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Abstract

Forecasting ambulance demand can be a critical tool for emergency medical services to alloc-

ate their resources as efficiently as possible. In this thesis, we use data provided by Oslo Uni-

versity Hospital (OUH) to forecast spatio-temporal ambulance demand in Oslo and Akershus.

We perform different experiments inspired by related work both within spatio-temporal fore-

casting in general and ambulance demand forecasting. To forecast demand volume, we ex-

periment with machine learning and statistical decomposition for time series to extract in-

formation about seasonal variations and the trend. We apply multilayered perceptron (MLP)

and regression to forecast the residual and trend, respectively. We also experiment with a

proposed error metric to reduce the underestimation of demand. We forecast at a high res-

olution and on different aggregations for spatial forecasts. For high resolution forecasts we

experiment with Wasserstein generative adversarial neural network (WGAN) to generate

realistic distribution scenarios, and MLP with different input sets. To produce aggregated

data, we apply genetic algorithms with multi-objective optimization, using population data

from Statistics Norway (SSB), and apply an MLP to forecast the hourly aggregated distri-

bution. We conclude that our proposed models for volume forecasting outperform models

used in the industry and models proposed in related research. Furthermore, WGAN does

not generate good scenarios, and forecasting of distribution at high resolution are unable to

outperform the historical average of our data. We make improvements with the aggregation

of data as this makes the forecasts from MLP able to outperform the historical average by a

slim margin.



ii

Sammendrag

Evnen til å forutsi ambulanseetterspørsel er et kritisk verktøy innen akuttmedisin for å kunne

fordele ressursene så effektivt som mulig. I denne oppgaven benytter vi et datasett gitt

av Oslo Universitetssykehus for å forutsi romlig-temporal ambulanseetterspørsel i Oslo og

Akershus. Vi gjennomfører flere ulike eksperimenter inspirert av relatert forskning innen

både romlig-temporal prediksjon, samt prediksjon av ambulanseetterspørsel. For å forutsi

volum av etterspørsel benytter vi statistiske dekomponeringsmetoder for tidsserier for å ek-

strahere informasjon om sesongvariasjoner og trend og benytter flerlags perceptron (MLP)

og regresjon for å forutsi henholdsvis rest og trend fra dekomponering. Vi gjennomfører

også eksperimenter med en foreslått avviksmåling ment for å redusere underestimering av

etterspørsel. Vi predikerer også fordeling av etterspørsel i rom både med høy oppløsning

og med aggregert data. For høy oppløsning eksperimenterer vi med Wasserstein generat-

ive adversarial neural network (WGAN) for å generere realistiske fordelinger av hendelser,

samt MLP med ulik input-data. For å lage aggregert data benytter vi genetiske algoritmer

(GA) med multi-objektiv optimisering der vi bruker data fra Statistisk Sentralbyrå (SSB) og

benytter MLP for å forutsi fordelingen basert på det aggregerte datasettet for hver time. Vi

konkluderer med at våre foreslåtte modeller for volum av etterspørsel utkonkurrerer mod-

eller i bruk innen industrien og modeller foreslått i relatert arbeid. Videre har vi at WGAN

ikke genererer tilfredsstillende scenarier, og prediksjoner med høy oppløsning ikke er i stand

til å utkonkurrere det historiske gjennomsnittet. Vi forbedrer prediksjonene ved å aggregere

dataen slik at MLP er i stand til å utkonkurrere det historiske gjennomsnittet med en tynn

margin på det aggregerte datasettet.
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Chapter 1

Introduction

Emergency medical services (EMS) are a crucial part of modern health care systems. The

EMS responds to emergency calls and provides pre-hospital care and patient transport. The

response time of the EMS is an important part of how success is measured in this field of

work and can be a decisive factor when it comes to the survivability of patients.

The quality of an EMS is affected by strategic, operational, economic, and political decisions.

The decisions that affect EMS are shaped by the uncertainty of emergencies, such as call

volume, severity, location, available units, and response time to the location of the emer-

gency.

This thesis focuses on modeling ambulance demand in Oslo and Akershus, Norway. Doing

so involves a lot of different challenges. There is a need for high-resolution forecasts for

the results to be used in a realistic setting, but doing so results in sparse and noisy data. To

overcome sparsity issues, we will try to reduce the resolution within reason to a point where

the forecasts are less sparse but still not too low resolution.

1.1 EMS Response

The demand for EMS is ever-present in our society, and when dealing with medical emer-

gencies, time is of the essence. The response time of an emergency vehicle has been widely

understood to be a critical part of a patient’s survival rate.

The implementation of EMS systems around the world differs a lot. However, for the Nordic

countries, the systems mostly follow the steps presented in Figure 1.1, as presented in the

Norwegian Health Department’s report on the Nordic emergency model (Olsen et al., 2019).

The steps of handling an emergency begin the moment an incident happens. Usually, there

1



2 CHAPTER 1. INTRODUCTION

might be some delay until emergency services are notified when the incident occurs. After this

delay, an emergency service operator at the emergency medical dispatch (EMD) receives the

call and is responsible for assessing the situation, urgency, and available resources while also

providing instructions to the caller before deciding which resources to dispatch where. These

resources include which ambulance to dispatch from which facility and which facility to

deliver the patient. The selected crew will then need to acquire the necessary equipment and

get in the ambulance to travel to the incident scene. The crew might spend some time locating

the patient and reaching them at the scene. When located, the patient will receive medical

care at the scene before being transported to the destination facility while the medical staff

provides care underway. After arriving at the facility, the patient is transferred to the facility

staff for further care. At the same time, the ambulance might need cleaning and replenishing

of equipment before it is ready for the next deployment.
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Figure 1.1: EMS-response timeline, adapted from Olsen et al. (2019). Response time, which

is the time from EMD is called up to vehicle stops at the scene, is the focus of our research.

Currently, the time points in Figure 1.1 marked in purple are usually tracked automatically,

while the points marked in orange are tracked manually by the ambulance personnel. Ad-

ditionally, Olsen et al. (2019) suggests that the blue points should be tracked in the future

to improve the ability to assess patient outcome measurements instead of response time as

a sole measure.
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1.2 Research Goal

Given a data set with response time being the most quantifiable measure to improve, most

of our research will be focused on reducing response time. We will not study the locations

of ambulances but are looking to provide data and forecasts for unplanned incidents that

will give context while planning resource allocations for future EMS operations. The overall

research goal of this thesis is, therefore:

Research goal Provide methods for forecasting unplanned demand to improve the planning

process for EMS operations.

1.2.1 Research Question 1; High-Resolution Demand Forecasting

Our primary research question relates to forecasting the demand λ(t) = u t ∈ NN where

ut
k is the forecast at time t in region k for k ∈ 1,2, ..., N and N is the number of spatial

regions. We want to provide precise forecasts at a high spatio-temporal resolution as this

gives the most insightful data for operations planning. As mentioned earlier, a limitation of

high resolution is that the data becomes too sparse, especially in the spatial dimension. The

following research question summarizes this:

Research question 1 How can we forecast demand at a high spatio-temporal resolution?

The spatial and temporal resolution for this thesis is at minimum 1×1km and 1 hour, re-

spectively, due to the contents of our data set. We aim to test various sets of statistical and

artificial intelligence (AI) models and assess how these perform in comparison to previously

suggested models in related literature.

1.2.2 Research Question 2; Time Series Decomposition and Machine Learning

Hourly EMS demand is often assumed to have recurring patterns and cycles. These cycles

are assumed to follow a daily, weekly, or yearly pattern, if not a combination of these. We are

looking to explore this assumption further as we apply statistical decomposition to capture

and extract these presumed elements, thus reducing the complexity of the problem space for

our machine learning models to learn.

Research question 2 Can time series decomposition be used in combination with machine

learning models to produce improved total hourly ambulance demand?
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1.2.3 Research Question 3; Aggregating Spatial Data

Due to challenges related to sparsity in high-resolution spatio-temporal data, we investigate

possible means to work around sparsity through aggregating data in the spatial dimension.

Aggregation can help reduce the number of locations without events and thereby reduce the

stochastic nature of our data.

Research question 3 Can aggregation of spatial data improve forecasts of EMS demand?

At a higher spatial resolution, we are prone to get a zero-inflated distribution which tends

to be harder to use in forecasting. Another critical factor to consider here is not to aggregate

too much, as large areas will lead to the predicted area of an incident being too general to

provide valuable information for the Emergency Medical Communication Center (EMCC)

department.

1.3 Report Structure

Chapter 2 presents relevant background and motivation for this thesis, which includes an in-

troduction to a previous Master’s thesis written on the subject, our pilot project for this thesis,

and the provided data set. Chapter 3 introduces the relevant theory of the methods used in

our experiments. Chapter 4 presents related research on demand forecasting, EMS demand,

and spatio-temporal forecasting in general. In Chapter 5, we introduce our novel methods

for time-series forecasting and spatial aggregation, as well as implementation details. Res-

ults from experiments with our methods are presented in Chapter 6 before we conclude and

discuss our results and identify possible future work in Chapter 7



Chapter 2

Background and Motivation

In emergency medical situations, time is of the essence. Injuries, sicknesses, and medical

conditions that require immediate treatment can occur in any place at any time. When re-

quested, the EMCC provides necessary assistance in these situations. The assistance provided

can vary greatly, depending on the situation and the available resources. Providing ambu-

lance transportation is one of the many vital contributions of the EMCC. When an ambu-

lance is dispatched for any mission, it will, in most cases, remain unavailable to respond to

other missions until the assigned mission is completed. Since there are limited personnel

and vehicles, efficient planning is a crucial tool in resource allocation. The current solution

is based on the experience of the resource coordinators manually deciding which resource to

assign to each incoming mission. Creating models to accurately forecast ambulance demand

at both a temporal and spatial dimension could assist immediate and long-term resource

allocation.

The EMCC in Oslo is the largest in Norway and answers calls from the Oslo and Akershus re-

gion with a population of 1.6 million. They receive over 500 000 telephone calls and provide

over 150 000 ambulance dispatches per year.

2.1 Previous Research

Some work has been done on this problem with the same data set, such as a master’s thesis

from 2021 and our pilot project in the fall of 2021. We introduce both of these to provide

some background for our thesis.

5
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2.1.1 Previous Master’s Thesis

In 2021 a Master’s thesis was written on the same subject and data set. The thesis is sum-

marized in the article by Haugsbø Hermansen and Mengshoel (2021) and introduces several

challenges with ambulance demand forecasting. Sparsity is considered one of the main chal-

lenges when looking at distributional forecasts. Another problem related to volume forecast-

ing is the stochasticity of the data. Haugsbø Hermansen and Mengshoel propose two differ-

ent models for forecasting, a multilayered perceptron (MLP) model and a long short-term

memory (LSTM) model. In this work, we implement these proposed models, re-create the

results, and compare our models and findings to relevant findings of Haugsbø Hermansen

and Mengshoel (2021).

2.1.2 Pilot Project

During the fall of 2021, we performed a pilot project for this thesis, where we had access to

the same data set we are using in this thesis. The pilot project was performed as a literature

review and data analysis of our data set to obtain a deeper understanding of the data we

have available and different approaches from earlier research to apply to our problem. The

main focus of the pilot project was the time series forecasting of our data, less so on spatial

forecasting. We present most of our pilot project findings in this thesis, some of which are in

the next section.

2.2 Data Set

The EMCC department at OUH, and the Norwegian National Advisory Unit for Prehospital

Emergency Medicine (NAKOS) provided the data set used in this thesis. The data set contains

an anonymized set of incidents from the 1st of January, 2015, to the 11th of February, 2019.

The anonymization of the data set is achieved by mapping each incident to a 1x1km grid

cell, acquired from SSB, and assigning the ID of the cell to the incident. The anonymization

allows us to maintain a high resolution of the data while still preserving the anonymity of

those involved in the incidents.

The initial processing of the data set consists of three steps: removal of duplicate rows,

filtering events outside the years 2015-2019, and removal of events outside the borders of

Oslo and Akershus. The filtered data set is presented in Table 2.1. We see a stable increase

in incidents each year, except for 2019, where the data set ends in February. We can also see

that most incidents are acute or urgent, making up 80.9% of total incidents in the data set.
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Table 2.1: Summary of the filtered data set.

(a) Incidents per year.

Year Number of incidents

2015 118 384

2016 135 749

2017 139 076

2018 146 416

2019 18 520

Total 558 145

(b) Incidents per level of urgency.

Urgency Number of incidents

Acute 237 732

Urgent 213 520

Unplanned regular 56 489

Planned regular 50 404

Total 558 145

2.2.1 Incident Data with Urgency Levels

First, we begin by looking at the average distribution of different incidents throughout the

hours of the week. The four different levels of urgency used in this thesis are as follows:

Acute The most urgent of incidents, suspected to be a matter of life or death.

Urgent High urgency, should be handled as quickly as possible but can wait if more urgent

incidents are being handled.

Unplanned regular Low urgency, usually queued for periods of low demand and can be handled

multiple hours after a call is received.

Planned regular Planned events, such as transport for medical examination, outpatient trans-

port from hospitals.

Sun 00:00 Mon 00:00 Tue 00:00 Wed 00:00 Thu 00:00 Fri 00:00 Sat 00:00 Sun 00:00
0
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10

Acute
Urgent
Unplanned Regular
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Figure 2.1: Mean number of incidents per urgency level throughout a week.
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Looking at Figure 2.1, we can see that the regular unplanned and regular planned events are

usually within the working hours on weekdays. We also see a higher demand generally during

the day than during the night, which appears to follow a fixed interval of approximately 24

hours.

Presented in Figure 2.2 is the distribution of events per grid cell for the complete data set.

We can see that there are some high-demand areas concentrated in and around the center of

Oslo. These high-demand areas are not that surprising, as the population density is higher

in this area.

Figure 2.2: All incidents in the filtered data set, mapped out over Oslo and Akershus.

Furthermore, looking at the distribution per urgency level in Figure 2.3, we see the same as

presented in Table 2.1; the acute and urgent incidents make up a large part of the data.
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Figure 2.3: All incidents in the filtered data set, mapped out over Oslo and Akershus, split

into each urgency level.

From the above distributions, we can see the problem with sparsity discussed in Haugsbø

Hermansen and Mengshoel (2021), where about half the cells have zero incidents in the

complete data set. There are at most 36 distinct cells with incidents in a given hour, out



10 CHAPTER 2. BACKGROUND AND MOTIVATION

of a possible 5569 cells. The number of cells with zero incidents is an issue we want to

explore further in our thesis and look at ways we can overcome the issue with sparsity in the

distributions of incidents.

