
D
ata Protection Fortification

Espen G
udm

undsen &
 Sigrid M

. Kvam
m

e

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Espen Gudmundsen
Sigrid Marita Kvamme

Data Protection Fortification

A Data-centric Threat Modeling Method for
Development Teams to Assess the Risk of Data
Tampering and Support Secure Handling of
External Data Sources

Master’s thesis in Computer Science
Supervisor: Daniela Soares Cruzes
Co-supervisor: Tosin Daniel Oyetoyan
June 2022

M
as

te
r’s

 th
es

is





Espen Gudmundsen
Sigrid Marita Kvamme

Data Protection Fortification

A Data-centric Threat Modeling Method for
Development Teams to Assess the Risk of Data
Tampering and Support Secure Handling of External
Data Sources

Master’s thesis in Computer Science
Supervisor: Daniela Soares Cruzes
Co-supervisor: Tosin Daniel Oyetoyan
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Systems rely on data for purposes such as situational awareness, environmental
monitoring, energy monitoring, and critical industrial monitoring. These systems
often rely on sensory data generated by Internet of Things (IoT) devices, which
have many security challenges due to their low-resource constraints, heterogene-
ity, and deployment in hostile environments. Systems consuming this data must
therefore be designed with security measures to detect and prevent damage from
data tampering attacks. However, there has been a lack of research on methods
that can aid practitioners in understanding risk in data.

In a pre-study to this thesis, we performed a systematic literature review on
security testing of IoT. In this work, we found a lack of focus on security testing
in early phases of development and that monitoring data is a potential way to
detect attacks. However, first knowing how and what to monitor is essential. In
this master thesis, we develop a method for practitioners to reflect on the risk in
data and improve the security of handling data from IoT. We also investigate the
potential for a data monitoring system to detect data tampering. We employ a
framework for carrying out design science research (DSR), using interviews and
focus groups as our data generation methods.

The main contribution of this study is a data-centric threat modeling method
named Data Protection Fortification (DPF) that development teams can use during
planning to assess the security risk of a data source. This research further provides
insight into practices reported by companies for handling data securely. We also
contribute to research with a conceptual architecture for a data monitoring system
for detecting attempts at tampering with data.

DPF was developed and tested in collaboration with two companies in the in-
dustry, one student organization, and two security experts. Results show that par-
ticipants have a positive attitude towards using DPF and that it has the potential
to become a communication tool for security between developers and stakehold-
ers. Furthermore, the method proved useful in other contexts beyond data with
origin in IoT devices.

iii





Sammendrag

Datasystemer avhenger av data for å kunne bidra til en bedre situasjonsforståelse,
som tillater overvåking av ulike faktorer innen miljø, energi og i industrielle pro-
duksjonsmiljøer. Slike datasystemer avhenger ofte av sensoriske data generert
av enheter i tingenes internett (IoT). Disse enhetene har mange sikkerhetsutfor-
dringer knyttet til begrensede ressurser, produktulikheter, og deres fysiske lokasjon
som gjør de sårbare for fysisk skade fra både vær og mennesker. Datasystemer som
benytter seg av datakilder fra IoT må derfor inneha sikkerhetsmekanismer som
kan oppdage og stoppe trusler som kan komme med dataene. Til tross for dette,
finnes det lite forskning på metoder som kan bidra til å vurdere risikoen ved bruk
av en datakilde.

I en forstudie til denne masteroppgaven utførte vi et systematisk litteratursøk
på sikkerhetstesting av IoT. Her avdekket vi at fokuset på sikkerhetstesting i tidlige
utviklingsfaser er mangelfull, og at overvåking av data er en potensiell nytenkende
måte å oppdage angrep på. Det er imidlertid essensielt å først finne ut hvordan
data kan overvåkes, og hvilke data man bør rette fokus mot. I denne masteropp-
gaven utvikler vi en metode som kan brukes for å reflektere over risikoen i data
og forbedre sikkerheten ved håndtering av data fra IoT. Vi undersøker også om
det finnes potensiale for å oppdage data som har blitt tuklet med ved å benytte
et dataovervåkningssystem. Vi bruker et rammeverk for å gjennomføre design sci-
ence research (DSR), og samler inn data gjennom å holde intervjuer og fokus-
grupper.

Hovedbidraget fra denne masteroppgaven er en datasentrisk metode for trussel-
modellering kalt Data Protection Fortification (DPF). Denne metoden kan bli brukt
av utviklerteam for å vurdere sikkerhetsrisikoen i en datakilde og komme opp med
relevante sikkerhetsmekanismer, som et ledd i utformingen av et sikkert design.
I denne studien bidrar vi også med innsikt i praksiser for sikker datahåndtering
funnet i ulike bedrifter. Vi bidrar også til forskning med en konseptuell arkitektur
for et dataovervåkingssystem for å oppdage forsøk på tukling med data.

DPF ble utviklet og testet i samarbeid med to bedrifter i industrien, en stu-
dent organisasjon, og to sikkerhetseksperter. Resultatene viser at deltakerene har
en positiv innstilling til bruk av metoden, og at den har potensiale for å bli et
verktøy for kommunikasjon om sikkerhet mellom utviklere og ikke-utviklere i et
utviklingsprosjekt. Metoden har vist seg å være relevant også for andre datakilder
utover data fra IoT.

v





Acknowledgement

We would like to thank our supervisor, Professor Daniela Soares Cruzes, and our
co-supervisor, Associate Professor Tosin Daniel Oyetoyan, for their fantastic guid-
ance and support throughout this year. Without them, this master thesis would
not be possible.

We extend our gratitude to Thor-André Aresvik, who gave us the opportu-
nity to work with Equinor and provided us with valuable support throughout
the project period. We would like to express our appreciation to Vidar, Terje, and
Bjørnar at Equinor for the support and the good discussions. If not for them, this
thesis would have ended up very differently. We would also like to thank the rest
of the teams participating in our study, who offered to share insight into how they
worked with us. We are thankful for valuable feedback from the two anonymous
security experts who evaluated our method.

This work would not be possible without support from our loved ones at
home and friends who provided understanding and mental support throughout
the project. Finally, thanks to our fellow students, Andreas Rimolsrønning and Ola
Plassen, for all the precious interruptions and late-night work sessions.

The good memories and experiences from this time will forever stay with us.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Vulnerability and Risk Management . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Threat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Security Activities in Development Phases . . . . . . . . . . . . . . . . 6
2.3 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Step 1: Model System . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Step 2: Find Threats . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Step 3: Address Threats . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4 Step 4: Validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 STRIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.6 Asset-Oriented Threat Modeling . . . . . . . . . . . . . . . . . 10
2.3.7 Threat Modeling in Agile Software Development Projects . . 11
2.3.8 Evaluating Threat Modeling Using Flow . . . . . . . . . . . . . 12

2.4 Protection Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Calculating Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Performing Protection Poker . . . . . . . . . . . . . . . . . . . . 14

2.5 Security Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Security Testing of Data-intensive Systems . . . . . . . . . . . 17

2.6 Data Monitoring and Anomaly Detection . . . . . . . . . . . . . . . . . 19
2.6.1 Detecting Dynamic Threats Using Audit Hooks . . . . . . . . 19
2.6.2 Audit Hooks in Industry . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Identified Gap in Research . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x E. Gudmundsen & S. Kvamme: Data Protection Fortification

3.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Context and Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Equinor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Webkom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Ryde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Approach for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Method for Thesis Development . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Explicate Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Define Requirements . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Design and Develop Artefact . . . . . . . . . . . . . . . . . . . . 30
3.5.4 Demonstrate Artefact . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.5 Evaluate Artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Data Collection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Research Paradigm and Bias . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Data Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10.1 Security Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Design of Data Protection Fortification . . . . . . . . . . . . . . . . . . . . 37

4.1 Preparations for Data Protection Fortification . . . . . . . . . . . . . . 39
4.1.1 When to Perform Data Protection Fortification . . . . . . . . . 39
4.1.2 Select Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Prepare Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.5 Tool Recommendations . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 How to Perform Data Protection Fortification . . . . . . . . . . . . . . 41
4.2.1 Discuss Data Source . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Identify Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Prioritize Data Fields . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Plot Fields on Risk Matrix . . . . . . . . . . . . . . . . . . . . . 44
4.2.5 Evaluate Security Measures . . . . . . . . . . . . . . . . . . . . 45
4.2.6 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.7 Evaluate and Review . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Data Protection Fortification in Practice . . . . . . . . . . . . . . . . . 50
4.4 Data Protection Fortification in Practice - Alternative . . . . . . . . . 55
4.5 Discussion Questions for Data Protection Fortification . . . . . . . . . 60

4.5.1 General Questions About the Data Source . . . . . . . . . . . 60
4.5.2 Security Implications for the Data Source . . . . . . . . . . . . 62
4.5.3 Evolution of Questions . . . . . . . . . . . . . . . . . . . . . . . 64

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 RQ1: What Are the Practices Reported by Companies for Securely

Handling Data Coming From Devices or Other Sources? . . . . . . . 67
5.1.1 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Contents xi

5.1.2 Data Validity and Monitoring . . . . . . . . . . . . . . . . . . . 70
5.1.3 Data Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.4 Data Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.6 Data Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.7 Data Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.8 Fault Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 RQ2: How Can Data-centric Threat Modeling Support Teams in
Identifying Security Risks and Promote Secure Design in Handling
Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 TAM Evaluation of DPF . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Evaluation of the Activities in DPF . . . . . . . . . . . . . . . . 75
5.2.3 Verbal Evaluation of DPF . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Observations and Lessons Learned from DPF . . . . . . . . . . 78
5.2.5 Evaluating DPF with Security Experts . . . . . . . . . . . . . . 80

5.3 RQ3: How Can Data Monitoring Using Audit Hooks Identify Attacks
in Data With Increased Risk? . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Audit Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Analysis Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Ingest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.4 Monitoring Dashboard . . . . . . . . . . . . . . . . . . . . . . . 86

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Implications to Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Implications to Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Recommended Practices for Securely Handling Data . . . . . 94
6.3 Threats to Validity and Limitations . . . . . . . . . . . . . . . . . . . . 96
6.4 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A DPF Cheat Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B DPF Preparation Meeting Guide . . . . . . . . . . . . . . . . . . . . . . . . 113
C DPF Data Extraction Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D NSD Notification Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E On Security Testing of IoT Systems: A Systematic Literature Review . 127





Figures

2.1 Classic risk matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Extending the risk matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Design Science Research method framework . . . . . . . . . . . . . . 27
3.2 Design Science Research: Thesis Development . . . . . . . . . . . . . 28

4.1 Overview of the flow of using Data Protection Fortification . . . . . 37
4.2 Steps in Data Protection Fortification . . . . . . . . . . . . . . . . . . . 41
4.3 Risk matrix used in DPF . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Method for security measures evaluation . . . . . . . . . . . . . . . . . 46
4.5 Calibrating using Mentimeter . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Estimating using Mentimeter . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 A risk matrix as shown in Mentimeter. . . . . . . . . . . . . . . . . . . 54
4.8 Evaluating security measures in Miro . . . . . . . . . . . . . . . . . . . 55
4.9 Estimation table and risk matrix drawn on a white-board . . . . . . 56
4.10 Answering sheet for participants during estimation . . . . . . . . . . 57
4.11 Example of answers in DPF with only physical tools . . . . . . . . . . 59

5.1 Reported practices for handling a connection URL . . . . . . . . . . . 70
5.2 Reported practices for validation and monitoring . . . . . . . . . . . 71
5.3 Reported practices for use of data schema . . . . . . . . . . . . . . . . 73
5.4 TAM evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Evaluation of most useful part in DPF . . . . . . . . . . . . . . . . . . . 76
5.6 Example of requirement from DPF taken into to development . . . . 83
5.7 Monitoring system architecture using audit hooks . . . . . . . . . . . 84

xiii





Tables

2.1 Development phases and related security activities . . . . . . . . . . 6
2.2 Description of STRIDE and examples of mitigations . . . . . . . . . . 10
2.3 Security properties and their relation to STRIDE . . . . . . . . . . . . 17
2.4 Approaches for security testing of IoT systems . . . . . . . . . . . . . 18
2.5 Findings from our pre-study and their relevance to this thesis . . . . 19

3.1 TAM inspired questions used to evaluate DPF . . . . . . . . . . . . . . 34

4.1 Desired properties of DPF . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Security measures for the String data type . . . . . . . . . . . . . . . . 47
4.3 Security measures for the Number data type . . . . . . . . . . . . . . . 48
4.4 Security measures for the Date data type . . . . . . . . . . . . . . . . . 49
4.5 Security measures for handling the data source . . . . . . . . . . . . . 49
4.6 Discussion questions for the first step in DPF . . . . . . . . . . . . . . 65

5.1 Practices reported by the development teams . . . . . . . . . . . . . . 68
5.2 Overview of DPF sessions held . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Observations and lessons learned from DPF . . . . . . . . . . . . . . . 79

6.1 Ability to experience flow in DPF . . . . . . . . . . . . . . . . . . . . . 87
6.2 How DPF address challenges reported in literature . . . . . . . . . . 89

xv





Acronyms

API Application Programming Interface. 78, 81

AR action research. 27, 29

CAR canonical action research. 27

CVE Common Vulnerabilities and Exposures. 4

DFD Data Flow Diagram. 89

DPF Data Protection Fortification. iii, v, xiii, xv, 1, 2, 24, 31–44, 46, 49–51, 55,
57, 58, 60, 65, 67, 74–82, 85, 87–94, 96–100

DSL domain-specific language. 89, 91

DSR design science research. iii, v, 23, 26–29, 31

GDPR General Data Protection Regulaion. 26, 50, 81

ICS Industrial Control Systems. 81

IoT Internet of Things. iii, v, 1, 2, 17, 19–21, 23, 24, 26, 29, 38, 44, 60, 62, 64,
72, 73, 81, 91, 95, 96, 99, 100

IS information systems. 27

NIST National Institute of Standards and Technology. 16

SaaS Software as a Service. 20

SAST Static Application Security Testing. 6, 16, 30

SDK Software Development Kit. 20

SDLC software development life cycle. 6, 7

SLR systematic literature review. 1, 7, 17, 19, 29, 30, 99

SSDLC secure software development life cycle. 1

xvii





Chapter 1

Introduction

Data has become a critical asset for decision-making in different domains such
as smart grids, smart city and smart ocean [1–3], where data from Internet of
Things (IoT) systems is becoming increasingly prevalent [4]. However, ensuring
that the data has not been tampered with by an adversary that is aiming to in-
fluence decisions is difficult, as IoT comes with several challenges. IoT devices
have limited resources and are restricted to light-weight encryption mechanisms
and authentication algorithms. Furthermore, they are typically deployed in unat-
tended environments where an attacker can get physical access and take over
the device [5–7], and potentially make it send maliciously altered data [5, 7, 8]
or even injection attacks through the data. Therefore, systems consuming such
data must be designed with security measures to detect and handle such threats.
However, the focus of security professionals has traditionally been on securing
functions and systems, not data [9], resulting in a lack of methods that can aid
practitioners in understanding risk in data.

With the goal of uncovering approaches for development teams to start doing
security testing of IoT systems, we wrote a systematic literature review (SLR) on
state-of-the-art security testing approaches for Internet of Things (IoT) [10]. From
this, we discovered a need for more research on approaches applicable during
earlier phases of development, especially during planning and design. Among the
approaches found, one approach in particular showed promise for bringing focus
on the data used in IoT systems and the importance of not assuming trust in such
data. The approach describes a data monitoring system for detecting threats in
data, using a data-capturing concept referred to as audit hooks [11].

In this thesis, we build on the work of our SLR, together with findings in re-
cent literature on threat modeling, to develop a threat modeling process focusing
on data from IoT, that is applicable during the design phase as part of a devel-
opment team’s secure software development life cycle. The method, which we
have named Data Protection Fortification (DPF), was developed in tandem with
performing field testing in the industry. The goal of DPF was initially to help deter-
mine what IoT data should be monitored for threats using audit hooks. However,
after several iterations of development, it has expanded to include elicitation of

1



2 E. Gudmundsen & S. Kvamme: Data Protection Fortification

other security measures on data. The results from testing show that DPF is helpful
for development teams to identify higher-risk data fields and shows potential for
usage in other contexts beyond data with origin in IoT systems.

The research questions for this thesis are the following:

• RQ1 What are the practices reported by companies for securely handling
data coming from devices or other sources?
• RQ2 How can data-centric threat modeling support teams in identifying

security risks and promote secure design in handling data?
• RQ3 How can data monitoring using audit hooks identify attacks in data

with increased risk?

The contributions of this thesis are two-fold. In the first part, we develop a
method for development teams to (1) share knowledge about a data source and
discuss possible security implications, (2) collaborate on identifying higher-risk
data fields, and (3) evaluate security measures that can be implemented to re-
duce the risk of data tampering. In the second part, we use our DPF method to
identify practices for data handling reported by the development teams and come
up with possible requirements for a data monitoring system extending the work of
Shrestha and Hale [11] for detecting possible tampering of data. We answer this
part with the data collected from performing Data Protection Fortification with
various development teams.

The thesis is organized into seven chapters. Chapter 1 has introduced the prob-
lem and the motivation for this thesis. Chapter 2 aims to explain relevant theoret-
ical concepts and related work which has influenced this thesis. Chapter 3 dives
into the research activities and the method for conducting it, also explaining the
research context and problem statements of this thesis. Chapters 4 and 5 presents
the result, namely the DPF method and the synthesis of data collected during the
DPF sessions with various teams. Chapter 6 discusses the results’ implications for
practice and research. We also discuss lessons learned from developing the DPF
method. Finally, Chapter 7 concludes the thesis and also presents directions for
future work.



Chapter 2

Background and Related Work

In this chapter, we present theory and related work in fields relevant to this thesis.
First, we introduce key terms within the fields of vulnerability and risk manage-
ment. We then outline the different software development phases and relevant
security activities found within these. We introduce the method of threat mod-
eling and STRIDE, as well as related work on threat modeling. Following this,
we describe Protection Poker, on which we initially base our proposed threat-
modeling method. Then we give security properties and their relation to security
testing. Relevant findings from the pre-study on security testing on data-intensive
systems are presented and followed up with literature relevant to the proposed
data monitoring system. Finally, we summarize the identified gap in research that
guides the work in this thesis.

2.1 Vulnerability and Risk Management

In this section, we define some common terms and concepts in vulnerability and
risk management.

2.1.1 Bug

A bug is a synonym for a fault [12]. A fault may be introduced in a system’s
specification or code, while a bug is usually associated with a fault introduced
in the code during development. Both have the potential to cause an error or
failure in the system. Hence, faults are considered a cause, and system failures
are an effect resulting from activating or executing a fault. Landwehr et al. [13]
characterizes an inadvertently introduced security flaw in a program as a bug,
violating the systems security requirements.

2.1.2 Vulnerability

According to NIST [14], a vulnerability is "a weakness in the computational logic
(e.g., code) found in software and hardware components that, when exploited,

3



4 E. Gudmundsen & S. Kvamme: Data Protection Fortification

results in a negative impact to confidentiality, integrity, or availability". In simpler
terms, a vulnerability is an error that an attacker can exploit [15] and may be
introduced at any time during the software development process. To reduce the
risk of unintentionally introducing previously known vulnerabilities, MITRE cor-
poration has for over 20 years disclosed information about known vulnerabilities
to the public through its Common Vulnerabilities and Exposures (CVE) program1.

2.1.3 Risk

Within the domain of computer security, NIST defines risk as a "measure of the
likelihood and the consequence of events or acts that could cause a system com-
promise, including the unauthorized disclosure, destruction, removal, modifica-
tion, or interruption of system assets" [16]. Ni et al. [17] give the following char-
acteristics to a risk:

• A risk is harmful.
• A risk is uncertain; we may not know if it will occur or not.
• A risk is abrupt and not anticipated.
• A risk can not be completely eliminated, only controlled, mitigated, trans-

ferred, or evaded.

Using the NIST definition of risk, Equation (2.1) shows how risk can be calcu-
lated if the likelihood of it occurring and the consequence is known. The resulting
"risk number" is often used to assess risks.

Risk= Likelihood×Consequence (2.1)

Risk assessment is a structured process that is a key step in most risk manage-
ment frameworks [17]. It involves processes for identification, classification, esti-
mation, and prioritization of risks. Many tools and techniques have been created
to aid practitioners in performing and documenting risk assessments across vari-
ous domains. One such tool, the Risk Matrix Approach (RMA), is a widely adopted
tool for conducting risk assessments. Ni et al. [17] discusses several limitations to
RMA, such as the typical four-square pattern found in many RMA variants. One
such variant, the "4-T strategy", is shown in Figure 2.1, where risks are catego-
rized into four groups based on their risk value (X, Y). For risks that fall close to
or at the border of one "category", it is unclear what action should be taken. To
remedy this, Ni et al. [17] propose drawing hyperbolas into the matrix as shown
in Figure 2.2 and then coloring the areas between these to indicate the threshold
categories.

1https://cve.mitre.org/

https://cve.mitre.org/


Chapter 2: Background and Related Work 5

Figure 2.1: Classic risk matrix using the 4-T (Tolerate, Treat, Transfer, Terminate)
strategy to categorize risks.

(a) Traditional risk matrix (b) Adding hyperbolas to (a)

(c) Adaptation of (b)

Figure 2.2: Adding hyperbolas to a risk matrix as recommended by Ni et al. [17].



6 E. Gudmundsen & S. Kvamme: Data Protection Fortification

2.1.4 Threat

NIST [18] defines a threat as "any circumstance or event with the potential to
adversely impact organizational operations (including mission, functions, image,
or reputation), organizational assets, or individuals through an information sys-
tem via unauthorized access, destruction, disclosure, modification of information,
and/or denial of service". A threat is also defined as "the potential for a threat-
source to successfully exploit a particular information system vulnerability" [18].

2.2 Security Activities in Development Phases

Bachmann and Brucker [19] describe the security activities and security testing
methods that practitioners can apply in the different phases of development: (1)
during planning and design, (2) during application development, (3) when exe-
cutable in a test environment, and (4) during system operation and maintenance.
Table 2.1 shows examples of such activities and techniques mapped to the devel-
opment phases. The techniques used in (3) can also be used in (4) to check if
the system is still secure, in addition to passive security testing techniques such as
monitoring the behavior of the system or analyzing system logs [19].

Table 2.1: Development phases mapped to security activities and security testing
techniques.

Development phase Example security activities

During Planning and Design Threat modeling, architecture security reviews

During Application Development SAST, manual code reviews, static binary code analysis

Executable in a Test Environment Penetration testing, vulnerability scanners, fuzz testing

System Operation and Maintenance Monitoring system, intrusion detection system

2.3 Threat Modeling

Threat modeling is recognized as an essential activity in software security. The
activity aims to elicit security requirements based on existing knowledge about
the system, typically by using abstractions (e.g., models, functional requirements)
to help think about possible risks and threats [20, 21].

Threat modeling is beneficial to perform for both small and large complex
systems, both those already in production or existing only on paper [20]. Since
taking action on new security requirements is more costly when a system is al-
ready in production, it is recommended to perform threat modeling in the early
phases of development. At the start of a project, threat modeling can help fortify
security in the overall system architecture. During a project, integrating a more
focused threat modeling as part of the organization’s software development life



Chapter 2: Background and Related Work 7

cycle (SDLC), using new requirements or functionality as the scope, can help iden-
tify security requirements for these.

As the activity has grown in popularity and adoption, many techniques have
come to exist to aid in performing threat modeling, such as STRIDE covered in
Section 2.3.5. Numerous processes on how to perform threat modeling also exist
in the literature. They can be categorized by their area of focus and level of gran-
ularity as software-centric, asset-centric, attack-centric, and data-centric [22–24].

Tuma et al. [22] did a systematic literature review (SLR) where 26 threat
analysis approaches for secure software design were reviewed, and this study was
later extended with 22 approaches by Håkonsen and Ahmadi [23]who also added
a focus on agile.

Main findings from Håkonsen and Ahmadi [23] which are relevant to this
thesis include: (1) the majority of methodologies were not adapted to agile devel-
opment and had no clear definition of done, (2) generally poor descriptions on
how to integrate the techniques into the workflow of practitioners, and (3) there
is generally a lack of documentation on how to perform the threat modeling ex-
cept for the publications. The authors call for research on improving all of these
aspects. The authors also found that techniques that can support practitioners by
providing support in terms of examples and templates seemed promising for an
agile context and for ease of adoption, where these approaches were also often
lightweight and had the potential for collaboration. Furthermore, only a minority
of the approaches were useful to developers, and none focused on data.

Regardless of which threat modeling process one chooses to follow, we echo
Myagmar et al. [20] in that a threat model can not simply be created based on
ideation and brainstorming sessions. There is a need for a structured process to
identify risks systematically.

In the following section, we explain one structured process inspired by OWASP’s
guide on application threat modeling [25], and Shostack [21]. The output from
each step aims to answer the four questions summarized in Shostack’s four-step
framework for threat modeling [21], as shown below:

1. Model System - What are you building?
2. Find Threats - What can go wrong?
3. Address Threats - What should you do about the things that can go wrong?
4. Validate - Did you do a decent job of analysis?

2.3.1 Step 1: Model System

This step involves modeling the system we are building and generating documen-
tation about the system’s intended use. OWASP [25] has compiled a list of what
we typically want to document in this step. This includes:

• Creating use cases to understand how the application is used.
• Identifying entry points to see where a potential attacker could interact with

the application.



8 E. Gudmundsen & S. Kvamme: Data Protection Fortification

• Identifying assets, i.e., items or areas in which an attacker would be inter-
ested.
• Identifying trust levels representing the access rights the application will

grant to external entities.

2.3.2 Step 2: Find Threats

Different techniques exist to help in discovering possible threats to the system.
One such technique, STRIDE (covered in more detail in Section 2.3.5), is a struc-
tured process that systematically helps one go through different threat categories.
STRIDE can be applied to the use-cases identified and documented in the previous
step and help keep discussions focused. Other techniques for finding threats in-
clude generating "attack/threat trees" and "misuse cases". Both are typically docu-
mented in diagrams and show how attackers can target specific functions to attain
their goals and how the system provides countermeasures to defend against the
attacks (or highlighting a lack of such). Regardless of which technique is used to
discover threats, all threats to the system should be documented (e.g., enumer-
ated in a list) so that we can address them in the next step.

2.3.3 Step 3: Address Threats

In short, we can either mitigate, eliminate, accept or transfer a threat. A short
description of each is given below:

• Mitigate: Propose security measures that will make it harder for an attacker
to take advantage of a threat. For instance, use HTTPS instead of HTTP to
make it less likely that someone will be able to tamper or intercept client-
server communication.
• Eliminate: Remove the threat by also removing the entry point which en-

ables the threat. This typically means removing the functionality associated
with the threat.
• Transfer: Transfer the responsibility of handling a threat by moving the risk

to someone else. For instance, letting an external product handle sensitive
information, such as user authentication or payment procedures on behalf
of the system.
• Accept: This just means to accept that the threat exists and that there are

possible risks associated with this threat.

Mitigation should be the "go-to" action to address a threat, as it is the easiest
and best for your customers [21] (although mitigating threats can be hard work).

Ranking threats

In OWASP [25], threat analysis is first done by ranking the threats. A general
approach is to look at the risk factors for a threat. To help us in this work, we



Chapter 2: Background and Related Work 9

can use a risk assessment model such as DREAD to rank threats by assigning a
numeric "risk score" to them.

Providing Threat Mitigations

In this step, we try to devise countermeasures or mitigations to defend against the
threat. For this, we can use checklists that include common mitigation strategies
for threats categorized using STRIDE. Of course, not all threats can be mitigated
with these strategies, so developing specific mitigations may require both security
expertise and domain knowledge about the system one is building. We have in-
cluded a checklist of common mitigation techniques categorized using STRIDE in
Table 2.2.

Documenting Mitigations and Countermeasures

After ranking the threats and providing possible mitigations, it is important to be-
gin working on implementing the actual mitigations. Shostack [21] recommends
documenting the identified threats as bugs, thereby ensuring that they are tracked
and prioritized. Also, documenting relevant test cases to verify that the threat has
been mitigated is recommended. It is important that threat modeling is not just
an exercise done on paper [21], and by doing this, we create actionable tasks for
the development team to handle.

2.3.4 Step 4: Validate

The final step of threat modeling is to review the overall process. It is recom-
mended to assess each step in the order they were performed, beginning with the
model and continuing with the identification and addressing of threats. To help
in this, Shostack [21] propose a checklist for common things to look for in each
step.

2.3.5 STRIDE

STRIDE is a mnemonic created by Microsoft for six major categories of threats that
can be used in threat modeling. It stands for spoofing of user identity (S), tam-
pering with data (T), repudiation (R), information disclosure (I), denial of service
(D), and elevation of privilege (E) [21, 26, 27]. Table 2.2 describes each of these
threat categories and gives some examples of common mitigations2. The mitiga-
tions techniques for tampering given by OWASP and Shostack [21] are focused on
preventing tampering of data from happening in the first place (e.g., of files, net-
work packets), and as a following, the mitigation techniques include measures like
using hashes, digital signatures, and tamper-resistant protocols. However, within
the scope of this thesis, we are more concerned with protecting the system when

2https://owasp.org/www-community/Threat_Modeling_Process

https://owasp.org/www-community/Threat_Modeling_Process


10 E. Gudmundsen & S. Kvamme: Data Protection Fortification

we assume the data could have been tampered with to include false or malicious
inputs. Therefore we instead show example mitigations here for data validation.

For practitioners wishing to apply STRIDE to their systems, OWASP provides
a reference sheet3.

Table 2.2: Description of STRIDE with examples of mitigations [21].

Attack category Description Mitigations

Spoofing Pretending to be someone
you are not.

Approporiate authentication using
strong protocols, where credentials and
authentication tokens are encrypted
during transit and storage.

Tampering Modifying something you
are not supposed to modify.

Proper validation of data (e.g., data
type, format, white-listing, semantic)
and having no security decision based
upon parameters that can be manipu-
lated.

Repudiation Being able to claim that you
did not do something.

Use digital signatures, leave audit trails
for key events and sensitive operations,
and protect your logs.

Information Disclosure Exposing information
to people who are not
authorized to see it.

Use strong authorization for accessing
resources, encrypt the data, and trans-
port it using privacy-enhanced proto-
cols.

Denial of Service Attacks that prevent a sys-
tem from providing a ser-
vice.

Approporiate authentication and autho-
rization, filter requests, throttle suspi-
cious hosts and maintain quality of ser-
vice with elastic resources.

Elevation of Privilege When a user or process can
do things they should not be
able to do.

Run processes with the least privileges,
separate data and code, validate data,
and check for vulnerable third-party de-
pendencies.

2.3.6 Asset-Oriented Threat Modeling

During threat modeling, activities for threat enumeration and asset identification
are often carried out in collaborative brainstorming sessions. Without guidance
or formalized processes to drive these activities, the outcome of these activities
is highly dependent on the knowledge or creativity of the participants. Messe et
al. [28] propose a structured asset identification process to be used within the
asset identification phase of threat modeling. A reference model for assets was
created to help practitioners reason about the assets. The structured process aims
to facilitate collaborative threat enumeration and asset identification activities.

3https://owasp.org/www-pdf-archive/STRIDE_Reference_Sheets.pdf

https://owasp.org/www-pdf-archive/STRIDE_Reference_Sheets.pdf


Chapter 2: Background and Related Work 11

Definition of an asset Existing definitions of what an asset is are too vague to be
used in the context of asset-oriented threat modeling. Instead, Messe et al. [28]
propose three derivates of an asset in their asset reference model. Domain Asset
(DA) is a type of asset that has a business value for the business stakeholders. DA
appear as system artifacts in system architecture models. Assets that have value
for security experts, and have threats associated with them, are considered Vul-
nerable Assets (VA). VA appears as system artifacts in attack pattern descriptions.
Both DA and VA may have assets that exist solely within each type, for instance,
a DA that is not vulnerable to an attack. The third type of asset, a Vulnerable Do-
main Asset (VDA), is a DA which is also identified as a VA, which should have
controls implemented to mitigate possible attack surfaces. During asset identifi-
cation, VDA’s are something an attacker wants to attack that has value for the
business stakeholders and are discovered when a VA matches a DA.

For this thesis, the definitions of assets could also apply to fields in a data
source to identify which fields have a business value and the possibility of con-
taining vulnerabilities. The reference model could be used to identify and discuss
the data source’s fields. The fields considered both to be "vulnerable" and to have
"domain value" could be prioritized when evaluating security measures for the
data source.

2.3.7 Threat Modeling in Agile Software Development Projects

Bernsmed et al. [29] study how agile development teams have adopted threat
modeling as part of their development process. Four development teams with dif-
ferent levels of security expertise and developer competence were studied, and
challenges, good practices, and experiences were collected from each team. The
most difficult challenge reported is integrating threat modeling in the existing de-
velopment process and changing developers’ mindsets into focusing on security.
The recommendations for good practices and challenges from Bernsmed et al.
[29] listed below can help improve future threat modeling methods.

Challenges Developers lack of motivation. It is difficult to make developers at-
tend threat modeling sessions because they feel valuable development time is lost.
Not knowing what to do with the outcome of threat modeling is also reported as
an issue. One observation was that development teams do threat modeling for
compliance reasons, not because they see its potential value.

Best Practices Including different roles and stakeholders as participants in threat
modeling sessions is recommended. Regular time intervals for the sessions and
using checklists as part of making a clearly defined process also help guide the
sessions.

Recommendations Create lists of the following items that can be used during
the threat modeling session:



12 E. Gudmundsen & S. Kvamme: Data Protection Fortification

• Assets involving infrastructure personnel (databases, servers, cloud infras-
tructure).
• Secrets, such as cryptographic keys. Also, specify how these are used in the

system.
• Services and systems that send or receive data from the product.

For this thesis, the challenges and best practices reported are useful to guide
the development of a method for assessing threats that come in through the data.
Particularly for generating tangible outcomes from the activity that is useful to
developers (and not only for compliance purposes), providing checklists to guide
the process, which is also recommended by Myagmar et al. [20].

2.3.8 Evaluating Threat Modeling Using Flow

Flow is a widely accepted model to capture what makes an experience enjoyable
[30]. Shostack [21] claims that flow is the most important test of a methodology
for threat modeling. Without experiencing flow, practitioners may feel bored or
anxious and become less efficient in finding threats. In turn, this makes them less
likely to adopt the method [21]. Evaluation using flow has also been adopted
in other disciplines, such as Gameflow [31], which is used for evaluating player
enjoyment in games. The elements that contributes to flow are given below (from
Shostack [21]):

• The activity is intrinsically rewarding Doing the activity because doing it
feels enjoyable, not because you get rewarded for doing it.
• People become absorbed in the activity Effortless involvement in the

activity, with little interruptions or waiting involved [31].
• A loss of the feeling of self-consciousness When in a flow experience, we

become less aware of the information we use to represent to ourselves who
we are [30].
• Distorted sense of time The experience of losing track of time when per-

forming an activity, or feeling that time stands still.
• A sense of personal control over the situation or activity Exercising

control of a difficult situation to overcome a challenge or task at hand [30].
• Clear goals The task or activity must have a clear, attainable goal for the

person to be able to concentrate on achieving it. Shostack [21]mention that
many approaches to threat modeling fail to include clear goals. One such
example is "find all possible security problems", of which the possibility for
achievement is debatable. Hence, goals should have attainable criteria for
how they can be achieved.
• Concentrating and focusing The task at hand requires attention from the

person so that only information relevant to the task is allowed into aware-
ness. The more concentration required by the task at hand, the more ab-
sorbing the task will be [31].
• Direct and immediate feedback Feedback provides the possibility to assess

the current progress on a task, and also to let a person know if they have



Chapter 2: Background and Related Work 13

done sufficient work on the task (e.g., give feedback if the threat model is
in a "good" state).
• Balance between ability level and challenge Tasks should match the skill

level of the person performing it. If a person does not have the right skills
to perform an activity, the activity is rendered meaningless [30].

We will use the elements in flow to evaluate the method we develop, as rec-
ommended by Shostack [21].

2.4 Protection Poker

The Protection Poker game is a security activity for agile development teams pro-
posed by Williams et al. [32]. The goal is to enable teams to perform a security risk
assessment for the following product increment. It is an informal form of misuse-
case development and threat modeling based on the participants’ discussions. The
tangible output from the activity is an estimated security risk "score" for each re-
quirement or functionality included in the following product increment that can
help guide the prioritization of required security efforts. The activity stems from
another collaborative estimation activity, Planning Poker, which many develop-
ment teams use to estimate the relative size of the requirements included in the
following product increment.

Protection Poker should be performed during the start of each new iteration.
Ideally, the extended team should be present (developers, project managers, prod-
uct owners, testers, and security experts) so that the discussions during the activity
can benefit from the diversity of knowledge and perceptions. SINTEF [33] sug-
gests that to keep the game focused, one person should be a moderator. Someone
should also be assigned the responsibility to note down any interesting points from
the discussions during the activity, such as security problems and vulnerabilities,
likely attacks, and possible ways to mitigate the attacks.

