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1 Introduction

The goal of this master thesis is to understand the representation varieties,

and the character varieties of the frieze groups. This means we want to

understand how the symmetries of patterns on strips of infinite length (but

not height) can be represented in the space of linear isomorphisms on a finite

dimensional vector space. Up to isomorphism the frieze groups are:

Z,Z/(2)× Z, D∞, D∞ × Z/(2).

The last of these is not discussed in this text. The representation variety of

Z is just Gln itself which is well-studied. The representation variety of this is

one of the classical Lie groups. We recap what the invariant polynomials of

this group are under conjugation and that the character variety Xn(Gln) ∼=
(Gl1) × Cn−1. We also explore Z/(2) and its representation varieties since

it is crucial to understand this group before you can understand the latter

three frieze groups.

In section 2 we briefly overview the some basic algebraic geometry. We

touch on affine varieties, coordinate rings, linear algebraic groups and repre-

sentation varieties.

In section 3 we discuss involutions in the general linear group of a vector

space V over a field of characteristic not 2. We prove that they are in general

exactly the linear operators A with V = EA
1

⊕
EA

−1. We then prove that if

V is a finite dimensional vector space over C then the space of involutions

equals the disjoint union

∐
i = 0

n
Gln//(Gln−i ×Gli)

with the group action being left multiplication.

In section 4 we tackle Rn(Z/(2)× Z). We define a collection of principal

Gln−k × Glk bundles ICn,k → Gln//(Gln−k × Glk). We prove that they are

n2 dimensional complex smooth manifolds. We prove that Rn(Z/(2)× Z) is
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a disjoint union of

∐
i = 0

n
ICn,i.

In section 5 we give a brief introduction to Geometric Invariant The-

ory (GIT) and character varieties. We prove that Xn(ICn,k) ∼= Xn(Gln) ∼=
(Gl1)× Cn−1.

In section 6 we give results that compute certain low dimensional com-

ponents of Xn(D∞). We use these to show that X2(D∞) and X3(D∞) are

disjoint unions of some number of C and {∗}.
In the last section we define group cohomology. We explain why it is

useful for the computation of the tangent space at character varieties. We

then give an equivalent condition for irreducible points of Xn(D∞) and show

these have a tangent space of dimension 1. We lastly find the invariant

polynomials of Glk acting on Ml×k ×Mk×l with G · (P,Q) = (PG−1, GQ)

when k ≥ l.

We now discuss the what the frieze groups are, and why they are inter-

esting in geometry.

1.1 Frieze Groups

In plane geometry we sometimes study the symmetries on a given 2-dimensional

figure or pattern. A pattern that repeat infinitely in one direction is called

a frieze pattern, the group of symmetries on a frieze pattern is called a

Frieze group. Such patterns are common in both art and architecture. See

section 3.4 of A Course in Modern Geometries by Judith M. Cederberg [2]

for a more precise definition and breakdown of frieze groups. Our breakdown

will certainly give an explanation as to why the groups stated are the ap-

propriate symmetry groups, but we will largely rely on intuition in lieu of

rigorous proofs.

We now give some examples of types of patterns that can arise, these

examples are representative of all the frieze patterns.
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Example 1.1 (Hop). The first pattern type is the most restricted one. Hop

refers to someone hopping forward on one leg.

. . . F F F F F F F F . . .

We can not rotate or reflect it vertically or horizontally. The only thing we

can do is to shift the pattern forward or pull it back a finite number of times.

This describes the infinite cyclic group Z.

Example 1.2 (Step). The name is step is from each piece of the pattern

being opposite symmetric feet as if you are walking.

. . . L Γ L Γ L Γ L Γ . . .

The first symmetry here is the one where you slide each character forward

two steps. We notice that we can not reflect it horizontally or rotate it. We

can reflect it horizontally however if we then push it forward a character.

Two of these motions will generate the first proposed symmetry. Thus, this

group is also the infinite cyclic group Z.

Example 1.3 (Slide). This group is slightly more complicated.

. . .
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

. . .

We cannot rotate or reflect horizontally, but we can reflect vertically either in

middle of a pattern or between two of them, as well as pushing it horizontally.

We call gliding the figure forward one step G, we fix on of the
∨

and call

the reflection in the middle of it RV . We notice that any vertical reflections

in the middle of a
∨

can be expressed as RVG
n for reflecting between the

∨
n−1 and n steps to the right of the initial

∨
. If the reflection is between the∨

n and n− 1 steps to the left you apply GnRV If you want to reflect in the

middle of a
∨
n steps to the right of

∨
you apply GnRVG

−n. It can be shown

that RVGRV = G−1. The group is freely generated by R,GR with relations

that R2 = e, (GR)2 = e. Thus the symmetry group is D∞ := ⟨a, b⟩/(a2, b2).

Example 1.4 (Spinning Hop). This group has a similar setup as the last

one.

5



. . . S S S S S S S S . . .

Here it is allowed to glide it, but we cannot reflect in either direction.

Rotations at or between the repeating patterns is fine though. In much

the same approach as with Slide we can show that the symmetry group is

D∞ = ⟨a, b⟩/(a2, b2).

Example 1.5 (Spinning Slide). The final group with this symmetry group.

. . .
∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧

. . .

This group is generated by glide-reflects and rotations between the patterns

and vertical reflection in the middle of a pattern. The symmetry group is

D∞ = ⟨a, b⟩/(a2, b2).

Example 1.6 (Jump). This group is relatively simple compared to the last

three.

. . . E E E E E E E E . . .

It is not permitted with rotations or vertical reflection, but the horizontal

one is permitted. It is important to note that this reflection performed twice

is the identity, and it also commutes with the glides. Thus the symmetry

group is ⟨a, b⟩/(a2, ab = ba) = Z/(2)× Z.

Example 1.7 (Spinning Jump). In the last one everything goes.

. . . H H H H H H H H . . .

We can rotate and vertically reflect between and in the middle of patterns.

We can also reflect horizontally and glide. We note that rotations can be

expressed by combining two different rotations at the same point, the or-

dering does not matter. The horizontal reflections commute with all the

other symmetries. We can thus think of it as Slide, but with one extra

generator that commutes with the others. The group of symmetries is thus

⟨a, b, c⟩/(a2, b2, c2, ac = ca, bc = cb) = D∞ × Z/(2).

6



Figure 1: Nidarosdomen

Example 1.8. The church Nidarosdomen resides a few hundred meters from

NTNU. There are multiple frieze patterns one could analyze here. On the

roof between the two towers there is a railing, if it were to infinitely continue

in both directions it would be a frieze pattern. This pattern allows both

Figure 2: Railing with a frieze pattern

horizontal and vertical reflections, it therefore also allows rotations. This is
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a pattern of type spinning jump, it has the frieze group D∞ × Z/(2). It is a
good thing to know that I am not the only mathematician who has distracted

themselves with math during a particularly boring sermon.

Example 1.9. Consider the following pattern which you can find at the

glass doors of BUEN Kulturhus in Mandal. This pattern is selected since it

Figure 3: Frieze pattern on glass door

is printed on the door to the room this is being written. The pattern is the

following stylized way of writing BUEN repeated:

. . . ⊃ ∪ ⊂ ∩ ⊃ ∪ ⊂ ∩ ⊃ ∪ ⊂ ∩ . . .

It is ”⊃ ∪ ⊂ ∩” repeating over and over? Yes, but it is also the pattern

”∪ ⊂ ∩ ⊃” repeated over and over. This reveals a subtlety in frieze patterns.

8



They are not just one pattern repeated over and over, you can look at it as

an infinite set of patterns depending on where it is started. We want the

midpoint of the pattern to be the midpoint of ∪ or ∩. We can vertically

reflect in the middle and between those patterns. It is of type slide and has

the symmetry group D∞.
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2 Representation varieties

In this section we are going to give a short introduction to some of the central

concepts of this text.

2.1 Affine varieties

Roughly speaking, algebraic geometry is the study of geometric objects that

can be expressed using polynomial equations. We take a collection of poly-

nomial equations S ⊆ K[X1, . . . Xn] and we compute the zeros of those equa-

tions. In the following definition we very quickly set up the basic framework

for algebraic geometry this setup is due to Perrins book [8].

Definition 2.1. Let K be any field. We define the following functions on

the power sets

V : P(K[X1, . . . Xn]) → P(Kn), V (S) = {x ∈ Kn|f(x) = 0,∀f ∈ S}
I : P(Kn) → P(K[X1, . . . Xn]), I(V ) = {f ∈ K[X1, . . . Xn]|f(x) = 0,∀x ∈ V }

A subset V ⊆ Kn is an Affine Algebraic Variety if there exist some

subset S ⊆ K[X1, . . . Xn] such that V = V (S). For the purposes of this text

we will simply call these varieties.

We also define the coordinate ring of a variety:

O(V ) := K[X1, . . . Xn]/(I(V ))

The notation here might seem confusing since we are using the same let-

ters for both functions and sets, but the idea is that you have an algebraic and

geometric way of interpreting an object. If you have a subset of K[X1, . . . Xn]

you can turn it into a variety, and if you have a subset of Kn you can turn

those into an ideal of K[X1, . . . Xn], if you quotient out that ideal you get a

K algebra called the coordinate ring. If I is the ideal generated by the set S

then V (I) = V (S). We can therefore think of the sets S as ideals, since they

have the same variety as the ideal they generate. We will sometimes write

V (f) or V (f = g) rather than the more formal V ({f}) or V ({f − g}).
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What happens if you keep going? More precisely, what are the functions

V ◦ I and I ◦ V ? If we have x ∈ V then ∀f ∈ I(V ), f(x) = 0, therefore x ∈
V (I(V )). If f ∈ I, then ∀x ∈ V (I), f(x) = 0 and therefore f ∈ I(V (I)). We

can therefore conclude that we have inclusions V ⊆ V (I(V )), I ⊆ I(V (I)).

The first of which is an equality if and only if V is a variety. Assuming that K
is algebraically closed, the second is an equality if and only if I is radical as a

consequence of Hilbert’s Nullstellensatz, furthermore the induced coordinate

ring is a reduced commutative K algebra. If we limit ourselves to radical

ideals and varieties the functions V and I are inverses of each other.

When establishing a theory of mathematics we are generally interested in

both objects as well as maps between those objects.

Definition 2.2. Let V ⊆ Kn and W ⊆ Km be varieties, a function ϕ : V →
W is called regular if there are polynomials f1, . . . fm ∈ K[X1, . . . , Xn] such

that ∀x ∈ V

ϕ(x) = (f1(x), . . . , fm(x))

Now we have established two categories. One is the category of reduced

finitely generated K algebras. The other category is that of affine varieties,

with morphisms being the regular maps. If K is algebraically closed, for every

variety there is a reduced finitely generated reduced K algebra. The reason

we are restricting ourselves to talking about regular maps is that they very

neatly induce morphisms between algebras. Take a regular map ϕ : V → W .

The induced map is ϕ∗ : O(W ) → O(V ), ϕ∗(f) = f ◦ ϕ. The construction is

functorial.

2.2 The Zariski Topology

For both real and complex space we have a standard notion of topology

on that space. This topology is often referred to as euclidean topology for

real space, the notion can be expanded to complex space by noticing that

Cn ≃ R2n. There is also a topology for affine sets.
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Definition 2.3. A subset U ⊆ V of an affine variety is Zariski closed or

just closed if it is itself an affine variety. We say that U is Zariski open

or just open if U\V is Zariski closed.