2.2.2 Population Data

Looking at population data for a geographical area might help us better understand where

high-demand areas are. Intuitively, incidents requiring medical assistance do not happen

without people present, and there are bound to be incidents where there are people. Al-

though the population data does not tell us where people are at any given time, it is a good

indicator of where some incidents happen. Discussion with OUH has informed us that a large

proportion of reported incidents happen in the person’s own home.

Figure 2.4: Population data for Oslo and Akershus. Data from Statistics Norway (SSB) 1.

1https://kart.ssb.no/share/7e9bd10aca46



2.3. INITIAL ANALYSIS OF DATA SET 11

As we can see from Figure 2.4, a lot of high population areas coincide with high-demand

areas as presented in Section 2.2.1. Still, there are high-demand areas that do not have a

corresponding high population. Looking further into this issue and comparing the different

urgency levels, we see that several regular events are concentrated around hospitals in the

region. We believe this is patient transport between hospitals or similar activity. Further-

more, we can look at the number of cells with different levels of population and demand in

Figure 2.5.
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Figure 2.5: Distribution of grid cells with regards to demand and population in the data set.

We can see some disparity between demand and population in the cells. The relatively high

disparity between the number of cells with 1 - 10 incidents and population is interesting. We

believe these cells might be tourist routes or similar, where few people live, but more people

visit throughout the year.

2.3 Initial Analysis of Data Set

As the first step in our analysis, we want to look at the autocorrelation of our time series.

Autocorrelation is the correlation between lagged variables in a univariate time series, with

one value ck for each k level of lag giving the correlation between x t and x t−k. To find

the autocorrelation, we begin with the autocovariance ŷk between x t and x t−k given by

Equation (2.1) where k is the lag.

ŷk :=
1
n

n−|k|
∑

i=1

(x i+|k| − x)(x i − x), −n< k < n. (2.1)
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The autocorrelation function is then given by the autocovariance between x t and x t−k di-

vided by the autocovariance of x t with itself, as given in Equation (2.2). Here, x is the mean

of x1, ..., xn.

ck =
ŷk

ŷ0
=

∑n−|k|
i=1 (x i+|k| − x)(x i − x)
∑n

i=1(x i − x)2
, −n< k < n. (2.2)

By plotting the autocorrelation of a time series, we can illustrate potential trends and sea-

sonal components present in the series. If the autocorrelation increases or decreases with

increased lag, we have indications of a trend in the series. Peaks in the autocorrelation at

regular intervals will indicate seasonality with a frequency equal to the interval between the

peaks.
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Figure 2.6: Autocorrelation of daily incidents for the full time period of the time series. Lags

of 365 days are marked on the x-axis. See Figure 2.7 for higher detail from hourly incidents

in March 2018.

From Figure 2.6, we can see some semblance of peaks at 365 days lag, indicating a season-

ality of 365 days periods. The smaller but recurrent peaks at approximately seven days of

lag are also worth noting, which are also present in Figure 2.7. Further, we see a downward

slope in the autocorrelation, indicating an increasing trend in the time series. This is also
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reflected in the data presented in Table 2.1 in Section 2.2.
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Figure 2.7: Autocorrelation of hourly incident, an excerpt from March 2018. This pattern is

repeating for other months in the data set as well.

Looking at Figure 2.7, we see a strong tendency of seasonality at 24-hour periods and an

even stronger seasonality at 168 hours, i.e., a week. The trend is close to constant as the

period for the autocorrelation is too narrow. These findings indicate that further exploration

of the seasonality and trend of our data is possible and might help us better understand the

data and improve forecasting accuracy.





Chapter 3

Theory

Our thesis presents several models and concepts focused on forecasting ambulance demand.

This chapter presents theoretical concepts and background that form the basis of our pro-

posed models. Here we introduce theory related to time series, applicable statistical models,

artificial intelligence methods, neural networks, and error metrics used in our research.

3.1 Time Series

This section gives an introduction to time series and methods used to analyze them, some of

which are retrieved from the book Introduction to Time Series and Forecasting (Brockwell &

Davis, 2002).

A time series is a series of observations y = [y1, y2, ..., yt], observed over time, typically

at regular periods of time called a discrete-time series. Here, yt denotes the ambulance

demand at time t for our time series and is a real positive integer. The resolution of the

time series refers to the interval between observations. A time series is either univariate

or multivariate. A univariate time series consists of a single value yt observed at a time

t. Any forecasting made on these observations is heavily based on the pattern of the time

intervals. A multivariate time series contains multiple variables x t = [z0, z1, ..., zn] observed

at a time t. In other words, spatio-temporal data is a form of multivariate time series where

the geographical location of the observation is one of the variables. By aggregating spatio-

temporal data to a larger geographical area, the resulting time series might be univariate

if no other variables are present. On the other hand, one could look at each geographical

location independently, thus creating a collection of univariate time series.

A time series is said to be stationary if each observed value yt is independent of other ob-

15
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servations and the time of observation. In the case of a nonstationary time series, one can

extract information about the observation, given that we know which time the observation

was made. The dependence of an observation on the time of observation might be expressed

as, e.g., a seasonal component, a recurring element at fixed time intervals. This notion is

also introduced in Section 2.3 through the autocorrelation of a time series.

3.1.1 Time Series Decomposition

A nonstationary time series expressing seasonality and trend can be decomposed to yt =
st + mt + rt where yt is the observation at time t, st is the seasonal component, mt is the

trend, and rt is the residual component. A trend is a pattern in data that shows a shift in

the average values of a time series over a longer period. Seasonality refers to seasonal char-

acteristics and predictable patterns in data and is not restricted to the four annual seasons.

The residual component is the remaining variation not captured by the trend and season-

ality components. Adjusting for the seasonal component leaves one with a residual and a

trend component, both possible subjects to regression or machine learning. In EMS, a typ-

ical seasonality may be seen throughout the day, with nightly hours having a lower demand

than during the day. As discussed in Chapter 2 and shown in Table 2.1 there is an increasing

trend. Equation (3.1) shows how the forecast from residual and trend can be combined with

the seasonal component, giving back a forecast ŷt+h, where p is the period of the seasonal

component, h is the forecast horizon, and n= ⌈ h
p ⌉.

ŷt+h = st+h−np + m̂t+h + r̂t+h. (3.1)

To exemplify Equation (3.1), if we have 200 observed events, and a seasonality with a period

of 168, and wish to predict 2 steps after the last observed event, we get t = 200, h = 2,

p = 168, and n= ⌈ 2
168⌉= 1, as values for our parameters. We thus get ŷ202 = s34+m̂202+ r̂202,

such that the predicted value is the sum of the predicted trend at step 202, the predicted

residual at step 202, and the seasonal component at step 34. Since the seasonal component

repeats itself after every period of 168 steps has passed, the seasonal component at step 34

is predicted to have the same value as it would at step 202. On the other hand, both the

trend and residual have to be forecast in another way.

3.1.2 Forecasting

Several methods exist for forecasting time series data, some simpler than others. Some ex-

amples of simple forecasting methods are simple moving average (SMA) and naïve forecast-
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ing. A moving average amounts to analyzing data points in a time series by using the averages

of different subsets of the data. There are several variations of moving average models. Some

variations also make use of autoregression such as autoregressive integrated moving average

(ARIMA) models, as well as seasonality such as seasonal autoregressive integrated moving

average (SARIMA) models.

Simple Moving Average

In an SMA model, the last w values are used to create averages. For an SMA model with a

window w< t, the value of the SMA can be calculated as shown in Equation (3.2).

ŷt+1|t =
1
w

t
∑

i=(t−w)

yi . (3.2)

Naïve Forecast

Naïve forecasts predicts a value observed h steps in the past. For h = w = 1, naïve forecast

and SMA gives the same forecast. Naïve forecast for a time t and a horizon h is calculated

as shown in Equation (3.3).

ŷt+h|t = yt . (3.3)

3.2 Error Metrics

Most AI research is dependent on a common ground to assess the results and capabilities of

models. To quantify the error of a prediction compared to an actual sample, we use error

metrics. The application of an error metric is different between different tasks and predicted

values. Some error metrics are preferable when comparing two probability distributions,

while others are relevant for single-value predictions.

3.2.1 Mean Absolute Error

Mean absolute error (MAE) measures the average absolute difference between a predicted

and target value, equally punishing for overestimating and underestimating. This quality

makes it suitable as an error metric for value forecasting and regression. MAE can be calcu-

lated using Equation (3.4)
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MAE( ŷ , y) =

∑n
i=0 | ŷi − yi|

n
. (3.4)

3.2.2 Mean Squared Error

Mean squared error (MSE) measures the squared difference between two values. Similar

to MAE, it equally punishes for underestimating and overestimating the target value. Since

MSE squares the difference, larger differences between the two values are punished more

severely than with MAE. This property makes it a common error metric in machine learning

models if it is a priority to avoid large differences between predicted and target values. The

mathematical definition of MSE is presented in Equation (3.5)

MSE( ŷ , y) =

∑n
i=0( ŷi − yi)2

n
. (3.5)

3.2.3 Categorical Cross-Entropy

Categorical crossentropy (CCE) is a measure of the entropy between two probability dis-

tributions, often used to minimize the difference between two probability distributions in

optimization.

CC E( ŷ , y) = −
n
∑

i=0

yi log ŷi . (3.6)

3.3 Artificial Neural Networks

Biological structures and concepts have inspired many methodologies within AI, and artifi-

cial neural networks (ANN) are no different. Biological brains have inspired ANNs, and the

artificial neurons make use of a lot of the concepts from how a biological neuron propagates

information. The propagation of information from one neuron to the next depends on the set

of inputs to the neuron. For each incoming connection to the neuron, a weight is multiplied

by the activation value from the previous neuron. These weighted incoming values are then

summed. Each neuron has an activation threshold, and when the sum from the previous

neurons is above the threshold, the neuron fires its output. This output is then propagated to

the next neuron with associated weights until the output neurons are reached. This process

is presented mathematically in Equation (3.7), where wi j represents the weight from neuron

j to neuron i, x j is the output from neuron j, and bi represents the bias of neuron i.
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zi =
∑

j

wi j x j + bi . (3.7)

An activation function decides the threshold of activation for a given neuron, and the ac-

tivation function acts in two ways. The first part of the activation function is the threshold

for activation. Some activation functions propagate zi directly (linear activation). In con-

trast, other activation functions employ a ramp function such that all values zi below a given

threshold propagates a 0, and values above the threshold propagate zi directly (ReLU activ-

ation). The second part of the activation function is what information to propagate. Some

activation functions propagate the exponential values of zi (exponential activation), while

some are logistic functions (sigmoid activation). Which activation to choose depends on

many factors, and the resulting network will display different properties based on the activ-

ation chosen for each node. Formally, a neuron’s output x i is given in Equation (3.8), where

σ is an activation function.

x i = σ(zi). (3.8)

3.3.1 Multilayered Perceptron

There are different ways of implementing ANNs, one of which is a fully connected feed-

forward neural network structured in layers, namely an MLP. Single-layered neural networks

consist of only one input layer and one output layer. However, these networks can only

approximate linearly separable functions, e.g., classification tasks where one can separate

two classes with a simple line. When the function is not linearly separable, we can use MLP

to represent convex regions in high-dimensional space. It has been proven that multilayer

feed-forward networks are universal approximators, even with only a single hidden layer,

given a sufficient number of hidden units (Hornik et al., 1989). Figure 3.1 illustrates an

example of a three-layer MLP, with three input nodes, one output node, and two hidden

layers.



20 CHAPTER 3. THEORY
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Figure 3.1: A simple MLP with one input layer, two fully connected hidden layers and an

output layer consisting of one output node.

3.3.2 Supervised Learning

Even though one can design and implement neural networks with predefined weights and bi-

ases for each neuron, most modern neural networks apply some way of updating the weights

and biases of the network. One way to update the weights of a neural network is through

supervised learning. In supervised learning, we have a data set with a solution, or a target,

for each input. The goal of the model is to create a mapping function ŷ̂ŷy = f (xxx;Θ), where

xxx = [x1, x2, ..., xn]T are the input values of n neurons and ŷ̂ŷy = [y1, y2, ..., ym]T are the out-

put values of the m output neurons, having ŷ̂ŷy be an approximation as close as possible to

the target yyy . Θ represents the weights and biases of the network. Given that we know the

true target of our data, the error between ŷ̂ŷy and yyy can be computed and used to update

the weights and biases of the network. This process involves a loss function, L( ŷ̂ŷy , yyy), which

returns a measure of how different the output and target are. Some examples of possible

loss functions are presented in Section 3.2.

K-Fold Cross Validation

K-fold cross-validation can be used to validate a proposed model using supervised learning.

This method splits the data set into k subsets of equal size. We use k−1 subsets for training

and the remaining subset for validation during the validation phase. This process is repeated
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k times until all subsets have been used as validation sets. Using k-fold cross-validation is

a way to better estimate the model’s performance, as different training sets might uncover

overfitting of the model on a given subset of data.

Overfitting

When approximating a mapping function from a set of inputs to outputs, we are looking for

the most general model. This is analogous to polynomial regression for noisy data, where a

lower degree is usually more general while higher degrees can perfectly fit every point of the

observed values. We are more likely to have new observations closer to the generalized model

than the complicated model if we introduce new observations. If we have two relatively equal

models, we are inclined to keep the more generalized and straightforward model, following

the principle of Occam’s razor. Figure 3.2 presents a visual example of overfitting, where

the actual function is the green line, and the approximated function is the red line, fitted

to the initial observations marked in yellow. The approximation is not precise when new

observations, marked in purple, following the actual function are presented.

Figure 3.2: Illustration of the problem with overfitting. The true function is represented by

the green line, the approximated function is the red line. Yellow points are initial observations

and purple points are introduced after fitting the function to the yellow points.

One way to avoid overfitting is through the use of regularization techniques. One of the most

commonly used regularization techniques in supervised learning is early stopping. A simple

implementation of early stopping may use the validation set from a train-test-validation split

of the data set to monitor the performance for each epoch of training. Given a value p for

patience, if the model cannot improve within p epochs, early stopping is triggered, and the

model stops the training process to avoid overfitting.
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3.3.3 Optimizers

Optimizers are functions used to adjust parameters, to minimize an objective function. In

an ANN, optimizers are commonly used to adjust weights within the network, where the

objective function is the loss function. Most implementations of optimizers apply the gradient

of the loss function and take a step in the opposite direction of the gradient. This process is

used in the backpropagation algorithm to propagate the error to weights and biases through

the network layers.

