function [B_kspace] = SusMap_Kspace(Obj,dr)

%Input units:

%[obj] = unitless / susceptibility map

%[dr] = mm

%Output:

% B_z(k)/B_0, dimensionless quantity

[M, N, L] = size(Obj);

Obj_tilde = fftshift(fftn(Obj));

clear Obj

[Dipole_map] = dipole(M,N,L,dr);

clear M N L dr

B_kspace = Obj_tilde.*Dipole_map;

end

function [SusImageSpace] = ImageSpace_SusMap(B_kspace)

%Output: Image domain representation of B_kspace

SusImageSpace = ifftn(ifftshift(B_kspace));

end

function [Dipole]= dipole(M,N,L,dr)

%Input units:

%[dr] = mm

%Output: Dipole field defined in k-space

dx = dr(1)*10^(-3); %units: m

dy = dr(2)*10^(-3);

dz = dr(3)*10^(-3);

dkx = cast((2*pi/(M*dx)),'single'); %units: rad/m

dky = cast((2*pi/(N*dy)),'single');

dkz = cast((2*pi/(L*dz)),'single');

clear dy dx dz dr

kx = ((-M/2)*dkx:dkx:(M/2-1)*dkx);

ky = ((-N/2)*dky:dky:(N/2-1)*dky);

kz = ((-L/2)*dkz:dkz:(L/2-1)*dkz);

clear dky dkx dkz M N L

[kx,ky,kz] = meshgrid(kx,ky,kz);

Dipole = 1/3-(kz.^(2))./(kx.^2 + ky.^2 + kz.^2); %units: unitless

clear kx ky kz krho

Dipole(isnan(Dipole)) = 0;

end

%Filters:

function [Filter,fwhm] = RaisedCosineFilterPolar(beta,Size,dr)
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%Input units:

%[dr] = mm

%Output: Raised Cosine Filter and the FWHM of the filter

M = Size(1);

N = Size(2);

L = Size(3);

dx = dr(1)*10^(-3); %units: m

dy = dr(2)*10^(-3);

dz = dr(3)*10^(-3);

dkx = (2*pi/(M*dx)); %units: rad/m

dky = (2*pi/(N*dy));

dkz = (2*pi/(L*dz));

clear dy dx dz dr Size

kx = ((-M/2)*dkx:dkx:(M/2-1)*dkx);

ky = ((-N/2)*dky:dky:(N/2-1)*dky);

kz = ((-L/2)*dkz:dkz:(L/2-1)*dkz);

clear dkx dky xkz

Ty = 1/(max(ky(M)));

Tx = 1/(max(kx(N)));

Tz = 1/(max(kz(L)));

T = [Ty,Tx,Tz];

T = max(T);

clear Ty Tx Tz

[kx,ky,kz] = meshgrid(kx,ky,kz);

kx = tall(kx);

ky = tall(ky);

kz = tall(kz);

kr = sqrt(ky.^2+kx.^2+kz.^2);

clear kx ky kz

Filter1 = abs(kr)<=(1-beta)/(2*T);

ROI2 = kr>(1-beta)/(2*T) & kr <=(1+beta)/(2*T) ;

ROI2 = Filter1+ROI2;

Filter3 = 0.5*(1+cos(pi*T/beta*(abs(kr)-(1-beta)/(2*T))));

Filter3 = Filter3.*ROI2;

clear ROI2

Filter = Filter1 + Filter3;

Filter(Filter > 1) = 1;

Filter = gather(Filter);

y = squeeze(Filter(:,N/2+1,L/2+1));

halfMax = max(y) / 2;

index1 = find(y >= halfMax, 1, 'first')-1;

index2 = find(y >= halfMax, 1, 'last')+1;

fwhm = index2-index1 + 1;

end

%Zeropadding

function [matrix] = Zeropadding(X,Nnew)

%Input:

%X = original matrix
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%New = New matrix size

%Output: Zeropadded matrix with new size equal to New

[m,n,l] =size(X);

pad_val_y = Nnew(1)-m;

pad_val_x = Nnew(2)-n;

pad_val_z = Nnew(3)-l;

matrix =zeros([Nnew(1) Nnew(2) Nnew(3)],'single');

matrix(pad_val_y/2+1:m+pad_val_y/2,pad_val_x/2+1:n+pad_val_x/2,

pad_val_z/2+1:l+pad_val_z/2) = X(:,:,:);

end

function [matrix] = Padding(X,Nnew,Sus)

%Input:

%X = original matrix

%New = New matrix size

%Sus = susceptibility value given to the padded voxels

%Output: Padded matrix with new size equal to New

[m,n,l] =size(X);

matrix =zeros([Nnew(1) Nnew(2) Nnew(3)],'single')+Sus;

f_pad_y = floor((Nnew(1)-m)/2);

c_pad_y = ceil((Nnew(1)-m)/2);

f_pad_x = floor((Nnew(2)-n)/2);

c_pad_x = ceil((Nnew(2)-n)/2);

f_pad_z = floor((Nnew(3)-l)/2);

c_pad_z = ceil((Nnew(3)-l)/2);

matrix(f_pad_y+1:m+c_pad_y,f_pad_x +1:n+c_pad_x,f_pad_z+1:l+c_pad_z)

= X(:,:,:);

end

%%Simulating GzMaps:

function [t2s, s0,rmse, rsq] = T2sUncorrLM(te, S)

%% Description: Estimating T2*. Monoexponential fit.

