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a b s t r a c t 

The vessel speed is one of the important parameters that govern safety, emergency, and transport 

planning in the Arctic. While previous studies have traditionally relied on physics-based simu- 

lations to predict vessel’s speed in ice-covered waters, most have not fully explored data-driven 

approaches and powerful supervised machine learning tools to aid speed prediction. This study 

offers a perspective of applying supervised machine learning models to predict MV SOG using 

historical Automatic Identification System (AIS) data and without explicit knowledge of local ice 

conditions. This paper presents a case-study from the region of the Eastern Barents Sea and the 

Southern Kara Sea. We first analyzed the vessel traffic situation for the years 2017 and 2018, and 

then used this knowledge to build statistical models to predict vessel speeds. Finally, we evalu- 

ated the models’ performance on a test dataset from January 2019. Performance of three models 

(Random Forest, XGBoost, and LightGBM) have been tested with a variety of date-time handling 

techniques, and data input mode being permuted to arrive at the most optimal model. The re- 

sults demonstrate the ability of the models to predict the vessel’s speed based on its geographical 

location, time of the year and other engineered features such as daylight information and route. 

With the proposed approach we were able to achieve mean absolute error 3.5 knots in average 

on a test dataset without explicit knowledge of local ice conditions around the vessel, with the 

majority of the errors being in the Kara Strait region and the Sabetta Channel. 

 

 

 

 

 

 

 

 

1. Introduction 

The Arctic experiences an increase in passenger cruise voyages as well as in marine export shipping of non-renewable natural

resources from coastal regions and the interior. The prediction of vessel speeds in the Arctic remains a challenge in view of rapidly

changing ice conditions (including man-made ice ridges) and specifics of ice navigation (icebreaker assistance, ice channels, etc.). For

example, during convoy operations (when several ships are following an icebreaker), the captain of the leading icebreaker nominates

the speed, the distance between the vessels, or the engine mode depending on the ice conditions and on the ice-going capability of

the vessels in convoy. Thus, the problem of speed prediction on an Arctic route can be related to a system of ships rather than to a

single vessel (i.e., its tactical and technical characteristics). As the demand upon shipping in the Arctic and ice infested waters are

likely to increase in the future, a more in-depth understanding and modelling of the speed regimes in the ice infested waters becomes

increasingly more important. 
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Traditionally, the topic of ship’s speed has been addressed within the context of ship design, operation, and its implications on

transportation and safety. Existing tools for the simulation of ship speed in ice mainly comprise physics-based approaches. The latter,

following ( Milakovi ć et al., 2020 ), can be separated into two groups: (1) computer simulations of ship performance in ice (e.g., Valanto

2001 ; Wang 2001 ; Lau 2006 ; Sawamura et al., 2008 ; Su et al., 2010 ; Lubbad and Løset 2011 ; Erceg et al., 2014 ; Zhou et al., 2016 ;

Li et al., 2019 ); and (2) semi-empirical methods for ice resistance estimation (e.g., Lindqvist 1989 ; Riska et al., 1997 ; Jeong et al.,

2017 , Frederking 2003 ; Kotovirta et al., 2009 ; Valkonen et al., 2013 ; Bergström et al., 2016 ; Kuuliala et al., 2017 ). A detailed summary

and comparison of the existing approaches can be found e.g., in Li et al. (2018) . 

Data-driven methodologies are relatively new to the field of ship transits in ice but gaining momentum fast. 

Adamovich et al. (1995) derived empirical equations to calculate ship speed in ice based on 10 years of ice navigational experi-

ence. Montewka et al. (2013) , and Montewka et al. (2015) developed data-driven models that can predict ship speed using Bayesian

networks. Similä and Lensu (2018) used a MATLAB-based random forest tree regression model to estimate ship speed from satellite 

imagery and ship data. Löptien and Axell (2014) applied multilinear regression of forecasted ice concentration, level ice thick- 

ness, ridge density, historical ship speed and other parameters to reconstruct ship speed profiles in the Baltic. Lensu (2015) and

Afonin et al. (2018) used AIS data and operational ice data to investigate dependency between ship speed and ice thickness in the

Baltic and Northern Sea Route, respectively. Recently, Montewka et al. (2019) developed a hybrid model for estimating ship per-

formance in ice combining traditional engineering and data-driven approaches while ( Milakovi ć et al., 2020 )applied a supervised 

machine learning technique to predict the expected ship speed profile in an ice field. 

All the existing methods for assessment of ship speed use ice-field data as an input in one way or another. To achieve accurate

results, the underlying local ice conditions around the vessel must be known in advance. This presents a specific challenge for tactical

route planning as one needs to input short-term predictions (e.g., days ahead) of ice conditions at local scale (~100–1000 m) for

planning the voyages. 

Currently, all models that provide a decision support for tactical planning and strategic planning of shipping involve an estimation

of short-term or medium-term ice conditions (days ahead, months ahead); see, for example, ( Topaj et al., 2019 ). The ice charts and

forecasts, that are often used for route planning and strategic decisions, represent the conditions at a given time and may not be

representative of local ice conditions around the vessel. This is because, the ice conditions can change significantly in a short period

of time, specifically within straights. Old tracks of vessels and man-made ice channels are often not shown on these charts and

ice forecasts, thus missing the state of brash ice (or also called the channel ice). In addition, the vessels will try finding pathways

through the open leads and mechanically weak ice, and the latter information is not accessible by remote sensing. All these specifics

of operations generate the interest in models that can efficiently simulate a vessel’s speed profile along a route without explicit

knowledge of the complex ice-field data. 

