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Abstract

To reduce global warming, power generation must transition from fossil sources to renewable
energy sources with a lower carbon footprint. The traditional power grid structure is comprised
of large fossil-fueled power plants often located in the vicinity of the power consumption, such as
big cities. The transition to distributed renewable energy sources introduces new challenges. The
renewables will be intermittently integrated into the power grid, potentially far away from where
most of the power is consumed, causing less predictable power generation and more challenging
transmission. Where traditional power generation is dominated by large synchronous generators
with large inertia, most renewable energy sources are connected to the power grid through power
electronic converters where the inertia cannot contribute to the stability of the power grid. The
increasing penetration of renewables, therefore, has the potential to jeopardize the stability and the
performance of the entire power system. Therefore, a new strategy for controlling power electronic
converters is needed that allows for the continuous growth of distributed renewable energy sources
without compromising the stability of the power system.

One of these converter-connected renewable energy sources is wind power, which might become
one of the largest power sources in the future. This master thesis aims to develop a scalable
stability certificate allowing for a plug-and-play philosophy for a wind park. By scalable stability
certificate, it is meant as a set of criteria that guarantee large signal stability for a wind park that
can be expanded to the desired size and connected to an external power grid without the risk of
instability. The plug-and-play feature is meant as an connection strategy which enables a system
to adapt to changes with minimal interventions. The derivation of the stability certificate is based
on an analysis of a wind energy conversion system consisting of a permanent magnet synchronous
generator connected to full scale back-to-back two-level voltage source converters. The system
introduces three challenging non-linearities: in the generator dynamics, the mechanical torque
generated by the wind, and in the power converters. It is shown how such a wind energy conversion
system can be guaranteed to be stable for large disturbances by using design criteria for the damping
in the generator and tuning conditions for passivity-based feedback control loops. It is proven that
by satisfying these stability criteria locally at each wind turbine, a wind park consisting of these
wind turbines will also be guaranteed to be stable for large disturbances. Thereby, a scalable
stability certificate is found.

The derivation of the stability criteria relies on the following tools from non-linear system theory.
Passivity is used as a starting point for control design in combination with port-Hamiltonian
modeling formalism, which emphasizes the system dissipation, interconnection pattern, and the
energy in the system dynamics. Lyapunovs direct method is used for the stability analysis, where
the Lyapunov candidate function is inspired by the energy of the system. Lastly, graph theory is
used to expand the model from one wind turbine to a wind park to investigate the stability of the
entire system.

In addition, this thesis briefly compares PI-current control with PI-PBC, the performance and
stability challenges with and without cascaded control structure, and how the damping in the
generator improves the control performance.
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Sammendrag

For å redusere den global oppvarming m̊a kraftproduksjonen g̊a over fra fossile kilder til fornybare
energikilder med lavere karbonavtrykk. Det tradisjonelle strømnettet best̊ar av store fossildre-
vne kraftverk som ofte plassert i nærheten av det største kraftforbruket, f.eks. nær storbyer.
Overgangen til fornybare energikilder byr p̊a nye utfordringer. De fornybare energikildene vil
sporadisk bli integrert i kraftnettet, potensielt langt unna der det meste av kraften forbrukes,
noe som for̊arsaker mindre forutsigbar kraftproduksjon og mer utfordrende kraftoverføring. Der
tradisjonell kraftproduksjon domineres av store synkrongeneratorer med stort treghetsmoment, er
de fleste fornybare energikilder koblet til kraftnettet gjennom kraftelektroniske omformere hvor
treghetsmomentet ikke kan bidra til stabiliteten regulering i kraftnettet. Den økende innfasingen
av fornybar energi har derfor potensialet til å redusere og i verste fall ødelegge stabiliteten og
kraftoverføringsevnen til hele kraftsystemet. Derfor er det nødvendig med en ny strategi for å kon-
trollere kraftelektroniske omformere som muliggjør en kontinuerlig vekst av distribuerte fornybare
energikilder uten at det g̊ar p̊a bekostning a stabiliteten i kraftsystemet.

En av disse omformertilkoblede fornybare energikildene er vindkraft, som kan bli en av de største
kildene til elektrisk energu i fremtiden. Denne masteroppgaven har som m̊al å utvikle et skalerbart
stabilitetssertifikat som åpner for en plug-and-play-filosofi for en vindpark. Med skalerbart sta-
bilitetssertifikat menes det som et sett med kriterier som garanterer stor signalstabilitet for en
vindpark som kan bygges ut til ønsket størrelse og kobles til eksternt strømnett uten risiko for
ustabilitet. plug-and-play-funksjonen er ment som en tilkoblingsstrategi som gjør det mulig for
et system å tilpasse seg endringer med minimale inngrep. Utledningen av stabilitetssertifikatet er
basert p̊a en analyse av et vinkraftsystem best̊aende av en permanent magnet synkrongenerator
koblet til fullskala back-to-back to-niv̊a spenningskildeomformere. Systemet introduserer tre ut-
fordrende ulineæriteter: i generatordynamikken, det mekaniske dreiemomentet som genereres av
vinden, og i kraftomformerne. Det vises hvordan et slikt vindkraftsystem kan garanteres å være
stabilt for store forstyrrelser ved å bruke designkriterier for dempingen i generatoren og regulering-
skrav for passivitetsbaserte tilbakekoblingskontrollsløyfer. Det er bevist at ved å tilfredsstille disse
stabilitetskriteriene lokalt ved hver vindturbin vil en vindpark best̊aende av disse vindturbinene
ogs̊a være garantert stabil for store forstyrrelser. Derved er et skalerbart stabilitetssertifikat funnet.

Utledningen av stabilitetskriteriene er basert p̊a følgende verktøy fra ulineær systemteori. Passivity
brukes som utgangspunkt for kontrolldesign i kombinasjon med port-Hamiltonian modellering.
Lyapunovs direkte metode brukes for stabilitetsanalysen, der Lyapunov-kandidatfunksjonen velges
basert p̊a energien i systemet. Til slutt brukes grafteori for å utvide modellen fra én vindturbin til
en vindpark for å undersøke stabiliteten til et helt system.

I tillegg, sammenligner denne oppgaven i korthet PI-strømkontroll med PI-PBC, ytelses- og sta-
bilitetsutfordringene med og uten kaskadekontrollstruktur, og hvordan dempingen i generatoren
forbedrer kontrollytelsen.
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Chapter 1

Introduction

The introduction chapter presents a motivation for this thesis along with a short
description of our contribution to solving the challenges of integrating wind re-
sources in the electrical grid. The chapter begins with a general overview of the
demand for energy and follows up with a more specific description of the Status
Quo for wind resources to highlight the area from which this thesis originate.
Tools that seem able to deal with several of the challenges concerning wind en-
ergy are presented. Lastly, we present the contributions in this master thesis,
more precisely the objectives, methodology, and limitations.

1.1 General Introduction

One of the International Energy Agency (IEAs) scenarios forecasts an increase in electricity con-
sumption from 23 300 Terrawatt-hours (TWh) in 2021 to 30 000 TWh in 2030, an increase of more
than 22 %. Electricity is, for most people, something they take for granted. When they plug into
the wall sockets, they expect the electricity to start flowing. Going back not much further than a
decade, few people, not counting those working with electricity generation, cared or even thought
about where the electricity came from. This attitude has luckily changed over the last decade,
and more people have started to take an interest in how the electricity is made [1]. As a result,
companies that generate renewable power sell guarantees of origin to electricity companies, such
that customers are able to support the renewable generation [2]. Measures like this are a good
way to increase renewable power generation and are needed more than ever since the electricity
demand is expected to increase over the following years. To reach the climate goals by reducing
the greenhouse gas emissions (GGE) by at least 50-55 % in 2030 compared to the reference year in
1990, it is crucial that renewable energy sources meet this increased demand. In addition, a higher
share of the already installed electricity capacity also needs to become renewable. Global CO2

emissions from electricity generation increased by roughly 9% over the last decade, but the overall
electricity demand rose by 25%. Therefore, meeting the increasing demand and not skyrocketing
the emissions is a demanding challenge but not impossible [3].

The increase in electricity demand is tightly coupled with the desire to reduce greenhouse gases
through electrification and the fact that more and more people get access to electricity [4]. Elec-
trification of different sectors can drastically reduce the GGE. The transport sector counts for 16.2
% of the global GGE. The primary emissions from this sector come from the internal combusting
engines burning petrol, and diesel [5]. Changing to electric vehicles arguably appears as a logical
choice, and many countries have already implemented benefits for those willing to make the trade.
One of the downsides of changing to electric vehicles is the increased pressure on electricity gen-
eration. In countries where the electricity is mainly produced by renewable energy sources with

1



low carbon footprint, the GGE declines. In countries where the electricity comes from fossil fuels
on the other hand, the reduction of GGE declines less rapidly. The increase in electricity demand
in such countries results in an increasing electricity production from fossil-fuelled based sources.
The only solution that will be sustainable is to decarbonize the electricity supply, meaning all
electricity has to come from renewable energy sources such as hydro, wind, solar, etc. However,
the transition to renewable energy sources introduces new challenges.

Today’s power grid is dominated by large synchronous generators (SG) with high inertia, often
fuelled by fossil fuels. The grid frequency is decided by the transmission system operator (TSO),
and a stable frequency is maintained by having all SGs electrically coupled and rotating at the
same electrical frequency. The stability of the power grid relies on several factors, for instance the
inertia of the SGs and the frequency regulation of SGs through the droop response of the speed
controller to mention a few. [6].

Renewables such as wind and solar are connected to the power system through electrical power
converters, and they have the potential to jeopardize the stable operation of the entire power
system, especially under large disturbances, thus potentially limiting the timely-needed expansion
of renewable energy sources [7]. A new strategy is needed to safely operate power systems with high
integration of renewable sources. Amongst these renewables are wind power, which is anticipated
to become one of the more dominating renewables in the future power grid. For that reason, wind
power is the subject investigated in this thesis, and is more thoroughly introduced in the next
section.

1.2 Wind Power

The global renewable capacity is expected to increase by about 305 Gigawatt (GW) annually
between 2021 and 2026, according to the IEA main forecast [8]. Of the 305 GW per year, on
average, 94 GW of the increase is expected to be wind power. The offshore share of wind power is
expected to increase, from roughly 6.1 GW in 2020, reaching upwards to 76 GW by 2025 [9].

As mentioned, the offshore wind market is expected to keep increasing according to IEAs forecast.
The increase in the offshore wind sector is due to several reasons. Decreasing offshore auction
prices and new areas that were discarded because of the water depth are becoming more relevant,
to mention a few. This is due to the technological advancement made in regards to the floating
substructures. Offshore wind turbines also have higher rated power compared to onshore wind
turbines. This implies fewer wind turbines to produce the same amount of power compared to the
onshore ones [10]. For this reason, along with reducing encroachment on nature, offshore wind is
becoming lucrative.

The Norwegian government has an ongoing initiative to promote offshore wind power. Phase one
of the initiative is to increase the installed offshore capacity by 1500 Megawatt (MW), thereby
increasing the electricity production by roughly 7 TWh per year. Phase two of the initiative also
has a capacity of 1500 MW. However, some challenges regarding the grid connection need solving
before this part sees the light of day [11].

The most promising wind energy conversion system (WECS) is the type 4 wind turbine generator
(WTG) with a full scale back-to-back (B2B) power converter. In this configuration, the generator
is completely decoupled from the power grid. By doing so, the speed of the generator is fully
controllable, which allows for maximum power point tracking (MPPT) [12]. The downside of
doing, the ability to rely on the inertia of the machine for stability regulation is lost. [13].

Today’s conventional control and tuning strategies are often based on the linearization of the wind
generation system. Linearization allows for simple analytical and numerical solutions for many
control problems and ease the implementation of practical applications [14]. Unfortunately, most
real-world control systems are nonlinear by nature. The generator dynamics, the wind itself, and
the converters introduce nonlinearities in the WECS. To guarantee large signal stability, one has
to take these nonlinearities into consideration.

2



The specialization project associated with this master thesis presented a detailed derivation of
the equations describing a WECS. For completeness the derivation is included in Appendix B.
The mechanical torque highly depends on the wind through the wind power coefficient Cp. The
coefficient expresses the turbine’s efficiency and is dependent on the tip speed ratio, which is a
function of angular velocity, the wind speed, and the radius of the turbine blades. In addition, the
wind power coefficient Cp is also dependent on the pitch angle β but is assumed to be constant and
typically zero when the turbine operates in the regime of maximum aerodynamic efficiency [15].
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Figure 1.1: The wind power coefficient as a function of the tip speed ratio

From Figure 1.1, one can see the highly non-linear nature of the turbine coefficient, and to guarantee
large signal stability without recurring to standard approximations, this non-linear property should
ideally be taken into consideration when modeling and subsequently controlling the system.

To summarize, the offshore wind power is expected to increase drastically in the coming years,
partly due to the technological advancements made on that front. The most promising system is
the type 4 WTG, which makes it possible to control the speed of the generator, while the downside
of doing so, however, is that one loses the ability to rely on the inertia for stability regulation and
the non-linear nature of the wind power system introduces challenges. To guarantee large signal
stability, one has to take these into consideration.

New procedures and methods need to be implemented to allow for a rapid change in the traditional
power grid structure. A procedure that takes into account the nonlinearities of the renewables and
their interfacing converters and that allows for a “plug & play” feature for a rapid expansion is
therefore investigated in this master thesis. For that reason, a more detailed literature review
highlighting some of the possible non-linear control theory tools contributing to this change is
presented next.

1.3 State of the Art

The integration of power electronic converters in the power grid as a result of the change from
centralized to more distributed generation has been a topic of extensive research [16]. Research
that, amongst other, relate to photovoltaic (PV) systems integration in the grid [17] and on the
challenges concerning grid integration of wind energy [18]. There are several challenges concerning
wind energy. One of these is the output power prediction, as there is no ideal strategy to predict
wind energy due to the challenging meteorological items to be forecasted. Another challenge is the
reactive power/voltage support. For instance, the most utilized generator type is the induction
generator which cannot produce reactive power of its own but only consume. Other challenges are
the impact on the frequency due to the decoupling of the generators from the rest of the grid and
harmonic injections. Nevertheless, the integration of wind energy into the power grid is happening
at a level never seen before [8].
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To overcome many of the issues regarding the integration of renewables and their overall impact
on the large signal stability of the power grid, new methods are being investigated. In this regard,
modeling techniques that highlight the passivity of the systems in combination with Lyapunov
stability theory have shown promising results [15] [19]. One of these modeling techniques, and the
one used in [15], is the Euler-Lagrange representation. In this thesis, however, the port-Hamiltonian
(pH) modeling formalism is used since it allows for expansion and easy interconnection with other
subsystems. The pH formalism has already been utilized in several fields of study, including the
modeling of power converters [20] [21], modeling of synchronous generator [22] and modeling of an
HVDC system [23].

As mentioned, the pH modeling formalism highlights the passivity of the system. Passivity is a key
concept in stability analysis and is a useful starting point for control design, bringing the stored
energy of the system to its minimum [24]. Passivity-based control has been around since the late
1980s [25] and was first introduced in the context of adaptive control of robot manipulators [26].
Passivity-based control is a control design method for non-linear systems that exploit the system’s
physical structure. More precisely, it exploits the fact that physical systems satisfy the energy
balance. Stored energy is equal to the difference between supplied energy and dissipated energy, and
the passivity-based controller (PBC) exploits this to arrive at a modified energy balance via control.
The new energy balance consists of a desired stored energy which equals the difference between
a new supplied energy and a desired dissipated energy. Passivity-based control is, therefore, an
energy shaping and damping injection control method that accomplishes this by rendering the
closed-loop passive with respect to some suitable storage function [19]. Passivity-based control is
often found in combination with pH modeling, for instance, in [27].

By utilizing graph theory in combination with pH modeling, one is able to generalize the study
of the interactions of n smaller pH systems connected together. The method is based on deriving
the pH models for each individual component and then combining them all using power preserving
interconnections with the help of the incidence matrix, which contains the network graph topology
[28]. Graph theory has been around since the 17th century, and its applications are well known and
broadly spread to say at least [29]. For instance, in [30] a multi-carrier energy distribution system
consisting of an electrical distribution system is coupled with a gas distribution system. Graph
theory is in this paper used to integrate the network models into a pH model, and the model aims
to create an application for energy management control and monitoring.

1.4 Contribution

This thesis is a continuation of the work done in the associated specialization project where a
scalable stability certificate for a WECS was investigated. The stability certificate is a guarantee
for the system to be stable for large disturbances and that the system can safely be connected
to an external grid without jeopardizing its stability. The main contribution compared to our
previous work is to include the two-level voltage source converter (2L-VSC) in a B2B configuration
interfacing the permanent magnet synchronous generator (PMSG). In addition, the stability result
is generalized by means of graph theory, making the result not only valid for a single wind turbine
but for a complete wind park.

1.4.1 General objectives

The main objective of the thesis is to expand the stability certificate for a wind energy conversion
system found in the specialization project by including the nonlinear dynamics of the back-to-
back 2L-VSCs and generalizing the result to include any (multi-machine/converter) wind-park
configuration. The stability certificate is developed using passivity in combination with port-
Hamiltonian modeling and Lyapunov stability analysis.
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1.4.2 Specific Objectives

More precisely, we aim to

• Derive the port-Hamiltonian model of a wind energy conversion system consisting of a wind
turbine with a permanent magnet synchronous generator and full scale back-to-back convert-
ers.

• In combination with industry standard proportional integral (PI) controllers, use the shifted
Hamiltonian as a Lyapunov candidate function to investigate the stability properties of the
system and check if the conditions for stability are satisfied.

• Simulate the wind energy conversion system with the full back-to-back converters and validate
the stability criteria. By use of simulation different control strategies are investigated such
as comparison with traditional PI-current control, cascaded control structure and practical
solutions to challenges introduced by cascaded control structure.

• Expand the stability analysis to apply for a wind park with the help of graph theory.

1.4.3 Methodology

To achieve our objectives, we:

• Derive a port-Hamiltonian model of a full back-to-back wind energy conversion system.

• Utilize the result presented in [31] for a general (rather abstract) class of (physical) systems
and apply it to the specific case of the wind power system to find the stability criteria by
means of Lyapunov stability theory.

• Derive a port-Hamiltonian model of the grid and expand the port-Hamiltonian model of the
wind turbine, so it is comprised of several wind turbines.

• Connect the grid model and the new port-Hamiltonian model of the wind turbines through
a power preserving interconnection with the help of graph theory

• Repeat the stability procedure done for the single wind turbine case for a wind park, i.e.,
utilize the result presented in [31] for a new Lyapunov function comprised of the shifted
Hamiltonian of the grid and the shifted Hamiltonian of the wind turbines.

• Simulate the wind energy conversion system in Matlab/Simulink to validate our findings.

1.4.4 Limitations of Scope

Given the scope of the thesis, several simplification had to be made and are summarized below:

• The synchronous generator model is simplified to make the WECS easier to work with and
simulate. The simplifications are that magnetic saturation is neglected, the magnetic field is
evenly distributed in the generator, the resistance and the inductance in the generator and
grid are independent of frequency, the permanent magnets create a sinusoidally distributed
field, and hysteresis losses are neglected. These assumptions and simplifications are made,
as their inclusion will not impact the control of the generator significantly.

• A damping coefficient, ′d′, is introduced in the modeling of a synchronous generator. The
damping is due to damper windings in the rotor of the synchronous generator. Only the
damping effect is included in the model, as the effect on the flux linkages in the machine due
to the damper windings would require a more advanced model. The damping due to friction
is neglected in the model, as the friction loss is assumed to be very small.
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• In the capacitors, a conductance ′G′ is added to model the losses associated with the capa-
citor, as no physical element is loss-free. Switching losses are neglected, but one could argue
that these could also be modeled in the conductance ′G′.

• In the single converter model, the second converter and external grid are modeled as a
current source on the DC-side of the converter for simplicity and to allow for a practical
port-Hamiltonian structure.

• The external grid is modeled as a stiff voltage source in the two converter model in section 3.2.

• The HVDC-connection for the wind park in chapter 5 is modelled as a constant voltage
source. It is assumed that the control of this modular multilevel converter keeps the voltage
at the wind park connection constant.

• Due to time constraints, simulation of the wind park is left for future work.

1.4.5 Thesis Structure

This thesis is organized as follows. Chapter 2 is a short summary of the specialization project,
which this thesis is a continuation of. Chapter 3 starts with the derivation of a stability certificate
for a WECS with only the machine-side converter. Then the stability certificate is expanded to
include the full back-to-back converter configuration. Towards the end of Chapter 3, the nonlinear
dynamics of the wind are included. Chapter 4 begins with a theoretical part concerning the control
of a wind turbine. Later, simulation results for different scenarios and a comparison of different
control strategies and control structures are shown. In chapter 5, the certificate derived in chapter
3 is expanded for a more extensive system consisting of a wind park with multiple wind turbines.
The thesis ends with conclusions and gives suggestions for future work in chapter 6.
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Chapter 2

Summary of Specialization Project

This master thesis is a continuation of the work that was started in the special-
ization project “Towards Plug-and-Play control of Wind Power Systems: Tun-
ing Criteria for Converter Connected PMSG Wind Turbine Guaranteeing Large
Signal Stability”. The aim of this project was to develop a so-called stability cer-
tificate for a PMSG-connected wind turbine. The stability certificate guarantees
the PMSG-connected wind turbine to be stable even for large disturbances, and
if the wind turbine is connected to a larger system, then the wind turbine will
not jeopardize the stability of the larger system. As the master thesis is building
on top of the result of this project, a short summary of the project is presented
in this chapter for the sake of completeness.

2.1 Methodology

To attain a stability certificate, the methods introduced in [31] are applied to the wind energy
conversion system described in [15]. The system is first shown to admit a port-Hamiltonian rep-
resentation, and a Lyapunov candidate function (LCF) inspired by the Hamiltonian is chosen.
The passive properties inherent to a port-Hamiltonian system are exploited to satisfy Lyapunov’s
stability conditions. The values of the tuning- and damping parameters of the WECS for the
Lyapunov function to be satisfied yield the stability criterion.
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2.2 The system, Analysis and Conclusions

r L
PMSG

Vd,q

Figure 2.1: System under study in specialization project

The system that was investigated in the project is shown in Figure 2.1. The equations describing
the system are:

Ψ̇d = Li̇d = −rid + Liq
P

2
ωm − vd (2.1)

Ψ̇q = Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − vq (2.2)

ρ̇ = Jω̇m = Tm − 3

2

P

2
ϕiq + d(ωref − ωm) (2.3)

where, Ψd and Ψq are the flux linkage, L is the inductances in the stator windings, P is the number
of magnetic poles in the machine, id and iq are the currents in the direct- and quadrature axis,
respectively. ωm is the angular velocity of the rotor, ωref is the reference angular speed of the
rotor, ρ is the the angular momentum, ϕ is the magnetic flux from the permanent magnets and
Tm is the mechanical torque.

Equation 2.3 is modified by a factor 2
3 to make the system skew symmetric.

ρ̇∗ = J∗ω̇m = T ∗
m − P

2
ϕiq + d∗(ωref − ωm) (2.4)

The derivation of the system equations are shown in Appendix B. The system above admits the
port-Hamiltonian representation:Ψ̇dΨ̇q

ρ̇∗


︸ ︷︷ ︸

ẋ

=


p

2
Φ

0 0 0
0 0 1
0 −1 0


︸ ︷︷ ︸

J0

+
p

2
L

 0 ωm 0
−ωm 0 0
0 0 0


︸ ︷︷ ︸

J(ω)

−

r 0 0
0 r 0
0 0 d∗


︸ ︷︷ ︸

R


 idiq
ωm


︸ ︷︷ ︸
∇H(x)

+

−1 0
0 −1
0 0


︸ ︷︷ ︸

G

[
vd
vq

]
︸︷︷︸
u

+

 0
0

T ∗
m + d∗ωref


︸ ︷︷ ︸

E

(2.5)

which can be written in compact form as:

ẋ =
(
J0 + J (ωm)−R

)
∇H(x) +Gu+ E (2.6)

An incremental model is needed as the system needs to have an equilibrium point different from
the origin.1 It was shown in the associated specialization project that for the LCF

V(x̃) = H(x̃) =
1

2
x̃⊤Qx̃ (2.7)

1This is since the equilibrium point in the origin is equivalent to the wind energy conversion system being shut
off.

8



all four conditions for a Lyapunov function are satisfied, which implies that the system is asymp-
totically stable for large disturbances if the following criterion is satisfied:

d∗ −
(̄iq

p
2L)

2

4(r + γ)
≥ 0 (2.8)

with d∗ the damping coefficient representing the effect of the damper windings in the PMSG; γ
a tunable control parameter constant [31], proportional to the gain in the PI current controllers.

Criterion 2.8 states that the damping in the system must be larger then a certain value,
(̄iq

p
2L)

2

4(r+γ) ,

for the system to be guaranteed to be stable. By tuning the current controllers and increasing

the gain, the term
(̄iq

p
2L)

2

4(r+γ) can be reduced. The result is that the current controllers can reduce

the required damping in the PMSG, and that linear PI current controllers that are widely used in
industry today can be used to stabilize the nonlinear system.

