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Abstract

It can be di�cult and time-consuming to give elaborate feedback in large project-based

software engineering courses. Detailed and regular feedback is a necessity to facilitate

e�ective collaborative learning.

This master’s thesis presents an exploratory case study that examines how software

repository mining can be implemented in TDT4140 Software Engineering, a project-based

software engineering course with 500 attending students from di�erent programs. The

focus has been on discovering challenges when implementing software repository mining in

this setting, as well as uncovering whether it would be helpful to students and supervisors.

To determine this, quantitative and qualitative analysis of a questionnaire answered

by students, interviews with teaching assistants, and data gathered from the students’

GitLab repositories have been carried out to try to identify six di�erent dysfunctions in

the teams: Unfair or unevenly distributed workload, too little time is spent working on

the project, the participants are not committed to the project, lack of a plan or strategy

for the project, poor leadership, and too specialized tasks.

The results show that even without designing the course around software repository

mining, some metrics derived from the students’ GitLab data have a statistically significant

correlation to some of the six dysfunctions. This indicates that analysis of the students’

software repositories can be used to aid in identifying group dysfunctions. Some challenges

were also revealed in the study. Pair programming and incorrect assignment of GitLab

issues make it di�cult to determine work distribution within a group. Other work in the

course is not represented in GitLab and would lead to a false picture of reality, especially

in groups where some members focus on programming and others more on the other

required work. The students have a di�erence in experience with programming and with

the use of Git, which can lead to user error and weaknesses in the analyses.

The thesis discusses these findings and concludes with advice to course coordinators

who wish to use software repository mining in similar courses.
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Sammendrag

Det kan være vanskelig og tidkrevende å gi grundige tilbakemeldinger i store

prosjektbaserte emner i programvareutvikling. Detaljerte og regelmessige tilbakemeldinger

er nødvendig for å tilrettelegge for e�ektiv samarbeidslæring.

I dette masterprosjektet er det utført en utforskende casestudie for å undersøke

hvordan software repository mining kan implementeres i TDT4140 Programvareutvikling,

et prosjektbasert programmeringsemne med 500 studenter fra forskjellige studieretninger.

Målet med studien har vært å oppdage utfordringer ved implementering av software

repository mining i denne sammenhengen, samt å avdekke om det ville være nyttig for

studenter og veiledere.

For å fastslå dette ble det utført kvantitativ og kvalitativ analyse av et spørreskjema

besvart av studenter, intervjuer med lærerassistenter og data samlet inn fra studentenes

GitLab-repositories for å forsøke å identifisere seks forskjellige dysfunksjoner i teamene:

Urettferdig eller ujevnt fordelte arbeidsoppgaver, det blir prioritert for lite tid til å

gjennomføre prosjektet, deltagerne er ikke forpliktet til prosjektet, mangel på plan og

strategi, dårlig lederskap og for spesialiserte arbeidsoppgaver.

Resultatene viser at selv uten å designe kurset rundt software repository mining, kan

man finne en statistisk signifikant korrelasjon mellom metrikker utledet fra GitLab-data

og noen av de seks dysfunksjonene. Dette indikerer at analysen av studentenes software

repositories kan brukes som hjelp til å identifisere gruppedysfunksjoner. Noen utfordringer

ble også avdekket i studien. Parprogrammering og feil i tilordning av GitLab issues gjør

det vanskelig å si noe om arbeidsfordeling i en gruppe. Annet arbeid i emnet er ikke

representert i GitLab og vil føre til et uriktig bilde av virkeligheten, spesielt i grupper der

noen medlemmer fokuserer på programmering og andre mer på annet nødvendig arbeid.

Studentene har forskjellig erfaring med programmering og med bruk av Git, noe som

kan føre til brukerfeil og svakheter i analysene.

Oppgaven diskuterer disse funnene og avsluttes med råd til emnekoordinatorer som

ønsker å bruke software repository mining i lignende emner.
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1. Introduction

This chapter starts by stating the motivation for the choice of research topic. It then goes

on to set the goal of the research, as well as two research questions. Lastly an overview

of the structure of the rest of the thesis is shown.

