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Abstract
This thesis explores the topic of generative adversarial reinforcement learning. Specifically,
the thesis proposes a new method that uses Proximal Policy Optimization and adversarial
reward systems to train agents to paint using sequential strokes on a simulated canvas.
Generative adversarial networks have, since their introduction, proved to work very

well on several challenging problems. Recent research has, for example, facilitated
the generation of novel, high-quality images that are difficult to tell apart from real
photos. Meanwhile, reinforcement learning has enabled agents to learn how to solve
numerous complex problems, most commonly in domains such as video games and
physics simulations with continuous control. Recent techniques, such as Proximal
Policy Optimization, have proved to work in complex settings previously inaccessible to
computers.
The intersection of reinforcement learning and generative adversarial networks is

largely unexplored. Given the challenges involved in specifying objective functions
in reinforcement learning and recent successes of adversarial learning, combining the
techniques is a promising area of research. By introducing adversarial reward systems to
the reinforcement learning setting, agents could learn to solve difficult problems using
examples of solutions rather than handcrafted evaluation functions.

This thesis demonstrates for the first time that Proximal Policy Optimization can be
used in this context, and establishes that both Wasserstein and minimax discriminators
are suitable adversaries. Furthermore, the work proves that temporal rewards are crucial
to enable learning in complex environments, and demonstrates that the quality of reward
signals is greatly influenced by the training procedure of the adversarial opponent.
Standard policy architectures are shown to be insufficient given the complexity of the
environment dynamics, and the thesis presents a more extensive autoregressive decoder
architecture that remains capable of learning and representing good policies. Finally,
the thesis proves that population-based training and recurrent policies, previously used
in similar techniques, are not necessary to achieve results comparable to the current
state-of-the-art.
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Sammendrag
Denne masteroppgaven handler om konkurransebasert genererende forsterkningslæring.
Mer spesifikt presenterer oppgaven en ny metode som bruker Proximal Policy Optimiza-
tion-algoritmen og en konkurrerende vurderingsmodell til å lære agenter å male bilder i
et digitalt tegneprogram.
I løpet av de siste årene har datagenerering ved hjelp av konkurrerende nevrale

nettverk oppnådd svært gode resultater på en rekke utfordrende problemer. Denne typen
læringssystem trener to konkurrerende modeller samtidig, og lærer over tid å produsere
falske eksempler basert på hvilken treningsdata som benyttes. Nyere forskning har utviklet
modeller som for eksempel kan produsere originale bilder som er vanskelige å skille fra
fotografier. Samtidig har forsterkningslæring blitt brukt til å trene agenter som kan
løse mange komplekse problemer, særlig i forbindelse med videospill og fysikkbaserte
robotsimuleringer. En rekke problemer som tidligere ble sett på som svært utfordrene
å løse med datamaskiner har nå blitt løst, og i mange tilfeller overgår disse systemene
mennesker.

Det finnes lite forskning som kombinerer forsterkningslæring og konkurrerende nevrale
nettverk, men med tanke på hvor godt metodene har fungert i nyere tid finnes det
potensiale i å kombinere dem. Forsterkingslæring er avhengig av en funksjon som vurderer
oppførselen til agenter, og slike funksjoner er ofte vanskelige å definere. Konkurransebaserte
metoder kan imidlertid lære modeller å estimere en slik vurdering på egen hånd. Et
kombinert system kan dermed løse problemer basert på kun løsningseksempler, og vil
ikke være avhengig av menneskedefinerte vurderingsfunksjoner på samme måte.
Denne oppgaven demonstrerer for første gang at Proximal Policy Optimization-

algoritmen kan løse slike problemer, samt at minst to forskjellige læringsmetoder for
vurderingsnettverk (Wasserstein og minimax) fungerer i denne sammenhengen. Videre
viser oppgaven at både tidsbasert vurdering og komplekse agentarkitekturer er viktige
for å kunne lære fra særlig vanskelige datasett. Til slutt beviser oppgaven at verken
populasjonsbasert læring eller modeller med minne over tid er nødvendige for å oppnå
resultater som er sammenlignbare med lignende metoder.
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1. Introduction
This thesis explores the topic of generative adversarial reinforcement learning. The work
proposes an adversarial learning system that uses Proximal Policy Optimization to train
agents to paint images on a simulated canvas. This chapter presents the motivation
behind the work, the overarching goal and research questions considered, as well as the
primary contributions of the thesis.

1.1. Motivation

Reinforcement Learning (RL) is an active area of research which recently has shown
great promise on many complex problems such as Go by Silver et al. (2016), difficult
video games such as Dota 2 by Berner et al. (2019) and multi-agent cooperation and
competition by Baker et al. (2019). The majority of these problems are formulated as
games, and were previously unsolvable by other learning algorithms.
Meanwhile, generative methods have exploded in capability since the introduction of

Generative Adversarial Networks (GANs) by Goodfellow et al. (2014). Methods such
as CycleGANs by Zhu et al. (2017) are capable of translating between domains, and
improvements to the original GAN architecture in works such as DCGAN by Radford
et al. (2015) and progressive GAN by Karras et al. (2017) have enabled generation
of high-resolution photo-realistic images. More recently, the DALL-E 2 algorithm by
Ramesh et al. (2022) has combined state-of-the-art language models with generative
methods to enable impressive image synthesis from text descriptions.

Although some work, such as SPIRAL by Ganin et al. (2018), has combined reinforce-
ment learning and adversarial methods, the intersection of the two research areas is largely
unexplored. Given the results of reinforcement learning techniques and the impressive
generative ability of adversarial techniques, there remains potential in employing ideas
from both in new creative applications. Unlike the majority of techniques in machine
learning, reinforcement learning is not dependent on a fully differentiable setting. This
benefit can enable new types of problem-solving for creative processes that are by nature
not differentiable, and therefore cannot be solved by current state-of-the-art methods.

Finally, exploration of generative reinforcement learning methods can shed further light
on fundamental challenges in reinforcement learning in general. In their paper, Concrete
Problems in AI Safety, Amodei et al. (2016) discuss problems relating to objective
alignment and unexpected negative consequences resulting from underspecified objective
functions in these types of systems. With adversarial reinforcement learning the objective
function could be learned by example, and it is therefore a potential venue for increased
safety in AI systems as their capabilities and influence continues to grow in the future.
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1. Introduction

1.2. Thesis Goal
This thesis explores the intersection of reinforcement learning and generative methods in
the context of generative adversarial reinforcement learning (GARL). Although some
work exists in this area, it does not employ insights and techniques from recent research.
The goal of this thesis is to gather knowledge from related work and empirical studies to
create a novel and capable method:

Thesis Goal
Create a novel generative adversarial reinforcement learning method capable of consistently
producing high fidelity paintings.

The novelty of the method is considered with respect to the existing methods in
generative reinforcement learning. By employing ideas and concepts from different
research areas, a novel method suitable in this context can be developed. The fidelity
of paintings is a measure of the output of the method, and can be compared to both
RL-based and traditional generative techniques. Note, however, that the most common
goal of GANs is to produce photo-realistic images. Here, the goal is not to produce
outputs with the highest level of realism, but rather interesting high fidelity paintings
learned from photos in real domains. This may be viewed as a type of generation with
implicit style transfer, where the style is defined not by the model but by the environment
dynamics.
Finally, the method should be consistent in its behavior. This includes the system

stability during training as well as its consistency in painting fidelity. Understanding
the strengths and weaknesses of novel methods is important, and this topic is therefore
throroughly explored throughout this thesis.

Research Questions

The thesis goal represents the overarching purpose of the work. Specifically, this thesis
attempts to answer the following research questions which cover important topics relating
to the method as a whole:

• RQ1 How can on-policy reinforcement learning methods be applied effectively in
the context of adversarial image generation in non-differentiable environments?

• RQ2 How can we design deep policy architectures capable of modeling complex
mappings of multidimensional state and action spaces suitable for sequential image
generation?

• RQ3 Which discriminator architectures and learning algorithms can enable the
implementation of an adversarial reward system that provides consistent and useful
reward signals for a reinforcement learning agent in this context?
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1.3. Contributions

The first research question revolves around the behavior of on-policy reinforcement
learning in the GARL context. More specficially, the previously successful Proximal
Policy Optimization (PPO) algorithm is considered as a central component in this type
of system. The theoretical background of PPO is presented in Section 2.2.4, whereas its
application in this context is explored in Chapters 6 and 7.

The second research question considers the architectural design of the policy responsible
for modeling the action space of the environment. As will be demonstrated in Chapter 7,
standard architectures are insufficient for high quality behavior in complex adversarial
painting environments. Chapter 5 is dedicated to structure of the neural networks used
in the method, as well as the motivation guiding their design.

Finally, the third research question revolves around the adversarial component of the
system. Similarly to other generative methods, a discriminator model is responsible for
providing feedback to the generator component. As this work will show, the structure and
learning process of the discriminator greatly affects the behavior of the system. Section
2.4.1 presents the background underlying generative adversarial methods. Chapters 6
and 7 explore the role of discriminators and adversarial rewards in this context.

1.3. Contributions
The contributions of this thesis include a review of background literature and related
work, implementation of a new simulation environment, and the development of new
neural network architectures and algorithms. The main contributions are:

• The first demonstration of Proximal Policy Optimization used successfully for
adversarial, reinforcement learning based image generation.

• An empirical study of various state-of-the-art discriminator techniques in the context
of adversarial reward systems.

• Implementation and demonstration of a general autoregressive policy architecture
capable of modeling complex, high-dimensional action spaces.

• The first demonstration of a non-recurrent policy working in a generative adversarial
reinforcement learning setting.

• A novel temporal reward system improving the quality of adversarial rewards,
enabling consistent learning and high-quality results for several different datasets.

• Implementation of a highly customizable and algorithm–agnostic painting environ-
ment suitable for reinforcement learning.

1.4. Thesis Structure
The thesis consists of nine chapters exploring key topics motivated by the goal and
research questons presented previously:
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1. Introduction

• Chapter 2 presents the theoretical background on which following chapters are based.
The primary topics include reinforcement learning, neural network architectures
and generative adversarial methods.

• Chapter 3 presents key work related to the proposed method, inluding other
adversarial methods and differentiable techniques with similar applications.

• Chapter 4 presents the simulation environment developed as a part of this thesis. All
results and experiments employ agents trained in this custom painting environment.

• Chapter 5 presents the neural network architectures of the policy and discriminator
models, as well as the underlying insights motivating their design.

• Chapter 6 presents the system algorithm as a whole, including topics such as the
adversarial reward system, the exploration technique and the relationship between
the policy and discriminator models.

• Chapter 7 presents experiments conducted to explore the role and effect of different
components and variations of the method.

• Chapter 8 presents and discusses the results of the method, including a qualitative
analysis of the produced paintings.

• Chapter 9 concludes the thesis in light of the research questions and thesis goal
presented previously, and proposes several areas of future work.
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2. Background
This chapter presents central concepts and theoretical background underlying the work in
this thesis. The chapter is divided into four primary parts, including a brief introduction
to computational creativity, an extensive explanation of key concepts and algorithms
in reinforcement learning, an introduction to important deep learning architecture
components, as well as an introduction to adversarial learning.

2.1. Computational Creativity

Computational creativity is a subfield of computer science that explores how computer
systems could behave in a way that humans consider creative. Creative endeavours may
belong to many different domains. Art and music are typical examples, but creativity
can also manifest in more pragmatic ways, for instance in a child discovering knowledge
about the world and applying it to novel situations.

Creativity is a challenging term to define. Newell et al. (1962) consider the usefulness
and novelty of ideas the main indication of creativity. Boden (2009) defines creativity
as artifacts that are new, surprising, and valuable. Creative endeavours may build on
existing ideas or completely break the standard mode of thinking, but some level of
novelty and value is essential.

This thesis explores computational creativity in the context of image generation.
Current state-of-the-art methods can produce impressive results, which certainly could
be considered novel and valuable by many. Karras et al. (2017) have developed computer
systems that generate photo-realistic images of people who do not exist. Ramesh et al.
(2022) have developed a system capable of generating novel, high-quality images from
simple text descriptions. Many observers would likely consider such works creative if they
originated from human artists. Computer systems are often set to a higher standard.

Claims that computers inherently cannot be creative typically originate from the point
of the creative process itself, and this view is comparable to the classic Chinese Room
thought experiment by Searle (1980). Typical criticism is based on the conception of
computing processes as predefined algorithms with a deterministic set of rules. Given
the static nature of such systems, no novelty beyond what humans already included
may be generated. Modern techniques in machine learning with large datasets from
the real world could change this perception. As shown by Ramesh et al. (2022), given
sufficient data a learning algorithm can generalize impressively well, and can combine
ideas and concepts in novel and unexpected ways. The area of computational creativity
will, however, likely remain a topic of philosophical debate for many years to come.
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2. Background

2.2. Reinforcement Learning

Reinforcement learning (RL) is a paradigm in machine learning that is very different
from typical supervised and unsupervised learning. In the supervised setting, a model is
typically trained to predict classes or values based on a known, stationary dataset. A
good model is then capable of generalizing well to unseen data. Unsupervised methods
typically attempt to group and categorize unlabeled data. In reinforcement learning there
is no dataset, but rather an agent interacting with an environment (either simulated
or real). Samples are collected by exploring the environment directly, and the goal in
this setting is to train the agent to achieve a high reward as measured by some reward
system.

2.2.1. Terminology†

In order to understand the algorithms and equations presented later in this chapter, it is
necessary to define some notation and terminology related to reinforcement learning.

• The environment in which the agent acts is fully described at some timestep t by its
state st, typically a real-valued multidimensional vector or tensor. The collection
of possible states in the environment is known as the state space. Each timestep
the agent receives an observation ot, which is a function of st — in fully observable
environments st = ot. This thesis follows the convention of using st to indicate the
current observation whether the environment is fully observable or not.

• The agent chooses an action at each timestep. The action space describes the type
of applicable actions in the environment. Actions are typically multidimensional
vectors, and can be either continuous or discrete. The actions chosen by the agent
are given by some policy π(·|st).

• A trajectory τ is a sequence of state-action transitions in the environment. Each
transition is associated with a real scalar reward rt. R(τ) is used to denote the
cumulative rewards for a given trajectory. Several variants of R(τ) exist, but
following sections consider the most common formulation of the infinite horizon
discounted reward R(τ) =

∑∞
t=0 γ

trt, where γ ∈ (0, 1) is the discount factor.

The goal of reinforcement learning is to find a policy π such that R(τ) is maximized
when generating τ using π. Specifically, we wish to maximize the objective function:

J(π) =
∫
τ
P (τ |π)R(τ) = E

τ∼π
[R(τ)] (2.1)

Reinforcement learning as a field is not new, but has been an active area of research
for many decades (see Kaelbling et al. 1996). Central concepts originate from several
areas, such as control theory, Markov decision processes, dynamic programming and
game theory. With the advent of backpropagation and more capable computers, deep
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2.2. Reinforcement Learning

reinforcement learning has expanded the scope of these techniques significantly, and
enabled their application in more challenging contexts.

2.2.2. Deep Reinforcement Learning

Deep reinforcement learning is a subset of reinforcement learning that combines the
theory of classic reinforcement learning with deep neural networks capable of universal
function approximation. In this context, the policy π is parameterized by a deep network
and optimized using gradient ascent. Many deep reinforcement learning techniques exist,
but they can be broadly separated into Q-learning and policy gradient methods.

Q-Learning

In Q-learning we wish to learn the Q function, which is given by the expected future
return for the current policy and an initial state-action pair:

Q∗(s, a) = Eτ∼π[R(τ) | s0 = s, a0 = a] (2.2)

In environments where the action space is discrete, the optimal Q function is sufficient
to find the optimal policy. Given any state s, the optimal action is given by:

π∗(s) = argmax
a

Q∗(s, a) (2.3)

Which is equivalent to selecting the action with the highest expectation in future
reward. In practice, we typically model a function that outputs a vector of expectations
for each action. This eases the modeling task as well as action selection. In continuous
action spaces there is unfortunately no way to analytically find the argmax from this
equation alone. Some methods, such as Deep Deterministic Policy Gradients (DDPG)
introduced by Lillicrap et al. (2015), overcome this issue by approximating the maximum
using a secondary network while the Q function is learned.
In simple environments we can learn the optimal Q∗ function using classic tabular

methods. For more complex problems using deep learning, it is usually impossible to
learn the true Q∗ function in practice. Instead, the function is approximated using
environment samples during training through methods such as Deep Q Learning by
Huang (2020). This learning procedure typically uses a mean-squared-error metric to
optimize the model, and given a sufficient amount of samples the model should converge
to a good approximation of the true Q∗ function for the environment. In Q-learning,
samples may be collected by any policy (not only the Q-optimal policy). These methods
are therefore often referred to as off-policy methods.

Policy Gradient Methods

Policy gradient methods directly optimize the policy through gradient ascent by estimating
the gradient of model parameters with respect to the objective (Equation 2.1). The
policy gradient is given by the equation:
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2. Background

∇θ J(πθ) = E
τ∼πθ

[
T∑
t=0
∇θ log πθ(at|st) R(τ)] (2.4)

The gradient for a single example is given by the probability of the current action
log πθ(at | st), multiplied by its expectation in return R(τ). This translates to increasing
the probability of good actions (as measured by R) when applying gradient ascent. Note
that the policy gradient uses log probabilities instead of the raw probability. The log
maintains the gradient direction while having desirable numerical properties, particularly
when working with very small probabilities. See Appendix B.1 for the full derivation of
the policy gradient.
The true policy gradient is not known, but can be estimated using samples from the

environment. Because the policy gradient depends on πθ, such samples must be collected
using the same policy as we are optimizing in order for the estimate to be valid. These
types of methods are therefore often referred to as on-policy methods.
After collecting a set of environment samples, the policy is optimized using gradient

ascent:

θ ← θ + α∇θJ(πθ) (2.5)
Where α is a small hyperparameter (typically around 1e− 4) determining the learning

rate. These equations consitute a direct interpretation of the policy gradient theorem by
Sutton et al. (1999).