The model that is shown above was later expanded to include the nonlinear relation between the
mechanical torque Tm and the angular velocity

Tm(ωm) =
1

2
ρAv3Cp

1

ωm
, (2.9)

where ρ is the air density, A is the area swept by the turbine blades with length rb, v is the
wind speed and Cp is the wind power coefficient which is defined as Cp = C1(C2η − C5)e

−C6η.
η = 1

λ − 0.035 where λ is the tip speed ratio λ = rbωm

v [15].

C1 0.5
C2 116
C5 5
C6 21

Table 2.1: Constants for the Wind power coefficient Cp

Inserting the expression for the wind power coefficient into 2.9 gives:

Tm(ωm) =
1

2
ρAV 3 1

ωm
C1

(
C2(

v

rbωm
− 0.035)− C5

)
e
−C6(

v
rbωm

−0.035)
(2.10)

From the above equation, it is clear that mechanical torque has a nonlinear relation to the angular
velocity and therefore motivates to investigate how this non-linearity is affecting the system’s
stability. The system model is thereby modified to:

Ψ̇dΨ̇q
ρ̇


︸ ︷︷ ︸

ẋ

=


p

2
Φ

0 0 0
0 0 1
0 −1 0


︸ ︷︷ ︸

J0

+
p

2
L

 0 ωm 0
−ωm 0 0
0 0 0


︸ ︷︷ ︸

J(ωm)

−

r 0 0
0 r 0

0 0 d− Tm(ωm)
ωm


︸ ︷︷ ︸

R(ωm)


 idiq
ωm


︸ ︷︷ ︸
∇H(x)

+

−1 0
0 −1
0 0


︸ ︷︷ ︸

G

[
vd
vq

]
︸︷︷︸
u

+

 0
0

dωref


︸ ︷︷ ︸

E

(2.11)

The LCF is chosen as before, V(x̃) = 1
2 x̃

⊤Qx̃. By applying the methodology from [31], a stability
criterion is derived.

d∗︸︷︷︸
1.term

− ∂Tm(ωm)

∂ωm︸ ︷︷ ︸
2.term

−
(̄iq

p
2L)

2

4(r + γ)︸ ︷︷ ︸
3.term

≥ 0 (2.12)

Comparing the new criterion for the system that includes the nonlinear dynamics introduced by
the wind, with 2.8 which is the criterion for the system when the mechanical torque is a constant, it
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is apparent that a new term has been introduced. The partial derivative of the mechanical torque
with respect to angular velocity is given as:

∂Tm(ωm)

∂ωm
=

1

2
ρAV 3 1

ω2
m

C1

(
C2(

v
rbωm

− 0.035)− C5

)
e
−C6(

v
rbωm

−0.035)

− 1

2
ρAV 4 1

rbω3
m

C1C2e
−C6(

v
rbωm

−0.035)

+
1

2
ρAV 4 1

rbω3
m

C1

(
C2(

v
rbωm

− 0.035)− C5

)
e
−C6(

v
rbωm

−0.035)

(2.13)

It is not trivial to see whether the criterion 2.12 is satisfied or not due to the complexity of
2.13. To investigate stability, the criterion is plotted as a function of angular velocity for a given
operating point. To clarify, this means that the other variables of the system, such as currents
and mechanical torque, are assumed to be constant. For a wind speed of 15 m/s, the criterion is
plotted in Figure 2.2, as a function of the angular velocity.
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Figure 2.2: Plot of the stability criterion for different values of damping, V = 15[m/s]

In Figure 2.2, one can see the criterion for different damping coefficient values. The optimal
operating point ω∗

m is drawn in with a dotted line. At the optimal operating point, the criterion is
easily satisfied, however, during acceleration or deceleration of the wind turbine, a specific value of
damping is required for the criterion to be satisfied. For the chosen scenario shown in Figure 2.2, a
minimum damping d = 7.25 is required for the criterion to be satisfied for all values for the angular
velocity.

The project also discussed how the required damping to guarantee stability varied with different
parameters. An observation was that the damping required increased when the wind speed in-
creased. The damping should therefore be designed for a worst-case scenario. The effect of tuning
the current controllers is limited to only affecting the third term in criterion 2.12. It can be ob-
served that the second term dominates the criterion, and tuning the controllers only has a limited
effect, as can be seen in Figure 2.3.
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Figure 2.3: Plot of the stability criterion for different different values of γ

Therefore it can be concluded that when the non-linearities of the mechanical torque are included,
tuning of the current controllers is not sufficient to guarantee stability. It is also necessary to design
the machine with damping that satisfies d∗ ≥ ∂Tm

∂ωm
for the system to be globally asymptotically

stable, assuming that the current controllers are tuned such that the third term of 2.12 can be
neglected.

End note

The specialization project was limited to developing a stability certificate for WECS only consisting
of a PMSG connected to a constant voltage source. For the stability certificate to be of practical use,
the WECS model must be expanded to contain the non-linear dynamics of the power converters.
This is the starting point of this thesis.
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Chapter 3

Deriving the Stability Certificates

The change from centralized to distributed generation demands a new strategy
for interconnecting renewables to the power grid. Developing a stability certific-
ate to guarantee large signal stability is therefore essential in today’s world. The
certificate designed in the specialization project excludes the nonlinear relation-
ship of the power converters. As a consequence, the real-life applications of the
certificate are less functional. Our contribution to the highly needed change in
the power grid is, therefore, to create an innovative stability certificate includ-
ing the nonlinear dynamics of the converters in combination with the mechanical
and electrical relationship of a permanent magnet synchronous generator.

3.1 Single Converter + PMSG Model

The first step to studying the stability of the full back-to-back converter connected PMSG wind
energy conversion system, is to expand the system analyzed in the specialization project and
summarized in chapter 2 by including one of the two 2L-VSCs. Consequently, the second converter
and the grid connection are modeled as a current source on the DC side of the converter. The
system is shown in Figure 3.1.

3.1.1 Model Description

Our starting point will be the equations describing the electrical and mechanical aspects of the
system derived in the specialization project. A detailed derivation of the equations can be found
in Appendix B.

Li̇d = −rid + Liq
P

2
ωm − vd (3.1)

Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − vq (3.2)

Jω̇m = Tm − Te = Tm − 3

2

P

2
ϕiq + d(ωref − ωm) (3.3)

The equations describe a WECS consisting of a wind turbine and a PMSG. The system investigated
in the specialization project (Figure 2.1) will be expanded by first including a 2L-VSC acting as a
rectifier.
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Figure 3.1: Wind energy conversion system with one 2L-VSC acting as a rectifier

A fourth equation describing the 2L-VSC is needed to complete the system. Kirchhoff’s current
law in node O above the capacitor (Figure 3.1) yields

q̇c = CV̇c = IT − u1id − u2iq −GVc (3.4)

where qc is the charge in the capacitor. C is the capacitance, G is the conductance, Vc is the
voltage across the converter, IT is a constant current source representing the external grid, and u1
and u2 can be interpret as the duty cycles for the d and q-axis in the 2L-VSC, respectively. The
last term, GVc, represents the losses in the converter. Both switching losses and losses due to the
components not being ideal. The new overall system will therefore take the form:

Li̇d = −rid + Liq
P

2
ωm − u1Vc (3.5)

Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (3.6)

Jω̇m = Tm − Te = Tm − 3

2

P

2
ϕiq + d(ωref − ωm) (3.7)

CV̇c = u1id + u2iq −GVc − IT (3.8)

In the new set of equations

u1Vc = vd (3.9)

u2Vc = vq (3.10)

since the voltages in the d and q axis are now dependent on the dc voltage of the converter, as
opposed to the specialization project where they were linear values. The third system equation,
3.7, is modified to ensure skew-symmetry. The modification consists of multiplying the equation
with a factor 2

3 , due to the factor 3
2 in the term 3

2
P
2 ϕiq. The factor 3

2 is due to an amplitude
invariant park transform being used in the derivation of the system model. The third equation
then becomes:

J∗ω̇m = T ∗
m − P

2
ϕiq + d∗(ωref − ωm)

where J∗ = 2
3J , T

∗
m = 2

3Tm and d∗ = 2
3d. To simplify notation, from this point J , Tm and d are

used instead of J∗, T ∗
m and d∗.

To assess the system’s stability, it is beneficial to write the system on a port-Hamiltonian form.
Port-based modeling provides a unified framework for subsystems existing in different physical
domains. For instance, electrical, thermal and mechanical [19].
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A system on pH form has the general expression

ẋ =
(
J (x)−R(x)

)
∇H(x) +G(x)u+ E (3.11)

where x ∈ Rn is a collection of the state variables, J ∈ Rn×n is the skew-symmetric intercon-
nection matrix. Furthermore, R ∈ Rn×n is the symmetric and positive semidefinite dissipation
matrix, u ∈ Rm is the control input vector and G ∈ Rn×m is the control input matrix, E ∈ Rn is
the disturbance matrix, and H ∈ R is the Hamiltonian function describing the energy storage of
the system.

The system, described in 3.5, 3.6, 3.7 and 3.8, written on a pH form then becomes:


ψ̇d
ψ̇q
ρ̇
q̇c


︸ ︷︷ ︸
ẋ

=




0 Lωm
p
2 0 −u1

−Lωm p
2 0 p

2ϕ −u2
0 −p

2ϕ 0 0
u1 u2 0 0


︸ ︷︷ ︸

J

−


r 0 0 0
0 r 0 0
0 0 d 0
0 0 0 G


︸ ︷︷ ︸

R



id
iq
ωm
Vc


︸ ︷︷ ︸
∇H(x)

+


0
0

Tm + dωref
−IT


︸ ︷︷ ︸

E

(3.12)

The energy storage function H(x) will be on the form

H(x) =
1

2
x⊤Qx

=
1

2

[
ψd ψq ρ qc

] 
1
L 0 0 0
0 1

L 0 0
0 0 1

J 0
0 0 0 1

C



ψd
ψq
ρ
qc


=

1

2
(
1

L
ψ2
d +

1

L
ψ2
q +

1

J
ρ2 +

1

C
q2c )

(3.13)

The gradient of the Hamiltonian ∇H(x) is thus:

∇H(x) =


∂
∂ψd
∂
∂ψq
∂
∂ρ
∂
∂qc

 1

2
(
1

L
ψ2
d +

1

L
ψ2
q +

1

J
ρ2 +

1

C
q2c )

=


1
Lψd 0 0 0
0 1

Lψq 0 0
0 0 1

J qc 0
0 0 0 1

C ρ



=


1
L 0 0 0
0 1

L 0 0
0 0 1

J 0
0 0 0 1

C


︸ ︷︷ ︸

Q


ψd
ψq
ρ
qc


︸ ︷︷ ︸
x

= Qx

(3.14)

From Equation 3.12 one is able to write the system on the following form

ẋ =
(
J (ωm) + J0 + u1J1 + u2J2 −R

)
∇H(x) + E (3.15)
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and written out this becomes:


ψ̇d
ψ̇q
ρ̇
q̇c


︸ ︷︷ ︸
ẋ

=


P

2
L


0 ωm 0 0

−ωm 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

J(ω)

+
P

2
ϕ


0 0 0 0
0 0 1 0
0−1 0 0
0 0 0 0


︸ ︷︷ ︸

J0

+u1


0 0 0−1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

J1

+u2


0 0 0 0
0 0 0−1
0 0 0 0
0 1 0 0


︸ ︷︷ ︸

J2

−


r 0 0 0
0 r 0 0
0 0 d 0
0 0 0G


︸ ︷︷ ︸

R



id
iq
ωm
Vc


︸ ︷︷ ︸
∇H(x)

+


0
0

Tm + dωref
−IT


︸ ︷︷ ︸

E

(3.16)

A set of dynamic equations describing a nonlinear systems can be written in several ways. A
common form is

ẋ = f(x) + g(x)u (3.17)

y = h(x) + j(x)u (3.18)

Comparing Equation 3.17 and Equation 3.15, one is able to see that 3.15 can be split in the
following way:

f(x) =
(
J0 + J (ωm)−R

)
∇H(x) + E (3.19)

g(x) =
[
J1∇H(x) J2∇H(x)

]
(3.20)

where

u =

[
u1
u2

]
(3.21)

The stability of the system is investigated next, with the help of Lyapunov’s direct method.

3.1.2 The Lyapunov Function

There are different ways to investigate the stability of a system. Some are concerned with lin-
earization and ensuring the eigenvalues are located in the left half-plane. Since we are interested
in large signal stability–and therefore avoiding any type of linearization–we use Lyapunov’s direct
method.
A Lyapunov function is defined as:

V is a lyapunov function for x = 0 if and only if:
V is continuously differentiable

(I) V(0) = 0

(II) V(x) > 0 in D\(0)
(III) V̇(0) = 0

(IV) V̇(x) < 0 in D\(0)

Condition (II) states that V is positive definite in D.
Condition (IV) states that V̇ is negative definite in D
If all of the conditions above are fulfilled, then V is a lyapunov function for x = 0.
In other words, a Lyapunov function has a single equilibrium point that is the minimum of the
function. This is useful when analysing stability, since it can be shown that if a Lyapunov function
for the system exists, then the system has a stable equilibrium point and is asymptotically stable.
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The equilibrium point of interest is usually not at the origin, but with the help of a change of
variables, one can shift any point of interest to the origin.

Consider the system
ẋ = f(x) (3.22)

where x ∈ Rn are the state variables and ẋ = dx
dt

Say for instance x̄ ̸=0, then by introducing y = x− x̄ and taking the derivative

ẏ = ẋ− ˙̄x = ẋ = f(x) = f(y + x̄) = g(y) (3.23)

where g(0) = 0
The new variable y, now has an equilibrium at the origin. while f(x) has an equilibrium at x̄ ̸=0

3.1.3 Analysis of the Incremental Model

Since the idea is to have an operating wind turbine, an equilibrium different from the origin is
explored. Utilizing the trick described above, the incremental model of the pH system takes the
form:

ẋ = (J0 + J (ωm)−R)Qx+ g(x)u+ E
- 0 = (J0 + J (ω̄m)−R)Qx̄+ g(x̄)ū+ E

˙̃x =
(
J0 −R

)
Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x)u− g(x̄)ū

(3.24)

If one were to investigate the last two terms closer g(x)u− g(x̄)ū one could see that they could be
rewritten as

g(x)u− g(x̄)ū = g(x̃+ x̄)(u)− g(x̄)ū

= g(x̃)u+ g(x̄)u− g(x̄)ū

= g(x̃)u+ g(x̄)ũ

(3.25)

And the incremental model of the pH system can be rewritten as:

˙̃x =
(
J0 −R

)
Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x̃)u+ g(x̄)ũ (3.26)

and as
g(x̃) =

[
J1Qx̃ J2Qx̃

]
the incremental model can be further rewritten as:

˙̃x =

(
J0 +

2∑
i=1

Jiui −R

)
Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x̄)ũ (3.27)

Lyapunovs direct method and pH modeling formalism is tightly bound to the concept of passivity.
Systems written on a pH form are by definition passive due to the underlying dirac structures of
the Hamiltonian modeling [19]. Furthermore, passive systems cannot store more energy than what
is being supplied to them. In other words, it cannot generate energy.

A dynamical system on state space form can be written as

ẋ = f(x, u) (3.28)

y = h(x, u) (3.29)

where f: Rn×Rp −→Rn is locally Lipschitz, h: Rn×Rp −→Rp is continuous and f(0, 0) = h(0, 0) = 0.
The system represented by 3.28 and 3.29 is said to be passive if there exists a continuously differ-
entiable positive semidefinite function V(x) such that

uT y ≥ V̇ =
∂V
∂t
f(x, u), ∀(x, y) ϵ Rn ×Rp [24] (3.30)
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The function V(x) is not necessarily straightforward to find. A good starting point however is the
storage function or the Hamiltonian of the system H(x)

As mentioned earlier, the equilibrium of interest is usually not at the origin. The starting point for
the stability analysis and the Lyapunov function is therefore not the Hamiltonian of the system, but
rather a function inspired by it, i.e., inspired by the energy of the system H(x̃) = V(x) = 1

2 x̃
⊤Qx̃

If the LCF satisfies all four conditions for Lyapunovs method, the system is globally asymptotically
stable.

Condition I

V(x̄) = 1

2
(x̄− x̄)⊤Q(x̄− x̄)

= 0

is satisfied.

Condition II

V(x) = 1

2
x̃⊤Qx̃ > 0,∀x ∈ D\{0}

is satisfied as V is a quadratic function.

Condition III and IV concerns the derivative of the LCF, and the following procedure is inspired
by the work done in [31]

V̇(x) = dH(x̃)

dt
= ∇⊤H(x̃)

dx̃

dt
= ∇⊤H(x̃) ˙̃x = x̃⊤Q ˙̃x (3.31)

Notice that ˙̃x = d(x−x̄)
dt = dx

dt = ẋ. Hence,

V̇(x) = x̃⊤Qẋ (3.32)
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By combining 3.27 and 3.32 derivative of the LCF becomes:

I : V̇ = x̃⊤Q

(
J0 +

2∑
i=1

Jiui −R

)
Qx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤Qg(x̄)ũ

II : V̇ = x̃⊤Q

(
J0 +

2∑
i=1

Jiui

)
Qx̃︸ ︷︷ ︸

0

−x̃⊤QRQx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤Qg(x̄)ũ

III : V̇ = −x̃⊤QRQx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤Qg(x̄)︸ ︷︷ ︸
y⊤

ũ

IV : V̇ = y⊤ũ− x̃⊤QRQx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄

V : V̇ = y⊤ũ− x̃⊤QRQx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QJ (ωm)Qx̄− x̃⊤QJ (ωm)Qx̄︸ ︷︷ ︸
0

V I : V̇ = y⊤ũ− x̃⊤QRQx̃+ x̃⊤Q
(
J (ωm)Qx− J (ωm)Qx̄

)
︸ ︷︷ ︸

0

−x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QJ (ωm)Qx̄

V II : V̇ = y⊤ũ+ x̃⊤Q
[(
J (ωm)− J (ω̄m)

)
Qx̄−RQx̃

]
V III : V̇ = y⊤ũ+ x̃⊤Q

[(
J (ωm)− J (ω̄m)

)
Qx̄−RQx̃

]
+ x̃⊤Q

[
γg(x̄)g(x̄)⊤ − γg(x̄)g(x̄)⊤

]
Qx̃︸ ︷︷ ︸

0

IX : V̇ = y⊤ũ+ x̃⊤Q
[(
J (ωm)− J (ω̄m)

)
Qx̄−RQx̃− γg(x̄)g(x̄)⊤Qx̃

]
+ γy⊤y

X : V̇ = y⊤ũ+ (z − z̄)⊤
[
M(z)−M(z̄)− γg(x̄)g(x̄)⊤(z − z̄)

]
+ γy⊤y

Step explanation

I: By combining 3.27 and 3.32 the derivative of the LCF can be expressed as shown in I.

II: Due to skew-symmetry of J0 +
∑2
i=1 Jiui, the first term becomes zero.

III: y⊤, the passive output of the system is defined as x̃⊤Qg(x̄).

IV: Rearranging of the expression.

V: Zero is added to the equation by adding and subtracting the term, x̃⊤QJ (ωm)Qx̄. This way
of proceeding is gotten from [31].

VI: By rearranging the expression the term x̃⊤Q
(
J (ωm)Qx− J (ωm)Qx̄

)
becomes zero due to

skew-symmetry, since Qx−Qx̄ = Qx̃.

VII: The simplified expression is shown in VIII.

VIII: Output feedback is added to enforce passivity in the system [31].

X The expression is simplified and definition of the passive output is used, x̃⊤Qg(x̄).

IX: A new variable z is introduced to simplify the notation, z ≜ ∇V(x) = x⊤Q. A functionM(z)
is defined as M(z) ≜ J (z)z̄ −Rz.

Condition IV

The expression for the time derivative of the Lyapunov function is:

V̇ = y⊤ũ︸︷︷︸
1.term

+(z − z̄)⊤
[
M(z)−M(z̄)− γg(x̄)g(x̄)⊤(z − z̄)

]
︸ ︷︷ ︸

2.term

+ γy⊤y︸ ︷︷ ︸
3.term

(3.33)
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The second term of Equation 3.33 needs to be negative semi-definite which is the case if M(z) −
M(z̄)−γg(x̄)g(x̄)⊤z̃ is monotonically decreasing . It can be shown that this is the case if and only
if

∇⊤M(z) +∇M(z)− 2γg(x̄)g(x̄)⊤ ≤ 0 (3.34)

This step might seem a bit overwhelming and not trivial. It is a step that is performed in [31]
with a background in mathematical concepts from [32]. The reason for doing this is to investigate
monotonicity by checking the definiteness of the gradient matrix. This is analogous to calculating
the derivative of a scalar function to investigate the monotonicity of that function. As it is easier
to understand the scalar case, it is included below to make the transition from investigating
(z − z̄)⊤[M(z) −M(z̄) − γg(x̄)g(x̄)⊤(z − z̄)] to investigating ∇⊤M(z) + ∇M(z) − 2γg(x̄)g(x̄)⊤,
smoother for the reader.

x

f(a)

a b

f(b)

f(x)

f(x)

Figure 3.2: A monontonically decreasing function f

Given a function f(x) that is continuous on an interval I. f(x) is said to be monotonically
decreasing if for any two points a and b on the interval I where b > a, f(a) > f(b). This is

equivalent to the derivative being negative df(x)
dx < 0.

proof:
df(x)

dx
=
f(b)− f(a)

b− a
< 0 (3.35)

as f(b)− f(a) < 0 and b− a > 0. QED

The expression (b − a) [f(b)− f(a)] < 0 when df(x)
dx < 0. The derivative can therefore be used to

determine the monotonicity of f(x) on the interval I. Likewise, to determine the monotonicity
of M(z) −M(z̄) − γg(x̄)g(x̄)⊤(z − z̄) the gradient ∇M(z) is investigated. Thereby, to check if
(z − z̄)[M(z)−M(z̄)− γg(x̄)g(x̄)⊤(z − z̄)] is negative definite, we instead investigate if

∇⊤M(z) +∇M(z)− 2γg(x̄)g(x̄)⊤ ≤ 0 (3.36)

where,

M(z) = J (z)z̄ −Rz =


0 Lωm

P
2 0 0

−LωmP
2 0 0 0

0 0 0 0
0 0 0 0



īd
īq
ω̄m
V̄c

−


r 0 0 0
0 r 0 0
0 0 d 0
0 0 0 G

 (3.37)

∇M(z) =


−r 0 īq

P
2 L 0

0 −r −īd P2 L 0
0 0 −d 0
0 0 0 −G

 (3.38)
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From Equation 3.20 one is able to find the expression for g(x̄)g(x̄)⊤

g(x̄) =



0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0



ψ̄d

L
ψ̄q

L
ρ̄
J
q̄c
c



0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0



ψ̄d

L
ψ̄q

L
ρ̄
J
q̄c
c


 =


q̄c
c 0
0 − q̄c

c
0 0
ψ̄d

L
ψ̄q

L

 =


−V̄c 0
0 −V̄c
0 0
īd īq

 (3.39)

g(x̄)g⊤(x̄) =


−V̄c 0
0 −V̄c
0 0
īd īq

[−V̄c 0 0 īd
0 −V̄c 0̄iq

]
=


V̄ 2
c 0 0 −īdV̄c
0 V̄ 2

c 0 īqV̄c
0 0 0 0

−V̄cīd −V̄cīq 0 ī2d + ī2q

 (3.40)

Equation 3.36 can then be expressed:
−r 0 īq

p
2L 0

0 −r −īd p2L 0
0 0 −d 0
0 0 0 −G

+


−r 0 0 0
0 −r 0 0

īq
p
2L −īd p2L −d 0
0 0 0 −G

− 2γ


V̄ 2
c 0 0 −īdV̄c
0 V̄ 2

c 0 īqV̄c
0 0 0 0

−V̄cīd −V̄cīq 0 ī2d + ī2q

 ≤ 0

=


−2(r + γV̄ 2

c ) 0 īq
P
2 L 2γīdV̄c

0 −2(r + γV̄ 2
c ) īd

P
2 L 2γīqV̄c

īq
P
2 L īd

P
2 L −2d 0

2γīdV̄c 2γīqV̄c 0 −2(G+ γ(̄i2d + ī2q))

 ≤ 0

In the equilibrium point, it is desirable that īd = 0, to allow for maximum torque per ampere1.
Inserting īd = 0 yields:


−2(r + γV̄ 2

c ) 0 īq
P
2 L 0

0 −2(r + γV̄ 2
c ) 0 2γīqV̄c

īq
P
2 L 0 −2d 0
0 2γīqV̄c 0 −2(G+ γī2q)

 (3.41)

To satisfy condition IV, expression 3.36 and thereby 3.41 needs to be negative semi-definite. To
check for this, we partition the matrix as follows before computing the Schur complement [33].