2.4.1 Calculating Risk

The security risk of a requirement is calculated by the equation in Equation (2.2).
The ease points reflects how the new, enhanced or corrected functionality de-
scribed by a requirement, affects the ease of attack of the system. The value points
reflects the value of the asset that could be exploited with a successful attack.

Security Risk= Ease Points × Value Points (2.2)

The equation reflects the hypothesis that the probability of a successful attack
increases with the value of the asset available through the functionality and the
ease of attack of the functionality. The more attractive an asset is to an attacker,
the more time an attacker will be willing to spend to devise an attack; thus, the
risk increases.

There are different variants of which values are available to the team when
voting on the estimates. Williams et al. [32] suggests using nine possible values



14 E. Gudmundsen & S. Kvamme: Data Protection Fortification

when voting on the estimates (1, 2, 3, 5, 8, 13, 20, 40, 100), while another variant
by SINTEF [33] suggests using ten values that are more evenly spread out (<10,
20, 30, 40, 50, 60, 70, 80, 90, 100).

Calibration To get the best results, Williams et al. [32] recommends that the
team calibrates the ease- and value-points at the start of a project. SINTEF [33]
suggests calibrating before running Protection Poker for a new system since the
numbers that determine asset value or system exposure (i.e., ease of attack) can
vary between different development projects.

The calibration involves assigning the lowest and the highest value to the re-
quirements that are the most difficult to attack and the easiest to attack, respec-
tively. Since the value of a particular asset (e.g., database table) does not change
based on the different requirements that use that asset, a relative value can be
determined for a given system so that the team can reuse these value estimates.

The calibration is important to prevent the team from falling for the temp-
tation of giving everything a high value in high-risk projects [33], since "when
everything is very valuable, then nothing is very valuable" [34]. If there is little
spread in the risk estimations, it would be tough to make prioritizations within the
project [33]. The calibration may change over time as the system changes along
with the iterations [34].

2.4.2 Performing Protection Poker

In the following sections, we briefly describe the process of performing the Pro-
tection Poker, as described by Williams et al. [32, 34] and SINTEF [33]. We have
structured the activity into three steps: the opening discussion, risk estimation,
and security requirements elicitation.

Opening Discussions

The activity starts with selecting the requirements that will most likely be in-
cluded in the following work iteration. Someone with expert knowledge about
the requirements then explains the requirements to the team. The team is then
encouraged to think and discuss their opinions on different security aspects, such
as possible threat actors, attack surfaces, the potential for misuse, and the value of
the assets handled. Examples of questions proposed by Williams et al. [32] when
discussing the security implications include:

• Who would want to attack the system?
• What could an attacker do if they got a hold of the data stores that this new

requirement accesses - and stole, deleted, or corrupted the data?
• What damage could an insider do through this functionality, particularly if he

or she could bypass the user interface?”

When the discussion quiets down, the team moves on to estimating risk values
for each requirement.



Chapter 2: Background and Related Work 15

In Williams et al. [34], it is also suggested to create a checklist of security is-
sues to consider in this discussion, possibly extending these example questions.
This brings a possibility for both knowledge sharing and discovering hidden as-
sumptions within the team. As stated by Williams et al. [32], "Protection Poker
shows promise to improve not only software security but also the entire develop-
ment team’s security knowledge."

Risk Estimation

For each requirement, the team votes on ease points and value points using a
specialized card deck to calculate the security risk according to Equation (2.2).
The points are given relative to the calibrated endpoints and the values for the
previously assessed requirements. The team can vote on either ease points or value
points first.

The ease points and value points are estimated iteratively for each require-
ment. The general procedure is as follows: 1) the team discusses, 2) the team
votes, showing their answers simultaneously, 3) the ones with the highest and
lowest cards start a new discussion by explaining their choices to the group, 4)
a revote is done if needed. The steps repeat until there is consensus in the team
about each number estimate [33, 34].

Williams et al. [32]mention that misunderstandings and new perspectives and
perceptions can often be revealed while discussing differences of opinion, and that
it may take two or three votes before the team reaches a consensus. If the team
cannot reach a consensus on their own, the moderator can suggest a value [33].

The value points for a requirement is the sum of all of the estimated values
of the assets that the new requirement protects or uses [32]. The estimation dis-
cussion starts by having everyone collaborate on identifying all the assets that are
created or touched by the requirement under consideration [33]. If any assets do
not already have a value point estimate from a prior calibration, the team first
assigns these through discussion, and voting [32]. SINTEF [33] suggests that the
discussions revolve around the asset’s value for various actors (e.g., customers,
users, the business, attackers) and the consequences if the asset is compromised.
When all the assets have values, the sum is noted down as the value points of the
requirement.

When estimating ease points, the team first discusses the change in ease of
attack of a system related to a new requirement. SINTEF [33] suggests discussing
how the requirement influences how the system can be attacked and the ease of
performing these attacks. In addition, consider what level of access the attacker
can get (e.g., full access, read-only) and if they can affect the availability of any
assets. Williams et al. [32] mention that these discussions might lead the team to
revise a requirement on the spot (also updating the documentation) to reduce the
ease-point estimate. The final estimate from the vote is noted down as the ease
points of the requirement.

For Protection Poker to be an effective technique for estimating security risks, it



16 E. Gudmundsen & S. Kvamme: Data Protection Fortification

is necessary to have a culture where diverse opinions are valued. No one should be
coerced into agreeing with the estimates of team members who are held in higher
regard since disagreements and misunderstandings often indicates a security risk
[34].

After the value points and ease points have been estimated for all of the re-
quirements, the security risks can be calculated according to Equation (2.2) and
put into a table.

Security Requirements Elicitation

The team can use the list of calculated risks to prioritize their security efforts when
implementing the requirements. Decisions on how to address the security for each
requirement should be documented. If any specific security activities or function-
alities are required, they should be included where other requirements are doc-
umented (e.g., in the backlog) [33]. Security measures might include measures
such as developing more formal misuse cases or threat models, doing security
inspections, redesigning the architecture to be more secure, using static analysis
tools (SAST), or doing security testing [32].

2.5 Security Testing

Security testing should be carried out regularly to protect systems and test their
resilience to attacks from adversaries. NIST defines security testing as "testing that
attempts to verify that an implementation protects data and maintains functional-
ity as intended" 4. Felderer et al. [26] further describes security testing as testing
that verifies and validates software system requirements related to security prop-
erties by identifying if the properties are correctly implemented for a given set of
assets. Table 2.3 gives a description of each security property as defined by NIST
[35], and show how each security property relate to STRIDE.

4https://csrc.nist.gov/glossary/term/security_testing

https://csrc.nist.gov/glossary/term/security_testing


Chapter 2: Background and Related Work 17

Table 2.3: Security properties and their relation to STRIDE [27, 35].

Property Description STRIDE

Confidentiality Assurance that information is not disclosed to
unauthorized persons, processes, or devices. It
covers data in storage, during processing, and in
transit.

Information Disclosure

Integrity The property that data has not been accidentally
or maliciously altered or destroyed since it was
created, transmitted or stored. It includes ensur-
ing information non-repudiation and authenticity.

Tampering with Data

Availability Ensuring timely and reliable access to and use
of information services and data for authorized
users.

Denial of Service

Authenticity The property of being genuine and being able to
be verified and trusted, and confidence in the va-
lidity of a transmission, a message, or message
originator. Verifying the identity of a user, process,
or device.

Spoofing Identity

Authorization The process of verifying that a requested action or
service is approved for a specific user, process, or
device. Providing the correct access privileges.

Elevation of Privilege

Non-Repudiation Protection against an individual who falsely de-
nies having performed a certain action, and pro-
vides the capability to determine whether an in-
dividual took a certain action, such as creating
information, sending a message, approving infor-
mation, or receiving a message.

Repudiation

2.5.1 Security Testing of Data-intensive Systems

In the specialization project that preceded this thesis, we wrote a systematic litera-
ture review (SLR) on state-of-the-art security testing approaches for IoT systems,
where 1335 papers were filtered, and 21 papers were included [10]. Table 2.4
shows an overview of the identified approaches. For each approach, we reviewed
the type of security testing reported, at what point in the development process
they could be used, what skills were needed, and how the approach output was
reported. We also reviewed their possibilities for automation, how easy they were
to adopt, and how they would fit in an agile setting.

As IoT is data-intensive, we expected to find a focus on data among the ap-
proaches. However, approaches considering data were mainly concerned with set-
ting up test beds for analyzing network traffic data [6, 36] to discover potential
security flaws. One approach for data monitoring showed promise in detecting
attacks coming through the data (see Section 2.6.1).



18 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 2.4: Approaches for security testing of IoT systems included in Kvamme
and Gudmundsen [10]. The paper used as inspiration for developing the data
monitoring system is highlighted with an asterisk (*).

Code Title Authors Approach for security testing

P01 A Dynamic Analysis Security Testing Infrastructure
for Internet of Things

Wang et al. [36] DAST using network capturing methods

P02 Attack Surface Modeling and Assessment for Pene-
tration Testing of IoT System Designs

Mahmoodi et al. [37] Penetration testing and attack-surface
modeling

P03 Automated and on-demand cybersecurity certifica-
tion

Karagiannis et al. [38] Automated security audits to certify com-
ponents

P04 AVRS: Emulating AVR microcontrollers for reverse
engineering and security testing

Pucher et al. [39] Fuzzing of AVR firmware

P05 Bug detection in embedded environments by
fuzzing and symbolic execution

Vijtiuk et al. [40] Symbolic execution and fuzzing of soft-
ware

*P06 Detecting Dynamic Security Threats in Multi-
Component IoT Systems

Shrestha et al. [11] Multi-component threat analysis using
audit hooks

P07 EcoFuzz: Adaptive energy-saving greybox fuzzing
as a variant of the adversarial multi-armed bandit

Yue et al. [41] Coverage-based gray-box fuzzing

P08 Finding Sands in the Eyes: Vulnerabilities Discov-
ery in IoT with EUFuzzer on Human Machine In-
terface

Jiaping et al. [42] Black-box mutation-based fuzzing

P09 FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation

Zheng et al. [43] Coverage-based gray-box fuzzing

P10 Hybrid Firmware Analysis for Known Mobile and
IoT Security Vulnerabilities

Sun et al. [44] Binary code similarity analysis

P11 Integrating Threat Modeling and Automated Test
Case Generation into Industrialized Software Secu-
rity Testing

Marksteiner et al. [45] Automated security testing through risk-
analysis-enchanched threat modeling

P12 IoT Testbed Security: Smart Socket and Smart
Thermostat

Bettayeb et al. [46] Easy-to-setup testbed for security assess-
ment

P13 Iotverif: Automatic Verification of SSL/TLS Certifi-
cate for IoT Applications

Liu et al.[47] Constructing model from runtime com-
munication and and checking it for vul-
nerabilities

P14 Mirage: towards a Metasploit-like framework for
IoT

Cayre et al. [48] Framework for security audits and pene-
tration testing

P15 P2IM: Scalable and hardware-independent
firmware testing via automatic peripheral interface
modeling

Feng et al. [49] Fuzzing with randomized input of micro-
controller firmware

P16 Penetration Testing of Intrusion Detection and Pre-
vention System in Low-Performance Embedded IoT
Device

Zitta et al. [50] Penetration testing

P17 Requirements and Recommendations for IoT/IIoT
Models to automate Security Assurance through
Threat modeling, Security Analysis and Penetration
Testing

Ankele et al. [51] Using metadata from common diagrams
and models to automate security assur-
ance

P18 Security Testbed for Internet-of-Things Devices Siboni et al. [6] Generic testbed performing standard
and advanced security tests

P19 Techniques to Improve Reliability in an IoT Archi-
tecture Framework for Intelligent Products

Coman et al. [52] Securing code and device at many layers

P20 Threat Analysis for Wearable Health Devices and
Environment Monitoring Internet of Things Inte-
gration System

Tseng et al. [53] Threat modeling and penetration testing

P21 Z-Fuzzer: Device-agnostic fuzzing of Zigbee proto-
col implementation

Ren et al. [54] Improved grammar-based fuzzing
through coverage heuristics



Chapter 2: Background and Related Work 19

Table 2.5 shows the most relevant findings from this SLR. We use these to
identify requirements for a method to do data-centric threat modeling that can be
used during the development of IoT systems.

Table 2.5: Findings from Kvamme and Gudmundsen [10] and their relevance to
this thesis.

Aspect Finding Relevance to thesis

Application Very few approaches were applicable in
early phases of development

The method should be possible to per-
form in early development phases.

Skills needed Developers could perform 50% of the
approaches, but only 24% had an out-
put they were likely to understand. In
contrast, 86% could be performed and
understood by security-trained develop-
ers

The method should be performed by de-
velopers, and its result should be us-
able by developers. The method should
help share security knowledge among
the participants.

Output More than half of the approaches (57%)
do not specify the output from their ap-
proach

The method should generate clear and
actionable output.

Automation 62% of the approaches could be partly
automated, and 29% could be highly
automated.

The steps in the method and the output
should have the potential for automa-
tion.

Agile None of the approaches mentioned how
they fit into an agile workflow

The method should help the team in-
spect security efforts and encourage
close collaboration on embedding secu-
rity into the product.

2.6 Data Monitoring and Anomaly Detection

This section introduces the related work on data monitoring using a concept called
"audit hooks" [11], discovered our SLR on security testing for IoT [10]. We also
describe the results of searching in grey literature to find data monitoring sim-
ilar to the one presented by Shrestha and Hale [11] in commercially available
monitoring tools.

2.6.1 Detecting Dynamic Threats Using Audit Hooks

Shrestha and Hale [11] presents a technique for performing dynamic security
analysis in an IoT environment using data captured from multiple sources and per-
spectives (web traffic, Bluetooth, application data) collected through three types
of "audit hooks". An audit hook is a mechanism placed in code to capture data,
such as a function parameter, enabling real-time access to data often only available
within a process or a function. The data captured from the audit hooks are usually
passed to a (centralized) auditor service [11], which integrates the data to enable



20 E. Gudmundsen & S. Kvamme: Data Protection Fortification

security analysis. The authors recommended adding audit hooks to methods re-
lated to critical or sensitive data assets. Risk assessments or design documents can
help determine where to place the audit hooks.

The authors implemented audit hooks in a previously developed IoT testbed
and successfully identified attacks by analyzing the data captured from the audit
hooks. Four multi-class classification algorithms (Support Vector Machine (SVM),
logistic regression, Naïve Bayes, and K-NN) were evaluated for training a model
on identifying an attack based on captured data. The SVM algorithm resulted in
the best average precision and recall of attacks, with an average precision of no
less than 86%.

Relevant to this thesis is the general idea of monitoring the system through
the use of audit hooks placed in code. We will extend this work by developing
a monitoring system using audit hooks in code to transmit data received from
an external source to analysis. The monitoring system could include the attack
detection algorithm in its analysis capabilities.

2.6.2 Audit Hooks in Industry

An extensive effort was made to search for commercial software products similar
to the audit hooks proposed by Shrestha and Hale [11]. Though many Software
as a Service (SaaS) products exist for monitoring log data, such as Panther5, few
introduce concepts similar to "audit hooks" implemented in code for sending data
to the monitoring system while the data is still in the execution environment.

DataDog6, a cloud-based SaaS product primarily aimed at consuming teleme-
try data (such as application metrics, logs, and trace-data), comes close with their
implementation of an agent running in parallel with the system under monitor-
ing. The running application communicates with the DataDog service through the
DataDog agent. An SDK is provided in multiple programming languages, enabling
communication from within the execution environment (i.e., inside the applica-
tion code). The type of data expected to be sent and monitored in DataDog is
performance- or usage-related statistical data, where the data is generated by the
system (e.g., a metric for current CPU usage of the running application or an
increment of a metric). The anomaly detection feature available in DataDog can
monitor statistical data using different configurations, such as abnormal user fluc-
tuation and application failures, and then alerting this to the system maintainers.

In contrast to the type of data expected in DataDog, we are in this thesis in-
terested in data that comes from external sources (e.g., human user input, sensor
readings). We expect this data to have a lower level of trust and could contain
mistakes or threats. Even though the data type is generally different, some of the
algorithms used in DataDog could still be relevant. While the anomaly detection
feature is not meant to detect vulnerabilities from within the data (e.g., malicious
input) or if a data source has been tampered with, the algorithms used for moni-

5https://www.panther.com/
6https://www.datadoghq.com/

https://www.panther.com/
https://www.datadoghq.com/


Chapter 2: Background and Related Work 21

toring can still be relevant for discovering data tampering over time. The "robust"
algorithm7 supported by DataDog monitoring seems promising for discovering
data tampering where there are subtle level shifts in the data.

2.7 Identified Gap in Research

None of the threat modeling approaches found by Håkonsen and Ahmadi [23]
focused on data. For data-intensive systems, data-centric threat modeling may
provide a novel perspective for security. Also, there is a need for research to doc-
ument how their threat modeling approaches can be adopted in practice, as well
as create methods that are usable by developers [23].

The granularity level used for assets in traditional threat modeling is usually
on whole databases, or tables [24]. For this thesis, we focus on a lower granularity
level by focusing on the data source itself and, more specifically, the data fields
within the data source. Focusing on data itself poses different implications for
security, such as how the data is transported into the systems and the origin of the
values generated in each data attribute.

Most of the approaches we found in our pre-study for analyzing IoT data are
based on capturing network traffic [10]. With the audit hooks [11], the capturing
of data happens within the boundaries of the application code of receiving sys-
tems. We found no similar concepts to this mentioned in the literature, and few
results when searching for commercial tools for monitoring supporting this.

7https://docs.datadoghq.com/monitors/create/types/anomaly/

https://docs.datadoghq.com/monitors/create/types/anomaly/




Chapter 3

Research Methodology

In this chapter, we describe the research methodology used in this thesis. First, we
present the overall purpose of this thesis and then describe our research questions.
Next, we present the context of the collaborating company and the participating
case teams. We present our method for developing the thesis by applying design
science research (DSR), the research paradigm, and the data collection methods
and data analysis. Finally, we describe how we consider ethics in this project and
security measures for protecting the collected data.

3.1 Research Objective

This study aims to understand the security threats associated with handling data
from external sources from the point of view of a developer, in the context of a
development team offering services associated with the data. We use the insights
from this study to propose an architecture for a data monitoring system with threat
intelligence capabilities.

In this thesis, we focus on security threats that have their origin in tampering of
data, which impacts data integrity. Other security properties, such as availability,
could also be affected due to tampering. Sensor data that comes from IoT devices
are especially relevant, as these devices come with many challenges, which makes
securing them difficult [5, 6, 52]. We limit the scope to tampering of textual and
numeric data since these most data sources have these data types.

3.2 Research Questions

The research questions for this thesis have evolved throughout the project, and
their final form as as following:

• RQ1 What are the practices reported by companies for securely handling
data coming from devices or other sources?
• RQ2 How can data-centric threat modeling support teams in identifying

security risks and promote secure design in handling data?

23



24 E. Gudmundsen & S. Kvamme: Data Protection Fortification

• RQ3 How can data monitoring using audit hooks identify attacks in data
with increased risk?

3.3 Context and Participants

In order to answer the research questions we have posed, we conducted a study
with Equinor, Ryde, and a student organization at NTNU. These organizations vary
greatly in their scale and use different kinds of data to develop different products.
In order to collect data from and develop and evaluate a threat modeling method
(see Chapter 4) in different contexts, we included different kinds of organizations
in our data collection. Before the publication of the thesis, the participants got
access to the relevant parts to check that the content related to themselves was
correct and permitted to be published.

We describe the demography of the teams participating in this study in the
following sections.

3.3.1 Equinor

The primary collaborating company for this thesis is Equinor, which is an interna-
tional energy company with over 21 000 employees in almost 30 countries1. The
company works closely with its suppliers. They have around 2000 developers,
where around two-thirds are suppliers, and the size of the teams is often small.
These developers are responsible for developing and maintaining over 5000 ap-
plications built on a wide technology selection from the past 30 years.

The anticipated use of IoT data was central in finding collaborating compa-
nies for this thesis. Equinor has many teams concerned with handling data from
sensors deployed on a variety of equipment onboard oil and gas installations. The
department from Equinor we have collaborated with in this thesis is most often
not concerned with IoT data in their services. Instead, they are concerned with
various data sources that mainly originate from other external companies. Despite
not being concerned with IoT data, their handling of external data sources seemed
like an interesting case. In addition, we also had contacts within this department,
making it easier to get prioritized by the development teams when researching as
externals.

The participants from Equinor were selected in the process of snowball sam-
pling, where the initial participants put us in contact with other people they
thought might be relevant for us to talk to or included the people they deemed
relevant in the DPF sessions. In the following sections, we describe the primary
collaborating teams in Equinor.

1https://www.equinor.com/en/about-us.html

https://www.equinor.com/en/about-us.html


Chapter 3: Research Methodology 25

Team Atlas

Team Atlas results from an initiative to offer a data platform that integrates various
data sources related to marketing and midstream processing, which were previ-
ously spread across many analyst and data scientist environments within Equinor.
The collaborating team consists of about 8 members with various skills in de-
velopment and infrastructure, platform architecture, and machine learning, and
follows a loose implementation of agile. Their services are used across several
data-product teams in the extended Atlas team of around 80 members and other
users of the platform. Team Atlas is responsible for providing this data platform
to any team wanting to access third-party (often licensed) data sets while also
ensuring storage and availability of these data sets. The team has been around
since 2020 but was restructured in the second half of 2021.

Team EurekaML

The EurekaML team maintains a platform that acts as a toolbox for their users
to process data or create machine-learning models. The primary goal of the data
processed in this platform is to give gas trade recommendations to support mar-
ket analysts in their decision-making. They get their data from the data platform
provided by the Atlas team and carry the superset of all the data which their users
need. The team consists of around 6 members working with the platform’s devel-
opment and assisting users of the platform in their development. The team works
in sprints, using a Kanban board, and has been around in its current form since
the second half of 2021.

Team AR/VR

The AR/VR team visualizes 3D models of Equinor-governed installations, such
as oil platforms and ships, and makes them available to different environments
and users in Equinor. The delivered software enables users to interact with the
models and augments them with relevant data from various sources. The team
consists of about 15 members of different roles, including developers, designers,
testers, and tech leads, and uses elements from Kanban, Scrum, and DevOps in
their development process. The AR/VR team has been around since 2017, with
most of the team members having more than 3 years of experience on the team.
They create several different products for internal use, including mobile and web
apps and virtual and augmented reality products, which employees use in the
office or on platforms.

3.3.2 Webkom

Webkom2 is the committee with the technical responsibility for the student organi-
zation Abakus at NTNU. The committee consists of 17 student members, of which

2https://github.com/webkom

https://github.com/webkom


26 E. Gudmundsen & S. Kvamme: Data Protection Fortification

all are developers with varying years of experience and development skills, such
as web development and infrastructure development. They have weekly standups
and work iteratively but do not follow any specific agile methodology. The team
develops and maintains multiple open-source systems, including, but not limited
to, the Abakus website, the committee admissions system, a voting system used by
multiple student associations, in addition to providing tech support for the users.

The data handled by Webkom will, in many cases, contain personally identifi-
able information about students. Hence they must be confident that their current
handling of the data is secure and following GDPR regulations. The data source is
mostly students’ input data, using online forms or websites created by Webkom.

3.3.3 Ryde

Ryde is a Norwegian-based company focusing on delivering micro-mobility ser-
vices in various cities in Norway and Sweden. Since their start in 2019, they have
become one of the market leaders of micro-mobility services in many Norwegian
cities, operating a fleet of several thousand electric scooters. Customers access
the electric scooters through a mobile application that communicates with the
electric scooter’s embedded IoT system. The application development team re-
sides in a non-english speaking country and consists of 3 developers and one user
experience designer. In addition to the client application, the development team
also maintains several internal applications to support functions such as customer
service and mechanics/operations (performing maintenance and distribution of
electric scooters).

Ryde processes data generated from users and the IoT devices to bring value to
business decisions at Ryde. Examples include better understanding their current
operating areas, detecting erroneous functions in their services, and customer us-
age patterns. Because of their relevance to IoT, and also because we had contacts
within the company, we decided to include them as a collaborating company. The
participants from Ryde were the chief operating officer (COO) and a local leader
for operations.

3.4 Approach for Research

In this thesis, we employ a framework for carrying out design science research
(DSR) projects as described by Johannesson and Perjons [55], which is similar
to the methodology proposed by Peffers et al. [56]. We chose this methodology
because it has a well-defined structure and aligns well with our goal of creating
new artifacts to improve on a practical problem of general interest. The chosen
approach for research will help us to: (1) develop a data-centric threat modeling
method for companies to evaluate security requirements related to their current
or intended handling of data coming into their systems, (2) evaluate the need
for implementing security measures for such data which carries increased risk,



Chapter 3: Research Methodology 27

and (3) provide recommendations on a monitoring system for identifying threats
related to tampering.

The five primary activities of DSR are, as shown in Figure 3.1, (1) explicate
the problem, (2) define requirements, (3) design and develop artifact, (4) demon-
strate artifact, and (5) evaluate the artifact, and several different research strate-
gies can be used to carry out each activity. The framework consists of several activ-
ities that are not temporally ordered but are based on input-output relationships,
reflecting the iterative manner of working on design science research projects.

The thesis started as an action research (AR) project due to a wish to work
closely with practitioners to solve a relevant practical problem while simultane-
ously contributing to scientific knowledge. As a result, our thesis draws on several
of the principles of canonical action research (CAR), as described by Davison et
al. [57]. CAR is a prominent form of action research in the field of information
systems (IS). It is an iterative approach consisting of five stages: (1) diagnosis, (2)
planning, (3) intervention, (4) evaluation, and (5) reflection. When the product
of an AR project is an artifact, it becomes very similar to a design science project
[55].

Figure 3.1: The activities in a method framework for design science research
projects.

Illustration from Johannesson and Perjons [55]

3.5 Method for Thesis Development

In Figure 3.2 we illustrate how we used the DSR framework to drive the develop
of this thesis. The figure captures a timeline of the activities we performed and
their input/output relationships.



28 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Figure 3.2: The activities from design science research used for development of
this thesis.



Chapter 3: Research Methodology 29

We acknowledge that an illustration can not truly capture the iterative nature
of developing a method. We often had to move back and forth between eliciting
new requirements, designing, and even revisiting our problem statements to de-
velop the method proposed in this thesis. Despite this, the illustration helps get
an overview of the main output from the activities and their rough order. In the
text, we organize the steps by their respective activity in DSR.

3.5.1 Explicate Problem

Explicating the problem involves investigating and analyzing a practical problem
of general interest. In this phase, we lay the foundation for the focus of our the-
sis. The following sections describe the activities performed and their outcome in
more detail.

Initial Problem Statement

Based on what we had learned from writing our systematic literature review [10],
three problem statements had spawned for our thesis. Firstly, we wanted to focus
on IoT data and its challenges. Secondly, we wanted to build on the approach for
monitoring data proposed by Shrestha and Hale [11]. Finally, we had an over-
arching goal that we wanted to help development teams do security testing. As
illustrated in Figure 3.2, many of the initiatives in later activities are descendants
of these three problem statements (enumerated as (1), (2), and (3) in the figure).

Preliminary Meetings

As part of the first "diagnosis" phase in AR and the "explicate problem" activity
in DSR, we held unstructured meetings with five development teams within one
department in Equinor during the first few weeks of the project. From these meet-
ings, we gained insight into what the development teams were working on, what
kind of security testing they were doing, and which security threats the teams
were concerned with. We also had a meeting with a security expert in Equinor
who works with their application security, where we gained insight into how they
work on security and whether a data monitoring system could be interesting.

An important bi-product from some of the meetings included recommenda-
tions of other possible stakeholders within Equinor who might be interested in
our study. Though most of these stakeholders were organized in different units
within Equinor, they could still provide valuable insight and were relevant for us
to contact.

Key insights from the preliminary meetings include:

• The massive scale of development makes enforcing global security guide-
lines difficult since the context of the applications varies greatly, and conse-
quently, so does the need for protecting the systems. Therefore the imple-
mentation of security guidelines is mostly left to the teams.



30 E. Gudmundsen & S. Kvamme: Data Protection Fortification

• Threat-modeling is promoted to developer teams as a good way to start
building a security mindset, but few of the teams we spoke with had tried
it.
• All teams had integrated a commercial SAST and SCA tool to catch security

flaws in their code repositories, but a few teams were unsure how to best
deal with its findings.
• The services delivered by the teams often revolved around handling large

amounts of data from various sources.
• Several teams mentioned a high level of trust in the incoming data they

used in their products.

New Problem Statement

Based on the insight gained from the preliminary meetings and from searching for
related works, we narrowed down the focus of our research to encompass security
in handling data coming from sources external to the teams. We also wanted to
explore methods that could help teams determine if they should monitor their
data and how to do this. Finally, we also wanted to challenge the inherent "trust"
in the data handled by the development teams. The problem statement was further
developed throughout the project and is expressed through the research objective
defined in Section 3.1 and the related research questions in Section 3.2.

3.5.2 Define Requirements

When defining requirements, one outlines a solution to the problem and elicits
requirements for an artifact. In this thesis, two artifacts were relevant to define
requirements for: (1) a data-centric threat modeling method and (2) a data mon-
itoring system, although the focus in this thesis is on the first artifact. Though
gathering of requirements for this thesis was an iterative process, they initially
emerged based on the results from the previous "explicate problem" phase and
motivations from our SLR as described in Section 2.5.1. The requirements in-
clude that data should be in focus and that we should develop a way to help
development teams evaluate the consequences of tampered data and how they
could protect their systems against it.

3.5.3 Design and Develop Artefact

In this phase, we did the design and development of the two artifacts delivered in
this thesis. This activity aims to produce an artifact that addresses the explicated
problem and fulfills the requirements.

DPF Development

The first artifact is a method for development teams to do data-centric threat mod-
eling. We develop the method through several iterations of development, demon-



Chapter 3: Research Methodology 31

stration, and evaluation, the latter two of which are described further in later
sections.

Initial Method Design Initially, we designed a method for teams to do threat
modeling on their data sources to evaluate the need for data monitoring. A few fac-
tors had to be considered when developing a method for the development teams.
First, the development teams had little time to learn and go through more elabo-
rate threat modeling activities, such as STRIDE. Second, we wanted to focus on the
data sources used by the development teams, while we had previously learned that
each team’s knowledge about the data sources varied greatly. These factors and
motivations from our SLR influenced the options we had for designing a method
that would allow us to collect the data we needed to answer our research ques-
tions while bringing value to the teams participating. With this in mind, and after
looking for existing methods in the literature that could be suitable for our case,
we adapted Protection Poker (see Section 2.4) to focus on the data sources used
by a system. We also looked in the literature to learn more about the challenges
of similar methods.

Final DPF Version The method evolved and improved from the initial version
after demonstrating and evaluating the method with different teams in accor-
dance with design science research. The final DPF method is as described in Chap-
ter 4, and is the result of several cycles of improvements. When further developing
the method, we used insights from requirements that emerged from evaluations
from participants in the sessions, the opinions of security experts, and our lessons
learned from facilitating the activity. We also used literature and acknowledged
sources to strengthen the theoretical backing of the different parts of the method.
Although the method had its origins in Protection Poker, it diverged enough to
become a standalone method.

Data Monitoring System

The second artifact is a data monitoring system. Some requirements for the pro-
posed data monitoring system were based on the original idea proposed by Shrestha
and Hale [11], as well as some insights from interviews with a collaborating team.
Most of the proposed requirements for monitoring were developed from experi-
ences reported by the participating teams during the DPF sessions. We also pre-
sented the idea of monitoring data using "audit hooks" to a security expert to get
opinions used to develop the requirements.

Due to the scope and limited time of the project, this artifact did not reach the
maturity needed for demonstration and evaluation.



32 E. Gudmundsen & S. Kvamme: Data Protection Fortification

3.5.4 Demonstrate Artefact

When demonstrating an artifact, one aims to prove its feasibility by showing that
it can address the explicated problem. It was an iterative process along with devel-
oping and evaluating the method, where we tested DPF in multiple real-life case
studies. A data extraction interview guide was prepared for each team and was
journaled in during our sessions. In addition, the digital version of DPF produced
data through the use of Mentimeter, where participants vote and give feedback.
The lessons learned from facilitating, such as how the teams responded to the
discussion questions, were used to generate new requirements for the method. In
tandem, we also collected data to analyze the team’s current handling of data.
We describe the data analysis of the data generated during the demonstrations in
Section 3.7.

3.5.5 Evaluate Artefact

We evaluate the DPF method in order to determine how well it fulfills the re-
quirements and to what extent it can address the research problem. In this thesis,
we do a formative evaluation to improve the artifact further. After each demon-
stration, the participating team joined for an evaluation of DPF. During the first
demonstrations, we only collected oral feedback from the participants. We found
that participants found it easier to give more thorough feedback this way than
the planned anonymous textual feedback. We asked the participants open-ended
questions to discuss potential improvements to the activity. In the final two ses-
sions, we decided to complement the oral feedback by including a questionnaire,
using the Technology Acceptance Model (TAM) [58] as an inspiration for the ques-
tions. Adding this evaluation allowed us to better measure the participants’ atti-
tude towards using DPF.

Besides evaluating DPF with the teams, we also got two security experts in
separate meetings to evaluate its potential and the validity of the questions and
security measures presented to the teams in the activity.

Many new requirements sprung from these evaluations, which we use to de-
velop DPF further. Section 3.7 describes the data analysis of the data generated
from evaluations.

Evaluation of DPF with Participants

In order to evaluate and further develop Data Protection Fortification (DPF), we
evaluated the activity with the teams after each session. By analyzing the results
from the evaluation, we can also assess the potential of the method to be viable
for teams in practice. Furthermore, we can learn what kind of data the method is
viable for and how the method needs to be adapted to be applicable in different
contexts. Limitations of our evaluation are discussed in Section 6.3.

In all the sessions, we collected oral feedback by asking questions such as:

• What went well?



Chapter 3: Research Methodology 33

• What did not go well?
• What did you learn (about security, the data source, the system)?
• How could the activity be adapted to fit your team better?

The participants were also encouraged to comment on other things that came
to mind.

As a part of the learning process, we improved our evaluation in the last two
sessions by supplementing the oral evaluation questions with more quantitative
evaluation questions using Mentimeter. For this, we included a more structured
evaluation inspired by the Technology Acceptance Model (TAM)[58, 59] for col-
lecting quantitative data, as well as asking each participant to order the different
steps in DPF by how useful they felt it was.

In Table 3.1 we have listed the statements included in the digital questionnaire
we used for the evaluation. We evaluate the participants’ perceived ease of use,
perceived usefulness, and acceptance of the method. Each participant answered
by giving a score of 1-5, representing their attitude towards the given statement,
where 1 equals to Strongly disagree and 5 equals to Strongly agree.

3.6 Data Collection Methods

This section describes the method used in this thesis for data collection. Data gen-
erated from facilitating DPF in focus groups as well as holding interviews were the
primary sources of information in this thesis which we use to answer the research
questions.

We facilitated in total 5 DPF sessions with 5 different teams, with each session
lasting 1,5-2 hours. The details of each session can be found in Table 5.2.

In preparation for all of the DPF sessions except one, we held a semi-structured
scoping interview to select a data source to focus on and to ensure that we had
enough context as externals in order to facilitate the session well. Appendix B
shows the interview guide for this meeting. It also helped the researchers from in-
terrupting too much during the actual session with clarifying questions that only
increased understanding for the researchers and not the team members. The in-
terview lasted around 0,5-1 hour and included 1-2 people from the team.

During the DPF sessions, data was generated in several different ways, in-
cluding journaling discussions in a data extraction document, data generated by
Mentimeter for estimation and evaluation, and a Miro board. Appendix C shows
the final version of the data extraction form. The researchers switched during the
sessions between being the moderator and being the note-taker.

All interviews and focus groups were journaled in Microsoft Word, followed
by a post-meeting discussion between both researchers to record more details
and insights. We did not record the preliminary meetings and early interviews
to encourage free discussion. In order to increase the trust in the findings, we
instead do data triangulation by checking the findings with the source teams. The
researchers did not collect any personally identifiable data.



34 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 3.1: TAM inspired questions used to evaluate Data Protection Fortification.
We look at perceived ease of use, perceived usefulness, and acceptance.

Parameter ID Question

Ease of Use

PEU1 The activity had an appropriate length

PEU2 I would be able to perform this activity myself

PEU3 The discussion questions were clear and easy to
understand

PEU4 It was easy to use Mentimeter for estimation of data
fields

PEU5 It was easy to collaborate on security measures in
Miro

Usefulness

PU1 The activity felt useful to me

PU2 The activity increase my effectiveness in identifying
areas to focus security efforts on

PU3 The discussion questions were helpful in order to
evaluate the risk of the data source

PU4 The suggested security mechanisms helped identify
relevant mitigations

PU5 The activity fits into our team’s way of working

PU6 I know more about security after this activity

Acceptance

AC1 I will use this activity, or parts of it, on future data
sources

AC1 I would like to investigate some security concerns
that were identified

AC1 It was fun to do this activity

A loosely structured interview was also done with two security experts in sep-
arate 30-45 minute sessions, to receive feedback on the potential for Data Protec-
tion Fortification from an expert’s view.