%Input

%te = echo train

%S = Acquired data (signal intensity)

te = cast(te*10^(-3),'double'); %units: s

%Range of R2* and T2*

minT2s = min(te)/20;

maxT2s = max(te)*20;

ranget2s = [minT2s, maxT2s];

clear minT2s MaxT2s

%Estimate initial guesses with a fast method:

[s00,r2s0] = InitialEstimate(te, S);

%fit function:

g = fittype('exp1');

%Matrix saving R2s and T2s

r2s = zeros([size(S,1) size(S,2)]);
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t2s = zeros([size(S,1) size(S,2)]);

s0 = zeros([size(S,1) size(S,2)]);

rmse = zeros([size(S,1) size(S,2)]);

rsq = zeros([size(S,1) size(S,2)]);

%fit:

sz = [size(S,1) size(S,2)];

ind = 1:size(S,1)*size(S,2);

[r, c] = ind2sub(sz,ind);

mr = max([size(r,1),size(r,2)]);

for i=1:mr

x0 = double([s00(r(i),c(i)), r2s0(r(i),c(i))]);

y = cast(squeeze(S(r(i),c(i),:)),'double');

%fit:

[f, gof, op] = fit(te(:), y,g,'StartPoint',x0,'Algorithm',

'Levenberg-Marquardt');

%get results:

r2s(r(i),c(i)) = - f.b;

t2s(r(i),c(i)) = -1/f.b;

s0(r(i),c(i)) = f.a;

rmse(r(i),c(i)) = gof.rmse;

rsq(r(i),c(i)) = gof.adjrsquare;

end

clear r c sz ind g s00 r2s0

%Set values outside the range to their min or max value of the range:

t2s = SetImgRange(t2s,ranget2s);

%units to ms:

t2s = t2s*10^(3);

end

function [gzuf, rmseuf, rsquf, s0uf] = GzMapRectTot(te, AllS, thmean, ds, Mask)

%% Description: Estimate Gz using sinc-corrected signal decay function

%Input units:

%[ds] = mm

%[thmean] = ms

%[te] = ms

%Output:

%gzuf = Map of estimated Gz values

%s0uf = Map of estimated S0 values

%rmseuf = Map of RMSE values for the given fits

%rsquf = Map of R^2 values for the given fits

%convert to SI units:

gamma = 42.58*10^(6); %units: Hz/T

te = te*10^(-3); %units: s

thmean = thmean.*10^(-3); %units: s

ds = ds*10^(-3); % units: m

te = cast(te,'double');
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r = Mask(:,1);

c = Mask(:,2);

clear Mask

%Guess a low val:

guessc = 0.01*10^(-6)*gamma*ds;

%allocate matrixes:

rmseuf = zeros([size(AllS,1) size(AllS,2)],'single');

rsquf = zeros([size(AllS,1) size(AllS,2)],'single');

gzuf = zeros([size(AllS,1) size(AllS,2)],'single');

s0uf = zeros([size(AllS,1) size(AllS,2)],'single');

te = te.';

%%Fit functions:

guf = fittype('a.*exp(-x./T).*abs(sin(x.*b./2)./(x.*b./2))','problem',

{'T'},'coefficients',{'a','b'},'independent',{'x'});

lb = double([0 0]); %Lower Bound

maxit = 500;

DiffMaxch = 10^(6);

sr = [size(r,1),size(r,2)];

mr = max(sr);

clear sr

for i=1:mr

%Initial estimate:

maxs0 = 1.2*max(AllS(:));

Num = 0;

NEm = [size(te,1),size(te,2)];

NE = max(NEm);

clear NEm

for k=1:NE-1

Num = Num + 2*squeeze(AllS(r(i),c(i),k));

end

clear k

t2s0 = cast(((te(NE)-te(1))/(2*(NE-1))*(squeeze(AllS(r(i),c(i),1))+

squeeze(AllS(r(i),c(i),NE))+(Num)))./(squeeze(AllS(r(i),c(i),1))