2.2.3. Advantage Actor-Critics

Unfortunately, the return sample R(τ) used in Equation 2.4 typically suffers from high
variance which may prevent stable learning in more complex environments. The advantage
actor-critic framework (A2C) tackles this issue by introducing a value function network
and the concept of action advantages.
Consider a reinforcement learning agent learning to play chess. For any given state,

estimating the win probability for every possible action is an incredibly difficult task
due to the vast number of possible game trajectories. The high variance of R(τ) will be
directly reflected in the policy gradient estimate, which is likely to prevent learning unless
the number of samples is very large. Collecting a sufficient amount of examples is often
computationally prohibitive. Instead of using the return sample directly, actor-critics
estimate the advantage function Aπ(a, s). The advantage function is an estimate of
the relative advantage of performing a specific action a in state s, compared to the
expectation following the current policy. In this context, the chess agent need only
consider the immediate benefits of a move, rather than the entire future trajectory. The
advantage function is given by the equation:

Aπ(s, a) = R(τ | s0 = s, a0 = a)− V π(s) (2.6)

Where V π(s) is the value function. The advantage policy gradient is equivalent to
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Equation 2.4, substituting R(τ) with the advantage estimate Aπ. We can use any
baseline in the advantage function without changing the (zero gradient) optimal, as long
as the baseline is independent from θ. Actor-critics use the value function baseline, given
by:

V π(s) = E
τ∼π

[R(τ | s0 = s)] (2.7)

The true value function is rarely known, and in deep reinforcement learning the
function is estimated using a deep neural network. Learning the value function is
a regression problem — typical implementations optimize the value model using the
mean-squared-error loss formulation and environment samples.

2.2.4. Proximal Policy Optimization

Proximal Policy Optimization (PPO), as proposed by Schulman et al. (2017), is a policy
gradient method intended to improve the performance of basic policy gradients while
avoiding the complexity of second order optimization in trust region policy optimization
(TRPO, see Schulman et al. 2015a). PPO is motivated by the observation that small
changes in parameter space can lead to large changes in the policy. To prevent performance
collapse during training, the method uses a surrogate objective to prevent large changes
in the policy for individual optimization steps.† Proximal Policy Optimization has worked
very well on a number of difficult problems, including continuous control, as shown by
Schulman et al. (2017), and cooperation in multi-agent settings, as shown by Baker et al.
(2019).

Surrogate Objective†

The PPO paper presents two variants of the surrogate objective, the clipped objective
LCLIP and the KL-divergence penalty objective LKLPEN . This section describes the
clipped variant, which was shown by Schulman et al. (2017) to be the best performing
type in their experiments.

PPO uses a ratio prt(θ) to measure the difference between the new and old policy. The
probability ratio for a parameterized policy πθ is given by:

prt(θ) = πθ(at|st)
πθold(at|st)

(2.8)

Where θold is a copy of the old policy parameters. Note that these parameters are not
changed during a single optimization step. The clipped surrogate objective in PPO is
given by the equation:

LCLIP (θ) = Et[ min(prt(θ)Aπt , cprt(θ)Aπt )] (2.9)

Where Aπt is the advantage estimate at time t and cprt(θ) is the clipped probability
ratio:
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2. Background

Figure 2.1.: Clipped surrogate objective in PPO.†

cprt(θ) = clip(prt(θ), 1− ε, 1 + ε) (2.10)

Where ε is the PPO clipping hyperparameter. The clipping term removes the incentive
to adjust the parameters in a way that moves the ratio outside the range [1− ε, 1 + ε].
After applying the min function, we end up with a pessimistic estimate of prt(θ)Aπt where
the ratio is considered only when changing it deteriorates the objective. An illustration
of this effect is shown in Figure 2.1.

Sample Efficiency

The surrogate objective enables PPO to be more sample efficient than basic policy
gradient methods. Recall that trajectory samples must be collected by the policy that is
optimized in order for the policy gradient estimate to be valid. Due to this limitation,
samples in these methods are usually discarded after a single gradient step. PPO enables
the reuse of data through several epochs. Although data will be slightly off-policy after
the initial update, Schulman et al. (2017) showed that multi-epoch optimization works
well in practice and increases the sample efficiency of the algorithm.

2.3. Deep Network Architectures

2.3.1. Convolutional Networks (CNNs)

A Convolutional Neural Network (CNN) is a type of sparse neural network particularly
well suited for computer vision tasks. Since the introduction of kernel training through
backpropagation by LeCun et al. (1989), CNNs have been drivers of breakthroughs in
several areas, including image classification by Krizhevsky et al. (2012), generative models
by Radford et al. (2015), and reinforcement learning by Clark and Storkey (2014).
CNNs are loosely inspired by the visual cortex of animals, and process spatial data

using a set of trainable kernels applied across the whole input. Because of their use of
shared weights in this manner, CNNs are spatially invariant. In practice, this enables
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2.3. Deep Network Architectures

Figure 2.2.: Illustration of the application of a single CNN kernel

the networks to recognize features such as edges or shapes independently of where in an
image they are located. By connecting several convolutional layers, a deep network can
learn to recognize complex concepts such as animals or objects through the hierarchical
relationship of simpler features.

Convolutional layers are controlled by a number of parameters defining their behavior.
The output channel count determines the number of feature maps a single layer produces.
The kernel size controls the size of each learnable kernel, which subsequently affects the
complexity of features a single kernel can detect and the receptive field of the model. The
kernel stride controls the size of each kernel step when processing the input. Along with
input padding, these enable control of the output size of each layer. Figure 2.2 shows an
example of how a single kernel is applied across an input image to produce an output.

2.3.2. Residual Networks (ResNet)

Deep residual networks, as presented by He et al. (2016), have since their introduction had
broad implications in the field of deep learning. These types of networks employ residual
connections, commonly referred to as skip connections, between layers in a model. This
type of connection improves the gradient flow in the model during backpropagation, and
can increase model performance on a number of different problems. In particular, residual
connections have enabled the training of much deeper models which were previously
detrimental to performance.
Figure 2.3 shows the basic structure of a deep residual network consisting of several

residual blocks. A residual network may also contain longer skip connections across
multiple layers, as shown between layers 3 and 5 in the figure. The layers in each block
may be any type of network layer as long as the residual and processed output are
appropriately shaped to be summed, but residual networks are most commonly seen in
CNNs.
In addition to the benefits in terms of gradient flow, residual blocks can more easily

adapt to the complexity of input data. In terms of representative capacity, the hypothesis
space of a larger model is necessarily a superset of any smaller model it contains. As
shown by He et al. (2016), performance may still deteriorate with additional layers, even
though the simpler model could be represented by modeling the identity in excessive

11



2. Background

Figure 2.3.: Structure of a residual block and deep residual neural network.

layers. This indicates that the identity function is in fact quite difficult to learn. By
including a direct skip connection, the identity function is much more easily represented.
Intermediate layers need only model the zero function, as the residual connection preserves
the original input.

2.4. Adversarial Learning

Advarsarial machine learning is a technique commonly used to train a model to be more
resilient against various forms of attacks. In addition to the model trained to solve some
problem, the technique introduces an adversarial opponent that attempts to exploit its
weaknesses. As shown by Huang et al. (2011), this setup can often improve the learning
ability of the system. Following sections present adversarial machine learning in the
context of generative adversarial networks, and explain how the method can be combined
with techniques in reinforcement learning.†

2.4.1. Generative Adversarial Networks†

Generative adversarial networks (GANs), first conceived by Goodfellow et al. (2014),
use an adversarial framework to train a model to generate new examples from some
data distribution. GANs are typically used to generate fake images, but can be used in
many other domains as well. The method has been shown to be capable of generating
impressive results, including photo-realistic images in work by Karras et al. (2017) and
Ramesh et al. (2022), among others.
In GANs, two neural network models are trained simultaneously in a zero-sum com-

petitive fashion. In the context of image generation, a generator model is trained to
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2.4. Adversarial Learning

Figure 2.4.: Structure of Generative Adversarial Networks†

produce fake image examples. A second discriminator model acts as a binary classifier
that attempts to recognize differences between fake and real images. The discriminator
prediction serves directly as the learning signal for the generator. In the basic GAN
implementation, both models use the same minimax objective function:

LGAN = E
x∼X

[logD(x)] + E
z∼Z

[log(1−D(G(z)))] (2.11)

Where D and G are the discriminator and generator models respectively, X is the training
dataset and Z is the space of generator inputs, typically a normal distribution. The
discriminator is optimized to minimize the function, whereas the generator attempts to
maximize it. Other objective variants, such as the Wasserstein formulation by Arjovsky
et al. (2017), are considered in later chapters. Figure 2.4 illustrates the typical setup of
generative adversarial networks.

2.4.2. Adversarial Reinforcement Learning†

In adversarial reinforcement learning, the opponent attempts to exploit weaknesses in
the agent policy. Pinto et al. (2017) have shown that this technique can improve the
ability of agents to generalize in difficult continuous control settings.

Figure 2.5.: Generative Adversarial Reinforcement Learning†
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(a) MNIST (b) Fashion-MNIST (c) CelebA

Figure 2.6.: Dataset examples. The figure shows examples from the MNIST, Fashion-
MNIST and CelebA datasets respectively.

This thesis examines the use of adversarial reinforcement learning in the context of
image generation. This application closely mirrors the structure of generative adversarial
networks, but substitutes the generator network with a learned policy. Since the output
is a result of the policy interacting with a (non-differentiable) environment, the policy
cannot be directly optimized based on discriminator outputs like in GANs. Instead, we
can use techniques in reinforcement learning to learn from sampled transitions, where
the discriminator acts as a reward system. Figure 2.5 illustrates this adversarial setup.

2.5. Tools and Datasets

This work employs a number of open source libraries and freely available pieces of software.
The method is implemented in the Python programming language, which is broadly
supported in the field. In particular, the implementation relies on PyTorch, provided
by Paszke et al. (2019), to define neural network graphs and loss functions, as well as
for automatic differentiation and model optimization. Numpy, provided by Harris et al.
(2020), is used for various other calculations and data processing. Other libraries used
for various auxillary tasks include ImageIO by Klein et al. (2022), torchvision by Marcel
and Rodriguez (2010), and Weights and Biases by Biewald (2020).
The results and experiments presented in Chapters 7 and 8 are based on systems

trained on three commonly used and freely available datasets. These include MNIST
by LeCun and Cortes (2010), Fashion-MNIST by Xiao et al. (2017) and CelebA by Liu
et al. (2014). Figure 2.6 shows examples from the datasets used in this thesis.

MNIST is the simplest dataset considered in this work. The dataset consists of grayscale
images of handwritten digits at a 28x28 pixel resolution. MNIST is commonly used to
show that a technique works on simple tasks, and was chosen for this project to provide
an easy baseline for comparison and proof of learning.
Fashion-MNIST is a slightly more complex dataset consisting of grayscale images of

various clothing items at a 28x28 pixel resolution. Fashion-MNIST represents a more
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difficult problem in generative adversarial reinforcement learning, but remains simple
enough to enable quick iteration and evaluation.
Finally, CelebA is the most challenging dataset explored in this work. The dataset

consists of aligned, colored photos of celebrities, and is a larger and more complex dataset
than both MNIST and Fashion-MNIST. Increases in data complexity translate to a more
difficult learning problem to produce good results. As a result, CelebA serves better to
evaluate the capability of the proposed method, and it is therefore the most thoroughly
explored dataset in this thesis. CelebA is also used in similar work, which enables easier
comparison with previous methods.
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3. Related Work
This chapter presents key work related to the proposed generative adversarial rein-
forcement learning method. As previously mentioned, this area of research is largely
unexplored. Only two previous papers, SPIRAL by Ganin et al. (2018) and SPIRAL++
by Mellor et al. (2019), explore similar adversarial methods. Given their significant
relevance, these works are the primary focus of this chapter, though alternatives such as
differentiable algorithms are also considered.

3.1. Synthesizing Programs for Images using Reinforced
Adversarial Learning (SPIRAL)†

Synthesizing Programs for Images using Reinforced Adversarial Learning (SPIRAL) by
Ganin et al. (2018) employs an adversarial reinforcement learning framework to train a
policy to generate images through a process of sequential actions. Their method employs
an adversarial training setup similar to the example shown in Figure 2.5. A key discovery
in the SPIRAL paper is that discriminator predictions can serve as adequate reward
signals for stable, unsupervised policy training for this type of problem.

3.1.1. Method

SPIRAL uses a number of distributed actor, policy, and discriminator learners to speed
up training. Actors generate policy training data in the form of trajectories in the
environment. The policy is trained using an advantage actor critic (A2C) algorithm, using
a value function estimator V π(st) as a baseline (see Section 2.2.3). The discriminator
is trained to distinguish between real images from some dataset and the generator
outputs, and is used as the environment reward function. The authors found that the
minimax objective introduced by Goodfellow et al. (2014) was difficult to optimize in
their experiments, and they achieved better results using the Wasserstein loss formulation
by Arjovsky et al. (2017).
SPIRAL employs a model architecture similar to that of Deep Convolutional GANs

(DCGANs) by Radford et al. (2015) for the discriminator network. The authors use a
combination of ResNet feature extractors (as presented in Section 2.3.2), LSTMs (see
Hochreiter and Schmidhuber 1997) and an autoregressive decoder to model actions in
their policy network.
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Figure 3.1.: SPIRAL overview. The top row shows unconditional rendering with random
noise as input. The remaining three rows show conditional rendering on OMNIGLOT,
Mona Lisa and a procedural MuJoCo targets respectively. Figure by Ganin et al.
(2018), reused with permission.

3.1.2. Results

The authors evaluated their solution on the MNIST, OMNIGLOT (Lake et al. 2015)
and CelebA datasets, as well as an original procedural MuJoCo (Todorov et al. 2012)
dataset developed for the paper. Their painting environments are based on the open
source libmypaint library by MyPaint (2021).

In the libmypaint environment, the authors model actions using 8-dimensional vectors
controlling the shape (specified by a quadratic bezier curve), pressure and color of the
stroke. In the scene experiment, each action specifies the type of object, as well as its
position and color.

After 2×108 training steps, Ganin et al. achieved adequate results for both conditional
and uncoditional rendering in all environments. The conditional rendering results for the
CelebA dataset are shown in Figure 3.2. The results are blurry, but show clear high-level
similarity to the target images.

3.2. Unsupervised Doodling and Painting with Improved
SPIRAL (SPIRAL++)†

In Unsupervised Doodling and Painting with Improved SPIRAL, Mellor et al. (2019)
extend on the SPIRAL algorithm to achieve superior results compared to the original
implementation. The method introduces a number of small changes which combined
yield the SPIRAL++ algorithm.

Unlike the original algorithm, SPIRAL++ rewards the agent every timestep instead
of waiting until the fake image is complete. The reward signal is given by the relative
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Figure 3.2.: SPIRAL reconstructions. Example of reconstructions conditioned on the
CelebA dataset using 20 brush strokes. From SPIRAL paper, reused with
permission from Ganin et al. (2018).
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Figure 3.3.: Unconditional paintings by SPIRAL++. Examples of unconditional
32-step paintings trained on the CelebA dataset. From SPIRAL++ paper,
reused with permission from Mellor et al. (2019).

change in discriminator output between each action. This change reduces the difficulty of
the credit assignment problem,1 but may introduce some bias when the discount factor
is not one.
SPIRAL++ also introduces changes to stabilize discriminator training. First, Mellor

et al. (2019) introduce spectral normalization in each layer, which serves as a regularizer
of the model. The authors found that this empirically improved the quality of produced
images. Second, they apply discriminator masking when training on conditional examples.
This prevents the model from directly comparing pixel values to determine if a pair is
fake, which would prevent useful reward signals for the agent.
Finally, SPIRAL++ trains a population of generator policies sharing the same dis-

criminator. This modification serves to increase the capacity of the generator element
and thus ensures that the data distribution is more thoroughly covered by fake examples.
Due to the increased rate of data generation, this also enabled the authors to remove the
fake image buffer used in SPIRAL. Figure 3.3 shows examples of paintings generated by
unconditional SPIRAL++ agents.

3.3. PaintBot

Jia et al. (2019) present PaintBot, a method capable of recreating reference images using
a sequence of brush strokes. The technique employs Proximal Policy Optimization to
train the policy, but unlike SPIRAL it does not use an adversarial reward system. Instead,
the authors propose pixel-wise and perceptual loss metrics to guide policy learning.† This
type of learning excludes the possibility of generating novel examples, and is therefore
more comparable to style transfer than typical generative adversarial methods.

3.3.1. Method†

PaintBot uses on-policy Proximal Policy Optimization to train a continuous action space
policy. The policy uses a set of convolutional neural networks (CNNs), followed by a fully

1Given a long sequence of actions it is difficult to determine which action (or combination of actions)
led to a reward at a later point in time. This problem is commonly known as the credit assignment
problem.

20



3.4. Differentiable Techniques

connected layer parameterizing the action distribution. The authors use a combination
of L

1
2 loss and perceptual loss as the reward signal to encourage image similarity beyond

matching average colors. The perceptual loss is defined in terms of the convolutional
feature maps:

Lpercept(I, Iref) =
N∑
n=1

|| φn(I)− φn(Iref) ||22
hnwndn

(3.1)

Where φn is the n-th feature map from the CNN, I and Iref are the current and
reference images, respectively, and hnwndn is the size of the feature map. This function
has the effect of encouraging the policy to match high level features in the image instead
of exact colors. Equation by Jia et al. (2019).

The authors use curriculum learning to better handle large state spaces and long action
sequences. Curriculum learning entails a gradual increase in the maximum number of
simulated steps over the course of training. The number of steps is controlled by a reward
threshold parameter. Each episode ends when the reward threshold is reached.

PaintBot uses difficulty based sampling to prevent overfitting on a subset of the data.
Each episode, a new reference image Iref is randomly chosen from the dataset, weighted
based on the relative policy performance on each image.

