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Abstract

The EMI (Extracellular-Membrane-Intracellular) model describes electrical activity in brain
cells, where the extracellular and intracellular spaces and cellular membrane are explicitly
represented. The model couples a system of partial differential equations (PDEs) in the
intracellular and extracellular spaces with a system of ordinary differential equations (ODEs)
on the membrane to describe the propagation of electrical potentials in brain cells. The
PDE-ODE system is highly non-trivial and must be solved with numerical methods such
as the finite element method. A key challenge for the EMI model is the generation of
high-quality meshes conforming to the complex geometries of brain cells. A possible way
to overcome this challenge is the cut finite element method (CutFEM), which allows the
geometry to be represented independently of the computational domain.

In this thesis, we develop both theoretically and practically a novel CutFEM based dis-
cretization to solve the EMI model numerically. Starting from a Godunov splitting scheme,
the EMI model is split into separate PDE and ODE parts. The resulting PDE part is a
non-standard elliptic interface problem, for which we propose two novel CutFEM formula-
tions. The first formulation, called the single-dimensional primal formulation, computes the
intracellular and extracellular potential. We prove that this formulation satisfies condition
number estimates and optimal a priori error estimates which are geometrically robust, i.e.,
insensitive to how the cell membrane geometry is embedded into the computational domain.
The second formulation, called the multi-dimensional primal formulation, includes the elec-
trical current across the membrane in addition to the potentials, leading to a saddle point
problem. We show that after adding suitable stabilization terms, the formulation satisfies a
geometrically robust inf-sup condition allowing us to establish an a priori error estimate for
the discretization error of the electric membrane current and the extra/intracellular poten-
tials. Next, we introduce a new unfitted discretization for the ODE part, which is based on
a stabilized mass matrix approach and allows us to solve the membrane bound ODEs even
if the membrane interface is not fitted to the computational domain. Finally, we perform
extensive numerical studies that corroborate the theoretical results and demonstrate that
CutFEM is a promising approach to efficiently simulate electrical activity in brain cells.
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Sammendrag

EMI (Ekstracellulær-Membran-Intracellulær) modellen beskriver elektrisk aktivitet i hjerne-
celler, og representerer b̊ade de ekstracellulære og intracellulære omr̊adene og cellemembra-
nen eksplisitt. Modellen kobler et system av partielle differensiallikninger (PDE) p̊a de
intracellulære og ekstracellulære omr̊adene med et system av ordinære differensiallikninger
(ODE) p̊a membranen for å beskrive forplantningen av elektrisk potensial i hjerneceller.
PDE-ODE systemet er ikke-trivielt og m̊a bli løst ved hjelp av numeriske metoder som f.eks.
elementmetoden. En stor utfordring for EMI modellen er generering av høykvalitetsnett som
skal tilsvare de kompliserte geometriene til hjerneceller. En mulighet for å løse denne ut-
fordringen er ikke-romlige tilpassede elementmetoder, som f.eks CutFEM, som tillater at
geometriene er representert uavhengig av beregningsdomenet.

I denne oppgaven foresl̊ar vi en ny CutFEM basert diskretisering for å løse EMI modellen
numerisk. EMI modellen er splittet i separate ODE og PDE problem ved hjelp av Godunov
splitting. Det resulterende PDE problemet er et ikke-standard elliptisk grenseflateprob-
lem som vi foresl̊ar to nye CutFEM formuleringer for. Den første formuleringen, kalt den
likedimensjonale primale formuleringen, beregner de intracellulære og ekstracellulære poten-
sialene. Vi beviser at denne formuleringen oppfyller b̊ade kondisjonstallestimat og optimale
a priori feilestimat som er geometrisk robuste, som betyr at de ikke er sensitive til hvordan
membrangeometrien er plassert i beregningsdomenet. Den andre formuleringen, kalt den
flerdimensjonale primale formuleringen, inkluderer strøm over cellemembranen i tillegg til
de elektriske potensialene som fører til at den har samme form som et sadelpunktsprob-
lem. Vi beviser at ved å legge til passende stabilisering tilfredsstiller denne formuleringen
en geometrisk robust inf-sup betingelse som tillater oss å vise ett a priori feilestimat for
diskretiseringsfeilen for strømmen over membranen og de ekstra/intracellulære potensia-
lene. Etterp̊a introduserer vi en ny ikke-romlig tilpasset diskretisering for ODE problemet,
som tillater ODE systemer å bli løst p̊a membrangrenseflaten uten å tilpasse nettet. Til
slutt utfører vi omfattende numeriske studier som underbygger de teoretiske resultatene og
demonstrerer at CutFEM er en lovende metode for effektiv simulering av elektrisk aktivitet
i hjerneceller.
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Chapter 1

Introduction

The complex inner workings of the human brain are one of our biggest mysteries. In
Norway, over 30% of the population will be affected by a brain-related disease [36], such
as Alzheimer’s and Parkinson’s diseases. Mathematical simulation is a powerful tool that
can lead to new discoveries about both the healthy and diseased brain. One of the main
advantages of simulations is the reduced need for laboratory work and experimental animals.
However, a substantial effort is still required to develop the models needed. Also, due to
their complexity, most models for physiological processes can only be solved with numerical
methods.

The field of computational electrophysiology saw its beginning in 1952 with the Hodgkin-
Huxley model [37], which describes the action potential of a squid axon. Another important
model in the field is the cable equation [54] for modeling electrical signals in neurons. One
of the shortcomings in the cable equation is that the extracellular potential, meaning the
potential of the space surrounding the cell, is assumed to be constant. A model used to find
both intracellular and extracellular potentials in excitable tissue is the Bidomain model [58].
However, the Bidomain model homogenizes the tissue and does not specifically distinguish
between the intracellular and extracellular space.

Increasing computational resources has made it possible to look at more detailed models,
which can describe aspects missing in more homogenized models. By explicitly representing
each cell, factors such as geometry, ephaptic coupling, and positioning of ion channels can
be investigated [60]. In the Extracellular-Membrane-Intracellular (EMI) model [2,40,60] the
extracellular domain (E), the membrane (M) and the intracellular domain (I) are explicitly
represented. The model consists of a system of linear partial differential equations (PDEs)
in the extracellular and intracellular domains coupled with a system of non-linear ordinary
differential equations (ODEs) on the membrane.

The EMI model has been used to simulate monolayers of cardiac cells [60], cardiac conduc-
tion [39], arrhythmias [38], and to study heterogeneous distribution of ion channels [60].
In [61] the EMI model was compared to the cable equation for computations of neural po-
tential. The EMI model has also been extended to the KNP-EMI model [24], which also

1



Chapter 1 Introduction

Figure 1: Illustration of the gap between available imaging techniques and geometries used
for simulation. Rigth: Illustration of cellular domains used for ion dynamic simulations,
figure from [24]. Left: Reconstructions of neural cells [59], figure from [46].

accounts for ion concentrations and electrodiffusion. One of the challenges for the model is
the large need of computational resources, making simulations on organ scale a problematic
task. All of the mentioned studies with the EMI model have used heavily idealized cell
geometries, thus ignoring the possible effect the cell geometry can have on the solution.
With imaging techniques able to create great reconstructions of neural cells [47, 59], a nat-
ural next step would be to solve the EMI model on more realistic domains. See Figure 1
for an example on the difference between geometries used in simulations and quality of
reconstructions.

The finite element method (FEM) and the finite difference method (FDM) have been ap-
plied to solve the EMI model numerically [38, 39, 42, 60, 61], with FEM being preferred
for complex geometries. However, a major challenge for FEM is creating high-quality 3D-
meshes to represent complex domains. A way to overcome this challenge is the cut finite
element method (CutFEM) [18], which allows the computational domain to be decoupled
from the geometric representation of the physical domain. CutFEM has already success-
fully been applied to numerous problems, including elliptic interface problems [18], Stokes’
problem [20], fluid interaction problems [44], and two-phase flow problems [52]. Recently,
CutFEM has also been used to simulate astrocytic metabolism in realistic three-dimensional
geometries [26,27].

1.1 Contribution and outline

In this thesis, we will investigate the use of CutFEM to solve the EMI model. In [60], a
Godunov splitting was applied to the EMI model, splitting the problem into separate PDE
and ODE problems. For the PDE problem, four different finite element formulations were
presented in [42], two referred to as the single-dimensional primal formulation and the multi-
dimensional primal formulation. Based on these two, we propose both a novel CutFEM
single-dimensional formulation and a novel CutFEM multi-dimensional formulation. The

2



1.2 Relation to the project thesis

model’s unfitted formulation leads to no nodes on the cell membrane, where the ODEs are
defined. To overcome this problem, we introduce a new unfitted discretization of ODEs
based on a stabilized mass matrix approach.

This thesis is organized as follows. In Chapter 2, the mathematical model is introduced.
Next, Chapter 3 reviews Nitsche’s method and CutFEM, with the Poisson boundary value
problem and Poisson interface problem as model problems. Afterwards, Chapter 4 shows
how the model is discretized in time by presenting the Godunov splitting for the EMI model,
followed by time discretization for the PDE problem. Then, the unfitted discretization
for the ODE system is developed by introducing an unfitted stabilized L2-projection and
utilizing this for the ODE system.

The time discretized PDE leads to a non-standard elliptic interface problem. In Chapter 5,
we first review the classical single-dimensional primal formulation, which has intra- and
extracellular potentials as unknowns. Then, we show well-posedness for the continuous
formulation. Next, we propose the novel CutFEM single-dimensional formulation based
on the classical formulation. Further, we derive optimal a priori error estimates for both
formulations and show that the CutFEM formulation has geometrically robust condition
numbers.

The multi-dimensional formulation was given by letting the electrical current over the mem-
brane be an explicit unknown along with the electrical potentials. This formulation is re-
viewed in Chapter 6, where we show that it can be written as a penalized saddle point
problem and use this to prove that the formulation is stable. Then, we propose the novel
CutFEM multi-dimensional formulation, prove that it satisfies a discrete inf-sup condition,
and establish an a priori error estimate.

Implementation and numerical studies are presented in Chapter 7. Here, we first corroborate
the theoretical findings for the PDE formulation by numerical experiments on convergence
and condition numbers. Next, we conduct numerical studies for the ODE step and the
complete splitting scheme. Finally, Chapter 8 summarizes the final results along with
directions for further work.

1.2 Relation to the project thesis

This master thesis is an expansion and continuation of the author’s project thesis written
in the fall of 2021. Chapters or sections that are taken from the project with only minor
modifications are marked with an asterisk in both the title heading and the content list. In
the project, the Godunov splitting with the CutFEM single-dimensional formulation and
unfitted ODE discretization was presented. Section 2.2 and Chapters 3 and 4 are related
to this and taken from the project. Chapter 5 contains the CutFEM single-dimensional

3



Chapter 1 Introduction

formulation, which has been extended with analysis in this thesis. The experiments related
to the ODE and the full splitting in Sections 7.5, 7.6, and 7.7 are from the project.

4



Chapter 2

Mathematical model

In this chapter, the EMI model is introduced. We begin by reviewing the derivation of the
EMI model, before presenting the related membrane models we will use in this work. In
addition, we give a short presentation of theoretical results for the model.

2.1 Derivation of the EMI model

In this section, we will give a derivation of the EMI model for a single cell, based on the
presentations given in [40] and [1]. The derivation is based on two of Maxwell’s equations,
the Maxwell-Faraday equation

∇×E =
∂H

∂t
, (2.1)

and the Ampère-Maxwell law

∇×H = J + ε
∂E

∂t
, (2.2)

where E is the electric field, H is the magnetic field, J is the density of free currents, and
ε is the permittivity. It will be assumed that the following quasi-static approximation of
(2.1) holds

∇×E = 0, (2.3)

which is justified by the fact that the related magnetic parameters of the biological media
make the influence of the magnetic field on the electric field negligible, as argued in [2].
Equation (2.3) gives that E is a conservative vector field, and can be written as

E = −∇u, (2.4)

where u is electrical potential.

5



Chapter 2 Mathematical model

2.1.1 Intracellular and extracellular domain

In the intracellular and extracellular domains, the derivation is based on the following
quasi-static approximations also for (2.2)

∇×H = J. (2.5)

This approximation comes from the assumption that free unbalanced charges are instantly
balanced, for more details see [2]. Recall that the divergence of the curl of any vector field
is zero, ∇ · (∇×H) = 0, which means that taking the divergence of (2.5) yields

∇ · J = 0. (2.6)

In addition, it is also assumed that Ohm’s law

J = σE, (2.7)

holds in the extracellular and intracellular domain where σ is the conductivity of the con-
sidered medium. Now, combining (2.7) with (2.6) and (2.4) results in the Laplace equation,

∇ · σ∇u = 0.

Let σi, σe and ui, ue be the conductivity and electrical potentials for the intracellular(i) and
extracellular(e) domain. Then, the following equations holds for each domain

−∇ · σi∇ui = 0 in Ωi,

−∇ · σe∇ue = 0 in Ωe.

2.1.2 Membrane

On the membrane, the assumption that the free charges are balanced instantly is not valid,
since charges may accumulate here. It is therefore necessary to work with (2.2), and not
the quasi-static approximation. Taking the divergence of (2.2), yields

∇ · J = −∇ · ε∂E
∂t
. (2.8)

Next, consider a volume element B, and divide it into two parts, defined to be the intracel-
lular and extracellular domains denoted as Bi and Be, with the membrane separating the
two parts denoted by ΓB, as illustrated in Figure 2. Integrating (2.8) over Bi, and applying
the divergence theorem yields∫

∂Bi

J · nBi
dS = −

∫
∂Bi

ε
∂E

∂t
· nBi

dS, (2.9)

6



2.1 Derivation of the EMI model

nBe

nBi

∂Be \ ΓB

∂Bi \ ΓB

ΓB

Be

Bi

Figure 2: Illustration of the volume element, separated in the intracellular and extracllular
part by the membrane, reconstructed from [40].

where nBi
points outward from Bi. The boundary of the intracellular domain can now

be split into two parts, the one coinciding with the boundary ΓB and the remaining part
∂Bi\ΓB. Because of the quasi-static assumption in the intracellular domain, the right hand
side of (2.9) can be written as∫

∂Bi

ε
∂E

∂t
· nBi

dS =

∫
ΓB

εΓ
∂E

∂t
· nBi

dS.

Further, the next assumption is that the membrane can be viewed as a capacitor consisting
of two parallel plates separated by an insulator. The capacitance per area is given by
Cm = εT /d, where d is the thickness of the membrane. Employing (2.4) yields that E·nBi

=
−∇u · nBi

. Now, defining the membrane potential

v = ui − ue,

together with the approximation −∇u · nBi
≈ v/d, yields∫

ΓB

εΓ
∂E

∂t
· nBi

dS =

∫
ΓB

Cm
∂v

∂t
dS.

We now move on to the left hand side of (2.9). Define Iion to be the flux of positive ions
out the cell ∫

ΓB

J · nBi
dS =

∫
ΓB

Iion dS.

For the part of the boundary not coinciding with the cell membrane it has already been
assumed that Ohm’s law applies, meaning that∫

∂Bi\ΓB

J · nBi
dS =

∫
∂Bi\ΓB

σiE · nBi
dS.

7



Chapter 2 Mathematical model

Note that if the volume element being considered only consisted of the intracellular part,
the equation would be the same. Assume therefore that we are considering only a vol-
ume element on the intracellular side shaped as a cylinder. As the height of the cylinder
approaches zero, the boundary of the cylinder approaches the membrane. Therefore∫

∂Bi\ΓB

σiE · nBi
dS. ≈

∫
ΓB

σiE · nBi
dS = −

∫
ΓB

σi∇ui · nBi
dS,

where in the last equality (2.4) was employed. Gathering, (2.9) can be written as∫
ΓB

Iion dS −
∫

ΓB

σi∇ui · nBi
dS = −

∫
ΓB

Cm
∂v

∂t
dS.

Setting nBi
= −ni, and let Im = −σi∇ui · ni be the total current, the corresponding

differential version is given by

Im = Cm
∂v

∂t
+ Iion.

Repeating the same steps for the extracellular domain of the volume element gives∫
ΓB

Iion dS +

∫
ΓB

σe∇ue · nBe dS =

∫
ΓB

Cm
∂v

∂t
dS,

and by setting ni = −ne, we have that

σe∇ue · ne = Cm
∂v

∂t
+ Iion.

The last equation gives us the relation between the currents on the membrane,

σe∇ue · ne = −σi∇ui · ni = Im.

2.1.3 The EMI model

In summary, the EMI model for a single cell, as illustrated in Figure 3, is given by the
following equations,

−∇ · σe∇ue = 0 in Ωe, (2.10a)

−∇ · σi∇ui = 0 in Ωi, (2.10b)

σe∇ue · ne = −σi∇ui · ni ≡ Im on Γ, (2.10c)

v = ui − ue on Γ, (2.10d)

∂v

∂t
=

1

Cm
(Im − Iion) on Γ. (2.10e)

In addition, boundary conditions must be added. The model can also be extended to
describe connected cells, see [40] for more information.

8



2.2 Membrane models*

nine

Ωi

ΩeΓ

∂Ω

Figure 3: Illustration of the domains for a single cell EMI model.

2.2 Membrane models*

The ionic current density Iion governs the membrane potential and is subject to further
modeling. The change in the electrical potential corresponds to ions being transported in
and out of the cell. Many mathematical models have been developed for modeling the
membrane potential of excitable cells, and several hundred examples can be found in [23].
The simplest case to model is passive transportation of ions, which is only governed by
concentration gradients and electrical fields. This is modeled with a passive model, driven
only by potential differences between the intracellular and the extracellular domain. The
passive membrane model is given by

Iion =
1

Rm
(v − vrest),

where Rm denotes the resistance, and vrest denotes the resting potential of the membrane.

In more complicated models, change in the electrical potential also goes in the opposite
direction of the electric fields. To consider such active models, replace equation (2.10e)
with a system of the form

vt =
1

Cm
(Im − Iion(v, s)),

st = F (v, s),

where vt = ∂v
∂t . Here v is still the membrane potential, and s represent additional states,

which can be ionic transportation or gating values. In this work, we will in addition to the
passive model look at an active model known as the FitzHugh-Nagumo model [28]. In [55]
a reparameterized version of the FitzHugh-Nagumo model is given as

vt =
c1

v2
amp

(v − vrest)(v − vth)(vpeak − v)− c2

vamp
(v − vrest)s+ Iapp, (2.11a)

st = b(v − vrest − c3s), (2.11b)

9



Chapter 2 Mathematical model

Table 1: Parameters in the reparameterized FitzHugh-Nagumo model given in [55].

a b c1 c2 c3

0.13 0.013 0.26 0.1 1

where the values for the parameters a, b, c1, c2, c3 as described in [55] are listed in Table 1.
Here, vrest describes the resting potential, and vpeak describes the peak potential. Further
the amplitude is given as vamp = vpeak − vrest, and the threshold potential is given as
vth = vrest + avamp. Finally, Iapp describes applying a stimulus current. In this model, s
describes a recovery variable without any physiological meaning.

2.3 Existence theory for the EMI model

Theoretical studies for EMI type of model can be found in [4,30,45,62]. In [4], well-posedness
is discussed for an EMI system where the membrane model is assumed to be a function,
i.e. Iion(v) = f(v). By assuming that f ∈ W 1,∞(R), W s,p being the standard Sobolev
space, existence and uniqueness for a weak solution is proven. This is done first for f linear
with results from abstract parabolic theory, before extending to a non-linear f by using a
fixed-point technique.

In [45], another approach is taken to analyze the system with an ODE membrane model.
They look at what is refereed to as the 3D cable model, which is similar to the EMI model
only with Ωe not bounded. A scaled version of the 3D cable model can be written as follows

−∆ve = 0 in Ωe,

−∆vi = 0 in Ωi,

σ∇ve · ne = −∇vi · ni ≡ Im on Γ,

v = vi − ve on Γ,

∂v

∂t
= (Im − Iion(v, s)) on Γ,

∂s

∂t
= F (v, s) on Γ,

ve(x)→ 0 as |x| → ∞.