In this view, this paper addresses the following research question: how accurately can vessel speed be predicted without explicit

knowledge of local ice conditions around the vessel ? As a case study we have selected the region of the Eastern Barents Sea and the

Southern Kara Sea and a specific vessel type and ice class, but the presented approach can be applied to other ice-exposed areas and

vessels. 

The hypothesis is that we can predict the vessel speed at a given location and time of the year, provided a representative historical

dataset of operational speeds. The latter implies that the data record is large enough to implicitly capture speed changes in response to

changing navigational conditions (ice, hydrometeorological conditions), vessel purpose, ice going capabilities (ice class, deadweight, 

power), and transport system specifics, including the seasonal (and or yearly) variability in ambient conditions as well as human and

operational factors. 

To address the research question, we analyzed and enhanced AIS data for the years 2017 and 2018 (in total, around 245,000

individual records) and have explored the predictive capabilities of three popular supervised machine learning models (Random 

Forest, XGBoost, and LightGBM). This includes different data representation techniques such as the date-time handling and input 

data arrangement. Being able to predict vessels’ speed on a route, is important for the planning of marine transportation and search

and rescue in ice infested waters. 

The paper is arranged as follows: We first briefly report specifics of navigation and underlying conditions in the studied region,

present the AIS data along with the methods used to transform data into a state suitable to train and validate the different machine

learning models. Next, we analyze and compare predictions from three supervised machine learning models, i.e., the Random Forest 

model, the XGBoost model, and LightGBM for an unseen dataset followed by a brief discussion about the capabilities and limita-

tions of the models and modelling techniques. One of the best model implementation (i.e., XGBoost model) is provided on GitHub

( martra-AISspeed ), and the presented approach could be used to support planning and active management of marine transportations

as well as search and rescue operations in the Kara Sea region. 

2. Region specifics 

This study focuses on the region of the Eastern Barents Sea and the Southern Kara Sea for the years 2017 and 2018 ‒ a region of

year-round marine navigation along the Northern Sea Route. 

2.1. General routes 

The western part of the Kara Sea route has two main entrances: the Kara Gate and Cape Zhelaniya (at the northern tip of Novaya

Zemlya). The vessels typically move to the Gulf of Ob, Yenisei Bay or on the transit to the eastern part of the Northern Sea Route. For the
2 
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past two decades, due to effects of the climate change, duration of summertime navigation along the Northern Sea Route, including

its segments in the Kara Sea, increased because of the earlier melting and later formation of ice ( Shukurov and Semenov, 2018 ).

Furthermore, Arctic shipping fleet expansion is anticipated in the future, and there are difficult navigational conditions in the Kara

Sea. The latter is due to a large number of underwater obstacles and shoals, frequent fogs, presence of ice and limited knowledge

about the currents ( Department of Navigation and Oceanography of the Ministry of Defense of the Russian Federation, 1995 ). A

detailed description of ice regimes along the main transport corridors can be found in e.g., Shumovsky (2012) and Dumanskaya

(2013) . Hence, only important details, specific to the considered dataset, are presented in the following sub-section. 

2.2. Seasonal navigational characteristics 

In the beginning of summer navigation (end of June − beginning of July), the ice can be present in the East part of the Barents

Sea when approaching the Kara Strait, the Yugorsky Strait, and toward the Cape Zhelaniya. At the end of June, the local ice of the

Barents Sea does not create difficulties for navigation, provided there is no ice input from the Kara Sea. Typically, presence of ice

complicates navigation (on approach to the Kara Strait and the Yugorsky Strait) until the first decade of July. This is when the local

ice in the Barents Sea meets the stronger ice brought from the Kara Sea. 

In some years, ice from the Kara Sea can block the entrance to the Kara Strait until end of July. If the ice conditions are severe

at the Kara Strait and the southwest part of the Kara Sea, it is recommended then to proceed toward Dikson following the northern

route around the Cape Zhelaniya. 

In the Kara Sea, winds and wind driven currents have seasonal character. Most difficult navigation conditions are typically in

March and April when additional ice from the Ob River collides with the ice in the Kara Sea forming ridges between Bely and

Shokalsky islands. In favorable years, the route from the Kara Strait to the Dikson island can be ice free from the beginning of July.

It is common to differentiate the following different ice regimes on the route form the Barents Sea to the Kara Sea. 

Kara Strait (30-km long) has the most difficult ice conditions. Often ridging and compression are present. The ice is typically

present from December to May, in some years – from November until July. In addition, an ice jet phenomenon can be periodically

observed. A two-lane traffic separation scheme operates within the strait (Japan Association of Marine Safety, 2016). 

Novozemelsky ice massif , NZIM, (a 250-km long accumulation of ice) is in the western part of the Kara Sea between the Novaya

Zemlya and the Yamal peninsula. It is typically found in the same region every year and is mostly represented by thick first-year ice

with concentration of 8 − 10. 