Gradient Descent

Gradient descent (GD) is a commonly used optimizer for ANNs. The weights w j at iteration

i+1 is updated based on the previous value with the learning rate αmultiplied by the partial

derivative of the loss function L with respect to the previous weight subtracted. One of the

drawbacks of GD is that it is prone to finding local minima rather than a global. This update

of weights is formulated in Equation (3.9), where θi represents the collection of weights at

step i.

θi+1 = θi −α
∂

∂ θi
L(θi). (3.9)

Adam

Adam is an alternative optimizer to GD presented by Kingma and Ba (2014). The method was

designed to combine advantages of AdaGrad (D. Xu et al., 2021) and RMSProp (Tieleman,

Hinton et al., 2012). Similarly to GD, Adam uses the previous values of parameters and the

learning rate multiplied by a function to update parameters. Rather than directly using the

gradient of the loss function, Adam uses a momentum based function where mi and vi are

moment vectors calculated using the gradient of the loss function, and ε is a small positive

number to avoid division by zero. This update is formulated in Equation (3.10), where θi

represents the collection of weights at step i and α is the learning rate.

θi+1 = θi −α
mip
vi + ε

. (3.10)

3.3.4 Derivative-Free Optimization

In some cases, we do not have a differentiable loss function, but we still want to be able

to perform weight updates to an ANN. Derivative-free optimization (DFO) is a technique
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where the goal is to approximate a mapping function from a set of inputs to a set of out-

puts as before, without using information about the derivative of the loss function. Some

examples of derivative-free algorithms are random search (Anderson, 1953), Bayesian op-

timization (Močkus, 1975), particle swarm optimization (Kennedy & Eberhart, 1995), and

evolutionary algorithms (EA) which we will present in Section 3.5. The process of DFO is

usually formulated as a search problem, where we search for optimal weights and biases to

approach a given function. We still need some information about the network’s output com-

pared to the true target to evaluate and update weights accordingly. In the case of EAs, this is

a fitness function that measures the performance of different settings of weights and biases

in the network. Weight update is performed with an appropriate representation of weights

that undergo the usual process of an EA to create new settings of weights and biases.

3.4 Optimal Transport Problem

In Section 3.2, we introduced an error metric used to compare two probability distributions,

CCE. Even though this loss function is highly applicable to distributions, some limitations

would be relevant to try to overcome. When applying CCE we are looking at the relative

entropy between two distributions P(x) and P ′(x). CCE does not take the relative distance

between two points in the vector space of P(x) and P ′(x) into account, also known as the

Wasserstein distance, i.e., a measure of the minimum cost of transforming a probability dis-

tribution P ′ into a target P.

The Wasserstein distance can be formulated as an optimal transport problem, which is an

optimization problem. This implies that to use Wasserstein distance as an error metric, we

would have to know that our calculated distance is the optimal solution to the problem,

which is not a guarantee. Instead, some implementations employ an ANN to estimate the

Wasserstein distance, such as in Wasserstein generative adversarial neural network (WGAN)

(Arjovsky et al., 2017). In this example, an ANN called a generator provides a distribution,

and another ANN called the discriminator estimates the Wasserstein distance between the

generated sample and the real sample. The estimated distance is then used to update weights

during backpropagation in the networks.

3.5 Evolutionary Algorithms

Evolutionary algorithm (EA) is considered a modern heuristics-based search method and is a

technique for optimization and search problems. Darwinian evolution has inspired the core
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concept of EAs, often referred to as "survival of the fittest.". Evolution in EAs is done in much

the same way as natural evolution; through selection, recombination, mutation, and evalu-

ation. An EA allows for performing simulations of multiple generations where the selection

is based on a fitness function, which is the heuristic intended to push the evolution in the

right direction. Fitness functions are objective functions designed to evaluate individuals of

a population, subject to either maximization or minimization. The score of the fitness func-

tion is used to select the fittest individuals to include in the next generation of individuals,

usually with some randomness included.



Chapter 4

Related Work

This section presents previous work related to our problem area. In Section 4.1, we look

at work on demand forecasting in several domains, providing a general overview of the

usefulness of demand forecasting. Section 4.3 introduces a more specialized case of demand

forecasting, namely spatio-temporal forecasting, looking at different resolutions of spatio-

temporal data. As there is already done research on ambulance demand forecasting in Oslo,

this will also be reviewed in this chapter.

4.1 Demand Forecasting

Many industries and services require precise demand forecasts to make short- and long-term

operational decisions, and AI has proven to be a powerful tool in demand forecasting. Typ-

ical methods used to forecast demand are regression models, neural network models, or a

combination of these. Regression models have been successfully applied to forecast attend-

ance to soccer matches (Yamashita et al., 2022), demand in e-grocery (Ulrich et al., 2021),

short term electrical load demand (Y. Chen et al., 2017; Fattaheian-Dehkordi et al., 2014),

urban water demand (Brentan et al., 2017) and tourism demand (K.-Y. Chen & Wang, 2007).

Similarly, neural network models have been successfully applied to forecast station-free bike

sharing demand (C. Xu et al., 2018), long-term reservoir inflow (Herbert et al., 2021), out-

patient department demand (Jiang et al., 2017) and cash demand in ATMs (Venkatesh et al.,

2014).

Y. Zhang et al. (2021) introduces a decomposed deep learning approach to forecast tour-

ism demand. The authors argue that two underlying problems are limiting the potential of

deep learning models for predicting tourism demand; limited access to data volumes and

25
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additional explanatory variable requirement. The proposed solution uses a decomposition

method, STL (Cleveland et al., 1990), decomposing the tourism volume into three compon-

ents: trend, seasonality, and residual. The deep learning model is then trained on trend and

residual, giving back a prediction for both, combined with the seasonality component to

provide a total volume prediction.

4.2 Time Series Decomposition and Forecasting

As discussed in Section 3.1.1, a nonstationary time series is possible to decompose into a set

of components, usually in the form of a seasonal component, trend component, and residual.

Y. Zhang et al. (2021) makes use of STL to accomplish this decomposition. In comparison,

Basak et al. (2017) aims to improve the STL-decomposition to preserve extrema in time series

smoothing in soil moisture analysis. The proposed model is a novel method, HyperSTL, im-

plementing a stochastic optimization to minimize an objective function over the residual and

trend. This objective function is composed of three weighted terms. The first term contains

the residual variance. The second term includes the residual range to account for extrema

carried over to the residual. The final term is a measure to keep the trend component smooth.

The optimization result is a smooth trend component replicating the time series while also

providing forecasts on the time series. Basak et al. (2017) notes that the objective function

is not the only possible function, and other applications of HyperSTL might need a different

objective function. Regarding ambulance demand, this approach might require a different

objective function. The approach to preserve extrema, especially peaks, is an important trait

in our problem area, considering a forecast of demand indicates the required ambulance crew

in a given period and having too few crew members available could have dire consequences.

Another decomposition method is singular spectrum analysis (SSA). SSA is a non-parametric

spectral estimation method that can be used to decompose a time series into a sum of com-

ponents. As opposed to STL, SSA does not require the period length to be predetermined.

Basic SSA consists of two stages: decomposition and reconstruction, each with its own two

steps. First, map the time series to a trajectory matrix. Then decompose the matrix using

single-valued decomposition. The third step is grouping these matrices. Finally, applying di-

agonal averaging produces a reconstructed series. SSA has successfully been applied for de-

composition of rainfall times series (Wu et al., 2010). In this paper, a modular artificial neural

network (MANN) was used to predict the residue from the decomposition. The model was

measured against several other forecasting methods and outperformed every other method.
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4.3 Spatio-Temporal Demand Forecasting

With a worldwide increase in population and urbanization, spatio-temporal data forecasting

has proven to be a useful tool with numerous applications within cities. Spatio-temporal

forecasting is the science of predicting when and where something will happen. Applications

include traffic forecasting (Yu et al., 2017), solar power forecasting (Tascikaraoglu et al.,

2016), and ambulance demand forecasting. When discussing spatio-temporal forecasting,

the resolution is an important factor. The following sections discuss different approaches to

spatio-temporal forecasting at different resolutions.

As spatio-temporal forecasting is a general term used for several different applications, there

are not any formal definitions of what counts as high or low resolution. The resolution ne-

cessary to provide valuable information is highly domain-dependent. For example, temporal

forecasting in financial markets requires a precision of minutes or even seconds (Zanc et al.,

2019). Any temporal forecasting predicted with a lower resolution than minutes could thus

be considered low resolution. As for ambulance demand forecasting, temporal resolutions

of minutes are not feasible, and to our knowledge, there is no research done with a higher

temporal resolution than hourly forecasts. Still, it may be helpful to assign high or low res-

olution to forecasts, as the information gathered from high and low resolution differs. We

define high temporal resolution as a maximum of 4 hours and low resolution as 24 hours

and above. Similarly, high spatial resolution is at a maximum of 4×4 km, and low spatial

resolution is defined as entire regions at a time, usually cities and municipalities or even en-

tire counties. We also consider research focused on only time-series forecasting for an entire

city as low spatial resolution, even though the spatial factor is not considered.

Some related work regarding ambulance demand forecasting introduces the MEDIC method

as a commonly used method in the industry and is a good baseline for evaluating forecasting

models. The MEDIC method is a modification of the moving average, where similar hours

from past weeks and years are used to forecast the demand. More specifically, MEDIC takes

the average number of incidents for the same hour of the week for the past four weeks and

from the same weeks of the past five years. This results in 20 observations assumed to be

relatively similar to the one we want to forecast. For example, if we want to forecast incidents

between 12:00 and 13:00 on the Monday of week 42 in 2022, we look at the number of

incidents between 12:00 and 13:00 on Monday of weeks 38-41 of 2018-2022.



28 CHAPTER 4. RELATED WORK

4.3.1 Low Spatial and Temporal Resolution

Low-resolution spatio-temporal forecasting has been used to examine how weather affects

the daily demand for ambulance services in Hong Kong (Wong & Lai, 2012). Using regression

analysis, Wong and Lai found a few significant causal relationships between weather factors

and daily ambulance demand. The study found that weather impacted demographic groups

differently. Older people and patients with severe conditions were more prone to the weather

than younger people.

Huang et al. (2019) presents an approach to forecasting daily ambulance demand in the

city of Ningbo, China. This approach is a combined model applying neural networks, genetic

algorithms, and regression models. The proposed solution assumes that the data follows a

Poisson distribution, i.e., the probability of observing X incidents in a given period. With

this assumption, a Poisson neural network (PNN) is implemented with an exponential ac-

tivation function, which gives a probability density function that is subject to maximizing.

The initialization of the weights in the network is done with a genetic algorithm, where the

weights and thresholds of the network are represented as the chromosome, and the fitness

function is given by minimizing the inverse logarithmic probability density function, i.e.,

F = 1
ln(P) . The output of the network is combined with three regression models: multiple

linear regression (MLR), ARIMA, and multivariate gray (GM) to estimate the residual de-

viation, and a weighted average is applied to the output from the three models. The input

of the neural network includes data for the date, weather conditions, and incidents in the

previous six days. We find the approach interesting to explore further. However, we are in-

clined to evaluate whether the assumption of a Poisson distribution holds or not without any

further preprocessing of our data.

4.3.2 Low Spatial and High Temporal Resolution

An example of low spatial and high temporal resolution forecasting is the work of Matteson

et al. (2011). In this paper, the authors explore forecasting hourly demand in Toronto based

on data from 2007 to 2008. With Setzler et al. (2009) as a baseline, the authors generate

improved forecasts of the hourly demand, using integer-valued time series with a dynamic

latent factor structure. Smoothing splines are incorporated to estimate the factor levels and

loading to improve the long-term forecast.
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4.3.3 High Spatial and Low Temporal Resolution

A. Y. Chen et al. (2016) use support vector regression, artificial neural networks, and regres-

sion to forecast ambulance demand for New Taipei City. Forecasting is done for both 3-hour

buckets and daily demands for 3km × 3km and 2km × 2km, respectively. The spatial and

temporal resolution was chosen based on an attempt to find a balance between accuracy

versus data sparsity. The models were trained and tested on data from 2010 to 2012 with

about 140 000 incidents per year. As for the model input, seven cases are presented with a

different combination of input parameters. Some of these input combinations include a fea-

ture for weekends and the day of the week. The argument for adding this extra parameter,

even though it is implicated by the day of the week, is that adding this weekend feature adds

an obvious measure for the model as the weekend demand differs noticeably from week-

days. The same arguments are used to explain the addition of a season input feature, being

a number from one to four, representing spring, summer, fall, and winter. The authors believe

that EMS managers can use the results from the paper to allocate ambulances. As for future

work, they believe that more input features could be included to increase the model’s accur-

acy. These features include traffic conditions, national holidays, temperature, and population

density.

4.3.4 High Spatial and Temporal Resolution

Setzler et al. (2009) designs an ANN to forecast ambulance demand in Mecklenburg County,

North Carolina, USA. The ANN predicted ambulance demand for several combinations of

1-3 hour time buckets and 2-4 square mile grids. The neural network follows a feedforward

multilayer perceptron model. A single hidden layer is added to the model to capture the

nonlinear relationships between the input and the output. The authors argue that there is

no significant benefit to the model of adding more than one layer in causal forecasting. This

hidden layer consists of four hidden nodes. Compared to the MEDIC method, the proposed

model scored slightly better on a 4×4-mile grid. It scored evenly on a 3×3-mile grid and

slightly worse on a 2×2-mile grid. In addition to this, the authors found that forecasting

only zeros outperformed both models.

Zhou and Matteson (2015) proposes a spatio-temporal kernel density estimation (stKDE)

to address the challenges of high spatial and temporal demand forecasting. Kernel density

estimation has been successfully applied to several different areas of spatio-temporal fore-

casting, such as crime incidence (Brunsdon et al., 2007; Nakaya & Yano, 2010), disease

spread (Wilesmith et al., 2003; Z. Zhang et al., 2011) and data stream (Aggarwal, 2003;

Procopiuc & Procopiuc, 2005). The authors model Toronto’s ambulance demand over a con-
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tinuous spatial domain and a temporal domain of one-hour intervals. A bivariate spatial

kernel is placed at the location of each past observation, weighted with a weight function.

The weight function aims to capture the usefulness of each past observation for predicting

demand in a future period. Each location in the spatial domain is placed into a grid cell of

5×5 km. Within each cell, it is assumed that the usefulness of past observations to predict

future events is only dependent on how far back in time the observation is. The resulting

model scored highly on forecast accuracy while requiring low computational power.

