
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Henrik Baldishol

Practical application of potential
fields path planning on robot
manipulator

Master’s thesis in Teknisk kybernetikk
Supervisor: Martin Føre
Co-supervisor: Bent Haugaløkken
July 2022M

as
te

r’s
 th

es
is

Henrik Baldishol

Practical application of potential fields
path planning on robot manipulator

Master’s thesis in Teknisk kybernetikk
Supervisor: Martin Føre
Co-supervisor: Bent Haugaløkken
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Sammendrag

Lakseoppdrett er en av Norges største industrier, med landbasert produksjon basert p̊a innovasjon
fra 1980-tallet. Mange teknologiske fremskritt er gjort siden konstruksjonen av de tidligste produk-
sjonsfasilitetene, er industrien fortsatt avhengig av manuel arbeidskraft for de fleste elementene i
produksjonsprosessen. Denne oppgaven (i med prosjektet Autosmolt2025[18]) er dedikert til å finne
autonome løsninger til en av de mer essensielle undergruppene av disse manuelle arbeidsoppgavene,
fjerningen av død fisk og avfall i smolttanker.

Løsningen har blitt jobbet med i oppgaven bruker revolutt-ledd robotmanipulatorer som er montert
p̊a en Remotely Operated underwater Vechile (ROV). Kun selve robotmanipulatoren er brukt i
oppgaven.

Den teoretiske delen av oppgaven omfatter teori rundt modellering, baneplanlegging og reguleringen
som kreves for å styre robotmanipulatorens end-effector mot ønsket posisjon, samtidig som at
rotasjonsledd og lenker unng̊ar å kollidere med hindringer i arbeidsomr̊adet.

Løsninger for baneplanlegging ble implementert med bruken av potensialfelt. Dette ble gjennomført
ved å modellere tiltrekkende felter som drar robotens rotasjonsledd mot ønsket sluttkonfigurasjon,
mens frastøtende felter ble implementert for å styre leddene bort fra hindringer. Minimalisering av
potensialer i disse feltene ble brukt som optimaliseringsobjektiv for å gradvis bevege manipulatoren
mot ønsket endeposisjon.

Den implementerte metoden med potensiale felter hadde en tendens til å bli fanget i lokale min-
imum. En ”random walk” metode ble implementert for å unng̊a dette problemet.

Flere tester ble gjennomført for å verifisere at baneplanleggeren klarer å finne kollisjonsfrie baner
mellom forskjellige konfigurasjoner. Testene viste at baneplanleggeren fortsatt har problemer med
lokale minimum, og at baneplanleggeren ikke klarer å genere komplette baner mellom konfiguras-
joner generelt. Optimaliseringsalgoritmen ble forsøkt forbedret ved å implementere Wolfe-kriterier
for å begrense steglengden p̊a algoritmen. En feil ble funnet i implementasjonen av Wolfe-kriteriene,
som derfor ikke kan brukes i den endelige optimaliseringsalgoritmen.

Banene som ble generert ble deretter brukt til å flytte robotmanipulatoren mellom forskjellige
konfigurasjoner. Manipulatoren klarte ikke å følge hele den planlagte banen.

Oppgaveen konkluderer med at potensiale felter var utilstrekkelig for et problem av slik kompleks-
itet. De fleste konfigurasjoner førte til ukomplette baner, da algoritmen ble l̊ast i et lokalt minima.
Noen forslag ble gitt til hvordan man kan forbedre delene av algoritmen som ikke virket som
konsekvenns av implementasjonen.

i

Abstract

Salmon production remains as one of Norways largest industries, with land-based production sites
ranging back to the 1980’s. While many technological advancements have been made since the
construction of the initial sites, the industry still relies heavily on manual workforce. This thesis
(in accordance with the Autosmolt 2025 project[18]) is devoted to find autonomous solutions to
one of the more essential subgroup of these labors, namely the removal of dead fish and waste in
the smolt tanks.

The solution pursued in this thesis made use of a revolute-joint robot manipulator, mounted on
a Remotely Operated underwater Vehcile (ROV). The robot manipulator alone is the subject of
study for this thesis

The theoretical research in the thesis concerns the modeling, path planning and control theory
required to control the robot manipulator’s end-effector towards a desired position, while the
joints and links of the manipulator avoid potential obstacles in the workspace.

Solutions for path planning were implemented by employing the potential fields method. This
was done by modeling attractive fields used to force the robot manipulator’s joints towards a
desired end configuration, while repulsive fields were implemented to enforce obstacle avoidance.
Minimization of potentials in these fields was then used as an optimization objective, in order to
incrementally move the manipulator to the desired end position.

The potential fields method is prone to get trapped in local minima of the optimization problem.
A method called ”randomised walk” was implemented in order to circumvent this issue.

A series of tests were conducted in order to verify the ability of the potential fields path planning
algorithm to find collision-free paths between different configurations. The tests revealed that the
problem of local minima had not been solved, and the path planning algorithm was not able to
generate complete paths for a general set of configurations. An effort was made to improve the
optimization algorithm by implementing Wolfe conditions, used to decide how far the optimization
algorithm should move towards the minima. An error was found in the implementation of the
Wolfe conditions, which meant that they could not be used in the optimization algorithm.

The paths generated were then used to move the robot manipulator between different configuration.
The manipulator was not able to follow the full path.

The thesis concluded that the potential fields approach to path planning was inadequate for prob-
lems of this complexity. Most configurations would lead to incomplete paths, as the algorithm
was trapped in a local minima. Some suggestions were given on how to improve the parts of the
algorithm that were faulty due to faulty implementation.

ii

Table of Contents

List of Figures v

1 Introduction 1

1.1 Background . 1

1.1.1 Autosmolt 2025 . 1

1.1.2 Robot manipulators . 1

1.2 Motivation . 2

1.3 Software . 3

1.4 Preliminaries . 3

1.5 Structure . 3

1.6 Problem Statement . 4

2 Theory 5

2.1 Kinematics . 5

2.1.1 Forward kinematics . 5

2.1.1.1 Kinematic chains . 5

2.1.1.2 The Denavit-Hartenberg convention 7

2.1.2 Inverse kinematics . 9

2.1.3 Jacobian . 10

2.2 Motion planning . 11

2.3 Path planning . 12

2.3.1 Potential fields . 12

2.3.1.1 The attractive field . 12

2.3.1.2 The repulsive field . 13

2.3.1.3 Creating joint torques for the search algorithm 14

2.3.1.4 The gradient descent algorithm . 14

2.3.1.5 The Wolfe conditions . 15

2.3.1.6 Local minima . 16

iii

3 Implementation 18

3.1 Creating a program for operation of the Reach Alpha 5 manipulator 18

3.2 Re-implementing the potential fields path planning algorithm 19

3.2.1 Defining attractive fields . 19

3.2.2 Defining repulsive fields . 20

3.2.3 Gradient descent algorithm . 20

3.3 Implementing a floating point approach to the repulsive field 20

3.4 Implementing the Wolfe conditions to the gradient descent algorithm 22

3.5 Implementing the random step method to the gradient descent algorithm 23

4 Tests 26

4.1 Test attractive potential fields gain . 26

4.2 Test random walk . 27

4.3 Test Wolfe . 27

4.4 Test obstacle avoidance . 28

4.5 Test practical application . 28

5 Results 30

5.1 Attractive field gains . 30

5.2 Random step . 39

5.3 Wolfe conditions . 42

5.4 Obstacle avoidance . 45

5.5 Practical application of the path planning algorithm on the Reach Alpha 5 48

6 Discussion 51

7 Conclusion 53

Bibliography 55

Appendix . 57

.1 Project description . 57

.2 Reach Alpha 5 datasheet . 60

iv

List of Figures

1.1 Autosmolt2025 aims to implement automation in several areas of smolt production. 2

1.2 Reach Alpha 5, produced by Blueprint Lab. 2

1.3 Operations in smolt facilities[17] . 3

2.1 Diagram of an elbow manipulator with attached coordinate frames. Figure from
Robot Modeling And Control [22] . 7

2.2 Two-link planar elbow manipulator. Figure from Robot Modeling and Control [22] . 8

2.3 Coordinate frames placed in accordance with the Denavit-Hartenberg convention.
The figure gives a visual representation of the Denavit-Hartenberg parameters. Fig-
ure found in Robot Modeling And Control [22] . 9

2.4 Two different joint configurations lead to the same position for the end-effector[15] 10

2.5 An object being attracted towards the goal by an attractive field, while being re-
pelled away from an obstacle by a repulsive field. Figure created by Hani Safadi[16]. 13

2.6 Gradient descent algorithm search in the configuration space. Figure created by
Alexander Amini[1]. 14

2.7 The effects of choosing large and small step sizes. Figure created by Sahdev Kansal[10] 15

2.8 Manipulator stuck in a local minima. The repulsive forces of the red block cancel
the attractive forces of the blue circle. Reaching the global minima would require
increasing the objective function by backing away from the target blue circle. . . . 16

3.1 GUI used for displaying data during live operation 18

3.2 Convergence of each joint of the Reach Alpha 5 to reference values. 19

3.3 The value of potential fields U during a gradient descent search with constant α = 0.01 23

3.4 The change in potential fields U during a gradient descent search with constant
α = 0.01 . 23

3.5 The value of potential fields U during a gradient descent search with Wolfe steps . 24

3.6 The change in potential fields U during a gradient descent search with Wolfe steps 24

3.7 The phenomenon is still present . 24

4.1 Reference path for the gradient descent algorithm using Wolfe conditions. 28

5.1 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 1 1]. 30

v

5.2 Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 1]. . . 31

5.3 Distance between joint frame and target position for γ = [1 1 1 1]. 31

5.4 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [10 1 1 1]. 31

5.5 Joint variables q(i) compared to the given reference qf (i) for γ = [10 1 1 1]. . 32

5.6 Distance between joint frame and target position for γ = [10 1 1 1]. 32

5.7 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 10 1 1]. 32

5.8 Joint variables q(i) compared to the given reference qf (i) for γ = [1 10 1 1]. . 33

5.9 Distance between joint frame and target position for γ = [1 10 1 1]. 33

5.10 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 10 1]. 33

5.11 Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 10 1]. . 34

5.12 Distance between joint frame and target position for γ = [1 10 1 1]. 34

5.13 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 1 10]. 34

5.14 Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 10]. . 35

5.15 Distance between joint frame and target position for γ = [1 1 10 1]. 35

5.16 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 1 1]using
alternative start and stop conditions. 36

5.17 Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 1]. . . 36

5.18 Distance between joint frame and target position for γ = [1 1 1 10]. 36

5.19 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 10 1 1]using
alternative start and stop conditions. 37

5.20 Joint variables q(i) compared to the given reference qf (i) for γ = [1 10 1 1]. . 37

5.21 Distance between joint frame and target position for γ = [1 1 1 1]. 37

5.22 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 10 1]using
alternative start and stop conditions. 38

5.23 Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 10 1]. . 38

5.24 Distance between joint frame and target position for γ = [1 10 1 1]. 38

5.25 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and s = 4. 39

5.26 Joint variables q(i) compared to the given reference qf (i) for qv = 1 and s = 4. . . 40

5.27 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and
s = 4 for secondary path. 40

5.28 Joint variables q(i) compared to the given reference qf (i) when qv = 1 and s = 4
for secondary path. 40

5.29 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and
s = 4 for new run of the secondary path. 41

5.30 Joint variables q(i) compared to the given reference qf (i) when qv = 1 and s = 4
for new run of secondary path. 41

5.31 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 4° and s = 4. 42

5.32 Joint variables q(i) compared to the given reference qf (i) when qv = 4 and s = 4. . 42

vi

5.33 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 4° and
s = 4 for new run of the same path. 43

5.34 Joint variables q(i) compared to the given reference qf (i) when qv = 4 and s = 4
for new run of the same path. 43

5.35 3D-model of the Reach Alpha 5 with trace of the end effector when using Wolfe
conditions. The step size αi does not change from α0. 44

5.36 Joint variables q(i) compared to the given reference qf (i) when using Wolfe condi-
tions. The step size αi does not change from α0. 44

5.37 Value of α at every iteration of the search. The step size remains constant through-
out the whole simulation. 44

5.38 3D-model of the Reach Alpha 5 with trace of the end effector when using Wolfe
parameter. The step size αi does not change from α0. 45

5.39 Joint variables q(i) compared to the given reference qf (i) when using Wolfe condi-
tions. The step size αi does not change from α0. 45

5.40 Value of α at every iteration of the search. The step size remains constant through-
out the whole simulation. 46

5.41 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the baseline gradient descent algorithm. 46

5.42 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the baseline gradient descent algorithm with an obstacle in the workspace. 46

5.43 Front view of the manipulator. The end effector moves around the obstacle and
avoids a collision. 47

5.44 Joint variables q(i) compared to the given reference qf (i) for obstacle avoidance. . 47

5.45 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the random walk gradient descent algorithm with an obstacle in the workspace. . . 47

5.46 3D-model of the Reach Alpha 5 with trace of the end effector. The obstacle has
been moved to a different position closer to the initial position of the end-effector. 48

5.47 Joint variables q(i) compared to the given reference qf (i) for obstacle avoidance. . 48

5.48 3D-model of the Reach Alpha 5 with trace of the end effector. 49

5.49 Joint variables q(i) compared to the given reference qf (i) for Reach Alpha 5 49

5.50 3D-model of the Reach Alpha 5 with trace of the end effector. 49

5.51 Joint variables q(i) compared to the given reference qf (i) for Reach Alpha 5 50

vii

Chapter 1

Introduction

The contents of section 1.1 was written for a project preceding this thesis. It is included here to
give relevant information on the background of this thesis

1.1 Background

Aquaculture is an important contributor to worldwide food production, and is a major industry in
Norway. Salmon is the most heavily produced fish in Norway, and the land-based production sites
used today were first developed in the 1980’s[18]. Few advancements in the technology used has
been made since then, and the industry relies heavily on a manual workforce. These land-based
sites are used for the smoltification phase[20] of salmon production, which is a biological process
in which salmon adapt to saltwater. The research organization SINTEF has begun work aiming at
modernizing the production process by implementing automated solutions into smolt production
sites[18][17]. This work lead to the project Autosmolt2025, with a vision of increasing profits, safety,
and efficiency in the industry. One of the proposed solutions is the use of unmanned underwater
vehicles (UUVs) to perform routine operations in the smolt tanks[11]. This specialisation project
aims to contribute to the research in using UUVs in smolt production.

1.1.1 Autosmolt 2025

Present day smolt production plants operate on the same principles used since they were first
developed in the 1980’s[18][17]. Autosmolt 2025 aims to move away from dependencies on manual
labor and towards automated solutions. Dependencies on manual labor are seen in several oper-
ations of the smolt production cycle, including washing of tanks and moving fish. Large facilities
exacerbate the cost of manual labor, as workers need to physically move between different parts
of the production site. By implementing the theory of Precision Fish Farming[PFF][8] at different
stages of the smolt production process, Autosmolt works towards realizing smolt production within
the framework of Industry 4.0. Figure 1.1 is an illustration their concept.