−X =

[
A B
B⊤ C

]
(3.42)

To say that X is negative semi-definite, is the same as -X is positive semi-definite. Computing the
Schur complement gives

C −B⊤A−1B =

[
2d 0
0 2(G+ γī2q)

]
−
[
−īq P2 L 0

0 −2γīqV̄c

] [ 1
2(r+γV̄ 2

c )
0

0 1
2(r+γV̄ 2

c )

] [
−īq P2 L 0

0 −2γīqV̄c

]

=

2d− (̄iq
P
2 L)

2

2(r+γV̄ 2
c )

0

0 2(G+ γī2q)−
(2γīqV̄c)

2

2(r+γV̄ 2
c )
)


(3.43)

Given that we obtained a diagonal matrix, we then require each of the elements to be positive. In
addition, the A matrix itself needs to be positive semi-definite.

A =

[
2(r + γV̄ 2

c ) 0
0 2(r + γV̄ 2

c )

]
(3.44)

From the definition of the A matrix above, one can see that this is true as long as

γ ≥ − r

V 2
c

(3.45)

1Maximum torque per ampere is further explained in section 4.1
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The condition related to the first diagonal term of the Schur complement

2d−
(̄iq

P
2 L)

2

2(r + γV̄ 2
c )

≥ 0 (3.46)

is similar to the expression found earlier in the specialization project–despite that back then, we
did not include any converters in the analysis–and can be made to fulfill the negative semi-definite
criteria by choosing a suitable damping coefficient d. The only difference in this new condition is
the appearance of the converter voltage at the equilibrium V̄c, which turns out to be helpful due
to the smaller damping d required to make the system stable. 3.46 is solved for γ, to attain a
condition for the tuning, which reads:

γ ≥ 1

V̄ 2
c

(
(̄iq

P
2 L)

2

4d
− r

)
(3.47)

However, the presence of the power converter introduces an additional condition that needs to be
met to ensure stability. The new condition is related to the other diagonal term resulting from the
Schur complement, which reads:

2(G+ γī2q)−
(2γīqV̄c)

2

2(r + γV̄ 2
c )

≥ 0, (3.48)

which can be expanded to find a tuning criteria

2G(2(r + γV̄ 2
c )) + 2γīq2(r + γV̄ 2

c )− (2V̄cīqγ)
2 ≥ 0

4Gr + 4GγV̄ 2
c + 4γī2qr + 4γ2ī2qV̄

2
c − 4γ2ī2qV̄

2
c ≥ 0

4Gr + 4GγV̄ 2
c + 4γī2qr ≥ 0

Solving for γ yields:

γ ≥ −4Gr

GV̄ 2
c + ī2qr

(3.49)

This analysis resulted in three minimum conditions for γ. The three conditions are 3.45, 3.47 and
3.49. There can obviously be only one lower condition for γ. As 3.45 and 3.49 both have a negative
lower limit for γ, 3.47 is the most strict condition for γ. And thus if 3.47 is satisfied, both 3.45
and 3.49 are both satisfied as well.
By choosing a suitable γ that satisfies 3.47, one is able to make the second term of Equation 3.33
negative semi-definite.

Hence, under the assumption that the above stability condition is being satisfied, Equation 3.33
can then be reformulated to

V̇ ≤ y⊤ũ+ γy⊤y (3.50)

Rearranging and assuming for simplicity the use of the proportional controller2 Equation 3.50
becomes

V̇ = −y⊤
[
KP − γI

]
y ≤ 0, if Kp > γ (3.51)

Thereby, if the gain Kp is chosen larger than γ, the fourth lyapunov condition V̇(x) ≤ 0 is satisfied.

To check if Condition III is satisfied, we first compute

y⊤(x) = x̃⊤Qg(x̄)

=
[
id − īd iq − īq ωm − ω̄m Vc − V̄c

] 
−V̄c 0
0 −V̄c
0 0
īd īq


=
[
−V̄c(id − īd) + īd(Vc − V̄c) −V̄c(iq − īq) + īq(Vc − V̄c)

]
(3.52)

2This result can be easily extended for the case of a PI controller, by introducing some minor changes in the
Lyapunov function in the lines of appendix C. ũ = −KP y,
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and notice that in the equilibrium point

y⊤(x̄) =
[
−V̄c(̄id − īd) + īd(V̄c − V̄c) −V̄c(̄iq − īq) + īq(V̄c − V̄c)

]
=
[
0 0

] (3.53)

From this last expression one is able to show that condition III; i.e., V̇(x̄) = 0 is satisfied

V̇(x̄) = y⊤(x̄)ũ+ γy⊤(x̄)y(x̄)

= 0
(3.54)

All four conditions for a Lyapunov function is satisfied. The LCF is therefore shown to be a
Lyapunov function, when 3.46 is satisfied and Kp > γ.
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3.1.4 Conclusion

This section has been concerned with finding a stability certificate for a WECS with only one
2L-VSC. From the mathematical derivation –Lyapunovs direct method– above, one can see how
large signal stability can be guaranteed by choosing a suitable γ. The two criteria are summarized
below.

γ ≥ 1

V̄ 2
c

(
(̄iq

P
2 L)

2

4d
− r

)

γ ≥ −4Gr

GV̄ 2
c + ī2qr

The second criterion is fulfilled as long as γ is chosen to be positive. The stricter and thereby the
determining stability criterion to be fulfilled is the first.

With the use of a proportional (integral) controller, one is able to render the system stable by
making sure the proportional gain Kp is greater than γ, since

V̇ = −y⊤
[
KP − γI

]
y ≤ 0, if Kp > γ

A stability certificate for a WECS with only one 2L-VSC, while the second 2L-VSC and the grid
connection are modeled as a current source on the converter’s DC side, can arguably be seen as an
oversimplification when we are interested in real-world applications. For that reason, we expand
the model by including the second 2L-VSC in the next section.
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3.2 Two Converters in back-to-back + PMSG

As the system successfully has been expanded from the PMSG case investigated in the special-
ization project to the case of PMSG with one converter, and stability criteria for the expanded
system can be found (refer to the previous section), we proceed to include the second converter in
the analysis. The connection to the grid is now modeled as constant voltage sources V Ga , V

G
b and

V Gc as can be seen in Figure 3.3.
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Figure 3.3: Wind energy conversion system with full scale 2L-VSCs in back-to-back configuration.

3.2.1 System Description

When developing the system equations, a rotating reference frame is used to get the dq-system
equations with time-invariant solutions. The inclusion of the second converter adds two new state
variables: the d- and q flux components. With the two new state variables, two new equations
are also needed to describe the overall system. The equations describing the system shown in
Figure 3.3 are:

Li̇d = −rid + Liq
P

2
ωm − u1Vc (3.55)

Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (3.56)

Jω̇m = Tm − P

2
ϕiq + d(ωref − ωm) (3.57)

CV̇c = u1id + u2iq − u3i
G
d − u4i

G
q −GVc (3.58)

LGi̇
G
d = −rGiGd + ωGLGi

G
q + u3Vc − V Gd (3.59)

LGi̇
G
q = −rGiGq − ωGLGi

G
d + u4Vc − V Gq (3.60)

where u3 and u4 can be interpret as the duty cycles for the grid side converter. iGd and iGq are the
currents from the grid side converter in the d- and q axis, respectively. LG is the grid inductance
and rG is the grid resistance. ωG is the angular grid frequency and V Gd and V Gq are the grid
voltages.

As explained in section 3.1, the third system equation is modified to preserve skew-symmetry. The
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system represented on a pH form becomes:



ψ̇d
ψ̇q
ρ̇
q̇c

ψ̇Gd
ψ̇Gq


︸ ︷︷ ︸

ẋ

=




0 Lωm

p
2 0 −u1 0 0

−Lωm p
2 0 p

2ϕ −u2 0 0
0 −p

2ϕ 0 0 0 0
u1 u2 0 0 −u3 −u4
0 0 0 u3 0 ωGLG
0 0 0 u4 −ωGLG 0


︸ ︷︷ ︸

J (ωm,u)

−


r 0 0 0 0 0
0 r 0 0 0 0
0 0 d 0 0 0
0 0 0 G 0 0
0 0 0 0 rG 0
0 0 0 0 0 rG


︸ ︷︷ ︸

R




id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)

+


0
0

Tm + dωref
0
V Gd
V Gq


︸ ︷︷ ︸

E

(3.61)

The energy storage function, H(x) is:

H(x) =
1

2
x⊤Qx

=
1

2

[
ψd ψq ρ qc ψGd ψGq

]


1
L 0 0 0 0 0
0 1

L 0 0 0 0
0 0 1

J 0 0 0
0 0 0 1

C 0 0
0 0 0 0 1

LG
0

0 0 0 0 0 1
LG




ψd
ψq
ρ
qc
ψGd
ψGq


=

1

2
(
1

L
ψ2
d +

1

L
ψ2
q +

1

J
ρ2 +

1

C
q2c +

1

LG
ψGd

2
+

1

LG
ψGq

2
)

(3.62)

Equation 3.61 can be expressed as:



ψ̇d
ψ̇q
ρ̇
q̇c

ψ̇Gd
ψ̇Gq


︸ ︷︷ ︸

ẋ

=


P

2
L


0 ωm 0 0 0 0

−ωm 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J (ωm)

+
P

2
ϕ


0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J0

+u1


0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J1

+u2


0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J2

+ u3


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J3

+u4


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

J4

+ωGLG


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


︸ ︷︷ ︸

J5

−


r 0 0 0 0 0
0 r 0 0 0 0
0 0 d 0 0 0
0 0 0 G 0 0
0 0 0 0 rG 0
0 0 0 0 0 rG


︸ ︷︷ ︸

R




id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)

+


0
0

Tm + dωref
0
V Gd
V Gq


︸ ︷︷ ︸

E

(3.63)

which abbreviated becomes:

ẋ =
(
J (ωm) + J0 + u1J1 + u2J2 + u3J3 + u4J4 + J5 −R

)
∇H(x) + E (3.64)

As in section 3.1, Equation 3.64 is separated in to two parts where one contain the control input
to the system.

ẋ = f(x) + g(x)u
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ẋ =
(
J (ωm) + J0 + J5 −R

)
∇H(x) + E︸ ︷︷ ︸

f(x)

+
[
J1∇H(x) J2∇H(x) J3∇H(x) J4∇H(x)

]︸ ︷︷ ︸
g(x)


u1
u2
u3
u4


︸ ︷︷ ︸

u

(3.65)

3.2.2 Analysis of the Incremental Model

To investigate the system’s stability with two converters, a LCF is chosen as the Hamiltonian of
the shifted system, i.e., the Hamiltonian of the incremental model.

V(x̃) = H(x̃) =
1

2
x̃⊤Qx̃ (3.66)

Condition I and II for this LCF, are by definition satisfied as shown in section 3.1. To investigate
condition III and IV, the time derivative of the LCF must be derived.

V̇(x) = dH(x̃)

dt
= ∇⊤H(x̃)

dx̃

dt
= ∇⊤H(x̃) ˙̃x = x̃⊤Q ˙̃x (3.67)

The incremental model is derived as before, to obtain a LCF that has a minimum different from
the origin.

ẋ = (J (ωm) + J0 + J5 −R))Qx+ E + g(x)u
- 0 = (J (ω̄m) + J0 + J5 −R)Qx̄+ E + g(x̄)ū

˙̃x = (J0 + J5 −R)Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x)u− g(x̄)ū

(3.68)

As before, the term g(x)u− g(x̄)ū, can be reformulated to.

g(x)u− g(x̄)ū = g(x̃+ x̄)(u)− g(x̄)ū

= g(x̃)u+ g(x̄)u− g(x̄)ū

= g(x̃)u+ g(x̄)ũ

where
g(x̃) =

[
J1∇H(x̃) J2∇H(x̃) J3∇H(x̃) J4∇H(x̃)

]
Which results in that Equation 3.68 can be formulated as:

˙̃x =
(
J0 + u1J1 + u2J2 + u3J3 + u4J4 + J5 −R

)
Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x̄)ũ

=
(
J0 +

4∑
i=1

Jiui + J5 −R
)
Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄+ g(x̄)ũ

(3.69)

The matrix g(x̄) describes how the control of the converters is impacting the system. The con-
verter closest to the PMSG controls the speed of the rotor and effectively the active power that is
transferred to the grid. The converter on the grid-side of the dc-link, controls the voltage on the
dc-link and has a free control variable that could be used to control the reactive power transferred
to the grid. As was observed for the system with only one converter in section 3.1, condition 3.46
which is related to the PMSG, is the most strict condition. If this condition is satisfied, then the
rest of the conditions will be satisfied by choosing γ > 0. An interesting hypothesis to investigate
is, therefore, if it is enough to only use the converter closest to the PMSG to render the rest of the
system passive.

Hypothesis: “Only using the converter closest to the PMSG is enough to compensate for the lack
of monotonicity inherent to the machine, and thus to render the rest of the system passive.”
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Towards this end, we first find it convenient to divide g(x̄) into separate parts for the two converters,
as:

g(x̄) =
[
g(x̄)PMSG g(x̄)G

]
g(x̄)PMSG =

[
J1∇H(x̄) J2∇H(x̄)

]
g(x̄)G =

[
J3∇H(x̄) J4∇H(x̄)

] (3.70)

The time derivative of the LCF can then be expressed as

I : V̇(x) = x̃⊤Q
(
J0 +

4∑
i=1

Jiui + J5 −R
)
Qx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤Qg(x̄)︸ ︷︷ ︸

y⊤

ũ

II : V̇(x) = y⊤ũ− x̃⊤QRQx̃+ x̃⊤QJ (ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QJ (ωm)Qx̄− x̃⊤QJ (ωm)Qx̄︸ ︷︷ ︸
0

III : V̇(x) = y⊤ũ− x̃⊤QRQx̃+ x̃⊤QJ (ωm)(Qx−Qx̄)︸ ︷︷ ︸
0

−x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QJ (ωm)Qx̄

IV : V̇(x) = y⊤ũ+ x̃⊤Q
[(
J(ωm)− J (ω̄m)

)
Qx̄−RQx̃

]
+ x̃⊤Q

(
γg(x̄)PMSGg(x̄)PMSG⊤)

Qx̃

− x̃⊤Q
(
γg(x̄)PMSGg(x̄)PMSG⊤)

Qx̃

V : V̇(x) = y⊤ũ+ x̃⊤Q
[(
J (ωm)− J (ω̄m)

)
Qx̄−RQx̃− γg(x̄)PMSGg(x̄)PMSG⊤

Qx̃
]
+ yPMSG⊤

γyPMSG

V I : V̇(x) = y⊤ũ+ yPMSG⊤
γyPMSG + (z − z̄)⊤

[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

V II : V̇(x) = −y⊤Kpy + yPMSG⊤
γyPMSG + (z − z̄)⊤

[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

V III : V̇(x) = −y⊤
[
K∗
P − Γ

]
y + (z − z̄)⊤

[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]
0

Step explanation

I y⊤, the passive output of the system is defined as x̃⊤Qg(x̄) and skew-symmetry cancels the
terms involving J0,J1,J2,J3,J4 and J5

II Zero is added to the equation by adding and subtracting the term, x̃⊤QJ (ωm)Qx̄. This way
of proceeding is gotten from[31]

III The term x̃⊤QJ (ωm)(Qx−Qx̄) is canceled due to skew-symmetry. This cancellation is what
was desired by adding the zero term in II.

IV Output feedback is added to enforce passivity in the system [31]. It is only the passive output
from the PMSG-connected converter that is used to render the system passive.

V yPMSG⊤
= x̃⊤Qg(x̄)PMSG

VI z ≜ Qx and M(z) ≜ J(ωm)z̄ −Rz

VII The passive output is chosen as the input to the system to get a closed loop controller.
ũ = −Kpy

VIII The contraction of the two first terms are shown below and marked with ”*”.

∗
[
yPMSG⊤

yG
⊤
]

︸ ︷︷ ︸
y⊤


[
KPMSG
p 02x2
02x2 KG

P

]
︸ ︷︷ ︸

K∗
P

−
[
γI2x2 02x2
02x2 02x2

]
︸ ︷︷ ︸

Γ


[
yPMSG

yG

]
︸ ︷︷ ︸

y

(3.71)

KPMSG
P =

[
KPMSG
d 0
0 KPMSG

q

]
KG
p =

[
KG
d 0
0 KG

q

]
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An expression for the time derivative of the LCF is therefore:

V̇(x) = −y⊤
[
K∗
P − Γ

]
y︸ ︷︷ ︸

1.Term

+ z̃⊤
[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

z̃
]

︸ ︷︷ ︸
2.Term

(3.72)

As 3.72 needs to be negative semi-definite to satisfy condition IV for the LCF, the second term
must be investigated further as the first term is negative definite when K∗

p > Γ. It can be shown

that if
[
M(z) − M(z̃) − γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]
is monotonically decreasing, then the

second term in 3.72 is negative semi-definite. This is equivalent to checking if ∇⊤M(z)+∇M(z)−
2γg(x̄)PMSGg(x̄)PMSG⊤

is negative semi-definite.

Checking for monotonicity

∇⊤M(z) +∇M(z)− 2γg(x̄)PMSGg(x̄)PMSG⊤ ≤ 0 (3.73)

M(z) = J (z)z̄−Rz = P

2
L


0 ωm 0 0 0 0

−ωm 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




īd
īq
ω̄m
V̄c
īGg
īGq

−

r 0 0 0 0 0
0 r 0 0 0 0
0 0 d 0 0 0
0 0 0 G 0 0
0 0 0 0 rG 0
0 0 0 0 0 rG




id
iq
ωm
Vc
iGd
iGq

 =



P
2 Lωmīq − rid

−P
2 Lωmīd − riq

−dωm
−GVc
−rGiGd
−rGiGq



∇M(z) =


−r 0 īq

P
2 L 0 0 0

0 −r −īd P2 L 0 0 0
0 0 −d 0 0 0
0 0 0 −G 0 0
0 0 0 0 −rG 0
0 0 0 0 0 −rG

 (3.74)

g(x̄)PMSG =




0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0






īd
īq
ω̄m
V̄c
īGd
īGq

 =


−V̄c 0
0 −V̄c
0 0
īd īq
0 0
0 0

 (3.75)

g(x̄)PMSGg(x̄)PMSG⊤
=


−V̄c 0
0 −V̄c
0 0
īd īq
0 0
0 0


[
−V̄c 0 0 īd 0 0
0 −V̄c 0 īq 0 0

]
=


V̄ 2
c 0 0 −īdV̄c 0 0
0 V̄ 2

c 0 −īqV̄c 0 0
0 0 0 0 0 0

−V̄cīd −V̄cīq 0 ī2d + ī2q 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.76)

Inserting 3.74, 3.75 and 3.76 into 3.73;
−2(r + γV̄ 2

c ) 0 īq
P
2 L 2γīdV̄c 0 0

0 −2(r + γV̄ 2
c ) −īd P2 L 2γīqV̄c 0 0

īq
P
2 L −īd P2 L −2d 0 0 0

2γīdV̄c 2γīqV̄c 0 −2
(
G+ γ(̄i2d + ī2q)

)
0 0

0 0 0 0 −2rG 0
0 0 0 0 0 −2rG

 ≤ 0 (3.77)

29



At the equilibrium point it is desired that the d-component of the current in the first converter is
zero, īd = 0. 3.77 is thereby simplified to 3.78.

−2(r + γV̄ 2
c ) 0 īq

P
2 L 0 0 0

0 −2(r + γV̄ 2
c ) 0 2γīqV̄c 0 0

īq
P
2 L 0 −2d 0 0 0
0 2γīqV̄c 0 −2

(
G+ γī2q

)
0 0

0 0 0 0 −2rG 0
0 0 0 0 0 −2rG

 ≤ 0 (3.78)

The Schur compliment is used to check whether 3.78 is negative semi-definite or not. When
applying the Schur complement to Equation 3.78, one can choose the A-matrix equal to 3.41,
which is already proven to be negative definite by choosing γ according to 3.47 in section 3.1. The

C-matrix must be chosen as C =

[
−2rG 0
0 −2rG

]
, which also is negative definite. It can therefore

be concluded that 3.78 is negative definite. The condition 3.73 is therefore satisfied, and the term[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]
is monotonically decreasing.

The time derivative of the LCF, 3.72, can therefore be expressed as:

V̇(x) = −y⊤
[
K∗
p − Γ

]
y + (z − z̄)⊤

[
M(z)−M(z̃)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

︸ ︷︷ ︸
≤0

V̇(x) ≤ −y⊤
[
K∗
p − Γ

]
y

V̇(x) ≤ 0, IFF K∗
p ≥ Γ

By choosing K∗
p ≥ Γ, the time derivative of the LCF is satisfying condition IV. In appendix A

the proof for condition IV, V̇ ≤ 0, is repeated but the passive feedback from both converters are
included.

Condition I, II, and IV are therefore satisfied. Next we check if condition III, V̇(0) = 0 is satisfied.

Proof: Condition III

V̇(x) ≤ y⊤∗ [K∗
p − Γ

]
y∗

V̇(x) ≤
[
yPMSG⊤

yG
⊤
] [[KPMSG

p 02x2
02x2 KG

P

]
−
[
γI2x2 02x2
02x2 02x2

]] [
yPMSG

yG

]
V̇(x) ≤

[
x̃⊤Qg(x̄)PMSG x̃⊤Qg(x̄)G

] [[KPMSG
p 02x2
02x2 KG

P

]
−
[
γI2x2 02x2
02x2 02x2

]] [
g⊤(x̄)PMSGQx̃
g⊤(x̄)GQx̃

]
V̇(x) ≤ x̃⊤Q

[
g(x̄)PMSG g(x̄)G

] [[KPMSG
p 02x2
02x2 KG

P

]
−
[
γI2x2 02x2
02x2 02x2

]] [
g⊤(x̄)PMSG

g⊤(x̄)G

]
Qx̃

V̇(x̄) = (x̄− x̄)⊤︸ ︷︷ ︸
=0

Q
[
g(x̄)PMSG g(x̄)G

] [[KPMSG
p 02x2
02x2 KG

P

]
−
[
γI2x2 02x2
02x2 02x2

]] [
g(x̄)PMSG

g(x̄)G

]
Q (x̄− x̄)︸ ︷︷ ︸

=0

V̇(x) = 0

All four conditions for a Lyapunov function are therefore satisfied. The LCF is thereby shown
to be a Lyapunov function, and the system is therefore proven to be asymptotically stable. The
hypothesis “Only using the converter closest to the PMSG is enough to compensate for the lack of
monotonicity inherent to the machine, and thus to render the rest of the system passive” is thereby
valid.

3.2.3 Conclusion

In this section, we have found stability criteria for a PMSG wind energy conversion system with
full scale B2B 2L-VSCs. We showed that it is possible to compensate for the lack of monotonicity
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for the machine by imposing some tuning requirements on the proportional control parameter of a
single converter. In addition to this, we also showed that –although potentially less practical from
a plug-and-play viewpoint– we can share the tuning conditions among both converters, as can be
seen in Appendix A. To ensure the stability of the system, the same criterion found in section 3.1
must be satisfied.

2d−
(̄iq

P
2 L)

2

2(r + γV̄ 2
c )

≥ 0

which gives the following restriction for γ

γ ≥ 1

V̄ 2
c

(
(̄iq

P
2 L)

2

4d
− r

)
(3.79)

The tuning requirements can then be found as K∗
P > Γ.

K∗
P =


KPMSG
d 0 0 0
0 KPMSG

q 0 0
0 0 KG

d 0
0 0 0 KG

q

 ≥ Γ =


γ 0 0 0
0 γ 0 0
0 0 0 0
0 0 0 0

 (3.80)

KPMSG
d ≥ γ (3.81)

KPMSG
q ≥ γ (3.82)

KG
d ≥ 0 (3.83)

KG
q ≥ 0 (3.84)

By tuning the proportional gain in the PI-controllers according to 3.81, 3.82, 3.83 and 3.84, the
system is guaranteed to be stable even if being subjected to large disturbances. The design of the
passive controllers is further explained in subsection 4.1.3.

In conclusion, we presented tuning criteria that guarantee global asymptotic stability for the (non-
linear) WECS with back-to-back voltage source converters. Surprisingly enough, stability can be
achieved by imposing stricter tuning conditions to only the machine-side converter–while the other
only needs to have positive controller gains–. This observation is potentially useful for integrating
more wind power into the electricity grid. The stricter tuning condition on the machine-side
converter guarantees large signal stability. As a result, adding new turbines to the power grid
without jeopardizing the stability is simpler, and the potential tuning of the second converter
for performance can be done without risking instability. This plug & play philosophy eases the
necessary change from a centralized to a more distributed energy system dominated by renewables.

In section 3.1 and section 3.2 the mechanical torque has been modelled as a constant which is
indeed a simplification. As explained in chapter 2, the mechanical torque is, in reality, a non-linear
function of angular velocity. In the next section, this non-linearity is included in the derivation of
a stability certificate.
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3.3 Including the Dynamics of the Wind

In the previous sections, the mechanical torque has been modeled as a constant. In reality, the
torque the turbine generates from the wind is a function of angular velocity.