This defines a topology on V . The empty set is a variety since Ø = V (S)

for some set S that contains a non-zero constant polynomial, and V is a

variety so V = V (I(V ). We can take arbitrary intersections of closed sets⋂
i∈Λ Vi = V (

⋃
i∈Λ I(Vi)) and still get a variety. If you want to take the union

of two closed sets you can multiply the polynomials in each set.

Remark 2.4. If we are working over C then the Zariski topology is a coarser

topology compared to the euclidian one, see chapter 1.10. of The Red Book

[7]. This is a very useful piece of information that shall be used on several

occasions.

2.3 Linear Algebraic Groups

An affine algebraic group is an object in the category of affine varieties that

is also a group. Meaning that G needs to be both an affine variety as well as

a group, the multiplication map m : G×G→ G, and inversion map need to

both be regular.

The most important example that we are going to be using is Gln(K),

for ease of notation we are going to be using Gln. Gln is the set of linear

isomorphisms over Kn, we typically represent this as the set of invertible

n× n matrices over K. From classic linear algebra we know that a matrix is

invertible if and only if it has a nonzero determinant. We may be tempted to

identifty Gln with some subset of Mn :=Mn×n, the set of all n× n matrices

over K. The problem is that det(M) ̸= 0 is not a polynomial equation.

The solution to this problem is quite elegant, we instead think of it as the

determinant being invertible. We can defineGln ⊆ Kn2+1 as V (det(M)t = 1).

The t will be uniquely determined by the other entries t = det(M)−1. For

this reason we will often not think that much of t when doing computations,

12



what t is follows from the other Xi,j. Therefore Gln an n2 dimensional space

even if it is a subset of an n2 + 1 dimensional space.

It may not be obvious that this group is an affine group, as it is not

immediately clear that inversions are regular. By looking at how this works

for Gl2 we get a good idea at how the group works in general. Any M ∈ Gl2

is of the form

M =

[
a b

c d

]
, ad− bc ̸= 0

we can algebraically express the inverse:[
a b

c d

][
td −tb
−tc ta

]
=

[
t(ad− bc) 0

0 t(ad− bc)

]
=

[
1 0

0 1

]
thus the inversion map is regular; i(a, b, c, d, t) = (td,−tb,−tc, ta, ad− bc).

A linear algebraic group is a zariski closed subgroup of some Gln. For

more details on linear algebraic groups and Gln, see Nolan Walach’s book

[14].

2.4 Representation varieties

Definition 2.5. Let Γ be a group. A Gln representation of Γ is a group

homomorphism ρ : Γ → Gln.

It is in general unclear that the set of group representations should be

variety. We need to put some restrictions on Γ for this to be the case. One

assumption could be that it should be a finite group. Much is to be said

about the representations of finite groups, but we can actually widen our

scope and talk about finitely generated groups. For the remainder of this

thesis Γ will be used to refer to a finitely generated group. Let a1, . . . , ak

be a set of generators for Γ. Then Hom(Γ, Gln) can be described by using

(ρ(a1), . . . , ρ(ak)). The set of all these representations is a variety; we are

asking for a collection of k matrices that satisfy a set of relations. Each

relation simply amounts to n2 equations. We shall denote the representation

variety as (Γ, Gln) := Rn(Γ).

13



3 Involutions in Gln

In this section we will classify the involutions on vector spaces. We pay

special attention to the finite dimensional case and the matrices that are

involutions. For reasons that shall be explained a little later we will assume

that K is a field with characteristic different from 2. Towards the end of the

chapter we will start assuming that K = C.

Definition 3.1. An involution on a vector space V is a linear transformation

A : V → V such that A2 = I.

This is equivalent to a linear transformation being its own inverse A−1 =

A. This means that in particular involutions are invertible. The n-th rep-

resentation variety of Z/(2) is the set of involutions in Gln, this description

is of course inadequate for our purposes. We are interested in describing it

from a geometric point of view. A good place to start would be to compute

some of these varieties.

Example 3.2. hom(Z/(2), Gl1) = {1,−1}.

Example 3.3. We can compute Hom(Z/(2), Gl2) as the set of two by two

matrices that satisfy:[
a b

c d

]2
=

[
a2 + bc ab+ bd

ac+ cd bc+ d2

]
=

[
1 0

0 1

]

By comparing the upper left and lower right entry we see that a2 = d2,

either a = d or a = −d. If we assume that they are equal and non-zero then

we can look at the upper right and lower left entry to see that 2ac = 0 and

2ab = 0. We assumed that a ̸= 0 so b = c = 0. We are left with A = aI,

I = A2 = a2I so either a = 1 or a = −1. We thus obtain that either A = I

or A = −I.
If we then assume that instead a = −d (this encapsulates a = d = 0),

what then follows is that ac + cd = ac − ac = 0 = ab − ab = ab + bd. In

this case the upper right and lower left are immediately zero and we only

14



need a2 + bc = 1. We can therefore express our variety as a coproduct

hom(Z/(2), Gl2) = {I}
∐
{a, b, c, d|a + d = 0, a2 + bc = 1}

∐
{−I}. It seems

as if the representation is two isolated points and a two dimensional conic.

If we want to learn more about A is always a good idea to find the

eigenvalues of A. We know that all the eigenvalues are non-zero since A is

invertible. An eigenvalue must satisfy

Ax = λx

x = λAx

Ax =
1

λ
x

λx =
1

λ
x

λ2 = 1

λ is either 1 or −1. What this means is that we have two eigenspaces

EA
1 , E

A
−1. It would be most convenient for us if the eigenspaces spanned all

of Kn. This can be proved in general, not just of finite dimensional vector

spaces. At this point we note that if K has char 2 then it only has one

eigenvalue λ = 1.

Lemma 3.4. If A is an involution on vector space V then A+I
2

is a projection

onto EA
1 with kernel EA

−1. Similarly −A+I
2

is a projection onto EA
−1 with kernel

EA
1 .

Proof. Let us verify that for all vectors x ∈ V we have that Ax+x
2

and −Ax+Ax
2

are eigenvectors. By applying A we see that:

A
(Ax+ x

2

)
=
Ax+ x

2
, A
(−Ax+ x

2

)
=
Ax− x

2

they map onto the eigenspaces. They are also projections, let x ∈ EA
1 , y ∈

EA
−1, then

A+ I

2
(x) =

x

2
+
x

2
= x,

−A+ I

2
(y) =

y

2
+
y

2
= y

15



The final claim is that the kernels of each map is the other eigenspace.
A+I
2
(x) = 0 if and only if Ax = −x, similarly −A+I

2
(x) = 0 if and only if

Ax = x, which verifies the last claim.

We are going to denote PA
1 = A+I

2
, PA

−1 =
−A+I

2
.

Theorem 3.5. A linear transformation A is an involution on a vector space

V if and only if V = EA
1

⊕
EA

−1.

Proof. We first assume that A is an involution. For any x ∈ V , we have that

x = I(x) = PA
1 (x) + PA

−1(x). Combining this with EA
1

⋂
EA

−1 = 0 we have

V = EA
1

⊕
EA

−1.

We then assume that V = EA
1

⊕
EA

−1. For any v ∈ V we can find unique

x ∈ EA
1 , y ∈ EA

−1 such that v = x+ y. We get

A2(v) = A(A(v)) = A(A(x+ y)) = A(x− y) = x+ y = v.

A is an involution.

This theorem says that involutions are linear maps that split a space

into two subspaces where it eiter acts as the identity or the negative of the

identity. The theorem also describes involutions in Gln.

Corollary 3.6. A matrix M ∈ Gln is an involution if and only if it is

diagonalizable with entries 1 and −1.

Proof. If A = MDM−1 with D being a diagonal matrix with entries 1,−1,

then A2 = MDM−1MDM−1 = MD2M−1 = I. If we assume that A is an

involution then it is diagonalizable with entries 1,−1 since the eigenspaces

corresponding to those values span Kn.

We are going to denote the n × n diagonal matrix with the last k en-

tries being −1 and the rest 1 as Jk. For two dimensions it means that the

involutions are the conjugacy classes of the following matrices

J0 =

[
1 0

0 1

]
, J1 =

[
1 0

0 −1

]
, J2 =

[
−1 0

0 −1

]

16



Since I and −I commute with all matrices their conjugacy classes are only

themselves. With both of these observations we can deduce the following

{M

[
1 0

0 −1

]
M−1} = {

[
a b

c d

]
|a+ d = 0, a2 + bc = 1}

We are interested in finding out if we can describe the conjugacy classes

of all involutions in such algebraic terms.

3.1 The tangent space of Rn(Z/(2))

One of the tools of algebraic geometry is the correspondence between the

geometric dimension of an object and the algebraic dimension of the corre-

sponding algebraic object. The tangent space of a scheme at a point provides

a bound for the dimension at that point, if we can also find a sequence of

increasing prime ideals that has the same length as the tangent space at the

point then we have found the dimension and proven that the point is smooth.

Definition 3.7. For a field K the dual numbers K[ϵ] are the polynomials

over ϵ with the relation that ϵ2 = 0. Let V be an affine variety. A tangent

vector at a point x is an algebra morphism t : K[Xi]/I(V ) → K[ϵ] making

the following diagram commute:

K

O(V ) K[ϵ]

projevx

t

The morphism t is defined by where it sends the generators, t(Xi) =

Xi(x) + aϵ. If u is another tangent tangent vector with t(Xi) = Xi(x) + bϵ,

we can define addition by (t + u)(Xi) = Xi(x) + (a + b)ϵ. We denote this

space by TxV . If ϕ : V → W is a regular map of varieties, then we can define

17



Tϕ : Tϕ(x)W → TxV by sending a map t : K[Xi]/I(V ) → K[ϵ] to the map

t ◦ ϕ∗.

O(W ) K

O(V ) K[ϵ]

evϕ(x)

ϕ∗ projevx

t

The definition works since the top triangle commutes, and finding a t such

that the bottom triangle commutes makes the entire square commute.

Example 3.8. Let us look at V (a2 + bc = 1) over C, it has the coordinate

ring C[a, b, c]/(a2 + bc− 1). For simple curves and surfaces it is often wise to

instead use a more classical approach. The kernel of the jacobian provides an

equivalent formulation of the tangent space [8]. We compute the Jacobian[
2a c b

]
.

Since this is never a zero vector when a2+ bc = 1, the kernel of this map and

hence the dimension of the tangent space is 2. We also have this following

sequence of prime ideals

(0) ⊂ (a, bc− 1)/(a2 + bc− 1) ⊂ C[a, b, c]/(a2 + bc− 1)

which implies the dimension of the variety is at least 2, combining this with

the tangent space dimension being 2 tells us that that it is a smooth variety

of dimension 2.

Example 3.9. Another illustrative example is the tangent space of Gln(C).
This is a frieze group representation since Rn(Z) = Gln. The tangent space

can be computed directly from the definition. A tangent vector at a pointM

sends each generator Xi,j to Mi,j +Ni,jϵ. Combining all Ni,j we get a matrix
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such that M +Nϵ needs to be invertible inside of Mn(C[ϵ]). For any choice

of N , this is invertible by

(M +Nϵ)(M−1 −M−1NM−1ϵ) = I + (NM−1 −NM−1)ϵ = I.