(2.12)

10



2.3 Existence theory for the EMI model

The first step in [45] is to look at the following interface problem,

−∆ue = 0 in Ωe,

−∆ui = 0 in Ωi,

σ∇ue · ne = −∇ui · ni ≡ Im on Γ,

u = ui − ue on Γ,

ue(x)→ 0 as|x| → ∞,

and argue that a unique solution (ui, ue) exists for a reasonably regular u. Based on the
interface problem, an operator Λ can be defined,

Λσu ≡ σ∇ue · ne = −∇ui · ni,

known as the Dirichlet-Neumann map for the domain Ωi. With this operator, (2.12) can
be expressed as a system of equations only on Γ,

∂v

∂t
= (Λσv − Iion(v, s)) on Γ,

∂s

∂t
= F (v, s) on Γ.

An analysis based on semigroup properties then follows, and a global existence result for
the model coupled with a FitzHugh-Nagumo type of system is proven.

Theorem 2.1 ( [45], Corollary 6.8). The 3d cable model (2.12) coupled with a FitzHugh-
Nagumo system has a global solution for any initial data U0 ∈ X2. For X = W s,p(Γ), s >
2/p, the solution is classical. Moreover, there are positive constants Mv and Ms such that

‖v(t)‖C(Γ) 6Mv, ‖s(t)‖C(Γ) 6Ms.

In the theorem above, C(Γ) is the space of continuous functions on Γ. A similar result is
also proven for Hodgkin-Huxley type systems in [45].
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Chapter 3

Methods for spatial discretization of PDEs*

In this chapter, we review numerical methods for the discretization of PDEs in space.
We start by introducing Nitsche’s method for the Poisson boundary value problem and
the Poisson interface problem. Nitsche’s method is an optimally convergent method that
incorporates Dirichlet boundary and interface conditions weakly into the bilinear and linear
forms instead of strongly into the discrete function spaces. Next, we review the cut finite
element method (CutFEM) and explain how the idea of weak imposition of boundary and
interface conditions can be exploited to discretize the Poisson-type problems using meshes
that do not fit the domain geometry.

3.1 Nitsche’s method for the Poisson boundary value problem

In this section, we introduce Nitsche’s method [49] for weak handling of boundary conditions.
Following the presentation in [35], we use the Poisson problem with Dirichlet boundary
conditions as a model problem. We start by giving a short recap of the standard weak
formulation for the problem in order to introduce some notation and variables.

The strong form of the Poisson problem over a domain Ω is given as: find u such that

−∆u = f in Ω, (3.1a)

u = g on Γ, (3.1b)

where Γ = ∂Ω denotes the boundary of the domain, and f and g are given functions. To
derive the weak formulation of the problem, we begin by multiplying (3.1a) with a test
function v in a suitable test space V and use integration by parts. This yields

(∇u,∇v)Ω − (∂nu, v)Γ = (f, v)Ω, (3.2)

where (·, ·)Ω denotes the L2-inner product over the domain Ω, and (·, ·)Γ denotes the L2-
inner product over a surface Γ. The L2-norm will be denoted by ‖v‖2Ω := (v, v)Ω. Let α

13



Chapter 3 Methods for spatial discretization of PDEs*

be a multi-index and let Dαv denote the weak derivative of order α. The Sobolev space
Hm(Ω) is given as

Hm(Ω) = {v ∈ L(Ω) : Dαv ∈ L2(Ω) for |α| 6 m},

and the corresponding Sobolev norm and seminorm will be denoted respectively by

‖v‖2m,Ω = ‖v‖2Hm(Ω) =
∑
α6m

(Dαv,Dαv)Ω, |v|2m,Ω =
∑
α=m

(Dαv,Dαv)Ω,

for integer m > 1. Define also the constrained space Hm
g (Ω) = {v ∈ Hm(Ω) : v = g on Γ}.

Now let the test space be V0 = H1
0 (Ω), and the trial space be Vg = H1

g (Ω). From this,
the boundary conditions are incorporated in the definition of the trial space. The standard
weak formulation is given as: find u ∈ Vg such that

a(u, v) = l(v) ∀v ∈ V0,

where the bilinear form a : Vg × V0 → R, and the linear form l : V0 → R are given as

a(u, v) = (∇u,∇v)Ω,

l(v) = (f, v)Ω.

Now we turn to present Nitsche’s method as an alternative for incorporating Dirichlet
boundary conditions by incorporating the boundary conditions through the weak formula-
tion. Let both the test space and the solution space be V = H2(Ω). Notice that we do
not incorporate any restrictions on the solution through the function space. To discretize
the problem, begin by letting Th be a finite element partitioning of the domain Ω into sim-
plex elements T . The diameter of an element T is denoted by hT = diam T , and define
h = maxT∈Th hT . Let the space of polynomials of degree k on an element T ∈ Th be denoted
by Pk(T ), and let Pk(Th) =

⊕
T∈Th Pk(T ). Further, let the space of piecewise continuous

polynomials of degree k be denoted by

Pck(Th) = Pk(Th) ∩ C0(Ω),

and define the discrete function space Vh = Pck(Th).

The weak formulation (3.2) is not a symmetric bilinear form, but can be symmetrized by
adding the term −(u− g, ∂nv)Γ, yielding

(∇u,∇v)Ω − (∂nu, v)Γ − (u, ∂nv)Γ = (f, v)Ω − (g, v)Γ. (3.3)

The formulation should also satisfy the Lax-Milgram lemma, and therefore needs to be
coercive. This is obtained by adding a stabilization term, γh−1(u − g, v)Γ, where γ is a
positive parameter. The resulting bilinear form ah and linear form lh are then given as

ah(u, v) = (∇u,∇v)Ω − (∂nu, v)Γ − (u, ∂nv)Γ + (γh−1u, v)Γ, (3.4a)

lh(v) = (f, v)Ω − (g, v)Γ + (γh−1g, v)Γ. (3.4b)
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3.1 Nitsche’s method for the Poisson boundary value problem

The discrete weak formulation is given as: find uh ∈ Vh such that

ah(uh, v) = lh(v) ∀v ∈ Vh. (3.5)

Notice that both of the added terms will vanish for the true solution, and therefore the
formulation is consistent with the original problem (3.1).

To show that the variational formulation is coercive and bounded, the following two mesh
dependent norms are needed

‖v‖2ah := ‖∇v‖2Ω + ‖h− 1
2 v‖2Γ,

‖v‖2ah,∗ := ‖v‖2ah + ‖h 1
2∂nv‖2Γ.

Also, let the notation α . β mean that there is some constant C > 0 such that α 6 Cβ.
The following stability results are given and proven in [35].

Proposition 3.1 (Discrete coercivity). Let γ be positive and sufficiently large. Then the
bilinear form ah is discretely coercive, that is

ah(v, v) & ‖v‖2ah ∀v ∈ Vh.

Proposition 3.2 (Boundedness). For u ∈ Vh⊕V and v ∈ Vh the bilinear form ah satisfies

ah(u, v) . ‖u‖ah,∗‖v‖ah .

An important note about the discrete coercivity result is that the following inverse estimate
is essential to the proof.

Proposition 3.3 (Inverse estimate). There is a constant C independent of h such that

‖h 1
2∂nv‖2L2(Γ) ≤ C‖∇v‖2Ω for all v ∈ Vh. (3.6)

The proof of the inverse estimate can be found in [57], where also the following a priori
error estimate is given.

Theorem 3.4 (A priori error estimate). Let u ∈ Hs(Ω), s > 2 be the solution of (3.1) and
let uh ∈ Vh be the solution of (3.5). Then with r = min{s, k+ 1} the error u− uh satisfies

‖u− uh‖ah . hr−1‖u‖r,Ω,

and
‖u− uh‖Ω . hr‖u‖r,Ω.
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Functions in the discrete finite element space Vh can be written as a linear combination,
v =

∑N
i=1 Viφi where V = {Vi}Ni=1 ∈ RN are the coefficients and {φi}Ni=1 are the basis

functions of Vh. The stiffness matrix A based on the discrete form ah is defined by the
relation

(AV,W )RN = ah(v, w) ∀v, w ∈ Vh.
The condition number of the stiffness matrix is defined by

κ(A) = ‖A‖RN ‖A−1‖RN ,

with the corresponding norm defined by

‖A‖RN = sup
v∈Rn\0

‖AV ‖RN

‖V ‖RN

.

The estimate of how the condition number scales can now be given.

Theorem 3.5 (Condition number estimate). The condition number of the stiffness matrix
associated with the bilinear form ah (3.4a) satisfies the estimate

κ(A) . h−2.

The proof can be found in [35].

3.2 Nitsche’s method for the Poisson interface problem

In this section, we present how Nitsche’s method can be used to handle interface conditions,
following the same procedure as in the previous section. Consider now the Poisson interface
problem in a domain consisting of two non-overlapping subdomains Ω1 and Ω2, such that
Ω = Ω1∪Ω2. The subdomains are separated by an interface Γ = ∂Ω1 ∩ ∂Ω2, and we consider
a situation where Ω1 is inside Ω2, i.e. such that ∂Ω ∩ ∂Ω1 = ∅. A function v in Ω is now
considered as a composition v = (v1, v2) where vi = v|Ωi . The broken norm of v will be
denoted as ‖v‖2Ω1∪Ω2

= ‖v1‖2Ω1
+ ‖v2‖2Ω2

.

The strong form of the Poisson interface problem is given as: find u such that

−∇ · (σ∇u) = f in Ω, (3.7a)

u = g on ∂Ω, (3.7b)

[u] = gD on Γ, (3.7c)

[σ∂nu] = gN on Γ. (3.7d)
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3.2 Nitsche’s method for the Poisson interface problem

We assume the diffusion coefficients σi to be constant for i = 1, 2, and the jumps across Γ
are defined by

[u] = u1|Γ − u2|Γ [σ∂nu] = σ1∇u1 · n− σ2∇u2 · n,

where we have defined the interface normal n as pointing outwards with respect to Ω1.
Also, the average is defined by

{v} =
1

2
v1 +

1

2
v2.

As in the previous section the weak formulation is derived by first multiplying (3.7a) with
a test function v ∈ V and using integration by parts, where V = V1 × V2 and V1 = H1(Ω),
V2 = {v ∈ H1(Ω) : v|∂Ω = g}. With the use of the identity [ab] = {a}[b] + [a]{b}, this yields

(σ∇u,∇v)Ω − ([v], {∂nu})Γ = (f, v)Ω + ({v}, gn)Γ.

To discretize the problem, let Th be a conformal mesh of Ω consisting of the two non-
overlapping meshes Th,1 and Th,2, where Th,i is defined as simplex-based triangulations of
the domain Ωi. Γ is formed by the facets in the interface between Th,1 and Th,2. The discrete
functions spaces are given as

Vh,1 = Pck(Th,1), Vh,2 = {v ∈ Pck(Th,2) : v|∂Ω = g)},

and Vh = Vh,1×Vh,2. Terms for symmetry and stabilization are added to arrive at the weak
formulation for the Poisson interface problem: find uh ∈ Vh such that

ah(uh, v) = lh(v) ∀v ∈ Vh, (3.8)

where the bilinear and linear forms are given as

ah(u, v) =

2∑
i=1

(σi∇ui,∇vi)Ωi − ([v], {∂nu})Γ − ([u], {∂nv})Γ + γh−1([u], [v])Γ, (3.9)

lh(v) =
2∑
i=1

(f, vi)Ωi + ({v}, gn)Γ − (gD, {∂nv})Γ + γh−1(gD, [v])Γ. (3.10)

As in the previous section, define mesh dependent norms

‖v‖2ah := ‖∇v‖2Ω1∪Ω2
+ ‖h− 1

2 [v]‖2Γ,
‖v‖2ah,∗ := ‖v‖2ah + ‖h 1

2 [∂nv]‖2Γ.

We can now state a coercivity result and an a priori error estimate from [9].

Proposition 3.6 (Discrete coercivity). Let γ be positive and sufficiently large. Then we
have

ah(v, v) & ‖v‖2ah ∀v ∈ Vh.
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Theorem 3.7. Let γ be positive and sufficiently large. Let u ∈ Hs(Ω1)×Hs(Ω2), s > 2 be
the solution of (3.7) and let uh ∈ Vh be the solution of (3.8). Then with r = min{s, k + 1}
the error u− uh satisfies

‖u− uh‖ah,∗ . hr−1‖u‖r,Ω1∪Ω2 .

Both proofs can be found in [9].

3.3 Cut finite element formulation of the Poisson boundary
problem

In this section, we present the cut finite element (CutFEM) formulation of the Poisson
boundary problem, following the presentation given in [33]. We build on the weak formula-
tion stated in Section 3.1 using Nitsche’s method. With Nitsche’s method, we needed the
mesh to be fitted to the domain of the problem. CutFEM allows us to have a mesh that is
not consistent with the domain, a so-called unfitted mesh.

We begin by describing the discretization of Ω. Let T̃h be a background mesh covering
Ω̄. Then, let the active background mesh Th be defined by those elements T ∈ T̃h which
intersect the interior Ωo = Ω \ Γ,

Th = {T ∈ T̃h|T ∩ Ωo 6= ∅}.

The set of interior faces is defined by

Fh = {F = T+ ∩ T−|T+, T− ∈ Th}.

Also, the set of ghost penalty faces Fgh , is defined as the set of interior faces in the active
mesh belonging to elements which are intersected by the boundary Γ,

Fgh = {F ∈ Fh : T+ ∩ Γ 6= ∅ ∨ T− ∩ Γ 6= ∅}.

The ghost penalty faces are shown in dashed lines in Figure 4 (middle). The jump across
an interior face F ∈ Fh is defined by

[w]|F = w+
F − w−F ,

where w(x)± = limt→0w(x + tn) for some chosen unit norm on the face F . The discrete
function space is now defined on the whole active mesh as the broken polynomial space of
order k as Vh = Pck(Th).

Remember the linear and bilinear forms (3.4), derived with Nitsche’s method. Recall that
to prove that the bilinear form was coercive, the inverse estimate (3.6) was needed. In
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3.4 The role of the ghost penalty

the unfitted case, the same estimate can not be given, as the constant C would depend on
how the boundary cuts the elements. To remedy this, adding a stabilization parameter gh,
referred to as the ghost penalty was proposed in [16]. Adding the ghost penalty yields the
CutFEM formulation for the problem: find uh ∈ Vh such that

Ah(uh, v) := ah(uh, v) + gh(uh, v) = lh(v) ∀v ∈ Vh. (3.11)

3.4 The role of the ghost penalty

As stated above, there is no inverse estimate to help show coercivity in norms defined on
only the physical mesh. Instead, [33] introduces mesh dependent discrete norms, which are
defined over the whole active mesh. For v ∈ Vh define

‖v‖2ah = ‖∇v‖2Ω + ‖h− 1
2 v‖2Γ,

|v|2gh = gh(v, v),

‖v‖2Ah
= ‖v‖2ah + |v|2gh .

For v ∈ H2(Th) + Vh define

‖v‖2ah,∗ = ‖v‖2ah + ‖h 1
2∂nv‖2Γ.

By adding the ghost penalty, the bilinear form is augmented such that the discrete norms on
the entire background mesh can be controlled. A common realization for the ghost penalty
is to penalize the facet jump for all order derivatives over the ghost penalty facets [33]. This
facet jump ghost penalty is for a set of positive parameters {γj}kj=0 given as

gh(v, w) =
k∑
j=0

∑
F∈Fg

h

γjh
2j−1
F ([∂jnv], [∂jnw])F . (3.12)

We now summarize results from [33] which shows that the CutFEM formulation (3.11) is
stable and establishes an a priori estimate.

Proposition 3.8 (Discrete coercivity and stability [33]). The discrete form Ah is coercive
and stable with respect to the discrete energy norm ‖·‖Ah

, that is

Ah(v, v) & ‖v‖2Ah
∀v ∈ Vh,

Ah(u, v) . ‖u‖Ah
‖v‖Ah

∀u, v ∈ Vh,

whenever γ is chosen large enough. Moreover, for v ∈ H2(Th)+Vh and w ∈ Vh, the discrete
form ah satisfies

ah(u, v) . ‖u‖ah,∗‖v‖Ah
.
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All the hidden constants depend only on the dimension d, the polynomial order k, the shape
regularity of Th, and the curvature of Γ, but not on the particular cut configurations.

Theorem 3.9 (A Priori Error Estimate [33]). Let u ∈ Hs(Ω), s > 2 be the solution
to (3.1) and let uh ∈ Vh be the solution to the discrete formulation (3.11). Then with
r = min{s, k + 1} the error u− uh satisfies

‖u− uh‖ah,∗ . hr−1‖u‖r.Ω,
‖u− uh‖Ω . hr‖u‖r,Ω.

Another result in [33], shows that the CutFEM formulation has geometrically robust con-
dition numbers, meaning that the condition number is not affected by how the boundary
cuts the elements.

Theorem 3.10 (Condition number estimate [33]). The condition number of the stiffness
matrix associated with the bilinear form Ah (3.11) satisfies the estimate

κ(A) . h−2,

where the hidden constant depends only on the dimension d, the polynomial order k, and
the quasi-uniformity of Th but not on the particular cut formulation.

3.5 Cut finite element formulation of the Poisson interface
problem

We now formulate a CutFEM formulation for the interface Poisson problem (3.7). As with
the Poisson boundary problem, assume that Ω is covered by a background mesh T̃h. Define
an active background mesh for each of the two subdomains

Th,i = {T ∈ T̃h|T ∩ Ωo
i 6= ∅},

and let Fh,i be the faces belonging to Th,i. The computational domains and meshes are
shown in Figure 4, notice that these are now overlapping. The test spaces are defined by

Vh,1 = Pck(Th,1), Vh,2 = {v ∈ Pck(Th,2) : v|∂Ω = g},

and the total approximation space as Vh = Vh,1 × Vh,2. Recall the bilinear form ah (3.9)
and linear form lh (3.10) from using Nitsche’s method. An interface CutFEM formulation
for the problem can be defined as: find uh = (uh,1, uh,2) ∈ Vh such that

Ah(uh, v) := ah(uh, v) + gh(uh, v) = lh(v), (3.13)
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3.5 Cut finite element formulation of the Poisson interface problem

Figure 4: Illustration of the computational domain for the interface problem, taken from [33]
with permission from the authors. (Left) Background mesh covering Ω. (Middle) The active
mesh Th,1 for Ω1 with internal faces Fh,1 and ghost penalty faces Fgh,1 in dotted lines. (Right)
Corresponding mesh and faces for Ω2.

for all v = (v1, v2) ∈ Vh. Corresponding discrete norms are now defined for v ∈ Vh as

‖v‖2ah = ‖∇v‖2Th + ‖h− 1
2 [v]‖2Γ,

‖v‖2Ah
= ‖v‖2ah + |v|2gh .

Let the ghost penalty for uh, vh ∈ Vh be

gh(uh, vh) =

2∑
i=1

gh,i(uh,i, vh,i).

By again letting gh,1 and gh,2 be the facet jump ghost penalty as defined in (3.12), discrete
coercivity and a priori estimate can be established, see e.g. [33], which we summarize next.

Proposition 3.11 (Discrete coercivity [33]). It holds that

‖v‖2Ah
. Ah(v, v) ∀v ∈ Vh.

Theorem 3.12 (A priori error estimate [33]). Let u ∈ Hs(Ω1)×Hs(Ω2), s > 2 be the solu-
tion to the interface problem (3.7). Furthermore, let uh ∈ Vh be the solution to the CutFEM
formulation (3.13). Then with r = min{s, k + 1} the error u− uh satisfies

‖u− uh‖ah . σ
1
2hr−1‖u‖r,Ω1∪Ω2 .
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Chapter 4

Temporal discretization for the EMI model*

The EMI model consists of a PDE system coupled with an ODE system. Operator splitting
is a method for solving this by breaking the problem into subproblems. Each subproblem
can then be solved with solution methods dedicated to the specific subproblem. In this
chapter, we first briefly review an operator splitting known as Godunov splitting and show
how it leads to a first-order scheme when applied to general linear problems. Subsequently,
we introduce a Godunov splitting scheme for the EMI problem, decoupling the membrane
confined ODE system from the PDE system.

Next, we introduce the discretization of the ODE system on the membrane surface. In [60],
where the EMI model was solved on a fitted mesh, the ODE system of the EMI model
was solved in the surface mesh nodes. In the unfitted formulation of the EMI model, a
different approach must be taken since the membrane surface is not given as a sub mesh of
the background mesh. Instead, we use an approach based on the weak formulation, similar
to a finite element based discretization in time of parabolic PDEs. We first introduce the
weak formulation for solving a L2-projection problem on a surface. Then, we discretize the
surface ODE system in time by utilizing the L2-projection.