1.1.2 Robot manipulators

Robot manipulators are versatile tools that can be used in a wide variety of automation processes.
Autosmolt2025 has previously worked on utilizing robot manipulators mounted on UUVs to per-
form various tasks in the tanks, e.g cleaning and removing debris. A master’s thesis written in 2021
by Oscar Nissen[14] dealt with modeling a robot arm in an underwater environment, and a rudi-
mentary controller was implemented to test the model. This project will also concern modeling,
as well as path planning, of an underwater robot manipulator.

1

Figure 1.1: Autosmolt2025 aims to implement automation in several areas of smolt production.

The robot that was modeled in Nissen’s thesis was the Reach Bravo 7, produced by the Australian
company Blueprint Lab. The manipulator was chosen based on another thesis written by P̊al
Hofset Skeide in 2020[19].

SINTEF has chosen a new manipulator by the name of Reach Alpha 5 to be used on the UUVs
instead, which will be the subject of this project. The manipulator is a 5 degree-of-freedom robotic
arm, with the 5th DoF being the adjustable end-effector. This end-effector can be exchanged for
a variety of different tools, making the manipulator versatile in the tasks it can perform.

Figure 1.2: Reach Alpha 5, produced by Blueprint Lab.

1.2 Motivation

P̊al Hofset Skeide outlined a table of potential operations for robot manipulators in smolt facilities
in his thesis[17] (Figure 1.3)

2

Figure 1.3: Operations in smolt facilities[17]

This thesis aims to work towards solutions to the autonomous-rated operation with the highest
potential rating, namely removal of dead fish and waste. Removal of objects from smolt facilities
is an essential task in the industry that needs to be performed, and it is likely a problem with a
solution applicable to more generic settings, with a shorter path to commercial solutions. More
concretely, the motivation for work in this thesis boils down to object removal in combination with
object avoidance, which in turn motivates the application of robot modeling and control.

1.3 Software

The previous work done on the robot manipulator was programmed in Python 3[21], which includes
the I/O-interface to operate the robot manipulator, in addition to a graphical interface (section
3.1) to monitor runtime performance. Resources for 3D trajectory visualizations have previously
been implemented in MatLab[13], which remains the plotting tool used throughout this thesis. The
ease of use and rapid prototyping capabilities makes these interpreted languages preferable over
compiled languages. The algorithms implemented in this thesis have been written in MatLab.

1.4 Preliminaries

The theory covered in this thesis revolves around modeling, path-planning and optimal control
on revolute-joint robots. Prior experience with linear algebra is recommended for the theory
concerning forward and inverse kinematics. Euler-Lagrange dynamics is thoroughly explained in
Robot Modeling and Control [22], but is more briefly presented in this thesis. NTNU-courses
TMA4110 Linear Algebra and TTK4195 Modeling and Control of Robots, along with TTK4135
Optimization and Control should provide a good preliminary understanding of the topics discussed
in this thesis.

1.5 Structure

The structure of this thesis is intended to clearly separate the work into different stages, based on
the genericness of the concerned topics. The first section presents the theory used in the thesis.
The theoretical sections provide foundations for the computation of joint positions (Kinematics),
along with methods for relating linear velocity in the manipulator to angular velocity in the joints
(Jacobian). Kinematics and the Jacobian are used to plan and enforce motion for the robot
manipulator (Motion and Path planning).

The Implementation-chapter describe how the presented theory is used to implement algorithms,
along with heuristics and other details concerning the MatLab-implementation.

The resulting implementation is evaluated by running a set of tests on the robot manipulator, where
each test is intended to show the robustness of the implementation under different conditions. The
implementation of these tests are described in chapter 4.

The results from the performed tests are presented in chapter 5, which provides illustrative con-

3

vergence plots for the individual joints, along with 3-dimensional plots for the whole robot ma-
nipulator. The tests were performed using different sets of parameters, which are correspondingly
divided into separate subsections.

Chapter 6 aims to relate the results from chapter 5 back to the introduced theory, in order to
determine the robustness and quality of the implementation. The general convergence failure is
discussed along with remedies which may be achievable within the scope of the introduced theory.

Final conclusions are made in chapter 7, where the discussed aspects of the results are summarized
and related to the initial problem statement of the thesis.

1.6 Problem Statement

This thesis will be a continuation of the TTK4550 specialisation project that was completed last
semester. The report for that project will be submitted alongside this thesis. The problem state-
ment of this thesis is a combination of 3 elements:

• Software framework development: Develop software for collision-free motion planning
using the potential fields method.

• Virtual experiments to verify control system components:

1. Test of basic motion planning capabilities in open air.

2. Test of collision avoidance capabilities for avoiding obstacles in the manipulator work-
space.

• Physical experiments with the Reach Alpha 5: Conduct physical experiments using
results from virtual experiments with the motion planning algorithm.

The complete project description is included in appendix .1

4

Chapter 2

Theory

Sections 2.1 through 2.3.1.4 were written for the project preceding this thesis. These sections were
included as they present the theory used for large parts of the work done in this thesis.

2.1 Kinematics

Kinematics refers to the position and motion of the manipulator links and joints without consid-
ering any internal or external forces acting on the system. Solving the problem of kinematics is
the first step in manipulator motion control, as it is a fundamental component when modeling
any manipulator. This section will discuss two sub-problems of kinematics, namely the forward
kinematics problem and the inverse kinematics problem. The theory presented in this section is
based on methods used in the textbook Robot Modeling And Control [22].

2.1.1 Forward kinematics

Forward kinematics relates to the problem of mapping the positional joint variables of a robot
manipulator to the position and orientation of the end-effector. Solving the forward kinematics
problem is important when working with any robot manipulator, as it is needed for designing
controllers, path planning, and simulation. This section will go through the necessary theory of
how a robot manipulator is modeled, and show how the forward kinematics problem can be solved
using what is known as the Denavit-Hartenberg convention.

2.1.1.1 Kinematic chains

Any robot manipulator can be viewed as a set of links connected by joints. These sets of links
and joints are referred to as a kinematic chain, as motion in one joint will also cause motion in all
subsequent links and joints. The connective joints can vary in complexity, from simple prismatic
joints that extend and retract along a single axis, to spherical joints that can rotate in three
degrees of freedom. However, any joint with multiple degrees of freedom can be thought of as a
combination of single degree-of-freedom joints connected by links of length zero. In the case of the
spherical joint, a chain of three single degree-of-freedom revolute joints rotating about orthogonal
axes will be able to produce the same motion in the attached link. By making the assumption that
all manipulator joints are single degree-of-freedom, the motion in each joint can be quantified by
a single number: joint displacement for prismatic joints and joint angle for revolute joints.

For a robot manipulator with n joints there are n + 1 links, as each joint connects two links.
Common convention is to number joints from 1 to n and links from 0 to n starting from the base
of the manipulator[22][4]. This means that joint i connects links i − 1 and i. Motion in link i is

5

then produced by actuating joint i. Link 0 is the base of the manipulator and remains stationary
for actuation of any joint. Each joint i in the chain is associated with their respective joint variable
denoted qi. For the two types of single degree-of-freedom joints, qi is defined as follows:

qi =

{
di if joint i is prismatic

θi if joint i is revolute
(2.1)

where di denotes displacement along the axis of actuation by joint i, and θi denotes the angle of
rotation in joint i.

The next step in analyzing the kinematic chain is to describe how change in joint variable qi affects
the rest of the chain. This is done by attaching a coordinate frame to each link in the chain.
The ith frame is most commonly attached to the center of the ith joint, but certain manipulator
configurations may require the frame to be placed somewhere else on the ith link (more on this in
section 2.1.1.2). When frame i is attached rigidly to link i, any point on link i will remain constant
in the ith frame. Figure 2.1 shows a diagram of a 4-link manipulator with attached coordinate
frames. Any change in coordinates of a point viewed from frame i can be described in frame i− 1
through a homogenous transformation matrix relating the position and orientation (pose) of the
two frames. These transformation matrices take the form

H =

[
R o
0 1

]
(2.2)

where R is a 3× 3 rotation matrix which describes the orientation of the point, and o is a vector
describing the position in Cartesian coordinates. Given a point P i fixed in the ith frame, the same
point viewed from the (i− 1)th frame can be found using the equation

P i =




x
y
z
1




P i−1 = HP i (2.3)

Note that there is a 1 attached to the bottom of the point vector P i. This is added because the
homogenous transformation matrix H is of dimention 4 × 4. The bottom row of the matrix will
not contribute to the solution pi−1.

Let Ai denote the homogenous transformation matrix that gives the pose of coordinate frame
oixiyizi(see figure 2.1) in frame oi−1xi−1yi−1zi−1. This means that a moving point in frame i− 1
can be accurately described through Ai and the constant coordinates given in frame i. Furthermore,
a homogenous transformation matrix that gives the pose of frame ojxjyjzj in frame oixiyizi is given
by the formula

T i
j = AiAi+1Ai+2...Aj (2.4)

This matrix is called a commonly denoted T . Through the use of this formula, one can calculate
a transformation matrix that relates the pose of the end-effector to the frame at the base of the
chain. This base frame is often named the world frame or inertial frame. Thus, the complete
homogenous transformation matrix from world frame to end effector is calculated as

T 0
n = AiAi+1Ai+2...An−1An (2.5)

Similar to how a point on link i is constant in the ith frame, the position of the end-effector is
constant in the nth frame. Let o0n denote the position of the end-effector with respect to the world
frame. The complete matrix will take the form

6

Figure 2.1: Diagram of an elbow manipulator with attached coordinate frames. Figure from Robot
Modeling And Control [22]

T 0
n =

[
R0

n o0n
0 1

]
(2.6)

where R0
n is a 3× 3 rotation matrix.

By calculating this homogenous transformation matrix, one can solve the forward kinematics prob-
lem. Each matrix Ai is a function of qi, and the complete transformation matrix allows for mapping
of any pose of the end-effector to the world frame (or any other frame) given a any set of joint
values. The following section will show how these homogenous transformation matrices can be
created using a systematic approach known as the Denavit-Hartenberg convention.

2.1.1.2 The Denavit-Hartenberg convention

There are certain manipulators that are constructed in such a way that the forward kinematics
problem can be solved using simple geometry. The two-link planar elbow manipulator is an example
of such a system, where the position of the end-effector can be solved by hand. Figure 2.2 shows
the manipulator and the method used to find the relation between the position (x, y) and the joint
values (θ1, θ2). Equations 2.7 and 2.8 show the resulting relation.

x = a1 cos(θ1) + a2 cos(θ1 + θ2) (2.7)

y = a1 sin(θ1) + a2 sin(θ1 + θ2) (2.8)

Similarly one can derive the orientation of (x, y) using the same methods.

However, solving the forward kinematics problem for a general n-link manipulator is a much more
complex problem. Robotic arms are often designed to work in a 3-dimensional space, which means
that an arbitrary homogenous transformation matrix would require three numbers to describe the
position, and three numbers to describe orientation of the end-effector. The Denavit-Hartenberg
convention is a systematic approach to kinematic analysis which greatly simplifies the challenge by
reducing the required number of parameters to four. The method was first proposed by Jacques
Denavit and Richard Hartenberg in 1955[5], and has since been a popular choice and industry
standard for solving forward kinematics[22][4]. The idea is to set specific criteria on how the

7

Figure 2.2: Two-link planar elbow manipulator. Figure from Robot Modeling and Control [22]

coordinate frames oixiyizi are attached to each link of the manipulator. While each frame must
be rigidly attached to the corresponding link, one has great freedom in choosing the position and
orientation of said frame. By following the criteria set by the Denavit-Hartenberg convention, the
necessary parameters for describing a homogenous transformation will be decreased to four.

There are two necessary restrictions on placement and orientation of the coordinate frames which
must be upheld for the reduction in parameters to be possible. Those restriction are:

1. The axis xi is perpendicular to zi−1

2. The axis x1 intersects the axis zi−1

Figure 2.3 shows an example of two frames placed in this way. By studying this figure one can see
the physical representation of the four parameters necessary to create a homogenous transforma-
tion matrix. These parameters are called Denavit-Hartenberg parameters(DH-parameters). These
parameters are given as follows:

• ai: Distance from zi−1 to zi along the xi-axis. This parameter is named link length.

• αi: Angle between zi−1 and zi as seen from a plane normal on xi. This parameter is named
link twist.

• di: Distance from the origin oi−1 to the intersection of xi and zi−1 along the zi−1-axis. This
parameter is named link offset. This will be the joint variable for a prismatic joint.

• θi: Angle from xi−1 to xi seen from a plane normal to zi−1. This parameter is named joint
angle. This will be the joint variable for a revolute joint.

By following these restrictions one can guarantee existence and uniqueness of a solution for the
homogenous transformation, as show by Denavit and Hartenberg[5][6]. It is worth noting that
these restrictions allow for several different configurations of the coordinate frames. One thing to
note in particular is that the frame does not necessarily have to be located within the corresponding
link, as long as it is rigidly attached. There are, however, some useful guidelines to how one should
place the frames in an intuitive way. One such set of guidelines goes as follows:

1. Choose zi to align with the actuation axis of the joint i+1. Do this for all coordinate frames.

8

Figure 2.3: Coordinate frames placed in accordance with the Denavit-Hartenberg convention. The
figure gives a visual representation of the Denavit-Hartenberg parameters. Figure found in Robot
Modeling And Control [22]

2. Choose o0 along the z0 axis(most intuitively where the manipulator connects to the ground).
xi is chosen along the shortest distance between zi−1 and zi, and oi is chosen where xi

intersects zi. Do this for all coordinate frames. In cases where zi−1 and zi are parallel, one is
free to choose the placement of oi. In cases where zi−1 intersects zi, xi is chosen orthogonal
to bot axes and oi is chosen at the point of intersection.

3. Choose yi orthogonal to zi and xi according to the right-hand rule (yi = ziXxi). Do this for
all frames.

Once all coordinate frames have been placed according to the DH-convention, the homogenous
transformation matrices Ai can be calculated. Ai is defined as the product of four basic trans-
formations about each DH-parameter:

Ai = Rotz,θiTransx,di
Transx,ai

Rotx,αi

=




cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1




(2.9)

where Rota,b is a rotation of b radians about the a-axis, and Transa,b is a linear transformation of
length b along the a-axis. Using the DH-convention has lead to an explicit solution for calculating
the homogenous transformation matrix, and thus a general solution to the forward kinematics
problem. Take note that while there are different ways to place each coordinate frame in the
kinematic chain, the final transformation matrix T 0

n will always be the same for any valid set of
placements.