Thus TM(Gln) is n
2 dimensional at all points.

Remark 3.10. Smoothness is a very desired property in algebraic geometry.

A smooth point is one in which the dimension at a point is the same as the

dimension of the tangent space. The definition of dimension at a point is

something we do not deal with directly in this text, but can be found in any

number of texts including Perrin [8]. If an irreducible variety is smooth and of

the same dimension at every point, then it is a smooth real/complex variety

depending on the field [10]. A common technique we shall use in this text is

to show that a variety over C is smooth by showing that the tangent space at

every point in the variety has the same dimension. In Harris’ book chapter

14 the tools to show this are given. We combine two results, the dimension of

the tangent space is an upper-semicontinuous function, and the set of smooth

points is dense in the variety. The first tells us that the dimension will not

locally ”jump down”, the second tells us that every neighbourhood contains a

smooth point. If we assume that there is some point that is not smooth, then

it must have dimension lower than the the tangent space dimension. It must

be in the neighborhood of some smooth point with the same dimension as

the tangent space, but that implies that the dimension has ”jumped down”

for the point that is not smooth.

Theorem 3.11. Th tangent space of Rn(Z/(2)) at an involution A which

diagonalizes to Jk is a vector space of dimension 2k(n− k).

Proof. We may think of a tangent vector to an involution A as another matrix

B which satisfies the following computation in K[ϵ].

I = (A+Bϵ)2 = A2 + (AB +BA)ϵ+B2ϵ2 = I + (AB +BA)ϵ ⇐⇒ AB = −BA
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We are going to once again exploit the diagonlization of A.

AB = −BA ⇐⇒ MJkM
−1B = −BMJkM

−1 ⇐⇒ JkM
−1BM = −M−1BMJk

When you multiply with Jk from the left you preserve the top n−k rows and

invert the bottom k, multiplying form the right does the exact same thing

but for columns. This means that M−1BM is a matrix of the form

F =

[
0 C

D 0

]

with C being a k× (n−k) matrix and D a (n−k)×k matrix, we denote this

space as Mn/(Mn−k ×Mk). Thus the tangent matrices of A is the 2k(n− k)

dimensional vector space M(Mn/(Mn−k ×Mk))M
−1.

It would be nice if we could have all the points in our variety have the same

dimension, this is obviously not the case. The question is if there is some way

we could restrict Rn(Z/(2)) to a specific conjugacy class of the variety. The

answer is yes! We only need to recall that the trace of a matrix is equal to the

sum of its eigenvalues. This means that if we want a smooth variety we need

only consider Invn,k := Rn(Z/(2)) ∩ V (
∑n

i=1Xi,i = n− 2k). The individual

Invn,k are thus disjoint closed subsets of Rn(Z/(2)), meaning that Rn(Z/(2))
is in fact a disjoint union of all Invn,k. We also note that when k < n/2 the

space Invn,n−k contains exactly the negative of the matrices in Invn,k and

vice versa. Dividing the space like this tells us that the representation is a

disjoint union of smooth spaces, hence it is itself smooth.

Corollary 3.12. Rn(Z/(2)) is a smooth variety.

Proof. By theorem 3.11 the tangent space has the same dimension for ev-

ery point in Invn, k, the variety must therefore be of dimension 2k(n − k).

Rn(Z/(2) is smooth since it is a disjoint union of smooth spaces.
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3.2 The bundle structure on involutions

It seems natural that when we discuss the topology on Rn(Z/(2) we look at all
the n+1 different conjugacy classes separately. Since we know that any invo-

lution is of the formMJkM
−1 we could try to find a relation that determines

when two such matrices are equal. When talking about the linear algebraic

group Gln−k ×Glk we are thinking about it as a subgroup of Gln in the fol-

lowing way Gln−k×Glk = Gln
⋂

i>k,j<n−k V (Xi,j = 0)
⋂

i<n−k,j>k V (Xi,j = 0).

Note that this becomes a Zariski closed subset of Gln

Lemma 3.13. MJkM
−1 = NJkN

−1 if and only if there exists some T ∈
Gln−k ×Glk ⊆ Gln such that MT = N

Proof. We have that

MJkM
−1 = NJkN

−1 ⇐⇒ N−1MJk = JkN
−1M

Let T = N−1M , then

[TJk]i,j =

{
[T ]i,j for j < k

−[T ]i,j for j ≥ k

[JkT ]i,j =

{
[T ]i,j for i < k

−[T ]i,j for i ≥ k

This is the case if and only if T is of the form[
T1 0

0 T2

]

with T1 ∈ Glk and T2 ∈ Gln−k. Thus we have T ∈ Gln−k × Glk such that

NT =M .

This theorem gives us a bijection from the quotient of Gln with the re-

lation g · T ∼ g, T ∈ Gln−k × Glk to the conjugacy class of Jk. It should

be noted that quotients of affine varieties are not varieties in general, not

even when the relation is induced by a group action. It is however the case
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for this quotient. For the time being we will define Gln//(Gln−k × Glk) as

the quotient of Gln using the relation defined above. The associated scheme

O(Gln)
Gln−k×Glk ⊆ O(Gln) is defined as the polynomials left invariant by the

multiplication action (g · f)(v) = f(g−1 · v).
Gln is an irreducible variety and a smooth complex manifold. It being

irreducible tells us that the coordinate ring is an integral domain. Thus the

subalgebra O(Gln)
Gln−k×Glk ⊆ O(Gln) is also integral, hence Gln//(Gln−k ×

Glk) is also irreducible.

Let us define the following map hK : Gln//(Gln−k×Glk) → Invn,k, hk(M) =

MJkM
−1. This map is a well defined regular bijection because of lemma 3.13.

The map also respects the Gln action on both spaces:

hk(g ·M) = hk(gM) = gMJkM
−1g−1 = g ·MJkM

−1 = g · hk(M).

This is surjection, thus Invn,k is irreducible and a smooth manifold.

The fact that a bijection exists is not terribly interesting, but this one

respects the following group actions. Let us consider the followingGln actions

on Gln//Gln−k×Glk and Invn,k: let g ∈ Gln, g ·M = gM and g ·A = gAg−1.

Recall that we defined the quotient og Gln using right multiplication, this

means that multiplication on the left is a well defined action. The second

group action could also be defined on the entire space Rn(Z/(2)), but this

action would not be transitive, which it is on Invn,k. We prove that it is an

isomorphism.

Theorem 3.14. Let K = C. The map hk : Gln//Gln−k×Glk → Invn,k, f(M) =

MJkM
−1 is an isomorphism of Gln spaces.

Proof. To prove this we are going to use the Inverse function theorem. We

have already shown that hk is a bijectiion that respects the group action. It

is enough to verify that we have an isomorphism on the tangent space at a

single element, since we have a transitive group action (see theorem 5.3.3.

[13]).

TI(Gln//Gln−k ×Glk) = TI(Gln)/TI(Gln−k ×Glk) =Mn/(Mn−k ×Mk)
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Recall from theorem 3.11 that the tangent space at f(I) isMn/(Mn−k×Mk).

If N is some tangent vector, then N is sent to NJk−JkN . The tangent space

linear map is a bijection.

Despite Gln−k × Glk not being compact it still acts nicely on Gln. By

the fact that it is a stabilizer of each element is trivial it is a principal

Gln−k ×Glk-bundle by [12] proposition 4.7.

Let us take some time to understand these constructions, as well as state

some corollaries. The tangent space morphism is quite interesting in this

context. If we have a regular map of varieties ϕ : V → W we get an induced

morphism of schemes ϕ∗ : O(W ) → O(V ) which is defined in the following

way ϕ∗(g) = g ◦ ϕ. This gives us a map of tangent spaces. Let the dashed

arrow be a tangent at p ∈ V , the precomposing with ϕ∗ is a tangent at ϕ(p)

O(W ) K

O(V ) K[ϵ]

evϕ(p)

ϕ∗ projevp

Example 3.15. Consider the algebras C[a, b, c]/(a2+bc−1) and C[a, b, c, d, t]Gl1×Gl1/((ad−
bc)t − 1). The second is the collection of Gl1 × Gl1 In this example we can

explicitly compute the induced morphism. We just proved that the regular

map

f
([ a b

c d

])
= t

[
a b

c d

][
1 0

0 −1

][
d −b
−c a

]
= t

[
ad+ bc −2ab

2cd −(ad+ bc)

]

is an isomorphism of varieties. The induced map of algebras is thus also an

isomorphism. This approach tells us that we can understand C[a, b, c, d, t]Gl1×Gl1/((ad−
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bc)t− 1) by looking at the generators of C[a, b, c]/(a2 + bc− 1).

h∗1(a) = adt+ bct

h∗1(b) = −2abt

h∗1(c) = 2cdt

These are generators. They are invariant under our group action. The group

action is multiplying with a diagaonal matrix G, meaning we multiply each

row with a scalar. The group action multiplies a and c with a with the first

diagonal entry, b and d with the second diagonal entry, and t is multiplied

with the inverse of both. Thus we get

G · adt+ bct = adt+ bct

G · abt = abt

G · cdt = cdt.

Corollary 3.16. The isomorphism from 3.14 tells us that the collection of

h∗k(Xi,j) is a set of generators of O(Gln)
Gln−k×Glk .

Proof. This is a simple matter of using the functoriality property. It tells us

that h∗k is an isomorphism, thus it maps generators to generators.
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4 Z/(2)× Z representations

Now that we understand Rn(Z/2) we can apply this knowledge to compute

the representation variety of the other frieze groups. Z/(2) × Z can be un-

derstood as a group with two generators and the relation that one of them

is an involution and that the other must commute, meaning Z/(2) × Z ∼=
⟨a, b⟩/(a2, aba−1b−1). We are going to denote

CGln(A) := {B ∈ Gln|AB = BA}.

This is a closed subset, in particular it is a linear algebraic group. The

dimension in general depends on the jordan normal form of A (See Basic

Abstract Algebra [1] for a deeper dive into jordan normal forms). The case

for when A is an involution is simpler.

Proposition 4.1. Let A = MJkM
−1 ∈ Invn,k. Then CGln(A) = M(Glk ×

Gln−k)M
−1. Furthermore, it is a linear algebraic group of dimension k2 +

(n− k)2.

Proof. Let B be an invertible matrix that commutes with A, then

AB = BA

MJkM
−1B = BMJkM

−1

JkM
−1BMJK =M−1BM,

conjugating with Jk will change the sign on all elements not in the lower right

k×k or upper left (n−k)×(n−k) box. Therefore all those entries must be zero

inM−1BM . Thus B commutes with if and only if B ∈M(Glk×Gln−k)M
−1.

This is a closed subspace in Gln of dimension k2+(n−k)2. It is an isomorphic

conjugate to Gln−k ×Glk.

The hypothesis is thus that for every point in Invn,k we attach a fiber of

dimension k2 + (n− k)2 to it. So the dimension at that point would be the

sum of the dimension of the point in Invn,k plus the dimension of the fiber:

k2+(n−k)2+2k(n−k) = (n−k+k)2 = n2. The easiest way to demonstrate

that the dimension is n2 is through another tangent space computation.
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Theorem 4.2. For any ρ ∈ Rn(Z/(2)×Z) the dimension of TρRn(Z/(2)×Z)
is n2.