1.1. Motivation

According to Oakley et al [5], learning together in teams has been a proven way to get a

deeper level of learning. It also creates a setting for learning teamwork skills, such as

communication, organization, and leadership. These are skills that are invaluable when

students enter their industries as professionals. Other soft skills, that are promoted by

using project-based learning, including being able to share knowledge and listen to others

[6]. Modern software systems are complex, and working in teams is essential [7].

Teamwork does not come without challenges, and in a dysfunctional team, we can

expect negative feelings, which lead to poor performance [8]. A variety of di�erent

dysfunctions can be an additional challenge to a student software engineering team.

A balance of contributions is amongst the factors that correlate to team performance

and satisfaction [9]. Other problems that may occur are problems with planning and

organization, a lack of leadership, or problems with commitment to a project.

Research has shown that dysfunctional teams are unlikely to resolve their problems

without intervention [10]. It is therefore important to follow up with the student teams

and give them helpful feedback. Students prefer elaborate feedback, but it can be

time-consuming and demanding to expect an instructor to provide that, especially in

1



1. Introduction

large courses with as much variety in submissions as tend to be the case for project-based

courses [11]. With the software engineering courses relying on distributed version control

systems for development, this opens the possibility of software repository mining to

generate knowledge about the students’ work processes, and help alleviate some of the

work done by supervisors while still providing students with elaborate feedback.

Following the course TDT4140 Software Engineering Spring 2022, this study aims to

explore how software repository mining can be used to give students better feedback and

support in a project-based learning course.

1.2. Goals and Research Questions

Goal The main objective is to explore the challenges and possibilities of using analyses

of software repository data to give helpful information to supervisors for providing

elaborate feedback in a project-based software engineering course.

To meet the objective of the study, this project aims to identify possible challenges

with process mining software repositories for software engineering courses, as well as look

into the benefits of using software repository mining.

Research question 1 How can metrics derived from data from software repositories be

analyzed and presented in a way that gives value to students and supervisors?

By exploring correlations between software repository metrics and dysfunctions within

student teams, the aim is to see what possibilities exist for early identification of problems

within student teams. Since this study focuses on supervision and feedback rather than

assessment, it is also interesting to see how supervisors would like the data presented for

it to be helpful to them.

2



1.2. Goals and Research Questions

Research question 2 What do students and supervisors think about the idea of using

metrics from software repositories to identify problems within the group?

This question aims to identify both technical challenges and preferences amongst

students and supervisors when it comes to gathering and analyzing their data for

feedback purposes.

3



1. Introduction

1.3. Thesis Structure

Table 1.1 shows the structure of this thesis.

Table 1.1.: Structure of the thesis.

Section Description

1 Introduction This section presents the motivation for the project. Next,

it presents the goal of the project as well as the research

questions the thesis aims to answer. Lastly, the structure

of the thesis is described.

2 Theory This section of the thesis gives the necessary introduction

to the field to be able to follow the research done in

the project. It presents information about project-based

learning, version control systems, process mining, and

metrics that can be derived by mining data from software

repositories.

3 Methodology This section presents the methodologies that are used

throughout the study, and why they were chosen.

4 Results This section presents the result of the research that is

done in this study.

5 Discussion In this section the results of the study are discussed and

compared to previous knowledge in the field in order to

answer the posed research questions.

6 Conclusion and

Future Work

This section concludes the thesis. It presents the

contribution of the study and suggests themes for further

research.

4



2. Theory

This chapter presents relevant background information. It aims to give the reader the

necessary introduction to theory to understand the choices made in the study. The

chapter conveys literature on collaborative learning, version control systems with a

particular focus on Git and GitLab, process mining for software engineering courses, and

teamwork dynamics.

2.1. Collaborative Learning

Collaborative learning is when a group attempts to learn something together.

Collaboration is more than cooperation. Participants that cooperate can divide and

conquer, each member being responsible for a part of a bigger project. A group

that collaborates puts e�ort towards creating a joint problem space [12]. With a

common understanding and while working on a problem together, the members can share

knowledge, and gain the many benefits collaborative learning can give to the learners.

Collaborative group work is often considered an activity that accommodates deep

learning [13] [14], as well as engaging and e�ective learning [15] [16]. Team members will

help each other learn, and thereby ensure learning by all [16]. The shared responsibility

for the tasks can also help reduce anxiety and build self-esteem [16] [14]. Teamwork skills,

communication, and project management are also developed in collaborative learning

[17] [14]. The group members can also retain more individual knowledge when working

collaboratively [13].