2.1.2 Inverse kinematics

While the forward kinematics problem relates to mapping joint variables to the pose of the end-
effector, the inverse kinematics problem relates to mapping the end-effector pose to a set of joint
variables. By solving this problem, it is possible to calculate the exact joint variables needed to
obtain a desired pose for the end-effector, which is very important when one wants the robot to
interact with objects in the workspace. The inverse kinematics problem is generally more difficult
than forward kinematics, and the complexity scales with the number of joints. The general problem

9

Figure 2.4: Two different joint configurations lead to the same position for the end-effector[15]

formulation for inverse kinematics can be state as: Given the desired homogenous transformation

H =

[
R o
0 1

]
, find a solution to the equation

T 0
n(q1, . . . , qn) = H (2.10)

Since both matrices are of size 4 × 4, equation 2.10 results in sixteen sub-equations on the form
Tij(q1, . . . , qn) = hij . As was show in section 2.1.1.2 and equation 2.9, as the number of joints n
increases, each element Tij becomes more complex. The goal is to use these sixteen equations to
solve for the joint variables

qi = fi(h11, h12, . . .) (2.11)

Unlike with forward kinematics, there is no guarantee for a unique solution to this problem. The
equations may not be solvable, but even if they are, doing so might not be feasible due to the
difficulty. There is also the problem that there exist multiple solutions for a given pose of the end
effector. This is often the case for robots mimicking human arms, as their ”elbows” may rotate two
ways for the same end-effector pose. Figure 2.4 illustrates how two different angles in the elbow
result in the same position.

When trying to solve inverse kinematics, it is common to split the problem into two decoupled
sub-problems: inverse position, and inverse orientation. Separating these elements and solving
them separately can often make finding a solution easier, but also here there is no guarantee. The
difficulty in solving inverse kinematics is often an influence on how robots are built, as certain
structures allow for the use of this simplification. Another reason to split the problem in two is
that some tasks may only require the position of the end-effector, not the orientation.

When dealing with inverse position specifically, equation 2.10 is one of two common approaches.
The other method is to solve for qi geometrically. For manipulators with few joints, typically two
or three, this may be the preferred way to solve inverse position. The robot in figure 2.4 is an
example of a manipulator where the inverse kinematics can be solved geometrically.

2.1.3 Jacobian

In section 2.1.1 the forward kinematics problem was solved, which relates joint variables to the
position of the end effector (or any point on the manipulator) in Cartesian space. It is now

10

necessary to relate joint velocities to velocity in the manipulator. This is done through the use of
the Jacobian matrix, denoted J . The Jacobian consists of two parts: the linear velocity Jacobian,
and the angular velocity Jacobian. These matricies maps joint velocities to manipulator velocity
as follows

J =

[
Jv
Jω

]
(2.12)

v = Jv q̇ (2.13)

ω = Jω q̇ (2.14)

For an n-link manipulator the Jacobian will be an 6×nmatrix, where the top three rows correspond
to linear velocity, and the bottom three rows correspond to angular velocity. Similarly to the
inertia tensor, the Jacobian changes with the configuration of the manipulator. Because of this, it
is necessary to calculate the homogenous transformation matrix T 0

n derived in section 2.1.1 to know
the position of each body frame. From this matrix, the values of orientation in the z-direction and
the position oi will be used to calculate J . The formula for calculating the Jacobian is as follows

Jv(i) =

{
zi−1 × (on − oi−1) for revolute joint i

zi−1 for prismatic joint i

Jω(i) =

{
zi−1 for revolute joint i

0 for prismatic joint i

(2.15)

where Jv(i) denotes the i
th column of Jv, and zi denotes the third column of R0

i . There is a unique
set of Jacobians, denoted Jvi and Jωi , for each frame on the manipulator, as joint motion higher
in the kinematic chain will not impact the lower part. However, each Jacobian is built using the
same formula, with any column j > i set to zero. Thus, calculating each Jacobian is trivial once
Jvn and Jωn

are found. Now that J is calculated, equations 2.13 and 2.14 will give linear and
angular velocities v and ω.

2.2 Motion planning

Previous sections have focused on the manipulators inherent properties without taking the work-
space into account. For autonomous motion, it is important to consider potential obstacles that
could limit the manipulator’s range of motion. This section will cover theory used for planning
a collision-free path for the manipulator trough the workspace. Motion planning can be divided
into sub-problems of path planning and trajectory planning. Path planning relates to generating
a geometric path in space which avoids any obstacles, while trajectory planning introduces con-
straints on parameters like time, velocity, acceleration etc. to generate the proper motion in the
manipulator to follow said path. One may use a wide variety of approaches to path and trajectory
planning depending on the workspace and the task the manipulator seeks to achieve.

To formalize the motion planning problem, the concept of the configuration space is introduced.
The configuration space is the set of all possible combinations of joint values (q1, . . . , qn), denoted
as Q[22]. Let W denote the Cartesian workspace, and Oi denotes the obstacles in the workspace.
A denotes the robot itself, and A(q) denotes a specific configuration. The problem of motion
planning is to avoid any configuration q which causes the manipulator to make contact with an
obstacle. These configurations are defined as

QO = {q ∈ Q|A(q) ∩ O ≠ 0} (2.16)

where QO is the set of all such configurations.

11

2.3 Path planning

Path planning is the problem of finding a path from a given initial configuration qs to a desired
target configuration qf in a way that avoids any collision with obstacles in the workspace. There
are many ways to approach this problem, all with different strengths and weaknesses depending
on the specifics of the manipulator and the workspace it will operate in. One important factor
is whether or not the workspace is known beforehand. Seeing as how the Reach Alpha 5 will be
mounted on a ROV in the future, it is assumed that the workspace is unfamiliar.

Computing the set QO of configurations which causes collisions becomes more difficult for increas-
ingly complex manipulators. When working with manipulators that can both translate and rotate,
with multiple degrees of freedom, solving for QO quickly becomes infeasible. Because of this, the
path planning problem will most often consist of creating a optimization based search algorithm
that incrementally generates set points to take the manipulator from the start point qs to the
target destination qf . This search is done by minimizing the error between configurations qs and
qf in the configuration space. For this project, the potential fields method will be used to solve the
path planning problem. This is due to the relative simplicity of the method, as well as thorough
documentation in literature and scientific publications. A gradient descent algorithm will be used
to minimize the configuration error. More on this algorithm in section 2.3.1.4.

2.3.1 Potential fields

The potential fields method is based around the use of an artificial vector field, U(q), to steer
the search algorithm. This field will induce artificial forces on the robot which pull toward the
target configuration qf , while pushing away from any obstacles[22][1][16]. The field is built up of
attractive and repulsive components acting on the robot.

U(q) = Uatt(q) + Urep(q) (2.17)

τ(q) = −∇U(q) (2.18)

The path can then be generated using an optimization algorithm to find the global minima of the
field U . The algorithm uses the negative gradient τ(q) of U(q) to find the shortest path which
minimizes the potential function, where τ(q) can be considered as a vector of torques acting on
the robot in the configuration space. By letting the torque vector act on the robot, it will move
along this optimized path. The optimization algorithm used in this project is the gradient descent
algorithm. The gradient descent algorithm is explained in more detail in section 2.3.1.4. Figure
2.5 illustrates how the manipulator is affected by the potential fields.

Due to the complexity of mapping the configuration space, the field U will be defined on the manip-
ulator workspace itself. Specifically, each coordinate frame in the kinematic chain will be subjected
to its own potential field Ui defined at its origin. By using the methods discussed in sections 2.1.1,
2.1.2, and 2.1.3, the position of each frame and target destination can be found through kinematics
from the manipulator configuration q and target configuration qf . The manipulator Jacobian J
can then be used to define motion of the robot in the configuration space. The next section will
discuss how the fields Ui are defined.

2.3.1.1 The attractive field

The attractive field Uatt,i is the component of Ui that attracts frame oixiyizi to its target destina-
tion defined by the target configuration qf . The attractive field needs to satisfy certain criteria to
be suitable for this task. Firstly, the field should increase with distance to oi so the pull is stronger
the further away the manipulator is. The simplest field which achieves this will grow linearly with
this distance. Let oi(q) denote the position of frame i, and qf denote the target configuration. The
attractive field then takes the form

12

Figure 2.5: An object being attracted towards the goal by an attractive field, while being repelled
away from an obstacle by a repulsive field. Figure created by Hani Safadi[16].

Uatt,i(q) = γi ∥oi(q)− oi(qf)∥ (2.19)

−∇Uatt,i(q) =

{
−γi (oi(q)−oi(qf))

∥oi(q)−oi(qf)∥ if ∥oi(q)− oi(qf)∥ ≠ 0

0 if ∥oi(q)− oi(qf)∥ = 0
(2.20)

where γi is a scaling factor for the attractive force. The problem with this field is that the
gradient is clearly defined everywhere but the target position, which might lead to instability. This
problem can be avoided by using a field which follows the second criteria, namely that the field is
continuously differentiable. The simplest such field will grow quadratically with distance

Uatt,i(q) =
1

2
γi ∥oi(q)− oi(qf)∥2 (2.21)

−∇Uatt,i(q) = −γi(oi(q)− oi(qf)) (2.22)

This field solves the problem of having a discontinuous gradient, but introduces another problem.
The gradient scales linearly with the distance od(q) from oi(q) to oi(qf), which means it is unboun-
ded. This could lead to excessively large attractive forces. It is therefore common to use some
combination of different fields to avoid these problems. By using the quadratic expression 2.21
when od(q) is small, and the linear expression 2.19 when the model is large, both problems are
avoided.

2.3.1.2 The repulsive field

The repulsive field Urep,i is the component of Ui that pushes frame oixiyizi away from any obstacles.
The criteria for this field are different from those of the attractive field, as the robot cannot collide
with obstacles at any point. This means the field should infinitely increase as od(q) approaches
zero. The field should also not interfere with the robot when the obstacle is far away. The
parameter d0 is introduced as the distance at which the repulsive field should start taking effect.
For any od(q) > d0, the field is zero. The simplest field which follows these criteria while also being
continuously differentiable is

13

Figure 2.6: Gradient descent algorithm search in the configuration space. Figure created by
Alexander Amini[1].

Urep,i(q) =

{
1
2δi

1
od(q)

; if od(q) ≤ d0

0 ; if od(q) > d0
(2.23)

−∇Urep,i =

{
δi

1
od(q)

1
od(q)2

∇od(q) ; if od(q) ≤ d0

0 ; if od(q) > d0
(2.24)

where

∇od(q)|x=oi(q) =
oi(q)− b

∥oi(q)− b∥ (2.25)

and b is the point on the obstacle closest to oi.

2.3.1.3 Creating joint torques for the search algorithm

Once the potential fields have been constructed, it is time to map the forces generated by these
fields into joint torques. This is done using the manipulator Jacobian J(q). These torques are
generated using the equation

τ(q)i = −Jvi(q)T∇Ui(q) (2.26)

where J(q) =

[
Jv(q)
Jω(q)

]
. Jω(q) is not considered in this case, as U only generates attractive and

repulsive forces, not torques. One set of torques will be generated for every field Ui. The sum of
these torques will be the input that optimizes the path of the manipulator.

2.3.1.4 The gradient descent algorithm

Gradient descent is a commonly used algorithm used to solve a large variety of optimization prob-
lems, like machine learning, manipulator control, and path planning[1][10][16][7][2]. The algorithm
uses what is known as a line search method which seeks to minimize the objective function by
moving along the search direction p. In the case of gradient descent, p is the negative gradient
of the objective function. By changing the values of the function input in the search direction,
the function value will decrease. By incrementally applying this method, the function value will
decrease until it reaches a minima. Figure 2.6 shows a visualisation of this process.

14

The algorithm starts at the initial configuration qs of the robot, and incrementally steps along the
negative gradient to minimize the function potential. At each increment, a new set point is created
in the configuration space. The step used to find each set point is defined as

xk+1 = xk + αkpk (2.27)

where xk is the function input at the kth iteration, pk is the search direction, and αk is an adjustable
parameter used to decide the size of the step. When this method is applied to the potential fields
path planner, q becomes the function input, and the normalized τ becomes the search direction.
Pseudocode for the full search algorithm can be written as

Gradient descent algorithm
q0 ← qs, i← 0
while

∥∥qi − qf
∥∥ > ϵ do

qi+1 ← qi + αi τ(qi)
∥τ(qi)∥

i← i+ 1
end while
return < q0, q1, . . . , qi >

where qi denotes q at the ith iteration. Parameter ϵ is the threshold for how close the manipulator
needs to be the target qf for the motion to be considered complete. This parameter is chosen based
on the users requirement for accuracy, and may vary for different tasks.

Choosing an appropriate step size is important when using a gradient descent algorithm, as it can
drastically influence both runtimes and stability. If the step is too large, the next set point might be
placed beyond the target destination. On the other hand, small steps might lead to long runtimes.
This is illustrated in figure 2.7. There are many different methods one can use to chose αi. The
simplest way is to use a constant value αi = α0 for each iteration of the gradient descent algorithm.
Doing so puts the user at risk of taking too large or too small steps. This is because the step needs
to be adequately small as the search approaches the desired configuration to not overshoot. Such
a step will often be inefficient in the earlier stages of the search. Therefore, it is most common to
use an augmented step, which changes in size for every iteration. The choice of how to augment
the step size αi depends entirely on the optimization task itself, and the requirements set by the
user.

Figure 2.7: The effects of choosing large and small step sizes. Figure created by Sahdev Kansal[10]

One approach used to decide an appropriate step size αi for several line search methods is to apply
the Wolfe conditions [9, p.33]. This approach is explained in the following section.

2.3.1.5 The Wolfe conditions

As mentioned in the previous section, selecting a step size αk comes with drawbacks. If αk is too
large, the search will not be accurate, while a small αk leads to an inefficient search. Two conditions

15

in the form of inequalities are introduced to find an appropriate value for αk. These conditions are
called the Armijo condition and curvature condition respectively. The Armijo condition is fulfilled
by upholding the inequality

f(xk + αkpk) ≤ f(xk) + c1αk∇fT
k pk (2.28)

where c1 ∈ (0, 1). This inequality states that the function at iteration k + 1 must be smaller than
the function at the current iteration with a weighted step in the direction of the gradient, scaled
by both αk and the directional derivative fT

k pk. One can decide how much the function needs to
be decreased to satisfy this condition by adjusting the parameter c1.

The curvature condition ensures that the step does not get too small. This condition is met by
upholding the inequality

∇f(xk + αkpk)
T pk ≥ c2∇fT

k pk (2.29)

The inequality says that the gradient at the next step must be greater than the parameter c2 ∈
(c1, 1) times the gradient at the next step, given αk = 0.

2.3.1.6 Local minima

One problem with the gradient descent algorithm is that it can get stuck in a local minima. A
local minima in the context of potential fields would be a joint configuration where there is no
direction to go which reduces the field U(q). This is likely to happen when the manipulator reaches
around an obstacle or gets trapped between multiple repulsive fields of the same strength. Figure
2.8 shows a configuration where the manipulator receives attractive and repulsive forces of equal
magnitude.