Tm(ωm) =
1

2
ρAv3windCp(λ)

1

ωm
(3.85)

where ρ is the air density, A = πr2b is the area swept by the turbine blades, vwind is the wind speed,
Cp is the wind power coefficient, and λ is the tip speed ratio.

λ =
rbωm
vwind

(3.86)

Cp = C1

(
C2(

1
λ − 0.035)− C5

)
e−C6(

1
λ−0.035) (3.87)

It is apparent that the mechanical torque is a non-linear function of the angular velocity of the
rotor shaft, ωm. The system model from section 3.2 must be updated. The third system equation,
Equation 3.57 then becomes:

Jω̇m = Tm(ωm)− P

2
ϕiq + d(ωref − ωm) (3.88)

The port-Hamiltonian formulation of the system becomes:



ψ̇d
ψ̇q
ρ̇
q̇c

ψ̇Gd
ψ̇Gq


︸ ︷︷ ︸

ẋ

=


P

2
L


0 ωm 0 0 0 0

−ωm 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J (ωm)

+
P

2
ϕ


0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J0

+u1


0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J1

+u2


0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J2

+ u3


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J3

+u4


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

J4

+ωeLG


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


︸ ︷︷ ︸

J5

−



r 0 0 0 0 0
0 r 0 0 0 0

0 0 d− Tm(ωm)
ωm

0 0 0

0 0 0 G 0 0
0 0 0 0 rG 0
0 0 0 0 0 rG


︸ ︷︷ ︸

R(ωm)




id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)

+


0
0

dωref
0
V Gd
V Gq


︸ ︷︷ ︸

E

(3.89)

which abbreviated becomes:

ẋ = (J(ωm) + J0 + u1J1 + u2J2 + u3J3 + u4J4 + J5 −R(ωm))∇H(x) + E

ẋ = (J (ωm) + J0 + J5 −R(ωm))∇H(x) + E︸ ︷︷ ︸
f(x)

+
[
J1∇H(x) J2∇H(x) J3∇H(x) J4∇H(x)

]︸ ︷︷ ︸
g(x)


u1
u2
u3
u4


︸ ︷︷ ︸

u

(3.90)
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3.3.1 Analysis of the Incremental Model

The shifted model, that is the incremental model, becomes:

ẋ = (J (ωm) + J0 + J5 −R(ωm))Qx+ E + g(x)u
- 0 = (J (ω̄m) + J0 + J5 −R(ω̄m))Qx̄+ E + g(x̄)ū

˙̃x = (J0 + J5)Qx̃+ J (ωm)Qx− J (ω̄m)Qx̄−R(ωm)Qx+R(ω̄m)Qx̄+ g(x)u− g(x̄)ū
(3.91)

As explained in section 3.2, the expression 3.91 can be reformulated to:

˙̃x =
(
J0 +

4∑
i=1

Jiui + J5

)
Qx̃+ J (ωm)Qx−R(ωm)Qx− J (ω̄m)Qx̄+R(ω̄m)Qx̄+ g(x̄)ũ (3.92)

The LCF is chosen as V(x) = 1
2 x̃

⊤Qx̃, and to check the Lyapunov conditions, the same procedure
as shown section 3.2 is performed. By this choice of LCF, the two first conditions are satisfied by
definition as shown in section 3.1. The same procedure shown in both section 3.1 and section 3.2
is performed to derive the expression for the time derivative for the LCF. For the sake of brevity,
the derivation of this expression is omitted, and the final result is shown below.

V̇(x) = y⊤ũ+yPMSG⊤
γyPMSG+(z− z̄)⊤

[
M(z)−M(z̄)−γg(x̄)PMSGg(x̄)PMSG⊤

(z− z̄)
]
(3.93)

where
M(z) ≜ J (z)z̄ −R(z)z (3.94)

We begin by analyzing when the third term in 3.93 is negative semi-definite. Towards this end,
it is enough to check if the function inside the parenthesis is monotonically decreasing, which is
equivalent to.

∇⊤M(z) +∇M(z)− 2γg(x̄)PMSGg(x̄)PMSG⊤ ≤ 0 (3.95)

where

M(z) = J (z)z̄−R(z)z =
P

2
L


0 ωm 0 0 0 0

−ωm 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




īd
īq
ω̄m
V̄c
īGg
īGq

−


r 0 0 0 0 0
0 r 0 0 0 0

0 0 d− T (ωm)
ωm

0 0 0

0 0 0 G 0 0
0 0 0 0 rG 0
0 0 0 0 0 rG




id
iq
ωm
Vc
iGd
iGq

 =



P
2 Lmīq − rid

−P
2 Lωmīd − riq

−dωm + Tm(ωm)
−GVc
−rGiGd
−rGiGq



∇M(z) =



−r 0 īq
P
2 L 0 0 0

0 −r −īd P2 L 0 0 0

0 0 −d− ∂Tm(ωm)
∂ωm

0 0 0

0 0 0 −G 0 0
0 0 0 0 −rG 0
0 0 0 0 0 −rG

 (3.96)

The matrix g(x̄)PMSGg(x̄)PMSG⊤
is the same as 3.76. Inserting 3.96 and 3.76 into 3.95 yields the

matrix below:

−2(r + γV̄ 2
c ) 0 īq

P
2 L 2γīdV̄c 0 0

0 −2(r + γV̄ 2
c ) −īd P2 L 2γīqV̄c 0 0

īq
P
2 L −īd P2 L −2d+ 2∂Tm(ωm)

∂ωm
0 0 0

2γīdV̄c 2γīqV̄c 0 −2
(
G+ γ(̄i2d + ī2q)

)
0 0

0 0 0 0 −2rG 0
0 0 0 0 0 −2rG

 ≤ 0 (3.97)
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As before īd = 0, which simplifies 3.97 to:

−2(r + γV̄ 2
c ) 0 īq

P
2 L 0 0 0

0 −2(r + γV̄ 2
c ) 0 2γīqV̄c 0 0

īq
P
2 L 0 −2d+ 2∂Tm(ωm)

∂ωm
0 0 0

0 2γīqV̄c 0 −2
(
G+ γī2q

)
0 0

0 0 0 0 −2rG 0
0 0 0 0 0 −2rG

 ≤ 0 (3.98)

To check if 3.98 is negative semi-definite, the Schur complement method is used. The submatrices
are chosen as follows:

A =


2(r + γV̄ 2

c ) 0 −īq P2 L 0
0 2(r + γV̄ 2

c ) 0 −2γīqV̄c
−īq P2 L 0 2d− 2∂Tm(ωm)

∂ωm
0

0 −2γīqV̄c 0 2
(
G+ γī2q

)
 (3.99)

B⊤ =

[
0 0 0 0
0 0 0 0

]
(3.100)

C =

[
2rG 0
0 2rG

]
(3.101)

For (3.98) to be negative definite, we require 3.99 to be positive definite which again can be
investigated using the Schur complement. The sub-matrices of A are in turn chosen as follows:

A1 =

[
2(r + γV̄ 2

c ) 0
0 2(r + γV̄ 2

c )

]
(3.102)

B2 =

[
−īq P2 L 0

0 −2γīqV̄c

]
= B⊤

2 (3.103)

C1 =

[
2d− 2∂Tm(ωm)

∂ωm
0

0 2
(
G+ γī2q

)] (3.104)

The Schur compliment for 3.99 yields:

X1

A1
= C1 −B⊤

1 A
−1
1 B1

=

[
2d− 2∂Tm(ωm)

∂ωm
0

0 2
(
G+ γī2q

)]− [−īq P2 L 0
0 −2γīqV̄c

] [ 1
2(r+γV̄ 2

c )
0

0 1
2(r+γV̄ 2

c )

] [
−īq P2 L 0

0 −2γīqV̄c

]

=

[
2d− 2∂Tm(ωm)

∂ωm
0

0 2
(
G+ γī2q

)]−
 (īq P

2 L)
2

2(r+γV̄ 2
c )

0

0
(2γīqV̄c)
2(r+γV̄ 2

c )


=

2d− 2∂Tm(ωm)
∂ωm

− (īq P
2 L)

2

2(r+γV̄ 2
c )

0

0 2
(
G+ γī2q

)
− (2γīqV̄c)

2(r+γV̄ 2
c )


(3.105)

The matrix 3.105 is positive definite if the two diagonal terms are positive. This yields two criteria:

2d− 2
∂Tm(ωm)

∂ωm
−

(̄
iq
P
2 L
)2

2(r + γV̄ 2
c )

≥ 0 (3.106)

2
(
G+ γī2q

)
−

(
2γīqV̄c

)
2(r + γV̄ 2

c )
≥ 0 (3.107)

The criterion 3.106 is the same as found in specialization project when the converter was modeled
as a constant voltage source.–see 2.12 for comparison– 3.106 is the design criterion for the PMSG
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as the damping must be higher than the derivative of the torque. The third term of 3.106 can be
potentially neglected when γ is chosen high enough. The criterion 3.107 is the same as 3.48, and is
shown to be positive for γ ≥ 0. If criteria 3.106 and 3.107 are satisfied, and matrix A1 is positive
definite –a prerequisite for using the Schur complement– then matrix 3.99 is positive definite .
Matrix A1 is positive definite when γ > 0, which is the case when 3.107 is satisfied. When these
are satisfied, the Schur compliment for 3.98 yields:

−X =

[
A B
B⊤ C

]
−X
A

= C −B⊤A−1B =

[
2rG 0
0 2rG

]
> 0

(3.108)

The negative of matrix 3.98 is positive definite, which is equivalent to 3.98 being negative definite.

By satisfying criteria 3.106 and 3.107, the term
[
M(z) −M(z̄) − γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

is monotonically decreasing and consequently 3.93 can be formulated as:

V̇(x) ≤ y⊤ũ+ yPMSG⊤
γyPMSG (3.109)

As in section 3.2, a P(I) controller can be designed with Kp > γ which results in condition IV for
the LCF being satisfied. In section 3.2, it is shown that condition III for a Lyapunov function is
satisfied for the choice of the LCF that is done in this section. The system is therefore guaranteed
to be stable when 3.106 and 3.107 are satisfied and Kp > γ.

3.3.2 Conclusion

In this section, it is shown that the inclusion of the nonlinear dynamics of the mechanical torque
modifies the stability criteria for the system. It is criterion 3.106 that is of the most significant
importance as criterion 3.107 is satisfied when γ > 0. Comparing 3.106 with the criterion found in
the specialization project -chapter 2-, it is apparent that the only difference is in the denominator
of the third term.

Back-to-back converter : 2d− 2
∂Tm(ωm)

∂ωm
−

(̄
iq
P
2 L
)2

2(r + γV̄ 2
c )

≥ 0

Constant voltage source : 2d− 2
∂Tm(ωm)

∂ωm
−
(̄
iq
P
2 L
)2

2(r + γ)
≥ 0

Moreover, γ is a constant that is proportional to the minimum gain of Kp of the controllers. By
sufficiently increasing γ, the third term can be neglected. The damping in the generator can then
be designed to ensure stability by calculating a worst-case scenario for the second term in the
criterion. A result of this is that the stability of the WECS can be guaranteed when designing
the damping of the generator. Thus, feedback controllers can be used to help stabilize the system
but cannot guarantee stability due to the non-linear behavior of the mechanical torque. In the

specialization project, the term ∂T (ωm)
∂ωm

was investigated further, and it was found that when the
angular velocity was close to the operating point, the contribution from the mechanical torque does
not cause issues to the stability. It is during acceleration that the greatest damping is demanded
to guarantee stability and is what the damping should be ideally designed for. This is visualized
in Figure 2.2. A suggested method for calculating the damping and how it could be designed too
meet the requirement is presented in the next section.

In conclusion, stability can be guaranteed by satisfying criteria 3.106 and 3.107. These are a design
criterion and a tuning criterion.
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3.3.3 The Damping Coefficient d

The damping coefficient d represents electromechanical damping due to damper windings on the
rotor in the generator. The damper windings have multiple purposes in a synchronous machine.
The most important is to suppress hunting and damp oscillations caused by aperiodic shocks due
to short circuits or switching [34]. How damper windings work can be briefly explained as follows.
When the rotor rotates at speed different from the speed of the rotating magnetic field put up by
the currents flowing in the stator, then the damper windings will experience a changing magnetic
field which will induce currents in the damper windings. The current-carrying damper windings
will then experience a torque according to Lenz law. The torque will pull the rotor towards the
synchronous speed of the magnetic field put up by the stator currents. The damper windings will
speed up the rotor if the rotor is lagging the synchronous speed and slow the rotor down if the
rotor is rotating too fast.

The stability certificate developed in this chapter heavily relies on the value of the damping, as can
be seen in 3.106. If the stability is to be guaranteed, the damping must be higher than the partial
derivative of the torque with respect to the angular velocity. It is therefore of great significance to
be able to calculate the damping for the PMSG. A comparison of different methods for estimating
the damping coefficient CD for different types of synchronous machines is carried out in [35]. The
coefficient CD is linked to the damping coefficient d used in this thesis through the relation:

CD =
P
2 · d
Tr

(3.110)

where Tr is the rated torque for the electrical machine. One of the methods for calculating the
damping d is found in [36]:

d ≈ mV 2
t

P
2 ω

2
mRd

(3.111)

where m is the number of phases, Vt is the terminal line to ground voltage, P is the number
of poles, ωm is the angular velocity, and Rd is the damper resistance. Using this formula, the
damping can be expressed as a function of the resistance in the damper windings. From 3.111, it
is clear that a lower resistance in the damper windings will increase the damping effect. This can,
for instance, be achieved by using thicker conductors. By calculating the worst-case scenario for
the partial derivative of the mechanical torque with respect to the angular velocity, the required
resistance, or rather, the conductance in the damper windings, can be calculated.

Whether 3.111 is a reasonable estimation of the damping or not is not investigated further in this
thesis but is a topic for future work.

End note

In this chapter stability criteria for a wind energy conversion system with full scale back-to-back
2L-VSC including the non-linear dynamics of the wind, has been found. However, it is not yet
shown that a equilibrium can be found, or how the passivity based control structure is implemented
to ensure stability or how the control performance will be. These topics will be investigated in the
next chapter.
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Chapter 4

Control of Wind Turbine and
Simulation

With a theoretical stability certificate in place, the next step is to implement
the stability certificate in a WECS and run simulations to validate it. It is
also of great interest to look at the performance of the WECS with the stability
certificate implemented and compare it to traditional PI-current control. Firstly,
it is looked at how a WECS is controlled and if an equilibrium point actually
can be found.

4.1 Control of a Wind Turbine

Power electronics have made it possible to connect generators and motors to the power grid without
the electrical machines running at synchronous speed. The speed and power of the machine can
be fully controlled through converters such as a 2L-VSC with cascaded control structures. The
advantage is that the machines can be controlled at the desired speed and optimal efficiency. On
the other hand, the disadvantage is that inertia in the machines cannot be relied on for stability
regulation in the power system through the converter connection.

4.1.1 Control Objectives

The wind energy conversion system consists of a PMSG and two 2L-VSC. Each 2L-VSC has two
degrees of freedom, meaning they can have two control objectives each.

Speed control

The speed of rotation for a wind turbine should be controlled according to the torque-speed charac-
teristic [37]. In short, this means that the speed of the turbine should follow the speed of the wind
such that maximum torque is generated. A control objective is, therefore, to make the speed of the
rotor follow a reference calculated based on the torque-speed characteristic of the wind turbine.
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Maximum torque per Ampere

The system equations are on the time-invariant dq-format, which is achieved by using a rotating
reference frame[38]. For the generator, the reference used is the rotor flux which is defined as the
direct axis (d-axis). The force produced is the cross product between the current and the magnetic
field, according to the Lorentz force law [39]. The maximum force is produced when the current is
90 degrees shifted relative to the rotor flux. Current in the d-axis will not contribute to generating
torque, as the cross product between current and magnetic field is zero when they are in phase.
The maximum torque per ampere is therefore achieved when all the current is in the q-axis, and
the d-current component is zero [40]. To keep the d-axis current zero is the second control objective
for the generator-connected VSC.

DC-link voltage

For a voltage source converter to operate, the voltage on the DC-side must be more than double
the peak voltage of the AC-voltage [41]. When it is assumed that the converter is synchronized
with the grid voltage, it can be shown that the DC-link voltage can be controlled by using the
d-current component[42]. To have the VSC operating as desired, regulating the DC-link voltage
to the desired value becomes the first control objective of the grid-connected VSC.

Reactive power transfer

To control the reactive power flow to the grid, the quadrature axis (q-axis) current is used. It is
assumed that the q-component of the voltage is zero, vq = 0. The apparent power can be expressed
as:

s = vd · id + vq · iq︸ ︷︷ ︸
P

+j (−vd · iq + vq · id)︸ ︷︷ ︸
Q

s = vd · id︸ ︷︷ ︸
P

−j vd · iq︸ ︷︷ ︸
Q

(4.1)

4.1 shows that the q-axis component of the current is controlling the reactive power transferred to
the grid. This is the second control objective for the grid-connected VSC.

The main objective of an offshore wind park is to deliver power to the mainland, however, delilvering
reactive power is also important to sustain satisfacotry power quality [43]. As wind power is
becoming an increasing participant in power production, it is reasonable for wind parks to also
provide ancillary services. [44]. To accurately keep the voltage at the correct level, continuous and
fast interventions need to take place. The type 4 WTG can provide this due to the pulse-width-
modulation control [44], [45] and can deliver or consume reactive power to sustain the desired
voltage level.
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4.1.2 Equilibrium Calculation

For a stability analysis to be relevant, there must exist an equilibrium point for the system. This
section shows that an equilibrium point for the system exists and how it is calculated. The system
equations defining the system shown in Figure 4.1 are shown in section 3.2, but are repeated here
for convenience:

Li̇d = −rid + Liq
P

2
ωm − u1Vc (4.2)

Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (4.3)

Jω̇m = Tm − P

2
ϕiq + d(ωref − ωm) (4.4)

CV̇c = u1id + u2iq − u3i
G
d − u4i

G
q −GVc (4.5)

LGi̇
G
d = −rGiGd + ωGLGi

G
q + u3Vc − V Gd (4.6)

LGi̇
G
q = −rGiGq − ωGLGi

G
d + u4Vc − V Gq (4.7)

=

=

Loadflow
ωm, Tm

Passivity based
generator control

Passivity based
dc-link voltage control

u1, u2
u3, u4

Vc

id, iq

id,ref , iq,ref , Vc,ref iGd,ref , i
G
q,ref , Vc,ref

Vd, Vq

iGd , i
G
q

Vc

PMSG

C G

Z1,con Z2,con

i∗d ω
∗

m V ∗

c
i∗q

Figure 4.1: Control structure of a wind energy conversion system with two passivity-based con-
trollers

The system has six coenergy variables (id, iq, ωm, Vc, i
G
d , i

G
q ), four control variables (u1, u2, u3, u4)

and four known inputs Tm, ωref , V
G
d , V

G
q . In the previous section, the four control objectives are

described and are assumed to be achieved when calculating an equilibrium point for the system.
At the equilibrium, four coenergy variables are already known along with the four inputs to the
system. Using the above six listed system equations, the missing two coenergy variables and the
four control variables can be calculated for the system.

Known coenergy variables Known inputs
d-axis current PMSG īd Mechanical torque Tm

Angular velocity ω̄m Angular velocity reference ωref
DC-link voltage V̄c d-axix grid voltage V Gd

q-axis current Grid īGq q-axis grid voltage V Gq

Table 4.1: Known coenergy variables and inputs at the equilibrium

At the equilibrium point, the left side of the system equations is all zero as the system is in a
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steady state. (∂x∂t = 0).

īq, q-axis current in the PMSG

4.4 can be used to calculate steady state q-axis current component in the PMSG. At the equilibrium,
the angular velocity is equal to the reference (ω̄m = ωref ).

īq =
Tm
P
2 ϕ

(4.8)

iGd , d-axis current component in the grid connection

To obtain the steady-state expression for the d-axis current component in the grid connection,
multiple of the system equations must be combined. Another approach is to use power conservation
to find the expression, and is what is done in this thesis. Ultimately the two approaches give the
same expression of the d-axis current, which is as expected.

Tmωm︸ ︷︷ ︸
Pin

= iGd V
G
d + iGq V

G
q︸ ︷︷ ︸

Pout

+ r(i2d + i2q) +GV 2
c + rG(i

G
d

2
+ iGq

2
)︸ ︷︷ ︸

Ploss

(4.9)

Solving 4.9 for iGd , the d-axis current in the grid-side converter at steady state yields:

īGd =
−V Gd
2rG

+
1

2rG

√
V Gd

2 − 4rG

(
īGq V

G
q + rGīGq

2
+GV̄ 2

c + r(̄i2d + ī2q)− Tmω̄m

)
(4.10)

For the equilibrium point to exist, the term inside the square-root need to be positive.

V Gd
2 − 4rG

(
īGq V

G
q + rGīGq

2
+GV̄ 2

c + r(̄i2d + ī2q)− Tmω̄m

)
> 0 (4.11)

By taking a closer look at the terms, they can be sorted as follows:

Tmω̄m︸ ︷︷ ︸
Pin

− īGq V
G
q︸ ︷︷ ︸

P∗
out

− rGīGq
2
+GV̄ 2

c + r(̄i2d + ī2q)︸ ︷︷ ︸
P∗

loss

+
V Gd

2

4rG︸ ︷︷ ︸
P̂

> 0 (4.12)

where

P ∗
out = 0, V Gd = 0 due to SRF1

P ∗
loss < Ploss

Thereby the conditions for an equilibrium to exist can be rewritten as:

Pin + P̂︸ ︷︷ ︸
>Pin

> P ∗
loss (4.13)

Condition 4.13 says a term that is larger than the power input to the system must be greater than
a term smaller than the loss in the system. This is satisfied for all physically possible operating
conditions for the system. Therefore, an equilibrium point can be found for all possible working
conditions for the system.

1It is assumed that the synchronous reference is used where the d-axis is aligned with the voltage vector. The
q-axis component of the voltage is thereby zero.
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u1, control variable 1

u1 can be interpreted as the duty cycle for the d-axis components for the generator connected
voltage source converter using pulse width modulation (PWM). The control variable can take
values in the interval u1 ∈ [− 1

2 ,
1
2 ]. 4.2 can be used to calculate u1

u1 =
−rīd + LP2 ω̄mīq

V̄c
(4.14)

u2, control variable 2

Similarly to u1, u2 can be interpreted as the duty cycle for the q-axis components for the generator
connected voltage source converter using PWM. The control variable can take values in the interval
u2 ∈ [− 1

2 ,
1
2 ]. 4.3 can be used to calculate u2

u2 =
−rīq − Līd

P
2 ω̄m + ϕP2 ω̄m

V̄c
(4.15)

u3, control variable 3

u3 can be interpreted as the duty cycle for the d-axis components for the grid-connected voltage
source converter using PWM. The control variable can take values in the interval u3 ∈ [− 1

2 ,
1
2 ].

4.5 can be used to calculate u3. In 4.5 the three other control variables are included and must
therefore be calculated last. It is possible to find an expression for u3 that only consists of coenergy
variables and inputs. However, this expression is more complex, so it is decided to include only
the expression below.

u3 =
u1īd + u2īq −GV̄c − u4ī

G
q

īGd
(4.16)

u4, control variable 4

u4 can be interpreted as the duty cycle for the q-axis component for the grid connected voltage
source converter using PWM. The control variable can take values in the interval u4 ∈ [− 1

2 ,
1
2 ]. 4.7

can be used to calculate u4.

u4 =
rg ī

G
q + ωGLGī

G
d + V Gq

V̄c
(4.17)

Using the expressions above, all the coenergy and control variables can be calculated at the equi-
librium point. PBCs will calculate the control variables when implementing the control structure
in a wind energy conversion system. The passivity-based control is briefly explained in the next
subsection, along with how they are designed for the back-to-back wind energy conversion systems
shown in Figure 4.1.