3.7 Data Analysis

We analyzed the qualitative DPF session notes by mapping the notes from the
session to a data extraction sheet template in Microsoft Excel. The template was
based on the questions asked in DPF (see Section 4.5), but as questions evolved,
we created categories that covered questions with similarities. After extracting the
data, we did thematic coding analysis [60] by first creating initial codes from the
answers from each team and then transferring these to a mind map for further
clustering and development. As new codes emerged, they were regularly checked



Chapter 3: Research Methodology 35

against the data to ensure consistency. The codes were first clustered in categories
and then further clustered in an exploratory manner, where similar characteristics
or ways of handling the data (practices) were grouped.

The practices and characteristics found in each category were marked based
on how they might affect the risk of data tampering. We do this evaluation based
on best practices (and examples of the opposite) we find in OWASP [61], OWASP
Proactive Controls Guide3 and our own experience as developers. Characteristics
or practices that contribute positively toward these security properties are marked
with a green check mark, while characteristics that indicate risk are marked with
a red flag. An orange flag was used for characteristics that should be investi-
gated further. If there was no clear indication of how it affects the risk, it was
marked with a grey icon. For evaluating the practices, a combination of guides
from OWASP4 was used, in addition to our own expertise.

The researchers then discussed the findings and significant results extracted
and discussed.

We analyzed the evaluations from the DPF sessions to assess the participants’
attitudes towards using the method. The qualitative data from the oral evalua-
tions were translated from Norwegian, summarized, and subsequently analyzed
with inductive coding. One researcher did the initial coding, and the codes were
transferred to a mindmap, where they were further clustered and discussed by
both researchers. The codes were grouped by the different parts of the method
(discussion, prioritization, security measures) and the relevant TAM categories. A
similar analysis was done for the comments from security experts.

The quantitative data from the evaluations were visualized in appropriate
graphs.

3.8 Research Paradigm and Bias

The research paradigm chosen for this research is interpretivism [62]. We recog-
nize that there may be multiple ways to interpret our data, and thus there may
be multiple conclusions to draw to answer our research questions. We are not ex-
pecting to find proof that our way of assessing risk in a data source is the one to
follow in all cases. Instead, we aim to understand which factors influence the risk
of data tampering and when monitoring data for threats can help reduce the risk
of using the data source. With this, we hope to create knowledge that can serve
as a basis for others to advance on.

As researchers, we recognize that we are not neutral and have assumptions
and values that inevitably shape this research. We acknowledge that we may influ-
ence the participants’ understanding of concepts or practices. For instance, when
we are giving examples to explain what is meant by a discussion topic, this may
narrow their answers. The participants may also change their practices due to the

3https://owasp.org/www-project-proactive-controls/
4https://owasp.org/

https://owasp.org/www-project-proactive-controls/
https://owasp.org/


36 E. Gudmundsen & S. Kvamme: Data Protection Fortification

researcher or the results of the research. All of these factors may make it diffi-
cult to reproduce the study. We also heavily depend on qualitative data, which is
associated with the interpretive paradigm [55].

3.9 Ethics

When conducting research, considering the ethical issues is important [62]. This
thesis collected only years of experience and current position as background in-
formation from participants during data collection.

We followed NTNU’s guidelines5, and since we initially expected to collect
personal data in this research project, including voice recordings of participants,
we sent a notification form to the NSD6 for approval (see Appendix D). The ap-
plication was first approved on the 4th of February 2022, but after updating our
data collection methods, we sent an updated NSD form which was approved 18th
of April 2022.

3.10 Data Storing

Both storage and transfer of personal data were processed by NTNU Office 365, in-
cluding Microsoft Sharepoint, Microsoft Teams, and Microsoft Word. All personal
data was stored in Microsoft Sharepoint and accessed through Microsoft Teams.
Microsoft Word through Microsoft Sharepoint was used for journaling the Data
Protection Fortification sessions held during the project period, only accessible to
the master students and their supervisor. The results Mentimeter generated during
Data Protection Fortification were deleted after extracting the data to Microsoft
Word stored in Microsoft Sharepoint. No sensitive information was processed in
Miro, and all results were removed after data analysis.

A Data Management Plan was created in NSD, and the security classification
level of this research project was determined to be "Internal". NTNU’s Data Storage
Guide recommends using NTNU Office 365 as data storage for research data at
this security classification level.

3.10.1 Security Measures

Multi-factor authentication is enabled by NTNU Office 365 in order to access any
of its services. When information was journaled throughout the Data Protection
Fortification sessions, any confidential information not related to the thesis was
omitted. Microsoft Sharepoint provides an audit log of changes done to the docu-
ment. We shared the notes with access-control through Microsoft Sharepoint when
sharing findings with respective teams.

5https://innsida.ntnu.no/wiki/-/wiki/English/Collection+of+personal+data+for+
research+projects

6https://www.nsd.no/en/data-protection-services

https://innsida.ntnu.no/wiki/-/wiki/English/Collection+of+personal+data+for+research+projects
https://innsida.ntnu.no/wiki/-/wiki/English/Collection+of+personal+data+for+research+projects
https://www.nsd.no/en/data-protection-services


Chapter 4

Design of Data Protection
Fortification

This chapter describes the design of Data Protection Fortification (DPF), a data-
centric threat modeling method for development teams to (1) share knowledge
about a data source and discuss possible security implications, (2) collaborate
on identifying the risk of data fields, and (3) evaluate security measures for im-
plementation to reduce the risk of receiving data that has been tampered with.
Figure 4.1 illustrates the three main processes included in the method and the
artifacts generated by each.

Discussion about
Data Source

Data fields of 

data source

Preparation
Meeting Prioritized data fields

Discuss and
Prioritize Data

Fields

Security / Privacy 

requirements 

Evaluate Security
Measures

Issue Tracker

1 2 3

Common understanding,

Consequences of

tampered data


Risk MatrixDiscussion Template Security Measures Model

Figure 4.1: Overview of the 3 steps in DPF, highlighting their input/output re-
lationship, and artefacts generated by each step. The last artefact generated is a
model of the wanted security measures when handling the data source. The mea-
sures should be documented as tasks in the development teams’ issue tracker.

Since many security testing methods require a threat model as input [51],
the model generated from DPF may also provide the foundation necessary for
development teams to start security testing.

The method was designed to be used on external data sources which is used

37



38 E. Gudmundsen & S. Kvamme: Data Protection Fortification

in a system. In the context of this thesis, we define an external data source as
a source of data which the team integrates into their systems, where the data
is not within the control of the team. This could be an integration of weather
data (generated externally) to augment the user interface of a mobile application.
Other examples include the use of sensor data sent from IoT devices or data sets
which includes historical readings of a temperature sensor. The method has also
shown to be viable for other data sources, such as form input data posted to a
backend application.

Investments in cybersecurity involve decision-making under uncertainty [63],
and one of the techniques for this decision-making is to do risk analysis [64].
DPF is one way of doing such risk analysis, and the outcome of the method can
help decision-makers identify which data fields can and should be monitored for
threats. Here, the uncertainty comes from difficulties in knowing what and where
attacks are likely to happen and what the exact consequences could be. To mitigate
this uncertainty, DPF can help practitioners decide where to focus their security
efforts to protect systems from possible threats coming from data sources they do
not control. When designing the method, there were several considerations and
previous learnings to take into account, and Table 4.1 shows an overview of these.

Table 4.1: The desired properties of Data Protection Fortification.

Desired property Source

It should guide the team in identifying risks related to data tampering. Research problem

It should be able to identify data fields that are suitable for monitoring. Research problem

It should be possible to run with teams who work remotely. Preliminary
meetings

Developers should be the able to perform the approach and use the results. SLR [10],
Related work [23]

It should be possible to perform in the early stages of development. SLR [10]

It should have a clear and actionable output. The output artifacts should
be possible to use as documentation.

SLR [10]

It should fit into an agile context: Enable inspection of security efforts and
encourage close collaboration on embedding security into the product.

SLR [10],
Related work [23]

The method should create value for developers. Related work [29]

It should have a clear process to follow. Related work [29]

It should have good descriptions of how to perform the method for practi-
tioners, including providing templates and examples

Related work [23]

It should be clear when threat analysis can stop Related work [23]

In the following sections, we first outline what is needed to start doing DPF,
and then describe the design of the activities involved in the method. In Section 4.3



Chapter 4: Design of Data Protection Fortification 39

we describe an implementation of DPF which is suitable for both remote and co-
located teams. We also provide an alternative variant in Section 4.4 for co-located
teams that prefer not to use digital tools.

4.1 Preparations for Data Protection Fortification

When preparing the DPF activity, there are a few relevant questions to consider.
These questions include:

• What data source should be in focus?
• Who should participate?
• What tools should we use during the activity?

In the remainder of this section, we go into more detail about how to do the
preparations to help answer these questions.

4.1.1 When to Perform Data Protection Fortification

We propose to make DPF a routine when assessing the security impact of adding a
new data source to a system. In addition, performing this activity on existing data
sources is relevant for assessing if the current security efforts for the data source
are sufficient. It should be repeated for a data source when changes in the archi-
tecture affect how the data triggers transactions or decisions in the application or
when the data fields change.

4.1.2 Select Data Source

Several selection criteria can give input to the team on which data source to
choose. If the team has no prior experience with DPF, we suggest selecting a data
source which the team is well acquainted with. Other good candidates are new
data sources that the team considers for integration into the system under devel-
opment, or previously integrated critical data sources. The selected data source
will be the sole focus during the DPF session.

4.1.3 Prepare Data Fields

The participants will discuss the data fields within the data source during the
activity. Therefore, prepare a list of the known data fields in advance, including
their data type. If only some data fields are being used, it is possible to scope down
the session by focusing on those.

4.1.4 Participants

DPF is designed for development teams, but the extended development team (in-
cluding the project manager, product owner, security experts, testers, and design-
ers) can also see relevance in participating. We also recommend including some-



40 E. Gudmundsen & S. Kvamme: Data Protection Fortification

one with in-depth knowledge about the data source in focus and how it is used,
for instance, a representative from the supplier of the data source. This person
can help address questions during the discussions and help identify relevant data
fields within the data source.

4.1.5 Tool Recommendations

In this section, we give recommendations on what tools to use for performing
DPF. We recommend some specific tools beneath based on our own experience of
using them.

General Recommendations

• Documenting: We have created a Microsoft Word template1 that can be
used by facilitators to take notes in during DPF. We have also created a
printable version2 of this document.
• Security Measures Glossary: The security measure glossary is a reference

tool for the participants to help evaluate relevant security measures for the
data source. This glossary can be printed, or presented digitally.

Tools Recommended for Remote Teams

The digital tools listed below are also suitable for co-located participants.

• Digital white-board: We recommend using a digital white-board to draw
the security measures onto each data field. For this, we have used Miro,
which we prepared before each DPF session. A similar alternative to Miro is
Mural3, but we did not test this tool in practice.
• Digital tools for collecting votes: For this, we have tried one tool, Men-

timeter, for collecting digital "votes" during the prioritization of data fields.
Other tool options include, Kahoot!4, or AhaSlides5, but these have not been
tested for this purpose.

Tools Recommended for Co-located Teams

• White-board: Participants can use a white-board to draw the risk matrix
and the data fields to be discussed, as well as the security measures on each
data field.
• Collecting votes and security measures: The participants can use post-it

notes to give estimations for data fields and to document security measures.
1https://github.com/Gullskatten/dpf-templates/blob/c93c60f962ca63654e2510643dd8788c81c924ce/

DPF-Data-Extraction.docx
2https://github.com/Gullskatten/dpf-templates/blob/f884734c526b744698f281271d7ddf1659fbd973/

DPF-Data-Extraction-printable.pdf
3https://www.mural.co
4https://www.kahoot.com
5https://www.ahaslides.com

https://github.com/Gullskatten/dpf-templates/blob/c93c60f962ca63654e2510643dd8788c81c924ce/DPF-Data-Extraction.docx
https://github.com/Gullskatten/dpf-templates/blob/c93c60f962ca63654e2510643dd8788c81c924ce/DPF-Data-Extraction.docx
https://github.com/Gullskatten/dpf-templates/blob/f884734c526b744698f281271d7ddf1659fbd973/DPF-Data-Extraction-printable.pdf
https://github.com/Gullskatten/dpf-templates/blob/f884734c526b744698f281271d7ddf1659fbd973/DPF-Data-Extraction-printable.pdf
https://www.mural.co
https://www.kahoot.com
https://www.ahaslides.com


Chapter 4: Design of Data Protection Fortification 41

4.2 How to Perform Data Protection Fortification

In this section, we describe how each step in a DPF session is carried out on a
conceptual level. Figure 4.2 gives an overview of all the steps in DPF.

a

Discuss Data Source

Select Data Source

3

Prioritize Data Fields

Calibrate

Estimate

Calibrate

Estimate

Estimate Value of 

Data Field in Data Source

Estimate Likelihood of
Tampered Values

1 2

Plot Fields on Risk Matrix

Evaluate Security Measures

Identify Data Fields

2

1

Figure 4.2: High-level diagram of the steps in Data Protection Fortification. The
directional arrows show the order of each step in the method.



42 E. Gudmundsen & S. Kvamme: Data Protection Fortification

4.2.1 Discuss Data Source

The first step of DPF is a two-part discussion of the data source in focus. First,
the participants discuss general information about the data source. Second, the
participants discuss possible security implications for the data source.

The questions are discussed in Section 4.5, and a cheat sheet for practitioners
can be found in Appendix A. Using the question guide, we encourage teams also
to document their answers, especially if action points come up during discussions.
These action points can then be added as tasks to the backlog after the activity
concludes.

4.2.2 Identify Data Fields

If the facilitator has not prepared a list of the data fields that come with the data
source during the preparations, the team does it in this step. Note down the field
names and expected data types of the values (e.g., character values, numeric val-
ues, boolean). Typically one team member starts by describing each data field to
ensure a common understanding.

This step also includes discussing how each data field influences the system,
which can be as simple as mapping the field to its usage. For example, temper-
ature_celsius influences production of energy and assigned_user helps determine
user assigned to a task. Considering this helps later estimation efforts when de-
termining the value of a field and strengthens the participants’ understanding of
the usage of the data fields.

4.2.3 Prioritize Data Fields

The process described below is the same for both estimation activities.
The estimation activities have their origin in Protection Poker (see Section 2.4).

The estimation of business value is based on value of the asset. The estimation of
likelihood of tampering is based on attack exposure where participants should es-
timate the exposure (ease of attack) of a given functionality. For instance, func-
tionality that includes user input fields would increase exposure values.

The estimation part of DPF also has several similarities to the Wideband Delphi-
method [65]. The Wideband Delphi method is an estimation method based on
reaching consensus, where the estimation is done in several rounds until par-
ticipants reach consensus. Contrary to the original Delphi method, the wideband-
variant has group discussions between each round where the participants describe
their rationale for their answer.

Facilitators hide results until everyone has made their vote to prevent partici-
pants from being distracted while voting and from adjusting their estimates based
on the estimates of other participants. The latter is known as the anchoring bias
and can affect the initial estimates of participants [65].



Chapter 4: Design of Data Protection Fortification 43

Calibrate Data Fields

The participants calibrate before estimating values for all data fields to give them
a sense of which fields have the most and the least values for business value and
the likelihood of tampering. It should also aid in getting a better spread in the
values, which can make prioritizing the data fields easier.

As shown in Figure 4.2, the participants perform the Calibrate-step before each
estimation activity, and the questions to ask the team are given below:

• Value Calibration: Which field is the most valuable?
• Value Calibration: Which field is the least valuable?
• Tampering Calibration: Which field is most likely to be tampered with?
• Tampering Calibration: Which field is least likely to be tampered with?

General Procedure to Estimate Data Fields

The general procedure for giving estimates is the same for both estimating value
and estimating likelihood of tampering, and is as follows:

1. Pick a data field.
2. Let each participant estimate a value without showing their answer.
3. When everyone has picked a value, let the participants present their estima-

tion values.
4. Discuss: Let the participant(s) having higher or lower estimation values than

the rest give a reason for their estimate.
5. If participants bring up new insights during the discussion, decide if the

participants should take another round of providing estimation values for
this field.

6. The group finds the appropriate value to assign to the data field. One may
also calculate the mean value based on the participants’ responses and as-
sign this as the value.

7. If more data fields remain, start over from (1).

Estimate Value of Data Field

The first estimation activity in DPF is to estimate the business value of each of the
data fields. When attempting to find a value for this, consider the following:

• How are functions, humans, or internal services dependent on this data
field?

◦ Are decisions being made based on the value in this data field?

• What is the consequence if this data field is missing data?
• As an attacker, what data field would you tamper with to do the most dam-

age?



44 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Estimate Likelihood of Tampered Data

The next estimation activity in DPF is to estimate the likelihood of tampered data
within the data fields.

When attempting to find a value for this in DPF, consider the following:

• What is the possibility of providing malicious inputs to this field?

◦ Is the source of this field coming from human input, IoT devices, or is
it system-generated?
◦ Is this field expected to include character values or numeric values?

• Is it possible to detect that the value in this field has been tampered with?

4.2.4 Plot Fields on Risk Matrix

In this step, we create a risk matrix using the values from the previous estimation
activities. Figure 4.3 shows an illustration of a risk matrix. Each field gets plotted
on this matrix using the business value of data field as the Y-coordinate and like-
lihood of tampering as the X-coordinate. This plot is equivalent to calculating the
risk using the formula shown in Equation (4.1).

DPF Risk= Business Value× Likelihood of Tampering (4.1)

The risk matrix is an example of a boundary object, which Shostack [21] rec-
ommends adding when designing threat modeling approaches. Boundary objects
are helpful when including a variety of participants because all participants can
actively use them in discussions [21]. The participants can refer to the risk ma-
trix to prioritize which data fields they should start with when evaluating security
measures in the next step of DPF.

Figure 4.3: Illustration of a risk matrix used for identifying higher-risk data fields.
The darker areas indicate a higher risk.



Chapter 4: Design of Data Protection Fortification 45

4.2.5 Evaluate Security Measures

In this step, we identify security measures that developers should apply to the
fields in the data source, using the method shown in Figure 4.4. The method in-
volves two primary artifacts, (A) a toolbox that contains security measures for
commonly used data types, (B) a visualization of data fields in the data source
with "lanes" for adding security measures. We suggest writing the data fields onto
a physical or digital whiteboard, or somewhere they will be visible to all partic-
ipants. Participants then discuss which security measures are relevant for each
data field.

Participants actively use the toolbox to find relevant security measures (see
Section 4.2.5) for a data field, and add these to the corresponding lane for that
data field. The toolbox can be used either in a structured fashion as a checklist
or more loosely structured in a collaborative brainstorming session where partic-
ipants use the toolbox as inspiration. The team might discover that several of the
security measures found for one field can be duplicated and added to other similar
fields with a few adjustments.

We suggest that participants start by identifying security measures for the data
field with the highest risk in the risk matrix. Teams may evaluate all fields or
choose a threshold based on the gradients in the risk matrix.

Security Measures Toolbox

We have curated a list of security measures suitable to apply to a selection of
commonly used data types. These types include, String (textual values), Number
(numerical values), and Date (date, with or without timestamps and timezone).
We decided to limit the scope to these data types, as they are typically present
in most data sources. In addition to relevant measures for each data field, we
have also included security measures for the data source as a whole. Table 4.2,
Table 4.3, Table 4.4 lists security measures for data fields of the type String, Num-
ber and Date. Table 4.5 lists security measures that affect the handling of the data
source as a whole.

The tables include the type of security measure, the relevant STRIDE cate-
gory, and the source of this measure. In addition, we give examples for each mea-
sure and justifications where relevant. The validation measures are inspired by
OWASP’s guide on best practices for validation6 and injection prevention7. Such
measures are recommended to prevent unauthorized input from being processed
by the application. Anomaly monitoring was inspired by DataDog Anomaly mon-
itoring8. We created the other measures and had these reviewed by two security

6https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.
html

7https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_
Sheet.html

8https://docs.datadoghq.com/monitors/create/types/anomaly/

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://docs.datadoghq.com/monitors/create/types/anomaly/


46 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Figure 4.4: Method of evaluating security measures

experts. For measures mentioned by teams during the DPF sessions or measures
that we added, we filled in a hyphen (-) as the source.

When mapping the security measures to STRIDE, some of the measures may be
relevant for preventing more than one type of threat. One example of this is using
prepared SQL statements which is related to several of the STRIDE categories,
since an attacker may use an SQL-injections to gain higher privileges (Elevation
of Privilege), cause a data leak (Information Disclosure), or delete data or drop
tables (Denial of Service, Tampering). This thesis focuses on data tampering, so
the tables reflect this when displaying the STRIDE category.



Chapter 4: Design of Data Protection Fortification 47

Table 4.2: Security measures for the String data type. An asterix (*) is used where
security measures target more than one type of STRIDE threat.

Security Measure STRIDE Source

Validate length Tampering OWASP

Ex: Length of characters in the field is less than 200 but greater than 0.

White-list values Denial of Service OWASP

Ex: Only allow the values "Apple" or "Pear", and reject all other values.

Limit allowed characters Tampering OWASP

Ex: Only allow characters "a-z" and " " (space).

Syntactic validation Tampering OWASP

Ex: The field must match the format of a Norwegian telephone number. This type of
validation often uses regular expressions.

Semantic validation Tampering OWASP

Ex: The field "e-mail address" must match the field "confirm e-mail address".

Foreign key (exists) Tampering -

Ex: The field "UserID" must be a reference to an existing user

Identified during testing.

Foreign key (has access) Elevation of Privilege -

Ex: The current user must have access to the ID referenced in this field

Identified during testing.

Data type validation Tampering OWASP

Ex: Verify that the value in this field is of type String (and not "null" or an integer).

Escaping Tampering OWASP

Ex: Escape special characters in this field, such as "<" or "/".

Prepared SQL statements Tampering* OWASP

Ex: First defining all of the SQL code, then passing in each parameter to the query
later (on the server-side).

Value correlation monitoring Tampering -

Ex: The contract ID in the external data set should be the same as in the internal
system.

Identified during testing.

Anomaly monitoring Tampering -

Ex: A market ID that usually comes in regularly with the data has been missing for
the past period but should still exist.

To detect irregular variations in the value of a data field. Identified during testing.

Attack monitoring Tampering* -

Ex: Warn if this data field receives strings in the deny-list. Warn if receiving attempted
injection attacks.

To detect plain attempts at attacks through the data that might not be easy to catch in
validation or might be interesting in metrics.

Error monitoring - -

Ex: Monitor when validation errors or warnings happen for a data field.

Identified during testing.



48 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 4.3: Security measures for the Number data type. An asterix (*) is used
where security measures target more than one type of STRIDE category.

Security Measure STRIDE Source

Validate minimum / maximum value Tampering OWASP

Ex: Validate that the value in the field is greater than 0 and less than or equal to 100

Data type validation Tampering OWASP

Ex: Verify that the value in this field is a number.

White-list values / value ranges Denial of Service OWASP

Ex: Only allow 1, 5, 7 in this field (white-listed values). Only allow the values 1-10
or 20-30 in this field (white-listed value ranges)

Semantic validation Tampering OWASP

Ex: The field "speed" must not be greater than the field "max_speed".

Type conversion with strict exception han-
dling

Tampering OWASP

Ex: When parsing integers, ensure that a strict exception handling is done on failure
and don’t allow the data to be further processed.

Foreign key (exists) Tampering -

Ex: The field "UserID" must be a reference to an existing user

Identified during testing.

Foreign key (has access) Elevation of Privilege OWASP

Ex: The current user must have access to the ID referenced in this field"

Identified during testing.

Prepared SQL statements Tampering* OWASP

Ex: First defining all of the SQL code, then passing in each parameter to the query
later.

Value correlation monitoring Tampering -

Ex: The temperature correlates with the temperature of another dataset.

This measure was uncovered during interviews, where data from multiple sources could
explain the same phenomenon. Hence, triangulating this data to detect outliers could be
of value.

Anomaly monitoring Tampering -

Ex: The temperature can not drop by more than 5 degrees since the previously re-
ceived temperature within a given timeframe.

To detect obvious faults or more subtle attacks over time.

Error monitoring - -

Ex: Monitor when validation errors or warnings happen for a data field.

Identified during testing.



Chapter 4: Design of Data Protection Fortification 49

Table 4.4: Security measures for the Date data type

Security Measure STRIDE Source

Validate min/max value Tampering OWASP

Ex: Validate that the date is after 11-11-2011 and before today.

Syntactic validation Tampering OWASP

Ex: The date must match the format "yyyy-MM-dd’T’HH:mm:ss.fff’Z’"

Semantic validation Tampering OWASP

Ex: The date must be in the future.

Prepared SQL statements Tampering* OWASP

Ex: First defining all of the SQL code, then passing in each parameter to the query
later (on the server-side).

Anomaly monitoring Tampering -

Ex: Detect irregular variations in the value of a date field.

Identified during testing.

Error monitoring - -

Ex: Monitor when validation errors or warnings happen for a data field.

Identified during testing.

Table 4.5: Security measures for handling the data source

Security Measure STRIDE Source

Data retention Information Disclosure GDPR

Ex: Data coming from this data source should have an "age-off" date set. After this
date, the data should be deleted.

White-list bindable values Information Disclosure OWASP

Ex: Create Data Transfer Object (DTO) for this data source, decide which values can
be changed by including/excluding them in the DTO.

4.2.6 Outcome

The tangible output of DPF includes the security measures identified for this data
source, the risk matrix, as well as notes written down during the initial discussion
about the data source. This documentation can be added to existing documenta-
tion about this data source or could even be the first step in documenting how the
team handles it and its security implications.

For developers, we propose adding each new security measure or development
initiative as a new task in the team’s backlog at the end of the activity. They may
be filed as bugs if the data source has already been integrated or on the feature
requirement task if it is still under development. This is in-line with Shostack [21],



50 E. Gudmundsen & S. Kvamme: Data Protection Fortification

who also adds that identified issues should be prioritized and, if possible, marked
as security bugs.

The documentation may also be used for GDPR compliance, for instance, as
a part of a company’s Data Protection Impact Assessment (DPIA), given that the
company needs this.

4.2.7 Evaluate and Review

At the end of each DPF, we encourage teams to set aside some time to evaluate
how the activity went and to review the steps and documentation generated dur-
ing the activity. Inspecting the activity while it is still fresh in everyone’s mind can
help adapt the DPF activity to optimize its usefulness for the team. Reviewing gen-
erated documents, such as the risk matrix, may also help identify new initiatives
overlooked during discussions.

4.3 Data Protection Fortification in Practice

In this section we describe how DPF, as described in Section 4.2, was facilitated
in practice. This implementation of DPF is suitable both for running the activity
digitally using video-conferencing tools (e.g., Teams9, Zoom10), and for co-located
teams.

When creating this digital variant, we had to consider both practical con-
straints and security issues when facilitating this activity for externals. We found
no backing in the literature on how to facilitate the estimation part of the activity
digitally in a good way, so we have proposed our solution here. In addition, we
had to consider that the content of the sessions could potentially include sensi-
tive information about the participating team’s systems and had to handle this
securely.

The following subsections describe how we facilitated each step in the activity
described in Section 4.2.

Discuss Data Source

We asked the team the discussion questions listed in Table 4.6, and took notes
from the discussion that followed. As facilitators, we do not actively engage in the
discussions. However, we provide examples of answers to help spark discussions if
the participants had a hard time answering or if participants gave vague answers.

Identify Data Fields

During preparation meetings with the teams, we chose a data source and iden-
tified the relevant data fields of the source so that we could prepare Mentimeter

9https://www.microsoft.com/en-us/microsoft-teams/free-video-conferencing
10https://zoom.us/

https://www.microsoft.com/en-us/microsoft-teams/free-video-conferencing
https://zoom.us/


Chapter 4: Design of Data Protection Fortification 51

slides in advance. A limitation in Mentimeter was that it was only possible to in-
clude eight options in the "scales" slide-type used for estimation. Hence it was only
possible to estimate a maximum of eight data fields.

Prioritize Data Fields

For the estimation, we used Mentimeter11, which NTNU has a data processor
agreement with. The platform specializes in creating engaging presentations where
participants join the presentation anonymously using a web browser and provide
answers using various controls based on the question presented to them.

One benefit of using Mentimeter for voting is that participants can stay anony-
mous while voting, which can help reduce but not eliminate the bandwagon ef-
fect in the group, where participants follow the opinion of the majority instead
of advocating for their view. Anonymity also helps prevent participants from be-
ing influenced by people in the group with dominant personalities or who have a
higher social status. However, we encouraged the participants to share their rea-
soning after voting, particularly those with differing views, since it is often the
views that challenge conventional thinking that may be the most important to
discuss in order to reach an accurate result [65].

Before each DPF session, we had prepared a Mentimeter presentation with
the selected data fields. We prepared a separate Mentimeter presentation to show
the result of the estimation in a risk matrix and to perform an evaluation of the
activity with the team. Discussions brought up during the estimation activity in
Mentimeter were securely journaled as described in Section 3.10. We describe
how the teams voted in Mentimeter in the rest of the section.

Calibrate Data Fields

In order to determine which data fields had the most and least business value and
likelihood of tampering, we created a voting system in Mentimeter, as shown in
Figure 4.5. The facilitator showed the result from each round of votes after every
participant had placed their vote.

General Procedure to Estimate Data Fields

To give estimates on both the business value and the likelihood of tampering for
each field, participants received a form in Mentimeter, as illustrated in Figure 4.6a.
This form included sliders to assign values from 1-10 to each field. A description
text was provided to help participants determine the estimation values.

11https://www.mentimeter.com/

https://www.mentimeter.com/


52 E. Gudmundsen & S. Kvamme: Data Protection Fortification

(a) The results are hidden until everyone has
voted.

(b) The winner is the field that gets the most
votes.

(c) Multiple winners occur if two or more
fields receive equally the most votes.

(d) The respondents vote on their own de-
vice.

Figure 4.5: Representative screenshots from Mentimeter when doing calibration
of data fields. After the results are in, the participants discuss the results before
moving on to estimating all fields.



Chapter 4: Design of Data Protection Fortification 53

(a) Estimation form used by participants to
provide answers in Mentimeter.

(b) Estimation results presented in Mentimeter (after all participants had given votes).

Figure 4.6: Representative screenshots from Mentimeter when doing estimation
of the business value for the data fields. Estimating likelihood of tampering fol-
lowed the same procedure.



54 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Plot Fields on Risk Matrix

In a separate Mentimeter presentation, we plotted the answers from both estima-
tion activities onto a risk matrix. A separate presentation was needed to fill in the
results in the background to make the session more efficient.

Figure 4.7 illustrates the resulting risk matrix, for which we briefly explained
how to read the risk matrix and highlighted the data fields with the highest and
lowest scores.

Figure 4.7: A risk matrix as shown in Mentimeter.

Evaluate Security Measures

Using the collaborative sketching tool Miro12, we created a Miro template that
would enable participants to drag security measures onto fields in their data
source based on their data type. Figure 4.8 shows an illustration of this Miro tem-
plate.

The Miro template consists of three panes, (A) a toolbox that contains the
security measures described in Section 4.2.5, (B) a visualization of the data fields
with "lanes" for adding security measures, and (C) helpful references, such as the
risk matrix and related code snippets to help in prioritizing which fields to start
identifying security requirements for.

Participants can use the risk matrix to prioritize where to start when evaluating
security measures for the data source.

12https://miro.com/

https://miro.com/


Chapter 4: Design of Data Protection Fortification 55

Figure 4.8: The Miro template has three panes (A,B,C). Participants drag mea-
sures found in (A) onto a data field’s lane in (B). (C) includes the risk matrix and
code references to make it easier to prioritize which fields to start with.

4.4 Data Protection Fortification in Practice - Alternative

In this section, we describe a method to facilitate DPF, as described in Section 4.2,
for co-located teams without using any digital tools to guide the session. Fig-
ure 4.11 shows an example of filled-in templates.

Prepare for Session

On a whiteboard, the facilitator of the session draws a table with the following
columns: id, field name, data type, business value, likelihood of tampering. On a dif-
ferent place, draw up a risk matrix with business value as the y-axis, and likelihood
of tampering as the x-axis, with values 1-10 on each. The layouts are illustrated in
Figure 4.9.

Discuss Data Source

The discussion part is the same as in the digital variant.

Identify Data Fields

Someone from the team first describes each data field in the data source. If there
are too many data fields, the team may collectively decide to narrow the focus



56 E. Gudmundsen & S. Kvamme: Data Protection Fortification

ID Field Name Data Type Business Value Likelihood of
Tampering

(a) Template table for estimation of data fields on a white-board

Bu
si

ne
ss

 V
al

ue

Likelihood of Tampering
1

10

5

5 10

1

(b) Template risk matrix for a white-board

Figure 4.9: Templates for how to draw up the table for estimation on the white-
board and the risk matrix without using digital tools.



Chapter 4: Design of Data Protection Fortification 57

by only selecting a manageable number of fields. Based on lessons learned from
performing DPF, we suggest that a boundary for this is about 20 data fields.

When the participants have decided on a set of data fields, the id column on
the whiteboard is populated with rows from 1 to n (where n is the number of
selected data fields). The data fields’ names are then written down on separate
post-it notes and pasted on the whiteboard (in the "name" column of any row).
The post-its should then have the id written on them to track which estimates
on the whiteboard belong to which data field when moving around the post-its.
Lastly, fill in the respective data types in the table.

Prioritize Data Fields

Each participant receives a piece of paper (A4-sheet) which will act as their an-
swering sheet. They draw a table with the following columns: id, business value,
likelihood of tampering. The layout is illustrated in Figure 4.10.

ID Business Value Likelihood of
Tampering

Figure 4.10: The template layout for each participants answering sheet during
estimation rounds.

First, the participants calibrate and estimate the business value and, after this,
continue with the likelihood of tampering.

Calibrate Data Fields

The facilitator presents calibration questions (see Section 4.2.3) to the partici-
pants, who then collaboratively decide on which data fields fit the best. After
reaching a consensus, the participants move on to estimate the data fields.

General Procedure to Estimate Data Fields

After the calibration, the participants vote on the data fields individually on their
paper. Each participant writes their answer down on their paper, and everyone
shows their answer simultaneously. After discussing, the team agrees on a data



58 E. Gudmundsen & S. Kvamme: Data Protection Fortification

field to receive the highest and lowest scores. For each data field, the facilita-
tor collects the estimates from each participant. After discussing and reaching a
consensus on the estimate, the facilitator writes it down on the whiteboard. Par-
ticipants may revote if deemed necessary, which is done by crossing over the old
votes and writing new ones on the side.

Plot Fields on Risk Matrix

Once the participants fill the estimation table, it is time to use the results to create
a risk matrix. The facilitator moves each post-it note representing the data fields
to the appropriate place on the risk matrix. The team then discusses the result and
adjusts the post-it notes if needed.

Evaluate Security Measures

As the final step in DPF, the team evaluates the security measures for the data
source. Starting with the data field with the highest risk, the team individually
writes down some possible measures to mitigate the risk of using this data on
post-it notes. The facilitator asks each participant to present their notes, and the
post-it notes are collected and put up near the respective data field on the risk
matrix (or in the table).

Outcome

After participants identify all the relevant security measures, the team collectively
documents the findings in their issue tracker/documentation.



Chapter 4: Design of Data Protection Fortification 59

ID Business Value Likelihood of
Tampering

1

2

3

4

5

7

4

1

1

8

8

10

1

3

6

8

(a) Filled in participant answering sheet.

ID Field Name Data Type Business Value Likelihood of
Tampering

Field B

Field C

1

2

3

4

5

<Data type>

<Data type>

<Data type>

<Data type>

<Data type>

10

5

2

1

7 7

1

3

7

10
2

3

(b) Filled-in white-board

Bu
si

ne
ss

 V
al

ue

Likelihood of Tampering
1

10

5

5 10

Field A

Field E

1
Field D

5

4

1

(c) Half-done risk matrix

Figure 4.11: An example of how it could look when the templates are filled-
in. Participants discuss the estimates of each member and decide the final value
written on the whiteboard together.



60 E. Gudmundsen & S. Kvamme: Data Protection Fortification

4.5 Discussion Questions for Data Protection Fortifica-
tion

In this section, we describe the questions asked in the data source discussion of
DPF, and show an overview of these in Table 4.6. The questions are connected to
the security properties described in Table 2.3 where relevant.

The initial questions were developed through discussions between the authors
and supervisors and by considering the STRIDE categories to find potential char-
acteristics that could increase the risk in data. These characteristics include: Kind
of data, data origin, data provider, data velocity, data volume, data variation, end-
users, assets impacted, tampering consequences, threat actors, data validation efforts,
data schema, encryption, data processing, sensitivity, fault mitigations, and connec-
tion to data source.

4.5.1 General Questions About the Data Source

The general discussion questions ensure that the participants have a common un-
derstanding of the data source. They may also function as ice-breakers for the
participants.

Q01 - What describes the data we get from this data source?

Related questions What does this data source contain?
Examples Weather data, gas prices, scooter info, customer reviews
Focus Common understanding of data source

Describing the data helps the participants gain a common understanding of which
data source is being discussed, and gives a basic understanding to those in the
team who might not be as familiar with it.

Q02 - Who/What provides this data source?