Figure 2.8: Manipulator stuck in a local minima. The repulsive forces of the red block cancel
the attractive forces of the blue circle. Reaching the global minima would require increasing the
objective function by backing away from the target blue circle.

One approach to avoiding local minima is to use a gradient descent with randomized walk. This
algorithm searches along the negative gradient until it gets trapped in a local minima, at which
point a random walk is executed to move the manipulator to a different joint configuration. The
first element in this approach is to recognize when the algorithm is stuck in a local minima. There
is no general solution for guaranteed detection of a minima, which means the problem is often
solved using a practical approach. One such idea is to assume the search is stuck when a series of
set points are all very close together. This would require some knowledge of the expected change
between set points. The second element is to generate the random walk. This walk consists of a
series of random jumps in each joint. Specifically, the random walk takes adds or subtracts qv to
each joint at random s times. The probability of adding or subtracting qv equals 1/2, resulting in
an even distribution. Each step takes the form

qs+1 = [q(1)s ± qv, q(2)s ± qv, . . . , q(n)s ± qv] (2.30)

where q(n) is the nth joint. The random walk can be characterized by its density function

16

pi(qi, s) ≈
1

qv
√
2πs

exp(− q2i
2q2vs

) (2.31)

which has a variance of q2dt. This value shows how far the manipulator can be expected to walk,
given the expectancy value of the density function being zero[9]

17

Chapter 3

Implementation

3.1 Creating a program for operation of the Reach Alpha 5
manipulator

When the Reach Alpha 5 was made available for experiments, project supervisor Bent Haugaløkken
had already created python code for basic manual and automatic operation, using the built in PID-
controllers. The code had functionalities for manual control using a joystick, automatic control for
a single reference joint configuration, as well as capabilities for displaying important data live on
a GUI. Figure 3.1 shows the user interface.

Figure 3.1: GUI used for displaying data during live operation

The code was expanded to include more functionality in automatic operation. The code would no
allow for a series of references to the joint positions to be used to move the manipulator through
a list ow set points. The code was also expanded to include functionality for printing data into
.mat-files which can be loaded directly to MatLab for plotting.

To test was conducted to verify the functionality of the new reference system, as well as the exporta-
tion of data to MatLab. The manipulator was given an initial position of qs = [pi/2 pi/2 pi/2 pi/2 pi/2].
A reference qf = [pi pi/2 pi/2 pi/2 pi/2] was then given to to the manipulator, and once
the manipulator reached that reference, a new reference would be pushed with the next joint
value q(i) = pi. This would continue until the manipulator reached the final configuration
qf = [pi pi pi pi 400. Joint 5 is the end effector and has a different range of inputs than the
other joints. Figure 3.2 shows the result of the test.

All joints converged to the target value. The data was then sent to MatLab for plotting.

18

0 20 40 60 80 100

100

150

200

D
e

g

q(1)

0 20 40 60 80 100

100

150

200

D
e

g

q(2)

0 20 40 60 80 100

100

150

200

D
e

g

q(3)

0 20 40 60 80 100

100

150

200

D
e

g

q(4)

0 20 40 60 80 100
0

200

400

m
m

q(5)

0 20 40 60 80 100
0

200

400

D
e

g

q vector

Figure 3.2: Convergence of each joint of the Reach Alpha 5 to reference values.

3.2 Re-implementing the potential fields path planning al-
gorithm

In the project that preceded this thesis, a path planning algorithm was created for motion planning
for the Reach Alpha 5. However, the program did not run properly, going so far as to crash
when obstacles were introduced into the workspace, and was therefore unsuitable for gathering
meaningful results retaining to the validity of the potential fields approach. The project concluded
that the approach could not be verified. It was therefore deemed necessary to re-implement the
algorithm from the ground up for this thesis. The new algorithm is based on the theory discussed
in section 2.3.1, but will also include methods for selecting suitable gradient steps, avoiding local
minima, and a new approach to how the repulsive fields acts upon the manipulator. The algorithm
was implemented in a way that excludes the joint variable of the end-effector tool. It is assumed
that the tool will be operated separately, as several different tools are available for the Reach Alpha
5.

The first step to implementing potential fields is to define the attractive and repulsive fields acting
on the manipulator. These fields were defined as recommended in the textbook ”Robot Modeling
And Control[22]”. As discussed in section 2.3.1, there is one attractive and one repulsive field
acting each individual joint.

3.2.1 Defining attractive fields

Similarly to the previous version of the program, the attractive fields were defined as a combination
of linear and quadratic fields. The quadratic field is well defined for all configurations, and the linear
field avoids excessively large torques when the target configuration is far away in the configuration
space. The fields were defined as follows:

Uatt,i(q) =

{
dγi ∥oi(q)− oi(qf)∥ − 1

2γid
2 ; if ∥oi(q)− oi(qf)∥ > d

1
2γi ∥oi(q)− oi(qf)∥2 ; if ∥oi(q)− oi(qf)∥ ≤ d

(3.1)

−∇Uatt,i(q) =

{
−dγi (oi(q)−oi(qf))

∥oi(q)−oi(qf)∥ ; if ∥oi(q)− oi(qf)∥ > d

−γi(oi(q)− oi(qf)) ; if ∥oi(q)− oi(qf)∥ ≤ d
(3.2)

where d is the threshold for when each field should be used, γi is the attractive field gain, and oi(.)
is the position of the ith joint for the given configuration q. These gains are set by the user and
will decide the relative magnitude between each field. Different paths can be generated by tuning
γ to prioritize certain joints over others. Section 4.1 describes a test for how these gains affect the
generated path. The linear field used here is a modified version of the field discussed in section

19

2.3.1. This modification ensures continuity in the bridge between the linear and quadratic fields.
The quadratic field remains unchanged.

3.2.2 Defining repulsive fields

For the same reasons as with the attractive fields, quadratic fields are chosen for the repulsive force.
These fields are well defined for all configurations q. The fields also generate forces approaching
infinity as the manipulator approaches an obstacle, ensuring collision-free motion. The repulsive
fields were defined as follows:

Urep,i(q) =

{
1
2δi(

1
od(q)

− 1
d0
)2 ; if od(q) ≤ d0

0 ; if od(q) > d0
(3.3)

−∇Urep,i =

{
δi(

1
od(q)

− 1
d0
) 1
od(q)2

∇od(q) ; if od(q) ≤ d0

0 ; if od(q) > d0
(3.4)

∇0d(q)|x=oi(q) =
oi(q)− b

∥oi(q)− b∥ (3.5)

where d0 is the threshold for where the fields are active, b is the point on the obstacle closest to the
manipulator, and od is the distance from the ith coordinate frame to the obstacle. The repulsive
fields were also modified in a similar manner as the linear attractive fields. This ensures continuity
when the manipulator is passes over the repulsive threshold d0.

3.2.3 Gradient descent algorithm

The gradient descent algorithm was implemented as discussed in section 2.3.1.4. The algorithm
runs on a while-loop with added exit conditions for excessive runtimes and path lengths. The
success-threshold ϵ was set as 2°for the norm of the full joint vector q. This value was chosen
as it was deemed sufficient for the tasks the Reach Alpha 5 is intended to handle, specifically
grabbing dead fish. The parameter does not impact the characteristics of the search, only when it
is considered successful. The step size was chosen as the constant α = 0.01. This constant step size
was used as a benchmark for comparisons between gradient descent algorithms with and without
the Wolfe method for selecting αi. The gradient descent algorithm as described here was used as a
baseline when running various tests. Each added improvement, like the random step method and
Wolfe method, was compared to this baseline when tested. More on these tests in section 4.

3.3 Implementing a floating point approach to the repulsive
field

One thing that was discovered in the project preceding this thesis was that the implementation of
the repulsive fields was flawed. The fields would generate a force based on the distance between
the given joint frame and the closest obstacle. However, this means that only the position of the
joints themselves were taken into account for obstacle avoidance. This means that a collision-free
path could not be guaranteed, as the links would be able to make contact without being repelled.
To avoid this, a floating repulsive reference point, or floating point, was introduced to each link.
The idea behind these reference points is that they move along each link as the manipulator is in
motion, always coinciding with the point on the link closest to the obstacle. To achieve this, one
must first find the position of each frame of the manipulator, as well as create models of the links
between them. It was assumed that all links of the manipulator were perfectly cylindrical, as more

20

precision was deemed negligible. The one exception is the camera mounted at the top of the arm.
This was not accounted for in this project.

First the position of each joint frame oi was found. This is accomplished through the use of the
homogenous transformation matrix T 0

i . As discussed in section 2.1.1.1, this matrix takes the form

T 0
i =

[
R0

i o0i
0 1

]
(3.6)

where oi can be read directly from the top 3 values in the 4th column. Secondly, a method for
locating the point on each link closest to the obstacle was found. When all links are assumed to
be cylindrical, the links can be viewed as straight line segments between each joint, offset by the
diameter. The problem could then be translated to finding the point on a line segment which is
closest to an external point(the point on the obstacle closest to the link). Let oi and oi+1 be the
position of joints i and i + 1. Let L denote the line segment between these joints. The vector
equation for the line segment L is

L(t) = oi + tD (3.7)

D = oi−1 − oi (3.8)

where D is the directional vector between oi and oi−1, and t ∈ [0, 1] is a running parameter. Once
the line segment was defined, an orthogonal projection of the obstacle point b was found. This was
done using the equation

p = oi +

[
(b− oi) ·D

D ·D

]
D (3.9)

where t0 is the portion of the line segment closest to b. p is the intersection point between the line
segment L and the obstacle b.

In addition to finding the intersection point p, it was also necessary to find the distance db from
p to b. First, define p = L(t0), where t0 is the parameter t at the intersection point p. It can be
seen from equations 3.7 and 3.9 that

t0 =
(b− oi) ·D

D ·D (3.10)

After the running parameter t0 was found, the distance db from intersection point p to obstacle b
was defined for 3 cases:

db =





∥oi − b∥ t0 < 0

∥p− b∥ 0 ≤ t0 ≤ 1

∥oi+1 − b∥ t0 > 1

(3.11)

After both the intersection point p and the distance db were found, the repulsive fields defined in
equations 3.3 and 3.4 were redefined as

Urep,i(q) =

{
1
2δi(

1
db(q)

− 1
d0
)2 ; if db(q) ≤ d0

0 ; if db(q) > d0
(3.12)

−∇Urep,i =

{
δi(

1
db(q)

− 1
d0
) 1
db(q)2

∇db(q) ; if db(q) ≤ d0

0 ; if db(q) > d0
(3.13)

21

Take note that the floating repulsive reference point approach was mentioned in the theory chapter
of the project preceding this thesis. However, it was not implemented in practice, as the path
planning algorithm would not run when obstacles were used.

3.4 Implementing the Wolfe conditions to the gradient des-
cent algorithm

As mentioned in section 3.2.3, a gradient descent algorithm using a constant α = 0.01 was created.
Another variant of the same search algorithm was also created, this one making use of the Wolfe
conditions for selecting an appropriate step size. Section 2.3.1.5 describes how the Armijo condition
and curvature condition are implemented as a set of inequalities. These inequalities are used as
exit conditions for an inner loop in the gradient descent algorithm. Said loop will initialize with
an initial value for α0 and insert the resulting set point into the Wolfe conditions. If the Armijo
condition is not fulfilled, αk+1 = αk/2 and if the curvature condition is not fulfilled, αk+1 = αk×1.5.

The Armijo condition was implemented first. This inequality relies on the value of the objective
function for the following step, the objective function at current step and the gradient of the
objective function at current step. From section 2.3.1.4 one can see that the objective function of
the search is ∥q − qf∥. While this is the term the algorithm is trying to minimize, field strength
U is directly correlated with the term, meaning it can be used as a substitute for the objective
function in this inequality. The only difference between using ∥q − qf∥ and U is the practicality of
reading the values in the program. One major advantage of using U , however, is that the gradient
is clearly defined in equations 2.22, 2.20, and3.13 In addition, the directional derivative ∇fT

k pk
becomes the torque vector τk. The Armijo condition was then implemented as the inequality

U(αk) ≤ U(αk−1) + c1αkτ (3.14)

Secondly, the curvature condition was implemented. This condition relies on the directional de-
rivative at the following step, and the directional derivative at current step. Directional derivative
was found to be τk, so the curvature condition was implemented as

τk ≥ c2τk−1 (3.15)

Pseudocode for the new gradient descent algorithm:

Gradient descent algorithm w/Wolfe
q0 ← qs, i← 0
while

∥∥qi − qf
∥∥ > ϵ do

while αi is unsuitable do
qi+1 ← qi + αi τ(qi)

∥τ(qi)∥
if NOT Armijo then

αi ← αi/2
else if NOT curvature then

αi ← αi × 1.5
end if

end while
i← i+ 1

end while
return < q0, q1, . . . , qi >

Finally, values had to be decided for the parameters 0 < c1 < c2 < 1, and the initial α0. These
values were chosen based on recommendations given in the textbook ”Numerical Optimization[9]

22

0 100 200 300 400 500 600

Nr. of iterations

0

0.02

0.04

0.06

0.08

Value of attractive field U
att

Figure 3.3: The value of potential fields U during a gradient descent search with constant α = 0.01

0 100 200 300 400 500 600

Nr. of iterations

-6

-5

-4

-3

-2

-1

0

10
-4 Change in attractive field U

att

Figure 3.4: The change in potential fields U during a gradient descent search with constant α = 0.01

c1 = 10e−4 (3.16)

c2 = 0.9 (3.17)

α0 = 1 (3.18)

3.5 Implementing the random step method to the gradient
descent algorithm

The next addition to the new path planning algorithm was to utilize the randomized walk method
for escaping local minima. Following what was discussed in section 2.3.1.6, the method relies on
the ability for the algorithm to recognize when it is stuck in a local minima. As stated in section
2.3.1.6, recognizing a local minima is not trivial. The textbook suggests comparing the change in
joint positions q over multiple successive steps. Let ϵm be a small positive value. One can assume
local minima when

∥∥qi − qi+1 < ϵm
∥∥,

∥∥qi+1 − qi+2 < ϵm
∥∥,

∥∥qi+2 − qi+3 < ϵm
∥∥ for however many

terms one deems adequate. A simulation was run using the baseline gradient descent algorithm, as
well as the gradient descent algorithm w/Wolfe conditions. The simulation was run to purposefully
get stuck in a local minima to analyze the resulting data. Figure 3.3 shows the value of the norm
of the field U i, while figure 3.4 shows the change in between U i−1 and U i for a gradient descent
search using α = 0.01.

One can clearly see from these figures that a local minima has led to alternating positive and
negative change in the field U . This would suggest that locating a positive change in U is an
indicator of a local minima. However, seeing as how the step size was fixed, one cannot guarantee
that this phenomenon is not caused by the algorithms inability to take smaller steps. Figures 3.5
and 3.6 show the result of the same test when using Wolfe steps.