Proof. We do the standard tangent vectors to satisfy the relations on the

generators of Z/(2) × Z = ⟨a, b⟩/(a2, ab = ba). We see what this means for

the tangent vectors:

(A+ Cϵ)2 = I

AC = −CA
(A+ Cϵ)(B +Dϵ) = (B +Dϵ)(A+ Cϵ)

AB + (AD + CB)ϵ = BA+ (DA+BC)ϵ

AD −DA = BC − CB.

From theorem 3.11 and proposition 4.1 we know that there are matri-

ces M ∈ Gln, F ∈ Mn/(Mk × Mn−k), G ∈ Glk × Gln−k such that C =

MFM−1, A = MJkM
−1 and B = MGM−1. We expand on AD − DA =

BC − CB

MJkM
−1D −DMJkM

−1 =MGFM−1 −MFGM−1

JkM
−1DM −M−1DMJk = GF − FG.

Recall that multiplying with Jk from the left changes the sign on the bottom k

rows, and multiplying from the right changes the sign on the k columns to the

right. We denote the bottom left k×n−k box ofM−1DM as (M−1DM)k×n−k

and the top right k × n− k box of M−1DM as (M−1DM)n−k×k. Thus

JkM
−1DM −M−1DMJk =

[
0 2(M−1DM)n−k×k

−2(M−1DM)k×n−k 0

]
,

This tells us that the matrix −M−1DM is restricted in the lower left and

upper right, but can be anything in the upper left and lower right. More

formally, the map that conjugates a matrix with M−1 then flips the sign on

the first n − k columns is a linear isomorphism on Mn. The dimension of

the space with the top left (n− k)× (n− k) and bottom right k × k box is
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k2 + (n− k)2 dimensional. The space of permitted D is the preimage of this

isomorphism. Adding the dimensions of permitted C and permitted D we

get k2 + (n− k)2 + 2k(n− k) = (n− k + k)2 = n2.

It is possible to think of the whole space as one n2 dimensional variety

(or a manifold that is not connected), but that would not quite capture

the nature of what is going on here. As discussed earlier, each point is a

combination of two matrices, one from an involution space, and one from

the commutator space of that matrix. The higher the dimension of the

involution space, the lower the dimension of the commutator space. We

want to formalize this by showing that there is a map making

ICn,k := Rn(Z/(2)× Z)
⋂

Invn,k ×Gln → Invn,k

is a principal Gln−k ×Glk-bundle.

Theorem 4.3. The map ICn,k → Invn,k that sends

(A,B) → A

is a principal Gln−k ×Glk-bundle.

Proof. We want to find a Gln−k×Glk action such that every point has trivial

stabilizer, and such that

ICn,k//Gln−k ×Glk ∼= Invn,k.

We define the following Gln−k ×Glk action. For A =MJkM
−1 ∈ Invn,k and

G,H ∈ Gln−k ×Glk with B =MHM−1. Let

G · (A,B) = (A,BMGM−1) = (A,MHGM−1).

The stabilizer at any point is trivial. The orbit of (A,B) is A × CGln(A).

Thus

ICn,k//Gln−k ×Glk ∼= Invn,k.

We therefore have the desired result from proposition 4.7. in [12].
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Corollary 4.4. ICn,k is an n2 smooth complex manifold.

Proof. By theorem 4.2 we know that every point on ICn,k is smooth of di-

mension n2. We only need for it to be irreducible. Since Gln ×Gln−k ×Glk

is irreducible we need only fin a surjective morphism from Gln×Gln−k ×Glk

to ICn,k. If M ∈ Gln, G ∈ Gln−k ×Glk then the map that sends

(M,G) → (MJkM
−1,MGM−1)

is surjective.
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5 GIT quotients and Character varieties

In mathematics we are often interested in quotients of mathematical objects.

In particular we are interested in when the quotients are objects with a similar

structure. From group theory we know that the quotient of a subgroup is a

group if and only if the subgroup is normal. If we want to quotient out an

arbitrary subgroup we would need to normalize it.

For the category of affine algebraic schemes (or varieties) we are also

interested in taking quotients of relations. Here we will discuss what happens

when that relations are orbits of a group action on our space. If we have

the G space V , we want to define the quotient V//G such that it is the

scheme for O(V )G. The naive quotient could fail us, here is an example from

Heusener[4]:

Example 5.1. LetGl1 act on C2 with multiplication: g·(a, b) = (ga, gb). The

only polynomials in O(C2) = C[X, Y ] left invariant by the group action are

the constant maps, so O(C2)C
∗
= C. We would therefore want C2//C ∼= {∗}.

We observe that the orbits are the lines passing through the origin, but

excluding the origin. The closures of these points are the entire lines. All of

these lines intersect.

We define the orbit of an element v ∈ V as O(v) := {w ∈ V |∃g ∈ G,w =

g · v}. We write [v] := {w|O(w) ∩ O(v) ̸= ∅}. We say that two elements are

related under GIT if the closures of their orbit intersect to avoid confusion.

[v] are thus the points in the GIT-quotient It is trivial that everything in

some orbit is related under GIT. In the above example everything is related

under GIT.

For our purposes the naivé quotient has worked until now. TakeGln//(Gln−k×
Glk) as an example. Gln−k×Glk is a closed subset, the orbit O(M) = {g ·M}
is thus also closed. It is however not the case for all G-spaces, including the

representation varieties of frieze groups.

Example 5.2. Consider M2
∼= C4 as a Gl2 space by g ·M = gMg−1. Every

matrix is conjugate to its Jordan normal form [1]. The possible jordan normal
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forms are [
λ1 0

0 λ2

]
,

[
λ 1

0 λ

]
.

The set of matrices with any given eigenvalues up to multiplicity is closed. In

the two dimensional case the eigenvalues can be deduced by combining the

trace and determinant. The matrices with eigenvalues λ1, λ2 are the same as

V (a+ d = λ1+λ2)
⋂
V (ad− bc = λ1λ2). The polynomials a+ d, ad− bc also

generate the invariant algebra. We now want to show that any two matrices

with the same eigenvalues are related under GIT.[
ϵ 0

0 1

][
λ 1

0 λ

][
ϵ−1 0

0 1

]
=

[
λ ϵ

0 λ

]
.

Thus the orbit of any matrix contains the diagonal matrix with corresponding

eigenvalues in its closure, and the space of matrices of any given eigenvalues

is closed. We use that fact that the standard closure is contained in the

Zariski closure [7]. In summation, the class [M ] is entirely determined by

its eigenvalues. M2//Gl2 ∼= C2. This computation can be generalized to

Mn//Gln ∼= Cn (see example 1.2. [3]).

5.1 Character varieties

We are mainly interested in a speceific type of GIT-quotient called the char-

acter variety. If we have a representation variety Rn(Γ), we can act on

that variety via conjugation. If ρ ∈ hom(Γ, Gln), G ∈ Gln then we de-

fine (G · ρ)(x) = Gρ(x)g−1. Using this group action we define the charac-

ter variety Xn(Γ) := Rn(Γ)//Gln. We have already described Rn(Z/(2))
as the coproduct of different conjugacy classes, therefore Xn(Z/(2)) is a

set of n + 1 elements. The goal for the remainder of this text is to com-

pute the character varieties of frieze groups. The first one is well known,

Rn(Z)//Gln = Gln//Gln.
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Example 5.3. Let Gln act on itself by conjugation. We expand on what we

did in example 5.2. The same idea applies, we want to find a closed set that

captures the matrices with some given eigenvalues. For the two dimensional

case we used the trace and determinant. This generalizes nicely to higher

dimensions. If we look at the characteristic polynomial of a 2× 2 matrix we

get ∣∣∣∣∣ a− λ b

c d− λ

∣∣∣∣∣ = λ2 − (a+ d)λ+ (ad− bc).

This tells us that the trace and determinant are really just the coefficients

of the characteristic polynomial. The characteristic polynomial, including

all of its terms are left invariant by conjugation. They therefore give us the

invariant polynomials, see example 1.2 in Lectures on invariant theory[3].

The coefficients also give us the polynomials that define the closed set of

matrices with any given eigenvalues. We can conjugate on both sides to

show that the orbit of any matrix contains a diagonal matrix in its closure.

The polynomial coefficients can have any value other than the determinant.

The determinant needs to be invertible, Gln//Gln ∼= Gl1 × Cn−1.

This example gives us the blueprint to compute the character variety of

Z/(2)× Z.

Theorem 5.4. Xn(Z/(2)×Z) is a disjoint union of n+1 copies of Gl1×Cn−1.

Proof. We already know that we can rewrite the variety as

Rn(Z/(2)× Z) =
∐

0≤i≤n

ICn,i,

and also rewrite

Xn(Z/(2)× Z) =
∐

0≤i≤n

ICn,i//Gln.

We shall compute ICn,k//Gln one at a time. Note that any element in

Xn(Z/(2)×Z) can by proposition 4.1 be written as [Jk, G], G ∈ Gln−k×Glk.
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Since the elements in Gln−k × Glk commute with Jk we can conjugate G

such that it is arbitrarily close to a diagonal matrix like in example 5.2.

The eigenvalues of G are preserved by the conjugation. The set of pairs

(A,B) ∈ Rn(Z × Z/2) with B having a given set of n eigenvalues is closed,

and any two pairs in this set are related under GIT.

Since this argument is independent of k we have that Xn(Z/(2) × Z) is
n+ 1 copies of Gl1 × Cn−1

32



6 D∞ Representations

In a previous section we discussed Rn(Z/(2), this is not a frieze group, how-

ever it is necessary to understand this if we want to understand Rn(D∞).

The reason for this is that D∞ is the free product of two copies of Z/(2).
What does that mean exactly? Z/(2) is defined as a group with one gen-

erator a where a2 = e. Describing the free product can be a bit technical,

the general idea is that you take the generators for each group and you add

the relations that define each of them separately. Let us take two Z/(2)
with generators a and b, then D∞ := (a, b)/(a2, b2). Something very inter-

esting happens here. Despite it being a free product of two finite groups, the

dihedral group is in fact infinite. Its elements are strings of a and b that al-

ternate. D∞ = {e, a, b, ab, ba, aba, bab, abab, baba, . . .}. The strings that have

odd length are involutions (a(ba)n)2 = e = (b(ab)n)2. The strings of even

length greater than 0 are not involutions, their inverse is the other string of

equal length, (ab)n(ba)n = e.

A Gln representation will send a to an involution A and b to an involution

B. There are no additional requirements. Finding a representation of this

group is simply a matter of finding two involutions. Thus

Rn(D∞) = Rn(Z/(2))×Rn(Z/(2)) =
∐

0≤i≤n
0≤j≤n

Invn,i × Invn,j

We will write ρ(a) = A, ρ(b) = B. Every point is smooth and the dimension

at (A,B) is dim(A,B)Rn(D∞) = dimARn(Z/(2)) + dimB Rn(Z/(2)).