Related questions What is the name of the provider?
Examples Data supplier, yr.no, internal team, student, company-owned sensors
Focus Common understanding of data source, trust level

Whether the data comes from an external contractor, humans who use an appli-
cation, or IoT sensors, it is good to be clear on where the data comes from. The
team might find they have varying levels of trust or assumptions about the data
depending on who supplies it.

Q03 - How do you receive the data?

Related questions Where in the target system is data imported?
Examples Fetching data from API, importing from a database, receiving directly from
device, form input posted to backend



Chapter 4: Design of Data Protection Fortification 61

Focus Entry point, data flow

How the data flows into the target system is good to know in order to be aware
of the possible attack surfaces, as well as being aware of where security measures
like validation can be done. There might be more than one way that the team
imports the source.

Q04 - How is the data from this data source used in your services or products
now, or will be in the future?

Related questions How can users use the data directly or indirectly?
Examples Used in decision-making, machine learning model, aggregated and shown
in dashboard, presented directly to end user
Focus Attack surface, exit point, data flow

Knowing the intended usage of the data is important to be able to reflect over
some of the specific threats to the product.

Q05 - Who are the end-users for this data?

Examples Internal analysts, maintenance, customers, customer support, users of an
application, management
Focus Common understanding of data source

Knowing who the end-users of the data are is essential to understand who and how
many users would be adversely affected if this particular data source is tampered
with.

Q06 - How often is data received from this data source?

Related questions Is the data cached, and if so, for how long?
Examples The data is downloaded by a CRON-job every night, pulled from the device
every 5 min, fetched when a user triggers a service (e.g., clicks to view details)
Focus Common understanding of data source

If data is received every second, it may be a limiting factor for monitoring the
whole source.

Q07 - What is the volume of the data received?

Examples Batches of 100 million rows, 15 data fields, 10 kilobytes
Focus Common understanding of data source

The volume of the data received may be a limiting factor for what part of the data
source the monitoring system is capable of monitoring.



62 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Q08 - Do you have an explicit schema or API-contract for data coming from
this data source?

Related questions Could the values be “anything”?
Examples Swagger-API, System documentation
Focus Integrity, Common understanding of data source

Data sources coming from external sources should have a defined contract so that
developers can look up the expected format and value types of the data source.
If no such contracts are available, developers should request this from the data
provider if possible.

Q09 - How is the data coming from this data source generated?

Related questions Is it known who puts the data into this data source?
Examples Human input through a webpage form, IoT device, system generated
Focus Threat actors, attack surface, entry point, trust in data

By knowing how the data is generated, one can assume who would be most likely
to also tamper with it.

4.5.2 Security Implications for the Data Source

The following questions can spark discussion around aspects of the data source
that can have security implications.

Q10 - How is data secured during transit?

Examples HTTPS, hash/MAC/digital signature verification
Focus Confidentiality, integrity, non-repudiation

This question target the potential of data tampering when the data is in transit
due to the use of unsecured/weak protocols.

Q11 - Does any protections exist on the device to prevent physical tampering?

Related questions Can you detect physical tampering?
Examples Behind locked doors, requires a special key to open the device, hardened
physical design, the device has an alarm, monitoring
Focus Integrity

For companies that get data from devices such as IoT, it may lower the risk of
receiving tampered data if there are physical protections to make it harder for
malicious actors to gain access to the device that sends data. Identifying devices
that have been tampered with is important for operators to recover from attacks.



Chapter 4: Design of Data Protection Fortification 63

Q12 - Who has access to change the connection URL used to connect with
the data source?

Related questions Where is this access URL stored? Is a change to this access URL
logged?
Examples environment variable in Azure, configuration in database
Focus Authenticity, availability

Make the participants reflect on access control and the possibility for logging when
the URL changes (to limit possible insider threats). An attacker could potentially
spoof the data source by replacing the URL or affect the availability of the service
by disrupting the connection.

Q13 - How sensitive is the data in this data source?

Examples Person Identifiable Information (PII), information about business oppor-
tunities/tenders, data that could affect stock prices, data that could affect decision-
making processes
Focus Data sensitivity, confidentiality

Knowing the sensitivity of the data helps determine what an attacker may be most
interested in.

Q14 - What could an attacker be interested in influencing through this data
source?

Examples Analyst decisions, planned maintenance, conceal information or impact
repudiation, company damage
Focus Misuse cases, threat actor goals

This question can help bring up specific cases, or end-goals of an attacker. It could
also help participants find which of the data fields could influence certain parts of
the system.

Q15 - What could the consequences be if the data source was no longer avail-
able or parts of the data were missing?

Related questions Are there certain times where the consequence would be greater?
Examples The service provided is rendered useless, users are denied access to a digital
voting platform (but access to this platform is only critical during the days where
voting is open)
Focus Availability, integrity

Understanding the consequences of a denial of service, or loss of integrity, is tightly
coupled with the need for securing this data source.



64 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Q16 - Who are the possible threat actors for this data source?

Examples Other nations, market competitors, disloyal employees or ex-employees,
terrorists, script kids
Focus Threat actors

Knowing which threat actors are most likely to target this data source can help
to understand which type of attacks are likely to come with the data, as threat
actors may have very different end-goals for their attacks (from service disruption
to advanced persistent threats).

Q17 - Would you discover if the data from this data source is incorrect, or if
the data source is unavailable?

Related questions How would you report unavailability or inconsistencies to the
suppliers of this data source?
Examples Service availability monitoring (health checks), users would discover un-
availability or inconsistencies and report back to the team
Focus Fault mitigation

With this question, we are interested in routines for reporting anomalies or service
unavailability. This question is more of a smoke test for participants to discuss how
they handle such scenarios.

4.5.3 Evolution of Questions

The discussion questions and their ordering have changed along with the method.
The wording of some of the questions was changed to increase clarity, and we
merged some due to being perceived as duplicates. One question on the authen-
tication method was removed due to not promoting any relevant answers and
replaced with a question on securing the data during transit (Q10). One ques-
tion on the volume of data (Q07) was initially in the method but forgotten after
adapting the questions to the first session. One question was created based on
answers from participants regarding a data source related to IoT data (Q11). The
four questions that were added (Q07, Q10, Q11, Q16) have not been tested with
participants but were added to cover more aspects of the data source. Some ques-
tions on how much the data values vary, and on validation and escaping data,
were removed from the discussion after introducing the security measures tool-
box since the questions were easier and more relevant to answer when talking
about specific data fields.



Chapter 4: Design of Data Protection Fortification 65

Table 4.6: Questions for discussing the selected data source in Data Protection
Fortification.

General Questions

Q01 What describes the data we get from this data source?

Q02 Who/What provides this data source?

Q03 How do you receive the data?

Q04 How is the data from this data source used in your services or
products now, or will be in the future?

Q05 Who are the end-users for this data?

Q06 How often is data received from this data source?

Q07 What is the volume of the data received?

Q08 Do you have an explicit schema or API-contract for data coming
from this data source?

Q09 How is the data coming from this data source generated?

Questions for Security Implications

Q10 How is data secured during transit?

Q11 Does any protections exist on the device to prevent physical tam-
pering?

Q12 Who has access to change the connection URL used to connect
with the data source?

Q13 How sensitive is the data in this data source?

Q14 What could an attacker be interested in influencing through this
data source?

Q15 What could the consequences be if the data source was no longer
available, or parts of the data was missing?

Q16 Who are the possible threat actors for this data source?

Q17 Would you discover if the data from this data source is incorrect,
or if the data source is unavailable?





Chapter 5

Results

In this chapter, we present the results related to answering the research ques-
tions. First, we present practices related to the handling of data sources. Then,
we present evaluation results for Data Protection Fortification (DPF). Finally, we
present a conceptual architecture for a data monitoring system using audit hooks.

5.1 RQ1: What Are the Practices Reported by Companies
for Securely Handling Data Coming From Devices or
Other Sources?

In this section, we present the results from performing Data Protection Fortifica-
tion (DPF) with the teams from the collaborating companies. The data sources
we focused on in our DPF sessions were already integrated into their systems.
Therefore the practices we found are derived from how the teams described their
current handling of the data source as part of the data source discussions (the first
step in DPF).

In Table 5.1 we summarize the findings with an evaluation of how the practices
found can contribute to the risk of data tampering. If the practice reduces the risk
of data tampering, we mark it with a green checkmark ( ¥ ). If the practice
should be looked into because it might pose a risk in some cases, we mark it with
an orange flag ( b ). If the practice increases the risk, we mark it with a red flag
( b ), and in cases where the practice does not affect the risk or where it can not
be determined, we mark it with a gray icon ( E ).

67



68 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 5.1: Categories and practices reported by the development teams. ¥ =
Good practice, b = Should be followed up, b = Bad practice, E = Does not
affect risk

Category Practice Evaluation

Data Access Part of team can edit connection URL ¥

Data Access Editing connection URL in cloud config is audited ¥

Data Access Connection URL is placed in environment variable ¥

Data Access Whole team can edit connection URL b

Data Access Editing connection URL is audited in Git history b

Data Access Connection URL is placed in database b

Data Access Editing connection URL is not logged b

Data Access Connection URL is placed directly in code b

Data Validity Prepared Statements (SQL) on retrieval ¥

Data Validity Whitelisting values ¥

Data Validity Constraints defined in database views ¥

Data Validity No sanitization on storage b

Data Validity Only validation of phone number in frontend b

Data Validity Rely on database queries to fail for data validation b

Data Validity No validation b

Data Velocity Receives data continuously b

Data Velocity Receives new data seldom (1 time a year) b

Data Velocity Receives new data every 5-15 minutes E

Data Velocity When queried by user E

Data Origin System-generated data ¥

Data Origin Internally generated ¥

Data Origin Externally generated b

Data Origin Human input b

Data Origin IoT-device data b

Data Processing Processed by framework with schema validation ¥

Data Processing Front-end framework with injection protection ¥

Data Processing Normalize data fields to fit standard ¥

Data Processing Exported to CSV b



Chapter 5: Results 69

Table 5.1: Practices reported by the development teams.
Icons used: ¥ = Good practice, b = Should be followed up, b = Bad practice,
E = Does not affect risk (continued).

Category Practice Evaluation

Data Schema Explicit schema with API contract ¥

Data Schema Schema defined through models in framework ¥

Data Schema Notified if schema changes happen externally ¥

Data Schema Text data type mostly used (even on numbers, dates) b

Data Schema Must look in database for schema definition b

Data Usage Aggregated and presented ¥

Data Usage Presented directly (raw format) b

Data Usage Used in machine learning E

Data Usage Used in device decisions E

Fault Mitigations Notified if source is unavailable ¥

Fault Mitigations Internal lookup point for contact persons ¥

Fault Mitigations Logging data that goes into ML model ¥

Fault Mitigations Correlate data against internal system ¥

Fault Mitigations Must find and contact the right person b

Fault Mitigations External users report problems b

Fault Mitigations Manually check data against source b

Fault Mitigations Manual fault detection b

Fault Mitigations Operations monitored manually b

Fault Mitigations No routines to detect faults or handle it b

Fault Mitigations No backup due to sensitivity concerns b

We add more details to the categories and reported practices we found in the
following sections.

5.1.1 Data Access

We encountered a few different strategies in the teams for handling the connec-
tion URL to the external data source. We look at three aspects of this: where the
connection string is set, who has access to change it, and if these changes are
logged. Figure 5.1 shows an overview of the responses from the teams, mapped
to these three aspects.



70 E. Gudmundsen & S. Kvamme: Data Protection Fortification

In one case, the team checked the connection URL into Git with the code, while
the credentials needed to access it were stored in a managed identity solution
provided by the cloud provider where the application was hosted. All developers
had access to change it, but the changes are logged through the commit history in
Git. Another team mentioned that the connection URL was committed to the Git-
repository, which the entire extended team had access to edit, including a project
leader who was no longer on the project.

In another case, the team set the connection string in a database, which the en-
tire team had access to change, but any changes to this database were not logged.

One team that stored the URL in Git for one of their applications and in envi-
ronment settings in Azure for another, reflected on how long it could take before
any malicious changes to the URL were detected in the two cases. They men-
tioned it was likely to be discovered faster when it was checked into Git since
everyone on the team had access to check it, and it was bundled together with
the code. Whereas only a few people had access to the Azure settings (which
were rarely checked), it might take longer to discover. The team also believed the
cloud provider had some audit logging but that it might not be easily accessible
by the team.

Data connection URL

URL location

Database configuration

Environment variable

Access to edit URL

Part of team has access to edit URL

Anyone can edit, but reviewer must 
accept change

Whole team can edit URL

Logging changes

Git commit history

Cloud provider audit logging

No logging of change

Figure 5.1: Management of connection URL to the data source as reported by the
teams.

5.1.2 Data Validity and Monitoring

Three out of five teams reported having implemented some measure for ensuring
the integrity of the data they receive. In Figure 5.2, we categorize the valida-
tion efforts reported by the teams by syntactic validation, semantic validation and
monitoring. We decided to include only the most significant practices reported in
this section in Table 5.1 to limit cluttering and to reduce the length of the reported
practices.



Chapter 5: Results 71

Data Validation 

Syntactic

White-list values

Validation of phone number (in webpage)

Data query exception if not on 
expected format

Length validation

NULL checks

Datatype validation

Exact numeric length

Semantic

Duplicate checks

Limit total number of devices

Limit state transitions

Limit allowed changes if device is in use

QR-code validation

Outlier filtering

Minimum/Maximum values

Monitoring

Health checks on data queries, 
alerted on failures

Failed QR-code scans visualized in heat map

Physical tampering attempts 
visualized in heat map

Figure 5.2: Validation and monitoring efforts reported by the teams.

Reasons for Missing Validation

One team had few expectations of what the external data source might have of
values and only presented the raw values in a webpage to its users. They had
previously had incidents where a field would be longer than expected and would
distort the webpage layout. Despite this, no validation is done because they are
uncertain of the contents of the data and would like to present it "as-is" to the
users.

Another team knows the data source and its expected values but relies on
the constraints defined in the database, governed by another team within the
company, to ensure the integrity of their data. The queries run by the team will
raise an exception if the data they receive does not have the expected data types.
If such failures happen, they are notified and can change the queries accordingly.

Monitoring

One team reported having implemented various monitoring efforts to detect phys-
ical tampering with their devices. One type of monitoring is implemented to surveil
QR-code scannings done by users, where failed scans are sent for auditing, along



72 E. Gudmundsen & S. Kvamme: Data Protection Fortification

with where and when the scan happened. The logs are visualized in a geographical
heat map to allow customer service to monitor if QR-code scans fail in a partic-
ular city or district. They also monitor for physical tampering with the devices,
where each device is equipped with a gyroscope to detect any movement when
the device is not in use. Reported tampering attempts are visualized on a map for
customer service, who may send personnel to that area to investigate further.

Another team reported on implementing "health checks" to monitor if the ex-
ternal data source was responding or not. The team would then be notified if the
data source was unavailable so that they could take action if this occurred.

5.1.3 Data Velocity

For data velocity, we found a few practices relating to how often data is received
(or sent) from the data source. We found the usage of scheduled tasks (CRON-
jobs) for retrieving new data from the source in two cases. The time scheduled
for when these tasks should fetch new data varied significantly, ranging from once
every 5-15 minutes to once every year since the data source does not update often.
One team reported receiving new data continuously from their data source, and
another only queried data from the data source on user interactions.

5.1.4 Data Origin

Though this category does not involve practices, it was found that various sources
generated the values of data fields within a data source. We identified three char-
acteristics for the origin of a given data field. First, the origin of the data in a data
field could be system-generated, meaning that the data was generated within the
boundaries of a system. Typically, this includes timestamps used in date fields and
the generation of unique identifiers. Second, the data could be generated from
human input, typically from an input field. Last, the data could also come from
IoT devices, such as sensor readings (e.g., percentage of battery remaining on
device).

In addition, we add two more characteristics to the data origin, where we con-
sider the (physical) location of where the data is created. If the data is generated
outside the boundaries of the company, we characterize it as externally generated.
Alternatively, if the data is generated within the boundaries of the company, we
characterize it as internally generated.

5.1.5 Data Processing

For data processing, we are interested in how the teams process the data from
the data source. Most of the teams use language-specific frameworks for handling
data storage and presentation of the data. In popular JavaScript-frameworks used
for creating websites, such as Vue and React, security measures for preventing in-
jections are built-in. However, besides providing a solution for users to view the
data on a web page, one team reported that their end-users prefer to process the



Chapter 5: Results 73

data in Microsoft Excel, which was identified as another attack surface. There-
fore, the data is also made available for export to CSV format. Regarding data
storing, one team reported that they tried to normalize the data prior to storing,
for instance, by ensuring that all prices coming from the data source are given in
NOK.

5.1.6 Data Schema

Figure 5.3 shows an overview of the responses from the teams related to the use of
data schema to ensure the correctness of the data. The teams with an API contract
for the data source have defined an explicit business contract with an external
company, where the data format is formalized. Data sources from internals may
not have the same defined API contracts, and as a result, they have to look up the
schema in the database that is provided to them. One team had little knowledge of
what the data fields contained and therefore treated all data fields as text values.

Related to the data schema is also whether the team is notified or not when
the data schema changes in a data source. In one case, we found that they had
an API contract that strictly required the data provider to notify them before any
changes were made. In another case, the team said they would not be notified
when changes occurred and would have to discover it themselves when things
did not work anymore.

Data schema

Explicit schema

API contract

Schema is defined through models 
in the framework

Constraints on all data fields

No schema

Most fields (even numbers) are text 
values, since they are only used in 
presentation

Manually looking at the database-
view to check for constraints

Figure 5.3: Practices related to data schema reported by the teams.

5.1.7 Data Usage

For data usage, we looked at how the teams use the data from the data source.
One team did not process the data due to sensitivity concerns and presented it
directly to the users. One data source had different use cases, where it was used
in machine learning in one application and aggregated and presented to a user
through a dashboard in another. Another data source was used by IoT devices to
make decisions about how the device should function.



74 E. Gudmundsen & S. Kvamme: Data Protection Fortification

5.1.8 Fault Mitigations

With fault mitigation, we are interested in the team’s ability to detect and respond
to unavailability, inconsistencies, or missing data in the data source. The reported
practices for detecting this varied greatly, from having an automated detection
process, to manually having to check for faults in the data they receive.

Related to how the teams would respond to data incidents or unavailability, we
found that in one team, they can look up the correct person to contact in a who-is
documentation in their knowledge management system. It was also reported that
one team had no routines for detecting or handling faults.

5.2 RQ2: How Can Data-centric Threat Modeling Support
Teams in Identifying Security Risks and Promote Se-
cure Design in Handling Data?

This section presents the results from evaluating Data Protection Fortification
(DPF) described in Chapter 4, including participants’ feedback, observations, and
lessons learned from facilitating, as well as evaluations with two security experts.
We facilitated in total 5 DPF sessions (in Norwegian); one for each of the partic-
ipant teams presented in Section 3.3. In order to both accommodate the teams’
way of working, and to try out different variations of the activity to learn what
works best, we held the activity in three ways: (1) fully remotely through Mi-
crosoft Teams, (2) co-located using digital tools, and (3) co-located (with one
remote member) using physical tools. We facilitated 3, 1, and 1 session of these,
respectively, and the method was improved iteratively.

Table 5.2: Overview of Data Protection Fortification sessions held.

ID Team (# participants) Location Tools Used Duration

S1 AR/VR Team (5) Digital Mentimeter 1,5h

S2 Eureka ML Team (3) Digital Mentimeter 1,5h

S3 Atlas Team (5) Physical Whiteboard,
pen and paper

1h

S4 Webkom (9) Physical Mentimeter,
Miro

1,5h

S5 Ryde (2) Digital Mentimeter,
Miro

2h

In S2, the team invited an additional participant from outside their team. This
person had expert knowledge of the data source being discussed and who used
their platform and the data to develop a dashboard for traders.

In S3, the team invited three participants from outside their team who had
expert knowledge of the data source being discussed. Two of these were from



Chapter 5: Results 75

a team that used their platform to create a data product using the data source.
Due to miscommunication, we had prepared a non-digital variant of the method
while one person joined the meeting remotely. This mistake negatively affected
the facilitation of the meeting. Furthermore, we did not clarify the agenda of the
allocated meeting time, and we discovered that we had much less time to perform
DPF than necessary, which led to the session being cut short.

The security measures toolbox had not yet been invented in the first three
sessions (S1, S2, S3). Evaluating security measures was done by asking the team
questions to spark some ideas.

5.2.1 TAM Evaluation of DPF

We did a structured evaluation of DPF with participants from Webkom (S4) and
Ryde (S5). We asked the participants to evaluate the session based on the state-
ments given in Table 3.1. Figure 5.4 shows a radar chart of the results, where
the units indicate how strongly each team, on average, agreed to each state-
ment (where the value 1 corresponds to "strongly disagree", and 5 corresponds
to "strongly agree"). Use of Mentimeter (PEU4) and Useful discussions (PU3) re-
ceived the highest scores on average (4.9 and 4.8), while Fits team (PU5) and
Increased competence (PU6) received the lowest average scores (3.6 and 3.9). The
average score for all statements was 4.5.

5.2.2 Evaluation of the Activities in DPF

For Webkom (S4) and Ryde (S5), we asked the participants in each session to
rank which of the three activities in DPF they felt was the most useful. In total,
10 participants answered from both companies, and the results are summarized
in Figure 5.5. Evaluate Security Measures and Prioritize Data Fields were perceived
as almost equally useful, with only one vote in favor of the former. Data Source
Discussion received significantly lower votes, where only one participant felt it was
the most useful step.

5.2.3 Verbal Evaluation of DPF

As mentioned in Chapter 3, we collected verbal evaluations from every DPF ses-
sion. This section is structured by first presenting general feedback and then feed-
back specific to each of the three parts of DPF (discussion, prioritizing, security
measures). A reference to which of the sessions (S1-S5) the statement was given
is added at the end of each statement. Similar statements have, in some cases,
been combined to give a better narrative of the evaluation feedback.

General feedback

Duration of session Participants mentioned that the sessions could be longer
(S1, S4) and that the duration could naturally vary based on the data source in



76 E. Gudmundsen & S. Kvamme: Data Protection Fortification

1
1,5

2
2,5

3
3,5

4
4,5

5
Appropriate length (PEU1)

Can perform myself
(PEU2)

Discussion was clear
(PEU3)

Use of Mentimeter (PEU4)

Use of Miro (PEU5)

Felt useful (PU1)

Helps focus security (PU2)

Useful discussion (PU3)

Helpful security toolbox
(PU4)

Fits team (PU5)

Increased competence
(PU6)

Use in future (AC1)

Investigate found issues
(AC2)

Fun to do (AC3)

Webkom (S4) Ryde (S5)

Figure 5.4: TAM evaluation results from Webkom (S4) and Ryde (S5).

0 1 2 3 4 5 6 7 8 9 10

Data Source Discussion

Prioritize Data Fields

Evaluate Security Measures

Most Useful Medium Usefulness Least Useful

Figure 5.5: Participants evaluation of which part in Data Protection Fortification
they found most useful.



Chapter 5: Results 77

question (S1), with more complex or more important data sources taking longer.

Participants Including users in the DPF session is a good idea (S2, S3). Fur-
thermore, the session would have higher relevance by including participants from
different end-points of the data flow chain to get the highest coverage (S2). By
knowing more about the details of the data source, one could also find more things
about the data source to consider (S5).

Ease of use The order of DPF made sense since it was a natural progression to
start with open discussions and then look at more specific things to consider (S4).
Some mentioned that the approach was straightforward and easy to follow (S2)
and that a development team would be able to perform it on their own (S5). Still, it
was practical to have someone who knows the method to facilitate the session (S4)
and watch the time during discussions (S1). They liked that the session did not
leave them exhausted, as it kept the team engaged and in control, in contrast to the
"wall-of-text" kind of meetings they were familiar with for assessing compliance
(S2).

Usefulness The method was surprisingly useful (S1) and enabled good reflec-
tions on both the security (S1, S5) and possible weaknesses (S2) of the data
source. Focusing on data fields is helpful for developers since it is concrete and
relatable (S4). It is also very useful to look at the data fields from a security per-
spective (S4). As for the outcome, it highlighted that the team lacks knowledge of
this data source (S1); it raised issues (S4) and questions that need to be clarified
with the development team (S5). It does, however, not exclude other potential
security flaws (S4). One participant commented that the discussion was more
concerned with what one already knows about the data source, while the prior-
itization and security measures part were more specific and more useful since it
was more actionable (S4).

Acceptance The method is a fun (S4), straightforward approach (S2, S5). It has
the potential to work for more data fields in more complex systems (S4) and in
other contexts as well (S2). The session can be adapted based on the data source
in focus (S1). It is also possible to perform for non-developers (S5).

Data Source Discussion

The discussion went well (S3), and the discussion questions felt relevant (S2) and
sparked interesting discussions (S1). Some thought the discussion felt more like
an interview between the facilitators and the group. In contrast, one participant
in the same group said there could have been even more discussion questions
(S4). Some questions were also perceived as ambiguous, which influenced the
discussions (S4). For one group, a few questions did not fit the specific data source,
but they reflected that the same questions would be relevant for other kinds of



78 E. Gudmundsen & S. Kvamme: Data Protection Fortification

data sources (S2). An extended discussion could be particularly good for the first
session on a data source (S1).

Prioritization of Data Fields

The prioritization part using Mentimeter worked well (S1). For those familiar
with traditional risk assessment, the generated risk matrix is familiar (S5) and
is a good visualization of the estimation results (S2). During estimation, it was
good that incoming answers were hidden while the others voted (S4), but when
everyone had finished voted, it was interesting to see the distribution of votes (S1).
A challenge with estimating is to prioritize when the data source only contains
critical fields (S3). Another example of this is that for a platform provider, it is
important that all data fields contain correct values (S2). There is more potential
in the digital variant of DPF when estimating (S3). This step also requires in-depth
knowledge of the data field’s business value, which end-users know best (S2). This
makes the validity of these estimates questionable since (most) developers are far
away from the business side (S5). There would be a need for more discussion to
make final estimates more accurate and an opportunity to adjust estimates put
into the risk matrix (S5).

Evaluating Security Measures

For the two teams who performed security measures evaluation in Miro, it is high-
lighted that doing this step is the most interesting (S5), and the toolbox with com-
mon security measures is helpful to use as a reference (S4). It was also mentioned
that this step is an efficient way to share knowledge about what security measures
the frameworks they use have (S4). Feedback from one team (when this step was
only performed verbally without Miro) was that coming up with security measures
for an API that they do not control was challenging (S1).

5.2.4 Observations and Lessons Learned from DPF

Table 5.3 presents lessons we have learned from observing and reflecting on the
Data Protection Fortification (DPF) sessions we have facilitated.



Chapter 5: Results 79

Table 5.3: Observations and lessons learned from facilitating Data Protection
Fortification

Step ID Topic Our observations from DPF sessions

General LL01 Engaged partici-
pants

We experienced that participants during the session looked
up assumptions and security concerns that were brought up
(S4).

General LL02 Showing overview
of activity as
agenda

It was a good idea to show a high-level overview of the
method at the start of the session to teach them the flow
of the method (S1).

General LL03 Need for time-
boxing

Time-boxing the steps in DPF is good to show participants
how much time they will spend in the various steps, and
where they can flex on time (S1).

General LL04 Importance of the
preparation meet-
ing

When the team selected the data source without a prepa-
ration meeting(S3), we experienced challenges when facil-
itating. The evaluation revealed that a preparation meet-
ing might have uncovered challenges with using this data
source as the focus for DPF.

General LL05 Number of partici-
pants

Performing the method using digital tools went well with 5-
9 participants (S1, S4), and it showed potential to be able
to handle more participants. A smaller group is better when
using physical tools, as prioritizing data fields and evaluat-
ing security measures took too long (S3).

General LL06 Actionable steps
are more useful

While the discussion was as well-received in the sessions
(S1, S2, S3), and the discussion took up brought up many
interesting issues (S5), it came at the bottom of the ranking
when ordering the different steps in the method (S4, S5).
This indicates that participants find the step with the most
specific and actionable output more useful.

Data
Source
Discussion

LL07 Challenge to
engage all partici-
pants

In one case, it was difficult to get all participants engaged in
discussions (S4), and evaluation revealed that participants
felt the discussion was like an interview for facilitators to
learn about the data source, not the participants. While we
did not experience this in other sessions, there was a trend
that the most knowledgeable person also talked the most
(S1).

Data
Source
Discussion

LL08 Discussion exam-
ples needed

Giving examples when asking the discussion questions
helped participants answer (S1). However, when none of
the examples were relevant to the data source, it could con-
fuse them (S2).

Data
Source
Discussion

LL09 Questions need
to be adapted
for different data
sources

When testing the method on data sources like form input
(S4) and augmented device data (S5), not all of the ques-
tions made sense, and we had to adapt some of them during
the session to get relevant answers.

Data
Source
Discussion

LL10 Do not assume, ex-
plain

Assuming that all of the participants are familiar with the
data source in focus is a risky, and it helped the session to
have someone from the group describe it first (S1).



80 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 5.3: Observations and lessons learned from facilitating DPF (continued).

Step ID Topic Lessons learned

Prioritization
of Data
Fields

LL11 Limitations of DPF The participants’ knowledge of and the number of data
fields within a data source is very likely to impact the out-
come and successful adoption of DPF.

Prioritization
of Data
Fields

LL12 Manageable num-
ber of data fields

We observed that during prioritization, estimating 20 data
fields at once (directly in the risk matrix) was exhausting
for participants (S5). 5-8 data fields were tested to be man-
ageable.

Prioritization
of Data
Fields

LL13 Difficulties in pri-
oritizing

Some participants struggled to find differences in business
value among the data fields (S2, S3). The teams also found
it difficult to estimate the consequence of tampered data
when the data was used for a broad number of applications
that they did not control.

Prioritization
of Data
Fields

LL14 Digital tools scale
better

In comparison with only using physical tools for prioritiza-
tion, using digital tools makes this step easier to facilitate,
with regards to collecting responses and showing the risk
matrix to participants (S3).

Prioritization
of Data
Fields

LL15 Explain data fields
first

Having one participant explain the data fields and describe
their use before estimating the business value helped gain
a common understanding (S2). Showing the team example
of values could also aid understanding (S1).

Prioritization
of Data
Fields

LL16 Purpose of calibra-
tion

While we originally intended to set min/max values for the
data fields based on the calibration, as done in Protection
Poker, we found this was not easy to enforce in Mentimeter
(S1, S2), and revotes are also tricky. When the participants
estimated values, they did not always use the calibration
result (S2, S4) or the entire range of values and instead
put the fields relative to each other (S4). Calibration results
in Mentimeter also showed multiple winners when partic-
ipants’ opinions diverged (S4). Hence, it was not suitable
to reach a consensus on one data field in each min/max
range. While estimations could vary significantly, the groups
still got a sufficient spread of values in the risk matrix and
agreed on the resulting relative prioritization. We conclude
that the important purpose of the calibration is to facilitate
discussion in the group to aid the subsequent estimation.

Evaluating
Security
Measures

LL17 Need a structured
process

Elicitating security measures without a structured process
did not produce any valuable results (S1), and there was a
need for better examples (S2). After structuring the process
in Miro it worked very well (S4), and the risk matrix helped
prioritize which fields to start this process with (S4).

5.2.5 Evaluating DPF with Security Experts

This section presents some feedback from two security experts on the potential of
DPF. We address these statements as SE1 and SE2.



Chapter 5: Results 81

Overall potential We got feedback that DPF looked interesting and had good po-
tential (SE1). Furthermore, one security expert thinks development teams would
be able to do it on their own since it is structured and visual enough for them to
be easy to do if instructed (SE2).

Suitable contexts for use In addition to using DPF for data integrations, it also
shows potential for data sent from users through a web interface, such as form
input data (SE2). As IoT and Industrial Control Systems (ICS) often lack integrity
checks, including the widespread use of unencrypted protocols and weak secu-
rity mechanisms, it could be valuable for developers of such systems (SE1). The
structured discussion of DPF also showed the potential for data that is subject to
GDPR regulations, to evaluate the consequences for people using a data system if
the data is leaked or misused (SE1).

Number of data fields It can be difficult to do DPF on the whole data source, as
many data sources can have hundreds of data fields. We give value by looking at
security measures at a low level, so most of our toolbox is not applicable to use at
a higher level (SE2).

More factors in risk In addition to estimating the risk of data fields by using
business value and the likelihood of tampering, other factors could be relevant to
consider (SE2). For instance, risk could be decreased for certain types of fields if a
strongly typed programming language is used, or if the maturity of the data sup-
plier organization is high and they do many checks on the data on their side. The
risk also depends on what kind of attacks the data fields are vulnerable to (e.g.,
different impact if data is corrupted versus can contain an injection command
which could lead to system takeover or information disclosure). Furthermore, the
risk of using a data source can depend on how many links the data has to flow
through to get to the system from the origin. If one is close to the source, one has
more control over what an attacker is allowed to put into the data source. How-
ever, it may also be more visible to an attacker if an attack works. In addition, if
one uses an API, one has no control over what can be put into the data and have
to trust it.

Doubtful of the value of prioritization Prioritization of data fields might be
difficult for developers to give good answers to (SE1). Estimating business value
requires an understanding of how the data is used, which developers might not
have if they are in a company where developers are far away from the business
side. Estimating the likelihood of tampering was also mentioned as potentially
difficult to estimate, particularly for teams that work on micro-services where they
do not see the bigger attack surface.



82 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Security measures The security measures made sense from a security perspec-
tive, and most were simple to understand (SE1, SE2). The discussions should be
focused mainly on the domain-specific security measures, as these can not eas-
ily be identified by static code analysis tools (SE1). These tools often target good
programming practices (e.g., validation of length or correct format) but can not
discover missing business rules in code.

Using the outcome One expert highlighted the importance of telling teams how
to use the outcome (SE1) and that putting the security measures into existing
issues in a task board was preferred (given that the data source is not already
implemented). This could help make product owners aware that the task is not
done until the security measures are implemented, as well as prevent the issues
from becoming forgotten at the bottom of the backlog.

Communication tool for security Working closely with developers is the most
effective way to secure code. However, it can be difficult to get time from devel-
opment teams to do extra security work due to feeling rushed (SE2). Often stake-
holders assume that developers are already doing the necessary security work and
are therefore not telling them to slow down on the features to improve security.
Developers often want to add better security but often experience pressure from
stakeholders to spend their time developing features (SE1). DPF was mentioned
to have the potential to become a communication tool between developers and
stakeholders about security, particularly the data source diagram, as it can help
visualize whether they have the necessary protections in place (SE2). Suppose one
could give developers some metric, for instance, how often the data coming from
the data source fails validation. In that case, it could give them a strong argument
to spend more effort validating the data on their side as data consumers (SE2).

5.3 RQ3: How Can Data Monitoring Using Audit Hooks
Identify Attacks in Data With Increased Risk?

Due to time constraints, we were not able to not answer this research question.
Instead, we provide a conceptual architecture of the data monitoring system that
future research can consider.

In the previous section, we presented the results from performing DPF. One
context where DPF can be helpful is determining the need to monitor specific data
fields within a data source for potential attacks. Data fields identified as higher
risk in DPF may be good candidates for monitoring. Figure 5.6 shows an example
of how the security measure requirements from DPF can be connected to the data
monitoring system. We discovered different monitoring possibilities from perform-
ing DPF with the teams and from discussing security experts, most of which we
have conceptualized as analysis capabilities in this section.



Chapter 5: Results 83

Design Phase Development Phase

Implemented in

Defines
Monitor Data


Source A

   Add attack monitoring

 to field 'temperature'

Sends dataAudit Hook

Data Protection 
Fortification System A

Analysis Result

Monitoring System

Ingest

Reporting

Attack
Analysis

Evaluate Security
Measures

Risk Matrix 

for 


Data Source A


Data:

Temperature

Tag:

DataSourceA.temperature

Analysis:

Attack

...

Sys. Operation Phase

Figure 5.6: Example of how DPF is used to add a requirement for attack mon-
itoring based on security measures evaluation during the design phase. In the
development phase, the requirement is implemented as an audit hook placed in
the code of System A, and the data it should send is defined. During system op-
eration, the audit hook will send data to analysis in the monitoring system.

Message brokers are widely used in data-intensive systems due to their char-
acteristics of high scalability, throughput, and availability [66]. Our proposed ar-
chitecture for a monitoring system using audit hooks revolves around the Bro-
ker architectural pattern [66] for distributing messages between the components
using a lightweight message broker. The considerations done for selecting this
architecture are listed below:

• We expect high throughput of data coming into the system.
• The message flow is relatively simple, with no need for central orchestration

or a transactional state. Different types of analysis can be done in isolation
and do not depend on each other.
• We want to add new monitoring capabilities in the future.

As illustrated in Figure 5.7, a message sent from the Audit Hook component
includes the data we want to monitor for attacks. Messages are sent through a
Message Broker with a given Routing Key (RK). The RK tells the message broker
where to send this message. The destination of messages are either Message Queues
or Topics, which have a key (name) defined for receiving messages. The broker will
route messages to a topic or a message queue if the RK matches the queue’s name.
These names can be explicit or have an asterisk (*) for pattern-matching. Topics
can be used when multiple components should receive the same message. This is
the case for the analysis capabilities, where we want all capabilities to receive a
copy of the message. Message queues are used when we only want one component
to receive the message, as is the case with the Ingest component.