Take note that the differences in number of steps are caused by the relative speed at which the
two algorithms reached the local minima. In this case the graph seems to approach zero over time.
However, this cannot be the case as the algorithm did get stuck in a local minima. Figure 3.7
shows the same graph as figure 3.6, but zoomed in. The effect noted in figure 3.4 is still present,
and the assumption that a positive change in U indicates a local minima was therefore used when
implementing the randomized walk.

Once the indicator for local minima was decided upon, the randomized step function was imple-
mented. The method used was the same as presented in section 2.3.1.6. This lead to the updated

23

0 10 20 30 40 50 60 70 80 90 100

Nr. of iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

Value of attractive field U
att

Figure 3.5: The value of potential fields U during a gradient descent search with Wolfe steps

0 10 20 30 40 50 60 70 80 90 100

Nr. of iterations

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Change in attractive field U
att

Figure 3.6: The change in potential fields U during a gradient descent search with Wolfe steps

20 30 40 50 60 70 80 90 100

Nr. of iterations

-5

0

5
10

-4 Change in attractive field U
att

Figure 3.7: The phenomenon is still present

24

gradient descent algorithm:

Gradient descent algorithm w/Wolfe & randomized step
q0 ← qs, i← 0
while

∥∥qi − qf
∥∥ > ϵ do

while αi is unsuitable do
qi+1 ← qi + αi τ(qi)

∥τ(qi)∥
if NOT Armijo then

αi ← αi/2
else if NOT curvature then

αi ← αi × 1.5
end if

end while
i← i+ 1
if stuck in local minima then

random walk to qk

qi+1 ← qk

end if
end while
return < q0, q1, . . . , qi >

Lastly, the randomized step had to be defined by parameters qv and s, being the size of the random
steps and number of random steps respectively. These parameters were initially set as

qv = 0.3 (3.19)

s = 4 (3.20)

A test was conducted to evaluate these parameters. More on this in section 4. It was also decided
that the algorithm would only recognize a local minima if a positive change in U was detected 3
times. The purpose was to exclude potential outliers in the data.

25

Chapter 4

Tests

A series of experiments was conducted to verify the methods implemented in chapter 3. These
experiments were conducted by comparing the path planning algorithm with and without given
components included. Simulation were run for arbitrarily chosen initial and final conditions qs and
qf , given that a feasible path was achievable. Generated paths were then given to the Reach Alpha
5 to test the practical effects when applying the generated path. A gradient descent algorithm with
constant step size α = 0.01 was used when testing the various components of the path planner.
This was done as such a small step size would ensure a stable search, albeit an inefficient one.
With this step size the program was expected to run a minimum of 100 iterations, with a high
likelihood of significantly longer paths depending on choices for several adjustable parameters in
the algorithm. The algorithm was terminated at 1000 steps, as this was seen as an indicator
that the search would not be able to finish at qf . The value of 1000 steps was found through
experimentation, where no successful search ever finished after this point. The threshold ϵ, which
indicates that the configuration qi is sufficiently close to qf , was set as 2°for the norm

∥∥qi − qf
∥∥, as

this precision was deemed sufficient for the tasks the Reach Alpha 5 will execute. Each experiment
outlined in this section is presented the way it was originally envisioned. During testing, certain
observations were made which lead to alterations and extensions of some of the experiments. These
observations, and subsequent changes to the experiments, are presented in the results section of
the thesis. These results are discussed further in section 6

4.1 Test attractive potential fields gain

The first experiment was meant to explore the effect of changing the relative magnitudes of the
attractive potential field gains γi. Changes in these parameters will alter the generated path,
as the attractive fields will affect each joint differently. The magnitude of these parameters are
relative, meaning the attractive fields will increase or decrease relative to each other proportionally
to the magnitudes in γ. An excessively large value in γi will not cause the gradient descent to take
excessively large steps, at a normalized torque vector is used of the step.

The robotics textbook[22] recommends weighing one joint higher than the others. This will lead to
what is referred to as a ”follow the leader” motion characteristic. The joint with the large weight
will be prioritized by the algorithm, causing the frame of said joint to reach its destination first.
The other frames will then follow suit.

The experiment was conducted for 5 different cases. Case 1 used an adaptive gain vector γ =
[1 1 1 1] while the other cases used a weight of γi = 10 for each joint frame respectively. No
obstacles were introduced to the workspace. A constant step size α = 0.01 was used. The initial
and final configuration were set as qs = [60° 100° 60° 0°]T and qf = [220° 110° 115° 0°]T .

The experiment was expected to produce successful paths for all cases. Regardless of which joint
is prioritized, the negative gradient of the potential fields will point towards a minima. The

26

performances when weighing each joint higher were expected to reflect the relative weights. In
each case, the weighted joint should reach the target position before the others. Results of the
experiment are presented in section 5.1.

4.2 Test random walk

The next experiment was done to verify the random walk method and its ability to help the gradient
descent algorithm escape local minima. The random walk is parameterized by the number of steps
and the size of each step taken. Increasing these parameters will allow the random walk to move
the manipulator further, increasing the likelihood of escaping a local minima. One must take care
not to choose too large values for these parameters, as it will lead to unexpected movements that
might compromise the obstacle avoidance element of the path planner. Large random walks when
close to obstacles can therefore be very dangerous.

This experiment was originally meant to be conducted using obstacles to created a local minima.
However, results from the attractive gain experiment, presented in section 5.1, showed that the
algorithm was prone to getting stuck in local minima even when on obstacles were present.

The experiment was conducted by simulating the same two sets of qs and qf presented in the
attractive gains test, but this time the random walk will be activated whenever a local minima is
encountered. The parameters used for each case are

q1s = [60° 100° 60° 0°]T q2s = [150° 90° 80° 0°]T

q1f = [220° 110° 115° 0°]T q2f = [10° 190° 100° 0°]T

γ1 = [1 1 1 1] γ2 = [1 1 1 1]

with the randomized walk being parameterized by walk size qv = 1° and number of steps s = 4.
A local minima would be recognized once the change in potential fields strength U was positive 3
times.

The experiment was expected to produce successful paths for both cases. The randomized walk
was selected to be large to ensure that the algorithm would escape any local minima in the gradient
descent search. The results of the experiment are presented in section 5.2

4.3 Test Wolfe

This experiment was conducted to evaluate the effectiveness of the Wolfe method for selecting step
size αi in the gradient descent search.

The experiment was conducted using joint configurations qs = [5° 90° 125° 0°]T and qf =

[5° 195° 66° 0°]T , and an initial step size α0 = 1 with c1 = 10e−4 and c2 = 0.9. The joint
configurations were chosen after being verified that a path could be successfully generated by the
algorithm using a constant α = 0.01.

The experiment was expected to produce a successful path from qs to qf . The path was also
expected to be generated in significantly fewer iterations than the path planned by the baseline
algorithm. This algorithm required 215 iterations to finish. Figure 4.1 shows the reference path.
The results of the experiment are presented in section 5.3.

27

Figure 4.1: Reference path for the gradient descent algorithm using Wolfe conditions.

4.4 Test obstacle avoidance

This experiment was conducted to evaluate whether or not the algorithm was able to avoid obstacles
in the workspace using repulsive potential fields. The experiment was to make use of random walks,
Wolfe conditions and floating potential fields reference points to see how these elements affected
algorithm when planning around an obstacle. The results of the Wolfe condition experiment in
section 5.3 revealed that the method was not properly implemented, causing αi to not update.
The Wolfe conditions were therefore excluded from this experiment.

A point obstacle was introduced into the workspace of the manipulator, and the path planner was
tasked with finding a collision-free path from qs to qf . As obstacles can cause local minima to
appear in the gradient search, the experiment will be ran both with and without randomized walks.

The initial and final joint configurations were set as

qs = [60° 100° 60° 0°]T

qf = [220° 110° 115° 0°]T

the same path used in the Wolfe experiment. All attractive and repulsive gains were set to 1.
The cutoff distance for the repulsive fields was set to 8cm. The random walk was defined by
walk size qv = 1 and number of walks s = 4. The point obstacle was placed at coordinates
b = [0 − 2e − 2 29.3e − 2]T . The cutoff threshold for terminating the search was increased to
3000 due to the added complexity of the problem.

After having conducted the previous experiments, the expectations for this one were less optimistic.
The algorithm was expected to successfully avoid the obstacle, but would likely get stuck in a local
minima before completing the path. The randomized walk was expected to not be able to escape
a local minima.

4.5 Test practical application

The final experiment was to move the Reach Alpha 5 along the paths generated by the potential
fields path planner. The test of using Wolfe conditions to decide a step size αi for each iteration
of the algorithm did not yield satisfactory results when tested. See section 5.3. Because of this, all
paths generated by the path planning algorithm use a constant step size α = 0.01. This results in
paths with a great amount of set points close together. These set points can be given as a series
of joint references to the integrated PID-controllers in the manipulator. Once the manipulator
is close to the given reference, the next set point is used as the new reference. This forces the
manipulator to follow the generated path of set points.

The planned paths were exported from Matlab to python, where they were used as a series of joint

28

references. The joint values of the Reach Alpha 5 were recorded and imported to Matlab for data
analysis and plotting.

29

Chapter 5

Results

5.1 Attractive field gains

This section will present the results of the simulations that were done for the experiment described
in section 4.1.

Simulation 1

The first simulation was executed using an attractive gain of γ = [1 1 1 1]. The simulation
ran for 1000 steps and was unable to reach the desired destination. Figure 5.1 shows a 3D-model
of the manipulator with a trace of the end-effector position.

Figure 5.2 shows the manipulator joint values throughout the full simulation, as well as the distance
between the end-effector and its target destination. From the figure it can be seen that a local
minima was reached almost 400 iterations into the search. None of the joint values converge over
time.

Figure 5.3 plots the distance between each joint frame and their target positions throughout the
simulation. Joint 1 is omitted from the plot at it barely moves regardless of motion. None of the
joint frames converge to their target destinations over time.

Simulation 2

The second simulation was executed using an attractive gain of γ = [10 1 1 1]. Like simulation
1, the second simulation ran for 1000 steps and was unable to reach the desired destination. Figure

Figure 5.1: 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 1 1].

30

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200

250

q(2)

q
d
(2)

0 200 400 600 800 1000
50

100

150

200

q(3)

q
d
(3)

0 200 400 600 800 1000

0.1

0.15

0.2 Distance end-effector to target

Figure 5.2: Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 1].

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

Joint 4

Figure 5.3: Distance between joint frame and target position for γ = [1 1 1 1].

5.1 shows a 3D-model of the manipulator with a trace of the end-effector position. The path is
visually almost identical with the path in simulation 1. This is to be expected as joint 1 will barely
move, meaning that a weighted γ1 = 10 will not change much, as the position of joint 1 is already
approximately at the target position.

Figure 5.5 shows the manipulator joint values throughout the full simulation, as well as the distance
between the end-effector and its target destination. As with simulation 1, it can be seen from the
figure that a local minima was reached almost 400 iterations into the search. None of the joint
values converge over time.

Figure 5.6 plots the distance between each joint frame and their target positions throughout the
simulation. None of the joint frames converge to their target destinations over time.

Figure 5.4: 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [10 1 1 1].

31

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200

250

q(2)

q
d
(2)

0 200 400 600 800 1000
50

100

150

200

q(3)

q
d
(3)

0 200 400 600 800 1000

0.1

0.15

0.2 Distance end-effector to target

Figure 5.5: Joint variables q(i) compared to the given reference qf (i) for γ = [10 1 1 1].

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

Joint 4

Figure 5.6: Distance between joint frame and target position for γ = [10 1 1 1].

Simulation 3

The second simulation was executed using an attractive gain of γ = [1 10 1 1]. This set of
attractive gains prioritizes the position of the second joint. Like simulation 1 and 2, the third
simulation ran for 1000 steps and was unable to reach the desired destination. Figure 5.7 shows
a 3D-model of the manipulator with a trace of the end-effector position. From the trace of the
end-effector one can see that the change in attractive gain caused a change in manipulator motion.

Figure 5.8 shows the manipulator joint values throughout the full simulation, as well as the distance
between the end-effector and its target destination. None of the joint values converge over time.

Figure 5.9 plots the distance between each joint frame and their target positions throughout the
simulation. None of the joint frames converge to their target destinations over time. One can,
however, see a change in how quickly the third joint approaches its destination for the first 300
steps of the simulation. The new weight caused joint 3 to converge more quickly. The simulation
still ended up stuck in a local minima.

Figure 5.7: 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 10 1 1].

32

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200

250

q(2)

q
d
(2)

0 200 400 600 800 1000
50

100

150

200

q(3)

q
d
(3)

0 200 400 600 800 1000
0

0.1

0.2

0.3

Distance end-effector to target

Figure 5.8: Joint variables q(i) compared to the given reference qf (i) for γ = [1 10 1 1].

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

Joint 4

Figure 5.9: Distance between joint frame and target position for γ = [1 10 1 1].

Simulation 4

The fourth simulation was executed using attractive gains of γ = [1 1 10 1]. As with previous
simulations, it terminated after 1000 iterations, having been caught in a local minima. Figure 5.10
shows the trace of the end-effector for simulation 4. This case ends up with the end-effector further
away than any of the previous cases.

Figure 5.11 shows the manipulator joint values throughout the full simulation, as well as the
distance between the end-effector and its target destination. Despite how the end-effector gets
stuck further away from the goal, one can see that the local minima is encountered at roughly the
same iteration of the search. None of the joint values converge over time.

Figure 5.12 plots the distance between each joint frame and their target positions throughout the
simulation. None of the joint frames converge to their target destinations over time.

Figure 5.10: 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 10 1].

33

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200

250

q(2)

q
d
(2)

0 200 400 600 800 1000

50

100

150
q(3)

q
d
(3)

0 200 400 600 800 1000
0.15

0.2

0.25

0.3

Distance end-effector to target

Figure 5.11: Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 10 1].

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.3

Joint 4

Figure 5.12: Distance between joint frame and target position for γ = [1 10 1 1].

Simulation 5

The fifth and final simulation was executed using attractive gains of γ = [1 1 1 10]. This
simulation also terminated after 1000 iterations, having been caught in a local minima. Figure
5.13 shows the trace of the end-effector for simulation 5. The visual representation shows that the
end-effector got much closer to the target for this set of attractive field gains. This was expected,
as joint 4, and by extension the end-effector, was weighted higher that the other joints.

Figure 5.14 shows the manipulator joint values throughout the full simulation, as well as the
distance between the end-effector and its target destination. Although the end-effector approached
its desired position, it can be seen from the figure that no joints converged towards the reference.
Take note that the reference comes in the form of a joint configuration, not an end-effector position

Figure 5.12 plots the distance between each joint frame and their target positions throughout the

Figure 5.13: 3D-model of the Reach Alpha 5 with trace of the end effector when γ = [1 1 1 10].

34

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200 q(2)

q
d
(2)

0 200 400 600 800 1000
50

100

150

200

q(3)

q
d
(3)

0 200 400 600 800 1000
0

0.1

0.2 Distance end-effector to target

Figure 5.14: Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 10].