4.1 Godunov splitting for linear problems

We follow the presentation of operator splitting methods presented in [55] and consider an
initial value problem of the form

dv

dt
= (L1 + L2)v, (4.1a)

v(0) = v0, (4.1b)

where L1 and L2 are linear operators acting on v, and v0 is a given initial condition. The
initial value problem can be split into two subproblems, where the first subproblem has the
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form

dv∗

dt
= L1(v∗), (4.2a)

v∗(0) = v0, (4.2b)

and should be solved on the interval t ∈ [0,∆t]. The second subproblem has the form

dw

dt
= L2(w), (4.3a)

w(0) = v∗(∆t), (4.3b)

also to be solved on the interval t ∈ [0,∆t]. Notice here that the solution from the first
subproblem is used as an initial value in the second subproblem.

To analyze the accuracy of the splitting scheme, assume that L1 and L2 are linear and not
dependent on t, in order to compute

d2v

dt2
= (L1 + L2)(L1 + L2)v = (L1 + L2)2v, (4.4)

where the notation in the last step means that the operator L1 + L2 is applied twice to v.
A Taylor expansion for the original solution of v at time ∆t, inserted with (4.4) yields

v(∆t) = v0 + ∆t(L1 + L2)v0 + ∆t2(L1 + L2)2v0 +O(∆t3).

The next step is to Taylor expand the solutions to each of the subproblems (4.2) and (4.3),
assuming they are smooth enough. This yields

w(∆t) = v0 + ∆t(L1 + L2)v0 +
∆t2

2
(L2

1 + L1L2 + L2
2)2v0 +O(∆t3).

The difference between the solution from the operator splitting and the exact solution to
the original problem is then

w(∆t)− v(∆t) =
∆t2

2
(L1L2 − L2L1)v0 +O(∆t3).

The splitting error is thus O(∆t2) for each time step ∆t and is expected to accumulate
to O(∆t) after T/∆t timesteps to reach some fixed time T . Hence the Godunov splitting
scheme is of first order.

The computations above assumed that the subproblems can be solved analytically, which
is often not the case. However, as long as we solve each of the problems with first-order
methods, the splitting scheme would still be of first order. Higher-order methods for the
subproblems would not be very beneficial as the order of the overall splitting scheme would
still be first-order. The Godunov splitting scheme can with small modifications be made
into a second-order scheme known as Strang splitting, see e.g. [55].
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4.2 Godunov splitting for the EMI model

The Godunov splitting scheme is now applied on the EMI model with an active membrane
model, presented in [60]. This yields the following splitting scheme:
Given initial values v0, s0, for each time step m = 1, 2, . . . ,M

1. (ODE-step) Compute v∗, sm by solving

v∗t = − 1

Cm
Iion(v∗, sm) on Γ, (4.5a)

smt = F (v∗, sm) on Γ, (4.5b)

with vm−1 and sm−1 as initial values.

2. (PDE-step) Compute umi , ume ,vm by solving

−∇ · σe∇ume = 0 in Ωe, (4.6a)

−∇ · σi∇umi = 0 in Ωi, (4.6b)

σe∇ume · ne = −σi∇umi · ni ≡ Imm on Γ, (4.6c)

vm = umi − ume on Γ, (4.6d)

vmt =
1

Cm
Imm on Γ, (4.6e)

with v∗ as initial value.

The next step is now to discretize both steps in time.

4.3 Time discretization for the PDE step

In to discretize the PDE-step in time we use Implicit Euler on (4.6e), yielding

vm = vm−1 +
∆t

Cm
Imm ,

where ∆t is the size of the time step. We will in the two following chapters discretize the
PDE step in space with two different unfitted formulations. In order to be able to also solve
the ODE system on the unfitted mesh, we now introduce an unfitted approach to solve a
L2-projection problem.
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Figure 5: Computational domain for the surface problem, taken from [21] with permission
from the authors, with the background mesh T h, the active mesh T hΓ in purple and internal
faces FhΓ in dotted lines

4.4 A stabilized L2-projection on unfitted surfaces

Let f ∈ L2(Γ) be some given function on the surface Γ. Let T h be the background mesh
and define the active mesh associated with Γ by

T hΓ = {T ∈ Th|T ∩ Γ 6= ∅}.

Define the corresponding set of interior faces by

FhΓ = {F = T+ ∩ T−|T+, T− ∈ T hΓ }.

Figure 5 shows T hΓ in purple and the interior faces in dotted lines. Define the discrete
function space Vh = Pc1(T hΓ ) to be the space of piecewise linear continuous functions on T hΓ .
The simple and natural formulation to define the L2-projection would be: find uh ∈ Vh such
that

mh(uh, w) = (f, w)Γ ∀w ∈ Vh, (4.7)

where mh(uh, w) = (uh, w)Γ. However, the discrete formulation (4.7) suffers from similar
issues as the unstabilized unfitted finite element formulation of the Poisson problem dis-
cussed earlier. Let M be the mass matrix associated with mh such that Mij = m(φi, φj)
where {φi}Ni=1 is the basis functions of Vh. In Chapter 3, it was stated that to bound the
condition number of the stiffness matrix associated with the Poisson problem, a stabiliza-
tion term was needed. A similar challenge arises for the mass matrix associated with (4.7).
As a remedy, a stabilization term sh can be added. The resulting stabilized L2-projection
is given by: find uh ∈ Vh such that

Mh(uh, v) = (f, w)Γ ∀w ∈ Vh, (4.8)
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4.5 Discretization of ODEs on an unfitted surface

where

Mh(uh, v) := (uh, w)Γ + sh(u,w).

As realization for the stabilization term, we use a face based stabilization proposed in [21]

sh(v, w) =
∑
F∈Fh

Γ

γbh
2
F ([∂nv], [∂nw])F , (4.9)

where γb is some positive parameter. Note that (4.9) resembles the stabilization discussed
in Section 3.4. An important note about this stabilization term is that it is only suitable for
first-order elements. For higher-order elements a normal gradient based stabilization was
proposed in [21], where also the following a priori estimate was proven.

Theorem 4.1 (A priori estimate). Let f ∈ H2(Γ) and assume that uh ∈ Vh solves the
stabilized weak formulation (4.8). Then we have that

‖f − uh‖Γ . h2‖f‖2,Γ.

4.5 Discretization of ODEs on an unfitted surface

Now, we can use the stabilized L2-projection to solve the ODE system on an unfitted surface.
We consider the ODE system from the first step in the operator splitting scheme in Section
4.2. First, we discretize pointwise in time, using an explicit Euler step to pass from tn to
tn+1 = tn + τ , yielding

vn+1(x)− vn(x) = −τ
(
Iion(vn(x), sn(x))

)
, (4.10a)

sn+1(x)− sn(x) = τ
(
F (vn(x), sn(x))

)
. (4.10b)

Next, we discretize in space, letting the background mesh T h and the active mesh T hΓ
be as in Section 4.4. A weak formulation is obtained by multiplying with tests functions
w1, w2 ∈ T hΓ , yielding

(vn+1 − vn, w1)Γ = −τ
(
Iion(vn, sn), w1

)
Γ
,

(sn+1 − sn, w2)Γ = τ
(
F (vn, sn), w2

)
Γ
.

Adding the same stabilization as for the L2-projection problem, we arrive at the following
system of equations to be solved for each time step n = 1, . . . , N ,

Mh(vn+1, w1) = mh

(
vn − τIion(vn, sn), w1

)
,

Mh(sn+1, w2) = mh

(
sn + τF (vn, sn), w2

)
.
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Chapter 4 Temporal discretization for the EMI model*

The initial conditions v0 and s0 also needs to be specified. An approach could be to use the
stabilized L2-projection of the initial value such that

Mh(v0, w1) = τmh(v(t0)),

Mh(s0, w2) = τmh(s(t0)).

Another way of setting the initial value conditions is to use interpolation. We will use the
latter approach in our numerical implementations.
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Chapter 5

A single-dimensional formulation of the EMI
PDEs and its discretization

The time discretized EMI PDEs lead to an elliptic interface problem with unusual interface
conditions. In this chapter, we review a single-dimensional weak formulation of the EMI
PDEs and show well-posedness. Next, we formulate discrete FEM and CutFEM formula-
tions. We prove that both formulations give optimal a priori error estimates and establish
that the CutFEM formulation has geometrically robust condition numbers, meaning that
they are insensitive to how the interface cuts the computational domain.

5.1 Weak formulation

The time discretized EMI model as presented in Section 4.3 can be written as a coupling of
two Poisson problems with a Robin-type interface condition,

−∇ · σe∇ue = 0 in Ωe, (5.1a)

−∇ · σi∇ui = 0 in Ωi, (5.1b)

σe∇ue · ne = −σi∇ui · ni ≡ Im on Γ, (5.1c)

ui − ue = C−1
m ∆tIm + f on Γ, (5.1d)

ue = 0 on ∂Ω, (5.1e)

where we have written v0 = f . Further, we have also added a Dirichlet condition on the
outer boundary of the domain. We will in assume that Γ is of class C2. Following the
presentation in [42], a weak formulation of the spatial EMI problem can be derived as
follows. Define the function spaces

Vi = H1(Ωi), Ve = H1
0 (Ωe),

and let V = Vi × Ve. Multiply (5.1b) with a test function vi ∈ Vi and integrate over Ωi,
and multiply (5.1a) with a test function ve ∈ Ve and integrate over Ωe. Integration by parts
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Chapter 5 A single-dimensional formulation of the EMI PDEs and its discretization

gives the weak formulation: find u ∈ V such that∫
Ωe

σe∇ue · ∇ve dx−
∫

Γ
σe∇ue · neve ds = 0, (5.2a)∫

Ωi

σi∇ui · ∇vi dx−
∫

Γ
σi∇ui · nivi ds = 0, (5.2b)

for all v ∈ V . By using (5.1c), (5.1d) can be inserted into (5.2) to arrive at the classical
weak formulation: find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V, (5.3)

where the bilinear form a is given as

a(u, v) =

∫
Ωe

σi∇ui · ∇vi dx+

∫
Ωi

σe∇ue · ∇ve dx+
Cm
∆t

∫
Γ
(ue − ui)(ve − vi) ds, (5.4)

and the linear form l as

l(v) =
Cm
∆t

∫
Γ
f(vi − ve) ds. (5.5)

5.2 Well-posedness of the weak formulation

In this section we will show that the weak formulation is well-posed. First, notice that the
bilinear form (5.4) induces the following energy norm for v = (vi, ve) ∈ V = Vi × Ve,

‖v‖2a := σe‖∇ve‖2L2(Ωe) + σi‖∇vi‖2L2(Ωi)
+
Cm
∆t
‖ve − vi‖2Γ. (5.6)

We now argue that ‖·‖2a is a norm. It is clear from construction that both homogeneity
and triangle inequality are satisfied. To show that ‖·‖a it is positive definite, notice that
obviously v = 0 =⇒ ‖v‖a = 0. For the other direction, assume that ‖v‖a = 0. This implies
that ‖∇ve‖L2(Ωe) = ‖∇vi‖L2(Ωi) = ‖ve−vi‖Γ = 0. Recall that the constant function ve is zero
on the outer boundary, hence ve = 0 on Ωe. This, combined with ‖ve−vi‖Γ = 0, means that
the constant function vi is zero on Γ. We can therefore conclude that ‖v‖a = 0 ⇐⇒ v = 0.

To prove that there exists a solution to the classical weak formulation of the EMI problem,
we apply the Lax-Milgram Theorem.

Theorem 5.1 (Lax-Milgram [15]). Let H be a Hilbert space with norm ‖·‖H . Assume that
we have a symmetric bilinear form a : H ×H → R, and a linear form l : H → R where the
following is satisfied
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5.2 Well-posedness of the weak formulation

(i) The bilinear form a(·, ·) is coercive and continuous, i.e. there exists α1 > 0 and α2 >
such that

a(u, u) > α1‖u‖2H ∀u ∈ H,
a(u, v) 6 α2‖u‖H‖v‖H ∀u, v ∈ H.

(ii) The linear form l(·) is bounded, i.e. there exists β > 0 such that

l(v) 6 β‖v‖H ∀v ∈ H.

Then, there exists a unique element u ∈ H such that

a(u, v) = l(v) ∀v ∈ H.

In addition, it holds that

‖u‖H 6
1

α1
‖l‖H′ .

Theorem 5.2. The bilinear form a(·, ·) as defined in (5.4) is coercive and continuous, that
is

a(v, v) = ‖v‖2a ∀u ∈ V, (5.7)

a(u, v) 6 3‖u‖a‖v‖a ∀u, v ∈ V. (5.8)

Assuming f ∈ L2(Γ), the linear form defined in (5.5) is bounded

l(v) 6 ‖f‖Γ‖v‖a. (5.9)

Moreover, there exists a unique solution u to equation (5.3) which satisfies

‖u‖a 6 ‖l‖a′ .

Proof. The coercivity result (5.7) follows directly from the definition of the energy norm.
To show (5.8), applying the Cauchy-Schwarz inequality together with the definition of the
energy norm yields,

a(u, v) 6 σi‖∇ui‖Ωi‖∇vi‖Ωi + σe‖∇ue‖Ωe‖∇ve‖Ωe +
Cm
∆t
‖ue − ui‖Γ‖ve − vi‖Γ

6 3‖u‖a‖v‖a.

The boundedness of the linear form (5.9) follows from applying Cauchy-Schwarz,

l(v) =
Cm
∆t

∫
Γ
f(vi − ve) ds 6

Cm
∆t
‖vi − ve‖Γ‖f‖Γ 6 ‖f‖Γ‖v‖a.

The existence of a unique solution then follows directly from the Lax-Milgram Theorem.

31



Chapter 5 A single-dimensional formulation of the EMI PDEs and its discretization

5.3 A classical finite element discretization

In this section, we will describe the discretization of the fitted version of the spatial EMI
problem before we derive a priori error estimates. Suppose that for each of the subdomains
Ωi and Ωe we have finite element partitionings into the quasi-uniform submeshes Th,i and
Th,e such that they are non-overlapping, and that the faces in the interface between Th,i
and Th,e form Γ. Define then Th to be a mesh of Ω consisting of the two submeshes. See an
illustration for a circular cell in Figure 6. Next, we define the finite element spaces

Vh,i = Pck(Th,i), Vh,e = {v ∈ Pck(Th,e) : v|∂Ω = 0},
where k ∈ N and let Vh = Vh,i × Vh,e. The single-dimensional formulation is: find uh ∈ Vh
such that

a(uh, v) = l(v) ∀v ∈ Vh. (5.10)

Th,i

Th,e

Figure 6: Illustration of fitted discretization for the EMI model with a circular cell.

5.3.1 Error estimates for the fitted discretization

To derive a priori error estimates, we define an interpolation operator. For an element
T where {φi}ni=1 is the Lagrangian basis of Pck(T ), the local interpolation operator ITh :
Hs(T )→ Pck(T ) for a function v on T is defined by

ITh v(x) =

n∑
i

v(xi)φi(x).
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5.3 A classical finite element discretization

Next, the global interpolation operator Ih,j : Hs(Ωj)→ Vh,i for j = i, e is defined by

Ih,jvj |T= ITh vj ,

for vj ∈ Vj and T ∈ Th,j . The interpolation operator on the total space Ω = Ωi ∪Ωe is then
defined by

Ihu = (Ih,iui, Ih,eue).

Proof of the following estimate for the interpolant can be found in [15,34].

Theorem 5.3 (Local interpolation error). Let v ∈ Hs(T ), s > 1 and assume Vj = Pck(Th,j).
With r = min{s, k + 1}, the local interpolation error satisfies the following,

|v − Ih,jv|r,T . hs−rT |v|s,T , (5.11)

|v − Ih,jv|r,F . h
s−r−1/2
T |v|s,T . (5.12)

Also, for the interpolation error on Ωj it holds that

‖v − Ih,jv‖r,Ωj . hs−r|v|s,Ωj , (5.13)

‖v − Ih,jv‖r,Fh
. hs−r−1/2|v|s,Ωj , (5.14)

‖v − Ih,jv‖r,Γ . hs−r−1/2|v|s,Ωj , (5.15)

for all v ∈ Hs(Ωj).

With the interpolation estimates, we can estimate the global interpolation error in the
‖·‖a-norm.

Corollary 5.4 (Global interpolation error). Assume u = (ui, ue) ∈ Hs(Ωi) ×Hs(Ωe) and
Vh = Pck(Th,i)× Pck(Th,e). With r = min{s, k + 1} the global interpolation error satisfies

‖u− Ihu‖a . hr−1

(
σi‖ui‖2r,Ωi

+ σe‖ue‖2r,Ωe
+ Cm

h

∆t
‖u‖2r,Ωi∪Ωe

) 1
2

. (5.16)

Proof. Taking the ‖·‖a-norm of u− Ihu, and applying (5.13) and (5.15) yields,

‖u− Ihu‖2a = σi‖∇(ui − Ih,iui)‖2Ωi
+ σe‖∇(ue − Ih,eue)‖2Ωe

+
Cm
∆t
‖ue − Ih,eue − (ui − Ih,iui)‖2Γ

6 h2(r−1)(σi‖ui‖2r,Ωi
+ σe‖ue‖2r,Ωe

) +
2Cm
∆t

(‖ui − Ihui‖2Γ + ‖ue − Ihue‖2Γ)

. h2(r−1)
(
σi‖ui‖2r,Ωi

+ σe‖ue‖2r,Ωe
+ Cm

h

∆t
‖u‖2r,Ωi∪Ωe

)
.
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Chapter 5 A single-dimensional formulation of the EMI PDEs and its discretization

Next, we demonstrate that the weak formulation has the Galerkin orthogonality property.

Lemma 5.5 (Galerkin orthogonality). Let u ∈ Hs(Ωi)×Hs(Ωe) be the solution to the spatial
EMI problem (5.1), and let let uh ∈ Vh be the solution to the finite element formulation
(5.10). Then

a(u− uh, v) = 0 ∀v ∈ Vh. (5.17)

We now have all ingredients needed to derive the following a priori error estimate in the
energy norm.

Theorem 5.6 (A priori error estimate). Let u ∈ Hs(Ωi) × Hs(Ωe) be the solution to the
spatial EMI problem (5.1), and let uh ∈ Vh be the solution to the finite element formulation
(5.10). With r = min{s, k + 1} the error u− uh satisfies

‖u− uh‖a . hr−1

(
σi‖ui‖2r,Ωi

+ σe‖ue‖2r,Ωe
+ Cm

h

∆t
‖u‖2r,Ωi∪Ωe

) 1
2

. (5.18)

Proof. The coercivity result (5.7) combined with the Galerkin orthogonality (5.17) and the
boundedness (5.8) yields,

‖u− uh‖2a = a(u− uh, u− uh)

= a(u− uh, u− uh) + a(u− uh, uh − Ihu)

= a(u− uh, u− Ihu)

. ‖u− uh‖a‖u− Ihu‖a.

Now dividing by ‖u− uh‖a, and applying (5.16) gives the desired estimate.

With the above estimate we can also derive an estimate for the error in the L2-norm, using
the Aubin-Nitsche trick.

Remark 5.7. To use the Aubin-Nitsche trick, we typically need an elliptic regularity result.
At the moment it is not clear if this exists for the adjoint problem of the EMI PDEs,

−∇ · σe∇φe = ee in Ωe, (5.19a)

−∇ · σi∇φi = ei in Ωi, (5.19b)

σe∇φe · ne = −σi∇φi · ni ≡ Im on Γ, (5.19c)

φi − φe = C−1
m ∆tIm on Γ, (5.19d)

φe = 0 on ∂Ω. (5.19e)

This is subject to further investigation. For a standard Poisson interface problem, we
can find elliptic regularity results shown in [51] and [14]. In addition, Grisvard discusses
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5.3 A classical finite element discretization

regularity for a standard Poisson problem with Robin boundary condition in [32]. For now
we will assume that under suitable assumptions on the domain Ω and interface Γ with
e = (ei, ee) ∈ L2(Ωi) ∪ L2(Ωe), there exists a solution φ to (5.19) such that ‖φ‖2,Ωi∪Ωe 6
‖e‖Ωi∪Ωe .