Yamal polynya (70-km long) and Yamal landfast ice (20-km long): The Yamal polynya is located between NZIM and the landfast

ice of Yamal. In winter, it is frozen and represented by young and relatively thin ice. The landfast ice of Yamal, is up to 1-m thick and

present from November until July. The ice channel created by icebreakers or ice strengthened vessels can, in this case, exist up to

4–5 days. A distinction is typically made between three distinct positions of NZIM: A west position, when the core of NZIM is formed

near the Novaya Zemlya and its southern parts block the Kara Gate. A central position is when NZIM forms in the central part of the

Kara Sea and the leads exist on both sides of it; and an east position ‒ when NZIM forms in the eastern part of the Kara sea, and the

lead forms on the west near the coast of Novaya Zemlya. The latter location of NZIM create favorable navigational conditions in the

Kara and Yugorsky Straits. However, near the coast of Yamal, the ice conditions can become severe due to ice ridges that form due

to interaction between NZIM and landfast ice. 

2.3. Current situations 

Over the past decade, the ice situation in the Kara Sea has been very unstable, and as reported in Ol’khovik (2019) , during

September 2018, the speed of ships, on the route between the Kara Strait and Bely Island, varied slightly and was mainly dependent

on the density and intensity of the traffic. Analysis of AIS data for March 2018 shows that the speed of ships can significantly

change as ships follow the route with a large lateral deviation from it. Furthermore, large Arc7 vessels experience significant speed

reduction during summer when transiting through the shallow waters (depths of 10–20 m) located north-northwest of the Bely island

( Ol’khovik, 2018 ). 

Navigation is also challenging in the Gulf of Ob. One of the most challenging parts is the approach channel in the waters adjacent

to the Sabetta port ( SCF Newsletter, 2019 ). This 42-km long and 295-m wide channel is located in the zone of drift ice. The currents

in this area can reach 2.5 knots, and one-way traffic is allowed at a time. For detailed description of navigational conditions, refer

SCF Newsletter (2019) . 

3. Vessel data 

The AIS data was retrieved from the Norwegian Coastal Administration (NCA). Along with several AIS base stations, the NCA

operates four AIS satellites that circumference the Earth in a polar orbit. These satellites were set in orbit in 2010, 2014 and the

two remaining satellites in 2017. Both the increasing number of satellites, and updated technology is reflected in the number of AIS

messages retrieved over the years. For this study, we have selected a region of the Eastern Barents Sea and the Southern Kara Sea

encompassing the routes that are open all year round (refer to the Fig. 2 ). This region is outside the reach of the base stations, so

all data come from the four satellites. The AIS data collected in the years 2017–2018 was used to train and validate the model. For

model testing and comparison, available data during the month of January 2019 was used. 
3 
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For this study, we have utilized AIS message type 1–3 to retrieve dynamic data such as speed and position, as well as message type

5 to retrieve static data such as IMO-number. The AIS data is transmitted per pre-defined time intervals according to operational state

and message content. According to the IMO Resolution A.1106(29) this time interval varies from 3 min when the vessel is anchored,

moored or moving at speeds less than 3 knots, and up to an interval of 2 s for speeds higher than 14 knots, when changing the course,

or for speeds over 23 knots when moving at a fixed course. The raw satellite data were decrypted using the open source Libais Python

library version 0.17 (Schwehr, 2011). 

The AIS data was cleaned and enhanced before modelling as described in the following section. 

4. Pre-processing of data 

The objective of the preprocessing is to produce a clean dataset that preserve the original information but also includes additional

information on the vessel characteristics such as size, type, and ice class. The latter should be in accordance with the ice class that is

assigned by the Northern Sea Route (NSR) administration. 

First, the duplicate rows were deleted, and the records without IMO numbers were dropped as well as the records with abnormal

speeds ( > 21 knots). The Vessel Finder database, combined with published information from the navigational permits on the NSR

Administration website were used to extract the information about the vessel size, type, and the corresponding ice class. Records

for all special purpose vessels (dredgers, drill ships, tugs, icebreakers, etc.) were removed from the dataset as the speed regime for

them is different from that of the transit vessels (cargo ships, tankers). For the interest of clarity, we limited ourselves to the family

of vessels with a certain ice class, length, deadweight, and installed power. 

Next, we visually inspected the dataset and removed observations on land and sudden jumps in position. The resulting dataset

consists of nearly 245,000 individual data samples covering the region as shown in Fig. 1 . The dataset contains numerical vari-

ables (latitude, longitude) and speed as well as date-time data. The date-time data was handled in multiple ways (for details refer

to Section 5.2 ) to acquire best predicting power of the models. Some of these date-time handling methods included splitting into

categorical/cyclic datetime features such as month, day, hour, minute, second as well as splitting into seasonal data. 

Regional and temporal data analysis 

The considered vessel traffic is driven by marine export shipping of non-renewable natural resources from coastal regions and the

interior. We separated the dataset into vessel-specific voyage blocks using a time-based separation algorithm , where a data entry was

declared as part of a new voyage block if the time-gap between two consecutive points was greater than 8 h. This resulted in a total

of 226 voyage-blocks (see Fig. 1 on the right). 