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3
Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3
Joint 4

Figure 5.15: Distance between joint frame and target position for γ = [1 1 10 1].

simulation. None of the joint frames converge to their target destinations over time. Joint 2 and
3 were slower to move in this case, which follows from the theory. The fourth joint is prioritized
and moves faster.

Observations

None of the attractive gains were able to generate a successful path from qs to qf . In every case,
a local minima was encountered before the 400th iteration of the search. The joint values qi did
not converge towards the given reference, even before getting stuck in the local minima. Joint 1 is
noteworthy, as it converges efficiently to qf (1) + 180° in every case.

Due to the consistent failure to escape the local minima, other paths were tested to see if the
initial configuration and reference qs and qf was the cause of the algorithms inability to converge.
The results from one of these alternative paths will be presented here. This path used an initial
configuration qs = [150° 90° 80° 0°] and reference configuration qf = [10° 190° 100° 0°].

Simulation 1 secondary path

The first simulation of the secondary path was executed using neutral weights γ = [1n 1 1 1].
Like with the original path, the simulation terminated after 1000 steps and was unable to reach
the desired destination. Figure 5.16 shows the trace of the end-effector. The new path did not
change the result and the gradient descent algorithm got stuck in a local minima.

Figure 5.17 shows the manipulator joint values throughout the full simulation, as well as the
distance between the end-effector and its target destination. Joint 1 still converges towards qf (1)+
180°, and no joint converges toward the given reference.

35

Figure 5.16: 3D-model of the Reach Alpha 5 with trace of the end effector when γ =
[1 1 1 1]using alternative start and stop conditions.

0 200 400 600 800 1000
0

100

200

q(1)

q
d
(1)

0 200 400 600 800 1000

100

150

200

q(2)

q
d
(2)

0 200 400 600 800 1000

100

150

200 q(3)

q
d
(3)

0 200 400 600 800 1000
0

0.1

0.2 Distance end-effector to target

Figure 5.17: Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 1 1].

Figure 5.18 plots the distance between each joint frame and their target positions throughout the
simulation. None of the joint frames converge to their target destinations over time. The data for
this secondary path has the same characteristics as the data from the original path.

Simulations 3 and 4 secondary path

The second simulation with weight on joint 1 lead to a similar result as all previous simulations.
However, simulations 3 and 4 for the secondary path yielded different results. Figure 5.19 shows
the trace of the end effector for simulation 3. The simulation terminated successfully after 373
steps.The figure shows that the end-effector reached the desired position at this time.

Figure 5.20 shows the manipulator joint values throughout the full simulation, as well as the

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2
Joint position convergence

Joint 2

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Joint 3

0 100 200 300 400 500 600 700 800 900 1000

0.3

0.35

Joint 4

Figure 5.18: Distance between joint frame and target position for γ = [1 1 1 10].

36

Figure 5.19: 3D-model of the Reach Alpha 5 with trace of the end effector when γ =
[1 10 1 1]using alternative start and stop conditions.

0 50 100 150 200 250 300 350 400
0

50

100

150
q(1)

q
d
(1)

0 50 100 150 200 250 300 350 400

100

150

200

q(2)

q
d
(2)

0 50 100 150 200 250 300 350 400

80

90

100

q(3)

q
d
(3)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3
Distance end-effector to target

Figure 5.20: Joint variables q(i) compared to the given reference qf (i) for γ = [1 10 1 1].

distance between the end-effector and its target destination. Whereas no joints converged to the
given reference in any previous simulation, all joints converged in this case.

Figure 5.21 plots the distance between each joint frame and their target positions throughout the
simulation. Joint 2 and 3 converge to the target position, while joint 4 does not. This was later
found out to be a bug when plotting the data. One can be sure that this is a visual bug, as the
position of joint 4 must coincide with the target position by necessity when joint values q have
been shown to converge to qf .

Figure 5.22 shows the trace of the end effector for simulation 4. The simulation terminated suc-
cessfully after 411 steps.The figure shows that the end-effector reached the desired position at this
time.

0 50 100 150 200 250 300 350 400
0

0.1

0.2
Joint position convergence

Joint 2

0 50 100 150 200 250 300 350 400
0

0.1

0.2

Joint 3

0 50 100 150 200 250 300 350 400

0.26

0.28 Joint 4

Figure 5.21: Distance between joint frame and target position for γ = [1 1 1 1].

37

Figure 5.22: 3D-model of the Reach Alpha 5 with trace of the end effector when γ =
[1 1 10 1]using alternative start and stop conditions.

0 100 200 300 400 500
0

50

100

150
q(1)

q
d
(1)

0 100 200 300 400 500

100

150

200

q(2)

q
d
(2)

0 100 200 300 400 500
40

60

80

100

q(3)

q
d
(3)

0 100 200 300 400 500
0

0.1

0.2

0.3
Distance end-effector to target

Figure 5.23: Joint variables q(i) compared to the given reference qf (i) for γ = [1 1 10 1].

Figure 5.23 shows the manipulator joint values throughout the full simulation, as well as the
distance between the end-effector and its target destination. As with simulation 3, all joints
converged.

Figure 5.24 plots the distance between each joint frame and their target positions throughout the
simulation. All joint positions converge towards the desired target position. Once again the graph
for joint 4 is bugged. The value was later validated as converging. All Matlab workspace data
from these simulation was saved and will be submitted alongside this thesis.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2
Joint position convergence

Joint 2

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

Joint 3

0 50 100 150 200 250 300 350 400 450

0.2

0.25

0.3

Joint 4

Figure 5.24: Distance between joint frame and target position for γ = [1 10 1 1].

38

Figure 5.25: 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and s = 4.

Simulation 5 secondary path

Simulation 5 terminated after 1000 iterations. Like with most of the other simulations, the al-
gorithm was caught in a local minima.

Observations

The secondary path presented here was one of many that were used in this experiment. It was
included to show that results varied drastically for different qs and qf . While a large weight on
joint 2 or 3 lead to successful path planning in this case, it was not a general trend. The algorithm
would often get caught in a local minima, with no clear system based on the attractive gains

5.2 Random step

This section will present the results of the experiment outlined in section 4.2.

Simulation 1

The first simulation was executed with random walk parameters qv = 1° and s = 4. The initial
an reference configurations were the same as in the attractive gains experiment. The simulation
terminated after 1000 iterations. The algorithm was not able to generate a successful path. Figure
5.25 shows the trace of the end-effector during simulation. One can see the effect of the random
walk when the algorithm encountered a local minima. Although the effects of the randomized walk
move the end-effector nearly 5cm, the algorithm moves back into the local minima.

Figure 5.26 plots the manipulator joint values relative to their given reference. The randomized
walk was not able to circumvent the local minima.

Simulation 2

The second simulation was executed with the same random walk parameters qv = 1° and s = 4 as
simulation 1. The initial configuration and reference configuration were the same as in the second-
ary path from the attractive gains experiment. The simulation terminated after 1000 iterations.
The algorithm was not able to generate a successful path. Figure 5.27 shows the trace of the
end-effector during simulation. The new qs and qf did not change the outcome. The algorithm
got trapped in a local minima and was not able to exit.

Figure 5.28 plots the manipulator joint values relative to their given reference for simulation 2.

39

0 200 400 600 800 1000
0

100

200
q(1)

q
d
(1)

0 200 400 600 800 1000
100

150

200

250

q(2)

q
d
(2)

0 200 400 600 800 1000
50

100

150

200

q(3)

q
d
(3)

0 200 400 600 800 1000
0

0.1

0.2 Distance end-effector to target

Figure 5.26: Joint variables q(i) compared to the given reference qf (i) for qv = 1 and s = 4.

Figure 5.27: 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and s = 4
for secondary path.

0 200 400 600 800 1000
0

100

200

q(1)

q
d
(1)

0 200 400 600 800 1000

100

150

200

q(2)

q
d
(2)

0 200 400 600 800 1000

100

150

200 q(3)

q
d
(3)

0 200 400 600 800 1000
0

0.1

0.2 Distance end-effector to target

Figure 5.28: Joint variables q(i) compared to the given reference qf (i) when qv = 1 and s = 4 for
secondary path.

40

Figure 5.29: 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 1° and s = 4
for new run of the secondary path.

0 200 400 600 800 1000 1200
0

100

200

q(1)

q
d
(1)

0 200 400 600 800 1000 1200

100

150

200

q(2)

q
d
(2)

0 200 400 600 800 1000 1200

100

150

200 q(3)

q
d
(3)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

Distance end-effector to target

Figure 5.30: Joint variables q(i) compared to the given reference qf (i) when qv = 1 and s = 4 for
new run of secondary path.

Simulation 2 repeated

Due to the random nature of the walk, it was possible that the first two simulations were outliers,
and that the random walk would succeed in another instance. Simulation 2 was therefore repeated
several times to ensure the validity of the result. None of these simulations were able to successfully
generate a path from qs to qf . Presented here is the results from one of these simulations. Figure
5.29 shows the trace of the end-effector during simulation. In this case, the trace of the end-
effector was smoother in the early stages of the path generation. This is a consequence of the
random nature of the walk.

Figure 5.30 plots the manipulator joint values relative to their given reference for the repeated
simulation.

Observations

The random walk was not able to pull the gradient descent algorithm out of the local minima.
The walk parameters qv = 1° and s = 4 were originally assumed to be too large for practical use,
as the end-effector could move far with each instance of the randomized walk. One can see from
figures 5.25 and 5.27 that the end-effector moves as much as 5cm in different directions. Despite
the large walks, no simulations succeeded. A new simulation was executed with an increased
walk size to see if a complete path could be generated using the random walk method. The new
walk was parameterized as qv = 4° and s = 4. In addition, the simulation was allowed to run
for 10000 iterations before termination, as random elements with high variance could fail given a
small sample. The joint configurations qs and qf were unchanged from simulation 2.

41

Figure 5.31: 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 4° and s = 4.

0 2000 4000 6000 8000 10000

0

50

100

150
q(1)

q
d
(1)

0 2000 4000 6000 8000 10000

100

150

200
q(2)

q
d
(2)

0 2000 4000 6000 8000 10000
60

80

100

120
q(3)

q
d
(3)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

Distance end-effector to target

Figure 5.32: Joint variables q(i) compared to the given reference qf (i) when qv = 4 and s = 4.

Simulation 3

The third simulation executed with a modified randomized walk, where qv = 4° and s = 4. The
simulation was terminated after 10000 iterations, not able to successfully generate a path from qs
to qf . Figure 5.31 shows the trace of the end effector through the simulation. The algorithm could
not escape the local minima, despite the large changes in configuration qi after each randomized
walk.

Figure 5.30 plots the manipulator joint values relative to their given reference for the simulation.

Simulation 3 repeated

The third simulation was also repeated multiple times to verify the result. While most cases lead
to the gradient descent getting trapped in a minima, one case lead to a successful path. The results
of that simulation are presented here. The simulation terminated successfully after 537 iterations.
Figure 5.33 shows the trace of the end-effector during simulation.

Figure 5.34 plots the manipulator joint values relative to their given reference for the repeated
simulation.

5.3 Wolfe conditions

This section will present the results of the experiment outlined in section 4.3.

42

Figure 5.33: 3D-model of the Reach Alpha 5 with trace of the end effector when qv = 4° and s = 4
for new run of the same path.

0 100 200 300 400 500 600
0

50

100

150
q(1)

q
d
(1)

0 100 200 300 400 500 600

100

150

200

q(2)

q
d
(2)

0 100 200 300 400 500 600

60

80

100 q(3)

q
d
(3)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

Distance end-effector to target

Figure 5.34: Joint variables q(i) compared to the given reference qf (i) when qv = 4 and s = 4 for
new run of the same path.

Simulation 1

The path planner was executed with Wolfe conditions adjusting the step size αi at each iteration
of the search. The search was then forcefully terminated after some time, as the algorithm was
stuck in a loop updating αi indefinitely. A limit of 100 cycles was set before the loop would be
forcefully terminated, returning the latest value for αi. The simulation was executed once more,
with termination condition after 100 iterations of the gradient descent search, due to excessive
runtimes. Figure 5.35 shows the trace of the end effector during the search. The manipulator
made large jumps which do not allow for a path to qf .

Figure 5.36 shows the joint values at each iteration of the search.

The manipulator took excessively large steps in this simulation. Figure 5.37 shows the value for α
at each iteration. The Wolfe conditions did not change alpha form its original value α0 = 1. Each
step taken in the direction of the negative gradient was of size 1, resulting in the behavior from
figure 5.35.

Observations

The initial step size α0 = 1 remains unchanged during the entire simulation. When the simulation
was originally executed it had to be forcefully terminated. This indicates that αi is not updated
properly, resulting in exit conditions not being met. A second simulation was executed to verify
that the initial step size was not causing the issue. A new initial step size α0 = 0.1 was selected.

43

Figure 5.35: 3D-model of the Reach Alpha 5 with trace of the end effector when using Wolfe
conditions. The step size αi does not change from α0.

0 20 40 60 80 100
0.1

0.1

0.1

q(1)

q
d
(1)

0 20 40 60 80 100
1.5

2

2.5

3

3.5 q(2)

q
d
(2)

0 20 40 60 80 100
1

1.5

2 q(3)

q
d
(3)

0 20 40 60 80 100
0.2

0.3

0.4

0.5
Distance end-effector to target

Figure 5.36: Joint variables q(i) compared to the given reference qf (i) when using Wolfe conditions.
The step size αi does not change from α0.

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

i
 at each iteration

Figure 5.37: Value of α at every iteration of the search. The step size remains constant throughout
the whole simulation.

44

Figure 5.38: 3D-model of the Reach Alpha 5 with trace of the end effector when using Wolfe
parameter. The step size αi does not change from α0.

0 20 40 60 80 100

0.1

0.1

0.1

q(1)

q
d
(1)

0 20 40 60 80 100

2

3

4

q(2)

q
d
(2)

0 20 40 60 80 100
1

1.5

2 q(3)

q
d
(3)

0 20 40 60 80 100
0

0.2

0.4

0.6

Distance end-effector to target

Figure 5.39: Joint variables q(i) compared to the given reference qf (i) when using Wolfe conditions.
The step size αi does not change from α0.

Simulation 2

The second simulation was executed between the same qs and qf , with an initial step size α0 = 0.1.
Figure 5.38 shows the trace of the end-effector during simulation. The jittery motion towards the
end of the path shows that the problem of constant step size still persists.

Figure 5.39 shows the joint values at each iteration of the search.

And figure 5.40 shows the value of αi at each iteration of the search. This confirms that the issue
with the algorithm is based in the implementation of the Wolfe conditions.

5.4 Obstacle avoidance

This section will present the results of the experiment outlined in section 4.4.