-squeeze(AllS(r(i),c(i),NE))),'single');

clear NE Num

s00 = AllS(r(i),c(i),1).*exp(te(1)./(t2s0));

s00(isnan(s00)) = 0;

s00(isinf(s00)) = 0;

s00(s00<0) = 0;

s00(s00>maxs0) = maxs0;

clear maxs0 t2s0

if s00 == 0

continue

end

%fit

y = cast(squeeze(AllS(r(i),c(i),:)),'double');
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x0uf = double([s00 guessc]); %unfixed S0

[fuf, gofuf, opuf] = fit(te(:), y(:),guf,'problem',{thmean},

'StartPoint',x0uf,'Lower',lb,'MaxIter',maxit,'DiffMaxChange',DiffMaxch)

;

if gofuf.adjrsquare<0

continue

end

%get results:

gzuf(r(i),c(i)) = fuf.b/(gamma*ds*2*pi); %units: T/m

s0uf(r(i),c(i)) = fuf.a;

rmseuf(r(i),c(i)) = gofuf.rmse;

rsquf(r(i),c(i)) = gofuf.adjrsquare;

end

end

% Intial estimate: Utilizing the expression given in Hageberg:

function [s0, r2s] = InitialEstimate(te, S)

%%Description: Initial guess for s0 and ts* (=1/r2*)

%Parameters:

sizeS = size(S);

% set range of R2* and T2*

minT2s = min(te)/20;

maxT2s = max(te)*20;

rangeT2s = [minT2s, maxT2s];

rangeR2s = [1/maxT2s, 1/minT2s];

clear minT2s maxT2s

maxs0 = 1.2*max(S(:));

Num = zeros([sizeS(1) sizeS(2)]);

NEm = [size(te,1),size(te,2)];

NE = max(NEm);

clear NEm

for k=1:NE-1

Num(:,:) = Num(:,:) + 2*squeeze(S(:,:,k));

end

clear k

t2s = ((te(NE)-te(1))/(2*(NE-1))*(squeeze(S(:,:,1))+squeeze(S(:,:,NE))+squeeze(Num(:,:))))./

(squeeze(S(:,:,1))-squeeze(S(:,:,NE)));

r2s = 1./t2s;

clear NE Num

s0 = S(:,:,1).*exp(te(1)./(t2s(:,:)));

s0(isnan(s0)) = 0;

s0(isinf(s0)) = 0;

% set range

r2s = SetImgRange(r2s,rangeR2s);

t2s = SetImgRange(t2s,rangeT2s);

s0 = SetImgRange(s0,[0 maxs0]);

end
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%Set images to be values within a defined range

function [res] = SetImgRange(img,range)

imgMax = range(2);

imgMin = range(1);

img(img<imgMin) = imgMin;

img(img>imgMax) = imgMax;

img(isinf(img)) = imgMin;

img(isnan(img)) = imgMin;

res = img;

end

%Linear fit:

function [Gz,Offset,rmse,rsquare] = GzLinearFit(S,z,Mask)

%%Description: Estimate Gz with linear fit

%%Input units:

%[S] = micro Tesla

%z = [start, end] of slice position, units: mm

[row, col, points] = size(S);

Gz = zeros([row col],'single');

Offset = zeros([row col],'single');

rmse = zeros([row col],'single');

rsquare = zeros([row col],'single');

x = cast(linspace(z(1),z(2),points),'double')*10^(-3); %units: m

r = Mask(:,1);

c = Mask(:,2);

mr = max([size(r,1),size(r,2)]);

yest = zeros([row col],'single');

for i = 1:mr

y = cast(squeeze(S(r(i),c(i),:)),'double');

[f,g,g2] = fit(x(:),y(:),'poly1');

Gz(r(i),c(i)) = f.p1; %units: T/m

Offset(r(i),c(i)) = f.p2;

rmse(r(i),c(i)) = g.rmse;

rsquare(r(i),c(i)) = g.adjrsquare;

yest(r(i),c(i)) = f.p1.*x(round(points/2))+f.p2;

end

Gz(isnan(Gz)) = 0;

Gz(isinf(Gz)) = 0;

Offset(isnan(Offset)) = 0;

Offset(isinf(Offset)) = 0;

rmse(isnan(rmse)) = 0;

rmse(isinf(rmse)) = 0;

rsquare(isnan(rsquare)) = 0;

rsquare(isinf(rsquare)) = 0;

E = (squeeze(S(:,:,round(points/2))-yest)).^2;

rmseTot = sqrt(mean(E(:)));

end
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%%Other used functions:

function[coords, LR, PA, FH] = ToStandardSpace(Image, afftrans,coordSystem)

% Compute Cartesian coordinates of array of given size

% INPUT:

% nArray size of array (matrix)

% afftrans affine transformation matrix [m]; sform

%

% OUTPUT:

% coords coordinates of the array

%

% Copyright Johanna Vannesjo, FMRIB, Oxford 2015

%LR position left --> right

%PA positions in posterior --> anterior. For given z-coor

%FH position F --> H

%x-dir is phase encoding direction - phasedimension: 1

%y-dir is frequency encoding dir - frequencydimension: 2

%z-dire is slice direction - Spatialdimension: 3

% INFO

% Coords in afftrans matrix, read from nifti-data is defined as:

% L --> R, P --> A, F --> H

% LR = -X, PA = Y, FH = -Z

nArray = size(Image);

if nargin < 3

coordSystem = 'xyz';

end

if nargin<2 || isempty(afftrans)

center = floor(nArray/2)+1;

afftrans = [...