4.1.3 P(I) Passivity-based Control Implementation

Passivity-based control, as introduced in section 1.3 exploits the physical structure of a system
and renders the closed loop passive with respect to some suitable storage function [19]. The aim of
this subsection is, therefore, to design a control system that will result in a suitable LCF to ensure
stability.
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In section 3.2, y, the passive output of the system is defined as

y = g(x̄)⊤Qx̃ (4.18)

where

g(x̄)⊤ =


−V̄c 0 0 īd 0 0
0 −V̄c 0 īq 0 0
0 0 0 −īGd V̄c 0
0 0 0 −īGq 0 V̄c


The passive output of the system entering the PBC will then become:

y = g(x̄)⊤Qx̃

y =


−V̄c 0 0 īd 0 0
0 −V̄c 0 īq 0 0
0 0 0 −īGd V̄c 0
0 0 0 −īGq 0 V̄c




ĩd
ĩq
ω̃

Ṽc
ĩGd
ĩGq



y =


−V̄c̃id + Ṽcīd
−V̄c̃iq + Ṽcīq
−īGd Ṽc + V̄c̃i

G
d

−īGq Ṽc + V̄c̃i
G
q

 =


−V̄c(id − īd) + īd(Vc − V̄c)
−V̄c(iq − īq) + īq(Vc − V̄c)
−īGd (Vc − V̄c) + V̄c(i

G
d − īGd )

−īGq (Vc − V̄c) + V̄c(i
G
q − īGq )


Simplifying yields the final expression:

y =


−idV̄c + īdVc
−iqV̄c + īqVc
−īGd Vc + iGd V̄c
−īGq Vc + iGq V̄c

 (4.19)

The passive output from the system is chosen as the input to the controllers in the closed loop,
u = −Kpy + ū.

u = −


KPMSG
d 0 0 0
0 KPMSG

q 0 0
0 0 KG

d 0
0 0 0 KG

q



−idV̄c + īdVc
−iqV̄c + īqVc
−īGd Vc + iGd V̄c
−īGq Vc + iGq V̄c

 =


KPMSG
d

(
−idV̄c + īdVc

)
KPMSG
q

(
−iqV̄c + īqVc

)
KG
d

(
−īGd Vc + iGd V̄c

)
KG
q

(
−īGq Vc + iGq V̄c

)
 =


u1
u2
u3
u4

 (4.20)

Equation 4.20 shows the output from the P(I)-PBCs, which is the input to the converters.

It hast been shown that a equilibrium point can be found for any realistic operating conditions,
and it is shown how the PBCs are designed and implemented. The next step is to simulate the
WECS in Matlab/Simulink to investigate the stability criterias validity and performance.
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4.2 Simulation

To support the mathematical proofs found in the previous chapter, simulations are conducted to
validate the stability criteria. The simulations are done for the full back-to-back system.

As explained in subsection 4.1.2, for a stability analysis to be of any use, there must exist an equi-
librium point the system can obtain. Calculating the equilibrium point requires a perfect system
model and therefore has some drawbacks in real-world applications. The constant recalculation of
the equilibrium point due to the ever-changing nature of the wind makes it less robust. There-
fore, other solutions to cope with rapid changes should be investigated, therefore simulations done
without and with outer loops are presented.

In the simulations, a constant wind speed is assumed for simplicity. The controllers dynamics are
assumed to be sufficiently faster than the winds, and thereby the input to the control loops will be
seen as constant regardless of a time-varying wind input. This simplification was done to ease the
models implementation and reduce the computational processing power necessary since a rapidly
changing wind input demands an almost constant recalculation of the equilibrium points. Due
to the fact that we are only concerned about stability and not performance, a time-varying wind
input is of less importance.

The choice of parameters are based on the wind energy conversion system investigated in [15] and
are listed in Table 4.2

Item Symbol Nominal value
Inertia J 7.856 [kgm2]
Poles P 28
Synchronous resistance r 0.3676 [Ω]
Synchronous inductance L 3.55 [mH]
Permanent magnet flux ϕ 0.2867 [Wb]

Damping d 0.5 [ Nmrad/s ]

d-axis current īd 0 [A]
Mechanical torque Tm 200 [Nm]
Mechanical angular velocity ωm 200 [rpm]
DC-link conductance G 10 [µS]
DC-link capacitance C 3.3 [mF ]
DC-link voltage Vc 660 [V ]
Grid resistance rG 0.2[Ω]
Grid inductance LG 2 [mH]

Grid angular frequency ωG 2π · 50[ rads ]
Gird q-axis current iGq 2 [A]

Grid d-axis voltage V Gd 230
√
2 [V ]

Grid q-axis voltage V Gq 0 [V ]

Table 4.2: Model parameters and input values for the simulation

Some of the values in Table 4.2 are not found in [15], as the system in that paper does not include
a second converter and a grid connection. The grid in this section is modeled as a stiff voltage
source in a synchronous reference frame such that the q-axis voltage component is zero, V Gq = 0

[V]. The value for the d-axis voltage component is set to
√
2 · 230[V] as it is assumed that the grid

has rms-voltage of 230[V]. The grid frequency is 50 [Hz]. The DC-link voltage is set to 660[V] as
this is more than double the peak grid voltage, as is required. The conductance G is assumed to
be small, as it is assumed that the losses in the converter are quite small. The grid resistance and
inductance are assumed to be small and are chosen as 0.2[Ω] and 2 [mH], respectively. It is assumed
that at the time of simulation, it is required that reactive power must be supplied to the grid. iGq
is therefore set to 2 [A]. The wind turbine has a nominal power of 5 [kVA]. It is assumed that the
wind conditions during simulation cause the power to be below this rating. The mechanical torque
generated by the turbine blades is assumed to be 200 [Nm], and the angular velocity is 200 [rpm],
which constitutes a power of 4.19 [kW]
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4.2.1 Implementation of the Stability Certificate

The first scenario that is simulated is testing the hypothesis from section 3.2,“Only using the
converter closest to the PMSG is enough to compensate for the lack of monotonicity inherent to
the machine, and thus to render the rest of the system passive.”. Therefore, we only implement a
passivity-based controller for the generator-connected converter–while, for simplicity, we begin by
operating the second VSC under open-loop control.– Indeed, this is not a very realistic scenario as
there would be closed-loop controllers on both converters in practical applications. The reasoning
for doing this preliminary study is to show that we can guarantee stability with the minimum
amount of feedback possible and at the earliest point possible. This is practical for designing
the rest of the system, as it can be optimized for performance knowing the system is guaranteed
to be stable. The values for control variable 3 and 4 (u3 and u4) are calculated as shown in
subsection 4.1.2 and are fed directly into the grid-side converter.

Criterion 3.106 and 3.107 needs to be fulfilled to guarantee the system to be stable. Criterion 3.107
is satisfied as long Kp is chosen to be positive. Solving criterion 3.106 for γ yields:

2d−
(̄iq

P
2 L)

2

2(r + γV̄ 2
c )

≥ 0

γ ≥
(̄iq

P
2 L)

2 − 4dr

4dV̄ 2
c

īq is calculated with the help of the swing equation

J ˙̄ωm = Tm − P

2
ϕīq

īq =
Tm
P
2 ϕ

īq =
200

28
2 · 0.2867

īq = 48.828A

γ then becomes

γ ≥
(48.828 · 28

2 · 3.55 · 10−3)2 − 4 · 0.5 · 0.3676
4 · 0.5 · 6602

γ ≥ 6.1956 · 10−6

Kp > 6.1956 · 10−6 is therefore needed to render the rest of the system passive and subsequently
to guarantee stability.
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Figure 4.2: Control structure of a wind energy conversion system without outer loops and one
passivity-based controller

Passivity-based controller for only machine-side converter

The following simulation, depicted in Figure 4.3, shows how the tuning of the passivity-based
controller can make a system preserve its stability after a disturbance. A step in torque input and
a step in angular velocity happen at t = 30 [s]. Simulation results are presented without and with
the fulfillment of the stability criteria Equation 3.79.
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Figure 4.3: Initially the system is stable, and then a step in torque input and angular velocity
happens at t = 30 [s]. WhenKp = 1e−7 < γ [left], the system becomes unstable. WhenKp = 1 > γ
[right], the step does not affect the stability of the system.
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A clear difference in system behavior is noticed. WithKp < γ, a step in torque and angular velocity
make the system unstable, while with Kp > γ, the stability of the system is preserved regardless
of the disturbances. This is in line with the stability certificate, which guarantees stability for the
system when criteria 3.79 is satisfied. The simulation case was based on the fact that an increase
in wind speed will affect the blades’ mechanical torque and the angular velocity. The wind speeds
are constantly changing, so a sudden increase in wind speed or direction must be considered when
studying wind turbines’ stability.

The stability certificate ensure that the passivity-based controller is guaranteed to render the sys-
tem stable. On the other hand, the stability criteria do not disclose what happens when the gain
is selected to be smaller than γ, meaning when the criteria is not satisfied. The system could be
unstable but also stable. A simulation was done to demonstrate this. A step in the torque input
was applied at t = 30s. The gain is chosen to be Kp = 1 · 10−7, which is less than the gain needed
to render the system passive according to criterion 3.79.
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Figure 4.4: Step in torque input happens at t = 30 [s]. With Kp = 1e−7 < γ, the system preserves
its stability regardless of the stability criterion 3.79 not being fulfilled.

From Figure 4.4, it is clear that the system is stable, even though Kp is chosen to be less than the
calculated value of γ. There are some oscillations after the step, but the system’s overall stability
is preserved.

Passivity-based controllers for both converters

In the next simulations, both PBCs are included based on P(I) regulators, see Figure 4.1. The
control variables u1, u2, u3 and u4 are calculated in the closed loop passivity-based controllers, as
opposed to the previous case where, u3 and u4 were constant values from the load flow calculation.
The purpose of this simulation is to investigate if the stability of the system is affected by the
tuning of the PBCs for the two converters. The previous section validated that stability can be
achieved by satisfying the stability criteria developed in section 3.2 for the generator-connected
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converter. It is interesting to investigate how the tuning of the second converter will impact the
stability and if it is possible to stabilize the system using the grid-connected converter as opposed
to the generator-connected converter. Therefore the simulation result shown in Figure 4.5 displays
two scenarios, where in the first scenario, the stability criteria 3.47 is not satisfied for the grid
converter as opposed to the second scenario. A step in torque- and angular velocity is applied at
t = 30 [s].
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Figure 4.5: Initially the system is stable, and then a step in torque input and angular velocity
happens at t = 30 [s]. When K1

p = 1e−7 and K2
p = 1e−6 [left], the system becomes unstable.

When K1
p = 1e−6 and K2

p = 1e−7 [right], the system preserves it stability regardless of the step.

From Figure 4.5 one can see how the system’s stability is more concerned with the tuning of the
machine-side PBC (controller 1) than the gird-side PBC (controller 2). Choosing K1

p < γ in con-
troller 1 and K2

p slightly bigger than γ in controller 2 yields an unstable system. By interchanging
the two values for Kp, a stable system was observed. The simulation thereby show that the best
strategy for stability is to ensure that the stability criteria is fulfilled for the generator connected
converter.

The criteria (3.47) is only concerned with the tuning of controller 1. To render the system passive,
the criterion must only be fulfilled for controller 1. For controller 2, no similar criterion is found
to guarantee stability. Making sure K2

p > 0, whilst K1
p > γ is enough to guarantee stability. Not

shown here, but from simulations, it is indicated that the tuning of controller 2 may compensate
somewhat for controller 1 when K2

p is chosen sufficiently high. By, for instance choosing K1
p = 1e−7

and K2
p = 1, the system’s stability was preserved after the same disturbances as in the simulation

shown in Figure 4.5 was applied. Simulations also indicate that the performance of the system
could be improved by a strategic tuning of controller 2. This topic is not investigated further in
this thesis, as this thesis is mainly concerned with stability.
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4.2.2 Inclusion of Outer loops

In the previous simulation, Figure 4.5, the control variables u1, u2, u3, u4 are calculated in two
PBCs. The passive input controller has three input variables but only two output variables. It is,
therefore, actually not possible to control all three states. Especially if the model is an imperfect
representation of a real system, the controllers will not be able to control all three states to the
desired operating point. A practical solution to this challenge is to have one of the states calculated
by an outer loop.
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Figure 4.6: Control structure with outer loops

For the converter closest to the PMSG, the wind is chosen to be calculated by an outer loop based
on a standard PI- controller. As the dynamics in the wind can be assumed to be sufficiently slower
than the dynamics of the converter, the input to the PBCs is viewed as constant. Under this
approximation, the stability certificate may arguably still be valid to a certain extent, particularly
if one adopts a practical viewpoint. This is less the case for the second converter, where an outer
loop calculates the DC link voltage reference. To check for stability and performance, we are
forced to rely exclusively on our simulation results. The system is subjected to a step-change in
the mechanical torque from 200 Nm to 400 Nm. The desired angular velocity is at the same time
increased from 200 rpm to 270 rpm, and the desired voltage at the DC link is increased from 660
V to 800 V 2. Two simulations are conducted where one includes the outer loops and the other
without outer loops. The tuning of the P(I)-PBCs is the same in both cases.

2The reason for changing the torque input and the two references simultaneously is that during simulation it was
found that the system had to experience quite strong disturbances to challenge the stability even without satisfying
the stability criteria.
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Figure 4.7: A step in mechanical torque, angular velocity, and dc-link voltage happens at t = 10
[s]. Simulation results are presented for a system with [left] and without [right] outer loops.

From Figure 4.7, it is apparent that having an outer loop improves the control system’s perform-
ance. The system is able to achieve the desired operating point faster and without oscillations.

Disconnection of outer loops in case of instability

The stability certificate developed in section 3.2 is without outer loops. If the outer loops are tuned
in such a way that the inputs to the PBCs will not be viewed as constant, then the system will be
at risk of instability. However, as seen in the previous section, the control performance was faster
and better, with outer loops to control the angular velocity and the DC-link voltage. Therefore, it
is desirable to both have the improved performance provided by the outer loops and the stability
guaranteed for the system without outer loops. In this section, a method for combining these
desired qualities is suggested. Outer loops are included to increase performance, but in a case
where the system is becoming unstable, the outer loops are disconnected. The motivation behind
this is that the system is guaranteed to be stable if the stability criteria provided in section 3.2
is satisfied. As the system is detected to become unstable, the outer loops are disconnected such
that the stability criteria are satisfied, and the system will become stable again. When the system
is in stable operation, the outer loops can again be included to improve the control performance
for the system.

A simulation was performed to test this. A disturbance in the torque occurs after five seconds,
and the reference of the angular velocity is increased simultaneously. When the system is detected
as being unstable, the outer loops are disconnected, which happens after 10 seconds.
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Figure 4.8: Simulation result for the coenergy variables where one disconnects the outer loops
when the system is becoming unstable.

In Figure 4.8, it is apparent that the system is turning unstable after the system is subjected to
disturbances after 5 seconds. The instability is detected, and the outer loops are disconnected after
10 seconds. The system then quickly regains stability. This is in line with the stability certificate
developed in section 3.2. As a result of the disturbance, a new equilibrium calculation has to be
performed for the system to become stable again. Unfortunately, due to the outer loops being
tuned too fast, the system is not able to regain its stability. The reasoning for this is that in a
cascaded control structure, it is important that the inner control loop is significantly faster than
the outer loop [46]. The rule of thumb is that the inner loop should be roughly ten times faster
than the outer loop. This is because the inner loop should view the inputs from the outer loop as
constant, thereby avoiding the constant recalculation needed if this is not the case.
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Comparison with traditional current control

In industry, the norm is to use PI current controllers as opposed to P(I)-PBCs. This technology
is well tested and is much used due to its simplicity, and good performance [47]. In this section,
the PBCs are compared to regular current control. For both the current control case and the
PBC-case, the same outer loops shown in Figure 4.6 are used. The disturbance and the reference
change the system is subjected to are the same as in the previous simulations.
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Figure 4.9: Comparison between passivity-based control [blue line] and PI current control [green
dotted line], when subjected to a step in angular velocity, mechanical torque, and dc-link voltage
at t = 10 [s].

From Figure 4.9, it is apparent that the performance is very similar for the PBC and the current
controller. It must be noted that in this simulation, the same values were used in the tuning of both
types of controllers. For a different tuning, the two controllers might have different performances
compared to each other. Based on this simulation, the result is that the PBC has a similar
performance to the traditional PI current controllers. The advantage of using the PBC is that
the stability of the system is guaranteed even for large disturbances, as shown in section 3.2. In
industry performance is often more important than guaranteed stable operation, but is ofcorse
a desired property. The comparable performance for the PBCs and PI-current control, in this
simulation, implies a bright future for passivity based control.
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4.3 Improved Performance due to Damping in the Syn-
chronous Generator

In both [23] and [48], which investigate modeling and control of multi-terminal HVDC systems,
poor control performance by the P(I)-PBCs is observed. A potential explanation for this is that the
system lack damping, and the convergence of the system is slow. To improve the performance, outer
loops are included invoking the assumption of time-scale separation3 and thereby not jeopardizing
the stability guaranteed by using the passivity-based control. However this is not an ideal solution
as the outer loops are not a part of the stability proof, and could therefore potentially jeopardize
the stability.

By simulation shown in Figure 4.10 it is apparent that increasing the damping d in the PMSG
does improve the convergence speed of the system. Although the systems analyzed in [23] and
[48] have significant differences from the system analyzed in this thesis, the result in Figure 4.10
might have appliances for these multi-terminal HVDC systems. By including PMSGs in the HVDC
system, the control performance could be improved without the need for outer loops due to the
damping provided by the PMSGs. PMSG could then be designed such that the damping gave
a sufficient improvement to the control of the HVDC system. The improved convergence due to
higher damping indicates that the inclusion of PMSGs in the HVDC systems in [23] and [48] would
be beneficial. However, this suggested improvement must be implemented in a replicated system
described in these two papers to evaluate its effect.

0 5 10 15 20 25 30 35

time [s]

-1

0

1

i d
 [

A
]

10-4 d-axis current

i
d d = 0.1

i
d d = 1

i
d d = 10

i
d ref

0 5 10 15 20 25 30 35

time [s]

40

45

50

55

i q
 [

A
]

q-axis current

i
q d = 0.1

i
q d = 1

i
q d = 10

i
q ref

0 5 10 15 20 25 30 35

time [s]

18

20

22

24

m
 [

ra
d

/s
]

Angular velocity

m d = 0.1

m d = 1

m d = 10

m ref

0 5 10 15 20 25 30 35

time [s]

600

700

800

900

V
D

C
 [

V
]

DC-link voltage

v
DC d = 0.1

v
DC d = 1

v
DC d = 10

v
DC ref

0 5 10 15 20 25 30 35

time [s]

8

9

10

11

i d
 G

 [
A

]

d-axis current, grid connection

i
d G d = 0.1

i
d G d = 1

i
d G d = 10

i
d G ref

0 5 10 15 20 25 30 35

time [s]

1.6

1.8

2

2.2

i q
 G

 [
A

]

q-axis current, grid connection

i
q G d = 0.1

i
q G d = 1

i
q G d = 10

i
q G ref

Figure 4.10: Comparison of the response of a voltage reference step for different damping values.
As expected, an increase in damping results in a faster convergence.

3The assumption of time-scale separation means that the dynamics controlled in the outer loop are sufficiently
much slower than the inner loop dynamics, such that the inner loop observes the output from the outer loop as
constant.
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End Note

This chapter presented the control objectives, equilibrium calculation, design of PBCs and the
simulation results for the full back-to-back wind power system. The simulations validated the sta-
bility certificate developed in chapter 3 and suggested measures of practical solutions for improved
performance. These are promising results, however the demand for wind power systems is greater
than a single turbine. It is therefore time to expand the stability certificate to be valid for a wind
park.
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Chapter 5

Expanding to a Wind Park

The stability criteria found in chapter 3 is for a single wind energy conversion
system. Wind turbines rarely appear alone and are usually a part of a larger
wind park. Expanding the stability criteria to be valid for a wind park where the
turbines are interconnected at the point of common coupling is, therefore, far
more beneficial for real-world applications. The expansion of the stability certi-
ficate is achieved through modeling an electrical grid interconnected with multiple
wind turbines. The modeling of the grid and connection with the wind energy
conversion system is done by using graph theory following the methodology in
[23]. A stability certificate for an entire wind park guaranteeing large signal
stability which also allows for a plug− and− play interconnection method could
potentially have huge implications. Wind power is expected to be a cornerstone
in the future power grid, and such a certificate could be central in the timely-
needed transition from a centralized to a distributed power system.

In this chapter, we aim to expand the stability certificate for a larger system containing an offshore
wind park with multiple turbines connected via an HVDC connection to the continental grid. The
turbine string will first be modified to allow for a more convenient interconnection to the power grid.
In this thesis, a turbine string (TS) defines a system containing a permanent magnet synchronous
generator and two 2L-VSC connected to an electrical grid in a back-to-back configuration. These
TSs are connected in an electrical grid connected to the continental grid through an HVDC-link.
The HVDC converter will be modeled as a constant voltage source. The complete system containing
the TSs and the grid will be modeled using the pH formalism. With the help of graph theory,
and specifically the incidence matrix B, the objective of showing the scalability of the stability
certificate is achieved.
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5.1 A Remodeling of the Turbine String

A TS is shown in Figure 5.1. Comparing this system to the system in section 3.2, the difference
is that a capacitor is added to the system, and the grid connection is modeled as a current source
instead of a constant voltage source. The addition of the capacitor will introduce two new states to
the TS. Therefore, the system model for a TS must be modified and investigated if this modification
will impact the stability criteria found in chapter 3.

=

=r L
GdcCdc

rG LG

Cpcc Gpcc

IG

PMSG

Figure 5.1: Turbine String

The equations describing a turbine string are:

ψ̇d = Li̇d = −rsid + Liq
P

2
ωm − u1Vc (5.1)

ψ̇q = Li̇q = −rsiq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (5.2)

ρ̇ = Jω̇m = Tm(ωm)− P

2
ϕiq + d(ωref − ωm) (5.3)

q̇c = CdcV̇c = u1id + u2iq − u3i
G
d − u4i

G
q −GdcVc (5.4)

ψ̇Gd = LGi̇
G
d = −rGiGd + ωGLGi

G
q + u3Vc − V dpcc (5.5)

ψ̇Gd = LGi̇
G
q = −rGiGq − ωGLGi

G
d + u4Vc − V qpcc (5.6)

q̇dpcc = CpccV
d
pcc = iGd −GpccV

d
pcc + IdG (5.7)

q̇qpcc = CpccV
q
pcc = iGq −GpccV

q
pcc + IqG (5.8)

The two new states that are introduced are modeling the grid connection as a current source and
consist of the d and q component of the electrical charge qpcc in the point of common coupling
(PCC). Cpcc is the capacitance in the capacitor at PCC, and Gpcc is the conductance at PCC
representing the losses in the capacitor. Vpcc is the voltage at PCC. IdG and IqG are the currents in
the d and q axis modeling the external grid. Gdc and Cdc are the conductance and capacitance in
the dc-link, respectively.
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The Hamiltonian function describing the energy in the TS is defined as follows:

H(x) =
1

2
x⊤Qx

=
1

2

[
ψd ψq ρ qc ψ

G
d ψGq qdpcc q

q
pcc

]


1
L 0 0 0 0 0 0 0
0 1

L 0 0 0 0 0 0
0 0 1

J 0 0 0 0 0
0 0 0 1

Cdc
0 0 0 0

0 0 0 0 1
LG

0 0 0

0 0 0 0 0 1
LG

0 0

0 0 0 0 0 0 1
Cpcc

0

0 0 0 0 0 0 0 1
Cpcc





ψd
ψq
ρ
qc
ψGd
ψGq
qdpcc
qqpcc


=

1

2

(
1

L
ψ2
d +

1

L
ψ2
q +

1

J
ρ2 +

1

Cdc
q2c +

1

LG
ψGd

2
+

1

LG
ψGq

2
+

1

Cpcc
qdpcc

2
+

1

Cpcc
qqpcc

2

)

(5.9)

The port-Hamiltonian representation of the turbine string becomes:

ψ̇d
ψ̇q
ρ̇
q̇c

ψ̇Gd
ψ̇Gq
q̇dpcc
q̇qpcc


︸ ︷︷ ︸

x

=



−r ωm
P
2 L 0 −u1 0 0 0 0

−ωm −r P
2 ϕ −u2 0 0 0 0

0 −P
2 ϕ −d+ Tm(ωm)

ωm
0 0 0 0 0

u1 u2 0 −Gdc −u3 −u4 0 0
0 0 0 u3 −rG ωGLG −1 0
0 0 0 u4 −ωGLG −rG 0 −1
0 0 0 0 1 0 −Gpcc 0
0 0 0 0 0 1 0 −Gpcc





id
iq
ωm
Vc
iGd
iGq
V dpcc
V qpcc


︸ ︷︷ ︸
∇H(x)

+



0
0

dωref
0
0
0
IdG
IqG


(5.10)

which can be written on the abbreviated form:

ẋ = (J (ωm) + J0 + J5 + J6 + J7 −R(ωm))∇H(x) + E︸ ︷︷ ︸
f(x)

+
[
J1∇H(x)J2∇H(x)J3∇H(x)J4∇H(x)

]︸ ︷︷ ︸
g(x)


u1
u2
u3
u4


︸ ︷︷ ︸
u

(5.11)
where
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J (ω) =
P

2
L



0 ωm 0 0 0 0 0 0
−ωm 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J0 =

P

2
ϕ



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J1 =



0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



J2 =



0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J4 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



J5 = ωGLG



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, J6 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


, J7 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0



R(ωm) =



r 0 0 0 0 0 0 0
0 r 0 0 0 0 0 0

0 0 d− Tm(ωm)
ωm

0 0 0 0 0

0 0 0 Gdc 0 0 0 0
0 0 0 0 rG 0 0 0
0 0 0 0 0 rG 0 0
0 0 0 0 0 0 Gpcc 0
0 0 0 0 0 0 0 Gpcc


, E =



0
0

dωref
0
0
0
IdG
IqG


The addition of the capacitor is a linear interconnection to an inductor on the grid side of the
turbine string. It is shown in section 3.3 that stability can be ensured by having sufficient damping
in the PMSG and by satisfying the tuning condition for the P(I)-PBC on the generator side of the
DC-link. Therefore, it is easy to prove that including the capacitor through a linear interconnection
does not alter the stability conditions. The proof is included in Appendix D.
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5.2 The grid model
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Figure 5.2: Wind park model

Graph theory is a powerful mathematical tool used to study the interactions of systems. A directed
graph G = (V, ϵ) consists of a finite set V of vertices (nodes) and a finite set ϵ of directed edges
(branches or links), together with a mapping from ϵ to the set of ordered pairs of V [49].
Figure 5.2 depicts an arbitrary topology for a simplified wind farm. The wind turbines are repres-
ented as vertices or nodes, and the transmission lines represent the edges. Because of the specified
direction of the flows indicated by the arrow, Figure 5.2 depicts a directed graph.