In the following sections, we give an overview of each component in the archi-



84 E. Gudmundsen & S. Kvamme: Data Protection Fortification

*.*.*

Message Broker

process.*.done

Analysis

Capabilities

message.start.audit
message.ingest.done

Ingest

process.*.done

Event Log
Cassandra

Elastic

Search

Monitoring Dashboard

message.start.audit

Audit Hook (Sensor)

Data

Analysis

Result

RK

Topic

Message Queue (Receive all)

RK

Message Queue
RK

Figure 5.7: Proposed architecture for a monitoring system using Audit Hooks
as the primary entry-point for data. The directional arrows between the mes-
sage broker and the components are labelled with the RK (when sending) or the
topic/message queue name (for receiving).

tecture. The architecture is presented only as a minimum viable product (MVP)
for analyzing data sent from audit hooks and has not been tested in practice.

5.3.1 Audit Hook

Audit hooks are interfaces placed in code for communicating with a tool-agnostic
message broker (e.g., RabbitMQ1) using the Advanced Message Queuing Protocol
(AMQP). The format of the messages transmitted from an audit hook is specified
using a schema. The data values sent into an audit hook are not bound to a specific
type and could be semantically or syntactically invalid from a business perspective.
In addition to sending the data value, it should be possible to add the following
metadata:

• type - The type of data this data value is representing (e.g., currency, tem-
perature, or humidity)
• analysis - An optional list used to specify which analysis should be performed
• datetime - When this data value was generated
• tag - Used to identify where this data value originated from (for instance, a

combination of the data source name and the data field name)

The datetime and tag metadata is valuable for enabling value correlation,
where data values matching a specific tag and datetime can be correlated.

1https://www.rabbitmq.com/

https://www.rabbitmq.com/


Chapter 5: Results 85

5.3.2 Analysis Capabilities

Capabilities refer to the components in the monitoring system performing the
analysis of messages. From the DPF sessions we performed with the companies, we
identified four possible monitoring capabilities. These capabilities are described
on a conceptual level in this chapter. Each of these capabilities should receive mes-
sages sent from an audit hook and then determine if it can do an analysis based
on the message received. We propose including the type(s) of analysis wanted as
part of the message body or header sent from the audit hook component. The
messages sent from a capability to ingest should include the type of analysis per-
formed (e.g., as part of the routing key), the original data sent, and the outcome
of the analysis.

Value correlation For value correlation, we are interested in matching the data
value sent with a previously monitored value. The analysis outcome should indi-
cate this if the values do not match up. An open question with the current archi-
tecture is how this analysis could correlate the values to those of a different data
set.

Anomaly With anomaly detection, we are interested in discovering unexpected
shifts in the values received over a specific time period. An open question in the
current architecture is how anomaly detection could be configured differently for
different types of values. Some values change with clear patterns, whereas some
values seldom or never should change. As we covered in Section 2.6.2, exist-
ing commercial products such as DataDog have included in their documentation
which type of algorithms they use for monitoring, which researchers can use to
gain insight into promising anomaly detection algorithms. One could also moni-
tor metrics related to the data, as uncovered in one DPF session. This team could
suspect an issue, which might or might not be due to an attack, if they received
no data for an extended time within a specific period.

Attack The data values in a message are matched against a list of known attack
patterns and attack signatures, for instance, using information from CAPEC 2.
One security expert suggested looking for particular patterns in value changes,
tailored to a specific attack over a certain period. Some data fields may be tied to
specific use cases, which can help create scenarios for possible attacks that should
be monitored.

Error Error monitoring was inspired by the case of failed QR code scans de-
scribed in Section 5.1.2. Error events can be created when data fails validation,
which can then be sent for monitoring as part of handling the error in code. Fail-
ures of integrity checks could be mapped to specific attacks. For logging errors

2https://capec.mitre.org/

https://capec.mitre.org/


86 E. Gudmundsen & S. Kvamme: Data Protection Fortification

as part of error handling, one security expert mentioned that developers need to
create understandable logs. Log analysis is often outsourced to separate security
teams, who do not know the data or its use context within the application. By
monitoring the data which generates validation errors, practitioners can detect
tampering attempts that would otherwise only be visible in logs as runtime ex-
ceptions.

5.3.3 Ingest

This component is responsible for storing analysis messages into the system used
as primary storage, ElasticSearch. It should also send a message to the event log
after storing the message to indicate that this message has been successfully in-
gested.

5.3.4 Monitoring Dashboard

For presenting the monitoring results, we recommend using Kibana to connect
with ElasticSearch. Kibana is a web interface for generating dashboards and ana-
lytics, primarily using ElasticSearch as a source for data. Indexes in ElasticSearch
can be created using Kibana to group messages from the various analysis capabili-
ties. These indexes can then be used to generate dashboards in Kibana to show the
results from each analysis capability. Threshold alerts can be configured in Kibana
to notify system operators if an analysis capability has found a positive result.

Event Log

The event log component is responsible for storing all messages as events. This
is particularly useful for developers and maintainers of the monitoring system in
cases when faults have occurred. It can also be used to trace messages being sent
through the monitoring system. As we expect the event log to receive a consider-
able amount of data generated from the message queues, we recommend storing
event messages in a database with highly efficient writes, such as Cassandra3.

3https://cassandra.apache.org/_/index.html

https://cassandra.apache.org/_/index.html


Chapter 6

Discussion

In this chapter, we discuss the results from Chapter 5 with regards to implications
for research and practice. Finally, we discuss limitations to the method and study
and conclude with lessons learned from conducting this research project.

6.1 Implications to Research

In this section, we present how the findings in this thesis relate to researchers
interested in using the results and give directions for extending our work.

Table 6.1 show how DPF contributes to, or inhibits, participants experienc-
ing flow (see Section 2.3.8) using the elements that contributes to flow given by
Shostack [21]. From this, we take that many of the steps in DPF contributes pos-
itively to participants experiencing flow, while further work is needed to address
some elements, especially related to Clear goals and Direct and immediate feedback.

Table 6.1: Experiencing flow in Data Protection Fortification. The aspects marked
with an asterisk (*) are mentioned by Shostack [21] as key aspects for testing
threat modeling approaches.

Aspect Achievement level in DPF

Absorbed in activity From evaluations, we learned that participants did not feel like the session
was too long. In DPF, the participants are always the active party, and there
are few periods of inactivity. However, the behavior of others during the
session may negatively impact absorption, for instance, if one participant
has to leave before the session ends.

Loss of self-
consciousness

Including participants with different roles and security knowledge might
make participants more self-conscious about their own performance,
contributing negatively to this aspect. Using digital tools that support
anonymity may contribute positively, as participants can vote anonymously
when estimating values for business value and tampering. Anonymity
could also be supported in digital tools for collaborating on evaluating se-
curity measures.

87



88 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 6.1: Experiencing flow in Data Protection Fortification (continued).

Aspect Achieved in DPF

Personal control
over activity

Participants have control over their votes and may simultaneously add se-
curity measures in Miro. One team said they liked that they felt the team
was in control (S2). Participants may choose to use the toolbox for security
measures only as inspiration and can skip discussion questions that do not
fit.

Clear goals* DPF has clear internal steps. A diagram of DPF can be shown at the start
of the session to give an overview to participants new to the method. As
discussed in future work, clear end-criteria is missing from DPF, making
it difficult to know when to end the evaluation of security measures and
conclude the session itself.

Concentration and
focusing

DPF requires participants to only allow a select range of information into
awareness to concentrate on the different steps in the method, as they
are not presented with too much information at once. The method grabs
the participants’ attention from the beginning and maintains their focus
throughout.

Direct and immedi-
ate feedback*

When estimating in Mentimeter, participants receive feedback by seeing
the voting results and the resulting risk matrix. For progression, the dis-
cussion is split into two parts with equally many questions, making the
participants aware that they are halfway through after answering the first
part. However, not all steps of DPF give direct and immediate feedback. Fu-
ture work can look into how to give participants feedback while evaluating
security measures. For instance, by giving recommendations on how many
security measures should be found to be "good enough" or recommending
security measures that go well together.

Balance between
ability and chal-
lenge*

In DPF, the activity gradually becomes more challenging, but we provide
examples in every step to aid participants if needed. In addition, the mech-
anisms of prioritizing and elicitating security measures are simple. In fu-
ture work, different variants of the method can be considered based on the
participants’ level of knowledge about the data source.

In Table 6.2, we show how Data Protection Fortification (DPF) addresses some
of the challenges observed by Cruzes et al. [67] in agile development projects
using the Microsoft Threat Modeling Technique with STRIDE. Even though this is
a software-centric threat modeling approach, as opposed to DPF, which is a data-
centric approach focused on the data fields, many of the challenges reported are
relevant to discuss for DPF.



Chapter 6: Discussion 89

Table 6.2: How Data Protection Fortification address challenges found by Cruzes
et al. [67] in doing Microsoft threat modeling with STRIDE in agile development
projects. The ID references the original paper. Challenges not applicable to discuss
for DPF have been omitted. Lessons learned from Table 5.3 are referenced where
relevant.

ID Challenges reported in [67] Relevance to DPF

C02 Many discussions on threats and
mitigations strategies get lost

If teams do not take notes as recommended from the
discussion and prioritization steps, this is also likely to
happen in DPF.

C03 It is challenging to motivate the
teams to draw the diagrams

Evaluations say it was fun to do DPF, and the last step
where participants draw the data source diagram was
found to be most useful, which suggests it might not
be hard to motivate the team. In addition, cognitive
load when drawing the diagram is low because there
are few elements to consider and few opportunities to
make mistakes.

C04 It was hard to decide the right
level of abstraction to the DFDs

DPF does not draw DFDs, but instead a data source di-
agram with security measures, where the abstraction
level is pre-defined to be on the data fields, which nat-
urally limits the scope of the session.

C05 It takes a long time to draw the
diagrams

How long it takes to draw the data source diagram
depends on the number of data fields the participants
consider. We provide a generic template, but it needs
to be prepared in advance not to steal too much time
from the session. Compared to drawing DFDs, where
multiple types of components exist, DPF only actively
uses security mechanism components.

C07 The approach does not make a
link with the actual code

In future work, DPF could potentially generate a data
source diagram based on annotations on validations
in the code. One could also create a domain-specific
language (DSL) for drawing the security measures that
can be used to generate validation code for selected
programming languages.

C08 It is challenging to maintain the
DFDs

DPF does not use DFDs, but faces the same challenge
for maintaining the data source diagram. Improving
this is discussed as future work.

C09 The meeting needs to be struc-
tured, but it is not always clear
on how to run the meeting

DPF provides a clear structure for all three steps of the
method. Improving the structure of the last step is re-
lated to LL17.

C10 It is hard to decide which other
people should be included in the
meetings besides the "core" de-
velopment team

DPF provides recommendations on whom to include
for making the session the most relevant.

C12 There are challenges with run-
ning meetings in distributed set-
tings

When using digital tools to run DPF sessions, we did
not experience challenges in either distributed or co-
located settings.



90 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Table 6.2: How DPF relates to challenges in doing Microsoft threat modeling with
STRIDE (continued).

ID Challenges reported in [67] Relevance to DPF

C13 It is hard to know when enough
analysis has been done

This is related to "clear goals" in flow. We have not de-
signed a way for practitioners to know what is con-
sidered "good enough" when evaluating security mea-
sures. This is recommended as future work.

C14 The meetings are not effective The perceived effectiveness may come from the partici-
pants’ ability to experience flow. We argue that for this,
the aspects of "absorbed in the activity," "clear goals,"
and "personal control over activity" have an impact on
how effective the meeting is perceived. From lessons
learned, we observed the need for time-boxing (LL03).

C15 There is a need for a Security Ex-
pert to run the meeting

Evaluations of DPF suggest that the method provides
enough examples and structure not to require a se-
curity expert to facilitate the meeting. However, this
needs to be confirmed in future studies.

C16 It is not easy to have everyone
participating

When participants had insufficient knowledge about
the data source, there was a tendency toward the more
knowledgable talking the most in the data source dis-
cussion (LL07). Overall, we found participant contri-
bution to be rather even.

C18 The output of the sessions is a
list of concerns/threats that are
not concrete

The main output from DPF are concrete security mea-
sures for each data field that should be added to ex-
isting or new issues in the development backlog. Elic-
itating security measures were also perceived as more
useful than the first steps in the method, which have
less concrete output (LL06).

Low-level data-centric threat modeling Developers had a positive attitude to-
wards focusing the session on fortifying the security of data fields in a data source,
as they were more recognizable to them. Therefore, we recommend that future
research continues developing threat-modeling methods with a low granularity
and a focus on data.

Improvements to produce flow Further research should find ways to provide
better immediate and direct feedback to participants, especially for evaluating if
the diagram created for security measures is sufficient. Furthermore, DPF needs
criteria for when to conclude the session to provide clear, attainable goals to the
participants. Shostack [21] recommends two testable states that must be fulfilled
to conclude a threat modeling session; this includes having filed bugs and that
you have "a diagram that everyone agrees represents the system." Lastly, studies
on how to customize the method to match participants with various security skills
or domain knowledge could make the method relevant to a broader audience.



Chapter 6: Discussion 91

Improve risk calculation The method of estimating the risk of data fields is
based on the business value and the likelihood of tampering. However, as men-
tioned by one of the security experts, other factors could also affect the risk. Fur-
ther research could investigate the potential of including other factors that affect
the risk, which can help improve the current risk calculation.

We recommend further research on improving the scale used to prioritize data
fields. During the estimation of risk, DPF uses a number scale (1-10) inspired by
SINTEF’s version of Protection Poker[33]. However, other scales could also be
considered, and NIST advocates that differentiation of risk should be limited to
High, Medium, and Low [18]. In addition, some participants reported that they
used the scale differently during estimation.

Investigate need for prioritization Further research can investigate in which
contexts prioritization is needed. When discussing the value of prioritization with
a security expert, the value of performing estimation itself was debatable, as it can
be difficult for developers to answer the questions used to prioritize the data fields.
In some session evaluations, some participating teams also reported estimating
business values as a concern. However, from the evaluation of the activities, the
estimation step was perceived as almost as useful as evaluating security measures.
Our observations also show that the teams appeared to understand the concept
of likelihood of tampering and were able to find consensus when estimating this,
even for the cases where they were not as familiar with the data. However, this
does not mean that their accuracy is good.

In some cases, it might be viable to skip the prioritization step. For instance,
when the team has enough resources to implement security measures for all the
fields and has no computational restraints (which is not often the case for IoT).
In this case, it would be more important to discuss the data fields in depth during
the discussion, as this would typically happen during the prioritization. For other
cases, the team would need to prioritize their security efforts, covering more of
the lower-priority data fields over time. Future work could find ways to structure
the discussion that happens naturally during prioritization to use this for prioritiz-
ing where to start when evaluating security measures instead of obtaining a risk
matrix.

Extending the security measures diagram Further research is needed to find
an appropriate way to make the security measure diagram more maintainable
and closer to the implementation code. For this, a structured format such as JSON
or Markdown could be used, which could be checked into their version control
software. This lets teams represent it in their own space in their code repository
instead of in a different tool. JSON could be useful for generating code such as test
cases from some security measures, while Markdown provides typing options for
enhanced readability. Another approach is to create a domain-specific language
for defining the security measures, which can be used to generate validation code
for selected programming languages.



92 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Generating the security measures diagram Another idea is to find ways to help
the team understand what input validations are already present by generating
the diagram based on annotations in code. Abi-Antoun and Barnes [68] has done
similar work for generating DFD diagrams for threat modeling based on code
annotations that is read by a static code analysis tool.

Evaluate how the outcome is used Another possible direction for research is
to assess how development teams act on the issues found after performing DPF.
Following up on the security measures identified through DPF could face the same
challenges as described by Bernsmed et al. [29], where issues often end up being
ignored or disappear from the taskboard without being satisfactorily resolved. In
turn, this makes the issue a part of the accumulated accepted risk of the product.

Developing a data monitoring system Due to time constraints, we did not eval-
uate the data monitoring system in practice. Further research is needed to develop
this concept further to test the viability of using audit hooks to detect data tam-
pering attacks coming through the data.

Regarding the goal of successfully identifying threats with such monitoring
capabilities, Shostack [21] points out that anomaly detection is difficult to get
right, as changes in business, or changes in values based on natural occurring
changes, can lead to "normal abnormalities". One security expert echoes this by
commenting that anomaly detection using machine learning generates too many
false positives. Abnormal sensor readings do not necessarily stem from data tam-
pering attacks but could also be due to natural failures of sensors. Compromised
sensor nodes might also not always send malicious or false data (due to the at-
tackers’ attempts at concealing such attacks), but will be more likely to do so than
non-compromised nodes [5].

Discussions with one security expert about monitoring highlighted the impor-
tance of knowing which fields are affected when an adverse event occurs. Knowing
what to monitor in the data can be identified using the threat model to correlate
events to specific data flows. This would then form the requirements for moni-
toring the data fields to look for values that correlate with an adversary event.
Espenschied and Gunn [69] propose a method for detecting threats by generating
models of state transitions over time, or "threat sequences". This model aims to
enable decision-makers to detect adversarial sequences and gain insight after in-
cidents by looking at the sequence of actions taken. As Shostack [21] points out,
the generated threat sequence model can also be helpful to determine which data
sources would detect specific state transitions (and thus, could be sent using audit
hooks for event-value correlation monitoring).

Regarding attack monitoring, detecting attacks using attack signatures has
been difficult since attack tools have adopted techniques to conceal attacks, for
instance, by using polymorphism [21]. A security expert proposed to try to map
failed integrity checks to specific kinds of attacks. Also, monitoring the amount of



Chapter 6: Discussion 93

failed integrity checks over time can give development teams a solid argument to
spend more effort on validating data on their side as data consumers.

6.2 Implications to Practice

We observed in this study that there are several limitations and improvement
points for performing Data Protection Fortification, which companies should be
aware of when applying the method. In this section, we provide recommenda-
tions for practitioners wanting to adopt DPF as part of their development process
to evaluate if their data source handling is secure.

Use digital tools We found that facilitating DPF sessions using digital tools hold
more promise than using physical tools for multiple reasons. As the workplace has
become more flexible in terms of locations where one can work, some participants
may be co-located in the office, while others join in from other locations. In this
case, using digital tools is the only viable option. One of our lessons learned is that
digital tools also scale better, allowing more participants to participate without
slowing down the session considerably. It is also easier to collect and present the
votes from participants when prioritizing data fields.

Compared to post-it notes and handwritten text on a whiteboard, the visual
nature of the outcomes created in the digital tools makes it more likely to be easier
to maintain the outcome in later sessions and reference after the meeting. How-
ever, compared to physical sessions, which require minimal preparations, hosting
a digital session requires a non-trivial amount of time invested in preparing the
templates with the specific data fields. Even though this may reduce the flexibility
to include more data fields during the session, the previously mentioned benefits
of digital tools outweighs this drawback.

In this study, only the facilitator could add security measures to the data field
lanes in the digital whiteboard, but practitioners could experiment with having
all participants edit at once. This could make the session more efficient in com-
ing up with security measures, but with the possible consequence of the meeting
becoming disorderly. One could set a timer where everyone brainstorms security
measures independently and collectively determines the final result. The valida-
tion security measures selected for one field may also be duplicated for other
similar fields, perhaps with minor variations, allowing the participants to achieve
higher efficiency in the session.

Benefits of adopting DPF We recommend performing DPF on new data sources
or when a data source specification changes. Given the (anticipated) low fre-
quency of these events, DPF will not take up considerable development time.
DPF enables the team to make more informed decisions on their handling of
data sources and improve the confidence of end-users that the data they use is



94 E. Gudmundsen & S. Kvamme: Data Protection Fortification

trustworthy. In communication with stakeholders, DPF can be used as a tool for
communication about security.

Data source limitations We experienced that DPF can be used on data sources
with various origins, such as sensor data, data sent from web clients, and system-
generated data. For the latter, we observed during one session that there were
considerable challenges in prioritizing the data fields because they all felt equally
important to the participants. From this, we derive a limitation on the potential
for performing data field prioritization on data sources where all the data fields
are needed to describe a phenomenon or where the fields do not have apparent
differences in use. In such cases, the other steps in DPF can still provide valuable
outcomes without the prioritization step. Another limitation is the relatively low
number of data fields that are viable to cover in one DPF session. However, some
parts of the activity are possible to do at a broader level, in particular, the data
source discussion.

Participants The TAM evaluation performed with two of the participating teams
shows positive trends among the participants towards using this in the future and
that it was fun to do. A reason for the low score on The activity fits into our team’s
way of working (PU5) for one company could be because the development team
resides in a non-English speaking country, where language, cultural or hierarchi-
cal differences may impact the adoption of DPF. We found that developers are
likely to be able to perform and make use of the outcome from DPF on their own,
contrary to many other threat modeling techniques where there is a need for a se-
curity expert to facilitate [23]. However, there is a need to include someone with
knowledge about the data source for DPF to generate the most relevant results.

Focus of security measure discussion The security measures toolbox includes
many simple validations that can be useful to consider. However, the focus should
be on more domain-specific measures, as static analysis tools can not easily dis-
cover such validations missing in code. However, static code analysis tools can sug-
gest missing syntactic validations (such as missing length constraints in a database
schema). Even though many security measures in the toolbox may be regarded
as good practices that should always be included, many practitioners might not
be aware of them or sometimes forget them. Considering them explicitly in a DPF
session can help both new and experienced developers learn good practices for
security.

6.2.1 Recommended Practices for Securely Handling Data

In this section, we review the practices for handling data reported by the teams
in each category and give recommendations to practitioners.



Chapter 6: Discussion 95

Data access Access to an external data source is often defined in a connection
URL. If this URL can be tampered with by someone (usually by an insider), attacks
such as spoofing the data source to send false data or causing a denial of service
by removing or invalidating the URL are possible. For practitioners, we recom-
mend audit logging any changes to this URL and making these audit logs readily
available. Integration tests can also be used to verify the connection to the data
source.

Access controls should be placed on the audit logs so that it is harder for an
attacker to hide their tracks by deleting the logs. The commit history in Git, men-
tioned by some teams, can be easily modified or deleted and is thus not without
flaws for this purpose. One recommendation is to require a reviewer to approve
changes to the URL. Restricting who has access to change the data connection URL
is a good practice. Removing access permissions promptly when someone leaves
the team is also recommended. However, if few people have access to read the
currently used URL, then few people are also able to detect tampering with it.

Data validity Implementing security measures in the application is a cyberse-
curity investment, as the developers have to spend their time doing this instead
of developing new functionality. However, implementing measures such as vali-
dation can prevent more costly issues that can happen later. For practitioners, we
encourage system designers and architects to define semantic validations related
to how the system will be or is used. The generation of misuse-case diagrams can
help identify requirements for semantic validation.

Syntactic validations can help reduce the risk of "low hanging fruit" tampering
efforts, such as sending large amounts of text in an input field to cause a denial of
service. Semantic validations help ensure the correct behavior and use of a system
and may reduce the risk of more subtle tampering efforts that syntactic validations
can not easily identify.

Data origin Data originating from IoT devices may be less trustworthy due to
the challenges in protecting the data from these devices. Abnormal sensor read-
ings may also naturally occur. Data originating from a human source also pose a
risk for (un)intentional tampering.

One security expert mentioned that when one has no control over what some-
one can put into a data source, one must trust that the data is intact. However, as
consumers of such data, it is still important to validate and monitor this data to
prevent possible data poisoning attacks.

Data processing In one session, a new attack surface was uncovered by looking
at how the data was processed. The end-users of this data often download the
data from their website and import it into Excel for processing. While the website
uses a framework with built-in injection protection, Excel provides better data
processing tools. Since the data had to be processed, the protected view in Excel (a
sandboxed environment) had to be turned off. Since data was not sanitized when



96 E. Gudmundsen & S. Kvamme: Data Protection Fortification

generating the CSV file (related to CWE-771), malicious cell data could potentially
be included from the data fields coming in with the downloaded data. As a take-
away message from this, we recommend practitioners to consider all places where
the data might be processed, when coming up with security measures for it.

Data schema We recommend seeking to obtain an explicit schema and ensuring
that you are notified before the schema changes. Looking at the database for the
schema definition is not sufficient to understand what is considered valid data
since validation efforts can be located in database triggers or stored procedures
outside of the schema definition.

Data usage Except for presenting the data directly without using any frame-
works for safely viewing the data or limiting the length, we found few practices
that directly affected the risk of data tampering.

Fault mitigations A good practice we found was having an internal whois doc-
umentation for whom to contact if unavailability, inconsistencies, or missing data
was detected in the data source. Relying on end-users to detect and report faults
of the data source may lead to both frustrated users and loss of income. Health
checks are one practice that can be used to detect downtime of a data source
automatically. For detecting possible tampered data, we found that one team cor-
relates the data they receive with another source. We argue that this must be done
as an integrated, automatic process for it not to become a burden to the system
operators.

6.3 Threats to Validity and Limitations

The scope of Data Protection Fortification is limited to focus on threats related
to data tampering, from the point of view of a data consumer. The method can
be adapted in future work to consider other threats than data tampering. Fur-
thermore, DPF does not ensure correct implementation of the security measures
elicitated, which could be done, for instance, by generating test cases. DPF has
been iteratively developed and tested on different kinds of data, where just one of
these included data from IoT devices. While this has shown the method’s viability
for different kinds of data sources, it should be further tested on IoT data.

Due to time constraints, the data monitoring system was not fully developed
nor evaluated in practice, and claims about achieving the desired properties (high
performance and throughput) of the proposed architecture can not be made.

Since we did not make audio recordings of interviews or focus group sessions,
we are likely to suffer from inaccuracy or incompleteness of data in the notes
from journaling. To mitigate this, both researchers participated in every meeting

1https://cwe.mitre.org/data/definitions/77.html

https://cwe.mitre.org/data/definitions/77.html


Chapter 6: Discussion 97

and held debriefs afterward to add more context and improve the notes. Further-
more, we do data triangulation by checking the findings with the source teams
to avoid false interpretations and inconsistencies. We discussed the results with
two supervisors to prevent researcher bias when analyzing and interpreting data.
We increased the reliability of the study by leaving an audit trail in terms of raw
data, field notes, researcher notes, and data analysis details, which we referenced
actively during the analysis.

Due to the gradually evolving nature of DPF, the evaluations done in the early
sessions may not reflect the current version of the method, and further studies
are needed to evaluate it properly. As described in Section 4.5.3, some discussion
questions have not been tested with participants. Furthermore, while the eval-
uations of DPF suggest that developers would be able to perform this method
on their own (without a security expert), we have only evaluated it in sessions
where the researchers were the facilitators. The participation of the researchers
may have influenced how the participants understood the questions asked during
the session.

When verbally evaluating DPF with participants, bias could be introduced as
the participants might have been inclined to give less negative responses as a
courtesy to the researchers. Furthermore, this kind of group evaluation can lead
to some participants dominating in giving the feedback and some participants
showing agreement implicitly through body language, which can lead to incon-
sistencies in the notes. These evaluations are also likely to be subject to response
bias, where differences in how the researcher asked the questions could affect the
answers received. Introducing the TAM-inspired evaluation in the two final DPF
sessions made it easier for us to collect opinions from every participant regarding
their attitude towards using DPF as a method. Though the results show that the
participants are positive towards using DPF, we still would require more evalu-
ations to give more credibility, as the results are not generalizable. Since these
evaluations were carried out anonymously, this could reduce courtesy bias. The
evaluations of DPF with security experts are limited by their short durations and
unstructured format.

We believe that by describing the context of the participating teams, the details
of the research process, and including different kinds of case teams, the results
from this study can be easier to generalize.

6.4 Lessons Learned

During this research project, we have learned how the scope of a research project
may change along the way as one gains more insight into the case one is research-
ing. As none of the authors have any previous experience conducting research of
this size, we also learned the methods that could support our research as the
project progressed. For example, TAM evaluations proved very helpful in structur-
ing the evaluation of the method we proposed, as opposed to only getting verbal
feedback which we did in the first sessions. Knowing such methods will also be



98 E. Gudmundsen & S. Kvamme: Data Protection Fortification

valuable for us in our professional careers as developers.
From collaborating with companies, we felt that there was indeed a need for

the research we were doing, and the general attitude towards performing the
method was positive. As we saw from conducting DPF with the development
teams, lots of tacit knowledge on security exists that could, with the correct tools,
be shared among the team members.



Chapter 7

Conclusion

Due to the many challenges of securing IoT devices, it is difficult to ensure that
data from these devices has not been tampered with by an adversary wanting
to influence decision-making based on this data. Systems consuming this data
must be designed with security measures to detect and prevent damage from data
tampering attacks. However, there is a lack of methods to aid practitioners in
understanding the risk in data.

Findings from the SLR on security testing of IoT that we did in our pre-study
show that security is less focused in the design stage and that monitoring data
sources is a potential way to improve security of IoT data. Based on these, we per-
formed an initial exploratory study on five teams in the collaborating company
to identify how and where to monitor data. We learned that there is an implicit
trust in the data from external sources used by these teams and that monitor-
ing the data sources is critical for detecting tampering. However, knowing what
to monitor and how to do it is essential before integrating monitoring systems
into an architecture. As a result, we developed a method named Data Protection
Fortification (DPF) to help practitioners evaluate these requirements.

Data Protection Fortification (DPF) is a data-centric threat modeling method
that aims to support development teams in evaluating if their handling of an ex-
ternal data source is secure and how to improve it. The method has also proved
practical in other contexts beyond data originating in IoT devices. We also give
recommendations to practitioners for secure handling of data sources and a con-
ceptual architecture for a data monitoring system for detecting attempts at tam-
pering with data.

Addressing security from a low-granularity data-oriented perspective showed
promise for acceptance among practitioners. Developers felt familiar with looking
at securing data fields and discussing their implications for use across various
system functions. Contrary to many other threat modeling methods, DPF shows
the potential not to require a security expert to facilitate the meeting. Applying
DPF in the design phase equips the development team with a structured method to
iron out possible assumptions about the data. Unless addressed, these assumptions
may introduce security challenges when implementing functions using the data.

99



100 E. Gudmundsen & S. Kvamme: Data Protection Fortification

Furthermore, DPF has the potential to become a future communication tool for
security between developers and stakeholders by helping to highlight where more
security efforts are needed. While DPF is not meant to be the only activity a team
does for security, it can be a good starting point.

In the future, one could extend DPF with a structured output, possibly bridg-
ing the existing gap between the design of security measures and implementation.
We also call for further research on developing data-centric threat modeling ap-
proaches for IoT and to build on the conceptual monitoring system to assess its
viability in detecting data tampering attacks.

Data Protection Fortification is currently being evaluated in a industrial project
in the context of a data provider.



Bibliography

[1] S. Chakrabarty and D. W. Engels, “A secure iot architecture for smart cities,”
in 2016 13th IEEE annual consumer communications & networking confer-
ence (CCNC), IEEE, 2016, pp. 812–813.

[2] T. Qiu, Z. Zhao, T. Zhang, C. Chen, and C. P. Chen, “Underwater internet of
things in smart ocean: System architecture and open issues,” IEEE Transac-
tions on Industrial Informatics, vol. 16, no. 7, pp. 4297–4307, 2019.

[3] J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, and G. Srivas-
tava, “Security aspects of internet of things aided smart grids: A bibliomet-
ric survey,” Internet of things, vol. 14, p. 100 111, 2021.

[4] Statista. “Number of internet of things (iot) connected devices worldwide
from 2019 to 2030, by vertical.” (Jun. 2022), [Online]. Available: https:
//www.statista.com/statistics/1194682/iot-connected-devices-
vertically/.

[5] D.-W. Huang, W. Liu, and J. Bi, “Data tampering attacks diagnosis in dy-
namic wireless sensor networks,” Computer Communications, vol. 172, pp. 84–
92, 2021.

[6] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov, S. Bhairav,
A. Shabtai, and Y. Elovici, “Security testbed for internet-of-things devices,”
IEEE transactions on reliability, vol. 68, no. 1, pp. 23–44, 2019.

[7] G. Sharma, S. Vidalis, N. Anand, C. Menon, and S. Kumar, “A survey on
layer-wise security attacks in iot: Attacks, countermeasures, and open-issues,”
Electronics, vol. 10, no. 19, p. 2365, 2021.

[8] H. T. Reda, A. Anwar, and A. Mahmood, “Comprehensive survey and tax-
onomies of false data injection attacks in smart grids: Attack models, tar-
gets, and impacts,” Renewable and Sustainable Energy Reviews, vol. 163,
p. 112 423, 2022.

[9] M. Souppaya and K. Scarfone, “Guide to data-centric system threat model-
ing,” National Institute of Standards and Technology, Tech. Rep., 2016.

[10] S. M. Kvamme and E. Gudmundsen, “On security testing of iot systems: A
systematic literature review,” Department of Computer Science, Norwegian
University of Science and Technology, Tech. Rep., 2021, Appendix E.

101

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/


102 E. Gudmundsen & S. Kvamme: Data Protection Fortification

[11] I. Shrestha and M. Hale, “Detecting dynamic security threats in multi-component
iot systems,” in Proceedings of the 52nd Hawaii International Conference on
System Sciences, 2019.

[12] IEEE, “Iso/iec/ieee international standard - systems and software engineering–
vocabulary,” ISO/IEC/IEEE 24765:2017(E), pp. 1–541, 2017. DOI: 10.1109/
IEEESTD.2017.8016712.

[13] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A taxonomy
of computer program security flaws,” ACM Comput. Surv., vol. 26, no. 3,
pp. 211–254, Sep. 1994, ISSN: 0360-0300. DOI: 10.1145/185403.185412.
[Online]. Available: https://doi.org/10.1145/185403.185412.

[14] NIST. “Vulnerabilities.” (Jun. 2022), [Online]. Available: https://nvd.
nist.gov/vuln.

[15] G. McGraw, “Software security,” IEEE Security Privacy, vol. 2, no. 2, pp. 80–
83, 2004. DOI: 10.1109/MSECP.2004.1281254.

[16] W. A. Jansen, T. Winograd, K. Scarfone, et al., “Guidelines on active content
and mobile code,” NIST Special Publication, vol. 800, p. 28, 2001.

[17] H. Ni, A. Chen, and N. Chen, “Some extensions on risk matrix approach,”
Safety Science, vol. 48, no. 10, pp. 1269–1278, 2010, ISSN: 0925-7535. DOI:
https://doi.org/10.1016/j.ssci.2010.04.005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925753510001049.

[18] NIST, “Minimum security requirements for federal information and infor-
mation systems,” 2006. DOI: 10.6028/NIST.FIPS.200.

[19] R. Bachmann and A. D. Brucker, “Developing secure software: A holistic ap-
proach to security testing,” Datenschutz und Datensicherheit (DuD), vol. 38,
pp. 257–261, 2014.

[20] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a basis for secu-
rity requirements,” in Symposium on requirements engineering for informa-
tion security (SREIS), Citeseer, vol. 2005, 2005, pp. 1–8.

[21] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons,
2014.

[22] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software sys-
tems: A systematic literature review,” Journal of Systems and Software, vol. 144,
pp. 275–294, 2018.

[23] K. H. Håkonsen and V. Ahmadi, “Threat analysis in agile,” Department of
Computer Science, Norwegian University of Science and Technology, Tech.
Rep., 2021.

[24] M. Souppaya and K. Scarfone. “Guide to data-centric system threat model-
ing (no. nist special publication (sp) 800-154 (draft),” National Institute
of Standards and Technology (NIST). (Mar. 2016), [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-154/draft.

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1145/185403.185412
https://doi.org/10.1145/185403.185412
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://doi.org/10.1109/MSECP.2004.1281254
https://doi.org/https://doi.org/10.1016/j.ssci.2010.04.005
https://www.sciencedirect.com/science/article/pii/S0925753510001049
https://doi.org/10.6028/NIST.FIPS.200
https://csrc.nist.gov/publications/detail/sp/800-154/draft


Bibliography 103

[25] OWASP. “Threat modelling process.” (Dec. 2021), [Online]. Available: https:
//owasp.org/www-community/Threat_Modeling_Process.

[26] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner,
“Security testing: A survey,” in Advances in Computers, vol. 101, Elsevier,
2016, pp. 1–51.

[27] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack. “Uncover security
design flaws using the stride approach.” (Jul. 2019), [Online]. Available:
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/
november/uncover-security-design-flaws-using-the-stride-approach.

[28] N. Messe, V. Chiprianov, N. Belloir, J. El-Hachem, R. Fleurquin, and S.
Sadou, “Asset-oriented threat modeling,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2020, pp. 491–501. DOI: 10.1109/TrustCom50675.2020.
00073.

[29] K. Bernsmed, D. S. Cruzes, M. G. Jaatun, and M. Iovan, “Adopting threat
modelling in agile software development projects,” Journal of Systems and
Software, vol. 183, p. 111 090, 2022.

[30] M. Csikszentmihalyi and M. Csikzentmihaly, Flow: The psychology of opti-
mal experience. Harper & Row New York, 1990, vol. 1990.