Theorem 5.8 (A priori error estimate in the L2-norm). Let u ∈ Hs(Ωi) ×Hs(Ωe), s > 2
be the solution to the spatial EMI problem (5.1), and let let uh ∈ Vh be the solution to the
finite element formulation (5.10). With r = min{s, k + 1} the error u− uh satisfies

‖u− uh‖Ωi∪Ωe . hr
(

max{σi, σe}+ Cm
h

∆t

)
‖u‖r,Ωi∪Ωe , (5.20)

assuming the elliptic regularity conjecture in Remark 5.7 holds.

Proof. Note first that estimate (5.18) can be given as

‖u− uh‖a . hr−1

(
max{σi, σe}+ Cm

h

∆t

) 1
2

‖u‖r,Ωi∪Ωe . (5.21)

We apply the standard Aubin-Nitsche duality trick. Let e = (ei, ee) = u − uh = (ui −
uh,i, ue − uh,e) and consider the adjoint problem given in (5.19). Since e ∈ L2(Ωi ∪ Ωe) we
have by assumption ‖φ‖2,Ωi∪Ωe 6 ‖e‖Ωi∪Ωe . Integration by parts gives that

(e, v)Ωi∪Ωe = a(φ, v).

By applying the Galerkin orthogonality we have that,

‖e‖2Ωi∪Ωe
= a(e, φ)

= a(e, φ− Ihφ)

. ‖φ− Ihφ‖a‖u− uh‖a

. hr
(

max{σi, σe}+ Cm
h

∆t

)
‖φ‖2,Ωi∪Ωe‖u‖r,Ωi∪Ωe

. hr
(

max{σi, σe}+ Cm
h

∆t

)
‖e‖Ωi∪Ωe‖u‖r,Ωi∪Ωe ,

where in the last three steps the boundedness for ‖·‖a was combined with estimate (5.21)
and the interpolation error (5.16) for the energy norm. Now, dividing by ‖e‖Ωi∪Ωe gives the
desired estimate.

Remark 5.9. Notice that the error estimates are optimal as long as we have h . ∆t. This
means that to have optimal convergence in space the spatial refinement has to be the same
or of a higher order than the temporal refinement.
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Chapter 5 A single-dimensional formulation of the EMI PDEs and its discretization

5.4 A cut finite element formulation

Next, we turn to discretize the EMI model on an unfitted mesh using CutFEM. In this
section, we describe the discretization, derive an a priori error estimate similar to those
for the fitted version above, and give a condition number estimate. Let the two active
background meshes Th,i and Th,e be defined as in the case for the Poisson interface problem
in Section 3.5. Define the finite element spaces

Vh,i = Pck(Th,i), Vh,e = {v ∈ Pck(Th,e) : v|∂Ω = 0},

and the resulting total finite element space Vh = Vh,i × Vh,e. Remember that the boundary
condition on ∂Ω is strongly imposed, and therefore the boundary of Th,e needs to be fitted
to ∂Ω. We show the analysis for triangular elements, but point out that it is also valid for
rectangular elements.

Since we have natural induced interface conditions for the spatial EMI model we can show
optimal convergence order without any stabilization, unlike the Poisson problems in Chapter
3 where a ghost penalty was required. However, to have geometrically robust condition
numbers a ghost penalty is still needed, which will be clear when we later show estimates
for the condition number of our stiffness matrix. Let the ghost penalty used for the CutFEM
EMI formulation be defined by

gh(v, w) = gh,i(vi, wi) + gh,e(ve, we), (5.22)

where

gh,j(vj , wj) =
k∑

m=0

∑
F∈Fg

h,j

γmh
2m+1
F ([∂mn vj ], [∂

m
n wj ])F .

Notice that the scaling of the ghost penalty is different than in Chapter 3, since we now only
need the ghost penalty for stabilizing the condition numbers. The stabilized CutFEM single-
dimensional formulation for the spatial EMI problem is then: find uh = (uh,i, uh,e) ∈ Vh
such that

Ah(uh, v) := a(uh, v) + gh(uh, v) = l(v), (5.23)

for all v = (vi, ve) ∈ Vh.

5.4.1 A priori error analysis of the CutFEM formulation

We will now derive a priori error estimates, following the idea and presentation in [33],
modified to fit our problem. The ghost penalty defined for the CutFEM formulation induces
the following semi-norm,

|v|2gh,j = gh,j(v, v). (5.24)
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5.4 A cut finite element formulation

From the stabilized weak formulation the following discrete norm is induced for v ∈ Vh,

‖v‖2Ah
= ‖v‖2a + |v|2gh ,

where the last term consist of two parts,

|v|2gh = |v|2gh,i + |v|2gh,e .
We now state that the discrete form Ah is coercive and bounded, which is a trivial extension
from the fitted case.

Lemma 5.10. The discrete form Ah is coercive and bounded, that is,

Ah(v, v) = ‖v‖2Ah
∀v ∈ Vh,

Ah(u, v) . ‖u‖Ah
‖v‖Ah

∀u, v ∈ Vh.

We therefore have that the weak formulation satisfies the Lax-Milgram Theorem. Note that
because the bilinear form is discrete, we are now considering discrete functions already at
this point, in contrast to previously where we began with continuous functions.

Next, we state local trace inverse inequalities from [34] that will be needed later.

Lemma 5.11 (Local trace inequalities). For v ∈ H1(Th) it holds that

‖v‖2∂T . h−1
T ‖v‖2T + hT ‖∇v‖2T ∀ T ∈ Th, (5.25)

‖v‖2Γ∩T . h−1
T ‖v‖2T + hT ‖∇v‖2T ∀ T ∈ Th. (5.26)

Lemma 5.12 (Inverse inequalitities). For v ∈ Pk(T ) and F ∈ FT it holds that

‖∇v‖T∩Ω . ‖h−1v‖T , ‖v‖Γ∩Ω . ‖h−1/2v‖T , ‖v‖F∩Ω . ‖h−1/2v‖T . (5.27)

‖∂jnv‖F . hr−j−1/2‖Drv‖T . (5.28)

To define a suitable interpolation operator, we first recall that there exists a bounded
extension operator for Sobolev spaces,

(·)e : Hm(Ωj)→ Hm(Rn),

such that
‖ve‖m,Rn . ‖v‖m,Ωj .

This means that an approximation operator πeh,j : Hm(Th,j)→ Vj can be defined by

πeh,jv := πh,jv
e, (5.29)

where πh,j is some suitable interpolation operator satisfying the following estimates, for
example the Scott-Zhang or the Clément operator [22,53].

37



Chapter 5 A single-dimensional formulation of the EMI PDEs and its discretization

Lemma 5.13. For v = (vi, ve) ∈ Hs(Ωi)×Hs(Ωe) it holds that

‖v − πeh,jv‖r,Th,j . hs−r|v|s,Ωj , (5.30)

‖v − πeh,jv‖r,Γ . hs−r−1/2|v|s,Ωj , (5.31)

‖v − πehv‖r,Fh,j
. hs−r−1/2|v|s,Ω, (5.32)

for 0 6 r 6 s− 1/2.

Proof. We prove (5.32), and note that the others can be proved in the similar manner. Com-
bining the local trace inequality (5.25) with (5.13) gives the estimate for the approximation
operator,

‖v − πeh,jv‖2r,Fh,j
. h−1‖v − πeh,jv‖2r,Th,j + h‖∇(v − πeh,jv)‖2r,Th,j
. h2(s−r−1/2)‖v‖2s,Th,j
. h2(s−r−1/2)‖v‖2s,Ωj

.

As in the previous section we define the total interpolation operator πehu = (πeh,iu, π
e
h,eu).

A similar result to Corollary 5.4 for the global interpolation error can then be derived by
making use of (5.30) and (5.31) where we earlier used (5.13) and (5.15).

Corollary 5.14 (Global interpolation error). Let u ∈ Hs(Ωi) × Hs(Ωe) and assume that
Vh = Pck(Th,i)× Pck(Th,e). With r = min{s, k + 1} the global interpolation error satisfies

‖u− πehu‖a . hr−1

(
max{σi, σe}+ Cm

h

∆t

) 1
2

‖u‖r,Ωi∪Ωe . (5.33)

The Galerkin orthogonality is for the stabilized formulation replaced by a weak Galerkin
orthogonality.

Lemma 5.15 (Weak Galerkin orthogonality). Let u ∈ H2(Ωi)×H2(Ωe) be the solution to
the spatial EMI problem (5.1), and let let uh ∈ Vh be the solution to the CutFEM formulation
(5.23). Then

a(u− uh, v) = gh(uh, v) ∀v ∈ Vh. (5.34)

Proof. Observe that a(u, v) = l(v) ∀v ∈ Vh, and that A(uh, v) = l(v) ∀v ∈ Vh. Now
inserting the first into the latter gives the property.

Along with the weak Galerkin orthogonality we also need to show a bound of the approxi-
mation in the seminorm |·|gh . Arguing as in [33], we only show this for the case of penalty
parameters γ0 = · · · = γk = 1, since all choices of the parameters will lead to discrete norms
that are equivalent.
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5.4 A cut finite element formulation

Lemma 5.16 (Weak consistency for the ghost penalty). For v ∈ Hs(Ωi) × Hs(Ωe) with
r = min{s, k + 1} the seminorm |·|gh satisfies

|πehv|gh . hr‖v‖r,Ωi∪Ωe . (5.35)

Proof. We only show the case for one component, vi ∈ Hs(Ωi). Let r = min{s, k + 1}, and
remember the definition of the seminorm,

|πeh,ivi|2gh,i =
k∑
j=0

h2j+1‖[∂jnπeh,ivi]‖2Fg
h,i
. (5.36)

Note first that from the Sobolev embedding theorem [∂jnv]F = 0 for 0 6 j 6 r− 1. To make
use of this the sum is split into two parts:

k∑
j=0

h2j+1‖[∂jnπeh,ivi]‖2Fg
h,i

=

r−1∑
j=0

h2j+1‖[∂jn(πeh,ivi − vei )]‖2Fg
h,i

+

k∑
j=r

h2j+1‖[∂jnπeh,ivi]‖2Fg
h,i
.

For the first sum we apply (5.32),

r−1∑
j=0

h2j+1‖[∂jn(πeh,ivi − vei )]‖2Fg
h,i

. h2r‖vi‖2r,Ωi
.

For the second sum we employ the inverse estimate (5.28), together with the stability of
πh,i, and the bound of the Sobolev extension operator, yielding

k∑
j=r

h2j+1‖[∂jnπeh,ivi]‖2Fg
h,i

. h2r‖Drπeh,ivi‖2Th,i . h2r‖πeh,ivi‖2r,Th,i . h2r‖vi‖2r,Ωi
.

With these results, we have all ingredients to state the a priori error estimates.

Theorem 5.17 (A priori error estimates). Let u ∈ Hs(Ωi)×Hs(Ωe), s > 2 be the solution to
the spatial EMI problem (5.1), and let let uh ∈ Vh be the solution to the CutFEM formulation
(5.23). With r = min{s, k + 1} the error u− uh satisfies

‖u− uh‖a . hr−1
(
h+
√
α
)
‖u‖r,Ωi∪Ωe , (5.37)

‖u− uh‖Ωi∪Ωe . hr
(
α+ h

√
α+ h2

)
‖u‖r,Ωi∪Ωe . (5.38)

where α = max{σi, σe} + Cmh(∆t)−1, and (5.38) holds assuming the elliptic regularity
conjecture in Remark (5.7) holds.
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Proof. The proofs are mainly the same as for Theorem 5.6 and Theorem 5.8, except that
we now only have the weak Galerkin orthogonality. Let α = max{σi, σe}+ Cmh(∆t)−1.

For (5.37) we divide the error into two parts,

‖u− uh‖a 6 ‖u− πehu‖a + ‖πehu− uh‖a 6 ‖u− πehu‖a + ‖πehu− uh‖Ah
. (5.39)

For the second part we apply the weak Galerkin orthogonality together with estimate (5.33).

‖πehu− uh‖2Ah
. a(πehu− uh, πehu− uh) + gh(πehu− uh, πehu− uh)

= a(πehu− u, πehu− uh) + gh(πehu, π
e
hu− uh)

. ‖πehu− u‖a‖πehu− uh‖a + |πehu|gh |πehu− uh|gh

. hr−1√α‖u‖r,Ωi∪Ωe‖πehu− uh‖Ah
+ hr‖u‖r,Ωi∪Ωe‖πehu− uh‖Ah

.

Dividing by ‖πehu− uh‖Ah
gives

‖πehu− uh‖Ah
. hr−1√α‖u‖r,Ωi∪Ωe + hr‖u‖r,Ωi∪Ωe . (5.40)

Inserting this into (5.39) and applying (5.33) on the first term gives the estimate.

For (5.38) we again use the adjoint problem (5.19). The weak Galerkin orthogonality,
estimate (5.33) and (5.40) yields

‖e‖2Ωi∪Ωe
= a(e, φ)

= a(e, φ− πehφ) + gh(uh, π
e
hφ)

= a(e, φ− πehφ) + gh(uh − πehu, πehφ) + gh(πehu, π
e
hφ)

. ‖φ− πehφ‖a‖u− uh‖a + ‖uh − πehu‖Ah
|πehφ|gh + |πehu|gh |πehφ|gh

. (αhr +
√
α hr+1 + hr+2)‖φ‖2,Ωi∪Ωe‖u‖r,Ωi∪Ωe

. (αhr +
√
α hr+1 + hr+2)‖e‖Ωi∪Ωe‖u‖r,Ωi∪Ωe ,

dividing by ‖e‖Ωi∪Ωe gives the estimate.

5.4.2 Condition number scaling

The last part of the theoretical analysis consists of showing how the ghost penalty gives
robust condition numbers of the stiffness matrix. Let us begin by recalling from Chapter 3
that we define the stiffness matrix corresponding to the weak formulation as

(AV,W )RN = Ah(v, w) ∀v, w ∈ Vh, (5.41)

where V,W are the vectors of coefficients related to v and w. An ill-conditioned stiffness
matrix could give trouble with error propagation when using a direct solver, and increase
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the number of iterations for an iterative solver. As the next step we give two properties of
the ghost penalty which will be needed later. First, with the ghost penalty the L2-norm
can be extended from the physical domain to the entire mesh Th, which was proven in [33].

Lemma 5.18 (L2-norm extension property). For all v ∈ Vh we have that,

‖v‖Th,i∪Th,e . ‖v‖Ωi∪Ωe + |v|gh . (5.42)

The second property is that the ghost penalty satisfies an inverse inequality.

Lemma 5.19 (Inverse inequality for the ghost penalty). For v ∈ Vh we have that

|v|gh . ‖v‖Th,i∪Th,e . (5.43)

Proof. Follows from applying (5.28), here shown for one component vi,

|vi|2gh,i =

k∑
j=0

h2j+1‖[∂jnvi]‖2Fg
h,i

. ‖vi‖2Th,i .

Now we state a lemma which we will use to pass between the continuous L2-norm and the
discrete l2-norm of the corresponding coefficient vectors. A proof can be found in [50].

Lemma 5.20. For v ∈ Vh it holds that

hd/2‖V ‖RN . ‖v‖L2(Th,i∪Th,e) . hd/2‖V ‖RN . (5.44)

Along with Lemma 5.20, we need two other main ingredients to estimate the condition
number an inverse estimate for ‖·‖Ah

and after that a discrete Poincare inequality.

Proposition 5.21 (Inverse estimate for ‖·‖Ah
). For v ∈ Vh it holds that

‖v‖Ah
. h−1

(
max{σi, σe}+ Cm

h

∆t
+ h2

) 1
2 ‖v‖Th,i∪Th,e . (5.45)

Proof. Combining the inverse inequalities (5.27) and the inverse inequality for the ghost
penalty yields

‖v‖2Ah
= σe‖∇ve‖2L2(Ωe) + σi‖∇vi‖2L2(Ωi)

+
Cm
∆t
‖ve − vi‖2Γ + |v|2gh (5.46)

.
(
h−2 max{σi, σe}+ h−1Cm

∆t
+ 1
)
‖v‖2Th,i∪Th,e . (5.47)
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Proposition 5.22 (Discrete Poincare inequality). For v ∈ Vh it holds that

‖v‖Th,i∪Th,e . max{σ−1
i , σ−1

e ,∆t(Cm)−1, 1}‖v‖a. (5.48)

Proof. Since Lemma 5.18 gives that ‖v‖Th,i∪Th,e . ‖v‖Ωi∪Ωe + |v|gh , the main problem is
showing a bound for ‖v‖Ωi∪Ωe . Let us first define

‖v‖2a,1 := ‖∇ve‖2L2(Ωe) + ‖∇vi‖2L2(Ωi)
+ ‖ve − vi‖2Γ, (5.49)

which is the same as the ‖·‖a norm with all constants set to 1. We now want to prove that

‖v‖Ωi∪Ωe 6 C‖v‖a,1, (5.50)

where C only depends on the space dimension and Ωi∪Ωe. This will be done following how
Poincaré’s inequality is proven in [25], arguing by contradiction. If the estimate was false
there would for each integer k = 1, . . . exist a function uk ∈ H1(Ω) such that,

‖uk‖Ωi∪Ωe > k‖uk‖a,1. (5.51)

These functions can be normalized, such that

vk =
uk

‖uk‖Ωi∪Ωe

,

which gives ‖vk‖Ωi∪Ωe = 1. Further, thanks to (5.51) the following inequality must also
hold,

‖vk‖a,1 6
1

k
. (5.52)

From the Rellich-Kondrachov compactness Theorem [25] there must exists a subsequence
{vkj}∞j=0 and a function v ∈ L2(Ωi ∪ Ωe) such that

vkj → v in L2(Ωi ∪ Ωe).

Clearly (5.52) now gives that ‖v‖a,1 = 0. As argued earlier when we in Section 5.2 showed
that ‖·‖a is a norm, this must imply that v = 0. This is a contradiction, since by construction
‖v‖Ωi∪Ωe = 1. Therefore

‖v‖Ωi∪Ωe . ‖v‖a,1 . max{σ−1
i , σ−1

e ,∆t(Cm)−1}‖v‖a.

We now give an estimate for the condition number of the stiffness matrix defined by the
relation to the discrete form, as described in Section 3.1.

Theorem 5.23 (Condition number estimate). The condition number of the stiffness matrix
satisfies

κ(A) . h−2β2(α+ h2), (5.53)

where α = max{σi, σe}+ Cm
h

∆t , and β = max{σ−1
i , σ−1

e ,∆t(Cm)−1, 1}.
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Proof. Let α = max{σi, σe}+Cm h
∆t , and β = max{σ−1

i , σ−1
e ,∆t(Cm)−1, 1}. Now combining

this with the inverse estimate (5.45) yields,

‖w‖Ah
. h−1

√
α+ h2‖w‖Th,i∪Th,e . h(d−2)/2(

√
α+ h2)‖W‖RN .

This gives the following estimate,

‖AV ‖RN = sup
W∈RN\{0}

(AV,W)RN

‖W‖RN

= sup
w∈Vh\{0}

Ah(v, w)

‖w‖Ah

‖w‖Ah

‖W‖RN

.
‖v‖Ah

‖w‖Ah

‖w‖Ah

h(d−2)/2
√
α+ h2

= h(d−2)/2
√
α+ h2‖v‖Ah

. hd−2(α+ h2)‖V ‖RN .

So then by the definition of the operator norm ‖A‖RN . hd−2(α+h2). Next, combine (5.44)
with the discrete Poincare inequality (5.48),

‖V ‖2RN . h−d‖v‖2Th
. h−dβ2Ah(v, v)

= h−dβ2(V,AV )RN

. h−dβ2‖V ‖RN ‖AV ‖RN ,

which gives that ‖V ‖RN . h−dβ2‖AV ‖RN . We set V = A−1W to end up with ‖A−1‖RN .
h−dβ2. Combining the estimates for ‖A‖RN and ‖A−1‖RN give the final estimate.
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Chapter 6

A multi-dimensional formulation of the EMI
PDEs and its discretization

The previous chapter introduced a weak formulation for the EMI PDEs with only the electric
potentials as unknown fields. By letting the current across the membrane also be an explicit
unknown, a multi-dimensional weak formulation of the EMI PDEs can be derived. Along
with the possible advantage that the current is computed directly, this formulation is also
more flexible for connecting several cells.