In addition, four main navigation regions (Routes) were defined as shown in Fig. 2 , namely: 

1) Sabetta ‒ Gulf of Ob; 

2) Barents Sea ‒ Kara Strait ‒ Bely Island; 

3) Barents Sea ‒ Cape Zhelaniya ‒ up to the Gulf of Ob; and 

4) Southeast Kara Sea. 

Fig. 2 shows that voyages in the Southeast part of the Kara Sea constitute only 8% of the total data recorded. Furthermore, all

the considered vessel traffic in April, May, June, and July mainly occurs via the Cape Zhelaniya (see Fig. 3 ). There are only 156 AIS

messages from the Kara Strait in April, 221 in July, and no messages in May and June. The highest density of AIS messages (in total

around 25,000 AIS messages) and most of the records with zero speeds are observed at the entrance to the Ob Bay and in the Gulf of

Ob. Similar observations were made by Ol’khovik, 2018 on a different dataset and also for other vessel classes and types. Thus, there

seems to be a common ‘high message density’ trend as two major shipping lines converge (Kara Strait and Cape Zhelaniya). 

An interesting observation can be made from the data presented in Figs. 1 and 2 . Twenty-six percent of all AIS messages are from

vessels transiting through the Kara Strait (Route 2 on Fig. 1 ), and none of these vessels were registered at 0.0 speed. In contrast to

this, despite that the minority of the data are form Route 4 (transits in southeast part of the Kara Sea), the vessels with zero speed
Fig. 1. Spatial visualization of the dataset. Density of AIS messages (on the left) and vessel-specific voyages (on the right). On the left, the color 

code: orange – high density, blue – low density. 

4 
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Fig. 2. Total number of AIS messages per month (on the left) and number of AIS messages with zero speed (on the rights) for Route 1: Gulf of Ob; 

Route 2: Barents Sea ‒ Kara Strait ‒ Bely Island; Route 3: Barents Sea ‒ Cape Zhelaniya ‒ up to the Gulf of Ob; and Route 4: Southeast Kara Sea. 

Grey color is used for land and white ‒ for sea. 

Fig. 3. Average time needed to cross the 30 km long Kara Strait and a 30 km long path within the Sabetta channel. 

5 
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Fig. 4. Comparaison of ‘average’ voyage durations. The calculated ‘average’ time for the winter months has a greater uncertainty than that for the 

summer. This is because in winter the vessels tend to deviate from a predefined Route. 
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constitute a significant portion of the records, especially during month February and March. Lateral deviations from the general

direction of Routes 2 and 3 are typical in the winter months and as noted by Ol’khovik (2019) can be explained by the presence of

complex ice situation when the vessels need to search for a route with the least ice thickness and weak ice. 

To further investigate specifics of the traffic, we focused on two most navigationally challenging parts (The Kara Strait and the

Sabetta Channel) as well as on two most frequently navigated parts (Sabetta − via Cape Zhelaniya: Routes 1 + 3 and Sabetta − the

Kara Strait: Route 1 + 2). Studying the ‘average’ time expenditures at different geographical locations and on specific routes enables

us to look for variations in data with respect to time and identify patterns that later can be incorporated into the models. The ‘average’

time was calculated by dividing the predetermined fixed distance on the route by the average vessels’ speeds on this route. 

Fig. 3 presents the monthly variation of the normalized average time durations in crossing the Kara Strait (a 30-km long path)

and the Sabetta Channel region (a 30-km long path). For the traffic through the Kara Strait, two observations are noteworthy. First,

there seems to be no voyages through the strait for the months May and June. Second, the vessels take less time to cross Kara Strait

during the latter half of the year (from July to December). 

For the 30-km long path within the Sabetta Channel, it can be observed that average transit time is the greatest during the months

April, May, June, and that the vessels take less time to in transiting through the Sabetta channel during the latter half of the year

(July - December). This latter trend resembles that in the Kara Strait. Note that, both the number of zero speed records in the Gulf of

Ob ( Fig. 2 , on the right) and the average transit time in the Sabetta channel ( Fig. 3 ) are the greatest in April (month no.4). 

Fig. 4 reports the monthly variation of the ‘average’ transit time on the routes 1 + 3 (1252 km) and 1 + 2 (1358 km). On the route

via the Cape Zhelaniya, the vessels take significantly more time to complete the voyage during the months December and January.

There is a spike in time durations during the month April, May, June but it is insignificant when compared to the spikes in December

and January. These voyages’ durations in December and January are 2–3 times longer than the voyages’ durations via the Kara Strait.

The average transit time via the Kara Strait route in winter months (January-March/April) is 1.5 − 2.5 times greater than that during

second half of the year. 

From April till July, the preferred route from Sabetta to Barents Sea is via the Cape Zhelaniya (no vessels were reported in the

Kara Strait during May and June. In December and January, the preference is given to transits via the Kara Strait. April is the most

challenging for the navigation month as indicated by the number of zero speeds in the AIS data and spikes in the voyage durations

in the considered areas. 

In summary: 

1) The considered data set is highly unbalanced, both in term of geospatial distribution of data (lower number of messages in the

southeastern part of the Kara Sea) and in terms of values of the recorded speeds (the vessels’ speed is rarely zero in the Southwest

Kara Sea and the considered parts of the Barents Sea region). 