1 0 0 -center(1); ...

0 1 0 -center(2); ...

0 0 1 -center(3)];

end

if length(afftrans) == 3

center = floor(nArray/2)+1;

afftrans = [...

afftrans(1) 0 0 -afftrans(1)*center(1); ...

0 afftrans(2) 0 -afftrans(2)*center(2); ...

0 0 afftrans(3) -afftrans(3)*center(3)];

end

vRow = 0:nArray(1)-1;

vCol = 0:nArray(2)-1;

vMat = 0:nArray(3)-1;

[Col,Row,Mat] = meshgrid(vCol,vRow,vMat);

coords = [Row(:) Col(:) Mat(:)];

coords = (afftrans*[coords'; ones(size(Col(:)'))])';

if strcmp(coordSystem,'xyz')

coords(:,1) = -coords(:,1); %flip x-axis

coords(:,3) = -coords(:,3); %flip z-axis

end
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% Calculate coordinates in meshgrid style

LR = reshape(coords(:,1),nArray); %Left right

PA = reshape(coords(:,2),nArray); %Posterior Anterior

FH = reshape(coords(:,3),nArray); %Foot head

end

function[slice] = FindSliceStandSpace(slicePos, FH,slicedir)

%%Description: Find correspond slice position in world coordinated between two

subject spaces↪→

[Nr,Nc,Nd] = size(FH);

FHmin = abs(FH - slicePos);

if slicedir == 'dep'

MeanSlice = mean(FHmin, [1 2]);

elseif slicedir == 'row'

MeanSlice = mean(FHmin, [2 3]);

elseif slicedir == 'col'

MeanSlice = mean(FHmin, [1 3]);

end

[slice] = ind2sub(size(MeanSlice),find(MeanSlice == min(MeanSlice(:))));

end

function [y,x,z] = FindZeros(MaskMST,MaskMBone,MaskMAir)

Sus = 1;

[Ny, Nx, Nz] = size(MaskMST);

X = zeros([Ny Nx Nz],'single');

clear Ny Nx Nz

X = FillSus(X,MaskMST,Sus);

X = FillSus(X,MaskMBone,Sus);

X = FillSus(X,MaskMAir,Sus);

[y,x,z] = ind2sub(size(X),find(X ==0));

end

function[X] = FillSus(X,Masked,SusVal)

%%Description: Give voxels in X its susceptibility value for positions given by

the logical mask↪→

X(Masked == 1) = SusVal;

end

function [meanVal] = MeanLim(Matrix,rowlim,collim)

%%Description: Calcuate the mean value of a 2D matrix within defined limits

meanVal = mean2(Matrix(rowlim(1):rowlim(2),collim(1):collim(2)));

end
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B Experimental Data and Segmentation from Volunteer 1 and 2

Three healthy volunteers were scanned. However, only the results from the last volunteer are
presented in the thesis. The anatomical image for the first volunteer obtained from the MP-RAGE
sequence, is indicated in the sagittal plane in Fig. 1a. Aliasing effects were observed in the obtained
images where the nose is wrongly positioned at the posterior side of the head. The aliasing effect
will cause problems in the segmentation step of the tissues, where the nose was segmented as soft
tissue at the back of the head (Fig. 1b). Thus, an anatomically wrong susceptibility map was
achieved for the given region. In addition, the obtained segmentation of air (the white areas in
Fig. 1b) using SPM was insufficient to obtain enough information about the location of the air
cavities for the given subject, especially seen for the sphenoid sinus in Fig. 1b. Aliasing effects
were also observed in the magnitude image from the field map sequences applied, where the back
of the head was wrongly positioned at the anterior side of the human head (Fig. 1c). Thus, the
datasets obtained from the measurements applied to the given volunteer were not used.

(a) (b) (c)

Figure 1: (a) Sagittal anatomical image obtained from an MP-RAGE sequence and the segmented
tissues obtained from SPM12 overlaid on the anatomical MP-RAGE image (b). The blue, green,
violet, and red areas represent the segmented location for grey matter, white matter, cerebrospinal
fluid, and bone, respectively. (c) Magnitude image in the sagittal plane obtained from a field map
sequence.