[31] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player enjoy-
ment in games,” Computers in Entertainment (CIE), vol. 3, no. 3, pp. 3–3,
2005.

[32] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new soft-
ware security "game",” IEEE Security & Privacy, vol. 8, no. 3, pp. 14–20,
2010.

[33] SINTEF. “Protection poker.” (), [Online]. Available: https://www.sintef.
no/en/digital/sos-agile-blog/protection-poker/.

[34] L. Williams, M. Gegick, and A. Meneely, “Protection poker: Structuring soft-
ware security risk assessment and knowledge transfer,” in Engineering Se-
cure Software and Systems, F. Massacci, S. T. Redwine, and N. Zannone,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 122–134,
ISBN: 978-3-642-00199-4.

[35] C. S. R. C. ( NIST. “Glossary.” (Mar. 2022), [Online]. Available: https:
//csrc.nist.gov/glossary.

[36] Y. Wang, E. Kjerstad, and B. Belisario, “A dynamic analysis security testing
infrastructure for internet of things,” in 2020 Sixth International Conference
on Mobile And Secure Services (MobiSecServ), IEEE, 2020, pp. 1–6.

[37] Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel, “Attack
surface modeling and assessment for penetration testing of iot system de-
signs,” in 2018 21st Euromicro Conference on Digital System Design (DSD),
IEEE, 2018, pp. 177–181.

https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://doi.org/10.1109/TrustCom50675.2020.00073
https://doi.org/10.1109/TrustCom50675.2020.00073
https://www.sintef.no/en/digital/sos-agile-blog/protection-poker/
https://www.sintef.no/en/digital/sos-agile-blog/protection-poker/
https://csrc.nist.gov/glossary
https://csrc.nist.gov/glossary


104 E. Gudmundsen & S. Kvamme: Data Protection Fortification

[38] S. Karagiannis, M. Manso, E. Magkos, L. L. Ribeiro, and L. Campos, “Au-
tomated and on-demand cybersecurity certification,” in 2021 IEEE Inter-
national Conference on Cyber Security and Resilience (CSR), IEEE, 2021,
pp. 174–179.

[39] M. Pucher, C. Kudera, and G. Merzdovnik, “Avrs: Emulating avr microcon-
trollers for reverse engineering and security testing,” in Proceedings of the
15th International Conference on Availability, Reliability and Security, 2020,
pp. 1–10.

[40] J. Vijtiuk, L. Perkov, and A. Krog, “Bug detection in embedded environ-
ments by fuzzing and symbolic execution,” in 2020 43rd International Con-
vention on Information, Communication and Electronic Technology (MIPRO),
IEEE, 2020, pp. 1218–1223.

[41] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou, “EcoFuzz: Adap-
tive Energy-Saving greybox fuzzing as a variant of the adversarial Multi-
Armed bandit,” in 29th USENIX Security Symposium (USENIX Security 20),
USENIX Association, Aug. 2020, pp. 2307–2324, ISBN: 978-1-939133-17-5.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/yue.

[42] J. Men, G. Xu, Z. Han, Z. Sun, X. Zhou, W. Lian, and X. Cheng, “Finding
sands in the eyes: Vulnerabilities discovery in iot with eufuzzer on human
machine interface,” IEEE Access, vol. 7, pp. 103 751–103 759, 2019.

[43] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emu-
lation,” in 28th USENIX Security Symposium USENIX Security 19), 2019,
pp. 1099–1114.

[44] P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, “Hybrid firmware anal-
ysis for known mobile and iot security vulnerabilities,” in 2020 50th An-
nual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), IEEE, 2020, pp. 373–384.

[45] S. Marksteiner, R. Ramler, and H. Sochor, “Integrating threat modeling and
automated test case generation into industrialized software security test-
ing,” in Proceedings of the Third Central European Cybersecurity Conference,
2019, pp. 1–3.

[46] M. Bettayeb, O. A. Waraga, M. A. Talib, Q. Nasir, and O. Einea, “Iot testbed
security: Smart socket and smart thermostat,” in 2019 IEEE Conference on
Application, Information and Network Security (AINS), IEEE, 2019, pp. 18–
23.

[47] A. Liu, A. Alqazzaz, H. Ming, and B. Dharmalingam, “Iotverif: Automatic
verification of ssl/tls certificate for iot applications,” IEEE Access, 2019.

https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity20/presentation/yue


Bibliography 105

[48] R. Cayre, V. Nicomette, G. Auriol, E. Alata, M. Kaaniche, and G. Marconato,
“Mirage: Towards a metasploit-like framework for iot,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE), 2019,
pp. 261–270. DOI: 10.1109/ISSRE.2019.00034.

[49] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1237–1254.

[50] T. Zitta, M. Neruda, L. Vojtech, M. Matejkova, M. Jehlicka, L. Hach, and
J. Moravec, “Penetration testing of intrusion detection and prevention sys-
tem in low-performance embedded iot device,” in 2018 18th International
Conference on Mechatronics-Mechatronika (ME), IEEE, 2018, pp. 1–5.

[51] R. Ankele, S. Marksteiner, K. Nahrgang, and H. Vallant, “Requirements
and recommendations for iot/iiot models to automate security assurance
through threat modelling, security analysis and penetration testing,” in Pro-
ceedings of the 14th International Conference on Availability, Reliability and
Security, ser. ARES ’19, Canterbury, CA, United Kingdom: Association for
Computing Machinery, 2019, ISBN: 9781450371643. [Online]. Available:
https://doi.org/10.1145/3339252.3341482.

[52] C. M. Coman, G. D’amico, A. V. Coman, and A. Florescu, “Techniques to im-
prove reliability in an iot architecture framework for intelligent products,”
IEEE Access, vol. 9, pp. 56 940–56 954, 2021.

[53] T. W. Tseng, C. T. Wu, and F. Lai, “Threat analysis for wearable health devices
and environment monitoring internet of things integration system,” IEEE
Access, vol. 7, pp. 144 983–144 994, 2019.

[54] M. Ren, X. Ren, H. Feng, J. Ming, and Y. Lei, “Z-fuzzer: Device-agnostic
fuzzing of zigbee protocol implementation,” in Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, 2021,
pp. 347–358.

[55] P. Johannesson and E. Perjons, An introduction to design science. Springer,
2014, vol. 10.

[56] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design
science research methodology for information systems research,” Journal
of management information systems, vol. 24, no. 3, pp. 45–77, 2007.

[57] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical action
research,” Information systems journal, vol. 14, no. 1, pp. 65–86, 2004.

[58] F. D. Davis, “A technology acceptance model for empirically testing new
end-user information systems: Theory and results,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1985.

[59] M. Chuttur, “Overview of the technology acceptance model: Origins, devel-
opments and future directions,” 2009.

https://doi.org/10.1109/ISSRE.2019.00034
https://doi.org/10.1145/3339252.3341482


106 E. Gudmundsen & S. Kvamme: Data Protection Fortification

[60] C. Robson and K. McCartan, Real world research: a resource for users of social
research methods in applied settings. Wiley, 2016.

[61] OWASP. “Cheat sheet series.” (Jan. 2021), [Online]. Available: https://
cheatsheetseries.owasp.org/.

[62] B. J. Oates, Researching Information Systems and Computing. Sage, 2006.

[63] M. Chronopoulos, E. Panaousis, and J. Grossklags, “An options approach
to cybersecurity investment,” IEEE Access, vol. 6, pp. 12 175–12 186, 2017.

[64] P. Ow. “Making decisions under uncertainty and risk.” (Apr. 2022), [On-
line]. Available: https://practicalrisktraining.com/making-decisions-
under-uncertainty-and-risk.

[65] J. Winkler and R. Moser, “Biases in future-oriented delphi studies: A cog-
nitive perspective,” Technological forecasting and social change, vol. 105,
pp. 63–76, 2016.

[66] M. Richards, Software architecture patterns. O’Reilly Media, Incorporated
1005 Gravenstein Highway North, Sebastopol, CA . . ., 2015, vol. 4.

[67] D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tøndel, “Challenges
and experiences with applying microsoft threat modeling in agile develop-
ment projects,” in 2018 25th Australasian Software Engineering Conference
(ASWEC), IEEE, 2018, pp. 111–120.

[68] M. Abi-Antoun and J. M. Barnes, “Analyzing security architectures,” in Pro-
ceedings of the IEEE/ACM international conference on Automated software
engineering, 2010, pp. 3–12.

[69] J. Espenschied and A. Gunn, “Threat genomics,” Metricon 7.0. Bellevue, WA,
2012.

https://cheatsheetseries.owasp.org/
https://cheatsheetseries.owasp.org/
https://practicalrisktraining.com/making-decisions-under-uncertainty-and-risk
https://practicalrisktraining.com/making-decisions-under-uncertainty-and-risk


Appendix A

DPF Cheat Sheet

107



Data Protection Fortification 
Cheat Sheet 

# 1 – Data Source: General Discussion 
 

Q01 - What describes the data we get from this data source?  

Related questions: What does this data source contain?  

Examples: Weather data, gas prices, scooter info, customer reviews  

Focus: Common understanding of data source 

 

Q02 - Who/What provides this data source?  

Related questions: What is the name of the provider?  

Examples: Data supplier, yr.no, internal team, student, company-owned sensors  

Focus: Common understanding of data source, trust level  

 

Q03 - How do you receive the data?  

Related questions: Where in the target system is data imported?  

Examples: Fetching data from API, importing from a database, receiving directly from device, form 

input posted to backend  

Focus: Entry point, data flow  

 

Q04 - How is the data from this data source used in your services or products now, or will be in the 

future?  

Related questions: How can users use the data directly or indirectly?  

Examples: Used in decision-making, machine learning model, aggregated and shown in dashboard, 

presented directly to end user 

Focus: Attack surface, exit point, data flow 

 

Q05 - Who are the end-users for this data?  

Examples: Internal analysts, maintenance, customers, customer support, users of an application, 

management  

108 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Focus: Common understanding of data source 

 

Q06 - How often is data received from this data source?  

Related questions: Is the data cached, and if so, for how long?  

Examples: The data is downloaded by a CRON-job every night, pulled from the device every 5 min, 

fetched when a user triggers a service (e.g., clicks to view details)  

Focus: Common understanding of data source  

 

Q07 - What is the volume of the data received?  

Examples: Batches of 100 million rows, 15 data fields, 10 kilobytes  

Focus: Common understanding of data source  

 

Q08 - Do you have an explicit schema or API-contract for data coming from this data source? 

Related questions: Could the values be “anything”?  

Examples: Swagger-API, System documentation Focus: Integrity, Common understanding of data 

source  

 

Q09 - How is the data coming from this data source generated?  

Related questions: Is it known who puts the data into this data source?  

Examples: Human input through a webpage form, IoT device, system generated  

Focus: Threat actors, attack surface, entry point, trust in data 

 

#2 Data Source: Security Implications 
 

Q10 - How is data secured during transit?  

Examples: HTTPS, hash/MAC/digital signature verification  

Focus: Confidentiality, integrity, non-repudiation 

 

Q11 - Does any protections exist on the device to prevent physical tampering?  

Related questions: Can you detect physical tampering?  

Examples: Behind locked doors, requires a special key to open the device, hardened physical design, 

the device has an alarm, monitoring  

Chapter A: DPF Cheat Sheet 109



Focus: Integrity 

 

Q12 - Who has access to change the connection URL used to connect with the data source?  

Related questions: Where is this access URL stored? Is a change to this access URL logged?  

Examples: environment variable in Azure, configuration in database  

Focus: Authenticity, availability 

 

Q13 - How sensitive is the data in this data source?  

Examples: Person Identifiable Information (PII), information about business opportunities/tenders, 

data that could affect stock prices, data that could affect decision-making processes 

Focus: Data sensitivity, confidentiality 

 

Q14 - What could an attacker be interested in influencing through this data source?  

Examples: Analyst decisions, planned maintenance, conceal information or impact repudiation, 

company damage  

Focus: Misuse cases, threat actor goals 

 

Q15 - What could the consequences be if the data source was no longer available or parts of the 

data were missing? 

Related questions: Are there certain times where the consequence would be greater?  

Examples: The service provided is rendered useless, users are denied access to a digital voting 

platform (but access to this platform is only critical during the days where voting is open)  

Focus: Availability, integrity 

 

Q16 - Who are the possible threat actors for this data source?  

Examples: Other nations, market competitors, disloyal employees or ex-employees, terrorists, script 

kids  

Focus: Threat actors 

 

Q17 - Would you discover if the data from this data source is incorrect, or if the data source is 

unavailable?  

Related questions: How would you report unavailability or inconsistencies to the suppliers of this data 

source? 

110 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Examples: Service availability monitoring (health checks), users would discover unavailability or 

inconsistencies and report back to the team  

Focus: Fault mitigation 

 

 

Chapter A: DPF Cheat Sheet 111





Appendix B

DPF Preparation Meeting Guide

113



Forberedelsesmøte til  

Data Protection Fortification 
 

Om Teamet  

Antall teammedlemmer?  

Hvilke roller finnes i teamet?  

Praktiseres det smidig metodikk? 

Sprint planning? (Planning Poker?) 

 

Hvor lenge har teamet eksistert?  

Hvilket behov dekker teamet? 

Rollen i organisasjonen? 

 

 

Om Datakildene   

Hvilke systemer har dere?  

Hvilke forskjellige datakilder bruker 

dette systemet?  

 

Hva beskriver dataen vi får fra 

denne datakilden? 

 

 

Hvor blir dataen brukt i produktene 

deres?  

 

Hvem tilbyr datakilden?   

Hvem benytter seg av 

dataproduktet dere leverer? 

 

Hvordan deler dere dataen med de 

som skal bruke den? 

 

Hvilke attributter har 

dataobjektene fra denne kilden? 

Hvilke funksjoner påvirker 

attributtet?  

 

Hva kan konsekvensene være 

dersom dataen som kommer inn er 

feil?  

 

Hvor stor kunnskap har teamet om 

detaljene i datakildene? Hvor mye 

kan de om kilden?   

 

 

114 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Appendix C

DPF Data Extraction Form

115



Data Extraction  

Data Protection Fortification 

 

Meta data 

Date  

Number of 

participants 

 

Distribution of 

roles participating 

 

 

 

1 - Discuss Data Source 

General Questions 

Examples Data source in focus  

Weather, prices, customer 
reviews 

What describes the data we 

get from this data source? 

 

 

What is the name of the 

provider? External to 

company? 

Who/What provides this data 

source? 
 

Fetching from API? 

Importing from database? 
How do you receive the data?  

Used in processing, 

aggregated, presented 

directly to end user, used 
in machine learning 

How is the data from this data 

source used in your services or 

products now, or will be in the 

future? 

 

Internal analysts, 

customers, customer 
support 

 

Who are the end-users for this 

data? 
 

Fetched when user triggers 

a service (clicks to view 

details about an order), 

data is downloaded by a 
CRON-job every night 

How often is data received 

from this data source? 
 

 What is the volume of the data 

received? 
 

Could the values be 

“anything”? 
Do you have an explicit 

schema or API-contract for 
 

116 E. Gudmundsen & S. Kvamme: Data Protection Fortification



data coming from this data 

source?  

Is it known who puts the 

data into this data source? 
How is the data coming from 

this data source generated? 

 

Questions for Security Implications 

HTTPS, hash/MAC/digital 

signature verification 
How is data secured during 

transit? 

 

Behind locked doors, 

requires a special key to 
open the device, hardened 

physical design, the device 
has an alarm, monitoring 

Does any protections exist on 

the device to prevent physical 

tampering? 

 

environment variable in 

Azure, configuration in 

database 

Who has access to change the 

access URL used to connect 

with the data source? 

Where is this access URL 

stored? Is a change to this 

access URL logged? 

 

Person Identifiable 

Information (PII), concerns 

business opportunities, 

data that could affect 

stock prices, data that 

could affect decision 
making processes 

How sensitive is the data in 

this data source? 

 

Analyst decisions, planned 

maintenance, conceal 
information or impact 

repudiation, company 
damage 

What could an attacker be 

interested in influencing 

through this data source? 

 

The service provided is 

rendered useless, users are 

denied access to a digital 

voting platform (but 

access to this platform is 

only critical during the 
days where voting is open) 

What could the consequences 

be if the data source was no 

longer available, or parts of 

the data was missing? 

Are there certain times where 

the consequence would be 

greater? 

 

Other nations, market 

competitors,disloyal 

employees or ex-

employees, terrorists, 

script kids 
  

 

 

 

Who are the possible threat 

actors for this data source? 
 

Chapter C: DPF Data Extraction Form 117



Service availability 

monitoring (health 

checks). Users would 
discover unavailability or 

inconsistencies and report 
back to us 

Would you discover if the data 

from this data source is 

incorrect, or if the data source 

is unavailable? 

 

How would you report 

unavailability or 

inconsistencies to the suppliers 

of this data source? 

 

 Other  

 

2 - Prioritization of Data Fields 

Estimate Value 
Max value  

Min value  

Remaining values 

 

General discussion  

Estimate Likelihood of Tampered Values 
Max value  

Min value  

Remaining values 

 

General discussion  

Prioritization Matrix 

118 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Does the result 

shown in the matrix 

make sense? 

 

Should it be 

rearranged? 

 

 

3 – Identify Security Measures 

Evaluate security measures 

discussion 

 

Is the current handling of the 

data source sufficient? 

In what ways can we fortify the 

security of handling the data 

source?  

Examples:  

Validation (type-checking? 

min/max values? min/max 

length?) 

Monitoring (anomaly detection, 

correlation, auditing) 

Other measures that can 

decrease the risk? 

 

 

 

Evaluation of Session 

Feedback from practitioners 

 

How did you feel like the session 

went? 

 

 

Chapter C: DPF Data Extraction Form 119



 

120 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Appendix D

NSD Notification Form

121



02.06.2022, 15:16 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/61e8793e-df6f-4870-92b4-c102fe0fed00 1/5

Meldeskjema
Referansenummer

447600

Hvilke personopplysninger skal du behandle?

Bakgrunnsopplysninger som vil kunne identifisere en person

Beskriv hvilke bakgrunnsopplysninger du skal behandle

Position in workplace, years of experience 

Prosjektinformasjon

Prosjekttittel

Improving security practices in agile development teams 

Prosjektbeskrivelse

Investigate the current state of security practices at a Norwegian-based energy company. What
security testing activities are they doing? Find areas can security testing practices be improved or
introduced. Given the large amount of data generated by their systems, how can one detect
security issues at scale? How do they verify the integrity of the data today? 

By interviewing different project roles we can gain insight into the different perceptions different
roles may have about the security activities they are doing. The data collected from the
interviews help us gain an understanding on the current state of practices, which can be used for
finding areas of improvement. 

Begrunn behovet for å behandle personopplysningene

To correlate work experience with perception of security we need to collect the minimum
required personal data needed for this. We also need to gather consent form participants. 

Ekstern finansiering

Type prosjekt

122 E. Gudmundsen & S. Kvamme: Data Protection Fortification



02.06.2022, 15:16 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/61e8793e-df6f-4870-92b4-c102fe0fed00 2/5

Studentprosjekt, masterstudium

Kontaktinformasjon, student

Sigrid Marita Kvamme, sigrimk@stud.ntnu.no, tlf: 

Behandlingsansvar

Behandlingsansvarlig institusjon

Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og
elektroteknikk (IE) / Institutt for datateknologi og informatikk

Prosjektansvarlig (vitenskapelig ansatt/veileder eller stipendiat)

Daniela Soares Cruzes, daniela.s.cruzes@ntnu.no, tlf: 94249891

Skal behandlingsansvaret deles med andre institusjoner (felles behandlingsansvarlige)?

Nei

Utvalg 1

Beskriv utvalget

Developers in a development team 

Rekruttering eller trekking av utvalget

The sample will be recruited through conversation with the employees working in relevant teams
in the company. 

Alder

20 - 65

Inngår det voksne (18 år +) i utvalget som ikke kan samtykke selv?

Nei

Personopplysninger for utvalg 1

Bakgrunnsopplysninger som vil kunne identifisere en person

Hvordan samler du inn data fra utvalg 1?

Gruppeintervju

Chapter D: NSD Notification Form 123



02.06.2022, 15:16 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/61e8793e-df6f-4870-92b4-c102fe0fed00 3/5

Grunnlag for å behandle alminnelige kategorier av personopplysninger

Samtykke (art. 6 nr. 1 bokstav a)

Gruppeintervju

Grunnlag for å behandle alminnelige kategorier av personopplysninger

Samtykke (art. 6 nr. 1 bokstav a)

Informasjon for utvalg 1

Informerer du utvalget om behandlingen av opplysningene?

Ja

Hvordan?

Skriftlig informasjon (papir eller elektronisk)

Tredjepersoner

Skal du behandle personopplysninger om tredjepersoner?

Nei

Dokumentasjon

Hvordan dokumenteres samtykkene?

Elektronisk (e-post, e-skjema, digital signatur)

Hvordan kan samtykket trekkes tilbake?

By contacting the researchers using the contact information given on the consent form. 

Hvordan kan de registrerte få innsyn, rettet eller slettet opplysninger om seg selv?

The subjects can get access to all content they have provided through interviews, by contacting
the researchers. More technically, we will share the related folder with read-only access to the
subject.  

Requests to correct or delete personal data will be followed up by processing all relevant
documents, and correcting the study's results. This can be requested at any time during the
project duration. 

124 E. Gudmundsen & S. Kvamme: Data Protection Fortification



02.06.2022, 15:16 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/61e8793e-df6f-4870-92b4-c102fe0fed00 4/5

Totalt antall registrerte i prosjektet

1-99

Tillatelser

Skal du innhente følgende godkjenninger eller tillatelser for prosjektet?

Behandling

Hvor behandles opplysningene?

Ekstern tjeneste eller nettverk (databehandler)

Hvem behandler/har tilgang til opplysningene?

Student (studentprosjekt)
Databehandler
Prosjektansvarlig

Hvilken databehandler har tilgang til opplysningene?

Microsoft Office 365. The project leader will not have access to the voice recordings. 

Tilgjengeliggjøres opplysningene utenfor EU/EØS til en tredjestat eller internasjonal
organisasjon?

Nei

Sikkerhet

Oppbevares personopplysningene atskilt fra øvrige data (koblingsnøkkel)?

Ja

Hvilke tekniske og fysiske tiltak sikrer personopplysningene?

Opplysningene anonymiseres fortløpende
Opplysningene krypteres under forsendelse
Adgangsbegrensning
Flerfaktorautentisering
Endringslogg

Chapter D: NSD Notification Form 125



02.06.2022, 15:16 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/61e8793e-df6f-4870-92b4-c102fe0fed00 5/5

Varighet

Prosjektperiode

14.02.2022 - 30.11.2022

Skal data med personopplysninger oppbevares utover prosjektperioden?

Nei, alle data slettes innen prosjektslutt

Vil de registrerte kunne identifiseres (direkte eller indirekte) i oppgave/avhandling/øvrige
publikasjoner fra prosjektet?

Nei

Tilleggsopplysninger

126 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Appendix E

On Security Testing of IoT
Systems: A Systematic Literature
Review

127



On Security Testing of IoT Systems

A Systematic Literature Review

Sigrid Marita Kvamme

Espen Gudmundsen

Autumn 2021

Supervisor: Daniela Soares Cruzes

Co-supervisor: Tosin Daniel Oyetoyan

128 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Secure Software Development Life-Cycle . . . . . . . . . . . . . . . . . 3
2.2 DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Approaches and techniques for Security Testing . . . . . . . . . . . . 5

2.3.1 Model-based Security Testing . . . . . . . . . . . . . . . . . . . 6
2.3.2 Code-based Security Testing and Static Analysis . . . . . . . . 6
2.3.3 Penetration Testing and Dynamic Analysis . . . . . . . . . . . 6
2.3.4 Testbeds for IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Data Sources and Search Strategy . . . . . . . . . . . . . . . . . . . . . 10
3.3 Inclusion and Exclusion Criteria . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Quality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Study Selection Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Data Extraction and Data Synthesis . . . . . . . . . . . . . . . . . . . . 14

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 RQ1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 RQ1.1 Categorizing . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 RQ1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 RQ1.3 Generating . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4 RQ1.4 Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 RQ1.5 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 RQ2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 RQ3 Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 RQ3.1 Ease of adoption to agile teams . . . . . . . . . . . . . 30
4.3.2 RQ3.2 Prioritization of test cases . . . . . . . . . . . . . . . . . 31
4.3.3 RQ3.3 Scoping of test areas . . . . . . . . . . . . . . . . . . . . 31

i

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 129



Contents ii

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 RQ1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 RQ1.1 Categorizing . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 RQ1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.3 RQ1.3 Generating . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.4 RQ1.4 Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.5 RQ1.5 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 RQ2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 RQ3 Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 RQ3.1 Ease of adoption to agile teams . . . . . . . . . . . . . 39
5.3.2 RQ3.2 Prioritization of test cases . . . . . . . . . . . . . . . . . 40
5.3.3 RQ3.3 Scoping of test areas . . . . . . . . . . . . . . . . . . . . 40

5.4 Implications for Research . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Implications for Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

130 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Figures

2.1 The DevOps Life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Study selection process for the study . . . . . . . . . . . . . . . . . . . 14

4.1 Selected papers distributed by publication year . . . . . . . . . . . . . 16
4.2 Overview of the required skills needed to perform the approach . . 23
4.3 Types of report file outputs from each approach . . . . . . . . . . . . 25
4.4 Degree of automation of the approaches . . . . . . . . . . . . . . . . . 28
4.5 Expertise needed to make full use of the approach . . . . . . . . . . . 29
4.6 Maturity of the tools presented in the approaches . . . . . . . . . . . 30

iii

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 131



Tables

2.1 Security activities in development phases . . . . . . . . . . . . . . . . 4

3.1 Final Search Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Inclusion and exclusion criteria . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Filtering steps in study selection process . . . . . . . . . . . . . . . . . 14
3.5 Data extraction fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Overview of the selected papers . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Each paper mapped to a type of security testing approach . . . . . . 18
4.3 Each paper mapped to a development phase . . . . . . . . . . . . . . 19
4.4 Explanation of categories for preparations needed . . . . . . . . . . . 20
4.5 Explanation of the level of preparation needed . . . . . . . . . . . . . 20
4.6 Preparations needed for each approach . . . . . . . . . . . . . . . . . . 21
4.7 Explanation of expertise roles . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 The output from each approach . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Output target audience for approaches . . . . . . . . . . . . . . . . . . 26
4.10 Explanation of levels of automation . . . . . . . . . . . . . . . . . . . . 28
4.11 Explanation of levels of tool maturity used for ease of adoption . . . 29

iv

132 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Acronyms

CD Continuous Deployment. 34, 38, 41

CI Continous Integration. 30, 34, 38, 41

CVE Common Vulnerabilities and Exposures. 19, 27, 30, 31, 33, 39, 40

DAST Dynamic Application Security Testing. 6, 22

GDPR General Data Protection Regulaion. 30

IIoT Industrial IoT. 4

IoT Internet of Things. 1, 2, 7, 10, 14, 18, 20, 25, 30, 32–35, 38–41, 43

MBST Model-based Security Testing. 6, 18, 33

ML Machine Learning. 18, 25, 27, 31, 33, 39, 41

SAST Static Application Security Testing. 4, 6, 33, 34, 41

SDLC Software Development Life-Cycle. 3

SLR Systematic Literature Review. 2, 8, 9, 12, 13

SSDLC Secure Software Development Life-Cycle. 3, 34

SUT System Under Test. 5

v

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 133



Glossary

asset Some data or component of a system that has to be protected, and is as-
sociated with one or more security properties that has to hold [1], e.g. a
database that should not be leaked. vi

bug Causes a program to crash or behave unexpectedly. May become a vulnerab-
ility if it’s exploitable. 23, 37

exploit A concrete malicious input that makes use of a vulnerability in the system
to violate a security property of an asset [1]. vi

risk Likelihood of an unwanted incident, and its consequence for a specific asset
[1]. The risk is proportional to the likelihood of an incident occurring and
the value of the asset. 23, 37

vulnerability A verified security fault in the system. Either a security mechanism
is missing, or is implemented in a faulty way [1]. 23, 37

vi

134 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 1

Introduction

The Internet of Things (IoT) has in recent years gained a lot of traction. It is rap-
idly being introduced in many different fields such as agriculture, city life, health
care, smart homes and manufacturing. The benefits it can give are attractive for
many industries, especially for cutting costs and increasing efficiency by reducing
manual labor.

Appliance in industry range from industrial power grids [2] to monitoring
the use of football fields [3] to lengthen the life span of the grass mats. Another
appliance of IoT includes monitoring of water levels in sewers [4] to warn against
flooding, allowing precautions to be taken in time before any harm is done.

There are many medical uses as well, both in the context of personal health
and professional health care. Smartwatches can monitor heart rate and report
steps taken throughout the day for personal interest. Safety alarms used in health
care, may trigger an emergency response when a patient has fallen down, which
for many elderly could indicate life threatening circumstances. There are also
sensors for diabetics that monitor glucose levels in the blood, and automatically
triggers an alarm when it gets too low or too high.

The usages of IoT are many, and by consequence, so are the misuse cases.
Attacks are only multiplying with time, with an 100% increase in attacks against
IoT devices in only the first half of 2021 [5]. A recent ransomware attack that
shut down a fuel pipeline in the U.S. in 2021 [6] exemplifies the need for an in-
creased push for cybersecurity standards and regulations. In May 2021, the Biden
government of the USA issued an executive order on improving cybersecurity [7].

With the striking increase in attacks targeting IoT recently, research into meth-
ods for ensuring securing mechanisms and integrity of devices are highly relevant.
Though testing of IoT poses a wide range of challenges, such as tightly coupled
hardware and software [8], we believe that synthesizing current knowledge on ap-
proaches used for security testing will guide practitioners in adopting techniques
or tools fit for their systems and expertise.

1

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 135



Chapter 1: Introduction 2

To the best of our knowledge, this is the first systematic literature on the secur-
ity testing of IoT systems. The main contributions of this paper are the following:

• A review of the state-of-the-art security testing approaches for IoT.
• An assessment of the degree of automation in the approaches, and their

ease of adoption to guide practitioners.
• Recommendations for practitioners wanting to adopt security testing for

their IoT systems.
• Possible directions for future research, based on existing literature.

The rest of the SLR is organized as follows. Chapter 2 gives an introduction to
the concepts and fields relevant for this thesis and the related work. In Chapter 3
we describe the research protocol and steps taken for the SLR. The result are
presented in Chapter 4, with a discussion of the findings in Chapter 5. Finally, we
conclude the SLR in Chapter 6.

This SLR is part of a contribution on how to perform security testing of IoT in
an agile setting. This paper will synthesize current knowledge in the field, provid-
ing guidance for our future work. The contributions of this paper will be further
expanded on when building a prototype of a tool to support security testing.

136 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 2

Background and Related Work

In this chapter we explain concepts that are relevant for this SLR.

2.1 Secure Software Development Life-Cycle

The Secure Software Development Life-Cycle (SSDLC) encompasses integrating
security as part of all the development phases defined in the Software Develop-
ment Life-Cycle (SDLC). The SDLC phases usually include, Analysis, Design, De-
velopment, Deployment and Monitoring [1]. The SSDLC guide development teams
into a "shift-left" in security, by proposing security activities in all of these phases.
This places the responsibility for security onto the developers, not as an after-
thought performed when the software is ready for production. To quote the clas-
sic paper of McGraw [9] on Software Security; "There is no such thing as magic
crypto fairy dust: we need to focus on software security from the ground up."

Bachmann and Brucker [10] reports security best practices recommended for
practitioners during different phases of development. Though these recommend-
ations are meant for security activities in general and not for testing, the develop-
ment phases presented are a good fit also for this study. In contrast to the phases
usually included in SDLC, we believe it is easier for practitioners to familiarize
and distinct the phases described in [10]. Table 2.1 attempts to highlight these
similarities of the two, including examples of security activities commonly found
in the phases.

3

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 137



Chapter 2: Background and Related Work 4

Table 2.1: Development phases presented by Bachmann and Brucker [10] and
the phases usually found in Software Development Life-Cycle (SDLC)

Bachmann and Brucker SDLC Security Activity Ex.

During Planning and Design Analysis Threat Modelling

Design

During Application Development Development SAST

Deployment

Executable in a Test Environment Fuzz Testing

System Operation and Maintenance Monitoring Regression Testing

2.2 DevOps

DevOps is an acronym combining the two practices (software) developers and op-
erations [11]. In practice, it seeks to integrate these two practices through the use
of automation and monitoring tools during both development and deployment,
as well as close collaboration between them. This allows organizations to deliver
value faster and in a continuous manner [12]. DevOps encompass various devel-
opment phases, as shown in Figure 2.1. In this study, we hope to identify security
techniques or tools that may be adopted to agile development, where applicability
to the development phases of DevOps is of particular relevance, enabling what is
often referred to as "DevSecOps" [13]. Also relevant to this is the work of Mon-
salve et al. [11], who show the importance and relevance of adopting DevOps to
develop solutions for Industry 4.0 (Industrial IoT).

138 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 2: Background and Related Work 5

Figure 2.1: 6 phases are represented in the "DevOps Life-cycle" [14]. The devel-
opment phases to the left are related to development teams, while the phases on
the right side are for operation teams. The phases are encircled with the principle
of close collaboration and communication.

Source: Atlassian: What is DevOps? [14]

2.3 Approaches and techniques for Security Testing

Many approaches exist for performing security testing of software, and a good
overview of different types is presented by Felderer et al. [1], which we describe
briefly in the following subsections. When testing IoT, other approaches also exist,
such as setting up a testbed that is based on dynamic analysis/penetration test-
ing or a hybrid approach. In security testing, one often differentiates approaches
based on how much information the tester has about the System Under Test (SUT).

Black-box Testing

In black-box testing, the tester tests the system from the outside, in a setup com-
parable to the setup an actual attacker would have. This means that the tester
only has basic or no information about the system, and only interacts with the
system through public interfaces [1, 15].

Gray-box Testing

In gray-box testing, the tester has access to a limited information about the system,
which could be knowledge of the target network or the number of hosts [15].

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 139



Chapter 2: Background and Related Work 6

White-box Testing

In white-box testing, the tester has access to detailed information about the sys-
tem, such as the source code, network architecture, or other development artifacts
[1, 15]. This helps guide developers to locate the vulnerable code.

2.3.1 Model-based Security Testing

Model-based Security Testing (MBST) use requirements and models of the sys-
tem (or its environment), that have been created during the analysis or design
phase, as input when performing the testing. The input artifact is a model, and
not the actual system under test. Generating security tests for MBST is based on
different types on input models: architectural and functional models (security re-
quirements and their implementation), threat, fault and risk models (causes and
consequences of system failures, weaknesses or vulnerabilities), and vulnerability
models (describe weaknesses or vulnerabilities). Risk-based Security Testing is a
variant of MBST, where the approach is based on a risk model, such as a threat
model, and it explicitly considers the risks when performing the phases of the test
process. [1].

2.3.2 Code-based Security Testing and Static Analysis

Code-based security testing and static analysis bases itself on the source code and
byte code generated during development. This includes manual code reviews and
static code analysis, also called Static Application Security Testing (SAST). Sym-
bolic execution is a form of static code analysis. This form of testing is important,
as it can catch vulnerabilities at an early stage of development, where fixing them
is still cheap [1, 16]. This is considered a white-box approach. In this category,
the authors in [1] only consider approaches that don’t require an executable test
system, but hybrid approaches, such as concolic testing, do exist.

2.3.3 Penetration Testing and Dynamic Analysis

Penetration testing and dynamic analysis encompasses all testing done on running
systems, either in a test or a production environment. It is commonly a combina-
tion of manual testing and using automated tools, such as vulnerability scanners
[1]. Since it requires a running, functioning, system, it usually is performed very
late in the development cycle. Dynamic Application Security Testing (DAST) fall
under this category. Penetration testing is often considered as a black-box ap-
proach, but white-box and gray-box versions are also possible.

Fuzzing

Fuzzing is a popular and effective automated software testing method for de-
tecting vulnerabilities in software [17], that is based on the idea of feeding ran-
dom data to a program until it crashes. A common challenge in fuzzing is how to

140 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 2: Background and Related Work 7

make it more efficient for finding potential vulnerabilities, and so many kinds of
fuzzing exist today. Approaches include random fuzzing, mutation-based fuzzing,
generation-based fuzzing and advanced fuzzing techniques that combine different
kinds of fuzzing [1]. Performing fuzzing generally requires a significant amount
of resources, both in form of powerful (often dedicated) hardware, and time, as
most approaches generate hundreds or often thousands of test cases that all needs
to be checked.

Concolic Testing

Concolic testing the term for a hybrid approach where symbolic execution is com-
bined with dynamic testing. For example combining symbolic execution with a
fuzzing approach [1].

2.3.4 Testbeds for IoT

Testbeds for IoT is not a testing technique per se, but are used to monitor the beha-
vior of a device during security testing in a controlled environment. In addition to
the device(s) under test, supporting software and hardware are usually added to
allow fine-grained capturing of traffic from the device, or to perform the security
testing itself. The use of shielded rooms, which protects the devices from hazards
or frequency disturbances, is often used to better control the environment.