4.3.5 Ambulance Demand Forecasting in Oslo and Akershus

Using the same OUH data set as this thesis, Haugsbø Hermansen and Mengshoel (2021)

explore different machine learning methods for predicting the ambulance demand in the

Oslo area. The authors use split and combined machine learning models to forecast demand

at hourly intervals and 1 × 1 km grid cells. For the volume and complete models, different

combinations of the number of hidden layers and nodes in each layer were tested for both

MLP and LSTM. Volume models also include both MLP and LSTM, as well as the average

distribution of the demand for the entire test data. Additionally, the authors wanted to see

if online learning could improve their models.

The authors tested their models with four different sets of inputs. These sets consisted of a

combination of the hour, day of the week, day, month, precipitation, and temperature. All

input features based on time were one-hot encoded. At the same time, precipitation and

temperature were encoded as floats. They included the day’s weather divided into 3-hour

intervals, resulting in 16 input features for each time slot.

The authors implemented MEDIC, Setzler et al. (2009), and all zeroes as baselines to com-

pare their models to. The results from the study suggested that split models were superior

to the complete models. The authors suggested that this was due to the split models learn-

ing two more straightforward problems than the combined model, which had to learn one

single problem composed of the two, and the relationship between them. The best perform-

ing volume model, surpassing the performance of both MEDIC and Setzler, was an MLP using

hour, day of the week, and month as input features. As for the distribution models, they did

not improve upon the baseline of averaging all events across the data set. All machine learn-

ing models were improved when online learning was applied.
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4.4 Spatial Aggregation

A lot of related work presented in the previous sections is somewhat hung up on the concept

of grids of both the original size and different sizes. An issue with this is noted by Setzler

et al. (2009); zero-inflated demand distributions are created when scaled to finer degrees of

spatial resolution. Setzler et al. (2009) suggest that future research should focus on varying

population densities in order to determine optimal or near-optimal geographic grid size and

time intervals.

This notion is supported by Martin et al. (2021), who argues that "while fixed geographic

grid layouts provide a straightforward approach to spatial segmentation, the equal division

of space does not account for the unequal distribution of populations and associated call

demand.". Martin et al. (2021) applies K-means clustering to create 7, 8, and 9 clusters

based on call volume density and population density while maintaining a low Euclidean

distance from the centroid to each sample in the cluster. The authors then apply an MLP-

model to each cluster and perform time series forecasting, outperforming MEDIC, SARIMA

and Holt-Winther’s exponential smoothing method.

A different approach to spatial aggregation concerning the domain of ambulance optimiza-

tion is optimizing the location of ambulances on standby. Aytug and Saydam (2002) proposes

an approach using a genetic algorithm (GA) to solve a maximum expected covering location

problem. The authors design a GA to apply to a set of generated test problems, and the res-

ults are compared to a random search measuring the frequency of solutions reaching a given

percentage of an optimal solution. The findings of Aytug and Saydam (2002) underline how

a GA can create a coverage segmentation with a set of given constraints and objectives to

optimize and how well it outperforms a basic random search.

4.5 Discussion

As discussed in Chapter 1, we aim to provide forecasts at a high resolution as this yields

the most useful information. As Haugsbø Hermansen and Mengshoel (2021) already have

researched forecasting ambulance demand in Oslo and Akershus, using the same OUH data

set we are, there is much inspiration to be gained from their paper. The authors argue that

split models were more suited than complete models for this problem area. The assumption

that it is easier to train two distinct models, giving them each a more straightforward task,

rather than one model a more difficult task, seems reasonable and will be used going forward.

The input features that yielded the best volume prediction results in this study consisted

of the hour, day of the week, and month as one-hot encoded values. We believe there are
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possibly other input features that can be included to improve forecasts and therefore want

to explore this area further.

Given the indication of seasonality within the data set, creating a hybrid model using time

series decomposition and neural networks could be an interesting approach. STL was suc-

cessfully combined with machine learning in Cleveland et al. (1990), and we believe this, in

addition to SSA, could be interesting to explore further. We believe that PNN proposed by

Huang et al. (2019) cannot be directly used for hourly predictions, as the hourly ambulance

demand volume does not seem to be stationary. Additionally, we can see that the ambu-

lance demand increases each year, and both these features go against the assumption of our

time series following a Poisson distribution. Still, we are inspired by the idea presented and

want to incorporate the main ideas of the method, but without the parts associated with the

Poisson assumption. This idea is further explored in Chapter 5.

Looking at the applied methods of K-means and GA to solve problems related to ambulance

coverage, it is interesting to explore this area for our forecasting models further. Although

we do not aim to solve a maximum expected covering location problem, we are interested in

ways to better distribute population and call volume to create an equal distribution, thereby

reducing the number of locations with 0 incidents.
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Prediction Methods

The goal of our research is divided into three research questions. For each question, we

provide models that will allow us to answer these questions. Our primary research question

concerns forecasting at the highest resolution of our data set, which is 1×1km grids and

hourly periods. We are also interested in working with spatial aggregations and studying

different aggregations that are still reasonable to use for OUH.

In this section, we propose and implement various models for forecasting, both spatial and

temporal, and models for aggregating spatial data. These models are compared to each other

and models proposed in related work looking at the same problem area.

Section 5.1 explains our preprocessing of the data set and initial analysis based on a set

of different statistical models, such as STL. These statistical models allow us to produce

stationarized time series, in which we use the residual component to perform predictions

with neural networks to try to improve forecasts.

A common factor for our models is the necessity of data input. Different sets of input fea-

tures are required or preferred in different situations. Table 5.1 lists all the features we use

as input for our machine learning models. We will exclusively represent all our inputs as a

one-hot encoded vector except for the year. We will represent the year either as a one-hot

encoded vector or a numerical value between 0 and 1. Since 2015 is the first year present in

our preprocessed data set, we will subtract 2015 from the year, such that the year will be a

value between 0 and 4. We then divide the number by 4, such that the final representation is

a decimal between 0 and 1. We will refer to the year’s one-hot encoded and numerical rep-

resentations as (Y+O) and (Y+N), respectively. Table 5.2 shows the resulting representations

of the year as an input feature.
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Table 5.1: Different representations of data used as input to MLP.

Data Encoding

Hour of the day (H) One-hot encoded

Day of the week (D) One-hot encoded

Week of the year (W) One-hot encoded

Month (M) One-hot encoded

Year (Y+O) One-hot encoded

Year (Y+N) Numerical value in the interval [0, 1]

Table 5.2: Representations for year as a one-hot encoded vector and numerical value.

Year One-hot encoding (O) Numerical value (N)

2015 [1,0,0,0,0] 0

2016 [0,1,0,0,0] 0.25

2017 [0,0,1,0,0] 0.5

2018 [0,0,0,1,0] 0.75

2019 [0,0,0,0,1] 1

5.1 Preprocessing and Data Analysis

Experiment goal Further explore the data and apply statistical methods and analysis to pro-

pose ways to extract recurring elements, constant variables, and noise to simplify the

problem space.

Data Filtered data set summed for each hour of the period January 1st 2015-February 11th

2019.

As introduced in Section 2.1.2, a pilot project was conducted before the beginning of this

thesis. The aim of this pilot project was the same as the experiment goal presented above.

A simplified method of our pilot project is presented in this section, as we base a lot of our

experimental methods on the pilot project’s findings. The findings of our pilot project are

presented in Chapter 6.

The initial filtering of our data set included removing incidents outside Oslo and Akershus,

removing data from before 2015, and removing duplicate incidents. In addition to our initial

filtering, we also remove all planned regular events from our data set. Since these events are

planned, we do not see the need to forecast them. This step was also done by Haugsbø Her-

mansen and Mengshoel (2021). After the preprocessing of the data is done, we can analyze
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the data. The initial analysis is mainly presented in Section 2.2 and Section 2.3 and includes

some visualizing of the data to provide an impression of the data itself.

From the pilot project, we found indications of seasonality and trend in the data set, which

led us to apply STL to our data to decompose the time series and extract recurring incidents,

constants, and residual noise.

5.1.1 STL-Decomposition

One of the main experiments from our pilot project was the application of STL-decomposition

to our data and using the findings from this to further understand the data set. When us-

ing STL for decomposition, a predefined period must be set. Our initial method consisted of

multiple decompositions at different periods, such as daily, weekly, and yearly. This proposal

is based on the indications of seasonality at periods of 24 hours, 168 hours, and 365 days.

After some experimenting, we discovered that a seasonal period of 168 hours was able to

capture the period of 24 hours. Additionally, the annual seasonality was found to be negli-

gible, contrary to what we initially assumed based on the autocorrelation in Figure 2.6.

Further, we explored how the trend of our data behaves, which was also an indication of the

autocorrelation. Initially, we used the trend from the weekly decomposition. However, we

later found that doing a 2-step decomposition where we attain the seasonality of period 168

hours in the first step and trend of period 365 days in the second step gave the most feasible

trend and residual for further forecasting.

5.2 Volume Forecasting Methods

Experiment goal Create new models for forecasting ambulance demand volume at hourly in-

tervals, surpassing the accuracy of previous forecasting models.

Data Data used for these experiments are different combinations of the input features mentioned

in Table 5.1 as well as the hourly demand volume collected from the OUH data set.

Inspired by the work of Huang et al. (2019) and Y. Zhang et al. (2021), we explore a ma-

chine learning model inspired by PNN and time series decomposition that can be used to

provide accurate volume forecasts for ambulance demand in Oslo and Akershus. Y. Zhang et

al. (2021) use STL for decomposition. Since SSA also seems like a promising tool for decom-

position, we try this as well. We know from our pilot project that our data has an increasing

annual trend. Thus we wish to see if incorporating the year in the input data can improve

volume forecasts.
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The design of our MLP is inspired by the MLP architecture presented in Haugsbø Hermansen

and Mengshoel (2021), as these models have proven to provide good results on our data

set. One exception to this is the use of linear activation functions instead of rectified linear

unit (ReLU) in models that forecast using decomposed data since ReLU cannot predict values

below zero. Usually, this is not an issue in demand forecasting. However, after seasonality

and trend are extracted, the residual will have a mean close to 0, with a deviation allowing

for negative values. Since we want our models to predict these values as well, we need to

use an activation function that can have negative values as output, which is why we use a

linear activation function. This change is only done to the final layer of our model to keep

the architecture as close as possible to the original.

These experiments will be performed with the filtered data set with events until the end

of the year 2018. This data is split into training, validation, and test sets. We use the first

80% of the data for training, the following 10% for validation, and the final 10% for testing.

Figure 5.1 shows how the data is distributed, as well as the corresponding demand.
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Figure 5.1: Distribution of hourly incidents into train, validation, and test set.
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5.2.1 Varying Data Input with MLP

Experiment goal Explore different input sets, and how they affect MLP predictions.

From our data analysis, we can see that the ambulance demand is increasing annually. We

believe that including the year as one of our input features in our neural networks can be

used to improve our models. As the trend is almost linear, we will experiment with including

the year both as a one-hot encoded vector and as a numerical value between 0 and 1.

Our experiment will consist of comparing three different input features in an MLP model

with the same architecture but different input layers. The different input sets will be [H, D,

M], [H, D, M, (Y+O)] and [H, D, M, (Y+N)]. The first input set corresponds to the Basic

input set in Haugsbø Hermansen and Mengshoel (2021), which was the best performing

input set in their research. The two other input sets will be new for our data set and will be

our attempt at improving model prediction. We use a 5-fold cross-validation with the training

data as input and score the models based on the average loss for the fully trained model for

each fold. We implement early stopping with our validation set and patience of 5 to avoid

overfitting during training.

5.2.2 STL-Decomposition and Neural Networks

Experiment goal Explore how STL-decomposition can affect performance of time series fore-

casting of an MLP.

Using STL, we aim to extract a seasonality and trend from our time series so that we can train

our MLP on the residual. From Section 5.1, we found that using a weekly period seemed most

promising, but we will also look at daily seasonality. We will use an additive version of STL,

such that the sum of each component returned from the decomposition results in the original

time series. A multiplicative version of STL demands non-zero values for each hour, which is

not the case for our data. Figure 5.2, illustrates the conceptual framework. This experiment

will be conducted in two parts. First, we will find the parameters for STL-decomposition

best suited for our problem area. Then we will use those parameters for decomposition and

combine them with the MLP. The flow presented for decomposition is only used for some of

our time-series forecasting models and none of the distribution forecasting models.

We follow the expression for time series decomposition presented in Section 3.1.1, and use

STL to decompose our time series to seasonal component s, trend component m and a re-

sidual component r. We fit linear regression to the trend component m and use machine
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learning trained on the residual component r, to create forecasted values m̂ and r̂, respect-

ively. The final forecasted value ŷ is the sum of the forecasted values m̂, and r̂, and the

extracted seasonal component s. Equation (3.1) formulates mathematically how a forecast

at a given time is made.

Data 

 

Input Decomposition 
Process Output

Start

Stop

Seasonal  
Component 

 

Trend 

 

Residual 

  

Decomposition 
Period = 7 days 

Forecasting

Regression 

 

Machine Learning
 

Combine 
 

Forecast 

 

Decomposed data 

Figure 5.2: Framework for the combined model of STL and neural network. A mathematical

formulation of the framework is presented in Section 3.1.1.

Since we split our data into training, validation, and test sets, it is essential only to use the

training set during decomposition. We want to extract the seasonal component from the

training set and then extend the component such that it extends into the validation and test

set. We assume that the seasonal component repeats itself every week when using a weekly

period. Therefore, we can use the test data to construct a weekly seasonal component and

then extend this component by repeating it until it covers the entire data set.

When extracting the seasonal component from the data set, we simply subtract the value

of the seasonal component for each timestamp. We can do this because the decomposition

is based on an additive model, such that the sum of all components results in the original

data set. Since we train our models on the data without the seasonality, seasonality must be

added to the predictions before evaluating the models.
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We can also use STL to extract a trend component from our time series. After finding a trend

component from our training data, we can approximate and forecast the trend component

using polynomial regression. We will test different degrees of polynomial regression going

from the first degree up to the fifth. To avoid the issues with overfitting described in Fig-

ure 3.2, we prefer a lower degree of polynomial regression. Alternatively, we can decide not

to remove the trend component and leave it to the neural network to learn this feature in

our data set.

Our goal with decomposition is to extract as much information from the time series as pos-

sible before handing it over to the MLP model. When comparing the different STL paramet-

ers, we will use the same error metrics as we use for comparing models as the decomposition

with the lowest error will also be the one that extracts the most information from our time

series.