3.3.2. Results

The PaintBot algorithm achieves good results on a number of different images with
several different brush scales and training datasets. The algorithm converges in about
78k episodes without curriculum learning. With the addition of curriculum learning, the
algorithm converges in the same amount of steps, but performs between 20-30% better
as measured by the objective function. Refer to Jia et al. (2019) for example outputs
generated by the PaintBot method.

3.4. Differentiable Techniques

While generative adversarial reinforcement learning is an uncommon area of research,
other authors have explored related techniques for similar applications. Some of these
techniques are differentiable, which allows for direct optimization of the objective.

3.4.1. Neural Painter

Nakano (2019) proposes a fully differentiable neural painter that enables intrinsic style
transfer2 of target images. The method relies on a model trained to reproduce images of
strokes on a digital canvas. The author explores two variations of the neural rendering
model — the first model is trained as a GAN, whereas the second uses variational

2In typical style transfer methods, the target style is learned from a reference image by a deep
convolutional model. In intrinsic style transfer, the style is a direct result of the appearance of brush
strokes in the environment.

21



3. Related Work

Figure 3.4.: Paintings by a fully differentiable neural painter. Directly optimized
reconstructions by a differential neural painter. MIT License, courtesy of
Nakano (2019).

Figure 3.5.: Paintings by another fully differentiable neural painter. Directly
optimized reconstructions by a differential neural painter. From an earlier
personal research project, see Røkenes (2020).

autoencoders (VAEs) to learn stroke reconstruction. Both models are trained using
random stroke samples generated by a non-differentiable environment.
The neural painter does not use reinforcement learning. Instead, a set of actions are

simultaneously optimized with respect to the objective function to produce an image.
Rather than optimizing for the pixel-wise error, the author proposes a content loss
objective suitable for intrinsic style transfer, comparable to that of PaintBot. In this
context, the loss is given by the mean-squared-error of activations in a pre-trained
classifier network for the fake and target images respectively. This enables the model to
create a reconstruction where the image content remains similar, without being limited
by exact color use or object placement. Figures 3.4 and 3.5 show examples of images
generated by differentiable neural painters.

3.4.2. Model-based Reinforcement Learning

Huang et al. (2019) propose a model-based reinforcement learning technique capable of
reproducing target images using strokes on a simulated canvas. Their method includes
a neural rendering model that learns the dynamics of the painting environment in a
supervised fashion using random stroke samples.

The authors use Deep Deterministic Policy Gradients (DDPG) by Lillicrap et al. (2015),
previously introduced in Section 2.2.2, to train the policy. Each step, the policy selects
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Figure 3.6.: Reconstructions produced by a model-based DDPG agent. The
agent is capable of painting a wide variety of target images. MIT License,
courtesy of Huang et al. (2019).

an action that is used by the neural renderer to estimate the next canvas. The output
estimates and target images are evaluated by a WGAN discriminator with gradient-
penalty regularization (WGAN-GP) trained to detect real and fake image pairs. The
introduction of an environment model ensures that the entire process is fully differentiable.
This provides the agent with gradients from the environment model, which enables direct
optimization of the policy with respect to the reward. Figure 3.6 shows example outputs
produced by this method.
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4. Simulation Environment
The work presented in this thesis is based on a custom paint simulation environment
that enables the generation of a wide variety of paintings. This chapter presents the
implementation details of the system, including configuration options and action spaces
relevant to the painting task. In this thesis, the custom environment is referred to as
PaintGym.

The environment is implemented in low-level OpenGL1 to enable the highest perform-
ance possible. Since on-policy algorithms do not reuse old data between training epochs,
developing a fast environment suitable for rapid sampling of new experience is highly
desirable.
To enable easy integration with any learning algorithm, the implementation follows

the OpenAI Gym API standard by Brockman et al. (2016). The core of the environment
is based on the custom brush implementation. Each brush type is defined by a YAML2

configuration file that determines its parameterization and appearance.

4.1. Parameterization

The brushes in PaintGym are configured to use one of four different stroke parameteriza-
tions — bezier, line, triangle, or point stroke. The stroke parameterization determines
how many spatial inputs are required to define the shape of the stroke. For example, a
single coordinate is sufficient to draw a point stroke, whereas line strokes require both
a start and end position. Bezier strokes require an additional control point to define
a cubic bezier curve, and triangle strokes need three points to define the shape of the
rendered triangle.

A stroke step setting determines the distance between each rendered texture in a stroke.
Bezier strokes are sampled at a high resolution to generate approximately equidistant
points — for other parameterizations the exact solution is easily found. Each sampled
texture location is associated with approximate angles and percentages indicating their
relative position on the curve. These are used for rendering certain types of brushes.
Figure 4.1 shows an example of the action space of a line and bezier brush.
In addition to the stroke parameterization configuration, additional initialization

settings determine the brushes’ expressiveness. These settings include the number of
1OpenGL (Open Graphics Library) is a cross-platform API used for rendering computer graphics.
The API is widely used for applications such as games, simulations, and other software. Refer to
www.opengl.org for more information.

2YAML is a simple and easily readable markup language commonly used for configuration files. Refer
to www.yaml.org for more details about YAML.

25

www.opengl.org
www.yaml.org


4. Simulation Environment

Figure 4.1.: Illustration of different action spaces in the environment. The figure
shows the action space of line and bezier brush parameterizations, respect-
ively.

color channels (0, 1, or 3, where 0 indicates the color is always white) and whether to
control the opacity and thickness/pressure of the stroke. The environment also supports
color parameterization in HSV-space (hue, saturation, value), which is applied directly
at the shader level when enabled.
The brush configuration also determines the appearance of the rendered stroke, in-

cluding which texture to render at sampled points, whether the texture should rotate to
follow the stroke direction, the minimum and maximum texture size, and random jitter
in color and opacity. Note that the inclusion of jitter makes the environment stochastic.

For an example of a complete brush configuration file, see Appendix A.1. In combination,
the configuration parameters enable considerable variation in possible brush appearances.
Figure 4.2 shows an example of different brushes possible to create in the environment.

4.2. Rendering

When a brush is provided with an action vector, it generates a multi-sprite buffer that
contains the necessary information about each texture in the brush stroke. The data is
passed to the OpenGL rendering engine, which generates the necessary vertex buffers
and batches them into a single draw call. This process is repeated for every parallel
environment, producing a grid of strokes in GPU memory. The resulting frame buffer is
then rendered on top of the environment canvas in a second draw call.

The separation of the draw calls enables storage and visualization of painting history,
and the engine utilizes a decoupled virtual frame buffer process to support headless
rendering. Several rendering processes can run in parallel, which ensures high performance
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Figure 4.2.: Examples of various brushes supported by the custom painting
environment. Each image consists of 10 random strokes in the action
space.
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Figure 4.3.: Overview of the PaintGym architecture.

on capable computers.

4.3. Interface
With the exception of providing a brush configuration file, learning algorithms need
not consider the underlying implementation of the environment. PaintGym follows
the standard OpenAI Gym interface, but includes a few extensions necessary for its
application.
First, the environment is vectorized and renders multiple images from a batch of

actions in parallel. Vectorization improves performance and eases the task of running
inference on batches of states when the learning algorithm chooses actions. In practice,
the observation and action spaces in the vectorized environment are (n_envs, n_channels,
width, height) and (n_envs, <brush dimensions>), respectively. Note that the image
size may be different internally in the rendering engine. Images are typically rendered at
2 to 3 times the target resolution, and are resized before being returned to the learning
algorithm. Rendering at a higher resolution reduces issues associated with computer
graphics, such as aliasing, and increases the quality of resulting image observations.

Second, the environment includes an attachment property that defines callback functions
necessary to communicate with the environment. Since the environment defines no reward
system on its own, the reward function must be set externally. The reward function
also works on batches of images, improving performance when a discriminator model is
used as a proxy reward system. Callbacks can also be used to receive finished paintings
necessary to train a discriminator. Figure 4.3 shows an overview of the environment
architecture.
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5. Model Architectures
This thesis proposes several deep network architectures suitable for generative adversarial
reinforcement learning. The architectures are based on many previous works, including
Deep Convolutional GANs (DCGANs) by Radford et al. (2015), Wasserstein GANs
(WGANs) by Arjovsky et al. (2017), WGAN-GP by Gulrajani et al. (2017), SPIRAL by
Ganin et al. (2018), and ResNet by He et al. (2016), but combine and extend on these in
several ways.
The method employs three primary models — the discriminator, feature extractor,

and policy head. The discriminator and feature extractor models build directly on
conventional convolutional architectures. The policy head architecture models a partially
spatial probability distribution using an autoregressive model similar to that of SPIRAL.

5.1. Discriminator

The discriminator model is a conventional deep convolutional model similar to previous
work such as DCGANs by Radford et al. (2015) and WGANs by Arjovsky et al. (2017)
and Gulrajani et al. (2017). The model consists of four 2D convolutional feature extractor
layers (conv2d) followed by a final linear or convolutional layer producing a single value
prediction. Each hidden layer is followed by an optional normalization layer and leaky
rectified linear unit (ReLU) activations. The effect of various normalization layers is
discussed further in Section 7.4.4.

Following conventions from similar architectures, the discriminator model uses kernel
sizes of 3x3. In combination with strides of 2 and (zero) padding of 1, each layer produces
feature maps with half the spatial size of its input. The hidden layers employ leaky
rectified linear units with a negative slope of 0.2. This type of activation enables gradient

Layer Shape Kernel Stride Padding Normalization Activation
conv2d (32, 32, k ∗ 21) 3, 3 2, 2 1, 1 optional leaky ReLU
conv2d (16, 16, k ∗ 22) 3, 3 2, 2 1, 1 optional leaky ReLU
conv2d (8, 8, k ∗ 24) 3, 3 2, 2 1, 1 optional leaky ReLU
conv2d (4, 4, k ∗ 28) 3, 3 2, 2 1, 1 optional leaky ReLU

Table 5.1.: Discriminator extraction stack. The extractor stack consists of four 2d
convolution layers. The hyperparameter k defines the number of feature maps
in the model. Each layer may optionally use a normalization layer such as
instance norm, batch norm and/or spectral norm.
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Layer Shape Kernel Stride Padding Normalization Activation
conv2d (1, 1, 1) 4, 4 1, 1 0, 0 none sigmoid/none
linear (1) - - - none sigmoid/none

Table 5.2.: Discriminator output layers. The discriminator uses either a single con-
volutional layer or a dense linear layer to produce a single value output
prediction.

Figure 5.1.: Discriminator architecture.

flow for all units, even when their input is below zero. As shown by Radford et al.
(2015), the leaky variant is superior to the pure rectified linear unit when used in GAN
discriminator models. Tables 5.1 and 5.2 show an overview of the discriminator layers,
and Figure 5.1 shows an illustration of the architecture.

All layers except the output layer use trainable biases. These are often omitted in other
discriminator architectures because the implicit bias in subsequent batch normalization
layers leaves the parameters redundant. As will be discussed in Section 7.4.4, batch
normalization is not well suited to this application area and bias is therefore included
directly. The output layer is followed by a final sigmoid activation whenever the cross-
entropy loss formulation is used. Other training algorithms, such as WGANs by Arjovsky
et al. (2017) and Gulrajani et al. (2017), and Least Squares GANs (LSGANs) by Mao
et al. (2016), use the linear prediction directly.

5.2. Feature Extraction

The feature extractor used for the policy is a deep convolutional architecture with residual
connections. The architecture is built on previous work by Ganin et al. (2018) and He
et al. (2016). A hyperparameter c determines the number of filters in the model, and
along with the number of residual blocks, it determines the model’s capacity. This work
uses a channel count of 64 and 8 residual blocks, which provides a balance between
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Figure 5.2.: Feature extractor input. The input consists of two channels of linear
spatial grids, and one or more stacked frames from the environment canvas.

capacity and model size, and worked well in preliminary experiments.
The feature extractor input consists of one or more stacked canvases, enabling the

model to observe changes in the canvas over time if enabled. Stacking observations is a
common design pattern in image-based reinforcement learning, previously used by Mnih
et al. (2013) among others.
Two channels of constant values are concatenated to the image before it is processed.

These channels define a spatial grid and contain linear gradients from -1 to 1 on the X
and Y-axis, respectively. Additional grid channels were also used by Ganin et al. (2018)
and Mellor et al. (2019) in their implementations. Unlike typical classification models,
the spatial location of detected features is crucially important for action selection. As
discussed in Section 2.3.1, convolutional layers are spatially invariant. The inclusion of
a grid enables the model to assess the location of features at any level of abstraction.
Figure 5.2 shows the structure of the feature extractor input.

Architecture

The feature extractor network contains an initial 2D convolutional layer with a kernel size
of 5, a stride of 1, and zero padding of 2, producing c feature maps with the same spatial
size as the input. This enables the embedding of additional information independently to
the size of the canvas, as will be discussed in Section 5.5.

The initial convolution is followed by three hidden convolutional layers using rectified
linear unit activations. The layers use c channels, kernel sizes of 3, padding of 1, and
strides of 2. Each layer halves the size of the feature map, resulting in c 8x8 feature maps
after the final layer for, given the canvas size of 64 used in this work.
The hidden layers are followed by a stack of residual blocks. Each residual block

consists of two convolutional layers with kernel sizes of 3 and 1 and paddings of 1 and
0, respectively. Both layers use a stride of 1, and are followed by a rectified linear unit
activation.
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Figure 5.3.: Feature extractor model. The feature extractor consists of a number of
convolutional layers followed by a residual stack and a dense linear layer.
Embeddings are optionally added after the initial 5x5 convolution.

The output of the convolutional layers is added to the input and passed through a
rectified linear unit activation to produce the final output. As discussed in Section 2.3.2,
these skip connections enable the model to be very capable while maintaining gradients
through a large number of layers. The output is finally passed through a dense linear
network to produce a feature vector. All experiments in this thesis use a feature vector
of size 256, which was shown by Ganin et al. (2018) to work well in practice for similar
problems. Figure 5.3 shows an overview of the feature extractor model.

5.3. Critic

The critic model uses the same feature extractor as the policy, and model parameters are
shared. This design decision assumes that there exists a common representation suitable
for modeling both actions and values. Although this is a strong assumption, it can work
well in practice for visual problems, as shown by Schulman et al. (2017) on Atari and
Ganin et al. (2018) in SPIRAL.
The critic head is a small neural network with one hidden linear layer with 64 units,

and a linear output layer that produces a single value. A rectified linear unit activation
separates the two layers. Given the simplicity of the network, the majority of the value
function modeling capacity exists in the feature extractor. The critic head combines the
previously extracted features to produce a single numerical estimate.

5.4. Policy

The policy head decodes the representation provided by the feature extractor to produce
a probability distribution over stroke parameters. The policy is represented by a discrete
categorical distribution translated to continuous values before being executed in the
environment.

The resolution of each action parameter is configurable, but for a typical bezier brush
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Figure 5.4.: Overview of the autoregressive policy head. The policy head consists
of a chain of action decoders that individually model the distributions of
each action parameter. The first head decodes the feature encoding directly,
whereas later heads are conditioned on the sampled value of the preceding
heads. This is achieved using sample encoding and feature embedding
networks with residual connections.

environment, the action space contains 322 options for each stroke coordinate (start, end,
and control positions), 16 options for each color channel, and 16 options for the thickness
and opacity respectively. The total number of possible strokes is very large — for this
example, we have 326 × 165 ≈ 1.2× 1015 (more than 1200 trillion possible strokes). The
action space is too large to be practically modeled by a single distribution. To enable
learning in such a large action space, the distribution is modeled by an autoregressive
multi-head policy. In this setting, the probability of some action a is given by a chained
conditional probability of each value in the action vector:

P (a | s) = P (a0 | s)× P (a1 | a0, s)× · · · × P (an | a0, a1, . . . an−1, s) (5.1)

To model this type of distribution, the policy head contains a chain of action decoder
networks connected by a set of sample encoders, feature embedders and residual con-
nections. Figure 5.4 shows an overview of the policy head architecture. The following
sections explain each part of the architecture in detail and motivate its various design
decisions.

5.4.1. Decoder Heads

The action decoder heads are responsible for decoding input feature vectors to model
categorical probability distributions for each action space dimension. Scalar dimensions
(such as thickness and opacity) are modeled by a single linear layer with a softmax
activation function. Spatial dimensions employ a more complex convolutional network
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(a) Scalar decoder

(b) Spatial decoder

Figure 5.5.: Spatial and scalar decoder heads. Scalar dimensions are modeled by
a single linear layer followed by a softmax activation function. Spatial
dimensions are modeled by a more complex decoder containing a residual
stack and strided convolutions.

with 8 residual blocks. Figure 5.5 shows the architecture of the scalar and spatial decoder
heads respectively.

The design of the spatial heads is motivated by two primary factors. First, the x and y
coordinates of a stroke position depend strongly on each other. A stroke starting at some
position x may be very good only when the y coordinate is some specific value. This
relationship may be captured through two conditional decoder heads but is more readily
learned as a single distribution. Second, several nearby coordinates are likely comparable
in performance for any given input state. This type of local relationship is captured
better in a convolutional network with implicit spatial bias. Non-spatial parameters,
such as the stroke thickness, are not bound by these considerations and are therefore
modeled by a single linear layer.

As discussed in Section 2.3.2, the use of residual connections enables improved gradient
flow in very deep models. The residual stack in the spatial decoder ensures that the
gradient flows from the output distribution, all the way to the original input in the
feature extractor. Strided convolutions are necessary to scale the distribution to the
desired spatial resolution.

5.4.2. Sample Encoding

After a head has processed its input feature encoding, the result is a categorical distribution
over the action space of a single index in the action vector. Before using the next head,
we sample from the distribution to produce a value for the respective action dimension.
The following heads are then conditioned on this sample to model the probability in
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Equation 5.1.
Each sampled action is first encoded into a hidden representation with a common size.