Problems also occur when people work together in teams. Some common problems are

5



2. Theory

the “free-rider” problem and the “sucker e�ect” problem [14]. A free-rider is someone

who does not do their part in a project. And the sucker e�ect happens when a student

who would normally do their part suspects their team members to be free-riders, and

to avoid being the sucker who does all the work, they also become a free-rider. More

problems in group work will be discussed in Section 2.4

2.1.1. Project-based Learning

Project-Based Learning (PBL) is described by Fincher and Knox as: “a teaching approach

that engages students in sustained, collaborative focus on a specific project, often

organized around a driving question chosen by students themselves or provided by an

outside organization or company” [18]. Even though PBL can be organized as individual

assignments, they are more often structured to be carried out in teams [19]. Common

concepts in PBL are collaboration, community, design, and technology [19]. Soft skills are

defined by Matsouka and Mihail [20] as “personal attributes that enhance an individual’s

interactions, job performance and career prospects.” Such skills have become increasingly

important qualities for new industry hires. PBL is a fitting educational approach to

provide students with experience in these skills while also teaching a technical curriculum.

2.1.2. Project-based Learning in Software Engineering Education

Software Engineering is a field where PBL can quite easily be fitted into a course.

Students have access to standard industry tools, and through the inclusion of a capstone

project, students can get realistic experience in most aspects of software development

[21]. A project-based approach can, as stated in Section 2.1.1, strengthen the learning of

soft skills. Amongst those, teamwork is a particularly important skill that students in

software engineering should master before starting their professional careers [22], and it is

a skill that lecture-based learning does not facilitate. When introducing PBL in software

engineering education, it opens the possibility of cooperating with real industrial clients

on actual problems. Real industry experience is considered a great benefit in preparing

students for entering the software engineering industry [23] [24].

6



2.1. Collaborative Learning

2.1.3. Supervision in Project-based Learning

According to Hinsz, Tindale, and Vollrath [25] it is likely that groups can process feedback

better than singular members. With all the benefits that students can gain from PBL, it

is important to facilitate the best possible implementation of the method. How to give

feedback and what to focus on is, therefore, something of importance when designing a

PBL course.

In student teams that turn dysfunctional, early intervention is important to help the

teams improve their team dynamics. Dysfunctional teams that are left to resolve their

own issues tend to only get worse with time [10] [26]. Having multiple meeting points

with supervisors throughout the semester or having other ways of getting regular feedback

is also important [27] [23]. Regular feedback throughout the semester ensures that the

students get formative assessment, and not just summative assessment.

Another important factor is that students can be critical of feedback that is considered

vague or ambiguous [28]. More feedback also seems to correspond to better learning.

Elaborate feedback should be provided to the students, that can correct misconceptions

and fill the students’ gaps of knowledge [29]. In addition to all of this, it is important

to create an environment where students can go to their supervisors or instructors with

their questions without worrying that it might impact their grades [26].

Peer feedback is something that is often considered in project-based courses, and

including a peer assessment as part of the evaluation in courses that include teamwork

has been previously advised [27]. However, in courses that use it in their evaluation,

there tends to be a portion of the students who disagree with the peer assessment [27]

[26].

Project-based courses in universities can have a high number of students attending,

and it should still be possible to ensure a good quality of supervision [23]. One way to

make this more manageable is by having some of the feedback be automatic feedback

[29].

With the introduction of a course designed to use PBL, there is also the option of

looking to the industry. When it comes to agile development, an important element
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of many methodologies is the review. A review in agile development is a meeting to

show what has been done in the latest sprint (work iteration), and get feedback from the

stakeholders and team members present. Feedback in project-based courses, especially

those that have the students act as agile teams, can, with benefits, be done as reviews

[30]. Short, frequent review meetings can o�er students quality feedback with limited

resources and introduce formative assessments to the course.

2.2. Version Control Systems

A version control system (VCS) is a system that manages changes in your software

product over time. It stores the current version of your files as well as a history of the

changes made to these. The first VCS was released in 1972, and was called Source Code

Control System (SCCS) [31]. SCCS made it possible to save changes of a file, and thereby

have di�erent versions of the file. But it did not let multiple authors change the same file

simultaneously. After SCCS, VCS have gradually improved in functionality and ease of

use. Among the many alternatives today, some of the popular ones are Git, Concurrent

Versions System (CVS), Apache Subversion (SVN), and Mercurial.