5.2.3 SSA-Decomposition and Neural Networks

Experiment goal Explore if SSA-decomposition can be used to improve MLP model predictions

Similarly to Section 5.2.2 our experiment consists of two parts. The first goal is to find SSA

parameters best suited for the decomposition of our time series. The second is to see if SSA-

decomposition can be used in combination with MLP to improve forecasts. Unlike STL, SSA

does not require a predetermined period before decomposition, something that could be

beneficial as we do not have to make assumptions about the length of the optimal period.

For SSA-decomposition, we use Rssa (Golyandina & Korobeynikov, 2014), which is an im-

plementation of SSA written in the programming language R (R Core Team, 2021). SSA is a

well defined statistical method for decomposition presented in Wu et al. (2010). To ensure

that a correct implementation, according to the specification of SSA, we use this package to

perform the decomposition. Since the rest of our code is written in Python (Van Rossum &

Drake, 2009), we choose to use RPy2 (‘RPY2’, n.d.), which is a Python package that provides

an interface to run embedded R in Python.

A key parameter in SSA is the grouping used for reconstruction. The grouping is used to de-

cide which components from the deconstructed time series to be used for reconstruction. The

Rssa-package provides two grouping methods using either a periodgram or a W-correlation

matrix. When grouping using periodgram, one looks at the contribution provided by each

component and includes components where the contribution to the reconstruction is greater

than a specified threshold. The other option is using hierarchical clustering, according to

algorithm 2.15 in Singular Spectrum Analysis with R (Golyandina et al., 2010), with the W-

correlation matrix as a proximity matrix. In either case, we want the resulting decomposition
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to consist of two reconstructed series, one containing the decomposed trend and seasonality,

and one for the residual.

Similarly to the decomposition using STL, we only use test data for our decomposition. In

order to extend the decomposition, to cover validation and test data, we can use the forecast-

ing methods provided by Golyandina and Korobeynikov (2014). There are three available

forecasting methods: bootstrap forecasting, recursive forecasting, and vector forecasting, all

implemented according to the algorithms presented in chapter 2.3 in Basic Singular Spectrum

Analysis and forecasting with R (Golyandina & Korobeynikov, 2014).

As we have not found literature supporting choosing one method for grouping or forecasting

over the others, we will test all possible combinations and score them using error metrics

introduced in Section 3.2.

To summarize, we will decompose our time series y into g and r such that y = g+r, where g

is the grouping of components found in SSA-decomposition, representing seasonalities and

trend. We use forecast methods provided Golyandina and Korobeynikov (2014) to create the

forecast values ĝ. We train an MLP model on the residual component r to create predictions

r̂. We get our final predicted values ŷ by summing these components, such that ŷ = ĝ + r̂.

5.2.4 Weight Initialization using Genetic Algorithms

Experiment goal Produce accurate volume forecasts by initializing MLP weights using genetic

algorithms.

As mentioned in Section 4.5, we want to implement an adapted version of the PNN proposed

by Huang et al., 2019. We follow the authors’ architecture and implement a neural network

with a single hidden layer and gradient descent (GD) as the optimizing function. One of the

core ideas of Huang et al., 2019 is that genetic algorithms can be used to set initial weights to

reduce the chance of getting stuck in a local optima, which is often a problem when using GD

as the optimizer. The fitness function used in PNN assumes that the predicted value follows

a Poisson distribution. We will replace this fitness function with MSE, as our time series

does not follow a Poisson distribution. To distinguish this model architecture from our other

volume forecasting MLPs, we will call this MLP model M LPGD, and the model described in

Section 5.2.1 for M LPAdam.

Huang et al., 2019 use an exponential activation function for every layer in their PNN archi-

tecture. Since our time series could have negative values for demand after decomposition,

we will use a linear activation function for the output layer when decomposition is used,

since an exponential activation function cannot produce negative values.
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We will conduct an experiment to see if using our genetic algorithm for weight initialization

improves the accuracy of our model, both for the version with exponential activation and lin-

ear activation on the output layer. This experiment will be conducted without decomposition

and with the input parameters with the best scores from Section 5.2.1.

Initialization

We define our chromosome as a list containing all the weights of our machine learning model.

We initialize models with random weights, which we use to create our initial population.

Fitness function

In the PNN-model presented by Huang et al. (2019), the log maximum likelihood function

of a Poisson distribution is used to calculate the fitness of our chromosomes. We will replace

this with MSE as we do not have a Poisson distribution when working with hourly resolu-

tion. To reduce computation costs during fitness calculation, we select a random sample of

timestamps from our training data to be used to evaluate fitness. We create a model using

the chromosome to set the model weights for each individual. We then use this model to

predict ambulance demand for each time slot.

Algorithm 1 presents pseudocode for the fitness calculation. The algorithm takes in the chro-

mosome as input c, a set of inputs x to use for model prediction sampled from our training

data, and a set of outputs y corresponding to inputs x . The output of the algorithm is the

fitness value of the individual, based on the predictions.

Algorithm 1: Evaluate chromosome fitness
input : Chromosome c, input values x , target values y

output: Fitness f

1 m← CreateModel(c) // Create model with weights using chromosome

2 ŷ ← m.predict(x)

3 f ← MSE( ŷ , y)
4 return f

Crossover

We use a simple two-point crossover when creating offspring. Before crossover is applied, the

parents are weighted by fitness such that the best scoring parents have a higher probability

of crossover with each other.
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Mutation

Mutations are performed using Gaussian mutation. A Gaussian mutation is performed by

adding a random value defined by a Gaussian distribution to each element of the individual’s

chromosome. We use a mean of zero and a standard deviation of 0.1 as parameters of our

Gaussian distribution, as this corresponds well to our initial weights.

Selection

We select which chromosomes to keep after each generation, following the elitism method-

ology. Offspring and parents are evaluated equally, and we choose to keep only those with

the best fitness.

After enough generations have passed, we set weights using the chromosome with the best

fitness in the final evaluation. We then train our model using the entire training data set,

optimizing weights with GD. Similarly to the other neural networks, we implement early

stopping using the validation set.

5.2.5 Alternative Error Metric

Experiment goal Produce forecasts with a stronger emphasis on the high-demand hours.

Haugsbø Hermansen and Mengshoel (2021) suggests an alternative error metric for future

work. The idea is to push a model to overestimate demand rather than underestimate it.

This metric is formulated in Equation (5.1) and is similar to MSE with a double error when

underestimating compared to the target. The goal is to provide better forecasts at the high-

demand hours at the cost of overestimating the low-demand hours.

L( ŷ , y) =

�

2( ŷ − y)2 , ŷ < y

( ŷ − y)2 , ŷ ≥ y.
(5.1)

We are interested in applying this metric to explore how the forecasts relate to the target

volume. This relation is also interesting from the perspective of OUH, as they might be more

interested in forecasts that provide an upper bound to better plan the availability of re-

sources. To perform this experiment, we use some of the approaches from previously intro-

duced methods. Given that the gradient of the error metric is undefined for ŷ = y , we apply

derivative-free optimization (DFO). We perform DFO with a GA, similar to Section 5.2.4,

where the fitness function is the proposed loss function applied to a set of predictions made
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by an individual. I.e., we are replacing MSE on line 3 of Algorithm 1 with L( ŷ , y) from

Equation (5.1). The neural network models are based on the MLP introduced earlier.

If the initial experiment with DFO gives results as expected, we also want to perform ex-

periments with gradient descent after DFO, with MSE as the loss function. In most settings

of initial weights, the model begins with moderate predictions and applies the gradient to

approach the target from an underestimation. We are interested in exploring if the gradient

descent behaves differently if the initial weights are set to overestimate the demand. To com-

pare the results, we repeat the same procedure of DFO and GD with an MLP using MSE-loss

in DFO instead.

5.3 Distribution Forecasting

Experiment goal Produce high-resolution spatial forecasts for Oslo and Akershus.

We want to accurately forecast incidents at the highest resolution for our data set. To accom-

plish this, we want to try two different models in two experiments. The first is a Wasserstein

GAN, which will provide a generated scenario of the incident distribution for an arbitrary

hour. The second is a more generic MLP, similar to the best-performing model of Haugsbø

Hermansen and Mengshoel (2021) with some attempts at improvements.

5.3.1 Wasserstein Generative Adversarial Network

Experiment goal Explore an alternative way of estimating the distance between two distribu-

tions through the use of an approximation to the Wasserstein distance.

Data Data set aggregated by cell ID and normalized for each hour of the data set. This results

in a data set with a distribution of incidents per location per hour, which is then mapped

to a 124 x 124 grid for training our WGAN.

One goal of our methods with regards to distribution forecasting is to make use of the Wasser-

stein distance between a prediction and a target through the use of a WGAN. We assume

incorporating some distance factor between two probability distributions will give us better

forecasts. As discussed in Section 3.4, we aim to make use of a discriminator to approximate

the Wasserstein distance of a generated distribution.

As the generator’s input, we provide a 100-dimensional latent vector, sampled uniformly

random from the interval [−1, 1). The generator’s output is a 124 x 124 2-dimensional vector
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representing the distribution of incidents in Oslo and Akershus. The discriminator model is

presented with the generator’s output and real samples from our data set. The output of

the discriminator is 1 for a real image and -1 for a fake image. Real and fake prediction

from the discriminator is then multiplied to give an estimated distance between a real and a

fake distribution, thereby approximating the Wasserstein distance. The Wasserstein distance

approximation from the discriminator is used to update the generator, the discriminator, and

the adversarial networks. The task of the adversarial is to present the discriminator with fake

distributions but with real labels in an attempt to "trick" the discriminator.

5.3.2 Distributional Multilayered Perceptron

Experiment goal Experiment with different input combinations in an attempt to understand

how spatial distribution is related to different temporal information.

Data Data set aggregated by cell ID and normalized for each hour of the data set. This results

in a data set with a distribution of incidents per location per hour. The input set is made

up of different combinations of the hour of the day, day of the week, week, and year.

Our implementation of an MLP is a relatively simple neural network consisting of three

hidden layers and an output of size 5569, one value per cell in our data, as proposed in

Haugsbø Hermansen and Mengshoel (2021). As for the model’s input, we want to experiment

with how different information about the selected period affects our predictions. We want to

explore if our distributional data is affected by seasonal variations, given the seasonality of

our temporal data. We want to test most of the different combinations of the data presented

in Table 5.1. Due to the exponential growth of combinations to test for each additional input

variable, we have chosen to limit our combinations to exclude month and day of the month.

We assume the day of the week and week gives a better chance of extrapolating a possible

weekly seasonality in the data. Our limit of combinations results in 23 possible combinations

of input data for our model. The experiments are performed with k-fold cross-validation,

with k = 5, and the error is measured with CCE. Early stopping is also applied to each fold,

with a patience of 5.

5.4 Spatial Aggregation

Experiment goal Explore how different spatial aggregations might affect our forecasts, and if

it will improve the precision of forecasts compared to other, simpler models.
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Data Data with information about grid cells in Oslo and Akershus, from SSB1. Full data set

grouped by cell ID and each hour of the data set.

The spatial data in our data set has a high sparsity when looking at hourly periods, and as

argued in Setzler et al. (2009), this may lead to a zero-inflated distribution. We believe that

our predictions will be better if we aggregate parts of the spatial regions into "buckets" of

arbitrary size and shape, guided by a set of limits or objectives that we want to stay within or

minimize. To solve this problem, we want to apply a multi-objective evolutionary algorithm

(MOEA) to approach a set of Pareto-optimal spatial segmentations for our data set.

5.4.1 Model

Before applying genetic algorithms to our problem, we need to define a model to represent

our problem. Since we have a set of cells in Oslo and Akershus with a unique ID and different

information such as population, area, location, and the number of incidents, we want to use

this data.

Given the complete set of 5569 cells, C , we define subsets g j ⊂ C , with ci ∈ C and ci ∈ g j , res-

ulting in m subsets. We then define an individual G = {g1, g2, ..., gm} such that∀ga ,gb∈G,ga ̸=gb
ga∩

gb = ; and
⋃

g∈G g = C .

In particular, we are working with a Stirling number of the second kind, i.e., the number of

ways to partition a set of n elements into k non-empty subsets. In our case, we have an

arbitrary k limited by a max number of subsets, mmax . A Stirling number of the second kind

can be calculated as presented in Equation (5.2).
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(k− i)n. (5.2)

As an example, if we have n= 100 cells, and we want k = 4 non-empty subsets, we have that
¨

100

4

«

= 6.7 · 1058. If we further scale this to our problem space with n = 5569 cells and

k ∈ [1, mmax], the search space increases incredibly fast, which illustrates why a heuristic

search algorithm will be useful.

We also want to have a concept of segments sk, which is a subset of C , where sk ⊆ g. We

want all cells to be interconnected in the cardinal directions in a segment. I.e., in a segment

with more than one cell, each cell should have a neighbor either north, east, west, or south

within the same segment. Thus, a subset of cells might contain multiple segments, or it could

1https://kart.ssb.no/share/7e9bd10aca46
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be a segment itself. Finding out if the cells within a subset are fully connected is performed

using breadth-first search (BFS), visiting the cells within the same subset in each cardinal

direction. If any cells within the subset have not been visited after termination, we recursively

visit these cells and count the number of distinct segments within the subset. This conversion

of subsets to segments is performed after the entire genetic algorithm is terminated, as this

is a costly operation for each individual in each generation. When we have a complete set

of segments containing all 5569 unique cells in total, we have a segmentation of Oslo and

Akershus.

5.4.2 Objectives

Working with MOEAs requires a set of different objectives to optimize. These objectives are

problem-specific and are subject to either minimizing or maximizing. In our case, we have

suggested four objectives that we want to minimize to create a segmentation of Oslo and

Akershus that might help reflect the coverage of ambulances and improve our predictions

for a given segment.

Total Population Above Threshold

We have discovered from our data that there is a correlation between population and the

number of incidents. Therefore, we are looking at ways to limit the maximum population in

each subset and keep about the same population within each. Since the total population in

the area we are segmenting is constant, we set an arbitrary limit to the population for a given

subset and look to minimize the exceeding population for each segment in a segmentation.

Our goal is for this limit to represent the average population per ambulance, such that each

segment in the segmentation might illustrate the coverage of one ambulance. The population

measure is based on population data in 2019 available from SSB. For each subset g, the

objective score is given by o1(g), as defined in Equation (5.3), where pmax is the population

limit and c.populat ion is the population in cell c.

o1(g) =max{
∑

c∈g

c.populat ion− pmax, 0}. (5.3)

Furthermore, we denote the overall objective for an individual G as O1(G), and it is defined

mathematically in Equation (5.4).