This work uses a hidden size of 16 to balance generality and accuracy for various action
dimension resolutions. For scalar dimensions, the hidden representation is created by
encoding the sample as a one-hot vector and passing it through a single linear layer. The
encoding method is similar to the technique used by Ganin et al. (2018).
Spatial samples use a direct linear transformation of the values. Given the spatial

resolution, one-hot encodings over the whole space would be comparatively large (322 =
1024), which could reduce the conditional generalization ability of the model. Different
encodings per dimension (yielding two vectors of size 32) is an option, but this technique
could make it more challenging to represent the relationship between the dimensions.
Therefore, spatial encoders directly map the raw values using a linear layer (x, y → h).

Note that the linear encoding layers for both scalar and spatial encodings use no
activation function — the linear output is instead passed directly to the feature embedder.
Since the encoded action size is smaller than the dimension of the sample, this step may
become an information bottleneck if a majority of activations are low. The activation
function is omitted to reduce potential adverse effects due to poor initial weights, and to
provide the model with more direct control of the relationship between action samples
and conditional feature encodings.

5.4.3. Feature Embedding

The feature embedder is responsible for providing the next head with an encoding
containing the necessary information for the conditional on the state s as well as previous
action samples. To achieve this, the hidden sample encoding and input feature encoding
are concatenated and passed through a multi-layer perceptron (MLP). The architecture
uses rectified linear activations and two hidden layers of size 32 and 64, respectively. The
output works as a residual vector which is summed with the original feature vector and
passed through a final rectified linear unit to produce the subsequent feature encoding.
The residual design of the feature embedder is motivated by two main factors. First,

these connections have desirable properties in terms of gradient flow through the many
layers in the policy head. Second, using a residual connection enables each head to more
easily suppress or increase activations for features relevant to the previously selected
action sample. Consider a toy example where an agent is drawing faces and receives a
simple feature vector of size 3, where indices indicate the presence of a person’s eyes,
nose, and mouth, respectively. Given that the previous head has selected a red color, it
could be beneficial to suppress signals relating to the eyes and nose (as these are typically
a different color) because they are irrelevant to action selection in later heads. Such
suppression can be achieved by producing a residual vector where the first two indices
contain large negative values. Good suppression ensures that each action decoder only
has to learn the simplest function necessary to achieve good results.

Note that the MLP feature embedder receives both the previous feature encoding and
the most recent sample as input, enabling the embedder to produce a residual vector
based on any relationship between these vectors. Building on the previous example, this
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Figure 5.6.: Sample encoding and feature embedding. The action sample is trans-
formed into a hidden encoding using a single linear layer. This encoding, as
well as the previous feature encoding, is concatenated and passed through
a multi-layer perceptron to produce a residual feature vector. The residual
and original feature encodings are summed and passed through a rectified
linear unit to produce the next hidden feature encoding.

could enable the network to suppress the eye and mouth features for red strokes only
when a mouth is not present. If a mouth already exists, the red color may be useful for
some other feature in the painting, and the information should not be suppressed. Figure
5.6 shows an overview of the sample encoding and feature embedding architecture.

5.5. Embedding Extensions

In addition to the internal sample and feature embeddings, the policy also employs
embedding extensions for improved performance. Embedding extensions include spatial
grids, previous actions, and observational noise. The purpose of these extensions is
to provide the policy with more information beyond the current canvas observation to
improve the model’s capacity or encourage desirable behavior.

5.5.1. Observational Noise

The inclusion of observational noise is motivated by the design of generator networks in
generative adversarial algorithms such as GANs and WGANs. Recall that generators
are conditioned on a random latent vector to produce an image, as described in Section
2.4.1. The input randomness enables the network to cover a broad range of the target
distribution and is strictly necessary for non-deterministic outputs.’
The process through which images are produced in this adversarial reinforcement

learning setting is not deterministic due to the stochastic nature of both the agent and
environment. Unfortunately, this type of stochasticity is often insufficient to enable the
policy to capture a complex multi-modal dataset adequately.

Consider the first stroke of an agent learning to paint eights and ones from the MNIST
dataset. A straight vertical line in the middle of the canvas will likely yield a high reward,
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as the resulting output is similar to the class of ones present in the dataset. Likewise, a
curved line matching part of the digit eight could also yield a high reward. Note that the
initial observation is identical in both cases — the empty canvas. Since the algorithm
reduces policy entropy, the policy will generally commit to only one of these actions, and
by doing so, excluding the possibility of generating images matching the secondary mode.
This problem can be avoided by introducing observational noise. For this example,

the inclusion of a single random bit is theoretically sufficient (though not reasonable in
practice) to enable coverage of the two primary modes in this example. In practice, the
embedding consists of a large, normally distributed vector.

The proposed architecture includes two different ways to embed the noise vector as a
policy condition, as shown in Figure 5.7. In both cases, the vector is first processed by a
small MLP to produce a vector of appropriate size.

• Feature extractor embedding. In this setting, the appropriate vector size is
equivalent to the number of convolutional feature maps after the initial convolution
in the feature extractor. The vector is added to the initial feature map on a
per-channel basis before the activation function is applied.

• Policy head embedding. This variant embeds the processed noise vector dir-
ectly in the policy head before the action heads. The feature vector provided by
the extractor is summed with the appropriately sized noise encoding before the
activation function is applied.

5.5.2. Action Conditional

The second embedding extension conditions the current action on the previous action
performed in the environment, if any. This inclusion is motivated by the relationship
between sequential strokes and provides the model with single-step memory of actions in
the environment. As with observational noise, the embedding may occur at either the
extractor or policy head level.
Note that the action vector is quite complex, as it contains information defining the

whole stroke. To enable learning from the vector, each dimension is first encoded to a
hidden representation in the same way as action samples in the policy head (see Section
5.4.2). The hidden encodings are then concatenated and further processed in the same
way as the observational noise vector.

37



5. Model Architectures

Figure 5.7.: Observational noise embedding. The observational noise is first pro-
cessed by an MLP to produce a vector of appropriate size. The vector may be
embedded in the channels of the first feature maps in the extractor (bottom)
or directly in the policy head (top).
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6. Learning Algorithm
This chapter presents the learning algorithm used to train the neural network models
presented in the previous chapter. The primary focus of the following sections is the
reinforcement learning system, whereas discriminator training is discussed primarily in
the context of the adversarial reward system. The chapter explores how various algorithm
choices relate to each other and previous work, and justifies the design decisions with
respect to the application area.

6.1. Implementation

The learning system consists of three primary components. First, actor processes are
responsible for acting in the environment using the current policy to generate trajectories
and fake images for policy and discriminator training, respectively. Second, Proximal
Policy Optimization, previously presented in Section 2.2.4, is used to optimize the policy.
Finally, the discriminator is optimized using real examples and fake paintings from the
previous simulation. The updated discriminator is used in the following rollout to collect
reward signals, and the process repeats until convergence. Figure 6.1 shows an overview
of the learning algorithm cycle.

The rollout step is the most computationally expensive part of the process due to the
expensive rendering process and the many model inferences necessary (policy and reward
predictions for each step). In a typical scenario, the rollout step consumes around 60% of
the total wall clock time. Generating trajectories is an embarrassingly parallel1 task due
to the complete lack of dependency between different episodes. On capable computers,
performance can be improved by sharing model memory and running several rollouts
simultaneously.

Although the PPO algorithm is also parallelizable, as shown by Heess et al. (2017), this
work implements the sequential variant. This choice is motivated by the comparatively
lower computational cost of policy optimization compared to sample collection, and the
higher implementation complexity associated with a parallel solution.
The system executes policy optimization and discriminator training in discrete se-

quential steps, but since these steps are independent, they could be easily parallelized.
Discriminator training is, however, much faster than policy optimization in practice, and
performance benefits would presumably be minor considering the overhead associated
with parallel implementations.

1Embarrassingly parallel problems, known from parallel computing, can easily be separated into smaller
parallel subtasks and executed without sequential dependencies or communication.
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Figure 6.1.: Illustration of the learning algorithm cycle. Actors collect training
data used by PPO to optimize the agent. The discriminator trainer optimizes
the discriminator model used in the adversarial reward system, and the
process repeats until convergence.

With the combination of vectorized environments (as discussed in Section 4.3) and
parallel rollouts, typical runs execute the whole training cycle at a rate of between 50 - 200
environment steps per second2. Performance varies depending on training configuration
hyperparameters, length of episodes (longer episodes are faster due to lower overhead)
and the rendering complexity of the specific brush.

6.2. Policy Training
The algorithm uses an entropy bonus in the policy loss function to encourage exploration.
This type of exploration is a common technique used in PPO, and was suggested by
Schulman et al. (2017) in their original paper. The entropy loss is given by the equation:

LE = −αH(π(· | st)) (6.1)

Where α is the entropy coefficient hyperparameter, and H is the entropy function:

H(P ) = E
x∼P

[− logP (x)] (6.2)

This type of exploration ensures that the policy remains sufficiently random throughout
training, and does not commit to suboptimal low-entropy distributions too early. The
entropy coefficient is one of the most important hyperparameters in the algorithm. Most
experiments in this work use an entropy coefficient of 0.01, which works well for most
environments. Entropy and exploration is discussed in more detail in Section 7.5.

Each training step in PPO consists of several epochs. At the beginning of each epoch,
the sampled environment transitions are first divided into a set of random minibatches.
For each minibatch, the following steps are then performed:

2Performance as measured with one NVIDIA Tesla P100 GPU, an Intel Xeon E5-2650 v4 processor,
and 128GB of RAM on the IDUN HPC cluster provided by Själander et al. (2019).
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• Run inference with the agent model to estimate log probabilities, entropies and
value estimates for the sampled data

• Estimate returns and advantages using either TD, RTG or GAE (see Section 6.3)

• Calculate the entropy, value, and PPO surrogate loss (as described in Section 2.2.4)

• Use backpropagation to estimate the gradient of model parameters with respect
to the total loss, and optimize the model parameters using some optimization
algorithm

This algorithm uses the RMSprop optimizer by Hinton (2018) to optimize all neural
network models. The optimizer is set to use the default PyTorch configuration. Although
the Adam optimizer by Kingma and Ba (2014) is also commonly used in reinforcement
learning, RMSprop is chosen for this method because the role of momentum in Adam is
unclear in a non-stationary adversarial setting.

6.3. Advantage Estimation

Advantage estimation is a core part of actor-critic reinforcement learning, and is crucial
because it directly changes the direction of policy gradients during optimization. Ad-
vantages misaligned with the objective will always cause learning to fail. As discussed
in Section 2.2.3, the advantage may use any baseline zt independent of θ (typically the
estimated value function V (·)) and is given by the equation:

A(st, at) = Rt − zt (6.3)

Where Rt is some measure of the expected reward following the current policy from
state st. Standard reinforcement learning algorithms, including PPO by Schulman et al.
(2017), DQN by Huang (2020) and DDPG by Lillicrap et al. (2015), among others, rely
on three primary ways to calculate the expected future reward:

• Monte Carlo Sampling
Monte Carlo samples (also known as returns-to-go, RTG) can be used to obtain
an unbiased future estimate directly from the environment and thus requires a
complete rollout of the episode. The sample expectation is given by:

RRTGt =
T∑
i=t

γ(i−t)R(si, ai) (6.4)

Where γ is the discount factor and R(si, ai) is the sampled reward received when
performing action ai in state si. Due to being sampled directly from the environment,
this estimator has no bias but is susceptible to high variance.
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• Temporal Difference Learning
In temporal difference learning, we bootstrap the estimate using the current value
function. In the simplest one-step variant (TD-1 learning), the return is given by:

RTDt = R(st, at) + γV (st+1) (6.5)

Temporal difference learning may bootstrap from any step after t (N-step TD
learning), in which case some number of discounted environment samples precede
the immediate bootstrapped value. Due to the bootstrapped value estimation, TD
learning is biased but has a lower variance than direct sampling. Unlike RTG,
temporal difference learning is not dependent on a complete rollout before updating
the policy.

• Generalized Advantage Estimation
Generalized Advantage Estimation (GAE), as presented in the context of policy
gradient methods by Schulman et al. (2015b), is a generalization of the previous
methods. GAE enables direct control of the bias-variance tradeoff and is given by
the equation:

AGAEt =
T∑
i=t

(γλ)iδVi (6.6)

Where δVi is the temporal difference estimate at time i given by the value function V .
The hyperparameter λ ∈ (0, 1) directly controls the bias-variance tradeoff (greater
values translate to higher variance and lower bias). The GAE estimator also has
two special cases. When λ = 1, the estimator reduces to the pure Monte-Carlo
advantage estimate, and when λ = 0, it is equivalent to the 1-step TD estimate.

Whereas similar previous work used the sampled Monte-Carlo return estimates exclus-
ively, this thesis shows that agents can learn effectively using other alternatives as well.
This is discussed in Section 7.8, which presents the effect of various advantage estimation
techniques in more detail.

Advantage estimation is closely linked to the training of the value function. The return
estimators presented above are used as output targets when training the value function
with RTG or TD. Equation 6.6 defines the advantage directly, so the GAE return target
is found by first adding the value estimate V (st).

6.4. Reward System

Designing sound reward systems for reinforcement learning is a challenging task. Agents
trained using gradient ascent are notoriously fond of simple solutions — as described
by Amodei et al. (2016), reward hacking is not only difficult to predict, but is expected
behavior whenever the objective is underspecified. In the context of adversarial learning,
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the difficulty is increased further by the inherent uncertainty associated with discriminator
function approximation and continuous competition between models.
This thesis presents four reward system variants, two of which have previously been

shown to work in similar contexts by Ganin et al. (2018) and Mellor et al. (2019). The
remaining variants extend on these to increase the quality of reward signals and tackle
challenges related to unbounded discriminator predictions.

6.4.1. Episodic Reward System

The episodic reward system introduced by Ganin et al. (2018) can be viewed as the direct
parallel to the generator loss found in generative adversarial networks. In this setting,
the agent is only rewarded at the terminal step of the episode. The basic episodic reward
system is given by:

R(t) =
{
D(Ct) if t = N

0 otherwise
(6.7)

Where Ct is the canvas at timestep t, D is the discriminator model, and N is the total
number of steps in the episode. The equation reduces to maximizing D(CN ) for any
return estimator. Although this system is guaranteed to capture the goal of maximizing
the discriminator evaluation, the rewards are inherently sparse, which complicates the
credit assignment problem for long episodes. Sparse rewards may reduce the speed of
learning or prevent the learning of long-term dependencies entirely.

Because the evaluation of D(·) changes over time, this formulation is also problematic
with respect to value functions in actor-critic algorithms. This issue is particularly evident
in unbounded Wasserstein systems, where returns may be drastically biased from earlier
experience, which is likely to prevent convergence.

Expectation Adjustment

This thesis introduces a novel expectation adjustment technique intended to remedy
issues associated with changes in the discriminator model by incorporating an expectation
of current policy performance in the reward system. The expectation adjustment function
is defined as:

RA(t) = D(Ct)− E[D(CπN )]
S[D(CπN )] + ε

(6.8)

Where E[·] and S[·] are the expectations in discriminator estimated mean and standard
deviation of images CπN generated by the current policy. The constant ε is a small value
included for numerical stability. This work uses 1e− 8, which provides a good balance
between bias and stability. Values in this range are commonly used for similar tasks, for
instance for advantage normalization in the PPO implementation by Raffin et al. (2021).
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In the expectation adjusted basic reward system, RA(Ct) replaces D(Ct) in Equations
6.7 and 6.10. The expectation adjusted reward may be viewed as a type of on-policy
reward normalization.

The implications of this change are two-fold. First, the rewards are implicitly normal-
ized, which reduces numerical scaling issues associated with deep model optimization.
Second, the expectation adjustment effectively modifies the pure maximization objective
of the learning algorithm by introducing a dynamic baseline:

J(πt) = argmax
πt

E[D(CπtN )− E[D(Cπt−1
N )]] (6.9)

Note that due to the temporal dependency in this equation, there is no way to find the
global maximum using gradient ascent, even if discriminator training is halted — this
is counter to the typical maxim goal in reinforcement learning. The (local) maximum
in terms of the intended goal of fooling the discriminator will occur when the objective
converges to zero, at which point the policy cannot improve further.
In principle, this change necessitates early stopping at convergence, given that the

policy remains stochastic. Since the expectation will be strictly ≤ 0 at the point of
convergence, the policy entropy could increase unpredictably beyond this point and,
consequently, reduce the quality of produced images. In practice, strict convergence does
not occur for these deep neural network models, and the objective gradient remains useful
throughout training.

6.4.2. Temporal Reward System

The temporal reward system was first introduced by Mellor et al. (2019) in SPIRAL++.
The system introduces intermediate rewards every step to increase the density of rewards
and hence reduce the difficulty of the credit assignment problem. The temporal reward
system is given by:

RT (t) =
{
D(Ct) if t = 0
D(Ct)−D(Ct−1) otherwise

(6.10)

The objective reduces to D(CN ) given that the discount factor γ = 1:

D(C0) + γ(D(C1)−D(C0)) + . . . + γN−1(D(CN )−D(CN−1)) = D(CN )

The authors showed that the formulation worked well in practice for other values of γ as
well.
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Expectation Adjustment

The temporal system can be combined with expectation adjustment to yield the expecta-
tion adjusted temporal reward system:

RAT (t) =
{
RA(t) if t = 0
RA(t)−RA(t− 1) otherwise

(6.11)

As shown by Mellor et al. (2019), temporal rewards improve results for long generative
sequences. The results in this thesis confirm this claim (see Chapters 7 and 8), and the
majority of this work, therefore, uses a temporal reward system. The effect of various
reward systems is explored further in Section 7.7.