In this chapter, a derivation of the multi-dimensional primal formulation of the EMI PDEs
will be given. Before establishing that a continuous inf-sup condition is satisfied, we first
review some theory on saddle point problems and penalized saddle point problems. Next,
we propose a new discretization based on unfitted meshes and prove that it satisfies an
inf-sup condition in a suitable norm. Finally, we derive an a priori error estimate.

6.1 Weak formulation

We now review how the EMI PDEs (5.1) can be formulated in the same form as an extended
saddle point problem, a formulation also known as the multi-dimensional primal formulation
for the EMI PDEs [42]. First, define the function spaces,

Vi := H1(Ωi)/R, Ve = H1
0 (Ωe), V = Vi × Ve.

where

H1(Ωi)/R =
{
vi ∈ H1(Ωi) :

∫
Ωi

vi ds = 0
}
.

The reason for defining Vi differently than in the last chapter is related to how the multi-
dimensional formulation will be different than the single-dimensional formulation. Next,
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multiply (5.1a) and (5.1b) with test functions from Ve and Vi and use integration by parts
to obtain ∫

Ωe

σe∇ue · ∇ve dx−
∫

Γ
veIm ds = 0,∫

Ωi

σi∇ui · ∇vi dx+

∫
Γ
viIm ds = 0.

In contrast to the single-dimensional formulation, Im is now left as a separate unknown
field. Define the additional function spaces

Q = H−
1
2 (Γ) Qc = H−

1
2 (Γ) ∩

√
∆t

Cm
L2(Γ),

and let Im ∈ Qc. Here Qc is a coupled space dependent on ∆t
Cm

, for more information see [10].
Multiply (5.1d) by jm ∈ Qc to obtain the last equation,∫

Γ
(ui − ue)jm ds− ∆t

Cm

∫
Γ
Imjm ds =

∫
Γ
fjm ds.

The multi-dimensional primal formulation is then: find ui ∈ Vi, ue ∈ Ve, Im ∈ Qc such that∫
Ωe

σe∇ue · ∇ve dx−
∫

Γ
veIm ds = 0, (6.1a)∫

Ωi

σi∇ui · ∇vi dx+

∫
Γ
viIm ds = 0, (6.1b)∫

Γ
(ui − ue)jm ds− ∆t

Cm

∫
Γ
Imjm ds =

∫
Γ
fjm ds, (6.1c)

for all vi ∈ Vi, ve ∈ Ve and jm ∈ Qc.

Remark 6.1. Based on standard conventions, a natural name for this formulation would
be the mixed-dimensional primal formulation. However, in [42] the term mixed is used
for two other formulations of the EMI PDEs, which use the current densities as explicit
unknowns. To avoid confusion, we will refer to formulation (6.1) as the multi-dimensional
primal formulation.

Formulation (6.1) can be interpreted as a so-called penalized saddle point formulation. In
the next section, we give a short review of some theory for saddle point problems before we
continue with analyzing the multi-dimensional EMI formulation.

6.2 Saddle point problems

The following presentation of saddle point problems is compiled from [13]. Let V and Q
be Hilbert spaces and assume that we have symmetric bilinear forms a : V × V → R and
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b : V × Q → R and linear forms f1 : V → R and f2 : Q → R. Consider the following
minimization problem: find the minimum over V of

J(u) =
1

2
a(u, u)− f1(u), (6.2a)

such that

b(u, µ) = f2(µ) ∀µ ∈ Q. (6.2b)

The associated Lagrange function is given by

L(u, λ) := J(u) + b(u, λ)− f2(λ)

and the resulting saddle point formulation of (6.2) reads,

inf
v∈V

sup
µ∈Q
L(v, µ). (6.3)

A solution (u, λ) to the problem (6.3) must satisfy the saddle point property,

L(u, µ) 6 L(u, λ) 6 L(v, λ) ∀(v, µ) ∈ V ×Q. (6.4)

Further, the optimality conditions leads to the following saddle point problem: find (u, λ) ∈
V ×Q such that

a(u, v) + b(v, λ) = f1(v) ∀v ∈ V, (6.5a)

b(u, µ) = f2(µ) ∀µ ∈ Q. (6.5b)

Any solutions of the saddle point problem will satisfy the saddle point property (6.4). For
the saddle point problem to be well-posed we have the following requirements.

Theorem 6.2 (Brezzi’s splitting theorem [13]). Let V and Q be Hilbert spaces with norms
‖·‖V and ‖·‖Q, and assume we have two continuous bilinear forms a : V ×V → R symmetric,
b : V × Q → R, and two continuous linear forms f1 : V → R and f2 : Q → R. Then the
saddle point problem (6.5) has a unique solution (u, λ) if the following is satisfied

(i) The bilinear form a(·, ·) is coercive on the kernel of b, i.e. there exists α > 0 such that

a(v, v) > α‖v‖2V ∀v ∈ K,

where K := {v ∈ V : b(v, µ) = 0 ∀µ ∈ Q}.

(ii) The bilinear form b(·, ·) satisfies an inf-sup condition, i.e there exists β > 0 such that

sup
v∈V

b(v, µ)

‖v‖V
> β‖µ‖Q ∀µ ∈ Q.
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Furthermore, the following a priori estimates holds,

‖u‖V 6 c1‖f1‖V ′ + c2‖f2‖Q′
‖λ‖M 6 c3‖f1‖V ′ + c4‖f2‖Q′

for some constants c1, c2, c3, c4 > 0.

Condition (ii) is also known as the Ladyzhenskaya-Babuška-Brezzi condition (LBB condi-
tion) or the Brezzi condition.

6.2.1 Penalized saddle point problems

Suppose now that there is an additional symmetric positive bilinear form c : Qc ×Qc → R,
where Qc is a dense subset of Q. A penalized saddle point problem can then be written as:
find (u, λ) ∈ V ×Qc such that

a(u, v) + b(v, λ) = f1(v) ∀v ∈ V, (6.6a)

b(u, µ)− t2c(λ, µ) = f2(µ) ∀µ ∈Mc, (6.6b)

where t is a small real-valued parameter. This problem is also known as a saddle point
problem with a singular perturbation. The bilinear form c introduces a semi-norm on Qc,

|µ|2c := c(µ, µ).

Qc will be assumed to be a complete space space endowed with the norm ‖·‖Q + t|µ|c. The
total bilinear form can be written as

A(u, λ; v, µ) = a(u, v) + b(v, λ) + b(u, µ)− t2c(λ, µ),

and induces the norm

|||(v, µ)||| := ‖v‖V + ‖µ‖Q + t|µ|c.
By requiring that a is coercive on the whole space V , the extended saddle point problem
can be shown to satisfy an inf-sup condition.

Theorem 6.3 (Penalized saddle point problem [12,13]). Suppose the requirements of The-
orem 6.2 are satisfied, and that a is elliptic on X. Then the extended saddle point problem
(6.6) satisfies the inf-sup condition

inf
(u,µ)∈X×Qc

sup
(v,µ)∈X×Qc

A(u, µ; v, µ)

|||(u, µ)||| · |||(v, µ)||| > γ > 0,

for all 0 6 t 6 1, where γ is independent of t.

Consider the linear mapping LA : V × Qc → V ′ × Q′c defined by (6.6). If Theorem 6.3 is
satisfied this means that LA is injective, and that L−1

A : range(LA) → V × Qc is bounded.
For the problem to be well-posed, the mapping also need to be surjective.
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6.3 Stability of the weak formulation

To derive an inf-sup condition for the multidimensional EMI formulation, we now apply the
theory we have presented for penalized saddle point problems. We first write formulation
(6.7) as a penalized saddle point problem, where we also change the notation for the EMI
problem into more standard notation: find (u, λ) ∈ V ×Qc such that

a(u, v) + b(v, λ) = 0 (6.7a)

b(u, µ)− ∆t

Cm
c(λ, µ) = f(µ). (6.7b)

holds ∀(v, µ) ∈ V × Qc. The bilinear forms a, b and c, and linear form f are defined as
follows,

a(u, v) = σe(∇ue,∇ve)Ωe + σi(∇ui,∇vi)Ωi ,

b(v, λ) = (vi − ve, λ)Γ,

c(λ, µ) = (λ, µ)Γ,

f(λ) = (f, λ)Γ.

In addition, the associated total bilinear form is defined,

A(u, λ; v, µ) := a(u, v) + b(u, µ) + b(v, λ)− ∆t

Cm
c(λ, µ).

We now utilize the theory from the previous section to show that formulation (6.7) is stable
and injective. First we define the following norms,

‖u‖2V = σe‖∇ue‖2Ωe
+ σi‖∇ui‖2Ωi

,

‖µ‖−1/2,Γ := sup
v∈H1/2(Γ)

(v, µ)Γ

‖v‖1/2,Γ
,

‖µ‖2Q := ‖µ‖2−1/2,Γ

‖µ‖2Qc
:= ‖µ‖2−1/2,Γ +

∆t

Cm
‖µ‖2Γ,

|||(v, µ)|||2 := ‖v‖2V + ‖µ‖2Qc
.

Theorem 6.4. Suppose that ∆t 6 Cm. Then the saddle point formulation of the EMI
problem (6.7) is stable, i.e.

inf
(u,µ)∈V×Qc

sup
(v,µ)∈V×Qc

A(u, λ; v, µ)

|||(u, µ)||| · |||(v, µ)||| > γ,

with γ > 0 is independent of ∆t and Cm.
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Proof. We need to prove that the requirements in Theorem 6.3 are satisfied. Continuity
and coercivity for the bilinear form a follows immediately from the definition of the bilinear
form and the space V ,

a(u, v) = σe(∇ue,∇ve)Ωe + σi(∇ui,∇vi)Ωi . ‖u‖V ‖v‖V ,
a(v, v) = σe(∇ve,∇ve)Ωe + σi(∇vi,∇vi)Ωi = ‖v‖2V .

Employing the Cauchy–Schwarz inequality we can show continuity for b,

b(v, µ) = (vi − ve, µ)Γ

6 ‖vi‖1/2,Γ‖µ‖−1/2,Γ + ‖ve‖1/2,Γ‖µ‖−1/2,Γ

6 ‖v‖V ‖µ‖Q.
Last part is to show that the inf-sup condition for the bilinear form b is satisfied. This
term is the same as for e.g. the mortar finite element formulation for the interface Poisson
problem presented in [43]. With modification we follow the proof in [43]. Note first that
for a function v ∈ H1/2(Γ) there exists an extension operator E∗ : H1/2(Γ)→ H1(Ωi) such
that E∗v = v on Γ and ‖E∗v‖1,Ωi . ‖v‖1/2,Γ [6]. To construct a function in Vi, take first a

function v† ∈ H1
0 and define

ṽ =
−
∫

Ωi
E∗v dx∫

Ωi
v† dx

v†.

From Cauchy-Schwarz, the following estimate for ṽ follows,

‖ṽ‖1,Ωi =
|
∫

Ωi
E∗v dx|

|
∫

Ωi
∇v† dx|‖v

†‖1,Ωi

.
‖v†‖1,Ωi

|
∫

Ωi
v† dx| |diamΩi|

1
2 ‖E∗v‖Ωi

.
‖v†‖1,Ωi

|
∫

Ωi
v† dx| |diamΩi|

1
2 ‖v‖1/2,Γ.

Now, E∗v+ ṽ is in Vi, and by defining E∗0v to be E∗v+ ṽ extended by zero on Ωe, we have
the following estimate,

‖E∗0v‖1,Ωe∪Ωi . ‖v‖1/2,Γ. (6.8)

The inf-sup condition can now be shown from the definition of the Q-norm and (6.8),

‖µ‖−1/2,Γ = sup
v∈H1/2(Γ)

(v, µ)Γ

‖v‖1/2,Γ

= sup
v∈H1/2(Γ)

b(E∗0v, µ)

‖v‖1/2,Γ

6 sup
v∈V

b(v, µ)

‖v‖1,Ωe∪Ωi

. sup
v∈V

b(v, µ)

‖v‖V
,
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where (6.8) was utilized in the third line.

6.4 A cut finite element formulation

Formulation (6.7) is now discretized on an unfitted mesh. Define as in Section 3.5 two
active background meshes Th,i and Th,e. In contrast to the single-dimensional formulation
we now also have an unknown Im defined on Γ. In order to discretize Im we define the mesh
consisting of the elements that are cut by Γ,

Th,Γ = {T ∈ Th,i ∪ Th,e|T ∩ Γ 6= ∅},

which is the same as we did to discretize the ODE system in Section 4.5. Define the
corresponding set of the interior faces by

Fh,Γ = {F = T+ ∩ T−|T+, T− ∈ Th,Γ}.

Figure 7 illustrates the different domains.

As finite element spaces we employ first-order continuous piecewise linear elements for the
potentials and constant linear elements for the current,

Vh,i = Pc1(Th,i), Vh,e = {v ∈ Pc1(Th,e) : v|∂Ω = 0}, Qh = P0(Th,Γ),

and let Vh = Vh,i×Vh,e. Notice here that the finite element space for the current is defined on
the whole Th,Γ. Also, we do not have the same average zero requirement for the intracellular
space as we had for the continuous version. The coercivity problem will instead be taken care
of by the definition of the norm which will be given later. The unfitted multi-dimensional

Th,i

Th,e
Th,Γ

���

Figure 7: Illustration of the computational domains for the multi-dimensional discretiza-
tion with the (left) intracellular, (middle) extracellular and (right) interface computational
domains.
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Chapter 6 A multi-dimensional formulation of the EMI PDEs and its discretization

finite element formulation of the EMI PDEs is then: find (uh, λh) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, λh) = 0, ∀vh ∈ Vh, (6.9a)

b(uh, µh)− ∆t

Cm
c(λh, µh) = g(µh), ∀µ ∈ Qh, (6.9b)

with total bilinear form

A(uh, λh; vh, µh) = a(uh, vh) + b(vh, λh) + b(uh, µh)− ∆t

Cm
c(λh, µh).

We now add two stabilization terms, the first is the same ghost penalty as in Chapter 5,
gh(·, ·) defined in (5.22), and the second is a stabilization term for the multipliers defined
by

sh(λh, µh) = φ
∑

F∈Fh,Γ

([λh], [µh])F ,

where

φ = max

{
∆t

Cm
, h

}
,

and the corresponding semi-norm is defined by

|µh|2sh = sh(µh, µh).

The CutFEM multi-dimensional CutFEM formulation is defined by: find (uh, λh) ∈ Vh×Qh
such that

Ah(uh, λh, vh, µh) := A(uh, λh, vh, µh) + gh(uh, vh)− sh(λh, µh) = f(µh), (6.10)

for all (vh, µh) ∈ Vh × Qh. For (6.10), the ghost penalty term gh is as in the single-
dimensional case, only needed to stabilized the associated condition number. The role of
the stabilization term for the multipliers sh, depends on the relationship between ∆t and
h. In the case ∆t

Cm
6 h, sh is needed in order to have an inf-sup stable discrete formulation,

which we will show later. In the case ∆t
Cm

> h, sh is only needed to stabilize the condition
numbers.

For the further analysis, we define the discrete norms,

|||(vh, µh)|||2φ = σe‖∇vh,e‖2Ωe
+ σi‖∇vh,i‖2Ωi

+ φ−1‖vh,i − vh,e‖2Γ + φ‖µh‖2Γ,
|||(vh, µh)|||2Ah

= |||(vh, µh)|||2φ + |vh|2gh + |µh|2sh .

An application of Cauchy-Schwarz immediately shows that the total bilinear form is bounded.
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6.4 A cut finite element formulation

Lemma 6.5 (Boundedness in discrete norm). For u, v ∈ V and µ, λ ∈ Q it holds that

A(u, λ; v, µ) . |||(u, λ)|||φ|||(v, µ)|||φ.

In the rest of this section, we will show that the discrete formulation satisfies a discrete inf-
sup condition, and derive an a priori error estimate. We will follow the presentation in [19],
which analyses an unfitted stabilized formulation of the Poisson boundary value problem
with Lagrange multipliers. Before analyzing the discrete formulation, we first define a
patchwise projection which will play an important role in proving the inf-sup condition.

6.4.1 Creation of a patchwise projection

This presentation of how we define the patches and patchwise projection is based on [19]
and [17]. Define

WΓ,j = {T ∈ Th,j : T ∩ Th,Γ 6= ∅},

for j = i, e. WΓ,j then consists of all elements that are cut by Γ and all elements sharing a
face or a vertex with the elements that are cut. The elements of each WΓ,j are now divided

into n patches {Pjk}nk=1. Let each patch contain basis functions such that a patch function

0 6 φjk 6 1 is zero on the interior patch boundary ∂Pjk \ ∂WΓ,j , and take the value 1 on at

least one face cut by Γ, can be constructed. Each Pjk with hp : diam(Pjk) can be constructed
such that

• ∃c1, c2 > 0 such that c1h 6 hP 6 c2h.
• ∃c1, c2 > 0 such that c1h 6

∫
Γ∩Pj

k
φjk ds 6 c2h.

• ∃c1, c2 > 0 such that c1h
−1 6 ∇φk ds 6 c2h

−1.

Define on the patches a space of piecewise constant function on Γ,

Xj
h = {λh : λh |Pj

k
∈ P0(Pjk)}.

The patchwise projection πjPuh ∈ X
j
h is then constructed by

πjPuh,j |Pj
k
=

1

|Γ ∩ P jk |

∫
Γ∩P j

k

uh,j ds.

The following trace inequality for the projection is proven in [17].

Lemma 6.6. For uk ∈ H1(Pjk), the following holds

‖uk − πjPuk‖Γ∩Pj
k
. h

1
2 ‖∇uk‖Pj

k
.
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Chapter 6 A multi-dimensional formulation of the EMI PDEs and its discretization

We can now show the following results for the projection.

Lemma 6.7. For uh ∈ Vh it holds that

‖uh,i − uh,e‖2Γ 6 ‖πiPuh,i − πePuh,e‖2Γ + Ch(‖∇uh,e‖2Ωe
+ ‖∇uh,i‖2Ωi

), (6.11)

‖πiPuh,i − πePuh,e‖2Γ . h(‖∇uh,e‖2Ωe
+ ‖∇uh,i‖2Ωi

) + ‖uh,i − uh,e‖2Γ. (6.12)

Proof. Combining the triangle inequality and Lemma 6.6 yields,

‖uh,i − uh,e‖2Γ 6
n∑
k=1

(
‖uh,i − πjPuh,i‖2Γ∩Pi

k
+ ‖uh,e − πjPuh,e‖2Γ∩Pe

k

)
+ ‖πiPuh,i − πePuh,e‖2Γ

6 C
n∑
k=1

(
h‖∇uh,i‖Pi

k
+ h‖∇uh,e‖Pe

k

)
+ ‖πiPuh,i − πePuh,e‖2Γ.

Inequality (6.11) then follows since there are only a bounded number of macro patches Pjk.
In a similar manner (6.12) can be proven.

From the construction of the patches the following approximation results from [19] holds.

Lemma 6.8 ( [19], p.2682). For λh ∈ Qh it holds that

inf
ch∈Xj

h

h‖(λh − ch)‖2
Γ∩Pj

k

. sh(λh, λh).

Lemma 6.9 ( [19], p.2683). For uh ∈ Vh it holds that

‖πiPuh,i − πePuh,e‖2sh . φ‖πiPuh,i − πePuh,e‖2Γ.

6.4.2 The discrete inf-sup condition

With the projection defined, we are ready to show that the formulation satisfies a discrete
inf-sup condition, one of the main results of Chapter 6.

Theorem 6.10 (Discrete inf-sup condition). For all (uh, λh) ∈ Vh ×Qh there holds

|||(uh, λh)|||Ah
. sup

(vh,µh)∈Vh×Qh

Ah(uh, λh; vh, µh)

|||(vh, µh)|||Ah

.
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6.4 A cut finite element formulation

Proof. In order to prove the Theorem, we need to construct a test function (z, η) such that

Ah(uh, λh; z, η) & |||(uh, λh)|||Ah
|||(z, η)|||Ah

.