O1(G) =
∑

g∈G

o1(g). (5.4)
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Braun et al. (1990) found that the average number of population per required ambulance in

the US in 1980 was 51 223, which forms the basis of our choice of pmax given an assumption

of an increase in efficiency. Thus, we set pmax = 60 000 for our experiments.

Total Area Above Threshold

In the same manner as with population, there is a limited area in which one ambulance can

cover within a given target response time. Again, the total area in Oslo and Akershus is con-

stant, so we introduce a limit as to how large one subset should be. This limit is intended to

capture the average coverage area for one ambulance, and we look to minimize the exceed-

ing area for each subset. Given that we are working with 1×1km cells, the area calculation

is simply the number of cells within one subset, given by the cardinality of a subset, |g|. For

each subset g, the objective score is given by o2(g), as defined in Equation (5.5), where amax

is the population limit.

o2(g) =max{|g| − amax, 0}. (5.5)

We denote this objective for an individual G as O2(G), which is defined in Equation (5.6).

O2(G) =
∑

g∈G

o2(g). (5.6)

Given an approximately circular shape of a segment, we want to make the distance from

edge to edge traversable in approximately 10 minutes in an emergency. This is also combined

with the assumption that high-population and high-traffic areas will not reach the area limit

given the population restriction introduced above, making it possible for ambulances to drive

faster to the incident. We, therefore, use a maximum area of 280 km2 per segment for our

experiments, which results in a radius of 9.44km given a circular shape.

Separate Segments

A subset where the cells are not interconnected makes little sense in the domain of ambulance

response areas. For a segmentation to make sense, the cells within each subset need to be

interconnected in one of the cardinal directions. We want to minimize the number of separate

segments within the same subset to accomplish this. The number of segments within a subset

g is given by o3(g), where we use BFS to find the number of segments. We denote the overall

objective for an individual G as O3(G), and define it in Equation (5.7).
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O3(G) =
∑

g∈G

o3(g). (5.7)

Total Circumference

For each subset, we want to have as regular shapes as possible, such that the travel time from

the center to the outer areas is close to equal for each cell on the border of the subset. We

want to approach a circular shape while still covering the whole area we are segmenting. We

denote this objective for individual G as O4(G), and define it in Equation (5.8) where o4(g)
is the circumference of subset g.

O4(G) =
∑

g∈G

o4(g). (5.8)

Overall Objective

Given the objectives above, the segmentation we believe will be most applicable to real life is

where the densely populated areas have small segments to mostly maintain the population

limit (O1), while the rural areas will be larger but still mainly within the area limit (O2).

Furthermore, we believe larger and more regular-shaped areas are more feasible as long as

they stay within limits. This is intended to be regulated by the number of segments (O3)

and total circumference (O4). To accomplish this, we apply non-dominated sorting genetic

algorithm II (NSGA-II) (Deb et al., 2002).

5.4.3 Segmenting Non-Dominated Sorting Genetic Algorithm II

One of the main parts of NSGA-II is the use of the Fast Non-Dominated Sorting algorithm

described in Deb et al. (2002), which assigns a rank and a crowding distance to each indi-

vidual. The lowest rank is a subset of individuals whom all dominate those of higher ranks,

i.e., have a better objective score for each objective. This is illustrated for two objectives in

Figure 5.3. The crowding distance measures the average density of solutions, and a higher

crowding distance indicates a more diverse solution within the rank. Our approach consists

of the traditional steps of a genetic algorithm; initialize population, parent selection, cros-

sover, mutation, and evaluation. Each of these steps is tailored to our problem and requires

a short description of the methodology.
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Figure 5.3: Illustration of the ranking in NSGA-II. Points marked in green belong to the lowest

rank, as these dominates all purple points in objectives X and Y.

Initialization

We want to create a good initial population to reduce the number of iterations needed to

reach a segmentation we are content with. Although, we do not want to enforce our limit-

ations strictly, as this might result in an undesirable initial state and push our segmentation

toward a local maximum instead of a global maximum. We calculate the average Manhattan

distance between the cells of each existing subset and a new cell to be inserted and filter out

those not within an initial distance factor dthreshold . The average distance from a cell c to a

subset g is calculated as shown in Algorithm 2, where c.x and c.y denotes the x-coordinate

and y-coordinate of a cell c, respectively. The initial distance calculation is intended to keep

cells in the same subset close during the initialization.

We also filter out subsets where the population limit would be surpassed if we were to insert

the cell there. If no subsets remain after this filtering process, we begin a new subset and

add it to the individual as a candidate for the subsequent insertion. If a limit of mmax subsets

is reached, we insert it randomly if no subset satisfies the above criteria. In a typical setting
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Algorithm 2: Average Manhattan Distance
input : Cell c, subset g

output: The average Manhattan distance from cell c to all cells in subset g

1 d ← 0

2 forall c′ of g do

3 d ← d + abs(c′.x − c.x) + abs(c′.y − c.y)
4 end

5 return d/g.leng th

of parameters, mmax subsets should never be reached. The process of a feasible insertion

is described in Algorithm 3, which is performed once for every cell in the data set. This

procedure is repeated n times to create n individuals, shuffling the cells to avoid deterministic

initialization.

Parent Selection

Parent selection is performed by deterministic binary tournament selection. We select two

individuals at random, compare their rank, and select the lowest rank of the two. If the

two selected individuals have the same rank, we choose the one with the highest crowding

distance to maintain diversity. If both have equal crowding distance, we select randomly

between the two. This process is repeated n
2 times to create a list of parents to be used for

creating the next generation, where the same parent may appear multiple times.

Crossover

Crossover is performed by selecting random parents from the previous step and applying

crossover with a probability pc . With a probability 1− pc , we allow a copy of the parents to

persist as offspring. Crossover is done by a modified two-point crossover where we represent

the gene as a list of ordered cells based on the respective subset ordering. Cells included in

the list before the cutpoint are removed from the opposite individual, then re-inserted in a

randomly chosen subset from the neighboring subsets of each cell. If no neighboring subsets

exist, we insert feasibly as illustrated in Algorithm 3. The crossover-process is illustrated in

Figure 5.4, where parents and offspring are represented as individuals Gk with subsets gk
i ,

where mk is the number of subsets for individual k.
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Algorithm 3: Feasible Insertion
input : Set G of subsets gi , cell c to be inserted

output: A new set G′

1 G′← copy of G

2 P ← {} // Possible subsets for insertion

3 forall g of G′ do

4 d ← AverageManhattanDistance (c, g) // Algorithm 2

5 if d < dthreshold then

6 g.d ← d

7 add g to P

8 end

9 end

10 sort P ascending by g.d

11 forall g of P do // Iterate from lowest average distance to highest

12 if g.population + c.population ≤ pmax then

13 g ′← copy of g

14 add c to g ′

15 exchange g with g ′ in G′

16 return G′ // Insertion performed, exit

17 end

18 end

19 if G′.leng th≥ mmax then // Max subsets reached, insert randomly

20 g ′← select random g from G′

21 add c to g ′

22 exchange g with g ′ in G′

23 return G′

24 end

25 g ′← {c} // No feasible subset found, create new subset

26 add g ′ to G′

27 return G′
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Parent 1 Parent 2

... ...

c1 c4 c6 c2 c3 c5 c3 c6 c4 c2... ...

Selected genes  
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Remove cells Remove cells
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Figure 5.4: Crossover as performed in our MOEA-implementation. Cells are partitioned into

subsets. Each parent has a certain number of subsets.
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Mutation

We apply four different mutation functions. Two of them are used to reduce the number of

subsets, and the other two are intended to increase the number of subsets. For each offspring,

there is a probability of pm that it should undergo mutation. Mutation in an individual will, at

most, affect two subsets at a time. Reduction, split, and fraction mutation employ a random

selection of a subset weighted by the respective objective’s normalized values, this is shown

by Equation (5.9) where o1(gi), o2(gi), ... indicates the different objectives for subset gi . This

provides a probability Pi for selecting subset gi for mutation, which results in a heuristic that

more often chooses subsets where one or more objectives are higher than in the average

subset.

Pi =

∑4
j=1

o j(gi)
Oj(G)

4
. (5.9)

The four different mutation functions we apply are as follows:

Reduction mutation A single subset is selected at random, weighted by objectives (Equation (5.9)).

The subset is emptied for cells. The cells previously contained within this subset are re-

inserted feasibly, following Algorithm 3.

Merge mutation Two subsets are chosen at complete random, and the cells contained within

each are joined together to create a new subset replacing the two subsets chosen.

Split mutation A single subset is selected at random, weighted by objectives (Equation (5.9)). A

random cutpoint is selected. The cells in the selected subset are split into two new segments

decided by the cutpoint, replacing the single selected subset.

Fraction mutation A single subset is selected at random, weighted by objectives (Equation (5.9)).

The cells in this segment are iterated and assigned to a new subset depending on random

chance. We begin with a single empty subset, and for each cell, with a probability of p f ,

it is assigned to the current subset. Otherwise, a new subset is created. This mutation is

presented in Algorithm 4.
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Algorithm 4: Fraction mutation
input : Set G of subsets gi

output: A new set G′

1 G′← copy of G

2 g ← SelectWeightedRandomSubset(G′) // Equation (5.9)

3 remove g from G′

4 g ′← {} // Assign empty set

5 forall c of g do

6 r ← random decimal between 0 and 1

7 if r < p f then

8 add c to g ′

9 end

10 else

11 add copy of g ′ to G′

12 g ′← {c} // Overwrite g ′, copy of previous g ′ still in G′

13 end

14 end

15 add copy of g ′ to G′

16 return G′

Evaluation

The evaluation of our individuals is performed with non-dominated sorting as proposed for

NSGA-II (Deb et al., 2002) and applying elitist selection based on the Pareto fronts of our

population. Suppose an entire Pareto front does not fit within the given population size. In

that case, the individuals are sorted by crowding distance, and the ones with the highest

crowding distance are selected for the next generation. An example of how this is performed

is illustrated in Figure 5.5.

Post-Processing

As discussed in Section 5.4.2, we want to minimize the number of separate segments, es-

pecially within the same subset. When our genetic algorithm finishes after g generations,

we want to ensure that each separate segment is assigned to an actual subset as defined

by our model to maintain the locality of our predictions. One problem we consider this to

solve is a situation where two segments on each side of the map are considered to be in
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Figure 5.5: Selection phase of NSGA-II, performed with an elitist approach based on the

Pareto rank and crowding distance of each individual. We apply the same method in our

segmenting NSGA-II.

the same subset, and the same predictions will apply for both of these segments. This is not

optimal in a realistic setting, as one would like to know which part of the map an incident

happens. Having a 50/50 chance of an incident being on opposite sides of the map is highly

problematic. When all our subsets have been converted to segments, we have a complete

segmentation of Oslo and Akershus. This process is illustrated in Figure 5.6, where we go

from two subsets, marked in red and green, to five segments. Each of the five segments is

assigned to a subset to conform with our model, resulting in a complete segmentation of the

area.

2 Subsets 5 Segments

Figure 5.6: An example of how a set G of subsets gi is converted to a set of segments in

post-processing. Note that only cardinal neighbors can belong to the same segment.
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The full segmenting NSGA-II algorithm is presented in Algorithm 5, from initialization to

termination. The different probability parameters in the algorithm are set beforehand.

Predictions

For our spatial aggregation, we produce multiple segmentations, pick out superior ones in

each objective, and some segmentations somewhere in between, which we believe are good

all-around segmentations. We then sum the incidents per hour for each segment to create a

new data set with different areas than before. Although we do not have strictly categorical

data, we can still evaluate and compare the performance of different models using CCE.

The output of our models corresponds to the number of areas in the segmentation we are

looking at, and we use softmax on the output layer to create a distribution where the sum

is 1. We can apply the predicted distribution to a predicted volume by simple multiplication

to get a forecast for a given hour in a given area. We compare our models to the historical

average with a k-fold cross-validation where we compute the average of four folds to score

on the fifth fold. We choose this deterministic forecasting method as our baseline since we

can not compare the score of two different segmentations directly, given the difference in

the number of segments to forecast.
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Algorithm 5: Segmenting NSGA-II
input : Set C of cells c, number of generations g, population size S

parameters: Probability of crossover pc , probability of mutation pm, probability of

respective mutation functions psm, prm, and pmm

output : A set of solutions I with rank

1 I ← {} // Empty set of individuals

2 for n= 0 up to S do // Initialize S individuals

3 G← {}
4 forall c of C do

5 G← FeasibleInsertion(G, c) // Algorithm 3

6 end

7 add G to I

8 end

9 R← RankPopulation(I) // Fast non-dominated sort (Deb et al., 2002)

10 for m= 0 up to g do // Main loop

11 P ← ParentSelection(R) // Deterministic binary tournament

12 O← {}
13 while O.leng th< S do // Create S offspring

14 rc ← random number between 0 and 1

15 i1, i2← random individuals from P

16 if rc < pc then

17 o1, o2← Crossover(i1, i2) // Figure 5.4

18 add o1, o2 to O

19 else add copy of i1, i2 to O

20 end

21 forall o of O do

22 rm← random number between 0 and 1

23 if rm < pm then

24 rM ← random number between 0 and 1

25 if rM < prm then ReductionMutation(o)
26 else if rM < prm + psm then SplitMutation(o)
27 else if rM < prm + psm + pmm then MergeMutation(o)
28 else FractionMutation(o) // Algorithm 4

29 end

30 end

31 I ← merge I and O

32 R← RankPopulation(I)
33 I ← NewPopulationFromRank(R) // Figure 5.5

34 end

35 forall G of I do SplitSubsetsToSegments(G) // Figure 5.6

36 return I





Chapter 6

Experimental Results

In this chapter, we present the results and findings of our method and compare these to a

set of different baselines. We also compare our results to those of Haugsbø Hermansen and

Mengshoel (2021) to assess whether we can improve on the methods presented there.

6.1 Experimental Setup

Before presenting our experiments and results, we provide the setup and frameworks used

to perform the experiments. First off, all experiments are performed with one of the two

setups presented in Table 6.1.

Table 6.1: Machines used for the setup of experiments.