6.5. Reproducibility

As previously discussed by Pineau et al. (2020) among others, the lack of reproducibility
of academic results is a consistent challenge in machine learning research. In many
cases, these issues are caused by the lack of consideration to implementation detail
— particularly by omittance of certain tricks and adjustments applied to the training
procedure to stabilize its convergence properties. These changes are often motivated by
the observed numerical properties of a system rather than strong, theoretical foundations.
As shown by Engstrom et al. (2020), minor implementation details have significant

effects on policy gradient methods. This section presents such details of this implementa-
tion. Although secondary to the primary design decisions presented previously, they are
necessary in practice to ensure the stability of the learning process.

6.5.1. Training Stability

The implementation relies on three primary implementation details for increased stability.
First, L2 gradient clipping of policy parameters reduces issues with exploding gradients.
All experiments in this work use a clipping value of 0.5, which Raffin et al. (2021) have
shown to work well on many problems.

Second, the implementation uses reward scaling to ensure returns lie in similar ranges
for various discriminator types. Scales between 1 and 10 work best for this method, but
may depend on the specifics of the environment.
Finally, the implementation clips rewards exceeding a certain absolute threshold.

Rewards are mostly well behaved, but on rare occasions (especially when using an
unbounded discriminator), outliers can cause irreversible damage to a policy model. This
work uses a default reward clipping threshold of 10, which works well for all environments
considered. The exact value of the threshold is not crucial for performance — most values
increase stability as long as a majority of rewards in the expected range are preserved.
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6.5.2. Advantage Estimation

Although most implementations of PPO use normalized advantages based on temporal
difference learning or generalized advantage estimation, the way in which they are
calculated during training varies. Consider the main training procedure in PPO, which
consists of some number of epochs iterating over minibatches of transition examples. The
advantage may be calculated and normalized before the first epoch, across the entire
batch once per iteration, or for each minibatch individually. Some implementations
estimate the baseline per iteration, whereas others calculate it during rollout before
training begins. These choices may significantly affect the stability and performance of a
system.
This work bases these choices on a few high-quality implementations. Hill et al.

(2018) at OpenAI provide stable-baselines, an open-source implementation of the most
common reinforcement learning algorithms. Advantages in all their PPO implementations
are calculated during rollout, whereas normalization occurs per batch in their initial
PPO1 algorithm and per minibatch in the PPO2 extension. The improved stable-
baselines3 by Raffin et al. (2021) employs the same technique as PPO2. The acme PPO
implementation by Hoffman et al. (2020) for DeepMind calculates advantages before
training, and normalizes the values per minibatch.
Based on these insights, the implementation in this work calculates advantages and

return targets during rollout and normalizes advantages per minibatch. This method
proved reliable in practice.
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The following chapter presents the empirical studies conducted for the thesis. The primary
purpose of these experiments is to collect the necessary evidence to answer the research
questions presented in Section 1.2. The chapter also exposes challenges, strengths, and
other insights related to the proposed method.

Experiments are divided into sections exploring specific aspects of the neural network
architectures and learning algorithms. Important topics include policy parameterization,
discriminator designs, reward systems, and exploration. Section 7.6 explores a particular
challenge associated with the method, referred to as mode oscillation.

7.1. Experimental Setup

The majority of experiments presented here employ the IDUN high-performance cluster
by Själander et al. (2019). Smaller experiments and development trials are executed on a
desktop computer with an NVidia GeForce GTX 970 GPU, an Intel i5 4690k processor,
and 16GB RAM. Due to the memory constraints of the GTX 970 GPU, most experiments
use models consuming less than 3.5GB of video memory. This constraint encourages
fewer memory expensive convolutional layers in the feature extractor and discriminator
model, though their size remains typical for the context and works well in practice.
All experiments use Weights and Biases by Biewald (2020) for tracking. More than

100 different metrics are reported in real-time to enable analysis and debugging. The
exact number of tracked metrics varies depending on various hyperparameters and the
environment configuration. Key metrics include policy metrics such as entropy, action
and advantage distributions, discriminator metrics such as error rate, separation, and
reward distribution, and various training metrics such as losses, gradients, and model
parameters. Each tracked experiment also stores its configuration and a git commit
containing the relevant code, enabling a more straightforward comparison of low-level
differences between experiments. See Appendix A.4 for an example of the tracking system
used for experiments.
The method is highly customizable and relies on a large number of tweakable hyper-

parameters and configurations. Please refer to Appendix A.3 for an overview of the
default configuration. Experiment-specific changes are detailed in the following sections
where relevant.
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Figure 7.1.: Running mean as a proxy performance metric. The running mean of
generated images serves as a useful metric to detect learning progress. This
example shows the running mean of the 512 most recent grayscale CelebA
paintings over the course 5× 105 timesteps of training in one experiment.

7.2. Detecting Learning Progress

It is notoriously difficult to evaluate learning progress and convergence in adversarial
systems. Unlike typical problems in reinforcement learning, increases in cumulative
reward are not necessarily indicative of learning due to the dynamic nature of the reward
system, and the quality of produced images typically increases independently of changes
in rewards. In fact, no metric is exactly correlated with the quality of produced paintings
— if such a metric existed, there would be no need for adversarial learning. Instead, this
work relies on multiple proxy metrics that typically correlate with learning progress.

Although an increase in (subjective) image quality evaluation is a good metric, it is not
always possible to observe general improvement in individual examples, especially when
the search is broad. To detect progress in these situations, the system uses per-pixel
image averaging over several episodes. Throughout training, it is easy to detect patterns
in these aggregates indicative of learning. Figure 7.1 shows an example of this effect,
where the agent was trained on images from the CelebA dataset.

In addition to visual indications of progress, a large number of other metrics are tracked
throughout training to evaluate the system. Some of these are particularly useful to
detect learning progress:

• Difference in mean and standard deviation between real and painted images. This
metric is useful because the discriminator requires the distributions to be similar
to yield a high evaluation. Good agents almost always score low on this metric.

• Aggregate normalized discriminator predictions for each frame in the episode.
Generally, we wish to observe an increasing trend in the discriminator evaluations
throughout an episode. This metric indicates that the discriminator is learning (it
is fooled less by incomplete paintings than complete paintings) and that the policy
properly utilizes each stroke to improve the output.

• Policy entropy. The policy entropy is a useful metric to detect convergence in
reinforcement learning problems. Lower entropy is not necessarily a sign of quality
outputs, but consistent high-quality outputs are necessarily generated by a relatively
low entropy policy. In combination with other metrics, the policy entropy serves as
a good measure of convergence over time.
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• Mean discriminator separation of real and fake images. This metric typically
increases gradually over the course of training, but occasionally drops when the
policy discovers a way to paint some significant feature of the target domain.

As previously mentioned, none of these metrics alone are sufficient to accurately
measure model performance, but together they prove very useful to detect progress
and enable comparison of different experiment configurations. Evaluation metrics are
considered further in Section 8.1.1.

7.3. Policy Parameterization
This thesis builds on preliminary work in a preparatory project (see Røkenes 2021). The
preliminary work employed a simple policy architecture based on continuous distribution
parameterizations, rather than the autoregressive architecture described in Section 5.4.
This section explores the performance of various policies on more complex problems.
Four different policy variants are considered:

• Continuous Gaussian Policy. This parameterization is standard for reinforce-
ment learning environments with continuous action spaces. The variant used here
models the log standard deviation as a function of the input state, but it is also
commonly implemented as an independent trainable variable.

• Continuous Beta Policy. Because the Gaussian distribution is unbounded, it
may suffer from issues in bounded action spaces. This policy attempts to remedy
these issues by using a beta distribution scaled to the target range.

• Discrete Categorical Policy. This policy variant employs a standard categorical
distribution that divides the continuous action space dimensions into a set of
discrete bins.

• Discrete Autoregressive Policy. As described in Section 5.4, this policy enables
a simpler representation of high dimensional categorical probability distributions
through an autoregressive architecture with sample embeddings.

See Appendix A.2 for an overview of the architecture of the continuous and categorical
policies. The policies are compared on the MNIST and CelebA datasets (see Section 2.5),
which are the easiest and most complex settings explored in this thesis. The experiments
use the WGAN-GP discriminator and basic temporal reward system without expectation
adjustment. Discriminators and reward systems are discussed further in Sections 7.4 and
7.7.

As shown in Figure 7.2, both the autoregressive and categorical policies are capable
of producing adequate results using the MNIST dataset. The continuous policies show
some learning ability but suffer from frequent instability and policy collapse.

The performance difference between policies is more evident for longer episodes trained
using the CelebA dataset. Neither the categorical nor continuous policies can reach the
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(a) Gaussian (b) Categorical (c) Autoregressive (d) Training Dataset

Figure 7.2.: Comparison of MNIST paintings for different policiess. The policies
are trained to reproduce digit 5s using four hard rounded bezier strokes for
20k episodes. All policies are capable of some learning with this dataset.

(a) Gaussian (b) Categorical (c) Autoregressive (d) Training Dataset

Figure 7.3.: Comparison of CelebA paintings for different policies. The figure
shows result after initial training for 20k episodes. Whereas the autoregressive
policy displays clear evidence of learning, the categorical and Gaussian policies
remain similar to the untrained policy.

level of the autoregressive variant and fail to converge to recognizable results. As shown
in Figure 7.3, the autoregressive policy is much more capable on difficult problems. The
figure illustrates the necessity of a more complex model for these types of problems. All
other experiments described in this thesis use the autoregressive policy presented in
Section 5.4.

7.4. Discriminators
Developing a stable and capable discriminator suitable for adversarial rewards is challen-
ging. Due to the stochastic nature of both the environment and policy, the distribution
of fake images can change substantially between training iterations. Long generative
sequences further exacerbate this problem. If the distribution of canvases early in a
trajectory changes only slightly, the implicit chaos in the system can easily cause a large
shift in the final distribution. These system properties greatly increase the challenge of
training a discriminator with sufficient generalization ability.

Furthermore, high-quality predictions on final images exclusively are not sufficient for
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(a) LSGAN (b) Mean Separation (c) WGAN-GP

Figure 7.4.: Comparison of LSGAN and WGAN-GP. Although LSGAN is able
to separate fake and real examples, the policy fails to converge with this
discriminator. Figures show the mean separation between fake and real
images for LSGAN (red) and WGAN-GP (green) and sample outputs after
40k episodes of training on CelebA (grayscale).

high-quality temporal rewards. The relative predictions for intermediate canvases must
also be informative to enable useful signals to the agent. The discriminator may never
see these examples, yet the model must capture the presence or absence of desirable
features in the images to enable policy learning. This is an unusual problem, as we
typically do not care about model behavior on data that is explicitly not part of the
learned distribution. Motivated by this observation, implementations with intermediate
canvases included in the training dataset are explored in Section 7.4.4.

As will be shown in the following sections, the system’s performance is greatly affected
by the training procedure and setup of the discriminator model. Various algorithms,
regularization techniques, and novel extensions are explored to discover their properties
and applicability in this context. The GAN algorithms investigated include WGAN by
Arjovsky et al. (2017), WGAN-GP by Gulrajani et al. (2017), minimax by Goodfellow
et al. (2014), and LSGAN by Mao et al. (2016).

7.4.1. Least Squares GANs

Mao et al. (2016) propose Least Squares GAN (LSGAN) as a more stable algorithm
that overcomes problems of diminishing gradients in cross-entropy based methods. The
LSGAN discriminator loss is given by the mean squared error of predictions and target
labels:

L = 1
2 E
x∼R

[(D(x)− a)2] + 1
2 E
x∼G

[(D(x)− b)2] (7.1)

Where a and b are target labels, typically 1 and −1 respectively. LSGANs can separate
fake and real examples consistently in this setting (see Figure 7.4b), which is promising
in terms of the learning signals they could provide.
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(a) 1.5k Episodes (b) 10k Episodes (c) 40k Episodes

Figure 7.5.: Early indications of learning in WGAN-GP. WGANs typically show
indications of learning quicker than other methods. This example shows
the pixel-wise mean of the 512 most recent paintings. Some indications of
learning are visible after only 1500 episodes.

Unfortunately, experimental results demonstrate that LSGAN is unsuitable in the
adversarial painting context. Despite the separation ability of the discriminator, agents
trained with the LSGAN reward system do not convergence on any dataset, including
short 3-step episodes using MNIST. A comparison of LSGAN and WGAN-GP is shown
in Figure 7.4.

These results indicate that the reward surface produced by LSGAN is incompatible with
temporal rewards and is worse than alternatives in general. Since the generator (policy)
is not optimized directly as in typical GANs, but through a detached reinforcement
learning procedure, claims of improved discriminator gradients with respect to the input
are also inconsequential to agent training.

7.4.2. Wasserstein GANs

Wasserstein GANs (WGANs) are generative adversarial networks where the discriminator
attempts to maximize the earth mover distance between real and fake examples. As
shown by Ganin et al. (2018) in the SPIRAL paper, WGANs can be used successfully in
the context of generative adversarial reinforcement learning.
This work provides further evidence that the algorithm is well suited for adversarial

learning. Compared to other types of discriminators, WGANs prove more lenient in terms
of hyperparameters and show signs of convergence (as discussed in Section 7.2) faster than
alternatives. Figure 7.5 shows an example where learning is detectable after only 1500
episodes. For minimax discriminators, these patterns are usually not visible until at least
10k episodes of training. Even the pure WGAN objective with no regularization displays
initial signs of learning, as shown in Figure 7.6, though quality quickly deteriorates after
further training.
In the original WGAN paper, Arjovsky et al. (2017) propose the use of parameter

clipping to regularize the model and enforce the Lipschitz constraint.1 The gradient
1A 1-constraint on the Lipschitz constant in Lipschitz continuous functions. In this context, the
constraint entails a limit to how fast network predictions can change based on changes in the input.
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Figure 7.6.: Grayscale results on CelebA using an unregularized WGAN dis-
criminator. Results after no training, 20k episodes and 30k episodes,
respectively. Although training with the unregularized discriminator shows
signs of learning (such as brighter areas in the center where faces should be),
the model quickly deteriorates after further training.

penalty extension in WGAN-GP, later introduced by Gulrajani et al. (2017), encourages
the constraint using an extension to the loss formulation instead. This work shows that
although both types enable learning in the application area, the gradient regularization
method has clear benefits over the simpler clipping variant.

Parameter Clipping

The parameter clipping regularization constraint is very simple. Following each gradi-
ent descent update, discriminator parameters are clipped to a range determined by a
hyperparameter c:

θD = clamp(θD,−c, c) (7.2)

Arjovsky et al. (2017) suggest a clipping value of 0.01. This work explores performance
with values of 0.001, 0.01, and 0.1. The smallest value performs poorly and does not show
signs of convergence. The other choices of c enable learning comparable to Figure 7.6.
The clipped model still suffers from policy collapse, although the issue is less prominent
than in the unregularized variant. The technique is not explored extensively due to
apparent issues and poor performance in initial tests.
Parameter clipping has been criticized in previous literature as it entails a hard

mathematical constraint on the learning procedure. As indicated by Arjovsky et al.
(2017), clipping is a poor way to enforce the Lipschitz constraint and often suffers from
issues such as diminishing gradients and a slow rate of convergence. Gulrajani et al. (2017)
further suggest that gradient clipping typically leads to a pathological2 discriminator
surface. This is particularly problematic in the temporal reward context because the

2Pathological objects, in mathematics, are objects that are irregular and not well-behaved compared to
other objects in the same domain. In this contex, a pathological prediction surface may be particularly
noisy or uneven.
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agent relies on relative signals based on small changes in the canvas. A pathological
surface may introduce excessive amounts of noise, which could inhibit learning. These
claims are supported by the observed behavior of the method and are especially evident
when compared with the gradient penalty variant.

Gradient Penalty

The Wasserstein gradient penalty algorithm augments the discriminator loss function
with a soft constraint on the norm of the gradient. The gradient penalty has the effect of
encouraging the L2 norm of the discriminator gradient to be close to 1 with respect to
relevant inputs:

GP = λ E
x∼Z

[(|| ∇xD(x) ||2 −1)2] (7.3)

Where λ is the gradient penalty coefficient hyperparameter, and Z is the distribution of
interpolated samples on a straight line between the real and fake distributions. Gulrajani
et al. (2017) showed that a λ of 10 worked well for most datasets. Initial results indicated
that this value is appropriate in this context as well, and it is therefore used for all
WGAN-GP training. The distribution Z is generated from uniform linear interpolations
between some random fake image x and real image y:

γx+ (1− γ)y, γ ∼ U(0, 1) (7.4)

As explained by Gulrajani et al. (2017), enforcing the constraint for all inputs is
intractable. In practice, using only Z is sufficient for good experimental results.
The gradient penalty discriminator works better than the clipped variant and has

produced some of the best results in this thesis (see Sections 7.4.5 and 8). Unlike the
LSGAN discriminator, temporal rewards provided by this model are sufficient for stable
learning.

Although the method shows desirable behavior, output images tend to lack finer details
produced by the minimax variant described in the next section. The quality of produced
images improves quicker than in other methods, but the policy is more frequently captured
in suboptimal local maxima. This is discussed further in Section 7.4.5.

7.4.3. Minimax GANs

The minimax objective was introduced in the original GAN paper by Goodfellow et al.
(2014). This algorithm trains a discriminator as a binary classifier minimizing the
cross-entropy of predictions, as described in Section 2.4.1.
Initial experiments with this algorithm were unsuccessful. Although the system can

generate recognizable images from the MNIST dataset in some trials, the method is
susceptible to network initialization and often collapses after less than 100 episodes.
This issue is caused by an imbalance between the discriminator and generative agent.
The minimax discriminator quickly learns to separate between real examples and fake
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Figure 7.7.: Collapsing rewards for pure minimax discriminators. Mean per-
episode reward for an agent trained using the pure minimax discriminator.
The reward signals quickly collapse to small values, which prevents the agent
from learning.

paintings, which causes the resulting rewards to grow very small. The poor reward
distribution inhibits agent learning, as small inaccuracies in the critic model will prevent
accurate advantage estimation. An example of collapsing minimax rewards is shown in
Figure 7.7.