2) There is seasonality in the AIS data, i.e., the vessel routing is affected by the time of the year and this needs to be considered in

the models. 

5. Modelling approach 

In this study we have considered the following factors that can contribute to change in the vessel’s speed: the vessel location,

daylight information, route, and the time of the year. The task is to investigate how accurate we can predict a vessel’s speed without

explicit knowledge of local ice conditions around the vessel. 

The overall approach is presented in Fig. 5 . 

We have systematically explored predictive capabilities of three popular supervised machine learning approaches such as Random 

Forests ( Breiman, 2001 ) XGBoost (E X treme G radient Boost ing) ( Chen and Guestrin, 2016 ), and LightGBM ( Ke et al., 2017 ) which are
6 
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Fig. 5. Flowchart of the overall approach to data-driven speed prediction. 

Fig. 6. Random forest predictor, image source (dsc-spidal.github.io/harp/docs/examples/rf/). 

 

 

 

 

 

 

 

recognized for predicting patterns in data and admirably on tabular datasets. These methods are based on a decision threes algorithm

( Quinlan, 1986 ) but are different in how the trees are created and built and in how the predictions of the threes are summed up.

The mathematics behind the decision trees can be found in e.g., Breiman et al. (1984) whereas the implementation of the above

approaches can be found in Pedregosa et al. (2011) , thus only a short summary is provided below. For speed prediction, we have

provided the implementation of one of the best-performing model (XGBoost) on GitHub ( martra-AISspeed ). 

Random Forest Approach 

The random forest predictor H ( 𝚯) ( Fig. 6 ) is formed by taking the average over K tree predictors { h ( X , Θk )}. 

𝐻 ( 𝚯) = 

{
ℎ 
(
𝑿 , 𝚯𝑘 

)}
, 𝑘 = 1 , … , 𝐾 (1) 

where X is the input data matrix with n rows and p features such as vessel’s position, route, etc.; 𝚯 = [ Θ1 , …, ΘK ], represents the

parameters in H and includes splitting variables and their splitting values; K is the total number of trees in the model. These parameters

are obtained by training data X and Y , where Y is the outcome vector containing vessels speeds. Through the fitted forest predictor,

for any set of features X i , i = 1, …, n , we obtain the speed prediction from each tree in H . 

Gradient boosting approaches 
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Fig. 7. XGBoost vs. LightGBM; green nodes cannot expand, blue nodes can expand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like the random forest approach, gradient boosting approach is a set of decision trees. There are two main differences: (1) how

trees are built and (2) how the trees’ predictions are combined. The random forest builds each tree independently while gradient

boosting builds one tree at a time. The random forest combines the predictions at the end of the process (by averaging) while gradient

boosting combines the tree’s predictions along the way. XGboost method applies horizontal three growth, whereas LightGBM applies 

vertical growth (see Fig. 7 ). 

The model (or the exact mathematical structure by which the prediction of speed is made from the input variables), including the

model parameters were determined by learning from the two years of enhanced AIS data as described in the following paragraphs. 

5.1. Feature engineering 

We have introduced new features into the preprocessed AIS data (described in Sections 3 and 4 ). These features are described in

the following paragraphs and include daylight information, route information, and a distance feature. 

Daylight feature 

To capture the effect of visibility caused by the amount of sunlight at various times of the day at a given location, we have

introduced an additional daylight feature to the dataset. The daylight feature varies between 0 and 1, has its maximum at the solar

noon of the day and varies linearly. It assumes its minimum value during the nighttime, i.e., the time after sunset and before the sunrise

of the next day. The daylight information was collected from the dateandtime.info (2020) website using the Sabetta (Yamalo-Nenets 

Autonomous Okrug, Russia) as a reference. 

Route feature 

Since the vessels in the dataset are generally transit via one of the four major regions (as shown in Fig. 1 , Route 1 − 4), we provide

a sense of the ‘region’ to the predictive model by using a ‘route’ feature. 

Distance feature 

As discussed in Sections 2 and 4 , there are distinct regional characteristics (the Kara Strait, Sabetta Channel, etc.) which are of

great importance to shipping in the Kara Sea. To relay the importance of these geographical places we have introduced four ‘distance’

features. These are: A – The distance from Sabetta (71.2733, 72.0725); B - The distance from the Kara Strait (70.4807, 58.2225); C –

The distance from the point located 3 km west from the Cape Zhelaniya (76.9550, 68.4511); and D – the distance from the Vilkitsky

Strait (77.9044, 102.7267). 

5.2. Encoding datetime 

The AIS data contains information about which year, month, day, hour, minute, and second an AIS message was transmitted. This

time information is essential for the model to be realistic; however, it is uncertain of what is the most efficient way of incorporating

time information. We have explored the following four options: 

(1) no specific date or time encoding – for the purpose of computations only. 

(2a) categorical encoding – the time information is represented by month, day, hour, minute, and second. 

(2b) categorical encoding – the time information is represented solely by month and day. 

(3) seasonal encoding – the time information is coded as two seasons: season one being April, May, and June, season two is from

July to March. This is based on the findings in Section 4 . 

(4) cyclic encoding – cyclic nature of time is encoded using sine and cosine transformations of the datetime by employing

add_cyclic_datepart function from the fastai library. 