Simulation 1

The first simulation was executed without any obstacles. This would serve as a reference to
subsequent simulations. Figure 5.41 shows the trace of the end effector for the full simulation. The
algorithm terminated successfully after 215 iterations.

45

0 10 20 30 40 50 60 70 80 90 100

-1

-0.5

0

0.5

1

1.5

i
 at each iteration

Figure 5.40: Value of α at every iteration of the search. The step size remains constant throughout
the whole simulation.

Figure 5.41: 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the baseline gradient descent algorithm.

Simulation 2

The second simulation was executed with a point obstacle in the direct path of the manipulator.
The simulation ran for 3000 iterations until termination. A successful path from qs to qf was not
found. Figure 5.42 shows the trace of the end-effector for the simulation.

The algorithm was able to avoid the obstacle, but got trapped in a local minima before completing
the path. Figure 5.43 shows the manipulator prom the front.

Figure 5.44 shows the joint values through the search. The local minima was encountered much
later in this simulation than any previous simulation.

Figure 5.42: 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the baseline gradient descent algorithm with an obstacle in the workspace.

46

Figure 5.43: Front view of the manipulator. The end effector moves around the obstacle and avoids
a collision.

0 500 1000 1500 2000 2500 3000
-200.0

-100.0

0.0
q(1)

q
d
(1)

0 500 1000 1500 2000 2500 3000

100

150

200

q(2)

q
d
(2)

0 500 1000 1500 2000 2500 3000

100

200

300

q(3)

q
d
(3)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

Distance end-effector to target

Figure 5.44: Joint variables q(i) compared to the given reference qf (i) for obstacle avoidance.

Simulation 3

The third simulation was executed with a point obstacle in the direct path of the manipulator.
The simulation ran for 3000 iterations until termination. A successful path from qs to qf was not
found. Figure 5.45 shows the trace of the end-effector for the simulation.

This version of the gradient descent algorithm was also able to avoid the obstacle, but got trapped
in the same local minima. The randomized step was not able to move the manipulator out of said
minima.

Figure 5.45: 3D-model of the Reach Alpha 5 with trace of the end effector. Motion planned by
the random walk gradient descent algorithm with an obstacle in the workspace.

47

Figure 5.46: 3D-model of the Reach Alpha 5 with trace of the end effector. The obstacle has been
moved to a different position closer to the initial position of the end-effector.

0 100 200 300 400 500 600 700
0.0

10.0

20.0

30.0

q(1)

q
d
(1)

0 100 200 300 400 500 600 700

100

150

200

q(2)

q
d
(2)

0 100 200 300 400 500 600 700
50

100

150

q(3)

q
d
(3)

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

Distance end-effector to target

Figure 5.47: Joint variables q(i) compared to the given reference qf (i) for obstacle avoidance.

Observations

As was originally predicted, local minima prevent the algorithms from completing the full path.
However, the algorithms are able to avoid the workspace obstacle for the entirety of the motion.
Because of this, a new simulation was conducted with a different obstacle position.

Simulation 4

The new position for the obstacle is b = [−23e−2 − 2e−2 29.3e−2]. This places the obstacle
much closer to the initial position of the end-effector. Randomized walk was not included in the
algorithm for this simulation. The simulation terminated successfully after 681 iterations. Figure
5.46 shows the trace of the end-effector through the generated path. In this instance, the algorithm
was able to complete the path without getting trapped in a local minima.

Figure 5.47 shows the joint values through the search.

5.5 Practical application of the path planning algorithm on
the Reach Alpha 5

Two paths were chosen for the Reach Alpha 5. The first path is shown in figure 5.41. The second
path is shown in figure 5.46. These paths were chosen as they were among few that successfully
connected qs and qf .

48

Figure 5.48: 3D-model of the Reach Alpha 5 with trace of the end effector.

0 50 100 150 200 250 300 350
5.0

5.0

5.1

q(1)

q
d
(1)

0 50 100 150 200 250 300 350

100

150

200

q(2)

q
d
(2)

0 50 100 150 200 250 300 350

80

100

120
q(3)

q
d
(3)

0 50 100 150 200 250 300 350

0

0.2

0.4 Distance end-effector to target

Figure 5.49: Joint variables q(i) compared to the given reference qf (i) for Reach Alpha 5

Path 1

Path 1 consists of 215 set points. The full motion of Reach Alpha 5 returned 317 measurements
of joint values q. Figure 5.48 shows the trace of the end-effector for the full motion. Even though
the path was complete, the Reach Alpha 5 was not able to reach the target position. The figure
shows this through the position of the end-effector.

Figure 5.49 shows the joint positions and final reference. Joint 1 and 2 converge to the reference,
but joint 3 does not.

Path 2

Path 3 consists of 681 set points. The full motion of Reach Alpha 5 returned 405 measurements
of joint values q. Figure 5.48 shows the trace of the end-effector for the full motion. Also in this
instance, the Reach Alpha 5 was not able to reach the target position. The shape of the end-effector
curve is still similar to that of the curve for the simulated manipulator.

Figure 5.49 shows the joint positions and final reference. Only joint 2 converges towards the final
reference.

Figure 5.50: 3D-model of the Reach Alpha 5 with trace of the end effector.

49

0 100 200 300 400 500
0.0

10.0

20.0 q(1)

q
d
(1)

0 100 200 300 400 500

100

150

200

q(2)

q
d
(2)

0 100 200 300 400 500
50

100

150

q(3)

q
d
(3)

0 100 200 300 400 500

0

0.2

0.4 Distance end-effector to target

Figure 5.51: Joint variables q(i) compared to the given reference qf (i) for Reach Alpha 5

50

Chapter 6

Discussion

Attractive field gains

One unexpected problem when using the path planning algorithm was the abundance of local
minima. If qs and qf are arbitrarily chosen, there is a high likelihood that the search is caught
in a local minima. The robotics textbook[22] mentions the problem of local minima, but did not
make it clear how common of a phenomenon it is. They are mostly mentioned in reference to
obstacles and certain configurations where the manipulator reaches around them. Figure 2.8 in
section2.3.1.6 illustrated such a case. Based on experimentation, is seems like simple motions in a
2-dimensional plane are more likely to allow for path planning, while motions that move each joint
through 3-dimensional space are plagued by local minima. It was based on this intuition that the
joint configurations qs and qf used in the obstacle avoidance test were found.

A strong conclusion could not be drawn from the attractive gains test. The appropriate weighing
of γ would shift based on the path being generated. The principal of using a higher weight on a
single joint is expected to yield the best results if the issue of local minima were to be solved.

A noteworthy observation made in the attractive gains test was the tendency for joint 1 to converge
to q(1) = qD(1) + 180°. This would be expected if the position of the end-effector was used as
a reference, since the inverse kinematics would solve for two different solutions. In this case, a
configuration qf was used as a reference, meaning that there was only one solution. This error
implies that there is a mistake in the implementation, likely related to a trigonometric function.
No such error was found. In addition, joint 1 was able to converge properly for certain paths. The
cause of this is yet to be determined.

One way to expand on the current approach to attractive field gains is to implement adaptive
gains. Changing gains during the search could improve performance by reducing weight on joints
already close to their destinations. This could , however, exacerbate the problem of local minima.
Any configuration of positive weights should theoretically lead to reduction in the field U , which
implies that there is merit in implementing an adaptive scheme.

Random step

The randomized walk method was not able to reliably move the search algorithm out of a local
minima, despite being the only method presented in the robotics textbook. In cases where the
baseline algorithm got stuck, the randomized walk variant required numerous tries to succeed, if
it succeeded at all. The values used in the test were already larger than what should be allowed
on a real manipulator. A change of 4°in three joints could displace the end-effector by several
centimeters. Figure 5.25 in section 5.2 illustrates this. This can be dangerous as the random walk
does not take obstacles into account. If obstacles are taken into account by the random walk, it

51

will not be able to escape the obstacle-created minima it was designed to move out of. Situations
like the one illustrated in figure 2.8 cannot be escaped, as the manipulator would need to reverse
too far backwards to see any alternative directions.

Due to the difficulty of escaping local minima, an alternative approach to path planning is recom-
mended. The potential fields method was chosen due to being common in literature, as well as
being thought in the robotics textbook which supplied most of the theory used in this thesis. There
are, however, several other approaches one could take. One such approach is the Rapidly-exploring
random trees(RRT)-method. This method is based around growing a tree in configuration space
rooted at the initial configuration of the manipulator[3]. Branches of the tree are created between
the root an randomly placed points in space. Variations of the RRT method are used in recent
literature, and Matlab has built in functionality for this approach[12].

Wolfe conditions

Based on the results of the Wolfe conditions test, it is clear that the implementation was faulty. The
step size α was not updated, likely due to a mistake in how the two inequalities were translated to
this optimization problem. With proper implementation, better performance of the path planning
algorithm is expected. However, no definitive conclusions can be drawn from this test.

An assumption was made in section 3.5 that a positive change in field U could be used as an
indicator of a local minima. This was assumed after both the constant step algorithm and the
Wolfe algorithm got the same result. Given that the Wolfe algorithm was faulty, the assumption
does no longer hold for the general case. It did not matter in the case of this thesis, as only the
constant step algorithm was used.

Obstacle avoidance

Although several simulations were not able to finish due to local minima, the repulsive fields
effectively avoided collision between manipulator and obstacle. One improvement tho this im-
plementation would be to use case-specific repulsive gains. A gain should be weighed less if the
obstacle is located close to the final position of the manipulator. If the repulsive gains are static
for all cases, there is an increased likelihood of encountering local minima close to the obstacle.
The cutoff distance for the repulsive fields should also be chosen according to this principle.

Practical application of the path planning algorithm on the
Reach Alpha 5

Despite following a complete path, the Reach Alpha 5 did not reach the goal position. Each set
point was used as a reference to the manipulator, only changing reference when the manipulator
was sufficiently close. Section 3.1 demonstrated that the internal PID-controllers are capable of
following a reference to much higher precision. The error is likely caused by the threshold used
for changing reference configuration being to large. This could have been tested, but the error was
not discovered before access to the manipulator was gone.

Another noteworthy observation is the jagged motion of the manipulator. It can be seen in figure
5.51 in section 5.5, and it was very noticeable visually when conduction the test. This motion is
caused by continuously feeding positional references with minimal changes to the PID-controllers.
The motors perpetually activate and deactivate, causing the jagged motion. This would likely be
damaging over time, so a different approach to controlling the manipulator is recommended. The
motion shown in section 3.1 was smooth, which substantiates this assertion.

52

Chapter 7

Conclusion

This section will discuss how this thesis tackled the problems presented in the project statement,
and give final remarks on the work done.

• Software framework development: Develop software for collision-free motion planning
using the potential fields method.

This thesis has presented the theory and methods used in implementing a potential fields path
planning algorithm. The algorithm was made using theory from the preceding project to this
thesis, and expanded upon it by incorporating methods for handling local minima and inefficient
optimization, as well as utilizing a more advanced structure for the repulsive field.

• Virtual experiments to verify control system components:

1. Test basic motion planning capabilities in open air.

2. Test of collision avoidance capabilities for avoiding obstacles in the manipulator work-
space.

A set of experiments were conducted for testing the motion planning capabilities of the potential
fields algorithm in an open workspace. The first test experimented with different weights in the
attractive potential fields. The test was not able to determine what weight characteristic gave
better results, as the path planning algorithm could not generate a complete path for several
different sets of initial and final joint configuration. This was due to the algorithm getting trapped
in local minima in the configuration space. The frequency at which the algorithm would encounter
a local minima was unexpected. Another test was conducted in order to evaluate the effectiveness of
the randomized walk, designed to circumvent local minima. The test showed that the randomized
walk approach was not sufficient for escaping local minima. A third test was conducted in order to
verify whether or not using Wolfe conditions would lead to a more efficient search. The test could
not produce any results, as the Wolfe conditions had not been implemented correctly.

A test was also conducted for verifying that the path planning algorithm created the collision-free
paths. The test showed that the manipulator was able to avoid an obstacle in the workspace, and
in certain cases reach the desired destination. While the algorithm was not able to compete the
path in some cases, it never collided with the obstacle.

• Physical experiments with the Reach Alpha 5: Conduct physical experiments using
results from virtual experiments with the motion planning algorithm.

Paths generated by the potential fields path planing algorithm were given to the Reach Alpha 5,
which then used those paths as references for joint positions. One path was taken from an open

53

workspace, and the other path included a workspace obstacle. The Reach Alpha 5 failed to reach
the final destination in both cases. This was due to the use of a threshold parameter which was
not strict enough to bring the manipulator to the final destination. The way the path was used as
a series of positional joint references led to an undesirable motion characteristic.

The thesis tackled every problem presented in the problem statement. The results from the tests
that were conducted showed that this path planning algorithm is not able to perform the task
or collision-free path planning consistently. The program used to operate the Reach Alpha 5 was
implemented in such a way that it could likely damage the manipulator motors if used over an
extended period if time. The Wolfe conditions were not implemented correctly according to theory.
Despite all many flaws being caused by human mistakes, path planning approach itself has shown
that it might not be a suitable option for such a complex task. Simple motion in free workspace
with no restrictions on either joints or collisions still led to the algorithm getting trapped in local
minima. Only 2-dimensional problems would yield a solution. If potential fields are to be used for
path planning for the Reach Alpha 5, one would need to solve the problem of avoiding these local
minima. One approach which likely leads to better performance is to utilise a different motion
planning scheme altogether.

54

Bibliography

[1] Alexander Amini. Spatial Uncertainty Sampling for End-to-End Control. url: https://www.
researchgate.net/figure/Non-convex-optimization-We-utilize- stochastic-gradient-descent- to-
find-a-local-optimum fig1 325142728 (visited on 19/12/2021).

[2] Jason Brownlee.Gradient Descent For Machine Learning. url: https://machinelearningmastery.
com/gradient-descent-for-machine-learning/ (visited on 20/12/2021).

[3] Tim Chinenov. Robotic Path Planning: RRT and RRT*. url: https://theclassytim.medium.
com/robotic-path-planning-rrt-and-rrt-212319121378 (visited on 12/07/2022).

[4] Peter Corke. Denavit-Hartenberg notation. url: https://robotacademy.net.au/lesson/denavit-
hartenberg-notation/ (visited on 20/12/2021).

[5] Richard Scheunemann Denavit Jacques; Hartenberg. ‘A kinematic notation for lower-pair
mechanisms based on matrices’. In: (1955).

[6] Richard Scheunemann Denavit Jacques; Hartenberg. ‘Kinematic synthesis of linkages’. In:
(1965).

[7] Niklas Donges. Gradient Descent: An Introduction to 1 of Machine Learning’s Most Popular
Algorithms. url: https://builtin.com/data-science/gradient-descent (visited on 20/12/2021).

[8] Martin Føre et al. Precision fish farming: A new framework to improve production in aquacul-
ture. url: https://www.sintef.no/publikasjoner/publikasjon/1520340/ (visited on 16/12/2021).