6.1 The Character Variety of D∞

On the surface this might not seem to be that much more difficult than to

find the character variety of Z/(2), but that is not the case. We can describe

Rn(D∞) as an ordered pair of involutory matrices, (A,C) and (B,D) be two

such pairs. We wish to discuss under what circumstances these pairs are

congruent. Clearly A needs to be similar to B and C needs to be similar to
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D, but that is not enough, there needs to be a G ∈ Gln such that

G · (A,C) = (GAG−1, GBG−1) = (B,D)

Let A,B ∈ Invn,k, we want to describe all G ∈ Gln such that g · A = B.

We have an isomorphism described earlier hk : Invn,k → Gln//Gln−k ×
Glk. We can therefore compute in a different space, h(G · A) = G · h(A) =
Ghk(A) = hk(B). G must be an element in hk(B)(Gln−k × Glk)hk(A)

−1.

Similarly if C,D ∈ Invn,l then G · C = D if and only if G ∈ hl(D)(Gln−l ×
Gll)hl(C)

−1.

This does not like something one could easily compute by brute force,

and we have yet to take into account that two elements are related not just if

they are in the others orbit, but also if the closures of their orbits intersect.

Example 6.1. Let us attempt to compute X2(D∞). R2(D∞) is isomorphic

to 4 copies of Inv2,1, 4 copies of {∗} and one copy of Inv2,1 × Inv2,1. By

taking the GIT quotient we get 8 copies of {∗} and one Inv2,1× Inv2,1//Gl2.

The last space is the pairs

A =

[
a b

c −a

]
, B =

[
d e

f −d

]
, a2 + bc− 1 = 0, d2 + ef − 1 = 0

with two pairs related if the closures of their orbits intersect. We notice

that the first element can be conjugated to J1, (A,B) (J1, C). If we want to

conjugate further while preserving J1 then we must conjugate with a diagonal

matrix. We compute how this effects C[
λ1 0

0 λ2

][
a′ b′

c′ −a′

][
λ−1
1 0

0 λ−1
2

]
=

[
a′ λ1λ

−1
2 b′

λ−1
1 λ2c

′ −a′

]
,

the entries on the main diagonal are preserved. We want to find M such

that A =MJ1M
−1. This can be achieved by computing eigenvectors for the

eigenvalues 1 and −1[
a− 1 b

c −a− 1

][
x

y

]
= 0,

[
a+ 1 b

c −a+ 1

][
x

y

]
= 0,
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using this we can set

M =

[
b b

a− 1 a+ 1

]

if b ̸= 0. We set ρ′ =M−1ρM . ρ′(a) = J1 It now remains to compute ρ′(b)

M−1BM =

[
2ad+bf+ce

2
g

h −2ad+bf+ce
2

]
.

The g and h can be expressed, but they are not unique. What this means

that if we have a pair (A,B) that is conjugate to (J1, C) then the main

diagonal on C is uniquely determined by the entries in (A,B).

2ad+ bf + ce

2
= a′.

If b = 0 then we know that

A =

[
±1 0

c ∓1

]
.

We can write it as one of

A =

[
1 0

c −1

]
=

[
1 0

c/2 1

][
1 0

0 −1

][
1 0

c/2 1

]−1

A =

[
−1 0

c 1

]
=

[
0 1

1 −c/2

][
1 0

0 −1

][
0 1

1 −c/2

]−1

.

In the first case we get[
1 0

c/2 1

]−1 [
d e

f g

][
1 0

c/2 1

]
=

[
2d+ce

2
h

g −2d+ce
2

]
In the second case we get[

0 1

1 −c/2

]−1 [
d e

f g

][
0 1

1 −c/2

]
=

[
−2d+ce

2
h

g −−2d+ce
2

]
.
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In either case we get

2ad+ bf + ce

2
=

2d+ ce

2
= a′

2ad+ bf + ce

2
=

−2d+ ce

2
= a′.

Which tells us the that the pairs (A,B) that conjugate to (J1, C) with the

upper left entry of C being a′ is a Zariski closed set in R2(D∞).

If b′c′ ̸= 0 then it follows that (J1, C) is conjugate to any other pair with

the first matrix being J1 and the second having the main diagonal be a′ and

−a′. Conversely b′c′ = 0 is equivalent to a′ = ±1. Then b′ = 0 or c′ = 0,

they are related to[ √
ϵ
b′

0

0
√

ϵ
b′
−1

][
a′ b′

0 −a′

][ √
ϵ
b′
−1

0

0
√

ϵ
b′

]
=

[
a′ ϵ

0 −a′

]
[ √

ϵ
b′
−1

0

0
√

ϵ
b′

][
a′ b′

0 −a′

][ √
ϵ
b′

0

0
√

ϵ
b′
−1

]
=

[
a′ 0

ϵ −a′

]
for arbitrary ϵ. Therefore [(J1, C)] contains either (J1, J1) or (J1,−J1). In

conclusion, the orbits of (J1, C) where a′ ̸= ±1 are closed. When a′ = ±1

then (J1,±J1) is contained in the closure of that orbit. Therefore we can

construct an isomorphism C ∼= (Inv2,1 × Inv2,1)//Gl2 that maps

a→
[([ 1 0

0 −1

]
,

[
a b

c −a

])]
Remark 6.2. The polynomial

2ad+ bf + ce

2

which we used to find the closed sets that defined the equivalence classes

under GIT is the invariant polyniomial, it does not change under conjugation.

Is it possible to compute X3(D∞) using similar techniques. The answer

in part Yes! The thing to note is that the bottom left element is left invariant

when we conjugate.
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Theorem 6.3. The space Invn,1 × Invn,1//Gln ∼= C for all n ≥ 2.

Proof. We define

C =

[
a 1− a

1 + a −a

]
.

The map ϕ : C → Invn,1 × Invn,1//Gln is defined as

a→

[(
Jn,1,

 1 · · · 0
...

. . .
...

0 · · · C

)]

Let (A,B) ∈ Invn,1 × Invn,1//Gln. By theorem 3.14 Invn,1 × Invn,1//Gln ∼=
((Gln//Gln−1×Gl1)× (Gln//Gln−1×Gl1))//Gln. We map (A,B) to (M,N)

using this isomorphism.

(M,N) ∼ (I,M−1N)

(A,B) ∼ (Jn,1,M
−1NJn,1N

−1M) = (Jn,1, A
′)

Conjugating (Jn,1, A
′) with Gln−1 ×Gl1 preserves the bottom right entry in

A′, therefore the map

[(A,B)] → −a

where −a is the entry on the bottom right is a regular map. Meaning it can

be written as a polynomial expression using entries in (A,B). The set of

pairs (A,B) that conjugate to some (Jn,1, A
′) is therefore closed.

We will now assume that A = Jn,1 and that the bottom right entry of

B is −a. We want to show that all such pairs are related under GIT, by

showing that (Jn,1, B) ∈ [ϕ(a)]. This will be proved using induction. Let

n > 2, the statement is true for n = 2 from our computation of X2(D∞), we

also assume the statement is true for n−1. We map this pair to (I,N) using

the above isomorphism. We will not change the conjugacy class of this pair

if we multiply either left or right using matrices in Gln−1×Gl1. In particular
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we can perform column operations such that the bottom right entry is 0.

This is done by either performing an appropriate row operation if the entry

to the right is non-zero, if it is zero we can instead swap the rows. There

needs to be some entry on the first column that is non-zero. This is not the

bottom entry, we swap a non-zero entry to the top of the column. We then

multiply and row eliminate such that the first column is

e1 =

 1
...

0

 .
Now we map back to (Jn,1, B

′) ∈ Invn,1 × Invn,1. The first column of B′ is

e1. We conjugate the pair by
ϵ 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The matrix B′ but with the top row being e1 is in the closure of the conjugacy

class of (Jn,1, B). The B′ but where we remove the first row and column is in

Invn−1,1. We have thus successfully reduced to a lower dimensional case, we

can thus invoke the induction hypothesis and conclude that(Jn,1, B) ∈ [ϕ(a)].

In conclusion, we showed that the set of pairs (A,B) that are related to

some (Jn,1, B
′) with the bottom right entry of B′ being −a is a closed set

and that any such pairs are related under GIT. We can thus conclude that

ϕ is an isomorphism.

This covers only some of the non 0-dimensional components of X3(D∞).

We also need to think about Inv3,1×Inv3,2//Gl3. This can also be computed

in general.

Theorem 6.4. Let Gln act on Invn,1 × Invn,n−1 by conjugation, then the

GIT-quotient Invn,1 × Invn,n−1//Gln is isomorphic to C.
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Proof. Similarly to 6.3 we want to conjugate (A,B) to the form (J1,MJn−1M
−1),

conjugating with Gln−1×Gl1 will preserve J1 as well as the bottom right en-

try of the other matrix. We can multiply M with Gln−1 ×Gl1 from the left

and Gl1×Gln−1 from the right and still be in the same conjugacy class. This

means that we can freely perform row operations on all but the bottom row,

and perform column operations on all but the column furthest right. We

want to reduce M to a matrix of the form

N =

 a 0 b

0 I 0

c 0 d

 .
This is a matrix where the inner box is the identity and the all entries other

then the ones in the corners are zero. The first step is to perform column

operation such that the all but the first and last entry on the bottom row

are 0. This is possible since if there is a non-zero entry among them this

is possible, if all the entries are 0, we are already where we want to be.

Afterwards we perform row operations such that the top left (n−1)× (n−1)

box is diagonal. Now the matrix looks like this a 0 b

0 D
...

c 0 d

 .
The entries in D have to be different from 0 for the matrix to be invertible.

We invert the elements on the diagonal and perform column operations such

that all the entries between b and d become 0. We conjugate Jn−1 by N and

get

NJn−1N
−1 =

 −ad+bc
ad−bc

0 2ab
ad−bc

0 −I 0

− 2cd
ad−bc

0 ad+bc
ad−bc

 .
From here we take a similar approach as we did when computing X2(D∞)

and show that Invn,1 × Invn,n−1//Gln ∼= C.
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Corollary 6.5. X3(D∞) is isomorphic to the disjoint union of 12 copies of

{∗} and 4 copies of C.

Proof. We first write out the representation variety

R3(D∞) =
∐

0≤i≤3
0≤j≤3

Inv3,i × Inv3,j.

It contains 12 segments where either i or j equals 0 or 3. The GIT-quotients

of these are {∗}. Theorem 6.3 and 6.4 tells us that the remaining 4 segments

are C,

We will not compute Xn(D∞) for higher n, but we will give some results

that could be generalized to compute these spaces.
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7 Group Cohomology and T[ρ]Xn(D∞)

A module can be described as an abelian group with a ring acting on it

such that the action is distributive, associative and the identity acts trivially

on the group. Similarly an abelian group with a group acting on it with

the same axioms satisfied is called a group module. The notion of a group

module is really just a specific case of the general idea of a module over a

ring. For any G module M one can easily give M a Z[G] structure, where
Z[G] is the group ring. The underlying abeilan group of the ring is the

free abelian group on the group. Multiplication is defined in the following

way (
∑n

i=1 aigi)(
∑m

i=1 bihi) =
∑n

i=1

∑m
j=1 aibjgihj. Any Z[G] module has

an underlying G module structure. we can simply look at how g acts on

our module. These constructions are equivalences of categories. Thus the

category of G-modules is abelian.

Remark 7.1. For the star of this section we will use some notation that is

very standard, but not used other places in this text. We useM for a module

and G for a group, even if both these letters are used for different matrices

other places in the text.