In this study, we have used the above daytime encodings with and without additional distance features (refer Results and Discussion

Section 6 ). 

5.3. Model training and validation 

The data set was split into a training set (66%) and a validation (34%) set. To select data into these two categories, two options

were considered. They were: 
8 
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Table 1 

List of tunable and default hyperparameters (optimized model parameters are highlighted in bold green). 

Model 

Random Forest XGBoost LightGBM 

Tunable parameters [values considered for optimization] 

bootstrap 

[ True , False] 

n_estimators 

[50, 100 , 500] 

n_estimators 

[50, 100 , 500] 

max_depth 

[5, 6, 7 , 8, 9] 

max_depth 

[3, 5 , 7, 9] 

max_depth 

[3, 4 , 5, 6, 7, 8, 9] 

max_features 

[ auto , sqrt] 

min_child_weight 

[1, 3, 5 ] 

subsample 

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8, 0.9] 

min_samples_leaf 

[1, 2, 4 ] 

gamma 

[0, 0.1, 0.2, 0.3, 0.4 ] 

colsample_bytree 

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8, 0.9] 

min_samples_split 

[2, 5, 10 ] 

subsample 

[0.6, 0.7, 0.8 , 0.9] 

learning_rate 

[0.01, 0.1 , 0.2, 0.3] 

n_estimators 

[ 50 ,100,500] 

colsample_bytree 

[0.6, 0.7 , 0.8, 0.9] 

Default parameters 

criterion eta num_leaves 

min_weight_fraction_leaf max_delta_step tree_learner 

max_leaf_nodes sampling_method min_data_in_leaf 

min_impurity_decrease lambda min_sum_hessian_in_leaf 

min_impurity_split alpha bagging_fraction 

oob_score tree_method pos_bagging_fraction 

max_samples scale_pos_weight feature_fraction 

ccp_alpha process_type early_stopping_round 

class_weight max_leaves min_gain_to_split 

warm_start drop_rate 

boosting 

(  

 

(  

 

 

 

 

 

 

 

 

 

 

1) Split based on the voyage blocks – First, split the data into individual voyages by using the time-based algorithmic separation

explained in Section 4 (ref. Regional and temporal data analysis ) Then, we randomly split these voyages into training and validation

sets. 

2) Random split – Split each datapoint randomly into training and validation sets. Data from the same voyage can be present in both

the training and validation set. 

After training each of the three models: Random Forest, XGBoost, and LightGBM, we exposed it to the validation dataset for the

estimation and optimization of its performance. The optimization is done by tuning the hyperparameters of the model using 3-fold

cross-validation. The hyperparameters for each model are listed in Table 1 . The hyperparameters of all the models in different input

data settings were tuned using RandomSearchCV and GridSearchCV method from the scikit-learn library ( Pedregosa et al., 2011 ). 

After optimizing the hyperparameters of the models, each model was trained again from scratch on a full dataset (training + val-

idation datasets). For each of the models we tested its predictive capability on the available vessels’ data from January 2019 in the

same geographical region. 

5.4. Performance metrics 

Error measures (performance metrics) are vital component of the model evaluation. In this study we employed mean absolute error

(MAE) (see Eq. (1) ) and standard deviation of the absolute error (STD) (see Eq. (2) ) to evaluate the modelling approaches. 

MAE = 

∑𝑛 

𝑖 =1 
||𝑦 𝑖 − 𝑥 𝑖 

||
𝑛 

, (2) 

STD = 

√ ∑𝑛 

𝑖 =1 
(||𝑦 𝑖 − 𝑥 𝑖 

|| − 𝜇
)2 

𝑛 
(3) 

where n is the number of data samples, y i – single model prediction of speed (knots), x i – corresponding AIS record of speed (knots),

and 𝜇 – average of absolute error. 

5.5. Models limitations 

The models’ parameters are based on the historical AIS data (2017, 2018) from four Norwegian satellites. Any limitations of the

underlying training data have been transferred to the models. The models will not be able to produce predictions for data points

beyond the scope of AIS training data (i.e., to capture any trends in data outside the observed training set). Additional details are

provided in the following section. 
9 
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Table 2 

Mean absolute error (MAE, knots) and standard deviation (STD, knots) in 

speed predictions on the validation dataset (seasonal time encoding). The 

operational speed range (0–20 knots). 

Model Random Forest XGBoost LightGBM 

MAE STD MAE STD MAE STD 

Voyage-based data split 3.4 2.6 3.3 2.7 3.2 2.5 

Random data split 3.4 2.7 3.3 2.6 3.2 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Results and discussion 

This paper has addressed the following research question: how accurately can one predict vessel speed without explicit knowledge of

local ice conditions around the vessel ? As a case study we have selected the region of the Eastern Barents Sea and the Southern Kara

Sea and a specific vessel type and ice class. It was hypothesized that it is possible to predict the vessel speed at a given location and

time of the year, provided a representative historical dataset of operational speeds. We have analyzed and enhanced AIS data for the

period of 2017–2018 (two full years) and have explored the ability of three distinct supervised machine learning models (Random

forest, XGBoost, and LightGBM) to capture complex relationship in the data and then tested predictive capabilities of several models

using different modeling techniques such as time encoding and input data arrangement. 