In their book, “Pro Git”, Scott Chacon and Ben Straub write about three types of

version control systems [32]. The early systems were local version control systems. That

means that the files and changes were stored locally. These systems were typically

intended for use by a single person to keep versions of their own work. Examples of local

VCS are SCCS and Revision Control System (RCS).

The second type of version control system is called a centralized version control system.

In these systems, the files and changes are stored on a server. This allows for easier

collaboration, and an administrator can control access and permissions. However, there

is a single point of failure. If something were to happen to the server, the team can

lose everything they had stored there with the exception of the local copies that team

members have on their machines. Examples of centralized version control systems are

Azure DevOps Server, CVS, and SVN.
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The last type of version control system is distributed version control system. In these

systems, each client retains the whole repository with its full history. This makes for

simple recovery of data if the server should be corrupted, as long as at least one client

has checked out a version recently. Examples of distributed version control systems are

Git and Mercurial.

Version control systems are an integral part of the software engineering industry in

our time. It allows for collaboration on the same code simultaneously. Files are stored

in versions, which makes it possible to revert changes or compare the state of your files

at di�erent times. The redundancy that comes with distributed version control systems

also ensures the existence of backup copies of the files in the di�erent clients that have

checked out a version.

2.2.1. Git

Git is a distributed version control system (DVCS) that was initially released in April

2005. It was created by Linus Torvald and was made for source control management

for the development of the Linux kernel [31]. Google Trends o�ers comparisons between

di�erent search terms and thereby a good estimate for the popularity of the di�erent

VCS. Comparing Git, Mercurial, SVN, and CVS for 2021, shows that Git is by far the

most searched of the four competitors (See Appendix A).

Where most other version control systems store data as files and changes to these, Git

stores snapshots of the full state of your project. If a file has not been changed, instead

of storing a new copy it stores a reference to the file from a previous snapshot [32].

Another di�erence between Git and most other VCS is how lightweight branching is

implemented. Branching in Git is to make a new pointer to a snapshot. Development

can then continue in both branches, leading to di�erent versions of the product being

worked on in parallel. Later the branches can be merged together. This allows for team

members to work on di�erent features without their work in progress (WIP) breaking the

code. This way, all members can work on a functioning program, and fully implement

and test features in a contained manner.
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The Three Sections of a Git Project

A git project has three sections: The working directory, the staging area, and the git

repository [32]. The working directory is where you modify the code. When you want

to store this, you move the modified files to the staging area. Next time you want to

commit your changes, your modified files are committed from the staging area and stored

in your repository. A git repository is where all the snapshots of the project are saved.

Locally, this is in a .git folder.

Git Commands

When using Git there is a series of commands that will likely be used. These will be

presented now:

git init After having installed Git locally, you can initialize it in a

folder by writing git init. This creates a new repository as a

.git folder in the current location.

git clone Gets a local copy of a Git repository from a URL.

git add Adds files from your working directory to the staging area.

Files can either be mentioned individually as arguments or the

“.” argument stages all modified files.

git commit Stores a snapshot in the repository. The modified files that have

been staged will have new versions in this new snapshot, while

unmodified files will be stored as links to previous versions.

Commits include an author and a comment, which can be very

useful when cooperating on a shared code base.

git status Shows modified files, and whether they are staged or not.

git branch Lists local branches or makes a new branch if provided with a

name as an argument.
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git checkout Switches to the branch whose name was provided as an

argument.

git merge Tries to merge the mentioned branch into the current branch.

This might lead to a merge conflict if changes have been made

in the same files in both branches.

git push Sends local commits to a remote repository.

git pull Gets the latest versions of remote branches and merges the

remote version of the current branch with the local one.

git stash Temporarily stores modified files from the working directory

and restore the files there to the state of the last commit.

2.2.2. GitLab

GitLab is a DevOps Platform that was founded by Dmitriy Zaporozhets and Valeriy

Sizov in October 2011. It follows an open core model. As of May 2022, it has an estimate

of over 30 million registered users [33].