Example 7.2. Any abelian groupM is a Z module. n ·m = m+m+ . . .+m,

the addition is performed n times.

Example 7.3. The main example we are working with is adρ, where ρ is a

Gln represantation of a group Γ. The abelian group is Mn and it has the Γ

action g ·M = ρ(g)Mρ(g)−1

We are going to be applying two different definitions. We us both the

following and the one using derived functors, in particular it means that the

construction below gives a chain complex. See [6] chapter 2 for a breakdown.

Definition 7.4. Let M be a G module. We define C0(G,M) := M and for

n ≥ 1, we define the n-cochains Cn(G,M) to be functions from Gn to M .
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They are abelian groups using addition. The coboundary maps are as follows:

d1m(g) = g ·m−m

and for ϕ ∈ Cn(G,M) we define

dn+1ϕ(g1, . . . , gn+1) = g1 · ϕ(g2, . . . , gn+1) +∑n
i=1(−1)iϕ(g1, . . . , gi−1, gigi+1, . . . , gn+1) + (−1)n+1ϕ(g1, . . . , gn)

The other cochains and coboundary maps are 0. From here cohomology is

defined in the usual way:

Hn(G,M) := Ker(dn+1)/Im(dn)

Let us unpack what this definition means for lower homology groups.

d1m = 0 is equivalent to g · m = m. The zeroth cohomology are the G-

invariant elements of M . The 1-cocycles are maps ϕ : G → M that satisfy

ϕ(g1g2) = g1 ·ϕ(g2)+ϕ(g1). Therefore ϕ(e2) = ϕ(e) = e ·ϕ(e)+ϕ(e) = 2ϕ(e),

meaning that ϕ(e) = 0. This identity also tells us that if we know what ϕ(g1)

and ϕ(g2) are then we know what ϕ(g1g2) is. More generally: we only need

to understand what the generators of a group are mapped to know what the

entire group is mapped to. We also kill maps of the form ϕ(g) = g ·m−m.

It should be noted that the abelian group Hn(G,M) ∼= ExtnZ[G](Z,M).

This is useful for making computations, especially for higher dimensional

cohomology groups. We give two examples to demonstrate the usefulness of

this observation. The first example is also useful to demonstrate that certain

cohomology groups are independent of the module M .

Lemma 7.5. Hn(Z,M) = 0 for all n ≥ 2 regardless of how Z acts on M .

Proof. Let x be a generator of Z. Using this notation Z[Z] looks like the ring
of finite formal power series over Z. We define aug : Z[Z] → Z, aug(

∑n
i=m aix

i) =∑n
i=m ai. The sum of the coefficients in a polynomial equals zero if and only
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if x− 1 divides the polynomial. Thus ker(aug) = (x− 1)Z[Z]. We obtain the

following projective resolution.

. . . −→ 0 −→ (x− 1)Z[Z]−→i Z[Z]−→
aug

Z −→ 0

Therefore ExtnZ[Z](Z,M) = 0 for all n ≥ 2.

Lemma 7.6. IfM is an abelian group where 2 is divisible. Then Hn(Z/(2),M) =

0 for all n ≥ 1, regardless of how Z/(2) acts on M .

Proof. The 1-cocycles are the maps ϕ with ϕ(g1g2) = g1 · ϕ(g2) + ϕ(g1). In

particular the cochains need to send the identity to 0 ∈ M since ϕ(e) =

e ·ϕ(e)+ϕ(e), e acts trivially on M , so ϕ(e) = 0. If we kill the coboundaries

we force all g to act trivially on M . 0 = ϕ(e) = ϕ(a2) = ϕ(a)+ϕ(a) = 2ϕ(a).

Since 2 is invertible ϕ(a) = 0.

For the higher cohomology groups we are going to computeExtnZ[Z/2](Z,M).

We can create a projective resolution by making the following observations.

Firstly; aug : Z[Z/(2)] → Z, aug(n1 · a + n0) = n1 + n0 is an epimorphism.

The kernel of this map is (a− 1)Z[Z/(2)]. We thus obtain an exact sequence

Z[Z/(2)]−→
(a−1)·

Z[Z/(2)]−→
aug

Z −→ 0

The kernel of (a − 1)· is (a + 1)Z[Z/(2)], and the kernel of (a + 1)· is (a −
1)Z[Z/(2)]. Any ring viewed as a module over itself is projective. Now we

are ready to make a projective resolution:

. . . −→
(a−1)·

Z[Z/(2)]−→
(a+1)·

Z[Z/(2)]−→
(a−1)·

Z[Z/(2)]−→
aug

Z −→ 0

From this we conclude that the even degree homology for n ≥ 2 are the

same and that the odd degree homology are the same as H1(Z/(2),M) = 0.

We applyHom(−,M) and compute homology at the even degree. Ext2Z[Z/(2)](Z,M) =

(a+ 1)M/(a− 1)M = 0 since 2 is divisible.
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7.1 Cohomology and the Tangent space

Our interest in the cohomology of groups is that it is a great aid for computing

the dimension of tangent spaces of representation and character varieties. In

general there is an injective map from Tρ(Rn(Γ)) to Z
1(Γ, adρ), we will show

what this map looks like later on. There is also an isomorphism Tρ(Xn(Γ)) ∼=
H1(Γ, adρ) for irreducible representations.

Lemma 7.7. There is an isomorphism between Tρ(Rn(D∞) and Z1(D∞, adρ),

in particular they have the same dimension.

Proof. The 1-cocycles are maps ϕ : Z/(2) → adρ that satisfy ϕ(gh) = g ·
ϕ(h) + ϕ(g). This means that:

0 = ϕ(e) = ϕ(a2) = a · ϕ(a) + ϕ(a)

0 = ϕ(e) = ϕ(b2) = b · ϕ(b) + ϕ(b)

a · ϕ(a) = −ϕ(a)
a · ϕ(b) = −ϕ(b)

This is in fact the exact same criteria placed on the term in front of ϵ from

lemma 3.11. What this means is that all 1-cocycles are induced by tangent

vectors, and that all tangent vectors can be induced by 1-cocycles. We con-

struct a map that takes A+Bϵ and sends it to the map ϕ(a) = B. Since this

respects the linear structure of each space it is a linear isomorphism.

One might be tempted to try this exact same approach for all Γ. It does

almost work, but it needs a slight modification.

Theorem 7.8. There is an injective linear map h : Tρ(Rn(Γ)) → Z1(Γ, adρ)

Proof. Finding a tangent vector is the same as finding a dotted arrow making

the diagram below commute.
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O(Rn(Γ)) C

C[ϵ]

evρ

proj
T

And finding that arrow means we find an arrow making this diagram

commute:

Γ Gln(C)

Gln(C[ϵ])

ρ

proj
P

Thus P (g) = ρ(g)+u(g)ϵ. Define HT (g) := ϕ(g) = u(g)ρ(g)−1. Then we

compute:

1 + ϕ(g1g2)ϵ = P (g1g2)ρ(g1g2)
−1

= P (g1)P (g2)ρ(g2)
−1ρ(g1)

−1

= P (g1)(1 + ϕ(g2)ϵ)ρ(g1)
−1

= P (g1)ρ(g1)
−1 + P (g1)ϕ(g2)ρ(g1)

−1ϵ

= 1 + ϕ(g1)ϵ+ (ρ(g1) + ϕ(g1)ρ(g1)ϵ)ϕ(g2)ρ(g1)
−1ϵ

= 1 + (ϕ(g1) + ρ(g1)ϕ(g2)ρ(g1)
−1)ϵ

= 1 + (ϕ(g1) + g1 · ϕ(g2))ϵ

which is equivalent to ϕ(g1g2) = g1 · ϕ(g2) + ϕ(g1).

One may be tempted to invert the function by sending ϕ(g) → ρ(g) +

ϕ(g)ρ(g). The problem is that this may not be well-defined. Example 2.18

in Heusner [4] is an instance when the inclusion is strict. It is generally the
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case that dim(Z1(Γ, adρ)) is greater than the or equal dimension at ρWe call

the representations where dimρRn(Γ) = dim(Z1(Γ, adρ)) scheme smooth,

by lemma 7.7 all representations in Rn(D∞) are scheme smooth.

What is clear is that the 1-cocycle group is closely related to the tangent

space of a representation variety. What about the tangent space of character

variety? There are strong results for certain types of representations. A Γ

representation ρ : Γ → Gln gives a Γ action on Cn by g · v = ρ(g)v. We

say that a subspace V ⊆ Cn is Γ-stable, or invariant if g · v ∈ V, ∀v ∈ V .

We mainly use stable not to confuse it with the Γ-action on the coordinate

ring of Rn(Γ). If a representation has no non-trivial stable subspaces we say

that it is irreducible. Heusener [4] gives the following result for irreducible

representations.

T[ρ]XGln(Γ)
∼= H1(Γ, adρ).

This result is a generalization of a stronger result about scheme smooth

semisimple representations, which are representations that split Cn into

irreducible representations. Heusner also states that ρ is semisimple if and

only if O(ρ) is closed, which is equivalent to O(ρ) = [ρ].

Example 7.9. A representation that is not semisimmple is ρ : Z → Gl2 that

sends

a→

[
1 1

0 1

]
.

It is not irreducible by a · (v, 0) = (v, 0), so it has a stable subspace, but it

is also the only proper stable subspace. Therefore the space does not split.

We can factor the matrix into involutions in the following way[
1 1

0 1

]
=

[
1 −1

0 −1

][
1 0

0 −1

]
,

which tells us that the representation that sends the generators of D∞ to

those involutions is not semisimple. This corresponds to the fact that orbit

of this representation is not closed as seen in the computation of X2(D∞).
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We define the centralizer subgroup of Gln as CGln(ρ(Γ)) = {M ∈
Gln|Mρ(g) = ρ(g)M,∀g ∈ Γ}. Adam Sikora [11] gives a proof that for

scheme smooth semisimple Gln representations of finitely generated groups

we have

T[ρ]Xn(Γ) = T0(H
1(Γ, adρ)//CGln(ρ(Γ))).

The group action on H1(Γ, adρ) by CGln(ρ(Γ)) is conjugation.

Remark 7.10. CGln(ρ(Γ)) = H0(Γ, adρ)
⋂
Gln. Schur’s lemma [9] tells us

that that for irreducible representations H1(Γ, adρ) equals the diagonal ma-

trices with all entries on the diagonal being the same, these will commute

with any matrix. In particular dimH1(Γ, adρ) will have its lowest possible

value, namely 1. If this is the case then the centralizer will only include the

matrices in Gln that commute with all matrices, meaning the group action

is trivial and we get

T[ρ]XGln(Γ)
∼= T0(H

1(Γ, adρ)).

Hopefully we have properly motivated why we are interested in group coho-

mology.

7.2 Cohomology of D∞

Our goal now is to computeHm(D∞, adρ) for different ρ andm. The simplest

of these to compute should beH0(D∞, adρ) as it is essentially the intersection

of two centralizers, but even this one can be demanding as we increase the

dimension. Computing the higher cohomology groups of D∞ may be even

more difficult to do directly, thankfully we can use the Lyndon-Hochschild-

Serre spectral sequence (see Homology of Linear Groups Appendix 2 [5]) to

compute the cohomology for m ≥ 2. If you have a short exact sequence of

groups with D∞ as the middle term you can compute the homology of the

middle term by using the homology of the adjacent groups in the sequence.