The following paragraphs present and discuss results of this evaluation. 

After 3-fold cross-validation of the models (with parameters in Table 1 ; see values highlighted in green), it was observed that the

random-split between training and validation datasets gives similar model performance than the voyage-based split for seasonal time 

encoding ( Table 2 ). Since the voyage-based data split requires considerably more preprocessing, random data split is further adopted

in the study. 

Mean absolute error (knots) and standard deviation (knots) in speed predictions on the test dataset can be found in Table 3 .

Accuracy scores for each of the data handling method (Random Forest, XGBoost, and LightGBM) and approaches (time encoding,

distance features) are plotted in Fig. 8 . 

As a general trend, it was observed that as the cardinality of the datetime features increased, the performance of the machine-

learning models decreased, which is in accordance with the fact that the feature importance score of components such as seconds,

minutes, hours, and days was very low. 

Based on the accuracy scores presented in Table 3 and Fig. 8 it can be concluded that XGBoost, and LightGBM models with seasonal

time encoding and with additional four distance features were better than other approaches with MAE up to 3.5 knots and the standard

deviation of 2 − 3 knots on a test dataset from January 2019 (7 vessels in total, speeds ranging between 0 and 20 knots). Similar

model performance was achieved without time information, but this have limited applicability in a real-life setting as time is a crucial

factor for vessels in transit. Furthermore, this can be an artefact of our test data as only transits in January were considered. 

Other models based on feature variations such as cyclic time encoding and categorical time encoding performed significantly 

worse (MAE up to approximately 6 knots) than those based on seasonal time encoding. 

The feature importance of the best performing model is presented in Fig. 9 . The vertical axis is the normalized mean decrease

in impurity score or Gini importance ( Louppe, 2014 ). Each feature importance was calculated as the sum over the number of splits

(across all trees) that include the feature, proportionally to the number of samples it splits (ref. scikit-learn library implementation,

Pedregosa et al., 2011 ). The higher the value of the importance score, the more important the feature is. 

Longitude was the most important feature to explain the speed variations in our dataset, followed by season, distance to the

Vilkitsky Strait and latitude. Other features (e.g., route and daylight) were found to be less important but still contributed to the

predictive capabilities of the models. Note that the distances are derived from the vessel position, thus, features such as ‘longitude’,

‘latitude’, and ‘distances’ (A, B, C, and D) are interrelated. Nevertheless, referring to Fig. 8 and the MAE score in Table 3 , the

explicit encoding of distances helped the model to better ‘understand’ the relationships in the data. This improvement is however less

pronounced than that with seasonal and cyclic time encodings. 

It should be noted that numbers in Table 3 and in Fig. 8 , correspond to the assumption that in a voyage, the datapoints are

independent of each other. This is not true, since each data point is dependent on the previous predictions in a voyage (speed variation

in a voyage must be continuous). This problem is caused by the fact that AIS data is not recorded with the same intervals, but the

frequency of recordings depends on the speed of the vessel and satellite coverage. This causes the time series to have readings at

unequal intervals. Models such as rolling window regression (see e.g., Zivot and Wang, 2006 ) which account for inter-dependencies 

cannot be applied in such cases. We anticipate that the presented models may exhibit shortcomings when are used to predict a

continuous speed variation. 

To gain deeper insight into the results, we generated speed-distance plots from our predictions and compared those to actual

speed records (AIS data). Figs. 10 and 11 present original worst and best predictions on the test set, whereas Figs. 12 and 13 present

averaged values. Comparisons for the remaining test cases are provided in Appendix. 

Note that in Figs. 10 and 11 , referring the constant speed regions, the predictions with Random Forest are less smooth and look

like a combination of various step functions. Furthermore, these predictions do not exceed the maximum values of the AIS speed or

the minimum of the AIS speed. The observed performance is typical for the random forest models. It can be explained by the inability
10 
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Fig. 8. Accuracy scores (MAE) for different data handling methods (top) and for data handling techniques with the XGBoost model (bottom). 

Notations: Cat. – Categorical time encoding, Dst. – Distance features (4 in total), No time – No time encoding, Snl. – Seasonal time encoding, Cycl. 

– Cycic time encoding. 

Fig. 9. Feature importance of the XGBoost built on seasonal time encoding and distance features. A - The distance from Sabetta; B - The distance 

from the Kara Strait; C – the distance from the point located 3 km west from the Cape Zhelaniya, and D - The distance from the Vilkitsky Strait. 

11 



P.S. Rao, E. Kim, B.B. Smestad et al. Maritime Transport Research 2 (2021) 100024 

Fig. 10. Worst result (Test no. 6) of the models. The x-axis is the computed distance covered by the vessel from its starting position, and the y-axis 

is the speed of the vessel predicted by the model and the recorded speed value (AIS data). 

Fig. 11. Best result (from Test no. 7) of the models. 

Fig. 12. 50-km averaged worst predictions of the models and recorded AIS speed. 
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Table 3 

Mean average error (knots) and standard deviation (knots) in speed predictions on the test dataset for seven 

different vessels (Test nos. 1–7), R – Random forest, X – XGBoost, and L – LightGBM. 