For the second volunteer, the aliasing of anatomical structures was avoided by changing the place-
ment of the imaging volume and the FOV. In addition, as the SPM12 did not show promising air
segmentation, a UTE sequence, which is under development and not in clinical use, was acquired.
When comparing the acquired MP-RAGE images with the reconstructed UTE images at similar
positions, a geometric distortion of the anatomical structures was observed, where the UTE image
seemed to be scaled compared to the MP-RAGE image. Thus, the acquired UTE data could not
be used to segment air. The observation was made that the MP-RAGE sequence did not have
distortion correction for the spatial gradients turned on, while the UTE sequence did. This may be
a part of the reason for the observed geometrical distortion between the anatomical MP-RAGE im-
age and the UTE image. In addition, not all image sequences which were planned got applied due
to an unexpected relatively long reconstruction time needed for the UTE images to be constructed.

66



C Choosing Parameters in the Segmentation Step in SPM12

SPM12 (Statistical Parameter Mapping version 12) is the software tool used to segment the primary
tissues in a human brain in this thesis. The goal of the segmentation step was to map air, bone,
and soft tissue correctly. In contrast, correct segmentation between grey matter, white matter, and
CSF was not of concern due to their relatively identical susceptibility values. The segmentation
results were observed to be largely dependent of the input parameters given to the segmentation
algorithm.

A significant intensity modulation artifact was prevalent in the anatomical image used as the source
channel for the segmentation. The presence of the intensity variation can cause problems for the
algorithm to distinguish the intensity variation from being an artifact or due to different tissue
classes. Thus, a lower bias regulation should be chosen to tell the algorithm information about
the presence of the relatively smooth intensity non-uniformity artifact. In addition, if the intensity
modulation is very smooth, a higher FWHM for the gaussian smoothness kernel should be used in
the segmentation step.

Fig. 2 indicate the difference in obtained segmentation of bone (Fig. 2a) and air (Fig. 2b)
compartments for different parameters settings in the bias correction performed on the image
before segmentation. The blue area indicates the obtained segmentation when choosing a medium
bias regularisation (0.01) and a full-width-half-maximum (FWHM) of 120mm for the gaussian bias
smoothness filter. The red area indicates the resulting segmentation when choosing very light bias
regularisation (0.0001) and a bias FWHM of 60mm. Choosing low bias regulation and a medium
FWHM for the smoothness kernel to account for the intensity modulation artifact gave relatively
accurate results in the bone segmentation but close to no air segmentation. Choosing a medium
bias regulation and a high bias FWHM gave a noticeably higher amount of air segmentation,
especially within the sphenoid sinus. However, a more inaccurate bone segmentation was achieved
for these input parameters. A larger part of the brain’s frontal area and a relatively large part
of the cerebellum were wrongly segmented as bone. Thus, advantages and disadvantages were
observed for both results attained using different input parameters.

(a) (b)

Figure 2: The resulting segmentation of bone (a) and air(b) from SPM12. The red area indicates
the result when choosing a very light bias regularisation (0.0001) and a bias FWHM of 60mm as
parameters in the SPM toolbox, and the blue area when having medium bias regularisation (0.01)
and a bias FWHM of 120mm.

A clear difference in the complete segmentation of the primary tissue types for the two situations
mentioned above is observed in Fig. 3. Significantly more accurate tissue segmentation is achieved
when taking into account the intensity modulation artifact (choosing lighter bias regulation). How-
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ever, as previously emphasized, improved tissue segmentation is achieved at the cost of little to
no air segmentation. Thus, a compromise between accurate soft tissue and bone segmentation
or increased air segmentation must be made when applying the segmentation algorithm found in
SPM12.

(a) (b)

Figure 3: The resulting segmentation of soft tissue (yellow), bone(red), cerebrospinal fluid(violett),
grey matter(blue), and white matter(green) obtained when using medium bias regularisation (0.01)
with a bias FWHM of 120mm (a) and when using very light bias regularisation (0.0001) with a
bias FWHM of 60mm (b).
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D Scaling of UTE Data

UTE image was acquired in addition to anatomical MP-RAGE image to achieve better air seg-
mentation. Equal spatial resolution and volume position was set for both imaging sequences to
obtain spatial correspondence between the images acquired with the two different sequences. Fig.
4a indicates the reconstructed image from the MP-RAGE (grayscale) and the UTE (redscale) se-
quence where the distortion correction of the gradients was turned off. The scaling of the UTE
image is apparent where the anatomical features in the image are enlarged. As a consequence,
correct segmentation of air could not be achieved with the acquired image. The reason for the
observed scaling in the UTE images is unknown. However, a re-scaling of the image was performed
by changing the value of the isotropic resolution from 0.75mm to 0.725mm in the DICOM header
of the UTE image.