What we mean by a short exact sequence is essentially the mapping of a
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normal subgroup into the middle term, then taking the quotient. The trick

is to find a fitting short exact sequence.

We look at some of the subgroups that reside in D∞. There are of course

the cyclic subgroups generated by a and b, however these are not normal.

The infinite cyclic subgroup generated by ab is a better candidate. This

group can also be described as the elements which have an even amount of

characters, conjugating would either add no characters, or add/subtract an

even number of them, it is therefore a normal subgroup. The quotient is

Z/(2). We obtain the following short exact sequence:

0 −→ Z −→ D∞ −→ Z/(2) −→ 0

which is used to prove the following theorem:

Proposition 7.11. Hn(D∞, adρ) = 0 for all n ≥ 2.

Proof. Using the above short exact sequence and the Lyndon-Hochschild-

Serre spectral sequence we know there is a spectral sequence of cohomological

type:

Hp(Z/(2), Hq(Z(adρ))) =⇒ Hp+q(D∞, adρ)

From the lemmas 7.5 and 7.6 we know that Hp(Z/(2), Hq(Z(adρ))) = 0

for all p ≥ 1 andHq(Z(adρ)) = 0 for all q ≥ 2. The E0,0
2 and E0,1

2 are therefore

the only two entries that do not have to be zero. Hp+q(D∞, adρ) = 0 for all

p+ q ≥ 2.

Remark 7.12. While this result is not used directly further on in this text

it is still a result that could be useful further on if we want to prove further

results about Xn(D∞).

Now we want to introduce some additional notation. If it is clear what
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group representation we are discussing we may use the following:

cm := dimCm(Γ, adρ))

bm := dimBm(Γ, adρ))

zm := dimZm(Γ, adρ))

hm := dimHm(Γ, adρ)).

We have computed hm = 0,m ≥ 2, now we want to demonstrate the a

relationship that exists between h0 and h1.

Theorem 7.13. Let ρ : D∞ → Gln be a homomorphism such that ρ(a) =

A ∈ Invn,k, ρ(b) = B ∈ Invn,l, then h
0 − h1 = n2 − 2k(n− k)− 2l(n− l)

Proof. Recall that h0 = z0, h1 = z1−b1 by the definition of group cohomology

and the fact that z0+b1 = c0 = n2, which follows from them being the kernel

and the image of the same linear map. From lemma 7.7 we also know that

z1 = dimρ(Rn(D∞)) = 2k(n− k) + 2l(n− l).

h0 − h1 = z0 − z1 + b1 = z0 − z1 + n2 − z0 = n2 − 2k(n− k)− 2l(n− l)

What this tells us is that h1 can be computed by computing h0. This

can be a much simpler task. In the instance of ρ being irreducible we will

demonstrate that dimT[ρ]Xn(D∞) = 1.

7.3 Irreducible D∞ Representations

The definition of an irreducible representation is one which the Γ-stable sub-

spaces under g · v = ρ(g)v are zero and the whole space. Schur’s lemma

furthermore says that h0 = 1 for these, since specifically

H0(Γ, adρ) = {M ∈ adρ|ρ(g)Mρ(g)−1 = v,∀g ∈ Γ} = {v ∈ adρ|ρ(g)M =Mρ(g),∀g ∈ Γ},

and Schur’s lemma says that for irreducible representations λ · Id are the

only linear maps that commute with the Γ action. This is why we want to
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find irreducible representations. The induced D∞ action from ρ is essentially

multiplication with two involutions ρ(a) = A, ρ(b) = B. We begin by finding

an equivalent restating of a space being stable under one involution.

Remark 7.14. These next few theorems about stable subspaces use no as-

sumptions about C other than it having characteristic different from 2. The

assumption about K = C is necessary if we want to use Schur’s lemma (and

most other results).

Lemma 7.15. Let A be an involution on a finite-dimensional vector space

V . The subspace U is A-stable if and only if there is a basis of eigenvectors

spanning U .

Proof. If such a basis exists: {x1, . . . , xm} then for any vector in U :

A
( m∑

i=1

aixi

)
=

m∑
i=1

±aixi ∈ U

Let us now assume that U is A-stable. Let {x1, . . . , xm} be a basis for U .

The set:

S = {Ax1 + x1, Ax1 − x1, . . . , Axm + xm, Axm − xm}

is a set of eigenvectors that spans U by virtue of Axi+xi−(Axi−xi)
2

= xi and

A + I, A − I mapping onto their corresponding eigenspaces by lemma 3.4.

Also the set is contained in U since it is A-stable. We can therefore find a

subset pf S which is a basis of U .

Proposition 7.16. Let A and B be linear transformations on a vector space

V with dimV ≥ 2. If V only has trivial subspaces that are both A-, and

B-stable, then A and B have no common eigenvectors. If A and B also are

involutions over an n dimensional space then n is an even number and all

the eigenspaces of A and B have dimension n/2.

Proof. If A and B have some common non-trivial eigenvector x, then x spans

a stable subspace. Therefore A and B can not have common non-zero eigen-

vectors.
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Assuming that A and B are involutions over a vector space of dimension

n. From theorem 3.5 we know that

EA
1

⊕
EA

−1 =V = EB
1

⊕
EB

−1,

dimEA
1 + dimEA

−1 =n = dimEB
1 + dimEB

−1.

This in combination with A and B having no non-zero common eigenvectors

tells us that the intersection of any combination of these four spaces must be

0.

We want to use this fact to tell us that all of EA
1 , E

A
−1 and EB

1 , E
B
−1 must

have dimension equal to n/2. If dim(EA
1 ) > n/2 then at least one of

dim(EA
1

⋂
EB

1 ) > n/2 + dimEB
1 − n

dim(EA
1

⋂
EB

−1) > n/2 + dimEB
−1 − n

is greater than greater than 0, a contradiction. If dim(EA
1 ) < n/2 then

dim(EA
−1) > n/2 and the exact same argument would apply. We would also

make an identical argument if dim(EB
1 ) > n/2 or dim(EB

−1) > n/2. Thus

dim(EA
1 ) = dim(EA

−1) = dim(EB
1 ) = dim(EB

−1) = n/2 and n is even.

This gives us the tools to classify the irreducible representations.

Corollary 7.17. The representation ρ : D∞ → Gln, ρ(a) = A, ρ(b) = B is

irreducible if and only if n = 1 or n is even and there is no subspaces that

can both be generated from eigenvectors of A and eigenvectors of B.

Proof. 1 dimensional representations are trivially irreducible. If ρ is irre-

ducible then there are no non trivial stable subspaces by the definition.

Lemma 7.15 tells us that no subspace can both be generated from eigen-

vectors of A and eigenvectors of B. Proposition 7.16 tells us that n is even

if it is not 1.

Lemma 7.15 tells us that if no subspace can both be generated from

eigenvectors of A and eigenvectors of B then there are no non trivial stable

subspaces, thus ρ is irreducible.
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Remark 7.18. One may be tempted to use the condition that the four

eigenspaces EA
1 , E

A
−1, E

B
1 , E

B
−1 having no intersection is a strong enough cri-

teria, this is not the case. Consider

A =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , B =


1 0 2 0

0 2 0 1

2 0 1 0

0 1 0 2




1 0 0 0

0 1 0 1

0 0 −1 0

0 0 0 −1




1 0 2 0

0 2 0 1

2 0 1 0

0 1 0 2


−1

.

There is no intersection between the eigenspaces, but the subspace (v1, 0, v3, 0)

is stable.

Corollary 7.19. If ρ : D∞ → Gln is an irreducible representation then

dimT[ρ]Xn(D∞) = 1.

Proof. From theorem 7.13 and proposition 7.16 we know that

h0 − h1 = 1− h1 = n2 − 2
n

2
(n− n

2
)− 2

n

2
(n− n

2
) = n2 − n2

2
− n2

2
= 0.

Sikora [11] tells us that dimT[ρ] = h1 = 1.

For n = 1 every representation is trivially irreducible. What about for

n = 2.

Example 7.20. We look at

ρ→
([ 1 0

0 −1

]
,

[
a b

c −a

])
The subspaces that are J1-stable are the ones generated by e1 or e2. In

order for the other matrix to have one of these as stable either b or c needs to

be 0. As discussed in example 7.9, if only one is 0 then we have a reducible

representation that is not semisimple. If both are 0 then the representation is

reducible and semisimple. Lastly, if neither are 0 then the rep̊appresentation

is irreducible (and semisimple).
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7.4 The tangent space at [(Jk, Jl)]

The goal of this subsection is to prove that the tangent space at the point

[(Jk, Jl)] is of dimension min{n− k, k, n− l, l}. We do this by using the con-

struction from Sikora [11]. We first want to understand the spaceH1(D∞, adρ)

by using the definition.

Lemma 7.21. Let ρ : D∞ → Gln, ρ(a) = Jk, ρ(b) = Jl. Then the space

H1(D∞, adρ) is identified with the space of n × n matrices with all entries

except the ones in the bottom left min{k, l} × min{n − k, n − l} box and

the upper right min{n − k, n − l} × min{k, l} box (see figure in the proof).

Furthermore, the space H1(D∞, adρ)//CGln(ρ(D∞)) can be identified with the

space

Mmin{k,l}×min{n−k,n−l} ×Mmin{n−k,n−l}×min{k,l}//Glmin{n−k,n−l} ×Glmin{k,l},

the group action being (G,H) · (M,N) = (HMG−1, GNH−1).

Proof. The first step is in finding Z1(D∞, adρ). These are functions that

map a, b respectively to tangent vectors of Jk, Jl, we call these respectively

K,L. We then notice that we can the 1-coboundaries are functions that map

a, b respectively to JkMJk −M,JlMJl −M for some matrix M ∈ Mn. We

choose ψ(g) = g ·M −M such that the bottom left (n− k)× k box and the

top right k× (n− k) box of M has the exact same entries as those in K. We

then do the same for the remaining entries that overlap with the non-zero

entries in L. This function is identified with zero since ψ is a co-boundary,

so it can be added to both K and L. K − ψ(a) = 0, and L − ψ(b) is zero

but for the bottom left min{k, l} × min{n − k, n − l} box and the upper

right min{n− k, n− l} ×min{k, l} box. In the figure below the black box is

one of K,L and the blue box is the other one, the overlapping area is where

(ϕ− ψ)(b) is not 0.

53



min{n− k, n− l}

min{n− k, n− l}

min{k, l}

min{k, l}

To compute the GIT-quotient we need to compute the centralizer,

CGln(ρ(D∞)) = CGln(ρ(Jk))
⋂

CGln(Jl) = (Gln−k ×Glk)
⋂

(Gln−l ×Gll).

If an entry is 0 in either (Gln−k×Glk) or (Gln−l×Gll) then it must be zero in

the intersection. The entry in both the bottom left k× (n−k) and l× (n− l)
boxes as well as the top (n − k) × k and (n − l) × l boxes need to be zero.