The first step is to test with the following

A(uh, λh;uh,−λh) = σe‖∇uh,e‖2Ωe
+ σi‖∇uh,i‖2Ωi

+
∆t

Cm
‖λh‖2Γ. (6.13)

Next, we need construct the part which controls uh,i−uh,e. Inserting µ̄ = 1
φ(πiPuh,i−πePuh,e)

as a test function in the stabilized bilinear form gives three terms,

Ah(uh, λh; 0, µ̄) = (uh,i − uh,e, µ̄)Γ −
∆t

Cm
(λh, µ̄)Γ − sh(λ, µ̄). (6.14)

Since πjP is a projection the first term can be written as

(uh,i − uh,e, µ̄)Γ =
1

φ
‖πiPuh,i − πePuh,e‖2Γ. (6.15)

For the second term, we employ Cauchy-Schwarz and Young’s Inequality,

∆t

Cm
(λh, µ̄)Γ 6 ‖λh‖Γ‖πiPuh,i − πePuh,e‖Γ 6 2φ‖λh‖2Γ −

1

2φ
‖πiPuh,i − πePuh,e‖2Γ. (6.16)

By applying an ε-scaled Young’s Inequality and Lemma 6.9 the third term can be bounded.

sh(λ, µ̄) 6 sh(λh, λh)1/2sh(µ̄, µ̄)1/2 6
1

ε
sh(λh, λh) +

ε

4
sh(µ̄, µ̄) (6.17)

6
1

ε
sh(λh, λh) +

c1ε

4φ
‖πiPuh,i − πePuh,e‖2Γ. (6.18)

Now, inserting (6.15), (6.16) and (6.18) into (6.14) and applying Lemma 6.7 gives

Ah(uh, λh; 0, µ̄) = (uh,i − uh,e, µ̄)Γ −
∆t

Cm
(λh, µ̄)Γ − sh(λ, µ̄)

>
1

φ

(
1

2
− c1ε

4

)
‖πiPuh,i − πePuh,e‖2Γ − 2φ‖λh‖2Γ −

1

ε
sh(λ, λ)

>
1

φ

(
1

2
− c1ε

4

)(
‖uh,i − uh,e‖2Γ − c2h‖∇uh,e‖2Ωe

− c2h‖∇uh,i‖2Ωi

)
− 2φ‖λh‖2Γ −

1

ε
sh(λ, λ)

>

(
1

2
− c1ε

4

)(
1

φ
‖uh,i − uh,e‖2Γ − c2‖∇uh,e‖2Ωe

− c2‖∇uh,i‖2Ωi

)
− 2φ‖λh‖2Γ −

1

ε
sh(λ, λ).

For the case ∆t
Cm

> h, we have now performed the two steps needed to construct the test

function. However for the case ∆t
Cm

6 h a third step is needed. We therefore look at the two
cases separately from here.
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Chapter 6 A multi-dimensional formulation of the EMI PDEs and its discretization

Case ∆t
Cm

> h. Let (z, η) = (uh,−λh + δµ̄). By a suitable choice of δ > 0, which depends
on σe and σi, it follows that

Ah(uh, λh; z, η) = A(uh, λh;uh, λh) + gh(uh, uh) + sh(λh, λh) + δAh(uh, λh; 0, µ̄)

& |||(uh, λh)|||2Ah
.

The remaining part is show that

|||(uh, λh)|||Ah
& |||(z, η)|||Ah

,

which follows from the definition of the |||(·, ·)|||Ah
-norm, and a combination of the triangle

inequality, Lemma 6.7 and (6.18).

|||(z, η)|||2Ah
. |||(uh, λh)|||2Ah

+
∆t

Cm
‖−λh + δµ̄‖2Γ + |−λh + δµ̄|2sh

. |||(uh, λh)|||2Ah
+

∆t

Cm
‖λh‖2Γ + δ

(
Cm
2∆t
‖πiPuh,i − πePuh,e‖2Γ + 2|λh|2sh

)
. |||(uh, λh)|||2Ah

+
δhCm
2∆t

(‖∇uh,e‖2Ωe
+ ‖∇uh,i‖2Ωi

) +
Cm
2∆t
‖uh,i − uh,e‖2Γ

. |||(uh, λh)|||2Ah
.

Case ∆t
Cm

6 h. Unlike from the first case, (6.13) is now not enough to control the norm for
λh. We therefore need a third part to construct the test function. This will follow [17], and
is based on the patches P ik. Define first ξih ∈ Vh,i such that

• ξih |Ω\WΓ,i
= 0

•
∫

Γ∩Pi
k
ξih ds =

∫
Γ∩Pi

k
hPλh ds

• ξih |Tc= 0 where Tc denotes an element containing only a corner of WΓ,i.

Now, define ξh = (ξih, 0). From construction ξi is zero on the boundary of WΓ,i, leading to

‖∇ξh‖2WΓ,i
.

1

h
‖ξh‖2Γ . h‖λh‖2Γ. (6.19)

With ξh as a test function we have the following for the bilinear form b by using Cauchy-
Schwarz, an ε-scaled Young’s inequality, inequality (6.19) and Lemma 6.8,

b(ξh, λh) = (ξih, λh)Γ

= (ξih, λh − πiPλh) + (ξih, π
i
Pλh)

> −‖ξih‖Γ‖λh − πiPλh‖Γ + c1h‖πiPλh‖2Γ
> − ε

4h
‖ξih‖2Γ −

h

ε
‖λh − πiPλh‖2Γ + c1h‖λh‖2Γ

> h(c1 −
c2ε

4
)‖λh‖2Γ −

c3

ε
sh(λh, λh).
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6.4 A cut finite element formulation

For the bilinear form a, Cauchy-Schwarz, an ε-scaled Young’s inequality, and (6.19) gives

a(uh, ξh) > −σi‖∇uh,i‖Ωi‖∇ξh‖Ωi .

> −σi
ε
‖∇uh,i‖2Ωi

− ε

4
‖∇ξh‖2W i

Γ
.

> −σi
ε
‖∇uh,i‖2Ωi

− c4ε

4
h‖λh‖2Γ.

Now, let (z2, η2) = (uh + δ1ξh,−λh + δ2µ̄). For a suitable choice of δ1 and δ2 we have that

Ah(uh, λh; z2, η2) & |||(uh, λh)|||2Ah
.

Finally, the last part is to show that

|||(uh, λh)|||Ah
& |||(z2, η2)|||Ah

.

which is established with the |||(·, ·)|||Ah
-norm combined with the following estimate for the

ghost penalty, shown with the use of inequality (6.19),

|ξh|gh = γmh
3‖[∂nξh]‖2Fh,i

. h2‖∇ξh‖2Wh,Γ
. h3‖λ‖2Γ,

the triangle inequality, Lemma 6.7, and inequality (6.19),

|||(z2, η2)|||2Ah
6 |||(uh, λh)|||2Ah

+ δ1σi‖∇ξih‖2W i
Γ

+
δ1

h
‖ξih‖2Γ + δ1|ξh|2gh + hδ2‖µ̄‖2Γ + δ2|µ̄|2sh

. |||(uh, λh)|||2Ah
+ hδ1(σi + C)‖λh‖2Γ +

δ2

2h
‖πiPuh,i − πePuh,e‖2Γ

. |||(uh, λh)|||2Ah
+ δ2(‖∇uh,e‖2Ωe

+ ‖∇uh,i‖2Ωi
) +

δ2

h
‖uh,i − uh,e‖2Γ

. |||(uh, λh)|||2Ah
.

6.4.3 A priori error estimate

With the inf-sup condition in place, we want to show that we an a priori error estimate.
First, we state that the weak formulation satisfies a weak Galerkin orthogonality.

Lemma 6.11 (Weak Galerkin orthogonality). Let u ∈ Hs(Ωi) × Hs(Ωe), s > 2 be the
solution to the spatial EMI problem (5.1), set λ = σe∇ue · ne, and let (uh, λh) ∈ Vh × Qh
be the solution to the multi-dimensional finite element formulation (6.9). Then

A(u− uh, λ− λh; vh, µh) = gh(uh, vh)− sh(λh, µh) ∀(vh, µh) ∈ Vh ×Qh.

Next, we can show that the discrete solution satisfy a quasi-best approximation property.
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Chapter 6 A multi-dimensional formulation of the EMI PDEs and its discretization

Theorem 6.12. Let u ∈ Hs(Ωi)×Hs(Ωe), s > 2 be the solution to the spatial EMI problem
(5.1), λ = σe∇ue · ne, and let (uh, λh) ∈ Vh ×Qh be the solution to the multi-dimensional
finite element formulation (6.9). Then the error (u− uh, λ− λh) satisfies

|||(u− uh, λ− λh)|||Ah
. sup

(vh,µh)∈Vh×Qh

(
|||(u− vh, λ− µh)|||φ + gh(vh, vh)

1
2 + sh(µh, µh)

1
2

)
.

Proof. First, divide the error into the interpolation error and the discrete error by employing
the triangle inequality,

|||(u− uh, λ− λh)|||Ah
6 |||(u− vh, λ− µh)|||Ah

+ |||(uh − vh, λh − µh)|||Ah
. (6.20)

The discrete error can then be bounded by applying the inf-sup condition 6.10 and the weak
Galerkin orthogonality 6.11,

|||(vh − uh, λh − µh)|||Ah

. sup
(ρh,νh)∈Vh×Qh

Ah(vh − uh, λh − µh; ρh, νh)

|||(ρh, νh)|||Ah

= sup
(ρh,νh)∈Vh×Qh

A(vh − u, λh − µh; ρh, µh) + gh(vh, ρh)− sh(µh, νh)

|||(ρh, νh)|||Ah

.

The result now follows from the boundedness of bilinear form 6.5.

In order to show an a priori estimate in the energy norm, we follow [19] and first consider
a related problem to prove a bound for an approximation operator operating on λ. First,
immerse the mesh Th,i in a larger subdomain ΩT , such that dist(∂ΩT ,Γ) = O(1). Then

consider the problem, find w ∈ H1
0 (ΩT ), µ ∈ H− 1

2 (Γ) such that

(∇w,∇v)ΩT
+ (µ, v)Γ = 0, (6.21a)

(w, λ)Γ = (λ, y)Γ, (6.21b)

for all v ∈ H1
0 (ΩT ), y ∈ H− 1

2 (Γ), where λ ∈ H 1
2 (Γ). Thanks to Theorem 6.2 this problem

is well-posed, and the solution satisfies the a priori bound

‖∇w‖ΩT
+ ‖µ‖− 1

2
,Γ . ‖λ‖ 1

2
,Γ. (6.22)

Next, we define a local projection πL : L2(Th,Γ)→ P0(Th,Γ) on piecewise constants satisfying∫
T
πLw |T dx =

∫
T
w dx,

for all T ∈ Th,Γ. Then we can prove the following approximation properties.

Lemma 6.13. Assume w solves (6.21). Then we have that

‖λ− πLw‖Γ . h
1
2 ‖λ‖ 1

2
,Γ, (6.23)

sh(πLw, πLw)
1
2 . h

1
2φ

1
2 ‖λ‖ 1

2
,Γ. (6.24)
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6.4 A cut finite element formulation

Proof. For (6.23), we begin by noting that thanks to (6.21b), w = λ on Γ, and utilize the
local trace inequality (5.26) to obtain

‖λ− πLw‖2Γ = ‖w − πLw‖2Γ
.
∑
T∈TΓ

h

h−1‖w − πLw‖2T + h‖∇w‖2T

. h‖∇w‖2Th,Γ ,

where the last line follows from ‖w − πLw‖T . h‖∇w‖T , see [19]. Inequality (6.23) then
follows directly from (6.22). To prove (6.24), notice that since w ∈ H1(Ωi), sh(w,w) = 0.
We can therefore write

sh(πLw, πLw) = sh(w − πLw,w − πLw),

and the estimate follows similarly to (6.23),

sh(w − πLw,w − πLw) = φ‖[w − πLw]‖2Fh,Γ

. φ
∑

T∈Th,Γ

h−1‖w − πLw‖2T + h‖∇w‖2T

. φh‖∇w‖2Th,Γ . φh‖λ‖21
2
,Γ
.

Next, we define approximation operator for u, πehu, to be as (5.29).

Lemma 6.14. Assume that u ∈ Hs(Ωi) × Hs(Ωe), s > 2, that w solves problem (6.21),
and set λ = σe∇ue · ne. Then the following interpolation estimate holds

|||(u− πehu, λ− πLw)|||φ . h
(

max{σi, σe}+ hφ−1 + h−1φ
) 1

2 ‖u‖2,Ωi∪Ωe .

Proof. First, we look at the part of |||(u− πehu, λ− πLw)|||φ related to the first argument,

which can be bounded with a φ scaled version of the approximation result in (5.33),

‖∇(u− πehu)‖2Ωi∪Ωe
+ φ−1‖[u− πeh]‖2Γ . h2

(
max{σi, σe}+ hφ−1

)
‖u‖22,Ωi∪Ωe

.

For the part related to the second argument, we apply Lemma 6.13 and that ‖λ‖Γ .
‖u‖2,Ωi∪Ωe , yielding

φ‖λ− πLw‖2Γ . hφ‖λ‖2Γ . hφ‖u‖2,Ωi∪Ωe .

If we now choose vh = πehu and µh = πLw in Theorem 6.12, and combine the results in
Lemmas 6.14, 6.13, and 5.16, we end up with an a priori error estimate in the energy norm.
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Chapter 6 A multi-dimensional formulation of the EMI PDEs and its discretization

Theorem 6.15 (A priori error estimate in energy norm). Let u ∈ Hs(Ωi)×Hs(Ωe), s > 2 be
the solution to the spatial EMI problem (5.1), set λ = σe∇ue ·ne, and let (uh, λh) ∈ Vh×Qh
be the solution to the multi-dimensional finite element formulation (6.9). Then, the error
(u− uh, λ− λh) satisfies

|||(u− uh, λ− λh)|||Ah
. h

(
max{σi, σe}+ hφ−1 + h−1φ+ 1

) 1
2 ‖u‖2,Ωi∪Ωe .

We see from the Theorem above that we have an optimal error estimate only in the case
where ∆t

Cm
6 h. This is opposite than what was the situation for the single-dimensional

formulation in Chapter 5.
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Chapter 7

Implementation and numerical experiments

The operator splitting scheme introduced in Section 4.2 divided the EMI problem into a
PDE and an ODE step. In this chapter, we first present the implementation of the single-
dimensional and multi-dimensional discretized formulations for the PDE step. Next, we
conduct numerical experiments to corroborate the theoretical results concerning convergence
order and condition numbers derived in Chapters 5 and 6. Afterwards, we solve the EMI
PDEs on more realistic geometries, which are only represented by a lower-dimensional
surface mesh.

We also present numerical experiments for the unfitted ODE solver presented in Section 4.5
before considering the complete EMI model. In the first series of experiments, we consider
the passive membrane model where only the PDE step is needed. With this model, both
a convergence study and a simulation are conducted. Finally, an active membrane model
is considered where both steps of the splitting scheme needs to be solved. For the active
model, two convergence studies are performed, before we conclude with a simulation with
the FitzHugh-Nagumo membrane model.

7.1 Implementation

All proposed numerical methods in this work are implemented using the Julia [11] based
finite element framework Gridap [8]. In addition, the extension package GridapEmbedded
is used which provides all CutFEM related functionality on top of Gridap. Visualizations
are made using the visualization software ParaView [3]. Before we turn to the numerical ex-
periments we first explain how the CutFEM single-dimensional formulation is implemented
and how this can be extended to the multi-dimensional formulation.

The first part consists of defining the total background mesh. Here, we define a computa-
tional mesh consisting of N ×N squares in the total domain Ω = [−1, 1]2:
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Chapter 7 Implementation and numerical experiments

� �
domain = (-1,1,-1,1)

partition = (N,N)

model = CartesianDiscreteModel(domain,partition)� �
The total domain is defined as an union of the intracellular and the extracellular domains.
To define each domain we define a level set function ϕ and let the domains be

Ωi = {(x, y) ∈ R2 | ϕ(x, y) < 0}, Ωe = Ω \ Ωi.

In Gridap we can define the level set function as below, and let this function cut the total
computational domain.

� �
ϕ = AnalyticalGeometry(x->x[1]^2+x[2]^2-0.8^2)

cutgeo = cut(model,ϕ)� �
Note that some geometries such as the circle we have defined here, are already predefined
in GridapEmbedded. However, since we are also going to use more complex geometries, we
write the expression for the geometry manually using the more flexible analytical geometry
constructor.

In order to define test and trial spaces, the active meshes corresponding to Th,i and Th,e in
Section 5.4 are needed. The commands ”ACTIVE IN” and ”ACTIVE OUT” give the mesh
corresponding to the inside and outside of the cut made by ϕ.

� �
Ωe_act = Triangulation(cutgeo,ACTIVE_OUT)

Ωi_act = Triangulation(cutgeo,ACTIVE_IN)� �
Figure 7 shows both of the active background meshes. Next, we define the integration
meshes, which should represent the geometries of the intracellular and extracellular domains.
The commands ”PHYSICAL IN” and ”PHYSICAL OUT” let us define intracellular as the
inside of the cut between ϕ and the total background mesh, and the extracellular as the
outside of the cut.

� �
Ωe = Triangulation(cutgeo,PHYSICAL_OUT)

Ωi = Triangulation(cutgeo,PHYSICAL_IN)� �
Figure 8 illustrates the difference between the active mesh and the integration mesh for the
intracellular domain. The interpolation mesh can consist of highly intracellular elements,
but these are only used with quadrature rules for integration.
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Figure 8: The active mesh (left) and the integration mesh (right) for the intracellular domain.

The next step is to let Γ be defined as the boundary between the domains, also represented
as an integration mesh. In addition we define the corresponding Lebesgue measure for the
integration meshes, with the degree parameter giving the order of the quadrature role.

� �
Γ = EmbeddedBoundary(cutgeo)

dΩi = Measure(Ωi,degree)
dΩe = Measure(Ωe,degree)
dΓ = Measure(Γ,degree)� �

Now, we define the ghost facets that will be we needed to define the stabilized weak formu-
lation, by using GridapEmbedded’s GhostSkeleton function, and the corresponding normal
vectors and measures.

� �
Γgi = GhostSkeleton(cutgeo,CUT_IN)

Γge = GhostSkeleton(cutgeo,CUT_OUT)

n_Γge = get_normal_vector(Γge)
n_Γgi = get_normal_vector(Γgi)
dΓge = Measure(Γge,degree)
dΓgi = Measure(Γgi,degree)� �

Figure 9 shows each of the domains Ωi and Ωe together with the corresponding ghost faces.
To define the finite element spaces, we start with the test spaces:

� �
Ve = TestFESpace(Ωe_act,ReferenceFE(lagrangian,Float64,order),conformity=:H1,

dirichlet_tags="boundary")

Vi = TestFESpace(Ωi_act,ReferenceFE(lagrangian,Float64,order),conformity=:H1)� �

63



Chapter 7 Implementation and numerical experiments

Figure 9: The integration domains and ghost facets for the intracellular domain (left), the
extracellular domain (middle), and the domain cut by Γ (right).

Here the ”ReferenceFE” says that we employ a Lagrangian reference element of the given
order. For Ve we have defined a Dirichlet boundary on the outer boundary, where the degrees
of freedom associated with the boundary are automatically tagged ”boundary” in Gridap.
Based on the test spaces, the trial spaces with the corresponding Dirichlet condition for the
extracellular domain are defined as follows.

� �
Ue = TrialFESpace(Ve,bc)

Ui = TrialFESpace(Vi)� �
The last part consists of combining the two trial and test function spaces.

� �
U=MultiFieldFESpace([Ue,Ui])

V=MultiFieldFESpace([Ve,Vi])� �
The next step in implementing the single-dimensional weak formulation (5.23) is now to
define the corresponding bilinear form and linear form. The ghost penalty term for the
bilinear form is here only implemented for first order elements.