The resulting image with modified resolution overlaid onto the unchanged MP-RAGE image is
indicated in Fig. 4b. A significant improvement in the geometrical correspondence between the
images was observed. The same improvement was seen throughout the imaging volume. Thus,
the UTE image with a modified DICOM head file can be used for air segmentation due to the
adequate correspondence of the position, shape, and size of the structures in the human brain with
the structural MP-RAGE image. Small differences are still observed in the alignment between the
MP-RAGE and the UTE image at the nose’s tip and back of the head.

(a) (b)

Figure 4: (a) Obtained UTE image (redscale) overlaid on anatomical MP-RAGE image (grayscale).
(b) Rescaled UTE image with changed resolution overlaid on the anatomical MP-RAGE image,
which is unchanged.
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E Double Versus Single Precision

The values of resolution and FOV that can be used for the input susceptibility map in the Fourier-
based model are limited mainly by available computational memory. However, the model wishes to
have high resolution and FOV so that discretization and aliasing effects are minimized in the model
results. Defining and calculating the induced frequency offset on matrices with single precision
takes significantly less computational memory than using matrices with double precision. Using
single precision matrices can allow the model to choose higher FOV and/or higher resolutions. The
difference in the results of using single versus double precision when simulating the frequency offset
with the model in this thesis is presented in Fig. 5. The values were calculated with a matrix of
size 450×450×450, and the results are given in Hz. No clear visual difference is observed between
the two results obtained by the matrices with different precision. When evaluating the difference
between the results attained using a matrix of single and double precision, insignificant differences
are observed on the order of 10−4. Thus, matrices of single precision can be used in the model
without significantly affecting the precision of the obtained results.

Figure 5: Calculated frequency offset given in Hz obtained from a Fourier-based method. The top
row indicates the results when using a matrix of double-precision, the middle row when using a
single-precision, and the bottom row indicates the difference between the results from double and
single precision.

Using single precision matrices allows the model to define the segmented brain on a matrix of greater
size, giving the possibility to increase the FOV and/or the spatial resolution of the susceptibility
map. Both parameter changes benefit the model’s accuracy as it is sensitive to aliasing and
discretization effects. The effect on the calculated frequency offset when increasing the effective
FOV is indicated in Fig. 6, where each row shows the obtained results in the sagittal, coronal
and transverse image plane, respectively. In addition, the measured frequency offset from a field
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map (FM) sequence with Tune-Up shim mode is also indicated. By visual inspection, a better
resemblance between the simulated frequency offset and the values in the experimental data is
observed when the initial susceptibility map was padded onto larger matrix sizes (MS), effectively
increasing the FOV. The results from the matrix with size 340 show an apparent aliasing effect
within the anatomical parts of the subject at each dimension of the calculation volume. As observed
in Fig. 6, the aliasing effect is greatly removed by increasing the matrix size. The greatest
improvement is observed when changing the isotropic matrix size from 340 to 450. However, a
slight improvement was also observed when increasing the matrix size from 340 to 570 in the area
close to the superior parts of the frontal lobe.

Figure 6: Calculated frequency offset given in Hz obtained from a Fourier-based method when
defining the susceptibility map on a uniform matrix with a FOV of 255mm (MS = 340), 337.5mm
(MS = 450) and 427.5mm (MS = 570), respectively. In addition, the measured frequency offset
from a field map sequence with Tune-Up shim mode is indicated. MS is used as an abbreviation
for matrix size.

To conclude, using single precision for the matrices in the model gives the possibility to signific-
antly increase their achievable matrix size, resulting in the advantageous opportunity to minimize
the presence of the aliasing effect in the obtained results by increasing the effective FOV. Using
single precision can also provide the possibility to significantly increase the spatial resolution of
the matrix on which the susceptibility map is described. Increasing the spatial resolution will
effectively decrease the discretization effects in the obtained results from the model. However, the
improvement achieved by changing resolution is not illustrated, as the resolution is unchanged for
the simulation performed in this thesis.
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F Testing and Validating the use of a Sinc- and a Gaussian-corrected
Signal Decay Function to Map Gz,s in a Phantom Measurement

The quantitative measure of through-slice susceptibility-induced gradients, Gz,s, can be performed
by fitting the experimental data from a ME-GRE scan onto a corrected signal decay function.
A corrected signal decay function, where a rectangular slice profile was assumed, is given in Eq.
2.10. However, a perfect rectangular slice profile will, in reality, not be achievable due to physical
constraints, and the actual slice profiles will have a more bell shape with a tail at the edges. The
bell-shaped slice profile will be more prevalent at high resolutions. Thus, a non-linear least square
fit was also made to a corrected signal decay function where a gaussian slice profile was assumed
to see if it better represents the slice profile than the ideal rectangular function. The corrected
signal decay function where a gaussian slice profile is assumed is then given by

I = I0 · exp

−

(
γ ·Gz,s · TE · ∆z

4 ·
√
ln(2)

)2
 (1)

where γ is the gyromagnetic ratio, I0 is the initial signal intensity at a time equal to zero, TE
is the given echo time, and ∆z is the full-width-half-maximum (FWHM) of the Gauss function,
which here was assumed to be equal to the slice thickness (Deichmann, Josephs et al. 2002).