Thus

CGln(ρ(D∞)) = Glmin{n−k,n−l} ×Glh ×Glmin{k,l}

where h is the integer such that n = min{n− k, n− l}+ h+min{k, l}. The
figure below illustrates this, the areas that are not 0 are the ones shaded

twice.

min{n− k, n− l}

min{n− k, n− l}

min{k, l}

min{k, l}
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We conjugate H1(D∞, adρ) with an element in Glmin{n−k,n−l} × Glh ×
Glmin{k,l}, G 0 0

0 F 0

0 0 H


 0 0 N

0 0 0

M 0 0


 G−1 0 0

0 F−1 0

0 0 H−1

 =

 0 0 GNH−1

0 0 0

HMG−1 0 0

 .
We notice that F ∈ Glh × Glh has no impact on H1(D∞, adρ), therefore

H1(D∞, adρ)//CGln(ρ(D∞)) can be identified with the space stated in the

theorem.

Before we compute this quotient in general we shall look at it in a 2-

dimensional case.

Example 7.22. If ρ maps both generators to J1 we are able to compute the

tangent space at those points by using the construction from lemma 7.21.

The 1-cocycles are the pairs[
0 b

c 0

]
,

[
0 a

d 0

]
.

the 1-coboundaries are the pairs[
0 b

c 0

]
,

[
0 b

c 0

]
.

Thus the first cohomology group is identified with the two dimensional

space of matrices [
0 b

c 0

]

being acted on by CGln(ρ(D∞)) = Gl1 × Gl1. We already worked with this

setup when we computed X2(D∞), but now we are going to look at it from a

different angle, that being the algebraic point of view as opposed to the geo-

metric point of view. Recall that H1(D∞, adρ)//CGl2(ρ(D∞)) is the scheme
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with the coordinate ring C[b, c]Gl1×Gl1 , we want to understand this algebra.

Conjugating the cohomolgy group with Gl1 × Gl1, as this is the centralizer

of J1. [
λ1 0

0 λ2

][
0 a

b 0

][
λ−1
1 0

0 λ−1
2

]
=

[
0 λ1λ

−1
2 a

(λ1λ
−1
2 )−1b 0

]
,

We see that this reduces to Gl1 acting on C2 with λ · (b, c) = (λb, λ−1c).

What we are interested in are polynomials f generated by b and c that are

left invariant by the group action. Since f(v, 0) = f(λv, 0) and f(0, v) =

f(0, λ−1v) it is necessary for there to be no terms with only b’s or c’s. Also,

f(1, λ) = f(λ, 1) for all λ. This means that the coefficient in front of bicj is

the same as the one in front of bjci, we call this coefficient γi,j. Let f be a

Gl1 ×Gl1 invariant polynomial with γi,i = 0,

f(α, α) =
N∑

i,j=0

γi,jα
i+j = 2

N∑
i,j=0,i<j

γi,jα
i+j

f(αλ, αλ−1) =
N∑

i,j=0,i<j

γi,jα
i+j(λj−i − λi−j),

we then define the polynomial

g(α, λ) := λNf(αλ, αλ−1)− λNf(α, α) = 0.

All the coefficients of this polynomial must be 0, in particular the coefficient

in front of αi+jλN+j−i must be zero. This coefficient is γi,j. This tells us that

the polynomials

N∑
i=0

γi(bc)
i

are the ones left invariant by Gl1 × Gl1. It is a subalgebra generated by bc.

This certainly looks similar to one of the invariant polynomials of M2 when

acted on Gl2 by conjugation. The invariant polynomials are the coefficients
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of the characteristic polynomial∣∣∣∣∣ a− λ b

c d− λ

∣∣∣∣∣ = λ2 − (a+ d)λ+ ad− bc.

The invariant polynomials are a + d, ad− bc. If we reduce these by sending

a and d to zero we get the same polynomial we computed that was invariant

under Gl1 ×Gl1, which was bc. By computing∣∣∣∣∣ −λ b

c −λ

∣∣∣∣∣ = λ2 − bc.

This idea can be generalized. We look at the characteristic polynomial

of matrices with only zero entries in the upper left and lower right. Here,

non-trivial means the coefficients that are not 0, 1,−1. The goal is to prove

that if k ≥ l, then the Glk ×Gll action on Ml×k ×Mk×l by (g, h) · (P,Q) =
(hPg−1, gQh−1) then the GIT quotient has dimension l. The way we do this

is that we first compute the invariant polynomials of a convenient subgroup.

Proposition 7.23. Set k ≥ l. Let Glk act on V = Ml×k × Mk×l by G ·
(P,Q) = (PG,G−1Q), G ∈ Glk. The invariant algebra O(V )Glk is freely

generated by the entries in PQ.

Proof. The general idea is to find a subspace of S ⊆ V such that the Glk · S
is dense in V in the Zariski topology. This is the the space is dense in V in a

euclidean sense. Recall that the euclidean closure of a set is contained in the

Zariski closure, if the euclidean closure is the whole space then the Zariski

closure must contain the whole space, meaning it is the whole space. It is

the case that any invariant polynomial on V is uniquely determined by how

it acts on a dense set. This dense set is furthermore determined by how Glk

acts on S. After proving this we then find the invariant polynomials on S

and verify that those are induced by the entries in PQ.

We set

S = (Pl, λIl),
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Pl has all entries not in the first l columns zero. Let (P,Q) ∈ V . It is clear

that if l = k this is true by simply choosing some G close to Q, we then see

that G1 · (PG, I) = (P,G).

We now assume k > l. There exists some G such that the first l columns

(which we denote Gl) are linearly independent, in addition none are in the

orthogonal complement of P , and lastly that ∥Gl −Q∥ < ϵ. This is possible

since that both the sets of matrices with linearly independent vectors and the

set of vectors not in the orthogonal complement have non-trivial are dense in

the euclidean sense, hence their intersection is also dense, but the matrices

which have a distance greater than ϵ from Q is not dense. Here we need the

assumption that k > l for the orthogonal to have dimension at least k − l.

The remaining columns of G are chosen so that they are linearly independent

and in the orthogonal complement to P . Thus PG only has non-zero entries

on the first l columns and G−1 · (PG, I) = (P,G) which is close to (P,Q).

Now we think of (P,Q) as a matrix of polynomial variables. The entries

are invariant polynomials since PQ = PGG−1Q. We evaluate the elements

of S by the entries in PQ. They correspond to the polynomials generated by

Pi,jλ.

The invariant polynomials of the space S are the ones where the combined

degree of Pi,j and λ are the same, hence the subalgebra generated by Pi,jλ. By

simply multiplying G with a scalar you can vary the value of any polynomial

that has entries where this condition does not hold true, see example 7.22

for how this can be done. Clearly there is an isomorphism

C[Xi,j] ∼= C[Xi,jλ] ∼= O(V )Glk ,

thus the entries in PQ freely generate the invariant algebra O(V )Glk .

Theorem 7.24. Let V = Mn/(Mn−k ×Mk) be the space of n × n matrices

with the upper left (n − k) × (n − k) and lower right k × k box only having

zero entries. The characteristic polynomial has at most Min{k, n− k} non-

trivial coefficients. Furthermore, if we let G = Gln−k ×Glk act on the space

by conjugation, then O(V )G is generated by the min{k, n − k} polynomial

coefficients in det(M − λI).
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Proof. Let M ∈ Mn/(Mn−k ×Mk) Since the upper left and lower right box

are empty we can write the characteristic polynomial as

det(M − λI) =

∣∣∣∣∣ −λI Q

P −λI

∣∣∣∣∣ = ∑
σ∈Sn

(sgn(σ)Πn
i=1(M − λI)i,σ(i)).

Sn is the group of permutations over n characters. Each term of the deter-

minant is either plus or minus the product of an entry from every row and

every column in the matrix. For every column, you either take the product

of an entry from M or λ. If a term contains Mi,j then this term can not

include the λ from either row i or row j. The diagonal in M is 0 so i ̸= j.

Each term also has an equal number of λ and entries fromM . The highest

number of entries fromM that are possible is 2min{k, n−k}. This is due to
the fact that you are limited from selecting entries from P and Q a number

of times equal to the number of rows or columns in each, depending on which

is lower. The lowest of these is min{k, n − k}. The non-trivial terms are in

front of

λn−2, λn−4, . . . , λn−2Min{k,n−k}.

There are min{k, n− k} of these.

If we now think of the entries in M as the generators of O(V ), we want

to demonstrate that the polynomials in front of λ are G-invariant, and that

they freely generate O(V )G. The Gln invariant polynomials over Mn are the

coefficients in front the λi in the characteristic polynomial, see example 1.2.

in Lectures on Invariant Theory[3]. Since the entries outside of P and Q are

zero before and after G acts on any matrix in V , it is the case that these

polynomial coefficients in front of λi are left invariant by G.

Secondly, we want to show that that the polynomials are algebraically

independent if we say that the entries in M are polynomial variables. We
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note that λI −M is equivalent to both[
λIn−k 0

0 λIk − (−P )(λIn−k)
−1(−Q)

]
=

[
λIn−k 0

0 λIk − (λIn−k)
−1PQ

]
[
λIn−k − (−Q)(λIk)−1(−P ) 0

0 λk

]
=

[
λIn−k − (λIk)

−1QP 0

0 λIk

]
We may assume that k ≤ n − k since if k > n − k we may work with the

second one and instead use QP , all the same arguments would hold. By

computing the determinant of the first we obtain

det(λIn −M) = det(λIk − PQ)

which is the characteristic polynomial of PQ. From proposition 7.23 we know

that the entries in PQ are algebraically independent, the theorem also tells us

that any invariant polynomial in O(V )G can be expressed using entries in PQ

since they are the invariant polynomials of the group action by the subgroup

Gln−k ⊆ Gln−k × Glk. We also know that the characteristic polynomials

over the entries in PQ are algebraically independent from the fact that the

invariant polynomials of PQ over conjugation are algebraically independent,

see Mn//Gln [3]. It is therefore the case that the characteristic polynomials

in are algebraically independent over the entries in P and Q since the entries

in PQ are algebraically independent over the entries in P and Q.

There are no additional invariant polynomials since that would imply

the existence of other invariant polynomials over the entries in PQ, but the

characteristic polynomial coefficients are all the invariant polynomials over

conjugation. Thus we have that the proposed min{k, n − k} polynomials

freely generate the invariant algebra.

Corollary 7.25. The tangent space T[(Jk,Jl)]Xn(D∞) has dimension min{k, l, n−
l, n− k}.

Proof. Lemma 7.21 and theorem 7.24 tells us that that for ρ(a) = Jk, ρ(b) =

Jl we have

dim(T0H
1(D∞, adρ)//CGln(ρ(D∞)) = min{k, l, n− l, n− k}).
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We only need to demonstrate that ρ is semisimple, then we can invoke the ar-

ticle by Sikora which states that the tangent space dimension is min{k, l, n−
l, n− k}. We observe that for the standard unit vectors ei that g · ei = ±ei.
We therefore can spit Cn into n 1-dimensional spaces, which completes the

proof.

If we combine the findings of this section we know that the tangent space

dimension of irreducible points is 1, we know that the tangent space dimen-

sion at [(Jn/2, Jn/2)] is n/2. This tells us that at most two out of the three

following statements can be true for even n ≥ 4.

• Invn,n/2 × Invn,n/2 is a smooth variety.

• The dimension of every point is the same (more particularly Invn,n/2×
Invn,n/2 ∼= CN).

• There exists irreducible representations.
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