2.4 Related work

Cortéz et al. [18] gathers testing approaches found in 79 studies on testing of IoT,
in order to answer what types of testing is most commonly found in the IoT field.
Relevant to this study, Cortéz et al. finds that "Performance" testing is the most
adopted testing type (performed in 27.37% of studies), while "Security" testing
was only performed in 5 of the 79 studies included. "Security testing ... [is] an
essential type of test for IoT applications" [18], leaving a question for the reader
as to why it is rarely reported in the IoT field. In the context of our study, we will
complement the study of [18] with a focus on literature relevant to the field of
security testing, and perhaps spark an increased interest in this research area.

Macedo et al. identified security challenges of IoT in a systematic literature
review [19], synthesizing issues reported in 131 studies on security in IoT. In a
systematic review by Lu et al. [20], the authors propose a taxonomy for cyber-
attacks targeting IoT, as well as an assessment of current research trends for IoT.
The latest security trends for IoT reported in [20] include "Cloud-service security",
"5G" and "Quality of Service-Based Design". Though these studies do not target se-
curity testing specifically, they both echo the need of applying security holistically,
also including the low-end capacity devices often found in IoT.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 141



Chapter 3

Research Methodology

In this chapter we describe the research methodology for this Systematic Liter-
ature Review (SLR), which we conducted according to Kitchenham’s guidelines
[21]. According to the guidelines, an SLR consists of three phases: planning, con-
ducting, and reporting the review. In this chapter we describe our the research
questions and review protocol (which includes a search strategy, inclusion and
exclusion criteria, and quality criteria), which were created as a part of the plan-
ning phase. We also describe our study selection process, development of a data
extraction form, and strategy for synthesizing the results, which were done as a
part of the conducting phase.

3.1 Research Questions

The purpose of this study is to gain insight into security testing for IoT by system-
atically studying approaches in literature, in order to guide practitioners wanting
to adopt security testing when developing IoT systems. The research questions for
this SLR are the following:

• RQ1 Approaches: What are the approaches for security testing in IoT?

◦ RQ1.1 Categorizing: What are the characteristics of the identified se-
curity testing approaches?
◦ RQ1.2 Application: At what level in the development process are the

approaches applicable?
◦ RQ1.3 Generating: What is needed to generate test cases and prepare

the approach?
◦ RQ1.4 Executing: What skills, methods or tools are required to per-

form the approach?
◦ RQ1.5 Reporting: How are the results of the approach reported?

• RQ2 Automation: To what degree can the approaches be automated?
• RQ3 Adoption: What is the ease of adoption of the approaches found?

◦ RQ3.1 How easily adoptable are the approaches to agile teams?

8

142 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 3: Research Methodology 9

◦ RQ3.2 To what extent does the approaches support prioritization of
test cases?
◦ RQ3.3 To what degree does the approaches support scoping of test

areas?

We used Tuma et al.’s SLR [22] as inspiration for structuring of the research
questions, and for the wording of RQ1 and RQ3. In the rest of this section, we
give background for each research question.

RQ1 Approaches: What are the approaches for security testing in IoT?

We have organized RQ1 into five inquires to describe the approaches found.
Categorizing (RQ1.1). This question will help us characterize what kind of

security testing approaches are described in literature, which allows us to get an
overview of the field.

Application (RQ1.2). Knowing when the approaches can be used in the de-
velopment process can be helpful for practitioners to understand where in their
workflow the approach will fit in, and also for researchers to identify gaps in re-
search.

Generating (RQ1.3). This question looks at at what is needed to prepare the
approach, and what is needed as input to generate the test cases. If this is well-
defined, it is easier for practitioners to judge whether they have what is required
to use an approach.

Executing (RQ1.4). This question looks at who the target audience for the ap-
proach is, and the methods and tools used to perform it. The target audience refers
to the ones who has the skills necessary to perform the tests, which could be e.g.
developers, security experts, or test engineers. Less skills required could indicate
that the approach is easier to adopt.

Reporting (RQ1.5). This question looks at what the approach gives as output
(e.g., risks, bugs), and how the results from each approach are reported (e.g.,
pdf, csv, plain text). Who can make use of and understand the results, are also of
interest. Knowing what output the approach gives is important for practitioners
in determining whether or not it will be useful in their case.

RQ2 Automation: To what degree can the approaches be automated?

Here we are interested in to what degree the approaches are already automated,
from test generation and test execution, to reporting of results, and their potential
to become automated. Approaches that gives its results in a structured form (e.g.
csv, json) are easier to feed into other systems for futher processing, and thus
decrease the amount of manual work. Obstacles to automate steps reported in
literature are also of interest.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 143



Chapter 3: Research Methodology 10

RQ3 Adoption: What is the ease of adoption of the approaches found?

How easily adoptable an approach is depends on many factors, including how
much preparation the approach needs, how expensive it is to set up, if you need
experts to setup or use it, if the approach scales well, on tool support, and on
documentation and guidelines available. Tool availability is a good indicator of
technique maturity [22], and tools that are either open source or commercialized
are easier to make use of than prototypes. Approaches that are easier to adopt
while still providing useful results, could be low-hanging fruits for teams to in-
crease the security of their IoT system without too much effort. Answering this
question could also uncover approaches that are harder to implement, but also
could increase the security of the product significantly, and thus could be a worth-
while investment.

RQ3.1. Agile teams, adopting frameworks like Scrum or DevOps, value small
product increments and less up-front planning, and are less process-oriented than
traditional "waterfall" teams. Thus, approaches that can be integrated into their
existing workflow without adding too much complexity or takes too much time
to perform, will be easier to adopt than approaches that do not fit into the agile
way of working. Approaches that can be automated, that for instance promote
transparency between teams, are therefore good candidates, especially for DevOps
that we describe in Section 2.2.

RQ3.2. Prioritizing test cases in some way could make it easier for practitioners
to achieve "good enough" security, and increase efficiency of running tests which
makes it possible to run them more frequently, and thus detect issues quicker.

RQ3.3. The scope of testing refers to what part of the system the approach
tests, which could be the entire system or just particular modules. This can be
useful information for practitioners when deciding on what approaches they need
to include to cover the areas they need to test.

3.2 Data Sources and Search Strategy

Databases

Scopus and Web of Science databases were used in this study. Initially, ACM Digital
Library and IEEE were also considered, but due to limitations of both libraries in
search features and export functionality, these were excluded. We believe that the
papers found in Scopus and Web of Science is still representative to the current
state of research in the area of security testing for IoT, as papers are often shared
in multiple libraries.

Preliminary Searches

A number of preliminary searches were performed in order to find promising pa-
pers based on title and abstract and also to refine the keywords used in searches.
The promising papers were used as matching criteria for future searches, to verify

144 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 3: Research Methodology 11

that the search also would include these. Various combinations of keywords such
as "testing" were attempted during this phase. As a result, the final search string
includes many synonyms for "testing", such as "verification", "assurance" or "as-
sessment". It was also found that many interesting papers do not actually mention
"security" in their title or abstract, but are often more specific as to what type of
security testing is performed (e.g., "fuzzing"). To limit the possibility of filtering
out such papers too early, it was decided to search for testing in general, and then
manually verify if they relate to security in a later step.

Search String

The search strings used for both Scopus and Web of Science are presented in
Table 3.1. Scopus supports additional "LIMIT-TO" metadata filters, which help nar-
row down the search results. For this study these were used to directly apply some
of the inclusion criteria to the search results. The filters includes "subject area",
where "computer science" is the only relevant, "document type" must be "article"
or "conference proceedings", and the "language" must be "English".

Table 3.1: Final Search Strings

Source Search string

Web of Science TS=("software" AND ("testing" OR "tests" OR "assurance"
OR "verif*") AND ("iot" OR "iiot" OR "internet of things"
OR "industry 4.0"))

Scopus TITLE-ABS( "software" AND ( "testing" OR "tests" OR "as-
surance" OR "verif*" ) AND ( "iot" OR "iiot" OR "internet
of things" OR "industry 4.0" ) ) AND ( LIMIT-TO ( SUB-
JAREA,"COMP" ) ) AND ( LIMIT-TO ( DOCTYPE,"cp" )
OR LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( LAN-
GUAGE,"English" ) )

3.3 Inclusion and Exclusion Criteria

Table 3.2 lists our inclusion and exclusion criteria. We found that it did not make
a substantial difference in number of search results if only including papers after
2015 and later, so we did not include a criteria for this. We found that a significant
amount of search results focused on topics outside of our research field. For this
reason, we included 2 more exclusion criteria (EC4, EC5).

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 145



Chapter 3: Research Methodology 12

Table 3.2: Inclusion and exclusion criteria

Inclusion criteria

IC1 The main focus of the article must be on security testing
of Internet of Things (IoT).

IC2 The article must be written in English.

IC3 The article is not a summary, blog post, report, or chapter
in a book.

IC4 The article is published in either a journal or a conference
proceedings.

IC5 The full version of the article must be available through
institutional access or provided for free.

Exclusion criteria

EC1 IoT is only mentioned as an example.

EC2 Testing is only mentioned as an example.

EC3 The article is shorter than 5 pages.

EC4 Papers on remote attestation, secure updates, networks,
and similar.

EC5 Papers outside the field of computer science

3.4 Quality Criteria

Table 3.4 presents the quality criteria used in this study. According to Kitchenham
[21], there is no agreed definition of study "quality". In this study, quality criteria
are presented in a checklist consisting of "quality items" [21]. They are used to
weigh the relevance of a particular study based on its study design [21], and
in turn strengthen the validity of the study and minimize bias. Applying quality
criteria is done for each paper in the last part of this study’s study selection process,
presented in Section 3.5.

For applying the quality criteria, we echo the method used in the SLR of
Macedo et al. [19], where each criterion is answered using one of the options
on the measurement scale, no, yes, or partially. Allowing for "partially" is import-
ant to support nuances, since giving a straight yes/no answer might be misleading
for some papers. Upon summarizing the total score of a paper, each quality cri-
teria answer is given points: 0.0 points for "no" answers, 0.5 points for "partially"
answers, and 1.0 points for "yes" answers. This allows for a numerical assessment
of quality, where a paper should only be included if the score is equal to or above
4.0 points (of 6.0 available), as shown in Equation (3.1). This corresponds to at
least 66% of the available points, similar to the threshold used in [19]. We em-
phasize that studies that do not meet our quality criteria are not poor papers, but
failed to meet the quality requirements which are based on the research questions

146 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 3: Research Methodology 13

of this study.

QC1 +QC2 + . . .+QC6 >= 4.0 (3.1)

Table 3.3: Quality criteria

Quality criteria

QC1 Is the aim of the research and context well described?

QC2 Is the research design prepared sufficiently?

QC3 Is the approach for testing described sufficiently?

QC4 Does the approach seem feasible to implement?

QC5 Does the results support the ideas of the paper?

QC6 Does the paper discuss limitations or validity?

3.5 Study Selection Steps

An illustration of our study selection steps is shown in Figure 3.1. This illustration
was inspired by Tuma et al.’s SLR [22]. The first step in this process was to perform
searches in the selected digital libraries. The search for papers was performed
in September 2021 using the search strings listed in Table 3.1. This resulted in
1126 results in Scopus, and 661 result in Web of Science which were exported to
comma-separated files (CSV). These files were then imported into Zotero [23],
a reference manager software. Zotero automatically identifies duplicates (based
on title, DOI, and ISBN), but manual effort was needed in order to merge the
duplicates. During merging, only the versions found in Web of Science were se-
lected, after verifying that the duplicates were in fact duplicates. Selecting Web
of Science versions was a matter of convenience of fewer click interactions per
merge. Both Scopus and Web of Science had included the most relevant metadata
from the references (title, abstract, authors and keywords). 452 duplicates were
removed in the first filtering step.

In the second filtering step, inclusion/exclusion criteria were applied to 1335
papers by reading through the abstract and title of each paper. In this process,
we labeled the papers in Zotero with OK for inclusion, and NOT_RELEVANT for
exclusion. If the paper was excluded, a reason was given using either (or both) of
the labels "_NO_TEST_FOCUS" or "_NO_IOT_FOCUS". This work was split equally
between the two researchers, and a third label "_NOT_SURE" was used for papers
that required further discussion. As the total number of pages were missing from
the metadata of most papers, the exclusion criteria (EC3) was applied in a later
step where the full text was available. 1222 papers were excluded in this step.

In the third filtering step, both researchers worked collaboratively on labeling
the papers with SECURITY based on the type of testing reported in the paper. In
cases where it was unclear, the full paper text was used to determine if the paper

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 147



Chapter 3: Research Methodology 14

was relevant for security testing or not. 2 supervisors assessed the labeling, and
both included, and excluded a few papers previously marked as security related.
This led to 81 papers being excluded in this step, most of which did not have
security testing in focus.

In the final filtering step, the full text of each of the 31 papers remaining was
evaluated using quality criteria. This was done simultaneously as data extraction
in order to better justify the points given to each criterion. This work was split
equally between the researchers, and cross-checked by the other researcher sim-
ultaneously as the data extraction form was checked. In this step, the exclusion
criteria (EC3) was also applied. The final list of papers used in this study is 21,
where 10 of the studies either failed the quality criteria or were too short to be
included.

Figure 3.1: Study selection process used in this study.

Table 3.4: An explanation of each filtering step in the study selection process.

Filtering steps

Filtering 1 Removing duplicates

Filtering 2 Apply inclusion / exclusion criteria to title and abstract
of papers

Filtering 3 Based on keywords, title and abstract, include only pa-
pers with focus on security testing of IoT

Filtering 4 Apply quality criteria to full paper

3.6 Data Extraction and Data Synthesis

Table 3.5 shows the relevant information extracted from each paper in order to
answer the research questions. In total we did the data extraction on 31 papers,
after which we excluded 10 due to applying more exclusion criteria and quality
criteria. P11 failed EC3 due to being too short, but a decision was made to still
include it due to its relevance to the research questions. The other papers that
were too short, also failed the quality criteria, so no exception were made for
these.

148 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 3: Research Methodology 15

Table 3.5: Relevant information extracted from the papers in order to answer the
research questions

Data Extraction Fields

RQ1 Approach for security testing, abstraction level of ap-
proach, preparations needed, method for generation of
test cases, methods and tools used for performing ap-
proach, target audience, output, output report format,
target audience for output.

RQ2 Degree of automation, comments of possibilities for auto-
mation.

RQ3 Approach tool maturity, expertise needed for entirety of
approach, configuration needed, comments on scalability,
comments on relevance for agile, scope of testing, prior-
itization of tests.

After data extraction, we did the data synthesis on 21 papers, which are in-
cluded in the results.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 149



Chapter 4

Results

This chapter contains the results of our findings for answering the research ques-
tions proposed in Section 3.1. In total we included 21 papers from 2018 to 2021.
Table 4.1 shows an overview of the papers. Figure 4.1 shows the distribution of
publication years, and we note that since it can take time to get a paper published,
the distribution does not necessarily indicate a decrease in research in 2021.

Figure 4.1: Publication years of selected papers.

16

150 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 17

Table 4.1: Overview of the selected papers

Code Title Authors Approach for security testing

P01 A Dynamic Analysis Security Testing Infrastructure
for Internet of Things

Wang et al. [24] DAST using network capturing methods

P02 Attack Surface Modeling and Assessment for Penet-
ration Testing of IoT System Designs

Mahmoodi et al. [25] Penetration testing and attack-surface
modelling

P03 Automated and on-demand cybersecurity certifica-
tion

Karagiannis et al. [26] Automated security audits to certify com-
ponents

P04 AVRS: Emulating AVR microcontrollers for reverse
engineering and security testing

Pucher et al. [27] Fuzzing of AVR firmware

P05 Bug detection in embedded environments by fuzz-
ing and symbolic execution

Vijtiuk et al. [28] Symbolic execution and fuzzing of soft-
ware

P06 Detecting Dynamic Security Threats in Multi-
Component IoT Systems

Shrestha et al. [29] Multi-component threat analysis using
audit hooks

P07 EcoFuzz: Adaptive energy-saving greybox fuzzing
as a variant of the adversarial multi-armed bandit

Yue et al. [17] Coverage-based gray-box fuzzing

P08 Finding Sands in the Eyes: Vulnerabilities Discovery
in IoT with EUFuzzer on Human Machine Interface

Jiaping et al. [30] Black-box mutation-based fuzzing

P09 FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation

Zheng et al. [31] Coverage-based gray-box fuzzing

P10 Hybrid Firmware Analysis for Known Mobile and
IoT Security Vulnerabilities

Sun et al. [32] Binary code similarity analysis

P11 Integrating Threat Modeling and Automated Test
Case Generation into Industrialized Software Se-
curity Testing

Marksteiner et al. [33] Automated security testing through risk-
analysis-enchanched threat modelling

P12 IoT Testbed Security: Smart Socket and Smart Ther-
mostat

Bettayeb et al. [34] Easy-to-setup testbed for security assess-
ment

P13 Iotverif: Automatic Verification of SSL/TLS Certific-
ate for IoT Applications

Liu et al.[35] Constructing model from runtime com-
munication and and checking it for vul-
nerabilities

P14 Mirage: towards a Metasploit-like framework for
IoT

Cayre et al. [36] Framework for security audits and pen-
etration testing

P15 P2IM: Scalable and hardware-independent firm-
ware testing via automatic peripheral interface
modeling

Feng et al. [37] Fuzzing with randomized input of micro-
controller firmware

P16 Penetration Testing of Intrusion Detection and Pre-
vention System in Low-Performance Embedded IoT
Device

Zitta et al. [38] Penetration testing

P17 Requirements and Recommendations for IoT/IIoT
Models to automate Security Assurance through
Threat Modelling, Security Analysis and Penetra-
tion Testing

Ankele et al. [15] Using metadata from common diagrams
and models to automate security assur-
ance

P18 Security Testbed for Internet-of-Things Devices Siboni et al. [39] Generic testbed performing standard
and advanced security tests

P19 Techniques to Improve Reliability in an IoT Archi-
tecture Framework for Intelligent Products

Coman et al. [40] Securing code and device at many layers

P20 Threat Analysis for Wearable Health Devices and
Environment Monitoring Internet of Things Integ-
ration System

Tseng et al. [41] Threat modelling and penetration test-
ing

P21 Z-Fuzzer: Device-agnostic fuzzing of Zigbee pro-
tocol implementation

Ren et al. [42] Improved grammar-based fuzzing
through coverage heuristics

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 151



Chapter 4: Results 18

4.1 RQ1 Approaches

4.1.1 RQ1.1 Categorizing

Table 4.2 shows the approaches found, categorized by the testing approaches de-
scribed in Section 2.1. A large portion of our selected papers were on fuzzing, so
to emphasize that, we separated those from the rest of the papers in the penetra-
tion testing and dynamic analysis category. We based the categorization (unless
explicitly mentioned in the paper) on the tools used to perform the approach. For
instance, the use of tools for network analysis, indicates that this approach uses
dynamic analysis. We found no papers that focused on code-based testing and
static analysis.

P10 can be categorized as concolic testing, as it is a hybrid approach for doing
binary code similarity analysis, combining both static and dynamic approaches,
where the dynamic part employs fuzzing to generate different input sets. However
uncertainty exists, since the authors do not mention it themselves.

P12 and P18 employ a variety of penetration testing and dynamic analysis
techniques in their testbed setups.

P17 could not be mapped, as it is a high level approach discussing the require-
ments for metadata in diagrams, with the aim of enabling automation of security
assurance.

P19 employs many approaches for securing IoT, including automatic penet-
ration tests. The other approaches mentioned in P19, could not be mapped to
our categories, as they cover measures like embedded code protection, physical
hardening, cryptographic acceleration, monitoring for vulnerabilities and regu-
larly updating dependencies.

Table 4.2: Each paper mapped to a type of approach.

Black-box Grey-box White-box

Model-based Security Testing (3) P02, P11,
P20

Code-based Testing and
Static Analysis (0)

Penetration Testing and
Dynamic Analysis (7)

P01, P13,
P14, P16,
P19

P03, P06

Fuzzing (8) P04, P08,
P10

P05, P07,
P09, P15

P21

Testbed (2) P12, P18

We found 5 papers that use Machine Learning (ML) to further enhance cap-
abilities in their security testing approaches. Some papers use ML for the purpose
of analyzing suspicious behavior during monitoring, using various collected data,

152 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 19

such as method input-parameters (P06) or network traffic (P18, P19). In P10,
deep neural networks is used to automatically assess vulnerabilities in firmware
binaries based on previously reported CVE’s. P07 uses a variant of the adversarial
multi-armed bandit algorithm for optimizing the coverage-based grey-box fuzzing
strategy used in AFL [43], reportedly improving its path-coverage by 214% with
32% less test case generations required.

4.1.2 RQ1.2 Application

Table 4.3 distributes the approaches found during data extraction to each of the
development phases described in Section 2.3. The table shows that the majority of
approaches should be applied when the developed system is in a test environment.
We found no papers that could be applied during application development.

Table 4.3: Each paper mapped to a development phase.

During Planning and Design (3) P02, P11, P17

During Application Development (0) None

Executable in a Test Environment (17) P01, P03, P04, P05, P07, P08, P09,
P10, P12, P13, P14, P15, P16, P18,
P19, P20, P21

System Operation and Maintenance (1) P06

4.1.3 RQ1.3 Generating

In this section we present our findings for answering what is required in order
to start using the approaches. Three categories were identified to generalize the
actual preparations needed. In Table 4.4, we detail the categories identified with
examples. To highlight that some approaches has high demands in certain pre-
paration categories, we found it necessary to include a "level" of preparations to
assign each category. The levels used are described in Table 4.5. The examples in
each level are used as a reference for determining the preparation level of each
approach. In Table 4.6, each approach is given a score based on the sum of prepar-
ation level scores from each category. Lower scores indicate that less preparation is
needed for the approach. From the results in Table 4.6, we found that approaches
that were applicable during the planning and design phase need a high amount
of upfront information (P02, P11, P17).

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 153



Chapter 4: Results 20

Table 4.4: Explanation of categories for preparations needed.

Category Description Example

Hardware Physical computer devices re-
quired to support the testing
of an IoT device

Computer with 500GB SSD
storage, NVIDIA GTX1080
graphics card, WiFi-router

Software Installation of packages, oper-
ating systems or programs re-
quired for execution

Ubuntu 18.0, KaliLinux, Py-
thon 3.0

Information Input to the testing approach
is required

A valid HTTP-request, model
of the system in a specific
XML-format, configuration of
input parameters

Table 4.5: Levels of required preparation with examples of preparations needed
in each level. Cases are marked with - if it was difficult to identify preparations
needed, or it was not applicable.

Level Hardware Software Information Score

None No preparations required 0

Low 1 device 1 software
installation

1-4 data fields in
1 document

1

Medium 2 devices 2-5 software
installations

5-10 data fields
in 1 document

2

High 3+ devices 6+ software
installations

10+ data fields
in 2+ documents

3

154 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 21

Table 4.6: Preparations score needed for each approach. A lower score means
less preparations are needed. 0-3 is Low, 4-6 is Medium, 7-9 is High. The score
for each paper has been calculated according to Table 4.5. Approaches where
preparations needed is not applicable or could not be placed, are marked with -.
We found that approaches that were applicable during the planning and design
phase need a high amount of upfront information.

.

Code Hardware Software Information Result (Score)

P04 Low Low None Low (2)

P07 Low Low Low Low (3)

P08 Low Medium None Low (3)

P09 Low Low Low Low (3)

P10 Low Low Low Low (3)

P15 Low Low Low Low (3)

P17 None None High Low (3)

P02 Low None High Medium (4)

P05 Low Medium Low Medium (4)

P06 Low None High Medium (4)

P14 Medium Low Low Medium (4)

P21 Low Low Medium Medium (4)

P11 Low Low High Medium (5)

P16 Medium Medium Low Medium (5)

P01 High Medium Low Medium (6)

P12 High Medium Low Medium (6)

P03 Medium Medium High High (7)

P13 Medium High Medium High (7)

P18 High High Low High (7)

P20 Medium Medium High High (7)

P19 - - - -

4.1.4 RQ1.4 Executing

Figure 4.2 shows the skills needed to set up and perform the approaches. The
skills needed to understand the output from the approaches is considered in Sec-
tion 4.1.5. Due to a lack of time, we do not detail the methods and tools found in
the approaches, even though this was interesting to answer the research question.

How we separate the role of a Security Expert and Developer is shown in Table 4.7.
Some papers require both security expertise and developer skills to fully make use
of the approach or output, and have been categorized as Security trained developer.
This categorization is based on the work of Tuma et al. [22], where a Security

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 155



Chapter 4: Results 22

trained engineer (re-phrased to "Security trained developer" in this study), is con-
sidered to "possess an active knowledge of security related concepts" [22], but not
as extensive knowledge as a security expert.

Table 4.7: Explanation of expertise roles.

Role Description Example

Security Expert Expert knowledge in secur-
ity threats and vulnerability
analysis.

Assess vulnerabilities
found, understand how
insecure code can be
exploited

Developer Expertise in code devel-
opment and basic system
operations skills (server
setup, networking).

Set up a computer with
Kali Linux and enable ARP
spoofing on local network.
Create test cases using Py-
thon. Provide code-fixes for
vulnerabilities found.

Security Trained
Developer

A combination of developer
skills and expert knowledge
on security is needed.

Integrate a DAST tool, and
assess which modules are
most likely to include po-
tential security vulnerabilit-
ies to guide tool usage.

We can see from Figure 4.2 that 50% of the approaches are possible to be per-
formed by a normal developer who does not have any particular security know-
ledge. 20% of the approaches require a security expert, an 30% require developer
skills in combination with some security know-how.

The recommendations found in P17 may be used by System Architects to in-
clude data into system models that enables automation of threat modeling or
future security activities.

156 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 23

Figure 4.2: Overview of the required skills needed to perform the approach (not
including analyzing the output)

4.1.5 RQ1.5 Reporting

Table 4.8 shows the outputs from each approach, which come in the form of bugs,
risks and vulnerabilities. From this we can see that fuzzing approaches mainly
output bugs.

Figure 4.3 shows each paper mapped to the type of report file output that
it gives. We classify output that has to be parsed in order to be used further in
systems (e.g. pdf, html, txt, pcap), as unstructured output. And we classify output
that is codified and can be directly input into another system (e.g. json, csv, xml) as
structured output. Papers where the approach output is not mentioned explicitely,
are marked as such.

From Figure 4.3, we can see that 57% of the papers don’t mention what kind
of file output the approach uses to report the results. 14% outputs the results in
a structured format, 19% in unstructured formats, and 10% use both structured
and unstructured file outputs.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 157



Chapter 4: Results 24

Table 4.8: The output from each approach

Code Bugs Risks Vulnerabilities

P01 •
P02 •
P03 • •
P04 •
P05 •
P06 •
P07 •
P08 •
P09 •
P10 •
P11 •
P12 • •
P13 •
P14 • •
P15 •
P16 •
P17

P18 • •
P19 • •
P20 • •
P21 • •

Table 4.9 shows the target audience(s) for the output of each approach. In
addition to the definitions of a Developer and Security Expert given in Table 4.7,
we explain the terms Test Engineer and Compliance here. A Test Engineer is con-
cerned with the execution and generation of manual test cases, verifying that the
product works according to its specifications. Approaches that are useful for Com-
pliance are intended for regulators performing auditing, by supporting the process
of verifying that a device under test is behaving according to its specifications.

The output from P02 is intended to be used by System Architects or System
Designers during planning or design phases. The System Architect role was omit-
ted from the table to reduce cluttering, as this was only relevant for one paper in
the output.

P05 mentions that the output is often crashes, not vulnerabilities. While only
developer expertise is needed to perform the approach, security expertise is needed
to check if a crash is exploitable.

P06 reports its result as audits sent to a centralized service. This output may be

158 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 25

Figure 4.3: Types of report file outputs from each approach.

used internally for training ML models. Though we categorized its target audience
as Developer and Security Expert, external systems may also be the target audience
of this approach.

P10 outputs vulnerable functions in the IoT firmware, that has been linked
linked to CVEs.

P16 does not give a common report, as the approach use several different
penetration testing tools where all of which give different outputs.

P18 presents the most details of the output from their testbed, than any other
included paper. All the tools provided by the test bed generates reports in different
file formats. In addition, the Orchestrating Machine presented, combines all the
reports from the tools into one single report to present to the user in the format
that they request, where they mention that PDF is one of them.

P20 provides a strategy for combining security testing tools. The results from
the approach can help guide test engineers in creating new test cases.

P21 returns call stack traces for each memory crash, which the authors use to
manually analyze the affected functions in the source. The authors also say that
the output includes the test case which triggered the crash.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 159



Chapter 4: Results 26

Table 4.9: Output target audience for approaches.

Code Developer Security Expert Test Engineer Compliance

P01 • •
P02

P03 • •
P04 • •
P05 • • •
P06 • •
P07 • • •
P08 • • •
P09 • • •
P10 • •
P11 • •
P12 • •
P13 • •
P14 • •
P15 • •
P16 •
P17

P18 • • •
P19 •
P20 • • •
P21 • •

4.2 RQ2 Automation

Figure 4.4 shows an overview over the degree of automation in the approaches
for security testing that the papers present. We describe how we define each of
the categories Manual, Partly automated and Automated in Table 4.10.

P05 presents 8 open source fuzzers, and 1 symbolic execution tool, which are
all automated tools.

P06 is an example of a partly automated approach. It uses audit hooks to
gather data for analysis, and while the analysis of the data is fully automated,
acquiring the datasets of "normal" behavior is partly automated as you have to
orchestrate the data collection yourself. Developers have to manually insert audit
hooks into the code where they want to collect data from, and calibrate the system
by gathering new datasets every time these change.

P11 is also partly automated, as they manually do threat modelling, and manu-

160 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 27

ally creates test cases based on this, but the execution of the tests is automated.
This paper mentions that it has the potential to automate the test case generation
based on CVEs, since the output of the threat modeling is XML.

P14 is a partly automated approach, that is a Metasploit-like security audit
framework specifically for IoT. Creating the test scenarios is a manual process,
as one uses the framework to first to evaluate the attack surface. Attacks can be
constructed by chaining together different modules, so for example, one could run
an entire Man-in-the-Middle attack in an automated manner, once it has been set
up (some existing attacks are included in the framework). However the reporting
and analysis of results to determine if the device is vulnerable, is still a manual
process.

P17 presents an approach to automate security assurance by enriching com-
monly used diagrams and models from the software development process, with
metadata that security testing tools require as input. In this way, one does not
have to create a detailed threat model (if it does not already exist), which many
earlier approaches for automation require. This paper also mentions that not all
the steps of security tests can be automated, and that these will still require ex-
perienced security auditors and cryptographers to perform.

P18 is a partly automated approach, in the form of a testbed that can run
both standard security tests (e.g. spoofing attacks, vulnerability scan, fuzzing)
using off-the-shelf tools, and advanced security tests (e.g. using ML algorithms to
identify device type and detect suspicious behavior, test resilience to DoS-attacks,
test password complexity). Most of the standard tests appears to be able to be run
in an automated manner, while a few of the advanced tests might require some
manual steps during the testing process (e.g. physically interfere with device), and
if no clear pass/fail of a test can be determined, it supports manual analysis. The
authors mention as future work that they want to further automate the testing
process.

P19 is an example of an automated approach, where the penetration tests
(provided by a commercial service [44]) performed were fully automated. They
set up Gitlab CI for the project, to automatically test and build new software ver-
sions.

P21 is another automated approach, in the shape of a grammar-based fuzzer
for Zigbee protocol implementations, where each test case is executed at runtime
in a simulator.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 161



Chapter 4: Results 28

Table 4.10: Explanation of levels of automation

Level Description Examples

Manual Fully manual job Generating the test cases and ex-
ecuting the tests is a manual job.

Partly automated Some manual
effort required

Generating test cases is manual, but
executing them is automatic.

At some point during test exe-
cution, a human is required to
advance the test.

Automated Minimal manual
effort required

The entire test generation and test
execution is automatically done, all
the way up to the final report being
generated and shown to the user, or
its output is automatically fed into
another process.

Figure 4.4: Degree of automation of the approaches.

4.3 RQ3 Adoption

Figure 4.5 show the expertise needed to perform the approach as a whole, which
includes the skills needed to perform the approach, as well as fully understanding
the output. From Figure 4.5, a Developer could perform 24% of the approaches,
14% of the approaches requires a Security Expert, while 62% could be done by a

162 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 29

Security Trained Developer. It is worth noting that a Security Trained Developer is
able to perform the approaches requiring a Developer, which gives a total of 86%
of the approaches that could be performed by a Security Trained Developer.

Figure 4.5: Expertise needed to make full use of the approach, including steps to
perform it, and understanding the results.

Figure 4.6 shows the an overview of the maturity of the tools presented in the
approaches. Table 4.11 describes how we categorized the levels of maturity of the
tools presented in the approaches.

As show in Figure 4.6, we found that 60% of the tools presented in the ap-
proaches are available as open-source tools. 35% of the approaches were not avail-
able, and are only presented as prototypes, and 1 paper intended to make the tools
in the approach available as a service to in the future. We did not categorize P11,
as the paper contained too little information about their setup to determine cor-
rectly.

Table 4.11: Explanation of levels of tool maturity used for ease of adoption

Level Description

Prototype The tool(s) presented in the approach is described, but not
available. It may or may not be based on open-source tools.

Open source The tool(s) are available for open-source use and modification.

Proprietary The tool(s) are available as a commercial software (or planned
as so) that can be licensed to users.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 163



Chapter 4: Results 30

Figure 4.6: Maturity of the tools presented in the approaches.

4.3.1 RQ3.1 Ease of adoption to agile teams

To answer RQ3.1 How easily adoptable are the approaches to agile teams? we found
only a few approaches relevant to the Monitoring and Deployment phases of De-
vOps, as described in Section 2.2. In fact, only one paper (P06) explicitly mention
its relevance to agile development. In the following subsections, we elaborate on
approaches that could provide beneficial during deployment or monitoring of IoT
systems.

Deployment

The "cyber-security certification process" described in P03 may be used during
service deployment to ensure the service is "compliant" by running vulnerability
detection and compliance checking using rulesets derived from CVE databases
and GDPR rule sets. Custom rulesets can also be defined using XML. Integrated
into the Continous Integration (CI) pipeline, P19 fully automates its penetration
testing efforts to ensure reliability of software prior to releasing new versions.

Monitoring

For continuous auditing, P03 and P06 both rely on sending data to a centralized
logging service. While P03 audits installed packages, program versions and cur-
rently running services on the devices, P06 audits parameters sent to methods
inside the running system. Both approaches contributes to the integrity of the
running services and transparency for the development teams.

164 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 4: Results 31

4.3.2 RQ3.2 Prioritization of test cases

We found only a few papers in data extraction that prioritize test cases in some
way, or use specifications, guidelines or vulnerability databases in order to guide
test case generation.

P03 use the Common Vulnerability Scoring System (CVSS), Common Vulner-
abilities and Exposures (CVE)s, and GDPR rules to come up with test cases.

P11 uses a threat model to generate test cases, and use attack patterns from
publicly available catalogs like CVE.

P18 uses OWASP vulnerabilities to create test cases.
P20 uses STRIDE for threat identification, and DREAD for calculating the risks

to prioritize test cases.
P21 is a fuzzing tool that stores "favored" test cases, which are test cases that

lead to an increase in code coverage, and then prioritize these when choosing the
next test case to mutate.

4.3.3 RQ3.3 Scoping of test areas

We found that the majority of approaches do not mention any scoping of test
areas, and have no strategy beyond attempting to test all code statements. The
fuzz testing approaches found are usually coverage guided (P05, P07, P09, P15),
meaning they aim for reaching full code coverage.

P07 presents EcoFuzz, which improves the search strategy of AFL [43]. Instead
of aiming for full code-coverage, EcoFuzz aim to optimize its path traversal using
an ML algorithm to identify "less" frequently traversed code.

P19 runs penetration tests on the infrastructure and the cloud web application
every month.

P21 presents Z-fuzzer, where they mention that it cannot reach full code cov-
erage due to its focus to generate high-quality test cases, which excludes exception
handling code.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 165



Chapter 5

Discussion

In this chapter we discuss the results in order to find answers our research ques-
tions.

5.1 RQ1 Approaches

In order to answer RQ1: What are the approaches for security testing in IoT?, we
discuss the findings from each sub-research question in this section.

5.1.1 RQ1.1 Categorizing

In order to answer RQ1.1: What are the characteristics of the identified security
testing approaches?, we show an overview of the approaches found in Table 4.1,
and categorize the approaches in Table 4.2. In this section we further discuss the
results.

Most of the approaches fall under the category of Penetration Testing and
Dynamic Analysis, and Testbeds which make use of these techniques. These ap-
proaches require an executable test environment, which raises challenges in IoT.
For IoT test environments, this implies having a working emulator (or the actual
device) to run the system under test, due to the software and hardware being
tightly coupled [8]. In systems relying heavily on software, such as web applic-
ations, running the systems may not pose a challenge, while the heterogeneous
hardware and protocols used in IoT [36] complicates this matter. Creating simulat-
ors or emulators that support all of them is challenging. This is also mentioned as
a pain point by P21, who say that it is a "significant obstacle to deal with low-level
hardware events" when doing fuzzing, as the existing fuzzing tools did not have
the necessary support for this. P04 reportedly succeeds in emulating firmware for
AVR microcontrollers, which are often used in embedded systems. Though this
effort shows that emulating is not an impossible task, AVR is but one of many
architectures.