Setup Operating System Processor RAM Python version

Van De Weijer MacOS Big Sur Intel Core i7 16GB 3.9.7

Owren MacOS Monterey Apple M1 16GB 3.9.10

Rather than implementing neural networks from scratch, we use the Python library Keras

(Chollet et al., 2015). This allows for simple architecture implementation, parameter tuning,

and training of our models, allowing us to spend our time focusing on other parts of our

research. We use the statsmodels-library for Python (Seabold & Perktold, 2010) to perform

STL-decomposition.

59
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6.2 Data Analysis and Preprocessing

Chapter 2 presents most of the results from our pilot project, but some of the resulting data

from STL-decomposition is still interesting to present. As discussed in Section 5.1, we ended

up decomposing our data at periods of 168 hours for the seasonal component and 365 days

for the trend component. The seasonal component from the decomposition is presented in

Figure 6.1 and the trend component is presented in Figure 6.2.
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Figure 6.1: Seasonal component of STL-decomposition with a period of 168 hours.
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Figure 6.2: Trend component of STL-decomposition with a period of 365 days.

From Figure 6.2, we can see that the trend component is straightened out at the beginning,

from January 2015 to July 2015, and at the end, from July 2018 to January 2019. This is be-

cause LOESS interpolation is a generalization of moving average and polynomial regression,
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which is used to smooth the data after the seasonal component is removed until the trend

remains. This means that the first and last p
2 observations are not part of the trend, where

p is the period used for the decomposition. In this case p = 365 · 24, i.e., a full year. The

statsmodels-library includes methods to interpolate the trend based on a number of previous

observations, which we use to fit our models to the trend. This interpolation is the straight

areas at the beginning and end of the trend component.

6.3 Volume Forecasting

This section covers the results of the volume forecast experiments presented in Section 5.2.

We use the first experimental results to decide on parameters for our models. The final results

show the forecasting accuracy of our proposed models, constructed using information gained

from our smaller experiments, compared to industry baselines.

6.3.1 Input Data Selection Results

We decide which combination of data inputs to use for training our models in our first ex-

periment. Using a set consisting of the hour, day of the week, and the month was the highest

performing in the research of Haugsbø Hermansen and Mengshoel (2021). We will refer

to this combination of inputs as the Basic input set. Since we found an increasing trend in

Section 5.1, we see if including year, both as a numerical value and one-hot encoding, will

improve forecasts. Inspired by Haugsbø Hermansen and Mengshoel (2021), we use an archi-

tecture for our neural network consisting of two hidden layers with 16 nodes in each layer,

using the Adam optimizer. We will also use the same architecture for all input combinations

for consistency. We will refer to this architecture as M LPAdam. From Table 6.2, we see that

including the year as a numerical value improves our model performance. We will use the

year encoded as a numeric value rather than one-hot encoding for our models.

Table 6.2: Validation error for the same neural network architecture, but with different input

parameters without decomposition.

Data input sets Average MSE

Hour, day of the week, month 22.6341

Hour, day of the week, month, year as numeric value 21.7295

Hour, day of the week, month, year as a one-hot encoding 24.6047
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6.3.2 STL and SSA

Our main objective with decomposition with STL and SSA is to extract as much noise as

possible from our time series, such that there are less features to handle for machine learning.

This is essentially the same as achieving the lowest error using our metrics. The results from

Table 6.3 show that SSA with w-correlation matrix and recurrent forecasting was the best

performing parameters for SSA-decomposition.

Table 6.3: SSA parameter selection results.

Grouping method Forecasting method MSE

W-correlation Bootstrap 25.3318

W-correlation Vector 26.2989

W-correlation Recurrent 24.6047

Periodgram Bootstrap 25.5018

Periodgram Vector 26.5796

Periodgram Recurrent 25.3203

Results from Table 6.4 show that using a weekly period for seasonality scores better than a

daily period. These results concur with our data analysis, where we found that the ambulance

demand pattern is different for the days of the week.

Table 6.4: STL and polynomial regression parameter selection results.

Polynomial degree Seasonal period MSE

1 Daily 25.6604

2 Daily 25.0769

3 Daily 25.2445

4 Daily 25.9296

5 Daily 25.1184

1 Weekly 24.1701

2 Weekly 23.5851

3 Weekly 23.7534

4 Weekly 24.4396

5 Weekly 23.6269
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Although using second-degree polynomial regression scores best on our validation data, we

believe that it might not be best suited for prediction on our test data. Figure 6.3 shows the

predicted trends from our experiments. As we can see from the figure, towards the end of

the time series, both the second and fifth-degree versions have a negative gradient.
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Figure 6.3: Predicted trend using different degrees of polynomial regression.

Figure 6.4 shows the negative gradient of n= 2 and n= 5 more clearly, as well as the trend

with an interpolated period. We know from both discussions with OUH and our analysis

that the trend is increasing annually. On this basis, we will also keep the best scoring STL-

decomposition with an increasing trend towards the end of our time series. From Table 6.4,

we can see that this is using a weekly seasonality and third-degree polynomial regression for

predicting the trend. Considering how the predicted trend increases or decreases towards the

end of our time series could be especially decisive for this study compared to a real-world

application. This is because, in this study, the final evaluation is based on forecasting results

several months ahead of time. It would probably suffice to predict a few days or weeks ahead

of time in a real-world application. We will refer to STL-decomposition using a second-degree

polynomial to predict trend as STL2, and STL3 when using a third-degree polynomial.
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Figure 6.4: Predicted trend for the last 10 000 hours using different degrees of polynomial

regression.

Figure 6.5 and Figure 6.6 shows the forecasted individual components, with the original

residual, for experiments using STL and SSA-decomposition, respectively. Comparing these,

we can see that the residual component r closely resembles each other. Where as Figure 6.5

has a predicted value for each of trend and seasonality, we can see that the grouped com-

ponent in Figure 6.6 predicts one value for both. We can see that if we were to sum the trend

and seasonal component in Figure 6.5, we would get a component relatively similar to the

grouped component in Figure 6.6.
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Figure 6.5: STL components from decomposition. Trend is forecast with polynomial regres-

sion, seasonality with a naïve forecast based on period.
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Figure 6.6: SSA components from decomposition. Grouped component is forecast with built-

in methods for forecasting in SSA.

6.3.3 Weight Initialization with Genetic Algorithms

This experiment shows the result of our model adaptation of the PNN architecture proposed

by Huang et al. (2019). The experiment aims to see if there are indications of whether we can

use weight initialization with genetic algorithms for model improvement. Additionally, we

want to see how using a linear activation function for the output layer measures up against

exponential activation, as proposed in the original architecture by Huang et al. (2019).

The results from this experiment are presented in Table 6.5. Both models show improvement

when genetic algorithms are used to initialize weights before model training. The results

indicate that exponential activation for the final layer yields better forecasts. Based on these

results, we will, in all cases, use genetic algorithms for weight initialization for this model.

We will continue to use exponential activation when data is not decomposed. We will refer to

this architecture as M LPGD+l when a linear activation function is used, and M LPGD+e when

an exponential activation function is used.

Table 6.5: Weight initialization with genetic algorithm results.

Activation function Weight initialization method MSE

Exponential Random 21.9757

Exponential Genetic algorithm 21.2325

Linear Random 21.8845

Linear Genetic algorithm 21.5401
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6.3.4 Test Results

This section covers the final test results from our volume predictions. We include baselines

used in other similar studies covered in Chapter 4 to show how our models compare to

those proposed by others. Table 6.6 presents the final hourly volume forecasting results. Note

that these results are from the test set presented in Figure 5.1, while previously presented

results are from the average of each fold in k-fold cross-validation on the training set. The

model with the highest forecasting accuracy using MSE is the PNN inspired architecture,

M LPGD+l , with a linear activation function, Basic data set with year, and STL with a third-

degree polynomial regression to approximate the trend. M LPAdam, the MLP architecture with

Adam optimizer, using STL-decomposition with a second degree polynomial to estimate the

trend is the model that gave the best predictions using MAE as the error metric.

In Figure 6.7, we present a set of predictions from our best performing models in MSE and

MSE on a week from our test set. We can see that both models follow each other closely, with

the MAE model usually predicting a lower demand than the MSE model.
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Figure 6.7: Forecasts of the best models using MSE and MAE for a week in September, com-

pared to the actual demand that week.

One key takeaway from these results is the importance of capturing the trend in our time

series. We deduce the importance of the trend by examining the only two models where

the Basic input set was used, which does not include year, and there was no decomposition

done. Both these models gave the two worst scores. Comparing decomposed Basic input sets

with non-decomposed data with the year included further underlines this importance, as the
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difference between the models where the year was included and not is reduced.

The results from decomposition indicate that using STL improves the forecasts of our MLP-

models, as well as outperforming decomposition using SSA. SSA improved the accuracy of

forecasts from MLP when year was not included in the input data, but produced similar

results as not using decomposition at all when year was included.

Table 6.6: Comparison of different decompositions and models with baselines. The best res-

ults are in bold.

Input set Decomposition method Model MSE MAE

None SMA, h= 6 46.1227 5.4478

None Naïve forecast, h= 168 42.3716 5.0187

None Medic 26.3334 3.9072

Basic None M LPAdam
1 22.9464 3.6915

Basic STL2 M LPAdam 22.0298 3.6297

Basic STL3 M LPAdam 21.7391 3.6446

Basic SSA M LPAdam 21.9294 3.6497

Basic None M LPGD+e 25.3918 3.8465

Basic STL2 M LPGD+l 21.9417 3.6289

Basic STL3 M LPGD+l 21.7365 3.6456

Basic SSA M LPGD+l 21.8490 3.6427

Basic + year None M LPAdam 21.7709 3.6209

Basic + year STL2 M LPAdam 21.7661 3.6130

Basic + year STL3 M LPAdam 21.7315 3.6429

Basic + year SSA M LPAdam 21.9193 3.6438

Basic + year None M LPGD+e 21.9549 3.6561

Basic + year STL2 M LPGD+l 21.9238 3.6248

Basic + year STL3 M LPGD+l 21.6835 3.6413

Basic + year SSA M LPGD+l 21.9820 3.6529

6.3.5 Alternative Error Metric

In this experiment we apply two M LPGD+e models with weight initialization using GA and

no decomposition, with the Basic + Year data set. We measure the error in two ways, with

1Best performing model from Haugsbø Hermansen and Mengshoel (2021)
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standard MSE and modified MSE as presented in Equation (5.1). We define these models as

such:

MSE-model MSE as fitness function in DFO and as loss function in SGD.

Alternative model Modified MSE as fitness function in DFO, MSE as loss function in SGD.

The results with different optimization techniques are presented in Table 6.7a and Table 6.7b,

measured with MSE and modified MSE, respectively.

Table 6.7: Error metrics for alternative loss and MSE.

(a) MSE.

Model DFO only DFO + SGD (MSE loss)

MSE-model 35.2042 22.4471

Alternative model 40.5848 22.9199

(b) Modified MSE from Equation (5.1).

Model DFO only DFO + SGD (MSE loss)

MSE-model 56.9318 33.9856

Alternative model 53.2524 35.6131

From the results in Table 6.7a and Table 6.7b, we see that the modified MSE metric consist-

ently yields a higher error. We also see that the alternative model results in a lower modified

MSE error after DFO only, where as the MSE-model outperforms after SGD. For MSE error,

we have that the MSE-model outperforms in both phases of training.

Although the quantifiable results give some insight into how the models perform, we also

want to visualize and compare forecasts with a target to evaluate how the application of a

higher loss for underestimation affects the forecast. In Figure 6.8, we present forecasts for

the week of September 17th to 24th, 2018, from both the MSE model and the alternative

model, compared to the target after only performing DFO. Similarly, Figure 6.9 presents

the forecasts for the same week after applying SGD with MSE-loss to the models previously

trained with DFO.

Looking at the forecasts after only performing DFO, we see a clear tendency of the model

trained using the proposed error metric consistently forecasting higher demand than the

model with MSE as the error metric. Further, applying SGD to these two models produces

forecasts that are more aligned with each other, which is not that surprising given that we

perform the gradient descent step with the same loss for both models.
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Figure 6.8: Forecasts from MSE model and alternative model after DFO compared to target

for the week of September 17th to 24th 2018.

2018-09-17 2018-09-18 2018-09-19 2018-09-20 2018-09-21 2018-09-22 2018-09-23 2018-09-24

5

10

15

20

25

30

35

40

Ho
ur

ly
 d

em
an

d

Target
MSE model
Alternative model

Figure 6.9: Forecasts from MSE model and alternative model after DFO and SGD compared

to target for the week of September 17th to 24th 2018.

6.4 Distribution Forecasting

This section presents the results from our two different approaches to forecasting at the

highest spatial resolution of our data set.

6.4.1 Wasserstein Generative Adversarial Network

The first experiment for WGAN consists of creating a model able to perform well on the

MNIST data set introduced by (Lecun et al., 1998) before adapting it to our problem. Our

implementation of WGAN for the MNIST data set is inspired by Atienza (2020). After getting
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some good results from our experiments with MNIST, thereby verifying our implementation,

we adapt the model to work with our data. To simplify the model, we aimed to maintain a

quadratic resolution of our data. We also want to be able to resize by a factor of 4 in the

process of generation. With the area of Oslo and Akershus having a maximum height of 122

cells and a maximum width of 83 cells, we ended up with data consisting of 124 x 124 cells.

We normalize the number of incidents of each cell to be between 0 and 1, summing to 1.

The implementation with the MNIST data set performed adequately at generating realistic

samples after about 5 000 iterations. We then modified the model to work with the higher

resolution of our data and repeated the process. An important factor is an increase in the

number of weights to train in the model, as the generator and discriminator have a lot more

nodes within the layers of the network. The increase in resolution does not only make the

weight update slower, but the model also needs to run for more iterations. In total, this makes

the complete training process more tedious than for the MNIST data set, limiting how many

iterations we could run.

We present four samples from our actual distribution in Figure 6.10, and we can see how

sparse the data is when scaled to 124× 124. Figure 6.11 shows 16 generated distributions

from WGAN, and even though we can see some tendency of the locality around the high-

demand areas, the general distribution area is too large to be of practical use.

Figure 6.10: Four examples of true distri-

butions after preprocessing in the format

needed for WGAN.

Figure 6.11: 16 generated scenarios from

WGAN.
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6.4.2 Distributional Multi-Layer Perceptron

For our distributional MLP, we build upon the findings of Haugsbø Hermansen and Meng-

shoel (2021) and look at how the input to the network affects the precision of our predictions.

We compare the best input set of the model with the historical average and a modified all

0s, which forecasts an equal distribution for each cell as CCE is undefined for ŷi = 0.