GitLab is a repository manager, which keeps the remote repository for your GitLab

projects. In addition to this, it also o�ers features for team planning, code reviews, wikis,

Continuous Integration(CI), and much more. We will look at how GitLab handles two of

these features, Source Code Management and Issue Tracking, now:

Source Code Management

Figure 2.1 shows the main page of a GitLab project. Here you can see the file structure

of the project, and when the last changes were made in the di�erent files. Looking at

the menu to the left under Repository, di�erent views can be accessed. The Commits

View can be seen in Figure 2.2. From the GitLab repository, most Git commands can be

executed through the user interface and directly to the remote repository. Files can be

added or modified. Branches can be created and merged. And you have a simple overview

of previous commits and branches, which can be compared to see changes between them.
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Issue Tracking

Tracking a project through issues is a common way of doing project management in

many of the di�erent software development methodologies. Figure 2.3 shows how an

issue looks in GitLab. An issue describes something to be done in order to improve the

software product. In GitLab issues can be assigned to one or more developers. They

can be assigned a milestone, given time estimates, due dates, and labels. And GitLab

o�ers a space to discuss the issues. In agile methodologies such as Kanban and often

in Scrum, you find issue boards where you categorize issues and place them in separate

columns. Figure 2.4 shows GitLab’s version of an issue board. This can be used for a

team to keep track of which tasks should be done when and by who. This makes it easier

to collaborate in agile teams.

GitLab APIs

GitLab also makes project data accessible through its APIs. Public information can easily

be gathered from their endpoints, while private data can be accessed if the requester is

authenticated either through an OAuth2 token, a personal access token, a project access

token, session cookies, or, for some endpoints, through a GitLab CI/CD job token. Access

to the data from the API makes it easy for developers to use their data for di�erent

purposes, one being for process mining.
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2.3. Process Mining for Software Engineering Education

2.3. Process Mining for Software Engineering Education

Process mining is a discipline that incorporates data mining, process modeling, and

analysis. According to van der Aalst [34], “the idea of process mining is to discover,

monitor, and improve real processes (i.e., not assumed processes) by extracting knowledge

from event logs readily available in today’s systems.” Project-based software engineering

courses that use distributed version control systems lend themselves well to process

mining of VCS.

Mining Software Repository (MSR) is a field that focuses on data mining of software

repositories, such as version control systems. Farias et al [35] did a systematic mapping

study on recent MSR studies to determine the main purposes, focus, and object of

analysis in these studies. The main purposes of recent MSR studies are comprehension,

prediction, and identification. The focus tended to be on defects, with the second most

prevalent focus being that of contribution and behavior of developers. The main objects

of analysis are code, commit data, and bug reports.

In research in software engineering education, MSR has been used to try to automate

some of the assessments in courses where this has been particularly resource-demanding.

Studies have had success in finding relevant information to be considered when assessing

students’ work [36], but this did not lead to a fully automated assessment procedure.

Determining the contribution of individual members to a team is a complex endeavor,

that has been tried in many studies [37] [38]. There is no single way of measuring

member contribution. In Parizi, Spoletini, and Singh [37] they used five metrics: number

of commits, number of merge pull requests, number of files, total lines of code, and a

calculated time spent on the project each day.

Another focus has been on identifying problems within the students’ processes. Some

studies have generated reports for instructors, so they could intervene if any dysfunctions

were identified [39]. Mittal and Sureka [40] explored di�erent metrics with the aim

of revealing the student teams’ process quality. Process aspects they inspected were:

“workload distribution between team members, regularity in contributions from start till
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the deadline, quality of commit messages, component and developer entropy, quality of

e�ciency of bug fixing process.” They concluded that the metrics they explored could

be useful for instructors to gain better insight into the students’ processes, but were

skeptical about using the data for grading since the aspects they had considered could

easily be misrepresented in an attempt to give an impression of higher quality work.

2.4. Teamwork Dynamics

To achieve good collaborative learning, there are some aspects of teamwork dynamics

that need to be working. This section presents some typical teamwork dysfunctions found

in literature and presents a teamwork dysfunction model. After that my specialization

project, which is used as a foundation for deciding on dysfunctions to focus on for this

thesis, is presented.