A ME-GRE sequence with standard shim mode was applied to a phantom with a homogeneous
composition. An echo train with ten echo times ranging from 4ms to 38.38ms were used, and
the spatial resolution for each voxel was 1mm × 1mm × 1mm. In addition, a standard B0 shim
mode was applied before the imaging acquisition. The obtained images at every third echo time
are presented in Fig. 7.

Figure 7: The images obtained at every third echo time from the ME-GRE scan.

A simple monoexponential curve fit of the experimental data was initially performed to the theor-
etical signal decay function given in Eq. 2.6, for two pre-defined ROIs, to estimate the T∗

2 values.
ROI1 was chosen in the center of the phantom where a homogeneous field is present, and ROI2
was selected in an area where enhanced signal loss had been observed (close to the surface of the
phantom). The results of the estimated T∗

2 values from the simple monoexponential fit are presen-
ted in Fig. 8. Noticeably more homogeneous distribution of T∗

2 values was observed for the ROI
taken at the center of the phantom, with a mean calculated value for T∗

2 of 118ms. The mean es-
timated T ∗

2 -value is reasonable and in the size order expected for the phantom used. In contrast, a
relatively drastic decrease in the calculated T ∗

2 values was observed close to the phantom’s surface.
As the material inside the phantom is homogeneously distributed, the intrinsic T ∗

2 value of the
material should be the same throughout the phantom. Thus, the observed signal decay indicates
the presence of through-slice susceptibility field gradients (Gz,s), where its presence leads to an
underestimation of the observed T ∗

2 values in the affected area when making a simple exponential
fit of the measured data with Eq. 2.6.
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Figure 8: Magnitude image acquired at the 10th echo, together with the calculated T ∗
2 maps for

an area where a signal loss was observed and an area with an approximately homogeneous field.
The T ∗

2 maps are given in ms.

After the value of T∗
2 for the phantom was estimated, a non-linear least-square curve fitting of the

experimental data to the two corrected signal decay functions and the simple monoexponential
decay function was performed for a voxel with a homogeneous field (voxel 1) and one where an
induced signal loss was observed (voxel 2). The value of T ∗

2 was fixated to the mean calculated
value T ∗

2 evaluated over ROI1 for the model fits the corrected signal decay functions. Table 1
presents the RMSE and the R2 of the different fits made for the two voxels. High goodness-of-fit
statistics are shown for most of the performed fits, and the slightly higher RMSE values for voxel
2 are as expected due to its location closer to the phantom’s surface. However, worse goodness-
of-fit statistics are observed for the monoexponential fit for voxel 2, indicating how the theoretical
model for signal decay has limitations in following the signal evolution in a voxel experiencing field
inhomogeneity. Insignificant differences were observed in the performance between the sinc- and
gaussian-corrected signal decay functions. These results are further highlighted in Fig. 9, and 10,
illustrating the curve fits in a single voxel located in ROI1 and ROI2, respectively. The corrected
signal decay functions follow the experimentally measured data points noticeably better in voxel
2, where they are able to follow the small shoulder region observed for the first echo times. In
contrast, it is clearly observed how the monoexponential curve fit is not able to follow the features
of the experimental data points in the given region.

Small oscillations of the measured data points become visual in the narrowed area indicated in
Fig. 9b, 9d and 9f. The oscillation in the signal intensity with time seems to be mainly due to a
systematic error. In addition, the data points show an unexpected plateau region for the first three
echo times before the signal begins to decay in intensity. The same features are most likely present
for the voxel in ROI2 but are not visual due to the rapid signal decay induced by Gz,s. The cause
of the noticed properties with the measured data is yet unknown. However, the magnitude of the
oscillations is small and does not seem to affect the quality of the fits greatly.

Table 1: The RMSE and R2 value for the three different fits in a single voxel located in ROI1 and
ROI2.

Fit type
Voxel 1 Voxel 2

RMSE R2 RMSE R2

Sinc-corrected 9 0.96 20 0.99

Gaussian-corrected 9 0.96 22 0.99

Uncorrected (monoexponential fit) 9 0.96 78 0.93
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(a) (b)

(c) (d)

(e) (f)

Figure 9: The three images indicate the curve fit of the experimental data onto a sinc-corrected
(a-b) and a gaussian corrected (c-d) signal decay function, in addition to the fit made onto a
simple monoexponential decay function (e-f). The curve fit is performed for a voxel in ROI1 where
a homogeneous field is assumed.

74



(a) (b)

(c)

Figure 10: The three images indicate the curve fit of the experimental data onto a sinc-corrected
(a) and a gaussian corrected (b) signal decay function, in addition to the fit made onto a simple
monoexponential decay function (c). The curve fit is performed for a voxel in ROI2 where enhanced
signal loss is present.