� �
a((ue,ui),(ve,vi)) = a_ie((ue,ui),(ve,vi)) + g_h((ue,ui),(ve,vi))

a_ie((ue,ui),(ve,vi)) = (σ_e*
∫
(∇(ue) ·∇(ve))dΩe + σ_i*

∫
(∇(ui) ·∇(vi))dΩi

+ Cm*∆t ^(-1)*
∫
((ui-ue)*(vi-ve))dΓ)

g_h((ue,ui),(ve,vi)) = (∫
((γ*h^3)*jump(n_Γge ·∇(ve))*jump(n_Γge ·∇(ue)))dΓge

+
∫
((γ*h^3)*jump(n_Γgi ·∇(vi))*jump(n_Γgi ·∇(ui)))dΓgi)

l((ve,vi)) =
∫
(g_i*vi)dΩi +

∫
(g_e*ve)dΩe + Cm*∆t^(-1)*

∫
(f*(vi-ve))dΓ� �

Now, we can build the finite element problem, by passing the bilinear form, the linear form,
the test, and the trial space to the ”AffineFEOperator” function.

64



7.1 Implementation

� �
op = AffineFEOperator(a,l,U,V)� �

The AffineFEOperator function builds a matrix corresponding to the bilinear form and a
vector corresponding to the linear form. Finally, we can solve for a numerical solution,
where the default is a LU solver.

� �
uhe, uhi = solve(op)� �

An important difference for implementing the multi-dimensional formulation is that we also
need to define the space of the cells being cut, Th,Γ, and the corresponding faces that are
cut.

� �
Ωc = Triangulation(cutgeo,CUT,ϕ)
dΩc = Measure(Ωc,degree)
Γgc = GhostSkeleton(cutgeo,CUT,ϕ)
dΓgc = Measure(Γgc,degree)� �

Th,Γ is shown in Figure 7 and the corresponding faces are illustrated in Figure 9. The
corresponding test and trial space can now be defined based on the cut domain.

� �
Vc = TestFESpace(Ωc,ReferenceFE(lagrangian,Float64,0),conformity=:L2)
Uc = TrialFESpace(Vc)

U=MultiFieldFESpace([Ue,Ui,Uc])

V=MultiFieldFESpace([Ve,Vi,Vc])� �
The multi-dimensional (6.10) weak formulation can then be defined.

� �
a((ue,ui,im),(ve,vi,jm))=(σ_e*

∫
(∇(ue) ·∇(ve))dΩe +

∫
((vi-ve)*im)dΓ

+ σ_i*
∫
(∇(ui) ·∇(vi))dΩi +

∫
((ui-ue)*jm)dΓ -

∫
((Cm^(-1)*∆t*jm*im))dΓ

+ g_h((ue,ui),(ve,vi))- s_h(im,jm))

g_h((ue,ui),(ve,vi))=(
∫
((γg*h^3)*jump(n_Γge ·∇(ve))*jump(n_Γge ·∇(ue)))dΓge

+
∫
((γg*h^3)*jump(n_Γgi ·∇(vi))*jump(n_Γgi ·∇(ui)))dΓgi)

s_h(im,jm)=
∫
((Cm^(-1)*∆t+h)*jump(im)*jump(jm))dΓgc

l((ve,vi,jm)) =
∫
(f*jm)dΓ +

∫
(g_e*ve)dΩe +

∫
(g_i*vi)dΩi� �
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7.2 Convergence studies for the spatial formulations

The error estimates in Chapter 5 for the single-dimensional formulations showed that for
a constant ∆t, the approximation error is expected to converge as h in the energy norm
and as h2 in the L2-norm. For the multi-dimensional formulation we were only able to
derive expected convergence order in the energy norm as h

1
2 with ∆t

Cm
> h, and as h for

∆t
Cm

6 h. In this section, we conduct numerical experiments to study the experimental
convergence rates. We perform the test on three different geometries. First, a circular
geometry which makes it possible to compare the fitted and unfitted implementations of the
single-dimensional formulation. Then, we run an experiment on a more complex geometry,
still in two dimensions, before presenting a case formulated in three dimensions.

To perform the convergence analysis we use the method of manufactured solutions. The
problem is solved multiple times on decreasing mesh size hj . For each iteration j, the error
Ej between the analytical solution u and the numerical solution uj is calculated in a chosen
norm,

Ej = ‖u− uj‖.

The experimental rate of convergence (EOC) is given by

EOC =
log(Ej−1/Ej)

log(hj−1/hj)
.

We will use first order elements in all the following experiments and set the ghost penalty
parameter γ1 to 0.1.

7.2.1 Creating a manufactured solution

The main idea behind the method of manufactured solution is that we can choose a solution
to our problem and then manufacture the problem by computing the corresponding bound-
ary conditions and source terms. To be able to use the method of manufactured solutions,
we add source terms to the EMI PDE systems, leading to the following system

−∇ · σi∇ui = gi in Ωi, (7.1a)

−∇ · σe∇ue = ge in Ωe, (7.1b)

σe∇ue · ne = −σi∇ui · ni ≡ Im on Γ, (7.1c)

ui − ue −
∆t

Cm
Im = f on Γ, (7.1d)

u = gbc on ∂Ω. (7.1e)
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The chosen solution is required to satisfy (7.1c). Assuming we have a sufficiently smooth
function S(x, y), our manufactured solutions

ui(x, y) =
1

σi
S(x, y),

ue(x, y) =
1

σe
S(x, y),

Im(x, y) = ∇S(x, y) · ne.

can be created by choosing values for σe and σi. The corresponding source terms are

gi(x, y) = ge(x, y) = −∆S(x, y),

f(x, y) =
( 1

σi
− 1

σe

)
S(x, y)− ∆t

Cm
∇S(x, y) · ne,

and outer Dirichlet condition gbc = ue |∂Ω. Note that ne = −ni is related to the geometry.

7.2.2 Convergence experiment 1

We first conduct convergence studies for the classical single-dimensional, the CutFEM
single-dimensional and the CutFEM multi-dimensional formulation. Let the total domain
be Ω = [−1, 1]2, and define the intracellular and extracellular domains as described earlier
with the level set function

ϕ(x, y) = x2 + y2 − 0.72.

To create the manufactured solution we set

S(x, y) = sin(πx) cos(πy),

and let ∆t = 0.5, Cm = 1, σi = 1, σe = 2.

The fitted mesh is created using GMSH [31], and thereafter the mesh is read into Gridap
using GridapGmsh. We gradually decrease the maximal element size hmax 5 times, resulting
in the hmax values [0.1768, 0.0884, 0.0442, 0.0221, 0.0110]. For the CutFEM formulations we
create an uniform mesh, where N2 is the number of elements. We gradually decrease the
element size by setting N = 22+n, with n = 2, . . . , 6.

Solutions to the problem in the first iterations for the single-dimensional formulations are
depicted in Figure 10. The resulting errors in the L2-norm and H1-seminorm are depicted in
Figure 11. For all formulations, we observe that the converge rate is 1 in the H1-seminorm,
and 2 in the L2-norm. This is as expected for the single-dimensional formulations and
better than we theoretically proved for the multi-dimensional formulation. We also observe
convergence rate 1 for the current in the L2-norm on the membrane.
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Figure 10: Solution plots for the single-dimensional formulations for the unfitted formulation
(left) solved with N=16 and the fitted (right) formulation solved with hmax = 0.1768.
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Figure 11: Convergence rates for the fitted single-dimensional and unfitted single and multi-
dimensional in L2-norm (left) and H1-norm (right) as a function of the maximal element
size hmax.

68



7.2 Convergence studies for the spatial formulations

A numerical study of ∆t

As stated above, our theoretical convergence rate for the single-dimensional formulation is
dependent on if ∆t > h. We now run two numerical convergence tests for both CutFEM
formulations where we decrease ∆t along with h. The domains, parameters, source terms,
and mesh sizes are all as above, except that in the first experiment ∆t = 0.001h and in the
second experiment ∆t = 0.001h2. The resulting errors and experimental convergence rates
can be found in Tables 2 - 5. As expected we see that for the single-dimensional case when
∆t is refined together with h we still have optimal convergence in both norms. When ∆t is
refined faster than h the optimal convergence breaks down. For the multi-dimensional case,
the corresponding changes in ∆t still give optimal convergence.

7.2.3 Convergence experiment 2

Next, we run a convergence study for both of the CutFEM formulations on a more complex
geometry. Let the total domain be defined by Ω = [−1.75, 1.75] × [−2, 1.5], and the level
set function by

ϕ(x, y) = x2 + y2 + y sin((x+ 1)2)− 1.5.

The manufactured solution is created with

S(x, y) = sin(0.5πx) cos(0.5πy),

with ∆t = 0.2, Cm = 1, σi = 1.5, σe = 1. Both formulations are solved on the same uniform
mesh where N2 is the number of elements. We gradually decrease the element size by
setting N = 22+n, with n = 2, . . . , 6. The solutions for both formulations for N = 128 is
depicted in Figure 12. The resulting errors and convergence rates are given in Table 6 for
the single-dimensional formulation, and in Table 7 for the multi-dimensional formulation.
We see that the convergence rates are optimal and the same as for the circular geometry.
In addition, the values of the errors are very much alike for the single-dimensional and
multi-dimensional formulation.

69



Chapter 7 Implementation and numerical experiments

Table 2: Error and convergence rates for the CutFEM single-dimensional formulation with
∆t = 0.001h.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC

16 1.11e-02 – 2.87e-01 –
32 2.82e-03 1.98 1.38e-01 1.06
64 7.02e-04 2.00 6.84e-02 1.01
128 1.76e-04 1.99 3.41e-02 1.00
256 4.42e-05 2.00 1.71e-02 1.00

Table 3: Error and convergence rates for the CutFEM single-dimensional formulation with
∆t = 0.001h2.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC

16 1.31e-02 - 3.76e-01 -
32 2.83e-03 2.21 1.46e-01 1.37
64 1.04e-03 1.44 8.66e-02 0.75
128 3.30e-04 1.66 5.24e-02 0.72
256 1.00e-04 1.72 2.29e-02 1.19

Table 4: Error and convergence rates for the CutFEM multi-dimensional formulation with
∆t = 0.001h.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC ‖Im − Im,h‖Γ EOC

16 2.09e-02 - 2.86e-01 - 4.65e-01 -
32 3.59e-03 2.55 1.37e-01 1.07 1.98e-01 1.23
64 7.61e-04 2.24 6.81e-02 1.01 9.01e-02 1.14
128 1.79e-04 2.09 3.41e-02 0.99 4.40e-02 1.03
256 4.42e-05 2.02 1.70e-02 0.99 2.23e-02 0.97

Table 5: Error and convergence rates for the CutFEM multi-dimensional formulation with
∆t = 0.001h2.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC ‖Im − Im,h‖Γ EOC

16 2.09e-02 - 2.86e-01 - 4.65e-01 -
32 3.59e-03 2.55 1.37e-01 1.07 1.98e-01 1.23
64 7.61e-04 2.24 6.81e-02 1.01 9.01e-02 1.14
128 1.79e-04 2.09 3.41e-02 0.99 4.40e-02 1.03
256 4.42e-05 2.02 1.70e-02 0.99 2.23e-02 0.97
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Figure 12: Solution plots for the CutFEM formulations of the single-dimensional (left), and
the multi-dimensional (right) both solved on a mesh with 128× 128 elements.

Table 6: Error and convergence rates for the CutFEM single-dimensional formulation in
convergence study 2.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC

16 2.51e-02 - 4.47e-01 -
32 6.35e-03 1.98 2.25e-01 0.99
64 1.59e-03 2.00 1.13e-01 0.99
128 3.97e-04 2.00 5.65e-02 0.99
256 9.96e-05 2.00 2.83e-02 0.99

Table 7: Error and convergence rates for the CutFEM multi-dimensional formulation in
convergence study 2.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC ‖Im − Im,h‖Γ EOC

16 2.39e-02 - 4.55e-01 - 3.10e-01 -
32 6.16e-03 1.95 2.27e-01 1.00 1.62e-01 0.94
64 1.59e-03 1.95 1.13e-01 1.00 8.67e-02 0.90
128 4.01e-04 1.99 5.66e-02 1.00 4.01e-02 1.11
256 1.02e-04 1.98 2.83e-02 1.00 2.00e-02 1.00
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Table 8: Error and convergence rates for the CutFEM single-dimensional formulation in
convergence study 3.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC

12 2.20e-02 - 4.46e-01 -
16 1.22e-02 2.05 3.34e-01 1.00
24 5.46e-03 1.99 2.22e-01 1.00
32 3.06e-03 2.01 1.67e-01 1.00
48 1.36e-03 1.99 1.11e-01 1.00
64 7.67e-04 2.00 8.34e-02 1.00

Table 9: Error and convergence rates for the CutFEM multi-dimensional formulation in
convergence study 3.

N ‖u− uh‖Ω1∪Ω2 EOC |u− uh|1,Ω1∪Ω2 EOC ‖Im − Im,h‖Γ EOC

12 2.95e-02 - 4.49e-01 - 6.57e-01 -
16 1.72e-02 1.87 3.36e-01 1.01 4.89e-01 1.03
24 7.90e-03 1.92 2.23e-01 1.01 3.24e-01 1.01
32 4.48e-03 1.97 1.67e-01 1.00 2.43e-01 1.01
48 2.01e-03 1.97 1.11e-01 1.00 1.61e-01 1.01
64 1.13e-03 2.01 8.34e-02 1.00 1.20e-01 1.03

7.2.4 Convergence experiment 3

In the last convergence study, we extend to three-dimensions. Define Ω = [−1, 1]3, and let
the level set function defining an ellipsoidal be

ϕ(x, y, z) =
x2

0.82
+ y2 +

z2

0.92
− 0.82

To create a manufactured solution, set

S(x, y, z) = sin(πx) cos(πy) exp(0.5z)

and let ∆t = 0.5, Cm = 1, σi = 1, σe = 3. The uniform mesh has N3 cubical elements.
We gradually decrease the element size by setting N = [12, 16, 24, 32, 48, 64]. The resulting
errors and experimental convergence rates are listed in Table 8 for the single-dimensional
formulation, and Table 9 for the multi-dimensional formulation. The experiment shows
that the convergence rates are the same as for the two-dimensional geometries. In addition
we notice that for all three cases, the errors are practically identical for both CutFEM
formulations.
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7.3 Condition number studies

7.3.1 Scaling

In Section 5.4, we showed that a theoretical bound for the condition number of the stiffness
matrix related to the CutFEM single-dimensional formulation was

κ(A) . O(h−2) +O(h−1(∆t)−1),

where the hidden constant depends on Cm, σe and σi. The next numerical experiment is
performed to investigate the scaling of the condition number. This is done by refining the
mesh and computing the condition numbers of the associated stiffness matrix. This experi-
ment is performed for the CutFEM single-dimensional and multi-dimensional formulations.
Let the domains and parameters be as in convergence test 1 for the two-dimensional cir-
cular domain, except that ∆t = 0.1. We refining the mesh with mesh sizes corresponding
to N = [12, 16, 24, 32, 48]. The resulting scaled convergence numbers are listed in Table 10
and show that the convergence numbers indeed scale like h2.

Next, we perform a study to check the bound concerning ∆t for the CutFEM single-
dimensional formulation. We run two experiments with all parameters and mesh sizes
as before, except that in the first experiment ∆t = 0.1/N and in the second ∆t = 0.1/N2.
Table 11 lists the resulting scaled condition numbers of the stiffness matrix. As expected
we see that for the first experiment the condition numbers scale as h−2, and for the second
the condition numbers scale as h−3.

7.3.2 Sensitivity analysis

The theoretical bound of the condition number is geometrically robust, i.e. independent of
how the background mesh is cut by the domains. We perform a sensitivity analysis to check
how cut configurations affect the condition number. This is done by repeatedly moving Ωi

while assembling the stiffness matrix and computing the associated condition number, such
that the stiffness matrix is computed on different cut configurations. Let Γδ be a circle with
radius 0.5, and the center of the circle for step m be defined by

S = δ

(
1

N
,

1

N

)
, δ =

m

M
, (7.2)

where M is the number of steps, and N is the mesh size. Figure 13 shows how the circle is
moved from the first iteration to the last iteration.

Set N = 32,M = 500,∆t = 0.5, σe = 2, σ1 = 1, Cm = 1. For both the CutFEM single-
dimensional and multi-dimensional we run the experiment twice, with and without the
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stabilization terms. The resulting condition numbers are depicted in Figure 14. The non-
stabilized formulations are very sensitive to the particular cut configurations, in contrast to
the stabilized formulations where the condition numbers are practically constant. Notice
also that the condition numbers of the two formulations are very much alike.

Table 10: Scaled condition numbers for the single-dimensional (left) and the multidimen-
sional formulation (right) with ∆t constant

N κ(A)N−2

12 9,98
16 9,76
24 9,50
32 10,64
48 10,38

N κ(A)N−2

12 10.04
16 9,75
24 9,51
32 10,65
48 10,38

Table 11: Scaled condition numbers for the single-dimensional formulation with ∆t = 0.1/N
(left) and ∆t = 0.1/N2 (right)

N κ(A)N−2

12 44,65
16 37,67
24 36,05
32 44,32
48 38,81

N κ(A)N−3

12 41,32
16 35,68
24 30,56
32 41,81
48 33,95

Figure 13: Illustration of how the sensitivity analysis is performed, with the position of the
intracellular domain for the first (left) and last (right) iteration.
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Figure 14: The condition numbers of the stiffness matrix plotted against the translation
parameter δ with and without stabilization for the single-dimensional (left) and multi-
dimensional formulation (right).

7.4 Solving the EMI PDEs on complex geometries

One main motivation behind this thesis was to solve the EMI model using an unfitted finite
element formulation, which allows us to utilize complex geometries. To demonstrate the
applicability of the proposed framework to more complex geometries we now replace the
analytically defined level set function with a surface mesh of the membrane. Thanks to
the Gridap Extension package STLCutters, STL surface mesh can be used to represent the
interface Γ, for more details see [7].

After the intracellular domain is given as the inside of the membrane, the total domain is
defined as a cuboid surrounding the intracellular domain. Let

f(x, y, z) = sin(0.05x+ 0.06y + 0.04z),

and σe = 2, σi = 1,∆t = 1, Cm = 1. We are now solving with the CutFEM single-
dimensional formulation.

We start with a model where the intracellular domain is represented as a deer head found
at [56]. The mesh is created by 303 elements. Figure 15 gives an illustration of the deer
head together with the meshes used. The solution on the membrane is depicted in Figure
16.

The final experiment is to test the framework on an idealized reconstruction of a neuron.
The reconstruction is found under ID: ”NMO 76781” [41] at NeuroMorpho.org [5] and is
postproced using [48] by Miroslav Kutcha into a STL format. This experiment is purely
meant as a demonstration of how the framework can be used to solve the model on complex
cellular geometries. The total mesh consists of 180× 180× 20 elements, and the solution of
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the intracellular potential on the surface of the domain is depicted in Figure 17. The thin
structure of parts of the neural cells is illustrated in the figure, and we would assume that
the spatial resolution is too coarse to get a good approximation in these regions.

Figure 15: Illustration of the STL-mesh of the deer head together with an illustration of the
intracellular mesh and the total domain.

Figure 16: Numerical solution of the intracellular potential on the membrane surface for the
EMI PDES solved with a deer head as the intracellular domain.

76



7.4 Solving the EMI PDEs on complex geometries

Figure 17: Numerical solution of the intracellular potential on the membrane surface for the
EMI PDES solved with a representation of an idealized neuron.
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7.5 Numerical experiments with ODEs on an unfitted surface*

Next, we conduct two numerical experiments to test the convergence rates for the dis-
cretization of ODEs on the surface. In both cases let the structured background mesh
over the domain Ω = [−1, 1]2 consist of square elements, where N2 is the total number of
elements set to N = 64. The surface embedded into the background mesh is defined by
Γ = {(x, y) : x2 + y2 = 0.62}. The stabilization parameter is set to γb = 0.1. We have only
found theoretical results to support the face based stabilization (4.9) for triangular elements
but is still employed here since we have not observed any numerical problems. The time
intervals are uniformly distrubted, where the number of time intervals is set to M = 2n+1

with n = 1, . . . , 6. In the first ODE test case we use the test system,

vt(x, y, t) = −s(x, y, t)
st(x, y, t) = v(x, y, t),

with exact solutions,

v(x, y, t) = (x+ y) sin(t),

s(x, y, t) = −(x+ y) cos(t).

We solve the system on the time interval [0, 2].