 

 

 

 

 

 

 

 

 

 

of random forest models to produce expected predictions for data points beyond the scope of AIS training data (i.e., to capture any

trends in data outside the observed training set). 

A common feature among all the models is the inferior performance for one vessel in the test set. Although the models are

somewhat able to capture the overall speed trend, the predictions are still off. There are two areas where the errors in prediction are

high. These areas correspond to the areas within and in proximity to the Sabetta Channel and the Kara Strait. 

In several other test cases (Test no. 1 and Test no. 3 in Appendix), the predictions seem to be off initially, which correspond to the

Cape Zhelaniya route (Route 3) and the Kara Strait route (Route 2), both regions where the vessels deviate laterally from the route.

Excluding these regions, our models seem to be more accurate in predicting ‘averaged’ speed variations. Nevertheless, even in the

previously discussed seemingly erroneous areas, the models have performed well in several other test cases. Despite these limitations,

the developed methodology has a potential as a data-driven approach in support of physics-based simulations of vessels speeds in ice

covered waters. 

Using neural networks to predict vessel speed without ice information (in the same geographical region) yields to similar perfor-

mance in terms of the overall speed trends on an unseen dataset (ref. Fig. 7 in Kim et al., 2020 ). Thus, both the decision trees and
13 
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Fig. 13. Averaged best prediction of the models and recorded AIS speed. Averaging every 50-km. 
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neural networks can be used for predictions, however putting a neural network in production requires a dedicated interpretation

algorithm, whereas a decision tree that can be converted to if-then-else statements and implemented in most computer languages. 

In winter months, vessels can significantly deviate (in lateral direction) from the route in search of weak ice (see, e.g., Fig. 1 ,

Route 2, on the path between the Kara Strait and Bely Island). Thus, the future data-based modelling should also focus on predicting

these deviations in addition to speed predictions. 

The presented discussion and the modeling approach are relevant to route planning (see e.g., Andersen et al., 2021 ), speed

optimization and management (e.g., Fagerholt et al., 2010 ; Ng, 2019 ; von Westarp and Brabänder, 2021 ), and fleet deployment (see,

e.g., Wetzel and Tierney, 2020 ) in ocean shipping. 

7. Conclusions 

The vessel speed is one of the important parameters that govern safety, emergency, and transport planning in the Arctic. In this

study we have investigated a possibility of predicting transit speeds in ice using historical AIS data, without explicit knowledge of ice

conditions around the vessel. It was assumed that the speed of the vessel will indirectly reflect the ice state and its dynamics as well

as the ship’s level of strengthening (i.e., ice class) and the operational mode (independent navigation or navigation in convoy). 

First, we have analyzed AIS data from the Eastern Barents Sea and the Southern Kara Sea for the period of 2017–2018 (two

full years), and then we trained three machine learning models with specific date-time encoding on the enhanced AIS data (extra

information about daylight, the route, etc.). Then we evaluated the models’ performance on the unseen data by comparing the model

predictions with the ground-truth records. Next, we have exposed the models to new transit data from January 2019 to evaluate their

predictive capability. 

The main results of this study show that 

1) Supervised machine learning methods can be used for predicting vessel speeds (0 − 20 knots) with mean absolute error up to

approximately 3.5 knots in average, without using complex ice field data. Majority of the errors are in the Kara Strait region and

the Sabetta Channel. 

2) The LightGBM, and XGBoost models, built on seasonal time encoding with additional distance features, are a better modeling

approach in a view of the considered dataset and modelling techniques. 

3) Seasonal time encoding (April − June and July − March) is shown to yield better predictions than categorical- or cyclic encoding. 

4) Visibility metrics such as daylight data and geographical information such as a distance from the predefined places can be engi-

neered to enhance the predictive capabilities of the models. 

We provide implementation of one the best models ( XGBoost model for speed prediction ) on GitHub. The presented machine

learning approach to speed modelling could be considered as a source of additional and complimentary information for tactical

planning (months ahead) of transits in the Arctic as well as to support development of new strategies that can dynamically change

the speed of ships, the geography of the route, etc., in response to changes in ambient conditions. Future work should focus on

supplementing existing AIS data with the data from the PAME’s Arctic Ship Traffic Database, development and training of the models

based on a continuously growing dataset, predicting ship’s speeds together with deviations from the route as well as on coupling the

data-driven approach with physics-based modelling and risks. 
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Appendix 

Figs. A1–A10 . 
Fig. A1. Models’ performance on a test dataset (from Test no. 1). 

Fig. A2. Models’ performance (50-km averaged) on a test dataset (Test no. 1). 
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Fig. A3. Models’ performance on a test dataset (Test no. 2). 

Fig. A4. Models’ performance (50-km averaged) on a test dataset (Test no. 2). 

Fig. A5. Models’ performance on a test dataset (from Test no. 3). 
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Fig. A6. Models’ performance (50-km averaged) on a test dataset (from Test no. 3). 

Fig. A7. Models’ performance on a test dataset (Test no. 4). 

Fig. A8. Models’ performance (50-km averaged) on a test dataset (Test no. 4). 
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Fig. A9. Models’ performance on a test dataset (from Test no. 5). 

Fig. A10. Models’ performance (50-km averaged) on a test dataset (from Test no. 5). 
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