Logit Reward System

Motivated by the behavior of minimax, the reward system is modified to employ the raw
logit predictions rather than probability estimations produced by the following sigmoid
activation. In this implementation, the training procedure of the discriminator is identical
— only the reward signal is different. This change proved one of the most impactful
design decisions in the adversarial system. The best results in this thesis employ this
type of minimax discriminator with logit rewards. Directly employing the linear output
of the discriminator enables the system to provide a more informative landscape for
temporal rewards. Meanwhile, retaining the cross-entropy loss formulation ensures that
the discriminator grows highly competent over time. Together, these factors facilitate
both stable training and higher quality results.

Given that the policy discount factor is 1, the maximization of the logit reward objective
is equivalent to the minimax formulation. As shown in Section 6.4.2, the temporal reward
system in these cases reduce to σ(D(CN )), where D is the linear discriminator model
and σ is the sigmoid function. For the logit variant, we have D(CN ). Since the sigmoid
function monotonically increases with its input, the maxima are equivalent.
The temporal distribution of rewards is not equivalent in this setting. Consider the

graph of logit and sigmoid deltas over the bounded probability range shown in Figure 7.8.
Given a linear increase in image quality as evaluated by D, rewards will be proportional
to the logit and sigmoid deltas. In the sigmoid case, rewards are concentrated near the
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Figure 7.8.: Distribution of logit and sigmoid delta rewards

center, where the probability increases most rapidly. The logit deltas are constant over
the whole range.

Although paintings do not improve linearly in practice, the reward landscape is more
evenly distributed over the full range of environment steps when using the logit reward
variant. This change eases the task of estimating advantages, particularly for small
strokes late in an episode when image evaluations change more slowly. This, in turn,
enables the policy to utilize late strokes more efficiently, thus improves the fidelity of
paintings. The logit-based system is also less sensitive to the absolute quality of images
relative to discriminator performance.
Equivalent reward shaping can likely be emulated using other techniques, such as

reward or return normalization. This thesis does not explore these options due to scope
considerations, but the topic remains an interesting area of future work.

7.4.4. Regularization Techniques

In supervised learning, regularization is typically used to improve model generalization.
In the context of this thesis, the primary goal is not generalization, but to improve the
quality of rewards. Although generalization could improve performance in situations with
high distributional shift, common techniques can have detrimental side effects on the
reward system. This section explores regularization techniques with these considerations
in mind.

Label Smoothing Regularization

Szegedy et al. (2015) introduce the concept of label smoothing regularization (LSR)
intended to improve the generalization of classifier models. LSR builds on the default
cross-entropy loss, but with some probability ε, the true label is replaced with a sample
from the prior distribution. This modification prevents the model from becoming too
confident and overfitting to the training data. The authors showed that this kind of
regularization reduced their top-5 error rate on ImageNet with 1000 classes.
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In the painting context, generated images are necessarily quite different from the target
dataset — especially when more abstract brushes (such as the hard squared brush) are
used. If the discriminator grows too confident and consistently relies on photo-realistic
features that are impossible to reproduce in the painting environment, the reward signals
could deteriorate and prevent the agent from learning. These insights motivate the
introduction of LSP in this system.
Since LSR was designed for the cross-entropy loss formulation, the technique is only

considered for the logit-based minimax discriminator. Unfortunately, LSR shows no
signs of improved system performance or change in learning behavior for any ε ∈
{0.01, 0.05, 0.1}.

Intermediate Canvas Training

As previously discussed, temporal reward systems depend on predictions on incomplete
canvases from a distribution never seen by the discriminator. This section explores
whether training on intermediate paintings can improve generalization to this data, and
thus increase reward quality. Three variants of this technique are considered:

1. Complete intermediate training. In this implementation, the discriminator
is trained using every intermediate and complete painting. This results in more
discriminator updates per agent update, depending on the length of episodes.

2. Mixed intermediate training. With this variant, each training batch consists of
a mix of 50% finished and 50% intermediate paintings. As a result, a large portion
of available training data must be discarded each iteration.

3. Temporally weighted intermediate training. In this setting, the discriminator
loss is weighted per sample based on its relative step in the episode. Earlier steps
are weighted more strongly, encouraging the discriminator to evaluate fake images
on a temporally consistent scale. Weights are given by the equation 0.5(N−t)

N + 0.5,
where N is the number of steps in the episode. See Figure 7.9 for an illustration of
this technique.

The introduction of intermediate paintings has either negative or inconsequential effects
on both the logit-minimax and WGAN-GP discriminators. The first variant performs
equivalently to the unregularized model on both MNIST and Fashion-MNIST, but is
slower to train than the unregularized model. The technique does not converge using
CelebA. The second variant performs similarly to the unregularized method and learns
using all datasets. The third variant does not work on any dataset besides MNIST.

The method is associated with increases in computational cost. As a result of the parallel
and vectorized implementation of the environment, including intermediate canvases
necessarily increases the overhead of copying images from GPU to CPU memory and
transferring data between processes. Due to additional overhead and poor results in
initial tests, this technique is not considered further.
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Figure 7.9.: Temporally weighted intermediate training in the discriminator.
Early canvases contain fewer details, and should generally be evaluated lower
than later canvases. This technique is intended to encourage the model to
produce a temporally consistent reward landscape.

Normalization Layers

Three different normalization layers are considered for the discriminator model — batch
normalization, layer normalization, and instance normalization. These layers are com-
monly used in the field and work well for many different models.
Batch normalization was shown by Ioffe and Szegedy (2015) to significantly improve

the performance of classifier models while reducing sensitivity to model initialization.
Batch normalization remains standard for advanced generative methods such as DCGAN
by Radford et al. (2015). As shown by Gulrajani et al. (2017), this type of normalization
breaks the gradient penalty loss in WGAN-GP due to dependencies between instances in
a batch. This layer is therefore only considered for the minimax discriminator.
Batch normalization works by learning properties of the input distribution through-

out training and using the statistics during inference. Although batch normalization
can reduce the variance of model predictions, the technique is incompatible with tem-
poral rewards. The learned statistics are not representative of intermediate canvases,
which results in invalid predictions. Performance of batch normalization combined with
intermediate canvas training remains comparable to the unregularized model.
Gulrajani et al. (2017) recommends layer normalization as a replacement for batch

normalization layers when using the gradient penalty loss formulation. In this context,
layer normalization works well for both the WGAN-GP and logit-minimax discriminator.
Interestingly, layer normalization causes the agent to be more agnostic in terms of color
choice, and paintings produced by this type of agent include strong, unconventional colors
(compared to the dataset) more often than without layer normalization. This is shown in
Figures 7.10 and 7.11. Besides this observation, layer normalization causes no apparent
differences in overall system performance.
Instance norm, previously used in generative methods such as CycleGAN by Zhu

et al. (2017), applies normalization across features on a per-sample basis rather than the
whole training batch. Unfortunately, instance norm works poorly in this context and
is unable to achieve results comparable to both the unregularized and layer normalized
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Figure 7.10.: Stronger colors in agents trained with layer normalized discrim-
inators. This example shows outputs by an agent trained for 100k episodes
using a logit-minimax discriminator with layer normalization.

Figure 7.11.: Muted colors in agents trained with unregularized discriminators.
This example shows a more natural use of color in an agent trained for 120k
episodes using a logit-minimax discriminator with no layer normalization.

discriminator.

Spectral Normalization

One of the improvements over SPIRAL introduced by Mellor et al. (2019) in SPIRAL++,
was the inclusion of spectral normalization in the discriminator model. This type of
normalization is applied to the weights of convolutional network layers directly, and
ensures that the spectral norm3 of the learned parameters is equal to one. Spectral
normalization was first introduced by Miyato et al. (2018), who demonstrated that it
works well in generative adversarial networks.

The findings of SPIRAL++ are supported by this thesis. The inclusion of spectral
normalization in the discriminator leads to higher quality results for this method as well,
though differences are not as pronounced as in previous work. An example of the effect
of spectral normalization can be seen in Figure 7.12.

7.4.5. Comparison

The comparison between discriminators is based on a set of experiments conducted on the
CelebA training dataset. Both minimax and WGAN-GP discriminators work well in the
adversarial setting but have surprising effects on the learned policy. Generally, policies
trained with minimax discriminators tend to favor small details rather than overall

3The spectral norm is equivalent to the largest singular value in the parameter weight matrix of a
particular network layer. In PyTorch, spectral normalization is calculated using the power iteration
method.
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(a) Spectral normalization

(b) Unregularized

Figure 7.12.: Effect of spectral normalization. Regularizing the discriminator using
spectral normalization increases the quality of produced paintings. These
examples show paintings generated by two identical policies trained for 100k
episodes using a regularized and unregularized discriminator respectively.
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(a) Minimax (b) WGAN-GP

Figure 7.13.: Comparison of minimax and WGAN-GP after 50k episodes of
training. Shows sample paintings (bottom) and mean outputs (top) for
six identical agents trained with the logit minimax and WGAN-GP dis-
criminators respectively. The choice of discriminator has clear effects on
the produced images. The minimax discriminator enables the agent to
learn small details such as mouths and eyes, but is less accurate in terms of
overall structure. The WGAN-GP discriminator is more mean-seeking in
its behavior, which results in paintings which lack smaller details but retain
consistent color use and structure.

structure. Paintings by such agents typically contain easily recognizable features such as
eyes and mouths, but their shapes and placements are not consistent with photo-realistic
examples. This is shown in Figure 7.13a.

Policies trained with WGAN-GP reward systems favor overall structure more heavily
at the cost of smaller details and features. Paintings by these agents usually contain
clear facial shapes with indications of mouths and eyes at appropriate sizes and locations
while lacking finer details. Figure 7.13b shows examples generated using the WGAN-GP
discriminator.
As mentioned in Section 1.2, the goal of this type of adversarial painting is explicitly

not to produce photo-realistic images, as is the case for many other generative methods.
For this reason, this thesis considers the minimax variant the most appropriate technique,
although both methods show learning ability. Refer to Section 8.1.2 for further discussions
and qualitative analysis of produced paintings.

7.5. Exploration and Search

Exploration in the system is controlled by the entropy coefficient hyperparameter, which
integrates directly into the agent’s objective function as explained in Section 6.2. The
choice of this parameter greatly affects the search properties of the system. Although
factors such as the choice of return estimator and discriminator training algorithm
also affect the explorative behavior, the entropy coefficient remains the most important
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(a) Broad Search (b) Narrow (commit) Search

Figure 7.14.: An illustration of the two extreme modes of search.

hyperparameter to balance to achieve good results.
High entropy coefficients translate to a broad search in policy space. Since the entropy of

the policy remains high, outputs are typically indistinguishable from randomly generated
images for a large number of iterations. If the entropy coefficient is too high, the policy
will fail to improve entirely. After long periods of training, the generated images may
slowly start to improve. An illustration of this mode of search is show in Figure 7.14a.
Low entropy coefficients translate to a more narrow search. The policy entropy will

decrease much more rapidly, resulting in low variation in output paintings. Since the
adversarial opponent changes continuously during training, suboptimal outputs will
quickly be detected by the discriminator, yielding low reward. This effect leads to an
oscillating mode of search. After several iterations of consistent (but suboptimal) outputs,
the policy may start to produce seemingly random paintings again. Given this behavior,
the search mode may also be thought of as a commit-search. An example of this mode is
shown in Figure 7.14b.
The broad and narrow search modes describe the behavior on the extreme ends of

the spectrum, of which neither are desirable in practice. In the adversarial context, the
search mode implicitly affects the reward system as well:

• When the search is very broad, the discriminator will typically outperform the
policy, and very few examples will yield a high reward. The variation in output
images is reflected directly in the reward system. The discriminator typically fails
to learn high level features because the vast majority of fakes are easily detected
without them.

• When the search is too narrow, the discriminator will overfit to the current mode of
images, which causes large oscillations over time. In the worst case, the discriminator
fails to generalize at all, and the system never converges. Oscillation is discussed in
detail in Section 7.6.

For the proposed method, an entropy coefficient between 5e− 3 and 1e− 2 provides
a good balance between exploration and exploitation. Figure 7.15 shows how entropy
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(a) Entropy (b) Separation

Figure 7.15.: Search entropy and discriminator separation. The entropy and sep-
aration varies significantly depending on the entropy coefficient hyperpara-
meter.

and discriminator separation 4 varies for different entropy coefficients. As seen in the
figure, values greater than 1e− 2 prevent the policy from converging to a sufficiently low
entropy. As a result, discriminator separation remains high throughout training, and as
shown in Figure 7.16, the outputs are comparatively worse.
Although entropy regularization is a common exploration technique in PPO-based

systems, more sophisticated search strategies such as Monte-Carlo Tree Search exist.
These are briefly discussed in Section 9.1.

7.6. Policy Mode Oscillation

Mode collapse is a well known problem in generative adversarial networks, previously
discussed by Thanh-Tung and Tran (2020) and many others. When mode collapse occurs,
the generator consistently produces images that are almost identical. Although the
generated data can be of high quality, the lack of variation is a problem. Improvements
to GAN architectures are often motivated by this issue, and introduce changes intended
to prevent or reduce its rate of occurence. The dynamics of policy-based generators is
different, but the method proposed in this thesis suffers from a similar type of problem
referred to as mode oscillation.
Mode oscillation entails a policy that is continuously switching between two or more

suboptimal modes. Once the discriminator catches up with the current mode, the policy
quickly changes mode again, causing the discriminator to perpetually chase the changes

4Discriminator separation is given by the mean difference in predictions for fake and real examples.
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(a) 0.005 (b) 0.01 (c) 0.02

Figure 7.16.: Example outputs for various entropy coefficients. If the entropy
coefficient is too high, the policy tends to converge too early and produces
paintings of lower quality.

Figure 7.17.: Mode oscillation early and later during training. Each row shows a
policy mode. For the CelebA dataset, the policy typically oscillates between
dark and light backgrounds without proper discriminator regularization.

in the output distribution. Since the agent oscillates between different modes, it is usually
unable to improve the painting quality of each individual mode beyond a certain point.
In a majority of cases, the policy entropy converges at a value too great to produce
quality results consistently.
In the beginning of training, observed modes are almost always very bright and very

dark images. After further training, the model typically oscillates between dark and light
backgrounds for grayscale paintings trained on the CelebA dataset. After long training
sessions, modes can even be recognizable traits, such as the painted hair color. Figure
7.17 shows an example of observed modes in a policy trained on the CelebA dataset.

This type of failure is evident from discriminator predictions which oscillate at a
predictable frequency (see Figure 7.18), in addition to being observable in the generated
outputs. The following sections present insights collected from empirical studies intended
to discover the causes of mode oscillation and reduce its adverse effects.
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(a) (b)

Figure 7.18.: Mode oscillation detectable in discriminator predictions and ac-
tion distributions. a) Real (orange) and fake (blue) discriminator pre-
dictions. Policy mode oscillations are visible as periodic oscillations in
discriminator outputs. b) Early oscillations are apparent in the distribu-
tion of action color (this example shows a single grayscale channel). Once
modes become more complex later in training, such patterns in actions
distributions are difficult to detect.
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Figure 7.19.: Catastrophic forgetting in the discriminator. The graph shows
WGAN-GP predictions on the most recent paintings (blue) and a batch of
1000-episode old paintings (red). The point of catastrophic forgetting is
indicated by the green line. At this point in time, old paintings are evaluate
much higher despite recent improvements in the policy.

7.6.1. Causes

Discovering the underlying cause of mode oscillation is challenging due to the intertwined
dependencies between the policy, training algorithms, and reward system. Observations
indicate that the causes are related to two primary issues, which in combination induce
oscillation:

• Lack of policy multi-modality. Although the policy is capable of representing
policies with high variation, producing a wide array of different outputs, this does
not always occur in practice. Paintings generated by a single policy are often very
similar, particularly with respect to the color palette. Variation is caused by the
stochasticity of the agent and environment, rather than being explicitly represented
by the policy model. This can be seen in Figures 7.12 and 7.17.

• Catastrophic forgetting and overfitting of recent examples in the dis-
criminator. As a result of low variation in policy outputs, the discriminator model
overfits to recent examples. This, in turn, causes catastrophic forgetting of older
paintings, even if the quality of the new paintings is comparatively better. An
example of catastrophic forgetting is shown in Figure 7.19.

Mode oscillation is closely related to exploitation in the policy. If the entropy coefficient
is sufficiently high, this type of oscillation does not occur, but the policy is also unable
to improve. Given an appropriate rate of exploration, mode oscillation is a natural
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consequence of the multi-modal behavior of the policy, as well as a lack of long term
memory of old examples in the discriminator model.
Recall that the autoregressive policy head is a large model capable of representing

a complex multi-modal function. The consistency of individual modes and periodicity
of oscillations indicate that the policy is in fact representing two or more (essentially)
separate policies simultaneously — although only one mode is active at any given time.
Changing a single network bias (for instance causing the color of the first stroke to be
black instead of white) is theoretically sufficient to change the entire trajectory of the
policy to a different mode without forgetting state-action mappings of older trajectories.

7.6.2. Prevention

Several ways of preventing policy mode oscillation are explored, including changes in the
architecture of the discriminator and modifications to the learning algorithm. Some of
these techniques demonstrably reduce the prevalance of the problem, though this thesis
has not discovered a way to prevent the issue entirely.

Discriminator

Dropout, first introduced by Srivastava et al. (2014), is a type of neural network layer
intended to prevent overfitting and increase the generalization ability of deep models.
These layers randomly suppress some portion of activations during training, encouraging
the model to learn a broader set of features rather than relying on a smaller number
of strong predictors. Dropout is included in all hidden layers in the discriminator,
with the goal of preventing catastrophic forgetting. The introduction of dropout layers
unfortunately does not reduce the prevelance of mode oscillation for this method.
As discussed previously, LSGAN by Mao et al. (2016) is an extension on the original

GAN algorithm intended to reduce the problem of vanishing gradients. Motivated by ideas
from LSGAN and PPO, an additional loss metric is introduced as a regularizer in this
context. The modification consists of a squared-error-loss encouraging the discriminator
predictions to remain close to the previous distribution, and hence prevent overfitting
to recent modes. This loss is comparable to the surrogate objective in PPO, and is
intended to prevent the discriminator from changing too rapidly. The change reduces
mode oscillation in some situations, but is not usable in practice as it causes severe
instability issues in the policy.