A directed graph is completely specified by its incidence matrix. The incidence matrix B is a
N ×M matrix, where N is the number of vertices and M is the number of edges. In this thesis
an element Bi,j is defined as positive if edge ej leaves vertex vi and the element Bi,j is defined as
negative if edge ej enters vertex vi. If edge ej is not connected to vertex vi the element element
Bi,j is zero. In other words, the element Bi,j is positive if the current flow in line j leaves node i
and defined as negative if the current in line j enters node i. If line j is not connected to node i,
the element element Bi,j is zero.
The incidence matrix for the arbitrary topology depicted in Figure 5.2 becomes:

B =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1

 (5.12)

In combination with graph theory, pH modeling allows for the modeling of multi-agent systems
where the desired plug-and-play characteristics of the pH modeling formalism are preserved. The
underlying dirac structures in the Hamiltonian modeling are directly defined by the incidence
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matrix B, and the conservation laws are thus captured [49].
The incidence matrix can be split up into two parts. One part contains the flow between the turbine
strings, and the other contains the flow between the turbine strings and the HVDC-connection node
(node 5 in Figure 5.2).

B =

[
BTS

Bsource

]
=


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1


The voltage in all the nodes except for the HVDC-connection node are the variables depending
on the output of the turbine strings. The dq voltages in the HVDC-connection are assumed to
be constant for simplicity and can be justified since the HVDC-converter is imposing the voltage
at the node. Let U be a vector that contains the voltages in all the nodes. More precisely
U = col(Up,grid, Usource), where Up,grid is a vector of the voltages in the nodes that are connected
to a turbine string and Usource is the voltage in the HVDC-connection (node 5).

An important property that will be utilized later is that the voltage difference between the nodes
can be expressed using the transpose of the incidence matrix.

B⊤U =


1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1



V dq1

V dq2

V dq3

V dq4

V dq5

 =


V dq1

−V dq1 + V dq2

−V dq2 + V dq3

−V dq3 + V dq4

−V dq4


︸ ︷︷ ︸

BTSUp,grid

+


−V dq5

0
0
0

V dq5


︸ ︷︷ ︸

BsourceUsource

(5.13)

The equations describing the transmission line, exemplified as the line between node 1 and 2, is
found with the help of Kirchhoff’s voltage law.

Lb
diab
dt

= −rbiab + (V a2 − V a1 )

Lb
dibb
dt

= −rbibb + (V b2 − V b1 )

Lb
dicb
dt

= −rbicb + (V c2 − V c1 )

(5.14)

with iim is the current in phase i in transmission line m ∈ M . V in is the voltage in phase i in node
n ∈ N . rm is the resistance in line m. To use a synchronous reference frame, a d-q transformation
is applied.

Lb
didb
dt

= −rbidb + ωsi
q
b + (V d2 − V d1 )

Lb
diqb
dt

= −rbiqb − ωsi
d
b + (V q2 − V q1 )

(5.15)

where the zero component is assumed to be zero.
Written on a port-Hamiltonian form, the transmission system can be expressed as:

[
ψ̇db
ψ̇qb

]
︸ ︷︷ ︸
ẋb

=


[

0 ωs
−ωs 0

]
︸ ︷︷ ︸

Jωs

−
[
rb 0
0 rb

]
︸ ︷︷ ︸

Rb

 [
idb
iqb

]
︸︷︷︸

∇H(xb)

+

[
V d2 − V d1
V q2 − V q1

]
︸ ︷︷ ︸

BTS,2.rowUp,grid

(5.16)

In the last term, and to preserve the generality in our analysis, the incidence matrix is used to
express the voltage drop in the transmission line b. Up,grid can be viewed as an input to the system
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at the nodes. This is useful when making a port-Hamiltonian model consisting of both the turbine
strings and the grid. This is done in section 5.4.

A port-Hamiltonian representation of the complete grid shown in Figure 5.2 becomes:

ψ̇da = −raida + ωsi
q
a + (V d1 − V d5 )

ψ̇qa = −raiqa − ωsi
d
a + (V q1 − V q5 )

ψ̇db = −rbidb + ωsi
q
b + (V d2 − V d1 )

ψ̇qb = −rbiqb − ωsi
d
b + (V q2 − V q1 )

ψ̇dc = −rcidc + ωsi
q
c + (V d3 − V d2 )

ψ̇qc = −rciqc − ωsi
d
c + (V q3 − V q2 )

ψ̇dd = −rdidd + ωsi
q
d + (V d4 − V d3 )

ψ̇qd = −rdiqd − ωsi
d
d + (V q4 − V q3 )

ψ̇de = −reide + ωsi
q
e + (V d5 − V d4 )

ψ̇qe = −reiqe − ωsi
d
e + (V q5 − V q4 )

Abbreviated the port-Hamiltonian representation becomes:

ẋgrid = Fgrid∇H(xgrid) + B⊤
TSUp,grid + B⊤

sourceUsource︸ ︷︷ ︸
E

(5.17)

where Fgrid = J (ωs) − Rgrid. The term “B⊤
sourceUsource” is constant and can be viewed as dis-

turbance to the system and denoted as E.

The Hamiltonian function is defined as:

Hgrid(x) =
1

2
x⊤gridQgridxgrid

=
1

2

[
ψda ψ

q
a ψ

d
b ψ

q
b ψ

d
c ψ

q
c ψ

d
d ψ

q
d ψ

d
e ψ

q
e

]



1
La

0 0 0 0 0 0 0 0 0

0 1
La

0 0 0 0 0 0 0 0

0 0 1
Lb

0 0 0 0 0 0 0

0 0 0 1
Lb

0 0 0 0 0 0

0 0 0 0 1
Lc

0 0 0 0 0

0 0 0 0 0 1
Lc

0 0 0 0

0 0 0 0 0 0 1
Ld

0 0 0

0 0 0 0 0 0 0 1
Ld

0 0

0 0 0 0 0 0 0 0 1
Le

0

0 0 0 0 0 0 0 0 0 1
Le





ψda
ψqa
ψdb
ψqb
ψdc
ψqc
ψdd
ψqd
ψde
ψqe


=

1

2

(
1

L
ψd

2

a +
1

L
ψq

2

a +
1

L
ψd

2

b +
1

L
ψq

2

b +
1

L
ψd

2

c +
1

L
ψq

2

c +
1

L
ψd

2

d +
1

L
ψq

2

d +
1

L
ψd

2

e +
1

L
ψq

2

e

)
∇H(xgrid) thus contains the d- and q component of the currents flowing in the transmission lines.

∇H(xgrid) =



ida
iqa
idb
iqb
idc
iqc
idd
iqd
ide
iqe
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Written out J (ωs) and Rgrid becomes:

J (ωs) =



[
0 ωas

−ωas 0

]
02×2 02×2 02×2 02×2

02×2

[
0 ωbs

−ωbs 0

]
02×2 02×2 02×2

02×2 02×2

[
0 ωcs

−ωcs 0

]
02×2 02×2

02×2 02×2 02×2

[
0 ωds

−ωds 0

]
02×2

02×2 02×2 02×2 02×2

[
0 ωes

−ωes 0

]


(5.18)

Rgrid =



ra 0 0 0 0 0 0 0 0 0
0 ra 0 0 0 0 0 0 0 0
0 0 rb 0 0 0 0 0 0 0
0 0 0 rb 0 0 0 0 0 0
0 0 0 0 rc 0 0 0 0 0
0 0 0 0 0 rc 0 0 0 0
0 0 0 0 0 0 rd 0 0 0
0 0 0 0 0 0 0 rd 0 0
0 0 0 0 0 0 0 0 re 0
0 0 0 0 0 0 0 0 0 re


(5.19)

The grid model is represented on a port-Hamiltonian form using the incidence matrix as shown
in 5.17. The grid is now modeled on a form suited for connecting the turbine strings. Before
connecting them together, a complete model for all the turbine strings must be created.
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5.3 The Complete Model of the Turbine Strings

In order to make a complete model of the grid and the TS, it is beneficial to make a port-
Hamiltonian representation of all the TSs. The model for a single TS is shown in section 5.1.

ẋi =
(
J (ωm,i) + J0 + u1iJ1 + u2iJ2 + u3iJ3 + u4iJ4 + J5 + J6 + J7 −R(ωm,i)

)︸ ︷︷ ︸
Fi(ωm,i,ui)

∇H(xi)+Gp,iup,i+Ei

(5.20)
where up,i is the current flowing from the grid at node i and into the turbine string at that node.
The “p” stands for port. The disturbance matrix Ei does not contain these currents, as they did
in the model in section 5.1, as they now are viewed as input to the turbine string.

G1 =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1


, up,1 =

[
IG,1d

IG,1q

]
, E =



0
0

dωref,1
0
0
0
0
0


The port-Hamiltonian representation of all the turbine strings for the system in Figure 5.2 are:

ẋ1 =
(
J (ωm,1) + J0 + u11J1 + u21J2 + u31J3 + u41J4 + J5 + J6 + J7 −R(ωm,1)

)
∇H(x1) +Gp1up,1 + E1

ẋ2 =
(
J (ωm,2) + J0 + u12J1 + u22J2 + u32J3 + u42J4 + J5 + J6 + J7 −R(ωm,2)

)
∇H(x2) +Gp,2up,2 + E2

ẋ3 =
(
J (ωm,3) + J0 + u13J1 + u23J2 + u33J3 + u43J4 + J5 + J6 + J7 −R(ωm,3)

)
∇H(x3) +Gp,3up,3 + E3

ẋ4 =
(
J (ωm,4) + J0 + u14J1 + u24J2 + u34J3 + u44J4 + J5 + J6 + J7 −R(ωm,4)

)
∇H(x4) +Gp,4up,4 + E4

which can be written as:
ẋ1
ẋ2
ẋ3
ẋ4


︸ ︷︷ ︸
xTS

=


F (ωm,1, u1) 08x8 08x8 08x8

08x8 F (ωm,2, u2) 08x8 08x8
08x8 08x8 F (ωm,3, u3) 08x8
08x8 08x8 08x8 F (ωm,4, u4)


︸ ︷︷ ︸

FTS(ωm,u)


∇H(x1)
∇H(x2)
∇H(x3)
∇H(x4)


︸ ︷︷ ︸
∇H(xTS)

+


Gp,1 08x2 08x2 08x2
08x2 Gp,2 08x2 08x2
08x2 08x2 Gp,3 08x2
08x2 08x2 08x2 Gp,4


︸ ︷︷ ︸

Gp,TS


up,1
up,2
up,3
up,4


︸ ︷︷ ︸
Up,TS

+


E1

E2

E3

E4


︸ ︷︷ ︸
ETS

(5.21)

and written in compact form as:

ẋTS = FTS(ωm, u)∇H(xTS) +Gp,TSUp,TS + ETS (5.22)

The Hamiltonian for all the turbine strings is the sum of the Hamiltonians for each turbine string.

H(xTS) =
1

2
x⊤TSQTSxTS ,QTS = bdiag{Qi} (5.23)

The notation QTS = bdiagQi means that Q is a block diagonal matrix with the matrices Qi along
the diagonal. 5.22 is on a form suited for connecting the turbine strings as a grid together.
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5.4 The interconnection

The port-Hamiltonian systems for the grid and the turbine strings are combined to make a complete
model of the wind park. This section investigates the interconnections between the grid and the
turbine strings, and the result is a port-Hamiltonian model for the wind park.

The input to the turbine strings are currents flowing from the grid into the turbine strings, which
can be found using Kirchhoff’s current law in the nodes.

Input Turbine string

Up,TS =


IG,1dq

IG,2dq

IG,3dq

IG,4dq

 =


idqb − idqa
idqc − idqb
idqd − idqc
idqe − idqd

 (From kirchoff’s current law at the nodes)

Output grid

ygrid = BTS∇H(xgrid) =


idqa − idqb
idqb − idqc
idqc − idqd
idqd − idqe

 = −


IG,1dq

IG,2dq

IG,3dq

IG,4dq


Thereby;

Up,TS = −BTS∇H(xgrid) = −ygrid (5.24)

The inputs to the grid are the node voltages, which means that the output from the turbine strings
is also voltages.

Input grid:

Up.grid =


V dq1

V dq2

V dq3

V dq4


Output Turbine string

yTS = G⊤
p,TS∇H(xTS) =


V dq1

V dq2

V dq3

V dq4


Thereby;

Up,grid = G⊤
p,TS∇H(xTS) = yTS (5.25)

Combining 5.24 and 5.25, the interconnection between the grid and the turbine strings can be
expressed as:

[
Up,TS
Up,grid

]
=

[
0 −1
1 0

] [
yTS
ygrid

]
(5.26)

Equation 5.26 shown that the TSs and the grid are connected through a power conserving inter-
connection.

To create the complete port-Hamiltonian representation of the system, 5.17 and 5.22 are combined
with interconnection relation between the two subsystems shown in 5.26.

ẋTS = FTS(ωm, u)∇H(xTS)−Gp,TSBTS∇H(xgrid) + ETS

ẋgrid = Fgrid∇H+ B⊤
TSGp,TS∇H(xTS) + Egrid
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[
ẋTS
ẋgrid

]
︸ ︷︷ ︸
ẋtot

=

[
FTS(ωm, u) −Gp,TSBTS
B⊤
TSG

⊤
p,TS Fgrid

]
︸ ︷︷ ︸

Ftot(xTS ,u)

[
∇H(xTS)
∇H(xgrid)

]
︸ ︷︷ ︸

∇H(xtot)

+

[
ETS
Egrid

]
︸ ︷︷ ︸
Etot

ẋtot = Ftot(xTS , u)∇H(xtot) + Etot

(5.27)

Equation (5.27) shows the port-Hamiltonian representation of the complete system. The Hamilto-
nian of the complete system is the sum of the Hamiltonians for the turbine strings and for the grid
Htot = HTS +Hgrid

Htot =
1

2
x⊤totQtotxtot,where Qtot =

[
QTS 0
0 Qgrid

]
(5.28)
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5.5 Stability analysis

To analyse the stability of the wind park, an incremental model is used.

ẋtot = Ftot(xTS , u)∇H(xtot) + Etot
- 0 = Ftot(x̄TS , ū)∇H(x̄tot) + Etot

˙̃xtot = Ftot(xTS , u)∇H(xtot)− Ftot(x̄TS , ū)∇H(x̄tot)

(5.29)

[
˙̃xTS
˙̃xgrid

]
=

[
FTS(ωm, u) −Gp,TSBTS
B⊤
TSG

⊤
p,TS Fgrid

] [
∇H(xTS)
∇H(xgrid)

]
−
[
FTS(ω̄m, ū) −Gp,TSBTS
B⊤
TSG

⊤
p,TS Fgrid

] [
∇H(x̄TS)
∇H(x̄grid)

]
(5.30)

As before a LCF is chosen as, V = 1
2 x̃

⊤
totQtotx̃tot and V̇ = x̃⊤totQtot

˙̃xtot. This definition of the LCF
satisfies the first two conditions for a Lyapunov function, this is shown in section 3.1.

I : V̇ = x̃⊤totQtotFtot(xTS , u)∇H(xtot)− x̃⊤totQtotFtot(x̄TS , ū)∇H(x̄tot)

II : V̇ =
[
x̃⊤TSQTS x̃⊤gridQgrid

] [FTS(ωm, u) −Gp,TSBTS
B⊤
TSG

⊤
p,TS Fgrid

] [
QTSxTS
Qgridxgrid

]
−
[
x̃⊤TSQTS x̃⊤gridQgrid

] [FTS(ω̄m, ū) −Gp,TSBTS
B⊤
TSG

⊤
p,TS Fgrid

] [
QTS x̄TS
Qgridx̄grid

]
III : V̇ = x̃⊤TSQTSFTS(ωm, u)QTSxTS − x̃⊤TSQTSGp,TSBTSQgridxgrid + x̃⊤gridQgridB⊤

TSG
⊤
p,TSQTSxTS

+ x̃⊤gridQgridFgridQgridxgrid − x̃⊤TSQTSFTS(ω̄m, ū)QTS x̄TS + x̃⊤TSQTSGp,TSBTSQgridx̄grid
− x̃⊤gridQgridB⊤

TSG
⊤
p,TSQTS x̄TS − x̃⊤gridQgridFgridQgridx̄grid

IV : V̇ = x̃⊤TSQTSFTS(ωm, u)QTSxTS − x̃⊤TSQTSFTS(ω̄m, ū)QTS x̄TS + x̃⊤gridQgridFgridQgridx̃grid

− x̃⊤TSQTSGp,TSBTSQgridx̃grid + x̃⊤gridQgridB⊤
TSG

⊤
p,TSQTS x̃TS︸ ︷︷ ︸

=0

V : V̇ = x̃⊤TSQTSFTS(ωm, u)QTSxTS − x̃⊤TSQTSFTS(ω̄m, ū)QTS x̄TS + x̃⊤gridQgridFgridQgridx̃grid

V I : V̇ = x̃⊤TSQTS

(
bdiag

{
(J (ωm,i) + J0 + J5 + J6 + J7 −R(ωm,i))QTSxTS,i + g(xTS,i)ui

}
− bdiag

{
(J (ω̄m,i) + J0 + J5 + J6 + J7 −R(ω̄m,i))QTS x̄TS,i + g(x̄TS,i)ūi

})
+ x̃⊤gridQgrid

(
J (ωs)−Rgrid

)
Qgridx̃grid

V II : V̇ = x̃⊤TSQTS bdiag
{
J (ωm,i)−R(ωm,i)

}
QTSxTS + x̃⊤TSQTS bdiag

{
g(xTS,i)ui

}
− x̃⊤TSQTS bdiag

{
J (ω̄m,i)−R(ω̄m,i)

}
QTS x̄TS − x̃⊤TSQTS bdiag

{
g(x̄TS,i)ūi

}
− x̃⊤gridQgridRgridQgridx̃grid

V III : V̇ = x̃⊤TSQTS bdiag
{
J (ωm,i)−R(ωm,i)

}
QTSxTS − x̃⊤TSQTS bdiag

{
J (ω̄m,i)−R(ω̄m,i)

}
QTS x̄TS

− x̃⊤gridQgridRgridQgridx̃grid + x̃⊤TSQTS bdiag
{
g(xTS,i)ui − g(x̄TS,i)ūi

}
︸ ︷︷ ︸

∗
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Taking a closer look at the term *:

∗ = x̃⊤TSQTS bdiag
{
g(xTS,i)ui − g(x̄TS,i)ūi

}
= x̃⊤TSQTS bdiag

{
g(x̃TS,i + x̄TS,i)ui − g(x̄TS,i)ūi

}
= x̃⊤TSQTS bdiag

{
g(x̃TS,i)ui + g(x̄TS,i)ui − g(x̄TS,i)ūi

}
= x̃⊤TSQTS bdiag

{
g(x̃TS,i)ui + g(x̄TS,i)ũi

}
= x̃⊤TSQTS bdiag

{
u1iJ1 + u2iJ2 + u3iJ3 + u4iJ4

}
QTS x̃TS︸ ︷︷ ︸

=0

+x̃⊤TSQTS bdiag
{
g(x̄TS,i)ũi

}

= x̃⊤TSQTS bdiag
{
g(x̄TS,i)

}
︸ ︷︷ ︸

ỹ⊤

Ũ

= ỹ⊤Ũ

Where, Ũ =


ũ1
ũ2
ũ3
ũ4

 and ũi =


ũ1i
ũ2i
ũ3i
ũ4i


IX : V̇ = x̃⊤TSQTS bdiag

{
J (ωm,i)−R(ωm,i)

}
QTSxTS − x̃⊤TSQTS bdiag

{
J (ω̄m,i)−R(ω̄m,i)

}
QTS x̄TS

− x̃⊤gridQgridRgridQgridx̃grid + ỹ⊤Ũ

X : V̇ = ỹ⊤Ũ + x̃⊤TSQTS bdiag
{
J (ωm,i)−R(ωm,i)

}
QTSxTS − x̃⊤TSQTS bdiag

{
J (ω̄m,i)−R(ω̄m,i)

}
QTS x̄TS

− x̃⊤gridQgridRgridQgridx̃grid + x̃⊤TSQTS bdiag
{
J (ωm,i)

}
QTS x̄TS − x̃⊤TSQTS bdiag

{
J (ωm,i)

}
QTS x̄TS︸ ︷︷ ︸

=0

XI : V̇ = ỹ⊤Ũ + x̃⊤TSQTS

[(
bdiag

{
J (ωm,i)

}
− bdiag

{
J (ω̄m,i)

})
QTS x̄TS − bdiag

{
−R(ωm,i)

}
QTSxTS

+ bdiag
{
−R(ω̄m,i)

}
QTS x̄TS

]
− x̃⊤gridQgridRgridQgridx̃grid

XII : V̇ = ỹ⊤Ũ + z̃⊤
[
M(z)−M(z̄)

]
− x̃⊤gridQgridRgridQgridx̃grid + z̃⊤

[
γ bdiag

{
g(x̄TS,i)

PMSGg(x̄TS,i)
PMSG⊤}

− γ bdiag
{
g(x̄TS,i)

PMSGg(x̄TS,i)
PMSG⊤}]

z̃

XIII : V̇ = ỹ⊤Ũ︸︷︷︸
Term I

+ ỹPMSG⊤
γỹPMSG︸ ︷︷ ︸

Term II

+ z̃⊤
[
M(z)−M(z̄)− γ bdiag

{
g(x̄TS,i)

PMSGg(x̄TS,i)
PMSG⊤

z̃
}]

︸ ︷︷ ︸
Term III

− x̃⊤gridQgridRgridQgridx̃grid︸ ︷︷ ︸
Term IV

Step explanation

I: The time derivative for the LCF for the complete wind park.

II: The time derivative of the LCF is written on matrix form.

III: Expression is expanded writing out the matrices.

IV: Rearranging and grouping six terms into three by utilizing x̃ = x− x̄. Last two terms cancels
with each other due to the power preserving interconnection.

V: After the rearranging and cancellation of term six in step [IV], the time derivative of the
LCF becomes the expression in [V].
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VI: FTS(ωm, u) and FTS(ω̄m, ū) are written on a block diagonal from.

VII: In each block diagonal term, J0,J5,J6 and J7 are canceled due to skew-symmetry. The same
happens with x̃⊤gridQgridJ(ωs)Qgridx̃grid, where the skew symmetric term J (ωs) is canceled.

VIII: Rearranging and grouping of g(xTS,iui) and g(x̄TS,iūi) to term denoted with *. It is shown

that term * can be written as ỹ⊤Ũ where ỹ⊤ is the passive output from each turbine string.

IX: The terms are re-written and the new definition of the passive output is included. ỹ⊤ =
x̃⊤TSQTSbdiag{g(x̄TS,i)}

X: Zero is added to the equation by adding and subtracting the term,
x̃⊤TSQTS bdiag{J (ωm,i)}QTS x̄TS

XI: Term three and five in [X] are grouped together, while the parts including J (ωm,i) in term
2 and 6 in [X] are canceled due to skew-symmetry.

XII: Two new definitions are introduced, z ≜ QTSxTS and M(z) ≜ bdiag{J (ωm,i)z̄−R(ωm,i)z}.
A term containing the passive output feedback is included to help render the system passive.
The term is added and subtracted such that the system does not change properties. As shown
in section 3.2 it is possible to render the system passive only using the output feedback from
the converter closest to the generator.

XIII: Terms are grouped together and the final expression for the time derivative of the LCF is
presented

Term III is investigated to see if it is negative semidefinite, and as before this is equivalent to

∇M(z) + ∇⊤M(z) − 2γ bdiag{g(x̄TS,i)PMSGg(x̄TS,i)
PMSG⊤} ≤ 0. ∇M(z) must then be found

for the entire system.