The quantification of Gz,s was achieved within ROI1 and ROI2 by performing the model fit to the
corrected signal decay functions with T∗

2 fixated, over the entire regions. The results of the Gz,s

maps are indicated in Fig. 11a and 11b for the situation where a rectangular and a gaussian slice
profile are assumed, respectively. The resulting maps of estimated Gz,s values in ROI2 showed a
pattern similar to the observed enhanced signal loss seen in the experimental measurements. The
highest quantified Gz,s values in ROI2 are located in the areas where the strongest signal loss was
observed. In addition, relatively weak susceptibility gradients were estimated in ROI1. The mean
value of the goodness-of-fit statistics are indicated in Table 2, and show noticeably good values
for both performed fits. No significant difference is observed between the two model fits, for both
ROI1 and ROI2, indicating that the models seem to operate equally well. A minor difference was
observed in ROI2, where a slightly better R2 value was observed for the sinc-corrected model fit.
The superior goodness-of-fit statistics implies that the corrected signal decay functions, accounting
for the presence ofGz,s, represent the system properly and can thus be used to quantify the presence
of Gz,s if the T∗

2 value of the tissue is known.
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(a) (b)

Figure 11: Calculated Gz,s maps for an area with observed signal intensity and an area with an
approximately homogeneous field. (a) indicates the estimated Gz,s values from fitting the data
onto a gaussian-corrected signal decay, whereas (b) indicate the values of Gz,s from the fit to the
sinc-corrected signal decay. The values of Gz,s is given in µT/m.

Table 2: The mean value of the RMSE and R2 values for the two different fits made to corrected
signal decay functions in ROI1 and ROI2.

Fit type
ROI1 ROI2

RMSE R2 RMSE R2

Sinc-corrected 10 0.94 14 0.97

Gaussian-corrected 10 0.94 14 0.96

By qualitative analysis of Fig. 11 slightly higher values of Gz,s seem to be estimated for the sinc-
corrected model fit compared to the gaussian-corrected model fit. This was further observed in
both ROIs when looking at the histogram plots of the estimated Gz,s-values, shown in Fig. 12
and 13, for the gaussian- and sinc-corrected model fits, respectively. The distribution of estimated
Gz,s values reaches a maximum of 90 µT/m for the gaussian-corrected model and 130 µT/m for
the sinc-corrected model in ROI2. In addition, the estimated values of Gz,s for both regions and
model fits are observed to be of reasonable size. Relatively low values of Gz,s are observed for bot
fits in ROI1, where a value of zeros has been estimated for the majority of the voxels.

The sinc-corrected model fit has a noticeably higher amount of voxels with a quantified value of
Gz,s equal to zero. However, an unexpected bell-shaped distribution of higher Gz,s values was
observed in ROI2. The same feature, but less apparent, was also seen for the histogram plots for
ROI2, indicating that it is most likely a systematic error either in the models or the experimental
data.
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(a)

(b)

Figure 12: Histograms indicating the number of voxels with a given values of the estimated Gz,s

for ROI1 (a) and ROI2 (b) by fitting the data to a gaussian-corrected signal decay function. The
values of Gz,s are given in µT/m.

(a)

(b)

Figure 13: Histograms indicating the number of voxels with a given value of the estimated Gz,s for
ROI1 (a) and ROI2 (b) by fitting the data to a sinc-corrected signal decay function. The values
of Gz,s are given in µT/m.
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Despite the observed unexpected trends in the results, the main features are as expected. In
addition, the models have significantly high goodness-of-fit statistics, indicating that the models
describe the signal evolution for the given system well and can be used to estimate the presence
of Gz,s. Only minor differences were observed in the performance of the sinc- and the gaussian-
corrected signal decay functions in modeling the experimentally measured data. The relatively
similar performance on the fit to the data is most likely due to the small slice dimension chosen.
As previously mentioned, a perfectly rectangular slice profile cannot be achieved, and the slice
profile will become more and more similar to a gaussian function for higher resolutions (smaller
voxel dimensions). As a relatively high spatial dimension in the slice-direction is used, the true
slice profile is most likely strongly bell-shaped, which can explain why the gaussian-corrected signal
decay model seems to operate equally as well as the sinc-corrected signal decay model.

For later measurements performed in this thesis, a high in-plane resolution and a lower through-slice
spatial resolution will be used to ensure that the through-slice susceptibility-induced gradients are
the dominant effect on the signal modulation compared to the presence of in-plane susceptibility-
induced field gradients. A larger slice thickness will make the assumption of a rectangular slice
profile more reasonable than a gaussian slice profile. Therefore, the sinc-corrected signal decay
function will be used to estimate and quantify the presence of Gz,s in the further ME-GRE meas-
urements.
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