Training Data Buffering

Training data buffering entails managing a buffer of fake images that is uniformly
sampled from to train the discriminator. Given a sufficiently large buffer, training data
will necessarily be more varied and cover several policy modes. Ganin et al. (2018) used a
buffering system in their implementation, but its inclusion was motivated by the training
setup rather than mode oscillation issues. The buffer was later removed in the improved
implementation by Mellor et al. (2019).
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Figure 7.20.: Bad local optimas of different severities. Several factors such as
training data buffering or too small exploration coefficients may cause the
policy to get stuck in bad local optimas. When this occurs, the entropy is
too low to enable new discoveries. As a result, the agent will struggle to
improve.

The introduction of a discriminator buffer reduces the frequency of mode oscillation
for the proposed method. By training the discriminator on a set of random paintings
from older policies, the system explicitly prevents the discriminator from forgetting older
variants, and indirectly forces the policy to improve the general quality of images rather
than tricking the discriminator through oscillating targets. This work found that a buffer
size of 1500 images works well in practice. Note that this size is greater than the typical
oscillation frequency of around 400 episodes, which is crucial to have any regularizing
effect.
Unfortunately, the reuse of fake examples inevitably leads to a smoothing of the fake

distribution. In practice, this causes policies to converge to bad local optima quicker
and earlier in training without an increase to the exploration entropy coefficient. An
example of this is shown in Figure 7.20. Given sufficiently broad exploration this can be
prevented, but training is slower and less sample efficient as a result. Mode oscillation
can still occur with this modification, but the frequency covers longer periods of training.

Population-based Training

Population-based training entails simultaneous training of several agent policies sharing
the same discriminator. Similarly to data buffering, this type of training increases the
variation in fake examples available to the discriminator. This is benefitial in terms of
model generalization, but also avoids the distribution smoothing caused by buffering.
Population-based training was previously used by Mellor et al. (2019) in SPIRAL++.

This thesis only considers small populations of 2–4 agents due to the high computational
cost associated with training and simulating multiple policies. The population-based
training procedure is identical to the single-policy implementation discussed in Chapter
6, with the exception of parallel rollouts and policy training facilitating multiple agents.
Population-based training does not prevent oscillation to the same extent as data

buffering. In the majority of cases, a single policy greatly outperforms the remaining
population, leading to a severe imbalance in the quality of fake examples. This effect
can be seen in Figure 7.21. Although the best policy performs comparably to the single-
population setting, the remaining policies fail to converge to an acceptable level entirely.
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Figure 7.21.: Multi agent performance expectation. The graph shows the perform-
ance expectation, as measured by the discriminator, for three different
agents in a population. A single policy outperforms the others, which
prevents the poorly performing agents from converging to good solutions.

The poor quality fakes generated by these agents do little in terms of reducing oscillations
in the best policy.
These observations suggest that the reward system fails to provide useful reward

signals to the worst performing agents in the population. To enable better results, some
mechanism is necessary to properly balance the policies in the population. Prioritizing
policy training or discriminator data using a suitable performance metric are examples
of potential solutions, though this thesis does not explore such alternatives.

7.7. Reward System
There is a large difference in performance between the temporal and episodic reward
system. The episodic reward system works on simple datasets with short episodes (fewer
than 5-10 steps), but is unable to learn useful policies in more difficult settings. As
discussed in Section 6.4, the temporal reward system is motivated by the challenge of
credit assignment in long episodes.This system is strictly necessary to learn complex
policies trained with CelebA. All the best results achieved with the proposed method
use the temporal reward system exclusively. A comparison of outputs for the different
reward systems is shown in Figure 7.22.

Expectation Adjustment

When using the Wasserstein discriminator formulation, fake predictions increase in
variance over time. The unjusted reward system consequently yields a similar pattern in
rewards, and the policy fails to converge with this setup.
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(a) Episodic (b) Temporal

Figure 7.22.: Difference between agents trained using episodic and temporal
rewards. The temporal reward system enables agents to learn good policies
when trained on CelebA. Convergence does not occur in agents trained with
episodic rewards on this dataset.

(a) Adjusted Temporal (b) Regular Temporal

Figure 7.23.: Adjusted and unadjusted reward distribution. The figures show the
difference in reward distribution for temporal and adjusted temporal reward
systems for a WGAN-based reward system. The regular temporal rewards
leads to large variance over time, which prevents effective learning in the
policy.

Improvements associated with the gradient penalty regularized discriminator (WGAN-
GP) and the expectation adjusted temporal reward system enable consistent convergence
in the system. Figure 7.23 shows an example of reward distributions for the temporal and
adjusted temporal reward systems. Differences are less pronounced in the logit-minimax
variant, but expectation adjustment improves the overall stability of the system in this
setting as well.
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Estimated Policy Entropy

γ
λ 1 0.5 0

0.99 31.3 25.3 20.7
0.9 27.6 22.8 22.8
0.8 25.8 22.3 18.6

Figure 7.24.: Effect of advantage estimate bias and discount factor. The figure
shows mean outputs of agents trained for 10k 256 step episodes using the
minimax logit reward system.

7.8. Advantage Estimation

This section explores the role of advantage estimators in the reinforcement learning
algorithm. As discussed in Section 6.3, there are three main variants used in the field.
Since Generalized Advantage Estimation (GAE) can generalize to both TD-learning and
Monte Carlo (returns-to-go) sampling, it is the only type considered here.

The variance of the estimator has large effects on the exploration of the system, second
only to the entropy coefficient. Figure 7.24 shows the mean outputs and resulting
entropies for different values of γ and λ for nine different agents trained on CelebA. For
the proposed method, lambdas lower than 0.5 and discount factors between 0.9 - 0.99
work best on this dataset.

High values of lambda prevent the system from converging using the standard con-
figuration. This effect is exacerbated by the variance in rewards caused by function
approximation inaccuracies in the discriminator model. In order for the system to con-
verge using direct return samples, both the entropy coefficient and return discount must
be reduced.

Low values of lambda converge most quickly. In rare cases the algorithm can achieve
impressive results with comparatively few samples, but the estimator is more varied
in its performance. Due to the presence of high bias, the policy is prone to bad local
optimas. This type of estimator also suffers more from mode oscillation than lower-bias
alternatives.
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7.9. Recurrency
Both Ganin et al. (2018) and Mellor et al. (2019) use recurrent policies with LSTM
cells to generate paintings sequentially. This section further explores the importance of
recurrence with respect to output quality of trained policies.
The recurrent policy architecture used here employs a structure similar to SPIRAL.

Following the policy feature extractor, a single LSTM cell processes the feature vector
to produce a recurrent vector used by the policy head. Refer to Section 5.4 for details
about the policy architecture.
In order to train a recurrent policy using PPO, the algorithm employs truncated

backpropagation through time (TBPTT). This technique has previously been used for
reinforcement learning in work by Mnih et al. (2016) and Heess et al. (2017). In the
TBPTT setting, each training sample in a given minibatch contains a fixed length
sequence of steps that is optimized simultaneously to propagate gradients through time.
Sequences are masked based on the episode length to enable sequences to start at any
point in time. This thesis considers sequence lengths of 4, 8 and 16. These values are
chosen to discover the importance of sequence length in learning temporal dependencies,
but remain limited to a maximum of 16 steps due to high computational cost.

The recurrent algorithm is less sample efficient than the non-recurrent implementation,
and converges between 2-3 times slower than the default method for all sequence lengths
tested. Although the algorithm is capable of producing paintings of comparable quality,
no improvements are observed. Figure 7.25 shows differences in mean outputs for three
different recurrent and non-recurrent policies.

(a) Recurrent Policy (b) Standard Policy

Figure 7.25.: Recurrent and non-recurrent policies. Mean outputs after 100k epis-
odes for the recurrent and default policy. Although the recurrent policy can
achieve comparable results to the default implementation, it is less sample
efficient and more computationally expensive.

These results indicate that recurrence is not a necessary component in this type of
system, and that other design decisions (such as the discriminator and reward system)
are more important in producing high-quality results. This work is the first time non-
recurrent policies have been shown to work for painting agents trained with generative
adversarial reinforcement learning.

72
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The following chapter presents results and discussions in terms of the output, performance
and behavior of the method. The chapter focuses on the most challenging dataset tested
(CelebA), but also explores how suitable the method is for simpler problems such as
Fashion-MNIST. The chapter is centered around the questions posed in Section 1.2, which
entails the results of the method as well as the role of on-policy training, adversarial
systems and neural architectures.

8.1. Qualitative Results

8.1.1. Evaluation Metrics

In the context of generative methods, common metrics of evaluation include the Inception
Score by Salimans et al. (2016), and later the Frechet Inception Distance by Heusel et al.
(2017). Although these metrics enable an objective metric for evaluation of generative
methods, they have issues in this particular context.
The Inception Score (IS) evaluates image quality using the fake image predictions of

a large classifier model. The Frechet Inception Distance (FID) is currently a standard
metric for evaluating GANs. Unlike the inception distance, FID uses both the training
dataset and fake examples to produce an objective score. The metric is based on the
difference in low level activations in the classifier network. The classifier used for these
metrics is trained on real images, and may therefore not capture the value of novel
abstractions present in painted images. The intent of this type of painting system is
explicitly not to produce photo-realistic examples.

Work by Brendel and Bethge (2019) further suggests that CNNs are highly sensitive to
low level features, such as textures. This is particularly problematic for images generated
sequentially using predefined brushes, as the policy has little to no control over such
image properties.
Due to these challenges, IS and FID are unsuitable in this context, and manual

evaluation and comparison is used to determine the level of visual quality. Note that
this type of evaluation is prone to bias, and reduces the number of images that can be
examined in reasonable time.

8.1.2. Quality and Variation

The system is capable of producing easily recognizable paintings of various objects, even
when trained on complex datasets such as CelebA. Trained policies show a high level of
variation, and are able to produce a large amount of different paintings. Although mode
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Figure 8.1.: Example outputs for different brushes generated by agents trained
on CelebA. The system is general enough to learn the dynamics of a wide
range of different environments.

Figure 8.2.: Example outputs for SPIRAL. Example paintings from conditional
SPIRAL agents trained on CelebA. Results by Ganin et al. (2018), reused
with permission.

oscillation, as discussed in Section 7.6, remains a challenge, the trained policies show an
ability to capture a broad range of the dataset distribution.

The appearance of the brush stroke is the primary way in which environment dynamics
vary in the context of sequential painting. The system shows a high level of generality to
very different brush types, and is capable of learning the specifics of each environment
sufficiently well to produce good results. The discriminator is general in the same manner.
Although the appearance of fake images varies greatly depending on the environment,
the discriminator learning system remains capable of producing rewards adequate for
policy training. Figure 8.1 shows sample results for the method using a set of different
environment brushes.
The results of this method exceed the work by Ganin et al. (2018). As shown in

Figure 8.2, SPIRAL produces blurry paintings with low levels of detail, whereas the
proposed method is not limited in this way. Note that the included SPIRAL examples are
generated by conditional agents, as the authors did not present outputs for uncoditional
agents on this dataset.

Improvements introduced by Mellor et al. (2019) in SPIRAL++ are more comparable,
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(a) SPIRAL++ (b) This Method

Figure 8.3.: Comparison with SPIRAL++. Shows example paintings for SPIRAL++
and the proposed method. Each row shows a different brush type with similar
appearances. SPIRAL++ examples by Mellor et al. (2019), reused with
permission.

but the proposed method is less consistent in its use of small strokes for low level details.
As a result, SPIRAL++ is capable of producing paintings of higher realism. Note that
direct comparison between methods is difficult due to differences in the environments the
agents interact with. SPIRAL++ uses a more advanced rendering engine, which in turn
increases the expressiveness of interactions available to the agent.

Figure 8.3 shows a comparison between the methods for a set of brushes with similar
appearances. This thesis considers the paintings by SPIRAL++ better overall, but results
vary for different agents and environments. As previously indicated, evaluation of specific
paintings also depends heavily on the personal preferences of the observer.

8.1.3. Abstraction

Under additional constraints, the challenge of producing paintings matching the training
distribution increases. The system shows an ability to overcome these challenges, and
can produce artistic simplifications of complex features using very few brush strokes. An
example of such abstraction can be seen in Figure 8.4.
Since the dataset consists of photos exclusively, these results demonstrate that the

method is capable of abstraction even under heavy constraints. For brushes with lower
expressivity, such as the hard squared bezier brush, generating photo-realistic paintings
is in fact impossible. The trained agents are able to overcome this, and can generate
small details (such as eyes and mouths) using simplifications recognizable by humans.

These results mirror the findings of SPIRAL++, which shows a similar ability to learn
feature abstractions (see first row in Figure 8.3). Abstraction is an important property
in this type of system, and shows that the learning system is capable of sophisticated
generalization in difficult adversarial settings. The behavior and generalizability of the
learning system is discussed further in Section 8.2.
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Figure 8.4.: Example of abstraction under heavy constraints. The system is able
to produce interesting abstractions of complex features in the dataset, even
for short episodes using non-realistic brushes. The figure shows outputs by
agents trained on the CelebA dataset in color and grayscale, respectively.

8.1.4. Datasets

The system shows a high level of independence with respect to the training dataset. The
policies and discriminators are able to learn from very different examples (MNIST, Fashion-
MNIST and CelebA) using a range of different brushes and action parameterizations.

Figures 8.1 and 8.4 shows examples using different brushes painted by agents trained
on CelebA. Although this is a complex dataset, the modes are generally quite similar.
Future work could explore the performance of this method on even more challenging
multimodal datasets. Figure 8.5 shows examples of shoes painted by the system after
training on the Fashion-MNIST dataset.
Although the mehod works for both datasets, the amount of training necessary is

increased for more complex domains. Whereas the system can produce good outputs
for Fashion-MNIST after only 7k episodes of training (Figure 8.5), agents using CelebA
require more training. This is shown in Figure 8.6. After 7k episodes of training, paintings
of CelebA are not yet recognizable. The agents require about 10 times the amount of
training to produce comparable results.

8.2. Algorithmic Behavior

8.2.1. Policy Training and Exploration

This thesis poses the question of how to effectively apply on-policy reinforcement learning
in the generative adversarial setting. Although Proximal Policy Optimization has been
used successfully on difficult continuous control problems in the past, this work is the first
time it has been demonstrated to work for painting agents in the generative adversarial
setting. Learning in such settings entails unique additional challenges, and the PPO-based
method proves capable of overcoming these.

The entropy based exploration technique in PPO is sufficient to learn the dynamics of
both the reward system and environment. Recall that the size of both the action and
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(a) Hard Brush

(b) Splatter Brush

Figure 8.5.: Examples of painted shoes. The system is able to learn from signficantly
different datasets. These examples show paintings by agents trained on the
shoe class from Fashion-MNIST using a hard squared brush and a paint
splatter brush, respectively.

Figure 8.6.: Training time for CelebA. Whereas agents trained on Fashion-MNIST
can produce good results after only 7k episodes, the CelebA dataset is more
challenging. This example shows examples of grayscale paintings after 7k
episodes (top row) and 70k episodes (bottom row) of training.
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observation space in this type of environment is very large. The learning algorithm enables
the policy to generalize across the space, despite it being computationally infeasible
to thoroughly explore. As previously discussed, this type of exploration can still fail
in certain situations, leading the policy into various bad local optima. Examples of
suboptimal policies were previously presented in Figure 7.20.
As shown in Section 7.5, balancing the rate of exploration remains one of the most

important aspects of the method. Although a broad range of entropy coefficients enable
some level of learning, the quality of final outputs is highly sensitive to small changes in the
entropy coefficient. Since the explorative behavior is also strongly affected by the choice of
return estimator, achieving good results necessitates multiple trials across hyperparameter
ranges. In practice, applying the method to new datasets or new environment dynamics
is therefore not a straight forward process, but requires a fair amount of algorithmic
tuning. This is not an unique problem in the field, but the combination of reinforcement
and adversarial learning increases the difficulty of finding appropriate hyperparameters
to balance the system for new problems.

8.2.2. Essential Components

Previous work by Ganin et al. (2018) and Mellor et al. (2019) include recurrent policies
and population-based training. This thesis shows that these components are not essential
to achieve good results in a PPO-based system.
The results of this method does not improve with the inclusion of population-based

training due to a single policy outperforming others. Although populations have clear
benefits in terms of discriminator training (see Section 7.6.2), it is not necessary in this
context. Improving the behavior of PPO-based populations remains a potential venue
of better results in the future. If the performance of the whole population is consistent
throughout training, the discriminator could learn to generalize better, thus yielding
higher quality rewards. As indicated by Mellor et al. (2019), agent populations increase
the capabiliy of the generator element in the adversarial setting. It remains unclear
whether a single PPO-based agent results in the best generator-discriminator balance for
this method, or if the challenges associated with population-based training is caused by
other factors.
As shown in Section 8.1.2, the proposed method is capable of learning high-quality

policies with no reccurency in single agent settings. Non-recurrent policies have immediate
benefits over recurrent variants developed previously. First, they are less computationally
expensive to train. This eases the task of applying the method to new types of problems
with respect to iteration time and algorithmic tuning. Second, the policy is not temporally
dependent, which enables additional applications. A well trained policy could, for instance,
be used to finish an incomplete human painting, or be integrated with painting software
that is incompatible with the learned action space. A recurrent policy could be necessary
for certain problems, but as shown in the previous chapter the method works in the
recurrent setting as well.
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8.2.3. Adversarial Learning

A large portion of this thesis is dedicated to the role of adversarial learning in the system.
In addition to the design of the reward system itself, the training procedure of the
adversarial opponent is crucially important to enable learning in complex environments.
Given the size of the observation space in the typical generative setting, the credit

assignment problem is a significant challenge to overcome. This work suggests that the
most important property to consider is the temporal distribution of rewards. As shown
in Section 7.7, episodic reward systems are simply not sufficient to train good policies
with long action sequences.