M(z) = bdiag{J (ωm,i)z̄ −R(ωm,i)z}

=


J (ωm,1) 08x8 08x8 08x8
08x8 J (ωm,2) 08x8 08x8
08x8 08x8 J (ωm,3) 08x8
08x8 08x8 08x8 J (ωm,4)



Q1x̄TS,1
Q2x̄TS,2
Q3x̄TS,3
Q4x̄TS,4

−


R(ωm,1) 08x8 08x8 08x8
08x8 R(ωm,2) 08x8 08x8
08x8 08x8 R(ωm,3) 08x8
08x8 08x8 08x8 R(ωm,4)



Q1xTS,1
Q1xTS,2
Q1xTS,3
Q1xTS,4



=


J (ωm,1)Q1x̄TS,1 −R(ωm,1)Q1xTS,1
J (ωm,2)Q2x̄TS,2 −R(ωm,2)Q2xTS,2
J (ωm,3)Q3x̄TS,3 −R(ωm,3)Q3xTS,3
J (ωm,4)Q4x̄TS,4 −R(ωm,4)Q4xTS,4

 =


M1(z1)
M2(z2)
M3(z3)
M4(z4)



∇M(z) =


∇M1(z1) 08x8 08x8 08x8

08x8 ∇M2(z2) 08x8 08x8
08x8 08x8 ∇M3(z3) 08x8
08x8 08x8 08x8 ∇M4(z4)

 = bdiag{Mi(zi)} (5.31)

It is apparent that ∇M(z) for the entire system is a diagonal matrix with the ∇M(z) of each
turbine string along the diagonal. Term III is thereby monotonically decreasing if the criterion
3.106 and 3.107 are satisfied for each turbine string in the wind park independently.

∇M(z) +∇⊤M(z)− 2γ bdiag{g(x̄TS,i)PMSGg(x̄TS,i)
PMSG⊤}

= bdiag
{
∇Mi(zi) +∇⊤Mi(zi)− 2γg(x̄TS,i)

PMSGg(x̄TS,i)
PMSG⊤} (5.32)

Assuming that stability criteria are satisfied in each turbine string, Term III is negative semi-
definite. Term IV is positive definite as Rgrid ≥ 0. The time derivative of the LCF can be written
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as:

V̇ ≤ ỹ⊤Ũ + ỹPMSG⊤
γỹPMSG

V̇ ≤ −ỹ⊤KP ỹ + ỹPMSG⊤
γỹPMSG

V̇ ≤ −
( 4∑
i=1

ỹPMSG⊤

i

(
KPMSG
P,i − γiI2x2

)
ỹPMSG
i +

4∑
i=1

ỹG
⊤

i KG
P,iỹ

G
i

)
≤ 0

where y⊤i = x̃⊤TS,iQig(x̄TS,i).

It can thereby be concluded that if the following criteria are satisfied for each turbine string, and
the converters are tuned such that KP,i > γ at each turbine, then the overall interconnected wind
park is guaranteed to be stable for large disturbances with a local decentralized tuning.

2di − 2
∂Tm,i(ωm,i)

∂ωm, i
−
(̄
iq,i

Pi

2 Li
)2

2(r + γV̄ 2
c,i)

≥ 0

2
(
Gi + γī2q,i

)
−
(
2γīq,iV̄c,i

)
2(ri + γV̄ 2

c,i)
≥ 0

5.6 Conclusion

In this chapter, a stability certificate for a wind park with four wind turbines is developed. The
stability proof will hold for a wind park with n turbines as it is enough to satisfy the criterion at
each wind turbine. In conclusion, a scalable stability certificate for a wind park of size n has been
developed.

The stability certificate for the wind park states that stability for the entire system is guaranteed
when the stability criteria for each turbine string are satisfied locally. The stability criteria for a
single turbine string are developed in Appendix D and shown to be the same as found in section 3.3.

2d− 2
∂Tm(ωm)

∂ωm
−

(̄
iq
P
2 L
)2

2(r + γV̄ 2
c )

≥ 0 (5.33)

2
(
G+ γī2q

)
−

(
2γīqV̄c

)
2(r + γV̄ 2

c )
≥ 0 (5.34)
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This master thesis presents a stability certificate to guarantee large signal stability for a wind
park. With the help of non-linear control theory concepts such as passivity in combination with
Lyapunov stability and port-Hamiltonian modeling, stability criteria are derived for a wind energy
conversion system consisting of a wind turbine, a permanent magnet synchronous generator, and
a full scale back-to-back 2L-VSCs. The stability certificate is generalized for any number of wind
turbines by utilizing graph theory and its connection to port-Hamiltonian modeling through the
incidence matrix B.

6.1.1 Scalable Stability Certificate for a Wind Park

The major result of this master thesis is a scalable certificate for a wind park that guarantees
large signal stability. To ensure the stability of the entire wind park, it is sufficient to satisfy the
local stability criteria at each turbine string. Such decentralized control is beneficial in multiple
ways. It does not require an exchange of information between turbine strings and the grid, nor
the need for communication between the turbine strings. The control structure for the wind park
is, therefore, simple, as each turbine can be controlled independently from the others. From a
commercial viewpoint, it is beneficial for the companies delivering the different components in
the wind park to avoid sharing their company secrets as it is unnecessary to ensure stability.
Another great advantage of decentralized control is that it allows for unlimited expansion as long
the stability is satisfied at each turbine string. Such a scalable stability certificate with a plug-and-
play feature can allow for needed continuous expansion of distributed renewable resources without
risking jeopardizing the stability of the power grid.

6.1.2 PMSG Design to Guarantee Stability

In criterion 3.106, one can see how the PI controller only affects the last term. As a consequence,
the damping d must be designed such that it counteracts the second term to fulfill the stability
criterion. The damper windings in the rotor are a part of the design process of the machine; hence,
the stability certificate should therefore ideally be a part of the design process as well to guarantee
large signal stability. Including the certificate in the design process also minimizes the risk of
sacrificing too much performance by having over-dimensioned damper windings.
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6.1.3 Competitive Performance for PI-PBC

In section 4.2.2 the industry standard PI current controllers are compared with the PI-PBCs
designed in this thesis. The performance is very similar when the two controller types are tuned
identically. The simplicity of the PI current controllers might seem appealing to some. However,
unlike the PI-PBCs, which can guarantee large signal stability, the current controllers do not have
that feature. Therefore, the PI-PBCs are the preferred controller type of the two when they are
tuned identically and subjected to the disturbances explained in subsection 4.2.2.

6.1.4 Practical use of Stability Certificate Without Compromising Per-
formance

The stability certificates for the systems developed in this master thesis consist of a turbine string of
increasing complexity with passive feedback loops. In subsection 4.2.2, it is shown that the control
performance is greatly improved when PI-controlled outer loops are implemented. Implementing
outer loops ultimately does jeopardize the stability guarantee provided by the stability certificate
as the system is altered, even though it is possible to argue that stability still can be guaranteed
by invoking the assumption of time scale separation. A practical solution is proposed to combine
the desired large signal stability guarantee provided by the stability certificate and the improved
performance of implementing a cascaded control structure. The outer loops are used to have the
turbine operating at maximum efficiency, thereby extracting the maximum power from the wind.
When instability is detected, the outer loops are disconnected. As the stability is guaranteed by
the now valid stability certificate, the system will regain a stable operation. The outer loops can
now be reconnected to increase performance.

6.1.5 The effect of damping in a PMSG

In section 4.3 it was briefly discussed the impact of increasing the damping had on the control
performance of the WECS. The result was that higher damping led to faster convergence. This
result could be relevant for power systems controlled with PBCs as it has been reported to give
poor control performance without the help of outer loops. The inclusion of PMSG is in this thesis
shown to be unproblematic if the stability criteria are satisfied and could therefore potentially be
used to improve performance in power systems without jeopardizing the stability guarantee by
reducing –potentially removing– the need for including outer loops.

6.2 Future work

6.2.1 Damping

The damping in the synchronous generator that in this thesis is represented by the coefficient d
is essential to ensure stable operation, as seen by the stability criteria developed. It is therefore
of great interest to be able to measure, calculate and design the damping in the generator. In
subsection 3.3.3 a method for designing the damping by adjusting the resistance in the damper
windings was proposed. It is not delved deeper into whether this method of adjusting the damping
is a good one or not. This topic should be further explored, as sufficient damping guarantees stable
operation for a single wind energy conversion system and an entire wind park.

6.2.2 Robustness Issues

As briefly discussed in subsection 4.2.2, the simulated system has some robustness issues. The new
equilibrium points must be recalculated when subjected to a constantly changing wind. For smaller
systems, the computational processing power needed is limited, but as the system expands, likewise
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does the computational power needed. The calculation of the equilibrium points also require a
perfect model of the system. Creating a perfect model of the system is a close to impossible
task, therefore, different methods to solve the equilibrium calculations could be a topic for future
research.

6.2.3 Comparison of PI-PBC and PI Current Controller

An interesting research topic could also be a more comprehensive comparison of the PI-PBC and
the PI current controller. When the two controllers are tuned identically, the performance is very
similar. Tuning them separately from stability- and a performance perspective could be interesting.
While the PI-PBC is able to guarantee large signal stability, the PI current controller might result
in a better performance. How to decide the trade-off between the two is, therefore, an interesting
topic that could be investigated.

6.2.4 Virtual Controllable Damping

By choice of Lyapunov candidate function in this master thesis, it is shown that a certain damping
is needed to ensure the stability of the system. This damping is provided by the damper windings
in the PMSG. The PMSG must therefore be designed with sufficient damping. In chapter 2, it is
shown that during the rotor’s acceleration to the desired working condition is where the highest
amount of damping is needed. This means that most of the time, having designed the PMSG
with advanced damper windings to provide sufficient damping is unnecessary. It could therefore
be advantageous to replace the physical damping with a virtual controllable damping. A topic for
future work is to find a Lyapunov function that, by use of the energy in the controller, can render
the system passive. If such a Lyapunov function exists, it would be a superior solution to only
providing damping by damper windings. A controllable damping is much more flexible and most
likely less expensive as it does not depend on physical components.

6.2.5 Passive Controller that Directly Controls the Rotor Speed

In this master thesis, the rotors angular velocity is indirectly controlled through the PI-PBCs.
With some exceptions, a cascaded control structure is utilized. To extract maximal energy from
the wind, it is essential to have the ideal tip speed ratio. It is therefore desired to control the speed
of the wind turbine directly. A topic for future work is to design a passive controller that directly
controls the rotor speed of the wind turbine.

6.2.6 Simulation of the wind park

Due to time constraints, simulations of the wind park to test the stability certificate has been left
for future work.

73



Bibliography

[1] Melanee Thomas et al. ‘Great expectations: Public opinion about energy transition’. In:
Energy Policy 162 (2022), p. 112777. issn: 0301-4215. doi: https://doi.org/10.1016/j.enpol.
2022.112777. url: https://www.sciencedirect.com/science/article/pii/S0301421522000027.

[2] Norwegian Water Resources and Energy Directorate. Opprinnelsesgarantier og varedeklaras-
jon for strømleverandører. url: https://www.nve.no/energi/virkemidler/opprinnelsesgarantier-
og- varedeklarasjon- for- stromleverandorer/#:∼ :text=Opprinnelsesgarantier%5C%20er%5C%
20en%5C%20merkeordning%5C%20for,kraft%5C%20og%5C%20ikke%5C%2Dfornybar%5C%
20kraft. (visited on 8th June 2022).

[3] International Energy Agency. World Energy Outlook 2021. 2021.

[4] Ritchie H., Roser M. and Rosado P. ‘Energy’. In: Our World in Data (2020). url: https:
//ourworldindata.org/energy.

[5] Ritchie H., Roser M. and Rosado P. ‘CO and Greenhouse Gas Emissions’. In: Our World in
Data (2020). url: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.

[6] Salvatore D’Arco, Jon Are Suul and Olav B. Fosso. ‘A Virtual Synchronous Machine im-
plementation for distributed control of power converters in SmartGrids’. In: Electric Power
Systems Research 122 (2015), pp. 180–197. doi: 10.1016/j.epsr.2015.01.001..

[7] Pieter Tielens and Dirk Van Hertem. ‘The relevance of inertia in power systems’. In: Renew-
able and Sustainable Energy Reviews 55 (2016), pp. 999–1009. issn: 1364-0321.

[8] International Energy Agency. Renewables 2021, analysis and forecast to 2026. 2021.

[9] Global Wind Energy Council. GWEC — GLOBAL WIND REPORT 2021. 2021.

[10] MUSIAL W. et al. Offshore Wind Market Report: 2021 Edition. 2021.

[11] Norwegian Government. Major initiative to promote offshore wind power. url: https : / /
www.regjeringen.no/en/aktuelt/major- initiative-to-promote-offshore-wind-power/id2900436/
(visited on 23rd May 2022).

[12] O. Anaya-Lara et al. Offshore Wind Energy Generation. Vol. 1. Wiley, 2014, pp. 73–153.

[13] Devonie mcCamey. What We Know—and Do Not Know—About Achieving a National-Scale
100% Renewable Electric Grid. url: https://www.nrel.gov/news/features/2021/what-we-
know- and - dont - know- about - achieving - a - national - scale - 100 - renewable - electric - grid . html
(visited on 12th Apr. 2022).

[14] Johan Morren, Jan Pierik and Sjoerd W.H. de Haan. ‘Comparison between linear and non-
linear control strategies for variable speed wind turbines’. In: Control Engineering Practice
18.12 (2010), pp. 1357–1368.

[15] Rafael Cisneros et al. ‘An adaptive passivity-based controller for a wind energy conversion
system’. In: (2019), pp. 4852–4857.

[16] J.M. Carrasco et al. ‘Power-Electronic Systems for the Grid Integration of Renewable Energy
Sources: A Survey’. In: IEEE Transactions on Industrial Electronics 53.4 (2006), pp. 1002–
1016. doi: 10.1109/TIE.2006.878356.

[17] Shafiullah Md., Ahmed Shakir D. and Al-Sulaiman Fahad A. ‘Grid Integration Challenges
and Solution Strategies for Solar PV Systems: A Review’. In: IEEE Access 10 (2022),
pp. 52233–52257. doi: 10.1109/ACCESS.2022.3174555.

74

https://doi.org/https://doi.org/10.1016/j.enpol.2022.112777
https://doi.org/https://doi.org/10.1016/j.enpol.2022.112777
https://www.sciencedirect.com/science/article/pii/S0301421522000027
https://www.nve.no/energi/virkemidler/opprinnelsesgarantier-og-varedeklarasjon-for-stromleverandorer/#:~:text=Opprinnelsesgarantier%5C%20er%5C%20en%5C%20merkeordning%5C%20for,kraft%5C%20og%5C%20ikke%5C%2Dfornybar%5C%20kraft.
https://www.nve.no/energi/virkemidler/opprinnelsesgarantier-og-varedeklarasjon-for-stromleverandorer/#:~:text=Opprinnelsesgarantier%5C%20er%5C%20en%5C%20merkeordning%5C%20for,kraft%5C%20og%5C%20ikke%5C%2Dfornybar%5C%20kraft.
https://www.nve.no/energi/virkemidler/opprinnelsesgarantier-og-varedeklarasjon-for-stromleverandorer/#:~:text=Opprinnelsesgarantier%5C%20er%5C%20en%5C%20merkeordning%5C%20for,kraft%5C%20og%5C%20ikke%5C%2Dfornybar%5C%20kraft.
https://www.nve.no/energi/virkemidler/opprinnelsesgarantier-og-varedeklarasjon-for-stromleverandorer/#:~:text=Opprinnelsesgarantier%5C%20er%5C%20en%5C%20merkeordning%5C%20for,kraft%5C%20og%5C%20ikke%5C%2Dfornybar%5C%20kraft.
https://ourworldindata.org/energy
https://ourworldindata.org/energy
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://doi.org/10.1016/j.epsr.2015.01.001.
https://www.regjeringen.no/en/aktuelt/major-initiative-to-promote-offshore-wind-power/id2900436/
https://www.regjeringen.no/en/aktuelt/major-initiative-to-promote-offshore-wind-power/id2900436/
https://www.nrel.gov/news/features/2021/what-we-know-and-dont-know-about-achieving-a-national-scale-100-renewable-electric-grid.html
https://www.nrel.gov/news/features/2021/what-we-know-and-dont-know-about-achieving-a-national-scale-100-renewable-electric-grid.html
https://doi.org/10.1109/TIE.2006.878356
https://doi.org/10.1109/ACCESS.2022.3174555


[18] Shakir D. Ahmed et al. ‘Grid Integration Challenges of Wind Energy: A Review’. In: IEEE
Access 8 (2020), pp. 10857–10878. doi: 10.1109/ACCESS.2020.2964896.

[19] A. van der Schaft and D. Jeltsema. Port-Hamiltonian Systems Theory: An Introductory
Overview. Vol. 1. 2014, pp. 173–378.
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Appendix A

Complete back-to-back Wind
Power System

In section 3.2, the hypothesis, ”Only using the converter closest to the PMSG
is enough to compensate for the lack of monotonicity inherent to the machine,
and thus to render the rest of the system passive.” was investigated and proved
to be true. In this part of the appendix, we use both converters to render the
system passive.

Equation 3.65 is repeated here for ease.

ẋ =
(
J(ωm) + J0 + J5 −R)

)
∇H(x) + E︸ ︷︷ ︸

f(x)

+
[
J1∇H(x) J2∇H(x) J3∇H(x) J4∇H(x)

]︸ ︷︷ ︸
g(x)


u1
u2
u3
u4


︸ ︷︷ ︸

u

(A.1)

From the equation it’s clear that the g(x) matrix contains the control input from both converters.
Written out g(x) becomes

0 0 0−1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J1


id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)


0 0 0 0 0 0
0 0 0−1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J2


id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0−1 0
0 0 0 1 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

J3


id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0−1
0 0 0 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

J4


id
iq
ωm
Vc
iGd
iGq


︸ ︷︷ ︸
∇H(x)

g(x) =


−Vc 0 0 0
0 −Vc 0 0
0 0 0 0
id iq −iGd −iGq
0 0 Vc 0
0 0 0 Vc

 (A.2)

Checking for monotonicity
To check if the expression

∇⊤M(z) +∇M(z)− 2γg(x̄)g⊤(x̄) ≤ 0 (A.3)
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is negative semidefinite, the term g(x̄)g⊤(x̄) needs to be computed

g(x̄)g⊤(x̄) =


−V̄c 0 0 0
0 −V̄c 0 0
0 0 0 0
īd īq −īGd −īGq
0 0 V̄c 0
0 0 0 V̄c


︸ ︷︷ ︸

g(x̄)


−V̄c 0 0 īd 0 0
0 −V̄c 0 īq 0 0
0 0 0 −īGd V̄c 0
0 0 0 −īGq 0 V̄c


︸ ︷︷ ︸

g⊤(x̄)

g(x̄)g⊤(x̄) =


V̄ 2
c 0 0 −īdV̄c 0 0
0 V̄ 2

c 0 −īqV̄c 0 0
0 0 0 0 0 0

−īdV̄c −īqV̄c 0 ī2d + ī2q + īGd
2 + īGq

2 −īGd V̄c −īGq V̄c
0 0 0 −īGd V̄c V̄ 2

c 0
0 0 0 −īGq V̄c 0 V̄ 2

c

 (A.4)

The expression for ∇M(z) is equal to 3.74, and by setting īd = 0, the total expression becomes:
−r 0 0 0 0 0
0 −r 0 0 0 0

LP2 īq 0 −d 0 0 0
0 0 0 −G 0 0
0 0 0 0 −rG 0
0 0 0 0 0 −rG


︸ ︷︷ ︸

∇⊤M(z)

+


−r 0 LP2 īq 0 0 0
0 −r 0 0 0 0
0 0 −d 0 0 0
0 0 0 −G 0 0
0 0 0 0 −rG 0
0 0 0 0 0 −rG


︸ ︷︷ ︸

∇M(z)

−2γ


V̄ 2
c 0 0 0 0 0
0 V̄ 2

c 0 −īqV̄c 0 0
0 0 0 0 0 0
0 −īqV̄c 0 ī2q + īGd

2 + īGq
2−īGd V̄c−īGq V̄c

0 0 0 −īGd V̄c V̄ 2
c 0

0 0 0 −īGq V̄c 0 V̄ 2
c


︸ ︷︷ ︸

g(x̄)g⊤(x̄)

≤ 0


−2(r + γV̄ 2

c ) 0 LP2 īq 0 0 0
0 −2(r + γV̄ 2

c ) 0 2γīqV̄c 0 0
LP2 īq 0 −2d 0 0 0
0 2γīqV̄c 0 −2G− 2γ(̄i2q + īGd

2 + īGq
2) 2γīdV̄c 2γīGq V̄c

0 0 0 2γīdV̄c −2(rG + γV̄ 2
c ) 0

0 0 0 2γīGq V̄c 0 −2(rG + γV̄ 2
c )

 ≤ 0

(A.5)
To show that matrix A.5 is negative semi-definite, the Schur complement is utilized

−X =

[
A B
B⊤ C

]
(A.6)

As before, to say that X is negative semi-definite, is the same as -X is positive semi-definite

Matrix A, B and C are defined as follows:

A =

[
2(r + γV̄ 2

c ) 0
0 2(r + γV̄ 2

c )

]
B =

[
−LP2 īq 0 0 0

0 −2γīqV̄c 0 0

]

C =


2d 0 0 0
0 2G+ 2γ(̄i2q + īGd

2 + īGq
2) −2γīdV̄c −2γīGq V̄c

0 −2γīdV̄c 2(rG + γV̄ 2
c ) 0

0 −2γīGq V̄c 0 2(rG + γV̄ 2
c )


(A.7)
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X

A
= C −B⊤A−1B

C −B⊤A−1B =


2d 0 0 0
0 2G+ 2γ(̄i2d + ī2q + īGq

2) −2γīdV̄c −2γīGq V̄c
0 −2γīdV̄c 2(rG + γV̄ 2

c ) 0
0 −2γīGq V̄c 0 2(rG + γV̄ 2

c )



−
[
−LP2 īq 0 0 0

0 −2γīqV̄c 0 0

] [− 1
2(r+γV̄ 2

c )
0

0 − 1
2(r+γV̄ 2

c )

]
−LP2 īq 0

0 −2γīqV̄c
0 0
0 0



=


2d− L2P 2iGq

2

8(γV̄ 2
c +r)

0 0 0

0 2G+ 2γ(̄i2d + ī2q + īGq
2)− 2V̄ 2

c ī
2
qγ

2

γV̄ 2
c +r

−2V̄cīdγ −2V̄cī
G
q γ

0 −2V̄cīdγ 2(rG + γV̄ 2
c ) 0

0 −2V̄cī
G
q γ 0 2(rG + γV̄ 2

c )


(A.8)

From the expression above, it’s not clear whether the matrix is positive- or negative semi-definite.
To make it more obvious, the Schur complement is utilized again, resulting in a 2×2 matrix instead

The following choice of A2, B2 and C2 is made:

A2 =

2d− L2P 2 īGq
2

8(γV̄ 2
c +r)

0

0 2G+ 2γ(̄i2d + ī2q + īGq
2)− 2V̄ 2

c ī
2
qγ

2

γV̄ 2
c +r

 =

[
A2,11 A2,12

A2,21 A2,22

]

B2 =

[
0 0

−2V̄cīdγ −2V̄cī
G
q γ

]
C2 =

[
2(rG + γV̄ 2

c ) 0
0 2(rG + γV̄ 2

c )

]
(A.9)

X2

A2
= C2 −B⊤

2 A
−1
2 B2 =

[
a11 a12
a21 a22

]
(A.10)

where

a11 = 2(rG + γV̄ 2
c )−

2V̄ 2
c ī

2
dγ

2(r + γV̄ 2
c )

V̄ 2
c ī
G
q
2γ2 + V̄ 2

c ī
2
dγ

2 +GV̄ 2
c γ + rīGq

2γ + rī2qγ + rī2dγ +Gr

a12 = −
2V̄ 2

c īdī
G
q γ

2(r + γV̄ 2
c )

V̄ 2
c ī
G
q
2γ2 + V̄ 2

c ī
2
dγ

2 +GV̄ 2
c γ + rīGq

2γ + rī2qγ + rī2dγ +Gr

a21 = −
2V̄ 2

c īdī
G
q γ

2(r + γV̄ 2
c )

V̄ 2
c ī
G
q
2γ2 + V̄ 2

c ī
2
dγ

2 +GV̄ 2
c γ + rīGq

2γ + rī2qγ + rī2dγ +Gr

a22 = 2(rG + γV̄ 2
c )−

2V̄ 2
c ī
G
q
2γ2(r + γV̄ 2

c )

V̄ 2
c ī
G
q
2γ2 + V̄ 2

c ī
2
dγ

2 +GV̄ 2
c γ + rīGq

2γ + rī2qγ + rī2dγ +Gr

Just as before, it is not clear whether the matrix is positive- or negative semi-definite. With the
help of the Schur complement one last time and by choosing A3 = a11, B3 = a12 and C3 = a22
one gets:

2(rG + γV̄c)(GV̄
4γ2 +GrrG + V̄cī

2
drGγ

2 + V̄cī
G
q
2rGγ

2 + V̄cī
2
qrγ

2 +GV̄ 2
c rγ +GV̄ 2

c rGγ + ī2drrGγ + īGq
2rrGγ + īGq

2rrGγ)

GV̄ 4
c γ

2 +GrrG + V̄ 4
c ī
G
q
2γ3 + V̄ 2

c ī
2
drGγ

2 + V̄ 2
c ī
G
q
2rγ2 + V̄ 2

c ī
G
q
2rGγ2 + V̄ 2

c ī
2
qrγ

2 +GV̄ 2
c rγ +GV̄ 2

c rGγ + ī2drrGγ + īGq
2rrGγ + ī2qrrGγ

(A.11)
The expression could be further simplified to:

2(V̄ 2
c γ + rG)(GV̄

4
c γ

2 +GrrG + V̄ 2
c γ

2(̄i2drG + īGq
2rG + ī2qr) +GV̄ 2

c γ(r + rG) + rrGγ(̄i
2
d + īGq

2 + ī2q))

GV̄ 4
c γ

2 +GrrG + V̄ 4
c ī
G
q
2γ3 + V̄ 2

c γ
2(īd

2
rG + iGq

2r + iGq
2rG + i2qr) +GV̄ 2

c γ(r + rG) + rrGγ(īd
2
+ iGq

2 + i2q)
(A.12)
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From the expression one could observe that it is always positive semi-definite with a choice of a
positive γ. The Schur complement also demands that all choices of A is positive semi-definite,
i.e., the choice of A, A2 and A3 all have to be positive semi-definite. By choosing γ according to
3.45, A.7 is guaranteed to be positive definite. From the A2 matrix in A.9, one can see that it is
similar to 3.43. By choosing a suitable γ and making sure the damping is sufficiently high one is
able to make A2,11 positive. By expanding A2,22 one is able to see that it is always positive, with
a positive choice of γ

A2,22 = 2G+ 2γ(̄i2d + ī2q + īGq
2)−

2V̄ 2
c ī

2
qγ

2

γV̄ 2
c + r

2GγV̄ 2
c + 2Gr + 2γV̄ 2

c (̄i
2
d + īgq

2) + 2γr(̄i2d + ī2q + īGq
2) ≥ 0 (A.13)

Expanding a11 in Equation A.10 results in

a11 = V̄ 2
c γ

2īGq
2(rG + γV̄ 2

c ) + rGV̄
2
c ī

2
dγ

2 + rgGV̄
2
c γ +GV̄ 4

c γ
2

+ rgrγ(̄i
G
q
2 + ī2q + ī2d) + V̄ 2

c γ
2r(̄iGq

2 + ī2q) +Gr(rG + V̄ 2
c γ)

(A.14)

From the expression one can see that it is positive semi-definite.