[9] Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer New York, 2006. doi:
10.1007/978-0-387-40065-5. url: https://doi.org/10.1007%2F978-0-387-40065-5.

[10] Sahdev Kansal.Quick Guide to Gradient Descent and Its Variants. url: https://towardsdatascience.
com/quick-guide-to-gradient-descent-and-its-variants-97a7afb33add (visited on 19/12/2021).

[11] Eleni Kelasidi. Using robotics to drive up efficiency and minimise risks. url: https://blog.
sintef.com/sintefocean/using-robotics- to-drive-up-efficiency-and-minimise- risks/ (visited on
20/12/2021).

[12] Mathworks. Motion Planning with RRT for a Robot Manipulator. url: https://se.mathworks.
com/help/nav/ug/motion-planning-with-rrt-for-manipulators.html (visited on 12/07/2022).

[13] MATLAB. version R2021a. Natick, Massachusetts: The MathWorks Inc., 2021.

[14] Oscar Nissen. ‘Automating Tank Operations in Smolt Production - Control of an Underwater
Manipulator’. In: (2021).

[15] Ahmed Sadiq, Firas Raheem and Noor F. Abbas. ‘Robot Arm Path Planning Using Modified
Particle Swarm Optimization based on D* algorithm’. In: Al-Khwarizmi Engineering Journal
13 (Oct. 2017). doi: 10.22153/kej.2017.02.001.

[16] Hani Safadi. Local Path Planning Using Virtual Potential Field. url: https://www.cs.mcgill.
ca/∼hsafad/robotics/ (visited on 23/11/2021).

[17] SINTEF. Autosmolt 2025. url: https://www.sintef.no/globalassets/sintef-ocean/factsheets/
aquanor/autosmolt-2025.pdf (visited on 16/12/2021).

[18] SINTEF. Autosmolt2025. url: https ://www.sintef .no/en/projects/2019/autosmolt2025/
(visited on 16/12/2021).

[19] P̊al H. Skeide. ‘Automating tank operations in smolt production – A concept study for
automating tank cleaning using robotic arms’. In: (2020).

55

https://www.researchgate.net/figure/Non-convex-optimization-We-utilize-stochastic-gradient-descent-to-find-a-local-optimum_fig1_325142728
https://www.researchgate.net/figure/Non-convex-optimization-We-utilize-stochastic-gradient-descent-to-find-a-local-optimum_fig1_325142728
https://www.researchgate.net/figure/Non-convex-optimization-We-utilize-stochastic-gradient-descent-to-find-a-local-optimum_fig1_325142728
https://machinelearningmastery.com/gradient-descent-for-machine-learning/
https://machinelearningmastery.com/gradient-descent-for-machine-learning/
https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378
https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378
https://robotacademy.net.au/lesson/denavit-hartenberg-notation/
https://robotacademy.net.au/lesson/denavit-hartenberg-notation/
https://builtin.com/data-science/gradient-descent
https://www.sintef.no/publikasjoner/publikasjon/1520340/
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007%2F978-0-387-40065-5
https://towardsdatascience.com/quick-guide-to-gradient-descent-and-its-variants-97a7afb33add
https://towardsdatascience.com/quick-guide-to-gradient-descent-and-its-variants-97a7afb33add
https://blog.sintef.com/sintefocean/using-robotics-to-drive-up-efficiency-and-minimise-risks/
https://blog.sintef.com/sintefocean/using-robotics-to-drive-up-efficiency-and-minimise-risks/
https://se.mathworks.com/help/nav/ug/motion-planning-with-rrt-for-manipulators.html
https://se.mathworks.com/help/nav/ug/motion-planning-with-rrt-for-manipulators.html
https://doi.org/10.22153/kej.2017.02.001
https://www.cs.mcgill.ca/~hsafad/robotics/
https://www.cs.mcgill.ca/~hsafad/robotics/
https://www.sintef.no/globalassets/sintef-ocean/factsheets/aquanor/autosmolt-2025.pdf
https://www.sintef.no/globalassets/sintef-ocean/factsheets/aquanor/autosmolt-2025.pdf
https://www.sintef.no/en/projects/2019/autosmolt2025/

[20] Keith R. Solomon and Glen Van Der Kraak. ‘Organic Chemical Toxicology of Fishes’. In:
(2013).

[21] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. isbn: 1441412697.

[22] Mark W. Spong, Seth Hutchinson and M. Vidyasagar. Robot Modeling And Control. John
Wiley & Sons, Inc, 2006.

56

Appendix

.1 Project description

57

NTNU Faculty of Information Technology,
Norwegian University of and Electrical Engineering,
Science and Technology Department of Engineering Cybernetics

MASTER THESIS

Name of the candidate: Henrik Baldishol

Discipline: Engineering Cybernetics

Project title (Norwegian): Baneplanlegging med kollisjonsunngåelse for 5-funksjons
robotmanipulator for havbruksoperasjoner

Project Title (English): Path planning with obstacle avoidance for 5 function robot manipulator for
aquaculture operations

Background:
There is a present trend in the aquaculture industry with operations and production methods

becoming less reliant on manual labour and experience-based reasoning, and more based upon

objective indicators, automation principles and decision support systems. This harmonises with the

philosophy of Precision Fish Farming (PFF) where new technology and automation principles are

employed to improve human control over the biological processes in different phases in the

aquaculture production cycle. Although most of the weight gain in salmon production is achieved

during the sea-based ongrowing phase, the success of the production also depends strongly on the

quality of the fish when transferred to sea-cages. This is determined by how well the fish are

managed during the smolt production phase that precedes the ongrowing phase. Smolt production is

conducted in land-based tank facilities and covers the period from hatching until the fish undergo

smoltification (i.e., a metamorphosis adapting them from living in fresh water to handling seawater).

Utilization of robotic manipulators with computer vision techniques have the potential to simplify or

automate several different challenges in various industry segments. Within land-based rearing of

smolt in rearing tanks, manipulators can be used for different applications. Specifically, recent

research activities at SINTEF Ocean and NTNU have focused on developing control system

components and algorithms for controlling a 5 function manipulator for such purposes. Moreover,

NTNU recently acquired a 5 function robot manipulator (Blueprint Labs, Reach Alpha 5) that can be

used as a physical platform for further developing and validating these methods.

This master project is linked with these activities, and builds on a preceding specialization project

that was aimed at developing a software framework for virtual development of advanced control

system components for conducting automated operations in tanks for smolt production. The master

project will continue the development of the software framework, and expand it with new

functionality where needed. Moreover, the project will set up and run specific simulation trials to test

key functionality in the control system components, primarily collision avoidance approaches. All

developments will be designed for the Blueprint Labs, Reach Alpha 5 manipulator. Once the

functionality has been verified through simulation experiments, the same methods will be tested on

the physical 5 function robot manipulator in physical experiments mimicking the simulation

experiments.

The project will contain the following elements:

• Software framework development

o Implement collision avoidance methods to prevent self-collision (i.e., collision

between links), collisions with ground/fundament or obstacles

• Virtual experiments to verify control system components such as:

o Basic tests of motion planning in air without obstacles

o Collision avoidance to avoid self-collisions, ground collisions and dynamic/static

obstacles

• Physical experiments with robotic manipulator:

o Physical experiments mimicking the virtual experiments

o Compare performance with simulation outcomes

Start date: February 01, 2022

Delivery date: July 12, 2022

Conducted at the Department of Engineering Cybernetics, NTNU

Main supervisor: Martin Føre

Co-supervisor(s): Bent Haugaløkken (SINTEF Ocean)

Trondheim, February 15, 2022

Supervisor

.2 Reach Alpha 5 datasheet

60

Reach System 1 Kinematic and Dynamic

Properties

Blueprint Lab

Last Update: September 2019

1 Kinematic Properties

Link d (mm) θ a (mm) α
0 46.2 θ0 + π 20 π/2
1 0 θ1 − θa 150.71 π
2 0 θ2 − θa 20 −π/2
3 -180 θ3 + π/2 0 π/2
4 0 −π/2 0 0

Table 1: Standard DH Parameters for R5M with θa = tan−1
(
145.3
40

)

Figure 1: R5M joint frames (x,y,z)

1

Figure 2: Reachable workspace without self collision showing inner and outer
limits

1.1 Workspace

The outer reachable limits form a torus

(
√
x2 + y2 − a0)2 + (z − d0)2 ≤ (a1 +

√
d23 + a22)2 (1)

The inner reachable limit is the torus

(
√
x2 + y2 − a0)2 + (z − d0)2 ≥ ((39.94 + a2)2 + (145.3 + d3)2) (2)

The inner reachable limit with the arm in the downward position is the torus

(
√
x2 + y2 − a0)2 + (z − d0 + 145.3)2 ≥ (−d3)2 (3)

These are shown in Figure 2.

1.2 Inverse Kinematics

From Figure 3 we can solve for the underarm solution

θ0 = tan21(
y

x
) + π (4)

R =
√
x2 + y2 (5)

From Figure 4 we can solve for

l1 = a1 (6)

2

Figure 3: Calculation of θ0

Figure 4: Calculation of θ1 and θ2

l2 =
√
a22 + d23 (7)

l3 =
√

(R− a0)2 + (z − d0)2 (8)

θ2 = cos−1(
l21 + l22 − l23

2l1l2
)− sin−1(

2a2
l1

)− sin−1(
a2
l2

); (9)

θ1 =
π

2
+ tan2−1(

z − d0
R− a0

)− cos−1(
l21 + l23 − l22

2l1l3
)− sin−1(

2a2
l1

) (10)

Now we can also solve for the overarm solution from Figure 5

θ0 = tan21(
y

x
) (11)

Finally from Figure 6

l3 =
√

(R+ a0)2 + (z − d0)2 (12)

θ2 = cos−1(
l21 + l22 − l23

2l1l2
)− sin−1(

2a2
l1

)− sin−1(
a2
l2

); (13)

θ1 =
3π

2
− tan2−1(

z − d0
R+ a0

)− cos−1(
l21 + l23 − l22

2l1l3
)− sin−1(

2a2
l1

) (14)

3

Figure 5: Calculation of θ1 and θ2

Figure 6: Calculation of θ0

2 Inertial Properties

Link Mass (kg) COM (mm) I (kg.mm2)

0 0.341
(
−75 −6 −3

)



99 139 115
139 2920 3
115 3 2934




1 0.194
(

5 −1 16
)




189 5 54
5 213 3
54 3 67




2 0.429
(

73 0 0
)




87 −76 −10
−76 3190 0
−10 0 3213




3 0.115
(

17 −26 −2
)




120 −61 −1
−61 62 0
−1 0 156




4 0.333
(

0 3 −98
)




3709 2 −4
2 3734 0
−4 0 79




Table 2: Inertial properties for R5M

4

Figure 7: Inertial frames for each link (x,y,z)

3 Hydrodynamic Properties

3.1 Added Mass

We use standard equations for added mass assuming cylindrical sections with
spherical ends.

Link (Xu̇, Yv̇, Zẇ)(kg) (Kṗ,Mq̇, Nṙ)(kg.mm2)
0

(
0.017ρ 0.189ρ 0.189ρ

) (
0 1414ρ 1414ρ

)

1
(

0.032ρ 0.032ρ 0.017ρ
) (

7ρ 7ρ 0
)

2
(

0.017ρ 0.201ρ 0.201ρ
) (

0 1716ρ 1716ρ
)

3
(

0.032ρ 0.017ρ 0.032ρ
) (

7ρ 0 7ρ
)

4
(

0.226ρ 0.226ρ 0.017ρ
) (

2443ρ 2443ρ 0
)

Table 3: Added mass terms where ρ ∼ 1 is the density in kg/L

3.2 Viscous Damping

We consider only quadratic drag assuming Reynolds numbers above the Stokes
flow approximation at any significant velocity. We also consider only transla-

5

tional drag. We approximate the Reynolds number as

Re =
ρuL

µ
∼ 103 ∗ 0.1 ∗ 0.1

10−3
∼ 10−4 (15)

where ρ is the fluid density, u is the relative velocity, L is the characteristic
length and µ is the dynamic viscosity, which gives a drag coefficient of cd ∼ 0.5.
We now calculate the quadratic drag using

Fd =
1

2
ρu2cdA (16)

where A is the cross sectional area.
The centre of drag is assumed to coincide with the centre of buoyancy

Link (Xu|u|, Yv|v|, Zw|w|) (N/
√
ms−1)

0
(

0.3ρ 1.5ρ 1.5ρ
)

1
(

0.26ρ 0.26ρ 0.3ρ
)

2
(

0.3ρ 1.6ρ 1.6ρ
)

3
(

0.26ρ 0.3ρ 0.26ρ
)

4
(

1.8ρ 1.8ρ 0.3ρ
)

Table 4: Drag terms where ρ ∼ 1 is the density in kg/L

3.3 Buoyancy

Link Volume (L) COB (mm)
0 0.202

(
−75 −6 −3

)

1 0.018
(
−1 −3 32

)

2 0.203
(

73 0 −2
)

3 0.025
(

3 1 −17
)

4 0.155
(

0 3 −98
)

Table 5: Buoyancy terms with Centre of Buoyancy (COB)

6

4 Actuator Properties

torque = 90.6 ∗ (current± 43.0) (17)

-600 -400 -200 0 200 400 600

current (mA)

-6

-4

-2

0

2

4

6
to

rq
u

e
 (

N
m

)

Figure 8: Plot of torque vs current for high torque joint

7

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Henrik Baldishol

Practical application of potential
fields path planning on robot
manipulator

Master’s thesis in Teknisk kybernetikk
Supervisor: Martin Føre
Co-supervisor: Bent Haugaløkken
July 2022M

as
te

r’s
 th

es
is

	List of Figures
	Introduction
	Background
	Autosmolt 2025
	Robot manipulators

	Motivation
	Software
	Preliminaries
	Structure
	Problem Statement

	Theory
	Kinematics
	Forward kinematics
	Kinematic chains
	The Denavit-Hartenberg convention

	Inverse kinematics
	Jacobian

	Motion planning
	Path planning
	Potential fields
	The attractive field
	The repulsive field
	Creating joint torques for the search algorithm
	The gradient descent algorithm
	The Wolfe conditions
	Local minima

	Implementation
	Creating a program for operation of the Reach Alpha 5 manipulator
	Re-implementing the potential fields path planning algorithm
	Defining attractive fields
	Defining repulsive fields
	Gradient descent algorithm

	Implementing a floating point approach to the repulsive field
	Implementing the Wolfe conditions to the gradient descent algorithm
	Implementing the random step method to the gradient descent algorithm

	Tests
	Test attractive potential fields gain
	Test random walk
	Test Wolfe
	Test obstacle avoidance
	Test practical application

	Results
	Attractive field gains
	Random step
	Wolfe conditions
	Obstacle avoidance
	Practical application of the path planning algorithm on the Reach Alpha 5

	Discussion
	Conclusion
	Bibliography
	Appendix
	Project description
	Reach Alpha 5 datasheet