In the second experiment, we use the method of manufactured solutions on the reparame-
terized FitzHugh-Nagumo model (2.11), with parameters vrest = −85 mV, vpeak = 40 mV
and the rest as listed in Table 1, all found in [55]. We assume the following exact solutions
for the FitzHugh-Nagumo model,

v(x, t) = eDt,

s(x, t) = e−b1c3t,

where D = c1
v2
amp

(vthvpeak + vrestvpeak + vthvrest), leading to the equations

vt =
c1

v2
amp

(v − vrest)(v − vth)(vpeak − v)− c2

vamp
(v − vrest)s

− c1

v2
amp

(−e3Dt + (vpeak + vrest + vth)e2Dt + vrest + vpeak + vamp) (7.3a)

+
c2

vamp
(eDt − vrest)e

−b1c3t,

st = b(v − vrest − c3s). (7.3b)

which we will refer to as the test FitzHugh-Nagumo system. We solve this system on the
time interval [0, 50]. We define the discrete L∞L2- and L∞H1-norms by

‖u‖L∞L2(Ω) = max
m∈[0,...,M ]

‖u(·, tm)‖Ω

‖u‖L∞H1(Ω) = max
m∈[0,...,M ]

‖u(·, tm)‖1,Ω.
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7.6 Numerical experiments with the passive membrane model*

Table 13: Error and convergence rates for the first ODE test case in L∞L2-norm when
refining temporal resolution.

M ‖v − vh‖L∞L2(Γ) EOC ‖s− sh‖L∞L2(Γ) EOC

4 6.88 · 10−1 – 2.44 · 10−1 –
8 3.14 · 10−1 1.13 1.03 · 10−1 1.24
16 1.45 · 10−1 1.11 5.16 · 10−2 1.00
32 6.95 · 10−2 1.07 2.83 · 10−2 0.86
64 3.39 · 10−2 1.03 1.15 · 10−2 0.95
128 1.67 · 10−2 1.02 7.45 · 10−3 0.98

Table 14: Error and convergence rates for the test FitzHugh-Nagumo system in L∞L2-norm
when refining temporal resolution.

M ‖v − vh‖L∞L2(Γ) EOC ‖s− sh‖L∞L2(Γ) EOC

4 4.95 · 10−1 – 2.97 · 10−1 –
8 2.18 · 10−1 1.19 1.42 · 10−1 1.06
16 1.02 · 10−1 1.10 6.89 · 10−2 1.04
32 4.93 · 10−2 1.05 3.39 · 10−2 1.02
64 2.43 · 10−2 1.02 1.68 · 10−2 1.01
128 1.20 · 10−2 1.01 8.37 · 10−3 1.01

The resulting errors in L∞L2-norm for each of the two experiments are listed in Table 13
and Table 14. It shows that the experimental convergence rates are around 1, which is
expected since explicit Euler was used as time discretization.

7.6 Numerical experiments with the passive membrane model*

Consider the EMI model together with the passive membrane model (2.2). As this model is
linear, the ODE-step of the operator splitting can be omitted, and we only need to solve the
PDE-step. In both the convergence study and the simulation, let the structured background
mesh over the total domain Ω = [−1, 1]2 consist of square elements such that the number
of elements along one side of the domain is N with element size h = 2

√
2/N . The stability

parameter for the PDE , defined in (5.22), is set to γ1 = 0.1, and we use the CutFEM
single-dimensional formulation.
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7.6.1 Convergence study using a manufactured solution

For the convergence study we set Rm = 1 and vrest = 0, such that Iion = v. Let Ωi =
{(x, y) : x2 + y2 < 0.52}, Ωe = Ω \ Ωi, and set σe = σi = Cm = 1. Using the method of
manufactured solutions, we define the analytical solutions by

ue(x, y, t) = cos(π(x2 + y2 − 0.52)),

ui(x, y, t) = (1 + e−t) cos(π(x2 + y2 − 0.52)),

v(x, y, t) = e−t cos(π(x2 + y2 − 0.52)).

We refine both the spatial and temporal resolution. Let N = 2n+3 and M = 2n+2,where M
is the number of uniformly distributed time intervals, with n = 1, . . . , 5. The experiment is
run on the time interval [0, 1]. While the theoretical analysis of the fully discretized scheme
is subject to future research, we intuitively expect that

‖u− uh‖L∞L2(Ω) . h2 + τ,

since first-order elements typically gives second-order convergence for Poisson type problems
in space in the L2-norm and since the explicit Euler method is first-order accurate in time.
Similarly we expect that

‖u− uh‖L∞Hi(Ω) . h+ τ,

as first-order elements typically gives first-order convergence for these problems in the H1-
norm.

The resulting errors and convergence rates are listed in Table 15. Here we see that the
experimental convergence rate in the L∞H1-norm is 1, which is as expected. We would also
expect the rate in the L∞L2-norm to be first-order since the time discretization used is only
first order. However, numerically we get second-order convergence. This indicates that the
spatial error contribution dominates the total error for the discrete solution. We perform
an additional convergence study with only temporal refinements to explore this further. Let
the spatial resolution be high with N = 256, and let M = 2n+1 with n = 1, . . . , 6. The
results is shown in Table 16. Here we see that in the L2-norm the rate is around 1. However,
in the H1-norm the error is practically constant. We assume this to be because the error
in H1-norm is still dominated by the error in space, even with a fine mesh.
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7.6 Numerical experiments with the passive membrane model*

Table 15: Error and convergence rates for the passive test case in L∞L2-and L∞H1-norm
when refining both temporal and spatial resolution.

N/M ‖u− uh‖L∞L2(Ω) EOC ‖u− uh‖L∞H1(Ω) EOC

16/8 7.66 · 10−2 – 1.29 · 100 –
32/16 1.78 · 10−2 2.10 6.63 · 10−1 0.96
64/32 4.09 · 10−3 2.13 3.35 · 10−1 0.97
128/64 1.05 · 10−3 2.06 1.67 · 10−1 0.99
256/128 4.22 · 10−4 2.04 8.43 · 10−2 1.00

Table 16: Error and convergence rates for the passive test case in L∞L2-and L∞H1-norm
when refining only temporal resolution with constant high spatial resolution.

M ‖u− uh‖L∞L2(Ω) EOC ‖u− uh‖L∞H1(Ω) EOC

4 1.86 · 10−2 – 8.36 · 10−2 –
8 9.50 · 10−3 0.97 8.40 · 10−2 -0.01
16 4.70 · 10−3 1.01 8.42 · 10−2 0.00
32 2.25 · 10−3 1.06 8.43 · 10−2 0.00
64 1.02 · 10−3 1.14 8.43 · 10−2 0.00
128 4.22 · 10−4 1.27 8.43 · 10−2 0.00
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7.6.2 Simulation with the passive membrane model

Next, we run a simulation solving the EMI model with the passive membrane model, as
given in (2.2). Let Ωi = {(x, y) : x2 + y2 < 0.62}, Ωe = Ω \ Ωi, σe = 20 mS/cm, σi =
5 mS/cm,Rm = 1 kΩcm2 and Cm = 1 mF/cm2. We run the simulation to T = 6 with time
resolution M = 300 and spatial resolution N = 64. The mean value of the membrane
potential is defined as

vmean =

∫
Γ v ds∫
Γ ds

.

Let the resting potential be vrest = −85 mV. As initial value we set v(x, y, 0) = 30 mV,
which corresponds to a depolarized cell [55].

The resulting vmean from the simulation is depicted in Figure 18. Also ue and ui for several
timesteps is depicted in Figure 19. Here we see that the cell repolarizes until the potential
in the intracellular space reaches the resting potential.

Figure 18: Numerical solution for the average of the membrane potential for a depolarized
cell being repolarized from a passive membrane model.

82



7.6 Numerical experiments with the passive membrane model*

(a) t = ∆t (b) t = 0.6

(c) t = 1.2 (d) t = 6

Figure 19: Snapshots of the numerical solution in the extra/intracellular domain for a de-
polarized cell being repolarized from a passive membrane model.
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7.7 Numerical experiments with the active membrane model*

In the next numerical experiments, we consider an active membrane model, so that we
need to solve both the ODE and the PDE step of the operator splitting scheme introduced
in Section 4.2. Here we conduct two convergence studies and conclude with a simulation.
For all the experiments the total domain is Ω = [−1, 1], the structured background mesh
over Ω consist of square elements such that the number of elements along one side of
the domain is N with element size h = 2

√
2/N . The intracellular domain is defined as

Ωi = {(x, y) : x2 + y2 < 0.62}, and the extracellular domain as Ωe = Ω \Ωi. Both the PDE
stability parameter (5.22) and the ODE stability parameter (4.9) is set to γ1 = γb = 0.1.
The CutFEM single-dimensional formulation is employed for the PDE step.

7.7.1 Convergence study with manufactured solutions

In this section we consider two different ODE systems for the EMI model. Let σe = σi =
Cm = 1. Let the first ODE system be

vt = −s,
st = v.

Using the method of manufactured solutions, define the analytical solutions by

ue(x, y, t) = cos(π(x2 + y2 − 0.62)),

ui(x, y, t) = (1 + sin(t)) cos(π(x2 + y2 − 0.62)),

v(x, y, t) = sin(t) cos(π(x2 + y2 − 0.62)),

s(x, y, t) = − cos(t) cos(π(x2 + y2 − 0.62)).

We will refer to this system as splitting test case, and solve it on the time interval [0, 1].

In the second case, let the ODE system be as in (7.3), i.e the modified Fitz-Hugh Nagumo
system. Using the method of manufactured solutions let the analytical solutions be

ue(x, y, t) = cos(π(x2 + y2 − 0.62)),

ui(x, y, t) = (1 + sin(t)) cos(π(x2 + y2 − 0.62)),

v(x, y, t) = eDt cos(π(x2 + y2 − 0.62)),

s(x, y, t) = e−b1c3t cos(π(x2 + y2 − 0.62)).

We will refer to this system as the Fitz-Hugh Nagumo test case, and solve it on the time
interval [0, 50]. For both cases, the temporal and spatial resolution is refined simultaneously,
where the number of uniformly distributed time steps is set to M = [12, 18, 24, 36, 48, 64]
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7.7 Numerical experiments with the active membrane model*

and the spatial resolution to N = 8M . The convergence rates are expected to be first-order
in both L∞L2- and L∞H1-norm, with the same arguments as in Section 7.6.1.

The results are listed in Table 17 and 18. We see that for the splitting test case the
experimental L∞L2- and L∞H1-norm are 1. For the Fitz-Hugh Nagumo test case the
L∞H1-norm is 1, as expected. The L∞L2-norm varies, but all values are over 1. A possible
reason could be the same as in the passive case, that the contribution from the spatial error
is larger and dominates.

Table 17: Error and convergence rates for the splitting test case in L∞L2-and L∞H1-norm
when refining both temporal and spatial resolution.

N/M ‖u− uh‖L∞L2(Ω) EOC ‖u− uh‖L∞H1(Ω) EOC

96/12 3.32 · 10−2 – 2.22 · 10−1 –
144/18 2.32 · 10−2 0.89 1.48 · 10−1 0.99
192/24 1.77 · 10−2 0.94 1.11 · 10−1 1.00
288/36 1.20 · 10−2 0.95 7.42 · 10−2 1.00
384/48 9.09 · 10−3 0.97 5.57 · 10−2 1.00
512/64 6.86 · 10−3 0.98 4.18 · 10−2 1.00

Table 18: Error and convergence rates for the FitzHugh-Nagumo test case in L∞L2-and
L∞H1-norm when refining both temporal and spatial resolution.

N/M ‖u− uh‖L∞L2(Ω) EOC ‖u− uh‖L∞H1(Ω) EOC

96/12 2.99 · 10−1 – 2.24 · 10−1 –
144/18 1.59 · 10−1 1.56 1.50 · 10−1 0.99
192/24 1.04 · 10−1 1.48 1.12 · 10−1 1.00
288/36 5.34 · 10−2 1.64 7.50 · 10−2 1.00
384/48 3.11 · 10−2 1.88 5.62 · 10−2 1.00
512/64 1.57 · 10−2 2.36 4.22 · 10−2 1.00
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7.7.2 Simulation with FitzHugh-Nagumo

In the last numerical experiment an active membrane model is considered. Let the mem-
brane model be the reparametrized FitzHugh-Nagumo model as written in (2.11) for Iion
and let the rest of the EMI model be as in (2.10). The parameters are set as σe = 20 mS/cm,
σi = 5 mS/cm, Cm = 1 mF/cm2 vrest = −85 mV, vpeak = 40 mV, and the rest of the pa-
rameters as listed in Table 1. We set N = 64, M = 800 and run to T = 400. We apply a
stimulus current from time t = 50 to t = 60 with intensity Iapp = 0.05vamp, set the initial
conditions to be v(x, y, 0) = −85 mV, and s(x, y, 0) = 0 mV.

The results from the simulation are depicted with the average for the membrane potential
in Figure 20 and snapshots in Figure 21. Here we see that until t = 50, the membrane
potential is constant. Then the cell depolarizes from the applied stimulus before it gradually
repolarizes until it reaches the resting potential.

Figure 20: Numerical solution for the average of the membrane potential for a polarized cell
being depolarized and repolarized with the FitzHugh-Nagumo membrane model.
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7.7 Numerical experiments with the active membrane model*

(a) t = ∆t (b) t = 80

(c) t = 160 (d) t = 240

Figure 21: Snapshots of the numerical solution in the extra/intracellular domain of a polar-
ized cell being depolarized and repolarized with the FitzHugh-Nagumo membrane model.
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Chapter 8

Conclusions and outlook

In this thesis, we have developed a novel computational framework for solving the complete
EMI model using unfitted finite element technologies, which allows for a simplified and
more flexible handling of complex cell geometries. By circumventing the time-consuming
and CPU-intense generation of high-quality 3D volume meshes the framework gives new
possibilities to short-cut and accelerate current simulation pipelines for simulating electrical
activity in neural cells.

Based on a Godunov splitting scheme, the model’s PDE-ODE system was decoupled into
a PDE step and an ODE step. We have proposed two different CutFEM formulations for
the PDE step, and provided a detailed theoretical and numerical analysis showing favor-
able stability and optimal convergence properties. An important characteristic trait of the
presented methods is their geometrical robustness assuring that all derived properties do
not depend on how the embedded cell geometry cuts the background mesh. Moreover, we
also introduced a new approach to discretize the membrane bound ODEs in an unfitted
setting by employing a stabilized L2 surface projection. Finally, we did extensive numerical
testing for both the individual steps and the complete solution scheme, including a series
of convergence and robustness tests and as well as showcasing applications to complex cell
geometries.

The main difference we found between the two proposed CutFEM formulations is their
robustness with respect to the relationship between the spatial and temporal resolution,
where the multi-dimensional formulation was preferable for small timesteps, while the single-
dimensional formulation performed best for the case of smaller spatial than temporal resolu-
tion. The multi-dimensional formulation is also more flexible, but its saddle point structure
requires the computation of a larger linear system and makes the design of efficient precondi-
tioners more challenging. Therefore, the choice of formulation would depend on the desired
resolution and computational resources. Also, [60] formulated a H(div)-based formulation
of the EMI PDEs. Based on the recent idea of CutFEM for H(div) formulations [29], we
suggest looking further into a H(div) CutFEM formulation for the EMI PDEs.

The theoretical analysis in this thesis focused on the spatial discretization of the PDE step
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Chapter 8 Conclusions and outlook

arising from the employed Godunov splitting scheme. Thus, a natural next step would be
to conduct a theoretical analysis of the time-discretization methods as well as the whole
splitting scheme. We also suggest extending the first-order Godunov scheme to a second-
order Strang splitting, which would require extending the time discretization of the ODE
and PDE step to second-order methods. Furthermore, while the membrane bound ODEs are
pointwise defined in the EMI model, our proposed unfitted discretization method results in
an artificially spatial coupling caused by the application of a weak formulation of the ODE
system. For a possible remedy, we suggest exploring lumping techniques.

As stated in the introduction, the EMI model is computationally very demanding. To
employ the proposed CutFEM framework to larger scale problems involving realistic cell
and network geometries, we plan to improve the method’s performance and scalability
properties by means of parallelization and preconditioning. Moreover, to obtain a holistic
simulation pipeline, we need to investigate user-friendly approaches to feed imaging data
of cells directly into our current simulation toolkit. Finally, we suggest adaptive mesh
refinement for better simulations concerning the thin structure of the neural cells.
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[30] P. C. Franzone and G. Savaré. Degenerate Evolution Systems Modeling the Cardiac
Electric Field at Micro- and Macroscopic Level. In A. Lorenzi and B. Ruf, editors,
Evolution Equations, Semigroups and Functional Analysis, pages 49–78. Birkhäuser
Basel, Basel, 2002.

[31] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11):1309–1331, Sept. 2009.

[32] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Society for Industrial and
Applied Mathematics, 2011.

[33] C. Gürkan and A. Massing. A stabilized cut discontinuous Galerkin framework for el-
liptic boundary value and interface problems. Computer Methods in Applied Mechanics
and Engineering, 348:466–499, May 2019.

93



Bibliography

[34] A. Hansbo, P. Hansbo, and M. G. Larson. A finite element method on composite grids
based on Nitsche’s method. ESAIM: Mathematical Modelling and Numerical Analysis,
37(3):495–514, May 2003.

[35] P. Hansbo. Nitsche’s method for interface problems in computa-tional mechan-
ics: Nitsche’s method for interface problems in computa-tional mechanics. GAMM-
Mitteilungen, 28(2):183–206, Nov. 2005.

[36] Helse- og omsorgsdepartementet. Nasjonal hjernehelsestrategi (2018–2024), 2017.

[37] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of Physiology,
117(4):500–544, Aug. 1952.

[38] K. H. Jæger, A. G. Edwards, W. R. Giles, and A. Tveito. Arrhythmogenic influence
of mutations in a myocyte-based computational model of the pulmonary vein sleeve.
Nature Scientific Reports, 12:7040, Apr. 2022.

[39] K. H. Jæger, A. G. Edwards, A. D. McCulloch, and A. Tveito. Properties of car-
diac conduction in a cell-based computational model. PLoS Computational Biology,
15(e1007042), May 2019.

[40] K. H. Jæger and A. Tveito. Derivation of a cell-based mathematical model of excitable
cells. In A. Tveito, K.-A. Mardal, and M. E. Rognes, editors, Modeling Excitable
Tissue: The EMI Framework, volume 7, chapter 1, pages 1–13. Springer International
Publishing, Cham, Oct. 2021.

[41] B. C. Jongbloets, S. Lemstra, R. Schellino, M. H. Broekhoven, J. Parkash, A. J. Helle-
mons, T. Mao, P. Giacobini, H. van Praag, S. D. Marchis, G. M. Ramakers, and
R. J. Pasterkamp. Stage-specific functions of semaphorin7a during adult hippocampal
neurogenesis rely on distinct receptors. Nature Communications, 8, Mar. 2017.

[42] M. Kuchta, K.-A. Mardal, and M. E. Rognes. Solving the EMI equations using finite
element methods. In A. Tveito, K.-A. Mardal, and M. E. Rognes, editors, Modeling
Excitable Tissue: The EMI Framework, page 56–69. Springer International Publishing,
Cham, Oct. 2021.

[43] B. P. Lamichhane and B. I. Wohlmuth. Mortar Finite Elements for Interface Problems.
Computing, 72(3-4), June 2004.

[44] A. Massing, M. Larson, A. Logg, and M. E. Rognes. A Nitsche-based cut finite el-
ement method for a fluid-structure interaction problem. Communications in Applied
Mathematics and Computational Science, 10(2):97–120, Sept. 2015.

94



Bibliography

[45] H. Matano and Y. Mori. Global existence and uniqueness of a three-dimensional
modelof cellular electrophysiology. Discrete & Continuous Dynamical Systems - A,
29(4):1573–1636, Oct. 2011.

[46] MICrONS Explorer. www.microns-explorer.org.

[47] A. Motta, M. Berning, K. M. Boergens, B. Staffler, M. Beining, S. Loomba, P. Hennig,
H. Wissler, and M. Helmstaedter. Dense connectomic reconstruction in layer 4 of the
somatosensory cortex. Science, 366(6469), Nov. 2019.

[48] K. Mörschel, M. Breit, and G. Queisser. Generating Neuron Geometries for Detailed
Three-Dimensional Simulations Using AnaMorph. Neuroinformatics, 15(3):247–269,
July 2017.
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