Conclusion
As before, the choice of LCF is chosen as the Hamiltonian of the shifted system, i.e. the Hamiltonian
of the incremental model.

V(x̃) = H(x̃) =
1

2
x̃⊤Qx̃ (A.15)

Condition I and II for this LCF, are by definition satisfied as shown in section 3.1

Condition IV is satisfied as well, since

∇⊤M(z) +∇M(z)− 2γg(x̄)g⊤(x̄) ≤ 0 (A.16)

Condition III is also satisfied, and a similar procedure as in section 3.2 can be used to show this.

All conditions are therefore satisfied, i.e., a wind energy conversion system with back-to-back
2L-VSCs can be made asymptotically stable using passive feedback for control of both converters.
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Appendix B

Derivation of Model Equations

This part of the appendix is concerned with the model derivation of the wind
energy conversion system from the specialization project, and is included for the
sake of completeness.

To be able to get an understanding of how the permanent magnet synchronous machine works, a
mathematical model must be constructed.

Rs

Rs

Rs

Ls

Ls

Ls

A

B

C

N

Figure B.1: PMSG electrical scheme

By looking at Figure B.1 above, the voltage equations for the three phases in the stator, measured
between the respective phases and the neutral point can be found as:

V as = Rsi
a
s +

dλas
dt

(B.1)

V bs = Rsi
b
s +

dλbs
dt

(B.2)

V cs = Rsi
c
s +

dλcs
dt

(B.3)
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The term Rsis represents the losses in each phase, and is mainly heat dissipation due to the current
flowing in the wires. The term dλs

dt is the change of flux linkage in the stator. The flux linkage λs
is composed of the flux generated in the stator, but also the permanent flux in the rotor, due to
the permanent magnet.

λabcs = ϕs ∗N + ϕr ∗N = Lsi
s
abc + λr (B.4)

ϕs and ϕr is the flux in the stator and rotor respectively. N is the number of turns in the stator
windings. Ls is the inductance and isabc is the current flowing in the phases. λr is the flux linkage
due to the permanent magnets in the rotor.

a-axis

b-axis

c-axis

q-axis

d-axis

φq

φd

Fa

θr

Figure B.2: Flux and mmf component

If one were to begin by considering the magnetic flux caused by the current flowing in the a-phase
and decomposing it into its d- and q flux components it would result in

ϕd = PdFa sin(θr) (B.5)

ϕq = PqFa cos(θr) (B.6)

Pd and Pq are the permeance of the d and q-axis. Fa is the magnetomotive force in the a-phase
stator winding. θr is the angle between the a-axis and the q-axis. See Figure B.2 for a detailed
orientation of the axes

The flux linkage of these decomposed fluxes with the a-phase winding is expressed as

λaa = Ns(ϕd sin(θr) + ϕq cos(θr)) (B.7)

λaa = NsFa(Pd sin
2(θr) + Pq cos

2(θr)) (B.8)

λaa = NsFa(
Pd + Pq

2
− Pd − Pq

2
cos(2θr)), (B.9)

where Ns is the number of turns in the winding. The linkage of the dq flux components with the
b-phase winding which leads the a-phase winding by 2π

3 is then:

λba = NsFa(Pd sin(θr) sin(θr −
2π

3
) + Pq cos(θr) cos(θr −

2π

3
)) (B.10)

λba = NsFa(−
Pd + Pq

4
− Pd − Pq

2
cos 2(θr −

π

3
)) (B.11)

By defining the new variables

L0 = NsFa
Pd + Pq

2
(B.12)

Lms = NsFa
Pd − Pq

2
(B.13)
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one can now express the self inductance in the stator a-phase winding as

Laa = L0 − Lms cos(2θr) (B.14)

The equation above is the self inductance excluding the leakage inductance. The mutual inductance
between the a-phase and b-phase then becomes

Lab = Lba = −L0

2
− Lms cos 2(θr −

π

3
) (B.15)

The deduction of the flux expressions are based on the works of [38]

Permanent magnets rotors could be salient or non-salient. If one were to study a salient PMSG,
the assumption of equal Pd and Pq could be invoked. This is due to the symmetry and the fact
that the airgap “seen” by the stator windings will be uniform, since the permeance of the magnets
are very similar to the permeance of air. In a non-salient rotor, the airgap “seen” by the stator
windings would not be uniform, and the assumptions of equal permeance would not be correct[50].
Setting Pd = Pq in B.9 yields

λaa = NsFa(
Pd + Pq

2
) (B.16)

The same simplification is also possible in B.11

λba = NsFa(−
Pd + Pq

4
) (B.17)

From the two expressions above, one can now see that the rotor dependence is gone and this
simplifies the calculations significantly.
By utilizing the relationship between flux linkage and inductance, the resulting inductance matrix
will take the form

Lss =

Lms + L0 − 1
2L0 − 1

2L0

− 1
2L0 Lms + L0 − 1

2L0

− 1
2L0 − 1

2L0 Lms + L0

 (B.18)

Lms is the magnetizing inductance and L0 is the leakage inductance. To simplify the calculations
even more, a transformations to the rotors qd0 reference frame is advised. This is done through
the Park transformation.

P =
2

3

cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )
sin(θ) sin(θ − 2π

3 ) sin(θ + 2π
3 )

1
2

1
2

1
2

 (B.19)

In a three phase resistive circuit
Vs
abc = rsi

s
abc (B.20)

The park transformation of B.20 then becomes

Vs
qd0 = PrsP

−1isqd0 (B.21)

If one were to assume that the resistances of the three stator windings are equal, which is something
that is true due to the design of the machine, the expression simplifies to

Vs
qd0 = rsi

s
qd0 (B.22)

since
PrsP

−1 = rs (B.23)

In a three phase inductive circuit one has

vsabc =
dλsabc
dt

(B.24)

The park transformation then becomes

vsqd0 = P
dP−1λsqd0

dt
(B.25)
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Expanded, this becomes

vsqd0 = P
dP−1

dt
λsqd0 + PP−1

dλsqd0
dt

(B.26)

By the help of some trigonometric identities, one can write B.26

vsqd0 = ωλsqd0 +
dλsqd0
dt

(B.27)

because

P
dP−1

dt
= ω

 0 1 0
−1 0 0
0 0 0

 (B.28)

See [51] and equation (3.4-10) for more information.
The flux linkages in the new reference frame can be expressed as

λsqd0 = PLsP
−1isqd0 (B.29)

From the expression above, one can express Ls as

Ls = PLsP
−1 (B.30)

In this case, one would get

2

3

cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )
sin(θ) sin(θ − 2π

3 ) sin(θ + 2π
3 )

1
2

1
2

1
2

Lls + L0 − 1
2L0 − 1

2L0

− 1
2L0 Lls + L0 − 1

2L0

− 1
2L0 − 1

2L0 Lls + L0

 cos(θ) sin(θ) 1
cos(θ − 2π

3 ) sin(θ − 2π
3 ) 1

cos(θ + 2π
3 ) sin(θ + 2π

3 ) 1

 (B.31)

Ls =

 3
2Lms + L0 0 0

0 3
2Lms + L0 0

0 0 L0

 =

Lq 0 0
0 Ld 0
0 0 Lms

 (B.32)

The flux linkage established by the permanent magnet is a sinusoidal wave displaced by 120◦

between the phases

λr =

 sin(θr)
sin(θr − 2π

3 )
sin(θr +

2π
3 )

 (B.33)

The complete flux linkage is then
λs,rqd0 = λsqd0 + λr (B.34)

The complete voltage equations referred to the rotating dq-frame thus becomes

vsqd0 = rsi
s
qd0 + ωrλ

s,r
qd0 +

dλs,rqd0
dt

(B.35)

If one were to expand the expression

vq = rsi
s
q + ωrλd +

dλq
dt

(B.36)

vd = rsi
s
d − ωrλq +

dλd
dt

(B.37)

v0 = rsi
s
0 +

dλ0
dt

(B.38)

By utilizing the relationship between the inductance and current, and also the relationship between
mechanical- and electrical angular velocity the following model could be found.

Lq i̇q = −rsiq − Ldid
P

2
ωm + λrd

P

2
ωm − vqs (B.39)

Ldi̇d = −rsid + Lqiq
P

2
ωm − vds (B.40)
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where

ωe =
P

2
ωm, (B.41)

and P is the number of magnetic poles in the machine.
The sign of vqs and vds is negative due to the fact that the machine of interest is a generator,
not a motor. Assuming no demagnetization, λrd is constant and will be denoted by ϕ hereafter. A
assumption of equal permeance in the q- and d axis was made earlier in the development of the
inductance matrix, this leads to the next assumptions which is that the inductance in the q- and d
axis is also roughly the same. By considering all the new assumptions, the final equations becomes

Li̇q = −rsiq − Lid
P

2
ωm + ϕ

P

2
ωm − vq (B.42)

Li̇d = −rsid + Liq
P

2
ωm − vd (B.43)

The two equations above describes the electrical relationship in the generator, and will be the
starting point for the port-Hamiltonian analysis to come. The only thing left now, is therefore an
equation describing the mechanical relationship of the machine.
The well know torque relationship in an electrical machine, based on Newton’s law of rotation
states that

Jω̇m = Tm − Te (B.44)

J is the inertia of the machine. ωm is the angular velocity, Tm is the mechanical torque, and Te is
the electrical torque.
The total power of a three-phase machine is

P sabc = vsai
s
a + vsb i

s
b + vsc i

s
c (B.45)

The total power have to be equal in both dq and abc variables, therefore

P sqd0 = P sabc =
3

2
(vsqi

s
q + vsdi

s
d + 2vs0i

s
0) (B.46)

The factor 3
2 is due to the park transformation. Utilizing the relationship P = Tω one would get

Te
2

P
ωm =

3

2
(vsqi

s
q + vsdi

s
d + 2vs0i

s
0) (B.47)

Inserting equation B.36, B.37, B.38 into the above equation yields

Te
2

P
ωm =

3

2
rs(i

s
q
2 + isd

2 + 2is0
2)︸ ︷︷ ︸

Ohmic losses

+
3

2
(λsdi

s
q − λsqi

s
d)ωm +

3

2
(isq
dλsq
dt

+ isd
dλsd
dt

+ 2is0
dλs0
dt

)︸ ︷︷ ︸
Change of stored magnetic energy

(B.48)

Equating the coefficients of ωm gives

Te =
3

2

P

2
(λsdi

s
q − λsqi

s
d) (B.49)

By utilizing the relationship between flux linkage λ, inductance and current, one would get

Te =
3

2

P

2
(ϕisq + (Ld − Lq)i

s
qi
s
d) (B.50)

Since Ld = Lq in this case, the final expression for the electrical torque is

Te =
3

2

P

2
ϕisq (B.51)

The expression describing the relationship between electrical end mechanical torque is thus

Jω̇m = Tm − Te = Tm − 3

2

P

2
ϕisq (B.52)
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To make the model more realistic a damping term is also introduced in the mechanical torque
expression

Jω̇m = Tm − 3

2

P

2
ϕisq + d(ωref − ωm) (B.53)

The last term in Equation B.53 describes the damping in the system. d is the damping coefficient
and is chosen in the design process of the machine. The damping term represents a damper
winding, which in steady state does not affect the system, since in steady state ωm = ωref , for a
synchronous machine. When the reference speed, i.e angular velocity of the rotating magnetic field
put up by the stator currents, ωe, is different from the angular velocity of the magnetic field put
up by the permanent magnets on the rotor, the damper winding influence the system. Damper
windings in synchronous machines are included to damp the sub-transient oscillations that could
occur during a fault. They are also used to develop what is called pull-in torque, which makes the
machine go from asynchronous mode to synchronous mode. The torque produced by the damper
winding is zero when the machine operates in synchronous mode [52]
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Appendix C

PI Controller

The industry standard is a proportional integral controller, or abbreviated as PI controller. To
find a similar criterion for a PI controller, one must first expand the Lyapunov function to include
the “energy” from the controller. This is due to the fact that the Lyapunov function has to depend
on all the states, including those representing the controller

W (x, z) = V (x) +
1

2
z̃KI z̃ (C.1)

The second part of C.1 represents the energy stored in the PI controller, while V (x) is the Lyapunov
function representing the stored energy in the generator. The PI is expressed as

u = −KP y +KIz (C.2)

ż = y (C.3)

Expanding the new Lyapunov function results in

Ẇ = V̇ + (KI z̃)
⊤ ˙̃z (C.4)

I : Ẇ = y⊤ũ+ γy⊤y + (KI z̃)
⊤ ˙̃z

II : Ẇ = y⊤ũ+ γy⊤y − z̃⊤KIy

III : Ẇ = y⊤ũ+ γy⊤y − y⊤KI(z − z̄)

IV : Ẇ = y⊤ũ+ γy⊤y − y⊤KIz + y⊤KI z̄

V : Ẇ = y⊤(u− ū) + γy⊤y − y⊤(u+KP y) + y⊤KI z̄

V I : Ẇ = −y⊤ū+ γy⊤y − y⊤KP y + y⊤KI z̄

V II : Ẇ = γy⊤y − y⊤KP y

(C.5)

Step explanations:

C.4 - I The expression for V̇ (x), included the PI regulator is inserted

I - II ˙̃z = ż- ˙̄z = ż = -y

II - III Rearranging and z̃ = z-z̄

III - IV Expanding last term of [III]

IV - V ũ = u-ū and KIz = u+KP y

V - VI Cancelling y⊤u in first term with −y⊤u in third term

VI - VII Cancelling KI z̄ = ū in last term with fist term in

The expression found above is equal to the one found for a proportional controller, i.e. the criterion
becomes the same

Ẇ = −y⊤[KP − γI]y ≤ 0, if KP > γ (C.6)
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Appendix D

Stability Analysis of a Turbine
String

To investigate the stability of the system, the incremental model is developed:

ẋ = (J (ωm) + J0 + J5 + J6 + J7 −R(ωm))Qx+ E + g(x)u
- 0 = (J (ω̄m) + J0 + J5 + J6 + J7 −R(ω̄m))Qx̄+ E + g(x̄)ū

˙̃x = (J0 + J5 + J6 + J7)Qx̃+ J (ωm)Qx−R(ωm)Qx− J (ω̄m)Qx̄+R(ω̄m)Qx̄+ g(x)u− g(x̄)ū

The term g(x)u− g(x̄)ū, can be reformulated to g(x̃)u+ g(x̄)ũ. The incremental model can then
be formulated as:

x̃ =
(
J0+

4∑
i=i

Jiui+
7∑
i=5

Ji
)
Qx̃+J (ωm)Qx−R(ωm)Qx−J (ω̄m)Qx̄+R(ω̄m)Qx̄+ g(x̄)ũ (D.1)

As before the Lyapunov candidate function (LCF) is inspired by the Hamiltonian of the incremental
model. V = 1

2 x̃
⊤Qx̃. As before condition I and II for such a Lyapunov function are always satisfied.

To investigate the stability, condition III and IV must be tested. The time derivative of the LCF
is, V̇(x) = x̃⊤Q ˙̃x:

I : V̇(x) = x̃⊤Q
(
J0 +

4∑
i=i

Jiui +
7∑
i=5

Ji
)
Qx̃+ x̃⊤QJ (ωm)Q− x̃⊤QR(ωm)Qx− x̃⊤QJ (ω̄m)Qx̄

+ x̃⊤QR(ω̄m)Qx̄+ x̃⊤Qg(x̄)︸ ︷︷ ︸
y⊤

ũ

II : V̇(x) = y⊤ũ+ x̃⊤QJ (ωm)Qx− x̃⊤QR(ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QR(ω̄m)Qx̄

+ x̃⊤QJ (ωm)Qx̄− x̃⊤QJ (ωm)Qx̄︸ ︷︷ ︸
0

III : V̇(x) = y⊤ũ+ x̃⊤QJ (ωm)(Qx−Qx̄)︸ ︷︷ ︸
0

−x̃⊤QR(ωm)Qx− x̃⊤QJ (ω̄m)Qx̄+ x̃⊤QR(ω̄m)Qx̄

+ x̃⊤QJ (ωm)Qx̄

IV : V̇(x) = y⊤ũ+ x̃⊤Q
[(
J (ωm)− J (ω̄m)

)
Qx̄−R(ωm)Qx+R(ω̄m)Qx̄

]
V : V̇(x) = y⊤ũ+ x̃⊤Q

[(
J (ωm)− J (ω̄m)

)
Qx̄−R(ωm)Qx+R(ω̄m)Qx̄

]
+ x̃⊤Q

(
γg(x̄)PMSGg(x̄)PMSG⊤)

Qx̃

− x̃⊤Q
(
γg(x̄)PMSGg(x̄)PMSG⊤)

Qx̃

V I : V̇(x) = −y⊤ũ+ x̃⊤Q
[(
J(ωm)− J (ω̄m)

)
Qx̄−R(ωm)Qx+R(ω̄m)Qx̄

− γg(x̄)PMSGg(x̄)PMSG⊤
Qx̃
]
+ yPMSG⊤

γyPMSG

V II : V̇(x) = −y⊤ũ+ yPMSG⊤
γyPMSG + (z − z̄)⊤

[
M(z)−M(z̄)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

89



Step explanations:

I Due to skewsymetry the terms J0,J1,J2,J3,J4,J5,J6 and J7 are eliminated. The passive
output, x̃⊤g(x̄), is collected to a term y⊤

II Zero is added to the equation by adding and subtracting the term, x̃⊤QJ (ωm)Qx̄

III Due to skew symmetry x̃⊤QJ (ωm)(Qx−Qx̄) = 0

IV The expression is factorised.

V A term containing the passive output feedback is included to help render the system passive.
The term is added and subtracted such that system does not change properties. As shown
in section 3.2 it is possible to render the system passive only using the output feedback from
the converter closest to the generator.

VI Using the definition of the passive output from I

VII Two new definitions are introduced z ≜ Qx and M(z) ≜ J (ωm)z̄ −R(ωm)z.

The time derivative of the LCF can be expressed as:

V̇(x) = −y⊤ũ+ yPMSG⊤
γyPMSG + (z − z̄)⊤

[
M(z)−M(z̄)− γg(x̄)PMSGg(x̄)PMSG⊤

(z − z̄)
]

︸ ︷︷ ︸
TermIII

(D.2)

Checking for monotonicity

In section 3.1 it is shown that if Term III is monotonically decreasing, condition III and IV can
be satisfied by use of a PI controller when Kp is chosen greater than γ. As stated in section 3.1,

to check if M(z) −M(z̃) − γg(x̄)PMSGg(x̄)PMSG⊤
z̃ is monotonically decreasing, is equivalent to

checking whether the following term is negative semi-definite.

∇⊤M(z) +∇M(z)− 2γg(x̄)PMSGg(x̄)PMSG⊤ ≤ 0

M(z) is defined as:

M(z) = J (ωm)z̄ −R(ωm)z

=
P

2
L



0 ωm 0 0 0 0 0 0
−ωm 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





īd
īq
ω̄m
V̄c
īGd
īGq
V̄ dpcc
V̄ qpcc


−



r 0 0 0 0 0 0 0
0 r 0 0 0 0 0 0

0 0 d− Tm(ωm)
ωm

0 0 0 0 0

0 0 0 Gdc 0 0 0 0
0 0 0 0 rG 0 0 0
0 0 0 0 0 rG 0 0
0 0 0 0 0 0 Gpcc 0
0 0 0 0 0 0 0 Gpcc





id
iq
ωm
Vc
iGd
iGq
V dpcc
V qpcc



=



P
2 Lωmīq − rid

−P
2 Lωmīd − riq

−dωm + Tm(ωm)
−GdcVc
−rGiGd
−rGiGq

−G
pccV d

pcc

−G
pccV

q
pcc
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∇M(z) =



−r 0 īq
P
2 L 0 0 0 0 0

0 −r −īd P2 L 0 0 0 0 0

0 0 −d+ ∂Tm(ωm)
∂ωm

0 0 0 0 0

0 0 0 −Gdc 0 0 0 0
0 0 0 0 −rG 0 0 0
0 0 0 0 0 −rG 0 0
0 0 0 0 0 0 −Gpcc 0
0 0 0 0 0 0 0 −Gpcc


(D.3)

g(x̄)PMSGg(x̄)PMSG⊤
=



V̄ 2
c 0 0 −īdV̄c 0 0 0 0
0 V̄ 2

c 0 −īqV̄c 0 0 0 0
0 0 0 0 0 0 0 0

−V̄cīd −V̄cīq 0 ī2d + ī2q 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(D.4)

At the equilibrium it is desired that the d-axis current component in the generator is zero, such
that the generator is operating at maximum torque per ampere. īd = 0. Putting the expression
together results in:

∇⊤M(z) +∇M(z)− 2γg(x̄)PMSGg(x̄)PMSG⊤
=

−2(r + γV̄ 2
c ) 0 īq

P
2 L 0 0 0 0 0

0 −2(r + γV̄ 2
c ) 0 2γīqV̄c 0 0 0 0

īq
P
2 L 0 −2d+ 2∂Tm(ωm)

∂ωm
0 0 0 0 0

0 2γīqV̄c 0 −2
(
Gdc + γī2q

)
0 0 0 0

0 0 0 0 −2rG 0 0 0
0 0 0 0 0 −2rG 0 0
0 0 0 0 0 0 −2Gpcc 0
0 0 0 0 0 0 0 −2Gpcc


(D.5)

Using the Schur complement to investigate negative semi-definiteness of D.5. The matrices are
chosen as:

A =


−2(r + γV̄ 2

c ) 0 īq
P
2 L 0

0 −2(r + γV̄ 2
c ) 0 2γīqV̄c

īq
P
2 L 0 −2d+ 2Tm(ωm)

ωm
0

0 2γīqV̄c 0 −2
(
Gdc + γī2q

)
 (D.6)

B = B⊤ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (D.7)

C =


−2rG 0 0 0
0 −2rG 0 0
0 0 −2Gpcc 0
0 0 0 −2Gpcc

 (D.8)

Matrix A is identical to 3.99 and is in section 3.3 shown to be negative semidefinite when criterion
3.106 and 3.107 are satisfied. As rG, Gpcc both are greater than zero, that means matrix C is
negative definite. D.5 is thereby negative definite when 3.106 and 3.107 are satisfied. Term III is
then monotonically decreasing. All conditions for the Lyapunov function is therefore satisfied.

In conclusion, the modification of the turbine string, by changing the grid connection to a current
source, did not alter the stability criteria. This is in line with the proposition from section 3.2 that
says that stability can be achieved by using passive feedback control on the generator connected
converter and sufficient damping in the generator. When altering the grid side of the DC-link, the
stability is thereby not effected.
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