We found no mentions of approaches that focus on Code-based testing and
Static Analysis, as defined in Section 2.3. A reason for this may be a limitation

32

166 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 5: Discussion 33

in our search query, which limits the papers to IoT. Since by nature, IoT systems
encompass devices communicating, and not specifically the software used, which
this category focuses on. SAST tools may not be specific to IoT, but specific to
the language used in programming IoT software. Hence, this study might have
missed papers that focus on developing SAST relevant for IoT development. Per-
forming static analysis of code is mentioned by Bachmann and Brucher to be "the
most efficient and effective security testing method if only one method is applied
during software development" [10], but also stressing that only performing static
analysis is not sufficient on its own. Nevertheless, future research could investig-
ate how SAST may be integrated into security testing for IoT. The implications of
not finding any papers in this category, are also connected to the applicability of
approaches during the Planning and Design phase, as discussed in Section 5.1.2.
P10 used static analysis to analyze the firmware of the IoT to find any similarities
between the tested binary and vulnerabilities from a CVE database. The findings
from the static analysis was then used as input to a dynamic analysis engine, which
verified the vulnerability on-device or in emulator to ensure it was not a false pos-
itive. Although this paper used static analysis as a part of the approach, it is not
purely using static analysis, and is categorized thereafter.

P06 used machine learning to identify incoming attacks, and trained their
models using data collected from system operation in a test environment. P07
improved an existing fuzzer with machine learning capabilities to enhance its
performance. This suggests that the appliance of ML is relevant for IoT secur-
ity testing, both in order to support analysis of device behavior during test, or
as an integrated part of the security testing tool. ML is becoming widely adop-
ted in software development, with many easy-to-use tools [45, 46]. We suggest
more research to be addressing how to leverage ML both in existing security tools,
and in novel security approaches, for instance to tackle the large amount of data
generated by IoT systems.

5.1.2 RQ1.2 Application

In order to answer RQ1.2: At what level in the development process are the ap-
proaches applicable?, we look at the approaches mapped to a development phase,
as shown in Table 4.3. In this section we will discuss the findings in each of the
development phase in detail.

During Planning and Design

In P02, Model-based Security Testing (MBST) is performed using "virtual proto-
types" simulating both the devices themselves and communication between them
to enable an extensive system vulnerability analysis. The output from this ap-
proach is valuable to system designers or architects for early assessment of prin-
ciples such as "least privilege", and help identify possible security flaws in design.
Defects found in this phase of development is much less costly to fix [16], than
later during product development, or even worse, fixing them in production. Based

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 167



Chapter 5: Discussion 34

on this, we propose using recommendations from P17 to further enhance threat
modeling efforts reported in P11, in order to ease the automation of activities such
as automatic test case generation.

During Application Development

We found no mentions of approaches that could be used during application de-
velopment. A wide range of commercially-available software exists for perform-
ing SAST, such as SonarQube [47], which is commonly used for identifying code-
vulnerabilities during development. SonarQube [47] supports languages often as-
sociated with IoT development, such as C and C++, and also compilers for AVR
and ARM microprocessors. We found only one mention (P10) of an approach that
used SAST as part of their tool set, while no approach solely focused on this test
method. Very scarce results in this phase might reflect a general concern of se-
curity testing, where security is often only prioritized late in the SSDLC [1]. It
is however important to enable security in all phases of development, therefore
we want to direct future research into approaches that can fit into this phase of
development. An interesting topic for future research in this phase is to integrate
security testing into activities such as Continous Integration (CI) or Continuous
Deployment (CD). Another possibility is integrating a dependency-check tool for
third-party libraries specifically for IoT, into mainstream SAST tools.

Executable in a Test Environment

Most of the approaches found requires a running test environment. As previously
mentioned in Section 5.1.1, emulating devices is a challenge, which makes run-
ning the systems on a physical device often a necessity. When emulating, systems
may be closely monitored, while physical devices often need "supportive" tools
such as network capturing tools and network analysis to assess the implementa-
tion of security measures.

While several approaches test an IoT device that is communicating with one
other device, we propose more research to test the integration of IoT devices in a
larger network. The behavior of one device could affect others, which might un-
cover unwanted behaviors that are hard to discover when only testing one device
in isolation. The audit hooks presented in P06 allow for multi-component analysis
in the System Operation and Maintenance phase, which is the closest to this idea
that we have found in the papers.

System Operation and Maintenance

In order to understand how the system operates in production, P06 makes use
of a centralized logging service which receives input parameters as audits from
security-related methods using a method referred to as audit hooks. The use of
audit hooks in IoT is a novel approach which is promising in order to gain insight
and direct future security efforts in a system during operation. As future research,

168 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 5: Discussion 35

we echo P06 in improving the efforts of mining collected data from the audit
hooks to isolate vulnerable components or to provide mitigation suggestions for
the reported malicious inputs received.

Another important topic of this development phase is how to perform mainten-
ance of IoT devices. Although we found no security testing approaches targeting
maintenance in our selection of papers, ensuring integrity during maintenance
of devices is important. One approach that exists for this purpose is the open-
sourced PURE tool [48], extending the remote attestation capabilities of the tool
VRASED [49] to ensure integrity of the device after a software update. Future re-
search could look into managing the use of such tools on a larger scale, including
functionality for ease of management such as reporting.

5.1.3 RQ1.3 Generating

In order to answer RQ1.3 What is needed to generate test cases and prepare the
approach?, we looked at what is required in order to start using the approaches
identified, as shown in Table 4.6. From data extraction, three categories emerged
as relevant for preparations needed to start with the approaches, Software, Hard-
ware, and Information.

Software

One interesting finding is the prominent use of security tools included in the open-
source Linux-distribution Kali Linux [50] (such as nmap, arpspoof, or Wireshark)
in most of the testbeds and security testing methods (P01, P12, P16, P18, P20). In
contrast, only two studies mentions use of proprietary tools for security testing,
namely Burp Suite Professional [51] in P20 and Pentest-Tools [44] in P19. Reasons
for its wide adoption in our included studies could be that Kali Linux is free to use,
that it includes many proficient security tools, and that it does not require much
hardware to run. For practitioners wanting to start with security testing for IoT,
studies such as P12 and P20 provide good experience reports on how to set up
and use many of the tools included in Kali Linux.

Information

For approaches applicable during planning and design, relevant information needed
includes threat templates (such as STRIDE or VAST), high-level system docu-
mentation such as communication protocols, trust boundaries or data exchanged
between the system components. P17 includes specific recommendations for what
information should be present in IoT models to automate security activities. For
instance, on the "Smart Devices and Sensors" level, highly recommended inform-
ation include hardware interfaces, IP/MAC addresses, network protocols and sys-
tem information (operating system, firmware versions).

Fuzzing tools usually require some upfront information such as a valid input-
parameter to guide the generation of test cases. This information may be manually

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 169



Chapter 5: Discussion 36

provided, or automatically, based on output from other methods as reported in
P05. An exception to this, is the black-box fuzzers reported in Table 4.2, which
requires only an entry-point and initial setup to begin fuzzing.

In general, we found that few papers clearly specify what input is needed
to create test cases, but rather mention it in a more abstract way (e.g. a valid
message format) without giving concrete examples. The lack of clear guidelines,
could make it more difficult for practitioners to adopt the approach.

Hardware

Fuzzing tools generally require dedicated hardware to run. Studies such as P07
and P09 use high-end computers (e.g., 40GB/125GB RAM and 40-core CPUs)
to perform testing of their approach. We were unable to find any mentions if
such hardware was indeed a requirement. As fuzzers could run continuously for
anywhere between a few hours to a couple of months (or 490 CPU days as reported
in P08), millions of I/O operations may happen. Hence, this have an impact on
the weariness of the hardware used. This makes these approaches unsuitable for
running on developer machines (if intended to run for longer periods) [17].

5.1.4 RQ1.4 Executing

In order to answer RQ1.4 What skills, methods or tools are required to perform the
approach?, we assessed the skills required to perform each approach. From the
results, we derive that 50% of the approaches could be performed by developers
alone. Given that development teams invest in security training, we believe that
an additional 30% of the approaches may be performed. This could be as simple
as making developers understand which components in the system is security crit-
ical, in order to guide their choice of security testing method. A possible threat to
validity for this research question is that few of the papers actually consider who
should perform the approach (in all cases, it is the researchers themselves who
performs any use cases or "field experimentation" of their approach). This result
is therefore based on our own assumptions of what we would expect of secur-
ity knowledge from a developer. Moreover, some security experts probably know
how to program or install software. An explanation of roles (shown in 4.7) was
developed prior to the extraction of data to limit bias and inconsistencies among
our own perceptions.

In a number of approaches, a developer’s skills would be sufficient to use the
approach/perform the testing. However, usually the approaches require someone
with more knowledge about security to fully understand the output or report,
which we further discuss in Section 5.1.5.

5.1.5 RQ1.5 Reporting

In order to answer RQ1.5 How are the results of the approach reported?, we use
the results from the type of issues reported (Table 4.8), the type of report format

170 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 5: Discussion 37

(Figure 4.3), and its target audience (Table 4.9).
The type of issues reported is useful for practitioners wanting to adopt an

approach for instance to identify bugs, vulnerabilities or risks in particular.
By knowing the target audience of each approach, practitioners may better

understand who would be the beneficiaries of an approach. We acknowledge that
there could exist a broader audience for these approaches, such as managerial
roles, or regulators concerned with auditing. By including the Compliance column,
we intend to bring better visibility to this audience.

The report format of the approaches, is intended to guide practitioners in high-
lighting the feasibility of integrating the approach in existing systems. Approaches
that report its results in a structured format, may be used directly as input to other
tools. While unstructured formats often generates finalized outputs, such as pdf
reports, or websites presenting the results.

Fuzzers return as output the test cases that caused the system to crash. This
output may be used by developers to ease creation of unit tests that will reproduce
this behavior. Another example, in P05, the output of symbolic execution is a set
of input parameters for each unique path traversed in code. Even if the symbolic
execution did not result in any new vulnerabilities found, the input parameters
generated are valuable to test engineers in order to help guide further test case
generation. However, since P05 did not document the format of this output, we
were unable to categorize it as either structured or unstructured.

Many of the examples of the final reports presented in P18, are easily under-
standable and written with clear words. Due to this, we believe that many de-
velopers could make sense of it, and possibly take action, without having detailed
security knowledge. However, for several issues, it would still require a security
expert to do an analysis of the results, and recommend actions to fix them.

Developers generally only have the ability to report an error discovered during
testing as an error, while a security expert can report it as a vulnerability with a
certain risk. Tools that take the role of an security expert for you, by e.g. mapping
the vulnerabilities to CVEs and reporting it in a human readable output, enable
developers to make more use out of it, since CVEs are easier to search for and
understand than e.g. the stack traces given by many fuzzers. Stack traces given by
fuzzers are usually not human readable in their raw form, and therefore require
external tools to process them, such as GDB with GDB Exploitable Plugin [52],
AFL Crash Triage [53], or Crashwalk [54] for iterating through crashes.

In general it might be hard to motivate developers to act on bugs, risks, or
vulnerabilities, if they are not reported in a format where they can understand
why it is important to fix them.

Most approaches do not describe their output in enough detail, or at all. This
makes it harder for both practitioners and researchers to know what value this
approach gives, or how they can make use of the output in other systems, and
how to improve their product with it by feeding it back into development teams.
Based on this, we suggest that future researchers specify the output clearly.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 171



Chapter 5: Discussion 38

5.2 RQ2 Automation

In order to answer RQ2 To what degree can the approaches be automated?, we look
at how automated each approach appears to be, as shown in Figure 4.4, and the
results from RQ1.

P14 presents the Mirage framework for security audits, which relies on phys-
ical hardware. Due to this it might be difficult to fully automate this approach,
unless efforts are made to be able to use virtual instead of physical devices.

P17 presents the idea of using metadata from commonly used diagrams and
models (provided they contain enough information) to automate security assur-
ance, which seems promising, but is not yet mature enough to be put into use. It
also does not consider the process of inserting the metadata into the diagrams or
models, nor how to extract the data.

P18 presents a testbed which supports many automated tests, and also provides
much of the output in a structured format, which is promising for enabling further
automation. They also provide an example of how to parse the output from one
test, in order to use it in further analysis to discover vulnerabilities.

P21 runs in a simulator, which is promising for minimizing the amount of
manual work a tester has to do when running (and rerunning) the tests.

Challenges with emulating hardware, as discussed in Section 5.1.1, are also
an obstacle to enable automation. In a DevOps CI/CD pipeline, it does not seem
practical to have a physical test environment available for performing security as-
surance. So in this case it would be necessary simulate or emulate the relevant
IoT devices in order to perform testing in a virtual environment. In addition, ap-
proaches that could be performed during Application Development are more likely
to fit into a CI pipeline, since it is easier to integrate testing that do not require
complex testing environments, but no approaches found were suitable for this.

As most approaches do not mention the output clearly, and only a few ap-
proaches report their results in a structured format, it can be hard to use these
approaches in an automated setting without making changes to support this.

As IoT networks can consist of hundreds or thousands of devices, dealing with
all of them in a manual manner is unfeasible, so achieving a high level of auto-
mation is of importance. IoT devices generate large quantities of data, and one
challenge is creating test cases cover all the relevant scenarios that can occur, and
also it can be hard to know what the correct behavior should be.

5.3 RQ3 Adoption

In order to answer RQ3 What is the ease of adoption of the approaches found?,
we consider the expertise needed for making use of the approaches, as shown in
Figure 4.5, and draw upon the results from RQ1 and RQ2.

We found that while 50% of approaches were possible to be performed by
Developers, only 24% of the approaches provided output that they are likely to
fully understand. In other words, most of the included security testing approaches

172 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 5: Discussion 39

would require practitioners to either train their developers in security, or hire
security experts in order to make full use of the results. We believe the former to
be most cost-effective.

As a good starting point for performing security testing of IoT, fuzzing using
EcoFuzz (P07), and analysis of firmware vulnerabilities using PATCHECKO (P10),
can be used with little preparations needed.

P17 approach seems like a promising enabler for automated security assurance
if adopted early in the design process. It is still an abstract approach that cannot
be easily implemented for mature IoT companies. In addition, we believe much
work is required in order to derive the recommendations from this paper into an
actual IoT model.

In P18, the role of security expert is practically digitized, using ML to assess
possible vulnerabilities and provide information such as existing CVE reports and
severity indicators to guide development.

We found that 60% of the tools in the approaches were available open-source
(with varying levels of documentation), which is a good sign for practitioners
interested in trying out the approaches. The Mirage security testing framework
presented in P14, has the best guidelines for developers for how to use the tool,
and how to extend it for their own use cases.

The testbed presented in P18 seems like a powerful approach for doing secur-
ity testing. However, the software for orchestrating the security testing and the
advanced security tests, is not available. Thus, it is not an approach that is easy
to adopt for practitioners, as they would have to attempt to make their own from
scratch (which seems like a considerable task). It is also presented as an approach
that works best in a shielded room, which might make it infeasible for some com-
panies. However, the authors mention that they plan to provide the testbed as a
service where individuals or enterprises can use it on their own IoT environment,
to obtain a metric score of the level of security.

5.3.1 RQ3.1 Ease of adoption to agile teams

In the search to answer RQ3.1 How easily adoptable are the approaches to agile
teams?, we would expect to find some of the approaches mentioning their applic-
ability or relevance to developers of IoT software. We found one paper mentioning
DevOps, while none of the other papers mentions agile or any particular develop-
ment frameworks. The scarce results could be related to our findings for RQ1.2,
which indicate that none of the approaches were applicable during development.
As we reported in Section 4.3.1, approaches relevant for agile teams were indeed
found. P06 and P03 could prove relevant for bringing transparency to develop-
ment teams by monitoring systems at code level (P06) and system level (P03)
respectively.

Additionally, the use of containerized technology (Docker), as reported by P05,
makes managing and installing security testing tools easier. The tool used for sym-
bolic execution in P05, KLEE, is available as a docker image [55]. As 60% of the

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 173



Chapter 5: Discussion 40

approaches used in this study are available open-source, we strongly encourage
researchers to (when possible) provide containerized versions of their tools. This,
we believe, would greatly ease the adoption of tools for any development team
regardless of development methodology used.

5.3.2 RQ3.2 Prioritization of test cases

In order to answer RQ3.2 To what extent does the approaches support prioritization
of test cases?, we looked at what the approaches mention that could be relevant
to this.

We found only a few approaches that seem a bit relevant for answering this
research question, and so, our discussion here contains mainly vague ideas.

One idea could be to generate many test cases, and use some metrics or vul-
nerability catalog like CVE, to prioritize the order of executing test cases. Or for
example deciding which test cases to run at certain times for regression testing
(which may take longer to run and could be unfeasible to run continuously), based
on some metric, e.g time since last run or time since last code-change in a relevant
component. In this way, one could run tests that might have a higher likelihood of
uncovering faults. Another way to prioritize tests could be based on abnormalities
detected in a system, which could be uncovered using a monitoring approach like
P06.

We suggest more research is done in prioritizing test cases for IoT systems,
as we think it could be a promising idea for helping practitioners achieving "good
enough" security for their systems, allowing for the tests to be run more frequently,
which might result in issues being detected earlier.

5.3.3 RQ3.3 Scoping of test areas

In order to answer RQ3.3 To what degree does the approaches support scoping of
test areas?, we looked at what the approaches mention that could be relevant to
scoping the test areas in some way. We found no interesting results related to this
research question.

5.4 Implications for Research

In this section, we summarize the implications for research found in this study.

In General

• A need for "left-shifting" security testing of IoT. Approaches that are ap-
plicable during planning and design may uncover security-related flaws or
defects that will be costly to fix later in the development phases.
• The papers used in this study did not underpin their evaluation or research

method using existing theory. We call for a theoretical framework for eval-
uating security testing methods for IoT.

174 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 5: Discussion 41

• Few papers address how their security testing approach reports its results.

Possible Directions For Future Research

• Leverage ML both in existing security tools, and in novel security testing
approaches.
• Perform security testing when integration more than one or two IoT devices

in a larger network.
• Prioritizing test cases for IoT systems.
• Integrate SAST tools into security testing for IoT.
• Integrate security testing into activities such as CI/ CD for use during ap-

plication development.
• Both improving the efforts of mining collected data from audit hooks, and

applying audit hooks in a large scale to evaluate its performance.

5.5 Implications for Practice

In this section, we summarize the implications for practice found in this study.

• Output from fuzz testing is valuable as input to other test methods, such as
unit testing or further test case generation efforts. In addition, fuzzing tools
may be collectively stronger when combined. The input which generated a
crash reported by one fuzzer, may be used as input to other fuzzers or for
symbolic execution.
• Mirage [36], presented in P14, seems promising for auditing and for per-

forming wireless security analysis.
• The use of audit hooks presented in P06 is a novel approach for monitoring

IoT systems. This can be used in production environments to detect abnor-
mal behavior, and alert potential misuse of methods.

5.6 Threats to Validity

By only searching for papers in only two databases, where several more could
be applicable, relevant papers could have been omitted. In addition, since this
research area is still relatively young, literature in the field is lacking, and there
could be approaches used in the industry that have been documented in gray
literature that this SLR excluded. This study could be extended to capture more
types of literature.

We acknowledge that during selection of papers related to "security testing",
the selection could be biased by research interest, or by interpreting the inclusion
criteria falsely. To limit the possibility of excluding possibly relevant papers, two
supervisors were included in assessment of the process.

In interpreting the results, the researchers assumptions and interpretation of
the approaches described might have affected the results, which is particularly

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 175



Chapter 5: Discussion 42

likely in the cases where the papers do not explicitly mention what the researchers
are looking to find, but it is possible to judge what is likely the case. The results
were cross-checked and discussed extensively by both authors to limit the bias. We
made efforts to make the results traceable by providing references to the papers
where we mapped them to different categories, and when making claims.

The majority of papers reports of a "successful" approach, while also perform-
ing the evaluation of their own approach, or not evaluating their proposed method
at all, which indicates publication bias. We believe that excluding papers with a
lack of proper evaluation alone, would not be possible given the current state of
research found in this field.

176 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Chapter 6

Conclusion

Ranging from devices used in our everyday life, to devices used in agriculture
and manufacturing, Internet of Things (IoT) devices augments our perception of
the physical world with the use of sensory data. The objective of this systematic
literature review was to synthesize current knowledge on testing the security of
IoT systems, to determine what approaches are most prominent in literature. 1335
articles were identified on testing of IoT, of which we included 21 papers that
focused on security testing. Fuzz testing was found to be the most prominent
security testing method. The majority of approaches were only applicable once
the system was in a production-ready state, a finding that supports the need for
a "shift-left" in security. Our contributions include an overview of current state-
of-the-art approaches for performing security testing of IoT, including degree of
automation and their ease of adoption. Moreover, we propose areas for future
research, and guidelines for practitioners who want to improve the security of
their IoT systems.

6.0.1 Future Work

We will use the findings of this SLR to guide future work in creating a prototype of
a tool to support security testing of IoT systems. In particular, we want to shift-left
security testing, and also explore possibilities for adapting any of the approaches
recommended in this study for use in an agile setting.

43

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 177



Bibliography

[1] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu and A. Pretschner,
‘Security testing: A survey,’ in Advances in Computers, vol. 101, Elsevier,
2016, pp. 1–51.

[2] Henrik Strand. (2020). ‘IoT based monitoring for power grid components,’
[Online]. Available: https://blog.sintef.com/sintefenergy/iot-
based-monitoring-for-power-grid-components/ (visited on 15/12/2021).

[3] TeBe Sport AS. (). ‘Utnyttelsegrad og aktivitetsmåling for idrettsanlegg
og aktivitetsflater,’ [Online]. Available: https://www.tebe- sport.no/
aktivitetsmaling-og-utnyttelsesgrad/ (visited on 14/12/2021).

[4] V. Edmondson, M. Cerny, M. Lim, B. Gledson, S. Lockley and J. Woodward,
‘A smart sewer asset information model to enable an ‘internet of things’ for
operational wastewater management,’ Automation in Construction, vol. 91,
pp. 193–205, 2018.

[5] Tara Seals. (2021). ‘IoT Attacks Skyrocket, Doubling in 6 Months,’ [Online].
Available: https://threatpost.com/iot-attacks-doubling/169224/
(visited on 06/09/2021).

[6] Shear, Michael D. and Perlroth, Nicole and Krauss, Clifford. (2021). ‘Co-
lonial Pipeline Paid Roughly $5 Million in Ransom to Hackers,’ [Online].
Available: https://www.nytimes.com/2021/05/13/us/politics/biden-
colonial-pipeline-ransomware.html (visited on 15/12/2021).

[7] The White House. (2021). ‘Executive Order on Improving the Nation’s Cy-
bersecurity,’ [Online]. Available: https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-order-on-improving-
the-nations-cybersecurity/ (visited on 15/12/2021).

[8] G. Murad, A. Badarneh, A. Qusef and F. Almasalha, ‘Software testing tech-
niques in iot,’ in 2018 8th International Conference on Computer Science and
Information Technology (CSIT), IEEE, 2018, pp. 17–21.

[9] G. McGraw, ‘Software security,’ IEEE Security Privacy, vol. 2, no. 2, pp. 80–
83, 2004. DOI: 10.1109/MSECP.2004.1281254.

[10] R. Bachmann and A. D. Brucker, ‘Developing secure software: A holistic ap-
proach to security testing,’ Datenschutz und Datensicherheit (DuD), vol. 38,
pp. 257–261, 2014.

44

178 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Bibliography 45

[11] E. Suescun Monsalve, C. Calvache, S. Muñoz and A. Uribe, ‘Devops in in-
dustry 4.0: A systematic mapping,’ Revista Facultad de Ingeniería, vol. 30,
pp. 1–16, Jul. 2021. DOI: 10.19053/01211129.v30.n57.2021.13314.

[12] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, ‘Devops,’ Ieee Software,
vol. 33, no. 3, pp. 94–100, 2016.

[13] H. Myrbakken and R. Colomo-Palacios, ‘Devsecops: A multivocal literature
review,’ in International Conference on Software Process Improvement and
Capability Determination, Springer, 2017, pp. 17–29.

[14] Atlassian. (2021). ‘What is DevOps?’ [Online]. Available: https://www.
atlassian.com/devops (visited on 06/12/2021).

[15] R. Ankele, S. Marksteiner, K. Nahrgang and H. Vallant, ‘Requirements and
recommendations for iot/iiot models to automate security assurance through
threat modelling, security analysis and penetration testing,’ in Proceedings
of the 14th International Conference on Availability, Reliability and Security,
ser. ARES ’19, Canterbury, CA, United Kingdom: Association for Comput-
ing Machinery, 2019, ISBN: 9781450371643. [Online]. Available: https:
//doi.org/10.1145/3339252.3341482.

[16] M. Dawson, D. Burrell, E. Rahim and S. Brewster, ‘Integrating software
assurance into the software development life cycle (sdlc),’ Journal of In-
formation Systems Technology and Planning, vol. 3, pp. 49–53, Jan. 2010.

[17] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu and X. Zhou, ‘EcoFuzz: Ad-
aptive Energy-Saving greybox fuzzing as a variant of the adversarial Multi-
Armed bandit,’ in 29th USENIX Security Symposium (USENIX Security 20),
USENIX Association, Aug. 2020, pp. 2307–2324, ISBN: 978-1-939133-17-5.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/yue.

[18] M. Cortés, R. Saraiva, M. Souza, P. Mello and P. Soares, ‘Adoption of soft-
ware testing in internet of things: A systematic literature mapping,’ in Pro-
ceedings of the IV Brazilian Symposium on Systematic and Automated Soft-
ware Testing, 2019, pp. 3–11.

[19] E. L. Macedo, E. A. de Oliveira, F. H. Silva, R. R. Mello, F. M. França, F. C.
Delicato, J. F. de Rezende and L. F. de Moraes, ‘On the security aspects of in-
ternet of things: A systematic literature review,’ Journal of Communications
and Networks, vol. 21, no. 5, pp. 444–457, 2019.

[20] Y. Lu and L. Da Xu, ‘Internet of things (iot) cybersecurity research: A review
of current research topics,’ IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 2103–2115, 2018.

[21] B. Kitchenham, ‘Procedures for performing systematic reviews,’ Keele, UK,
Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 179



Bibliography 46

[22] K. Tuma, G. Calikli and R. Scandariato, ‘Threat analysis of software systems:
A systematic literature review,’ Journal of Systems and Software, vol. 144,
pp. 275–294, 2018.

[23] Zotero. (2021). ‘Zotero,’ [Online]. Available: https://www.zotero.org/
(visited on 09/12/2021).

[24] Y. Wang, E. Kjerstad and B. Belisario, ‘A dynamic analysis security testing
infrastructure for internet of things,’ in 2020 Sixth International Conference
on Mobile And Secure Services (MobiSecServ), IEEE, 2020, pp. 1–6.

[25] Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann and W. Rosenstiel, ‘At-
tack surface modeling and assessment for penetration testing of iot system
designs,’ in 2018 21st Euromicro Conference on Digital System Design (DSD),
IEEE, 2018, pp. 177–181.

[26] S. Karagiannis, M. Manso, E. Magkos, L. L. Ribeiro and L. Campos, ‘Auto-
mated and on-demand cybersecurity certification,’ in 2021 IEEE Interna-
tional Conference on Cyber Security and Resilience (CSR), IEEE, 2021, pp. 174–
179.

[27] M. Pucher, C. Kudera and G. Merzdovnik, ‘Avrs: Emulating avr microcon-
trollers for reverse engineering and security testing,’ in Proceedings of the
15th International Conference on Availability, Reliability and Security, 2020,
pp. 1–10.

[28] J. Vijtiuk, L. Perkov and A. Krog, ‘Bug detection in embedded environments
by fuzzing and symbolic execution,’ in 2020 43rd International Convention
on Information, Communication and Electronic Technology (MIPRO), IEEE,
2020, pp. 1218–1223.

[29] I. Shrestha and M. Hale, ‘Detecting dynamic security threats in multi-component
iot systems,’ in Proceedings of the 52nd Hawaii International Conference on
System Sciences, 2019.

[30] J. Men, G. Xu, Z. Han, Z. Sun, X. Zhou, W. Lian and X. Cheng, ‘Finding
sands in the eyes: Vulnerabilities discovery in iot with eufuzzer on human
machine interface,’ IEEE Access, vol. 7, pp. 103 751–103 759, 2019.

[31] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu and L. Sun, ‘Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emu-
lation,’ in 28th USENIX Security Symposium USENIX Security 19), 2019,
pp. 1099–1114.

[32] P. Sun, L. Garcia, G. Salles-Loustau and S. Zonouz, ‘Hybrid firmware ana-
lysis for known mobile and iot security vulnerabilities,’ in 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), IEEE, 2020, pp. 373–384.

180 E. Gudmundsen & S. Kvamme: Data Protection Fortification



Bibliography 47

[33] S. Marksteiner, R. Ramler and H. Sochor, ‘Integrating threat modeling and
automated test case generation into industrialized software security test-
ing,’ in Proceedings of the Third Central European Cybersecurity Conference,
2019, pp. 1–3.

[34] M. Bettayeb, O. A. Waraga, M. A. Talib, Q. Nasir and O. Einea, ‘Iot testbed
security: Smart socket and smart thermostat,’ in 2019 IEEE Conference on
Application, Information and Network Security (AINS), IEEE, 2019, pp. 18–
23.

[35] A. Liu, A. Alqazzaz, H. Ming and B. Dharmalingam, ‘Iotverif: Automatic
verification of ssl/tls certificate for iot applications,’ IEEE Access, 2019.

[36] R. Cayre, V. Nicomette, G. Auriol, E. Alata, M. Kaaniche and G. Marconato,
‘Mirage: Towards a metasploit-like framework for iot,’ in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE), 2019,
pp. 261–270. DOI: 10.1109/ISSRE.2019.00034.

[37] B. Feng, A. Mera and L. Lu, ‘P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,’ in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1237–1254.

[38] T. Zitta, M. Neruda, L. Vojtech, M. Matejkova, M. Jehlicka, L. Hach and
J. Moravec, ‘Penetration testing of intrusion detection and prevention sys-
tem in low-performance embedded iot device,’ in 2018 18th International
Conference on Mechatronics-Mechatronika (ME), IEEE, 2018, pp. 1–5.

[39] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov, S. Bhairav,
A. Shabtai and Y. Elovici, ‘Security testbed for internet-of-things devices,’
IEEE transactions on reliability, vol. 68, no. 1, pp. 23–44, 2019.

[40] C. M. Coman, G. D’amico, A. V. Coman and A. Florescu, ‘Techniques to im-
prove reliability in an iot architecture framework for intelligent products,’
IEEE Access, vol. 9, pp. 56 940–56 954, 2021.

[41] T. W. Tseng, C. T. Wu and F. Lai, ‘Threat analysis for wearable health devices
and environment monitoring internet of things integration system,’ IEEE
Access, vol. 7, pp. 144 983–144 994, 2019.

[42] M. Ren, X. Ren, H. Feng, J. Ming and Y. Lei, ‘Z-fuzzer: Device-agnostic
fuzzing of zigbee protocol implementation,’ in Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, 2021,
pp. 347–358.

[43] Michal Zalewski. (2021). ‘American Fuzzy Lop,’ [Online]. Available: https:
//lcamtuf.coredump.cx/afl/ (visited on 12/12/2021).

[44] Pentest-Tools. (2021). ‘Pentest-Tools,’ [Online]. Available: https://pentest-
tools.com/ (visited on 12/12/2021).

[45] Google. (2021). ‘Google ML Kit,’ [Online]. Available: https://developers.
google.com/ml-kit/ (visited on 12/12/2021).

Chapter E: On Security Testing of IoT Systems: A Systematic Literature Review 181



Bibliography 48

[46] TensorFlow. (2021). ‘TensorFlow,’ [Online]. Available: https://www.tensorflow.
org/ (visited on 13/12/2021).

[47] SonarQube. (2021). ‘SonarQube,’ [Online]. Available: https://www.sonarqube.
org/ (visited on 23/11/2021).

[48] I. de Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon and G. Tsudik, ‘Pure:
Using verified remote attestation to obtain proofs of update, reset and eras-
ure in low-end embedded systems,’ in 2019 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2019, pp. 1–8. DOI: 10.1109/
ICCAD45719.2019.8942118.

[49] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner and G. Tsudik,
‘Vrased: A verified hardware/software co-design for remote attestation,’ in
28th USENIX Security Symposium USENIX Security 19), 2019, pp. 1429–
1446.

[50] KaliLinux. (2021). ‘KaliLinux,’ [Online]. Available: https://www.kali.
org/ (visited on 12/12/2021).

[51] PortSwigger. (2021). ‘Burp Suite Professional,’ [Online]. Available: https:
//portswigger.net/burp/pro (visited on 12/12/2021).

[52] Jonathan Foote. (2021). ‘GDB Exploitable plugin,’ [Online]. Available: https:
//github.com/jfoote/exploitable (visited on 14/12/2021).

[53] Google AFL. (2021). ‘Crash Triage,’ [Online]. Available: https://github.
com/google/AFL#10-crash-triage (visited on 14/12/2021).

[54] bnagy. (2021). ‘Crashwalk,’ [Online]. Available: https://github.com/
bnagy/crashwalk (visited on 14/12/2021).

[55] KLEE. (2021). ‘KLEE - Symbolic Virtual Machine,’ [Online]. Available: https:
//hub.docker.com/r/klee/klee (visited on 14/12/2021).

182 E. Gudmundsen & S. Kvamme: Data Protection Fortification



D
ata Protection Fortification

Espen G
udm

undsen &
 Sigrid M

. Kvam
m

e

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Espen Gudmundsen
Sigrid Marita Kvamme

Data Protection Fortification

A Data-centric Threat Modeling Method for
Development Teams to Assess the Risk of Data
Tampering and Support Secure Handling of
External Data Sources

Master’s thesis in Computer Science
Supervisor: Daniela Soares Cruzes
Co-supervisor: Tosin Daniel Oyetoyan
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background and Related Work
	Vulnerability and Risk Management
	Bug
	Vulnerability
	Risk
	Threat

	Security Activities in Development Phases
	Threat Modeling
	Step 1: Model System
	Step 2: Find Threats
	Step 3: Address Threats
	Step 4: Validate
	STRIDE
	Asset-Oriented Threat Modeling
	Threat Modeling in Agile Software Development Projects
	Evaluating Threat Modeling Using Flow

	Protection Poker
	Calculating Risk
	Performing Protection Poker

	Security Testing
	Security Testing of Data-intensive Systems

	Data Monitoring and Anomaly Detection
	Detecting Dynamic Threats Using Audit Hooks
	Audit Hooks in Industry

	Identified Gap in Research

	Research Methodology
	Research Objective
	Research Questions
	Context and Participants
	Equinor
	Webkom
	Ryde

	Approach for Research
	Method for Thesis Development
	Explicate Problem
	Define Requirements
	Design and Develop Artefact
	Demonstrate Artefact
	Evaluate Artefact

	Data Collection Methods
	Data Analysis
	Research Paradigm and Bias
	Ethics
	Data Storing
	Security Measures


	Design of Data Protection Fortification
	Preparations for Data Protection Fortification
	When to Perform Data Protection Fortification
	Select Data Source
	Prepare Data Fields
	Participants
	Tool Recommendations

	How to Perform Data Protection Fortification
	Discuss Data Source
	Identify Data Fields
	Prioritize Data Fields
	Plot Fields on Risk Matrix
	Evaluate Security Measures
	Outcome
	Evaluate and Review

	Data Protection Fortification in Practice
	Data Protection Fortification in Practice - Alternative
	Discussion Questions for Data Protection Fortification
	General Questions About the Data Source
	Security Implications for the Data Source
	Evolution of Questions


	Results
	RQ1: What Are the Practices Reported by Companies for Securely Handling Data Coming From Devices or Other Sources?
	Data Access
	Data Validity and Monitoring
	Data Velocity
	Data Origin
	Data Processing
	Data Schema
	Data Usage
	Fault Mitigations

	RQ2: How Can Data-centric Threat Modeling Support Teams in Identifying Security Risks and Promote Secure Design in Handling Data?
	TAM Evaluation of DPF
	Evaluation of the Activities in DPF
	Verbal Evaluation of DPF
	Observations and Lessons Learned from DPF
	Evaluating DPF with Security Experts

	RQ3: How Can Data Monitoring Using Audit Hooks Identify Attacks in Data With Increased Risk?
	Audit Hook
	Analysis Capabilities
	Ingest
	Monitoring Dashboard


	Discussion
	Implications to Research
	Implications to Practice
	Recommended Practices for Securely Handling Data

	Threats to Validity and Limitations
	Lessons Learned

	Conclusion
	Bibliography
	DPF Cheat Sheet
	DPF Preparation Meeting Guide
	DPF Data Extraction Form
	NSD Notification Form
	On Security Testing of IoT Systems: A Systematic Literature Review