The distribution of temporal rewards is greatly affected by the training algorithm used
for the discriminator. Section 7.4 shows that both the Wasserstein- and minimax loss
formulations are compatible, whereas LSGAN performs poorly in this setting. Although
the fact that multiple variants work is promising with respect to the generality of the
method, it is difficult to conclude why certain techniques work or behave differently than
others. The mean-seeking behavior of WGAN-GP implementations is a good example
of this. Given the common objective of discriminating between fake and real examples,
it remains unclear why this discriminator guides policy learning in such a different way
compared to other solutions.

As mentioned in the previous chapter, temporal rewards in the standard implementation
are based on paintings that are explicitly not a part of the discriminator training data.
The learning required to solve this problem is not equivalent to generalization from a
dataset to real world examples in typical classifier models. The model must instead
generalize to incomplete paintings generated by an unobserved temporal painting process.
This is a niche type of generalization that has not been investigated in previous literature.

Section 1.2 poses the question of which discriminator methods are suitable for generative
adversarial reinforcement learning, and this thesis has demonstrated that at least two
alternatives are applicable. Explaining why discriminators behave differently in this
particular way remains outside the scope of the thesis, and would likely require significant
effort and analysis of several models to resolve. This work still serves to highlight areas
of research that could lead to useful insights, including topics such as adversarial reward
shaping, the role of intermediate canvas training, and discriminator regularization.

8.3. Neural Network Architectures

Chapter 5 presents the neural network architecture of the discriminator and policy. The
work in this thesis shows that the architectures are capable of challenging generative
adversarial reinforcement learning, and exposes several interesting modes of behavior.

8.3.1. Discriminator

As discussed in Section 5.1, the proposed method uses a conventional convolutional
neural network discriminator model. Such models have previously been used successfully
for many types of adversarial learning. This work provides further evidence that these
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models are highly general, and are suitable in this type of reinforcement learning system
as well. This observation supports the findings of Ganin et al. (2018) and Mellor et al.
(2019) with respect to the performance of standard discriminator architectures.

Due to initial success using a conventional discriminator model, alernate architectures
are not explored in this thesis. As discussed in Section 7.4, the system behavior is
greatly affected by the learning algorithm of the discriminator, and this observation has
guided the priority of the research towards discriminator training as opposed to model
architecture. Results presented in Section 8.1.2 indicate that conventional architectures
are more than sufficient in this context. Although the architecture works well in practice,
other designs could have advantages that this thesis has not found.

8.3.2. Policy

The most complex neural network architecture presented in this thesis is the policy
architecture. Recall that the policy consists of two primary parts, as presented in Section
5.4. A deep residual convolutional network first extracts features from the current canvas.
The extractor is followed by a large autoregressive head that processes features to produce
a probability distribution over the action space in the environment.

The feature extractor is a conventional deep residual network. Based on the performance
of these models in previous literature, alternatives are not explored in this thesis. As
shown by He et al. (2016), deep residual networks are capable of learning more complex
functions than what is necessary in this context. Residual models are also appropriate
with respect to gradient flow, given the depth of the following policy head. Although the
work proves that the model works in practice, simpler models could have advantages due
to smaller hypothesis spaces that are easier to explore.

Experiments demonstrate that the proposed autoregressive policy is capable of repres-
enting large, complex action spaces. The results support the findings of Ganin et al. (2018)
and Mellor et al. (2019), which employ similar autoregressive models. Typical policy
variants in reinforcement learning, including Gaussian and categorical policies, are shown
to be insufficient for more complex datasets such as CelebA. These policy alternatives
are not considered for generative adversarial reinforcement learning in previous work.
As discussed in Section 5.4, the design of the autoregressive architecture is partially

motivated by a set of intuitions relating to information flow in the system. The sample
and feature embeddings between each action head is one example of this. In order to
represent the conditional action distribution, information relating to previous samples
and observed features is strictly necessary to provide. The residual design used in this
work is, however, only one way to incorporate such information.

Designing and developing a working policy involves substantial work, and exploring
alternate designs therefore remains outside the scope of this thesis. The thesis has
demonstrated one example of a working policy, and reasoned about its various components
and their role in light of the information processing necessary. Additional research is
necessary to quantify their relative importance when applied to various problems in
practice.
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This thesis has demonstrated the successful use of Proximal Policy Optimization (PPO)
in generative adversarial reinforcement learning. The work includes the development of
a customizable painting environment suitable for reinforcement learning, designs for a
set of neural network architectures, and experiments exploring essential components in
this type of learning system. Agents trained using the proposed method are capable of
producing results comparable to the state-of-the-art, and are general with respect to
both environment dynamics and training datasets.

The work has shown that temporal rewards are necessary to enable learning in complex
settings, and that the quality of such rewards is greatly influenced by the training
procedure of the adversarial opponent. Results demonstrate that both WGAN-GP and
logit-minimax discriminators are applicable in this context, whereas LSGAN produces
rewards inadequate for learning. In addition to the discriminator learning algorithm,
several regularization techniques are also explored. The work has shown that these factors
implicitly change the behavior of temporal rewards, and as a result may guide policy
learning in different ways.

Exploration is a widely discussed topic in reinforcement learning, and its role remains
important in this context as well. The PPO-based system uses the entropy exploration
technique, and the entropy coefficient remains one of the most important hyperparameters
to tune to achieve good results. Combined with Generalized Advantage Estimates, the
technique enables the agent to explore a very large and complex environment sufficiently
to produce high-quality paintings.

The thesis further shows that typical policy architectures in reinforcement learning are
insufficient for this type of adversarial learning. Results demonstrate that the proposed
policy, a large autoregressive model, is capable of representing these complex action spaces.
The method enables model learning in both the recurrent and non-recurrent setting,
which extends the range of possible applications beyond previous work. In addition, the
thesis provides further evidence of the capability of conventional discriminator models.
These models have shown great success in previous work, and the results of this thesis
confirm that they are suitable in this context as well.
Although the method works well in several difficult settings, this type of learning is

also associated with certain weaknesses and unique challenges. Mode collapse is a widely
discussed topic in generative adversarial networks, and a variant of this issue can manifest
in policy-based generators as well. Experiments suggest that the issue is rooted in both
the adversarial relationship and modeling capability of the agent policy. Methods such as
data buffering and population-based training are suggested as potentional solutions, but
additional research is necessary to discover how the problem can be effectively prevented.
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9.1. Future Work

Generative adversarial reinforcement learning is an exciting area of research that is not
widely explored. Although this work exposes many properties of such systems, a lot of
potential remains in the area. Following sections suggest various topics of future work
that could be particularly interesting to explore.

9.1.1. Algorithm

Including this work, PPO and A2C are the only algorithms investigated in this context
so far — both of which are on-policy techniques. Although Proximal Policy Optimization
has shown great success in the field, other reinforcement learning algorithms may have
advantages in the generative setting. State-of-the-art off-policy algorithms such as Deep
Deterministic Policy Gradients (DDPG) by Lillicrap et al. (2015), Twin Delayed DDPG
(TD3) by Fujimoto et al. (2018), and Soft Actor Critics (SAC) by Haarnoja et al. (2018)
have been shown to perform comparably to PPO, and outperform it for certain problems.
Off-policy algorithms have benefits in terms of sample efficiency, and these alternatives
could therefore be well suited for the large observation space in generative environments.
SAC is of particular interest due to its ability to learn stochastic policies. Stochastic
policies are more desirable in this setting because of their inherent variation in generated
outputs.

9.1.2. Exploration Techniques

The proposed method uses entropy based exploration to explore the environment. Given
the size of the environment, more sophisticated search strategies could enable the
algorithm to learn quicker and discover better policies. Monte Carlo Tree Search (MCTS)
is a particularly interesting technique that employs heuristics to prioritize exploration
of promising trajectories in the environment. MCTS is most commonly used to solve
board games, but is applicable in many different settings. In earlier work, Silver et al.
(2016) combined MCTS and deep learning to train an agent to play Go at a superhuman
level. Although this problem is different at first glance, it has many similarities to the
generative painting setting. In addition to the large action and observation spaces, the
results of choices are typically not evident until many steps in the future, and rewards
are inherently sparse. Considering previous successes of MCTS, this type of exploration
could improve results and perhaps enable the removal of temporal rewards entirely.

The painting environment considered in this thesis entails a hard exploration problem,
due to frequent sparsity and deceptivity of adversarial rewards. As found by Bellemare
et al. (2016), classic reinforcement learning exploration techniques often perform poorly
on these types of problems, and more sophisticated methods with intrinsic motivation
could be explored in future work. The authors suggest count-based exploration using a
density model that encourages agents to discover novel states. This type of exploration
could also be benefitial in terms of the variety of generated outputs.
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Finally, the painting environment is particularly well suited for model-based techniques.
Although the environment is not differentiable, its dynamics are considerably easier
to learn than those of typical reinforcement learning settings. Environment transition
examples can easily be generated by the rendering engine, and these examples can be
used to learn an environment model in a fully supervised fashion. This model could in
turn be used for intrinsic curiosity driven exploration, which Burda et al. (2018) have
shown to work well on several difficult problems.

9.1.3. Environments and Datasets

Future work could also examine the performance of the method on even more complex,
multimodal datasets. Although the combination of MNIST, Fashion-MNIST, and CelebA
covers a range of different images, other datasets may shed further light on the system
behavior and applicability to other problems. Extending the environment to enable
more expressive interactions is another interesting area to explore. Additional action
dimensions, such as brush velocity, pressure throughout the stroke, or even the type of
brush per step, could enable agents to produce even more varied and interesting paintings.

Since method is agnostic with respect to the implementation details of the environment,
other types of visual simulations should also be considered. Vector-based drawing and
3D modeling are examples of interesting environments that could be combined with the
existing algorithm. The observed behavior in these settings would provide additional
insights into the generality of the method when exposed to vastly different environment
dynamics.

9.1.4. Model Architectures

The proposed method uses conventional architectures for the discriminator and feature
extractor, and a large autoregressive model for the policy. Other architectures could
have benefits in this context, and should be considered in future work. The design of the
policy model is of particular interest. As previously discussed, there are many ways to
provide the necessary information to the autoregressive decoder, and further research is
necessary to properly evaluate and justify these design decisions. Recent state-of-the-art
techniques, such as the decision transformer introduced by Chen et al. (2021), may also
be interesting to consider in this context.

9.1.5. Applications

Generative adversarial reinforcement learning can be applied to many different tasks,
but is most interesting in settings where the generative environment can not be easily
formulated in a differentiable manner. Sequential painting is one example of this, but
other creative endeavours may be also be formulated in this way. Music generation could,
for instance, be performed sequentially through actions that add instruments playing a
particular set of notes. This formulation is more analogous to how music is produced by
human professionals, and has particular potential with respect to the creative control and

83



9. Conclusion

cooperative ability it could provide. Whereas fully differentiable methods are difficult to
interpret, the output of this type of system is more readily understood and can easily be
modified by humans.

Looking beyond the generative aspect of the method, adversarial reinforcement learning
in general has great potential in solving problems where objective functions are difficult
or impossible to define. If an adversarial opponent can learn the objective directly from
examples, system dependency on engineered reward systems can be avoided. In many
settings, the task of producing examples of desirable environmental states is in fact much
easier than quantifying these states. This is particularly true for agents acting in the real
world. Building models that can generalize to the complexity of the real world remains a
central goal of machine learning as a field, and significant effort is required to overcome
these challenges.
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A. Implementation

A.1. Brush Configuration

The following example shows how the appearance of a brush is defined in a configuration
file. The configuration defines settings such as the type of stroke, brush texture, texture
spacing, scaling, and random jitter variation.

name : Sp l a t t e r Paint Brush
tex ture :

path : s p l a t t e r . png
opac i ty : 1 . 0

s t r oke :
type : b e z i e r
s tep : 0 . 2

c on t r o l :
max_thickness : 0 . 5
min_thickness : 0 .02
max_opacity : 1
min_opacity : 0 . 5

dab :
s t a r t_s ca l e : 1
end_scale : 0 . 4
j i t t e r :

s c a l e : 0 . 5
r o t a t i on : 180
po s i t i o n : 0 .15
c o l o r : 0 . 2
opac i ty : 0 . 1

fo l low_stroke_angle : t rue
post_process ing :

b lur : 0
no i s e : 0
edge_blend : 0
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A. Implementation

A.2. Alternate Policies
Three alternate policy variants are considered — the gaussian policy, beta policy and
categorical policy. All policies employ a multi-layer perceptron which process the features
provided by the feature extractor. In the gaussian- and beta policies, the layer is followed
by two separate linear layers which model the means and standard deviations or the
alpha and beta parameters respectively. The categorical policy uses a set of linear layers
to model distributions for each action dimension. Figure A.1 shows an overview of these
architectures.

Figure A.1.: Alternate policy architectures.

A.3. Default Configuration
The following configuration file shows the default setup for the method. Given the large
amount of available hyperparameters, the file serves as a good overview of the technique.
This example uses the WGAN-GP discriminator, but this setting, as well as any others,
are easily changed.

# =============== #
# General #
# =============== #

i t e r a t i o n s : 1000000
datase t : ce leba−a l i g n
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A.3. Default Configuration

agent_population : 1
d i s c r iminator_popu la t ion : 1

target_batch : 4096
max_parallel_envs : 64
min_paral le l_envs : 16

# =============== #
# Algorithm #
# =============== #

algor i thm : PPO

# Common
a lg :

n_epochs : 5
batch_size : 64

use_rms_prop : t rue
l ea rn ing_rate : 0 .0001
max_grad_norm : 0 .5
lr_decay : nu l l

v f_coef : 0 . 5
ent_coef : 0 .01

# PPO s p e c i f i c
ppo :

mode : c l i p
c l ip_range : 0 . 2
kl_d_target : 0 .03

# Rol lout
r o l l o u t :

gae_gamma : 0 .99
gae_lambda : 0 .95
normal ize_returns : f a l s e
normalize_rewards : f a l s e
e s t imator : gae
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# =============== #
# Environment #
# =============== #

reward_system :
kind : a_temporal
c l i p : 10 .0
s c a l e : 1 . 0

img :
channe l s : 3
width : 64
he ight : 64

brush :
channe l s : 3
opac i ty : t rue
th i c kne s s : t rue
use_hsv : f a l s e
cont iguous : f a l s e
path : . / siro_paint_gym/brushes / pa int / sp la t te r_fas t_v3 . yaml

env :
n_strokes : 64
background : ! ! python/ tup l e
− 1 .0
− 1 .0
− 1 .0
− 1 .0
render_sca l e : 4
render_downscale : nu l l
padding : 0 . 0

# =============== #
# Arch i t e c tu r e s #
# =============== #

policy_head :
embed_steps : f a l s e
embed_noise : f a l s e
embed_action : f a l s e
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A.3. Default Configuration

value_model :
embed_steps : f a l s e

extractor_model :
va lue_separate : f a l s e
r e s b l o c k s : 8
# Embedding
embed_grid : t rue
embed_steps : f a l s e
embed_noise : t rue
embed_action : t rue

discr iminator_model :
fc_out : f a l s e
model_chn : 64
spectral_norm : t rue
norm : nu l l

# =============== #
# Disc r iminator #
# =============== #

d i s c r im ina t o r :

da ta se t_ labe l : nu l l

# Batch
t ra in_f r eq : 1
batch_size : 64
max_epochs : 1

# Buf f e r
on_policy : f a l s e
bu f f e r_s i z e : 1500
bu f f e r_p r i o r i t y : r e c en t
train_on_incomplete : f a l s e

# Optimizer
use_rms_prop : t rue
l ea rn ing_rate : 0 .0001
max_grad_norm : nu l l

97



A. Implementation

# Loss
loss_type : wgan
gradient_penalty : 10 .0
weight_cl ip : nu l l
l2_penalty : nu l l
s o f t_ta rg e t : 0 . 0

# Expectat ion
expectat ion_batch : 64

A.4. Experiment Tracking
This work uses Weights and Biases by Biewald (2020) for experiment tracking. Figures
A.2 and A.3 shows examples of key metrics tracked on a typical experiment dashboard.
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A.4. Experiment Tracking

Figure A.2.: Experiment dashboard 1/2. Example of various metrics tracked using
Weights and Biases during an experiment.

99



A. Implementation

Figure A.3.: Experiment dashboard 2/2. Example of various metrics tracked using
Weights and Biases during an experiment.
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B. Equations
B.1. Derivation of the Policy Gradient†

The probability of a trajectory generated by πθ is given by the equation:

P (τ | θ) = p0(s0)
T∏
t=0

P (st+1 | st, at)πθ(at | st) (B.1)

Where p0(s0) is the probability of the initial state. We can use the log-probability to
simplify calculations while maintaining a valid gradient. The log-probability of the
trajectory is given by:

log P (τ | θ) = log p0(s0) +
T∑
t=0

(log P (st+1 | st, at) + log πθ(at | st)) (B.2)

The environment is independent from θ, so the p0(s0) and P (st+1 | st, at) terms can be
excluded from the gradient with respect to θ:

∇θ log P (τ | θ) =
T∑
t=0
∇θ log πθ(at | st) (B.3)

The gradient of the objective function is given by:

∇θ J(πθ) = ∇θ
∫
τ
P (τ | θ)R(τ) (B.4)

We move the gradient term inside the integral, change to expectation form, and use the
log derivative trick to get:

∇θ J(πθ) = E
τ∼πθ

[∇θ log P (τ | θ)R(τ)] (B.5)

Substituting the trajectory probability with Equation B.3 we get the final policy gradient:

∇θ J(πθ) = E
τ∼πθ

[
T∑
t=0
∇θ log πθ(at | st)R(τ)] (B.6)
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