As we can see from Table 6.8, hour, week and numeric year within the interval [0,1] gives us

the lowest CCE. Generally speaking, we see that all inputs containing the hour outperform

those without the hour.

Table 6.8: Average CCE for each combination of input variables.

Single Avg. CCE Double Avg. CCE Triple Avg. CCE Quadruple Avg. CCE

H 5.8287

H,D 5.8293

H,D,W 5.8289
H,D,W,Y+O 5.8298

H,D,W,Y+N 5.8282

H,D,Y+O 5.8306

H,D,Y+N 8.8284

H,W 5.8295
H,W,Y+O 5.8315

H,W,Y+N 5.8280

H,Y+O 5.8283

H,Y+N 5.8300

D 5.8362

D,W 5.8361
D,W,Y+O 5.8343

D,Y+N 5.8355

D,Y+O 5.8350

D,Y+N 5.8358

W 5.8359
W,Y+O 5.8355

W,Y+N 5.8352

Y+O 5.8350

Y+N 5.8332

Table 6.9: Average CCE for our best performing input, compared to historic average and all

0s.

Model Average CCE

MLP (H,W,Y+N) 5.8280

Historical average 5.8263

All 0s 8.6250

We compare our best performing model to the historical average and modified all 0s. The

results are presented in Table 6.9. The model with the best performing input set is unable to
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outperform the historical average of the data. We also see that there is a maximum 0.0082

difference of CCE between the best (H,W,Y+N) and the worst (D) input variables for the

MLP-model. Although there is a difference between the different input variables, it is not

highly significant.

6.5 Spatial Aggregation

We run our segmenting NSGA-II for 200 generations, with a population size of 40. After the

algorithm finishes, we have a set of different segmentations of our distributional data. The

algorithm was also run multiple times with different seeds for randomization. Visualizations

of all segmentations and results presented in this section are shown in Appendix A.

Figure 6.12 shows an objective space plot for our two most important objectives, population

above threshold (O1) and the number of segments (O3), both subject to minimization. Here

we can see how our solutions converge towards the minimum for both objectives, and we

can see the Pareto front of the final generation.
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Figure 6.12: Objective space plot for objectives O1 and O3 of an arbitrary run of our algorithm

with 100 generations.
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As a simple naming convention, we give each segmentation a name of vX.Y, where X is the

number of the full run of the algorithm and Y is the segmentation within the different runs.

After the first run of our algorithm, we made a subjective evaluation of the different segment-

ations and landed on selecting our v1.0. In later runs, we saved different segmentations, e.g.,

the best performing in each objective alongside segmentations subjectively deemed feasible.

All objectives of the segmentations evaluated are presented in Tables 6.10a to 6.10f.

Table 6.10: Objectives for different segmentations.

(a) v1.0.

Objective Value

O1 4 050

O2 0

O3 177

O4 4 892

Visualization Figure 6.13

(b) v2.0.

Objective Value

O1 175 879

O2 16

O3 56

O4 3 242

Visualization Figure A.1

(c) v2.1.

Objective Value

O1 0

O2 0

O3 85

O4 3 668

Visualization Figure A.3

(d) v2.2.

Objective Value

O1 177 599

O2 0

O3 60

O4 2 982

Visualization Figure A.5

(e) v2.3.

Objective Value

O1 9 290

O2 0

O3 72

O4 3 668

Visualization Figure A.7

(f) v2.4.

Objective Value

O1 0

O2 0

O3 108

O4 3 576

Visualization Figure A.9

Segmentations v2.0, v2.1, and v2.2 have the best objectives in the number of segments (O3),

population over the limit (O1), and total circumference (O4), respectively. The area above

the limit (O2) as an objective was 0 for most segmentations in the first rank of iteration 2, so

we decided not to use one specific segmentation with this objective. Segmentations v2.3 and

v2.4 are two subjectively good segmentations with a balanced distribution of the different

objectives. We see from the other segmentations that having a few separate segments gives

a high population over the limit, which is in accordance with the objective space plot in

Figure 6.12. In contrast, a low population over the limit yields a higher total circumference.

Similarly, a low total circumference also pushes the population over the limit and reduces

the number of segments. Presented in Figure 6.13 is an illustration of segmentation v1.0,

where we can see that the segments in the center of Oslo have a higher resolution than

those further out in the rural areas.
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Figure 6.13: Segmentation v1.0. Each color is a separate segment, in total 177 segments.

After creating our different segmentations, we aggregate the incidents per hour for each

segment and create new data sets for each segmentation. This new data is then the basis

for an M LPAdam model to train on and forecast, where the input to the model is the best-

performing input set from Section 6.4.2. The model is evaluated using k-fold cross-validation

with k = 5. Early stopping is also applied to each fold, with a patience of 5. We use CCE as our

performance metric to compare distributional methods, as this is a relatively good measure

when comparing two distributions. Here we compare our model to the historical average

and an adapted all 0s that forecasts an equal distribution for each segment. From previous

results in Section 6.4.2, we have that the historical average is difficult to outperform, as our

model for predicting the highest resolution was unable to outperform the historical average

previously. We include modified all 0s to illustrate how the sparsity of our data changes with

our aggregation.
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Table 6.11: Average CCE for each segmentation from each model.

Segmentation MLP Historical Average All 0s Visualization

v1.0 3.7447 3.7497 5.1761 Figure 6.14

v2.0 2.5126 2.5136 4.0254 Figure A.2

v2.1 3.1926 3.1947 4.4427 Figure A.4

v2.2 2.4714 2.4735 4.0943 Figure A.6

v2.3 3.1265 3.1295 4.2767 Figure A.8

v2.4 3.4698 3.4739 4.6821 Figure A.10

Figure 6.14: Predicted distribution using segmentation v1.0 for the hour 2015-04-21 09:00

- 10:00.
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Figure 6.14 illustrates a predicted distribution from the three different models, as well as

the target for segmentation v1.0. The results for each of the models on each of the segment-

ations are presented in Table 6.11. Illustrations of all results are presented in Appendix A.

We randomly select a single hour of our data set to produce illustrations of our predicted

distributions from different models and segmentations. From the figures in Figure 6.14, we

see that the MLP-model prediction and historical average are strikingly similar.

6.6 Discussion

Most of our results are quantifiable, and we compare them with different approaches from

related research. We are still interested in reflecting on the findings and how our results

relate to the operations at OUH.

Volume Forecasts

Section 6.3 proposes models that improve volume forecasts from previous work within the

field by decomposing the time series and applying machine learning and regression to fore-

cast the volume demand based on the components. We believe these results can be improved

further by applying more extensive hyperparameter-tuning of both decomposition and ma-

chine learning models.

One of the approaches for capturing the increasing trend in our time series was including the

year in our input data. We did this by representing the number of years, after the start of our

time series, as a value between 0 and 1. Although including the year in this way improved

forecasting accuracy, a finer value, such as the number of weeks since the start of our time

series, could further improve forecasting accuracy.

Another finding of our volume forecasts is through the application of a modified MSE error

metric to give a higher loss for underestimation of volume. Although this gives a higher MSE

score, the actual forecasts seem in line with the proposed goal of the error metric when

applied as a loss function in DFO. For the operations at OUH and planning of resources,

having forecasts that help satisfy a minimum of available resources at any given incident is

sometimes more important than having a low mean error from a target.

Distribution Forecasts

In Section 6.4, we apply two different approaches at the highest resolution for distribution

forecasting. Our first model, WGAN, did not yield the best results, and we believe this might
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be due to a combination of two factors. Firstly, our theoretical background with generative

adversarial networks may not be strong enough to apply WGAN in this setting properly.

Secondly, we believe that the issue with sparsity remains highly relevant when attempting

to generate realistic scenarios. The expansion from 5 569 cells to a 124 x 124 grid (15 376

cells) makes the sparsity issue even more prevalent. There are at most 36 distinct cells with

incidents in a given hour, which makes up only 0.23% of the total possible cells when scaled

to 124 x 124.

We apply an M LPAdam model, previously proven to give good results in distribution fore-

casting, with an experiment to assert how the input variables relate to the forecasts. The

primary factor of the input variables seems to be the inclusion of the hour of the day. All

scores from inputs that include the hour outperform those without the hour. This difference

is minor, which leads us to believe that the distributional shift of where incidents happen

during a day is weaker than first assumed and might indicate that the part of the population

most frequently involved in incidents requiring medical attention stays within a limited area

throughout the day.

Aggregation and Distribution Forecasts

Finally, in Section 6.5, we apply GAs to create segmentations of Oslo and Akershus to over-

come the issue of demand sparsity. One of the significant results here is the ability of M LPAdam

to outperform the historical average, which it was not able to do at the highest resolution.

Again, the difference is minor, and as seen from Figure 6.14, the forecast of M LPAdam and

the historical average are similar. This similarity further underlines that there seems to be

little distributional shift through the day, week, and year.





Chapter 7

Conclusion

This chapter concludes our research by reiterating our research goals and discussing how

the results from the previous chapter answer them. We present limitations to our research

and introduce suggestions for future work.

7.1 Evaluation

In this section, we evaluate our results in light of our research questions presented in Chapter 1.

7.1.1 Research Question 1

Research question 1 How can we forecast demand at a high spatio-temporal resolution?

In Section 6.3, we present the accuracy of our proposed volume forecasting models, along

with industry baselines. The results show that we can produce more accurate forecasts than

industry baselines using all of our models. Our results suggest that machine learning models

can outperform baselines and that these models can further be improved by tailoring the

input data, the architecture of the model, and using decomposition to pre-process the data.

We found that the increasing yearly trend should be incorporated somehow into the data.

We found success in this using both STL, SSA, and including the year as a numerical value

in our input data set. The year having such an effect would suggest that forecasting methods

based on a moving average sampled from previous years, such as Medic and Setzler, cannot

capture an essential feature in predicting ambulance demand.

Although our distribution forecasting models did not perform as well as we had hoped at a

high resolution, we could extract some information about the data based on the results. The

79
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most prevalent indication from these experiments is the assumption that the population most

frequently in need of ambulances seems to remain roughly within the same area throughout

the day, week, and year. The way for an ANN to outperform the historical average is through

the inclusion of variables that correlate to the target values, which also vary throughout the

time series. Otherwise, gradient descent will converge toward the historical average of the

training data due to the lack of a relationship between input and output.

7.1.2 Research Question 2

Research question 2 Can time series decomposition be used in combination with machine

learning models to produce improved total hourly ambulance demand?

Our results indicate that decomposition with STL and SSA can improve model accuracy. Our

intuition that extracting seasonal and trend components of the time series will simplify the

problem for the machine learning model to learn seems to be correct.

Although we got improved results using decomposition and machine learning, perhaps these

models could be further improved with decomposition using more finely tuned parameters

or methods for our problem area.

7.1.3 Research Question 3

Research question 3 Can aggregation of spatial data improve forecasts of EMS demand?

From our distributional forecasts, we found that an MLP-model was unable to outperform

the historical average at the highest resolution of our data set. To reduce the sparsity of our

data, we applied a GA to aggregate distributional data, which made it possible for our MLP-

model to outperform the historical average by a thin margin. Most of our results indicate

that the aggregation of spatial data improves the precision of the forecasts at the cost of

resolution. Although we can not compare different aggregations due to the different num-

ber of segments affecting the CCE-score, comparing to a deterministic forecasting method

in historical average makes it possible to compare the performance of models on different

aggregations.

7.2 Future Work

Volume forecasts could be improved by using special flags in the input data for special events.

This is because events such as big concerts, sports events, new years eve, and national holi-
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days might be directly related to an increase in medical emergencies.

Given our indication of the population in need of ambulances staying roughly within the

same area, we believe that some additional data set exploration could further investigate this

indication. Some additional information about the incidents would be interesting, such as the

age group of the people involved in the incident, but this might be problematic concerning

anonymity. We believe that age is an essential factor in the need for ambulances and the

urgency level. Given an assumed correlation between age and urgency, it is interesting to look

at how each urgency level affects the distribution of incidents. Separating distributions on an

urgency level will increase the sparsity of the data even more, so the aggregation techniques

presented in this thesis could be relevant to further apply and improve for future research.

Other ways of aggregating data are also an interesting approach to reducing sparsity.

Another approach we believe would improve distributional forecast is the inclusion of ex-

ternal data about the distribution of the population throughout the day, week, and year.

Including external data is also suggested by Martin et al. (2021), who also proposes includ-

ing domain knowledge from EMS professionals about the optimal levels of spatial resolution

when aggregating spatial data. More generally, we have that the way for an ANN to outper-

form the historical average is to include highly correlated variables that change throughout

the time series, as mentioned previously.

Martin et al. (2021) proposes k-means to create a few large areas to perform time series

analysis and forecasting within each area instead of forecasting distributions. We believe

this approach is interesting to explore further for our data set, with different techniques for

aggregation or using areas suggested by the EMS themselves, sufficiently covering Oslo and

Akershus.

This thesis focuses on forecasting demand volume and distribution of medical emergencies.

Forecasts could be an important tool in the planning of resource allocation. Another approach

to optimizing resource allocation is to look at this problem directly using optimization mod-

els. Creating a simulation model to evaluate different combinations of resource allocation

and using heuristic search algorithms to find optimal solutions is one approach. We believe

this can be combined with our forecasting models to find optimal resource allocations for

future events.
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Appendix A

Segmentation Results and Predictions

A.1 Segmentation v2.0

Figure A.1: Segmentation v2.0. Each color is a separate segment, in total 56 segments.
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Figure A.2: Predicted distribution using segmentation v2.0 for the hour 2015-04-21 09:00 -

10:00.
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A.2 Segmentation v2.1

Figure A.3: Segmentation v2.1. Each color is a separate segment, in total 85 segments.
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Figure A.4: Predicted distribution using segmentation v2.1 for the hour 2015-04-21 09:00 -

10:00.
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A.3 Segmentation v2.2

Figure A.5: Segmentation v2.2. Each color is a separate segment, in total 60 segments.
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Figure A.6: Predicted distribution using segmentation v2.2 for the hour 2015-04-21 09:00 -

10:00.
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A.4 Segmentation v2.3

Figure A.7: Segmentation v2.3. Each color is a separate segment, in total 72 segments.
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Figure A.8: Predicted distribution using segmentation v2.3 for the hour 2015-04-21 09:00 -

10:00.
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A.5 Segmentation v2.4

Figure A.9: Segmentation v2.4. Each color is a separate segment, in total 108 segments.
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Figure A.10: Predicted distribution using segmentation v2.4 for the hour 2015-04-21 09:00

- 10:00.
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