2.4.1. Dysfunctions in Teamwork

A major problem within teams can be an uneven distribution of work. If one person in a

team does most of the work, he keeps the others from learning, and he may reduce his

own learning opportunities [41]. More often, the problem is social loafing. Social loafing

is defined by Karau et al [42] as “. . . the tendency for individuals to expend less e�ort

when working collectively than when working individually”. As mentioned in Section 2.1,

a person who does not contribute their part in a project is called a “free-rider”. According

to Pfa�, [43], the lack of a free-rider in a group was a significant predictor of members’

good attitude to teamwork.

A teamwork dysfunction that is specific to learning processes is that of having too

specialized tasks. If the work is divided there is a chance that the students only learn

the part they do, and miss out on many of the learning opportunities [44].

Another dysfunction in a team project can be that of time management. Kuhrmann

and Münch [45] made a setting where student teams could test di�erent stress factors.

In the short-term project of the study, time constraints and missing strategies were the
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factors the students felt impacted them the most.

Lack of commitment is an issue that can be dysfunctional in teamwork [46]. This lack

of commitment from a team member can weaken team cohesion [47]. There are some

ways to mitigate this problem. If it is possible in the work situation, teams could be

shu�ed periodically. Another option is to increase individual accountability [48]. In an

educational setting, if a problem student is identified, an instructor may have to confront

the student about their behavior [43].

Communication is a teamwork quality that is often mentioned in literature [9] [49]. A

lack of good communication and coordination can lead to a dysfunctional team. Hansen

[50] did a literature review on the benefits and problems with using student teams. One

suggestion for improving team projects was to have members have assigned roles. He

found that assigning students with specific responsibilities helped reduce the free-riding

problem. An option that may give better cooperation and performance is to have rotating

roles and authority [51].

2.4.2. The Lencioni Model of Dysfunctions in Teamwork

The Lencioni model [46] seen in Figure 2.5 was developed by Patrick Lencioni. In 2012

he published a book with a detailed example of how his model could be used in a

fictional business setting. The model consists of five important dysfunctions that hinder

good teamwork: Absence of trust, fear of conflict, lack of commitment, avoidance of

accountability, and inattention to results.

2.4.3. Specialization Project

During my Specialization Project, Fall 2021 [3], literature from Team Theory and literature

about Process Mining of student VCS was explored with the aim of discovering which

dysfunctions would be relevant for further studies in a master’s thesis. Nineteen common

dysfunctions were identified. These can be seen in Table 2.1. Eight of these dysfunctions

were considered particularly di�cult to identify from GitLab data. These were discarded.

Some of the dysfunction had enough similarities to be grouped as one. Two of the
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Figure 2.5.: Lencioni model of dysfunctions in teamwork.

remaining dysfunctions, “Negative a�ective tone” and “Fatigue” were discarded because

they were considered more di�cult to identify from GitLab data than the remaining

ones.
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Table 2.1.: Dysfunctions identified during specialization project [3].

Dysfunction Identifiable

Inattention to results

Avoidance of accountability X

Lack of commitment / contribution

Fear of conflict X

Absence of trust X

Negative a�ective tone X *

Negative behavior and attitude X

Social loafing

Fatigue X *

Lack of openness X

Time constraints

Poor communication / lack of communication

Unequal distribution of labor

Personality clashes X

Performance drops X **

Missing strategy / No plan of attack

Poor leadership

Lack of management support X

Too specialized (Students do not learn all they should)
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This chapter will give a detailed description of the research strategy, data collection

methods and analysis done in the study. Oates [1] is used as the theoretical foundation

for the choices of strategies and data collection methods.

3.1. Research Strategy

According to Oates: “A strategy is your overall approach to answering your research

question.” The book goes on to introduce six common strategies: surveys, design and

creation, experiments, case studies, action research, and ethnographies. For this project,

a case study was chosen as the best fitting research strategy.

3.1.1. Case Study

A case study is a strategy where we focus on one instance of something and delve deep

into that case with the aim of generalizing new knowledge about the topic being explored.

There are a few reasons why a case study is a fitting strategy for this project. First,

the course chosen for this study has a large number of students and student groups,

and it follows a structure that is common in many software engineering courses. It is

therefore possible to make generalizations from the findings in this study that can be of

value to coordinators of other similar courses. The case will be further expanded upon in

Section 3.1.2. Another reason why a case study is a good choice for this study is because

identifications of metrics that can predict problems with group dynamics is complex.

There can be no isolation of problems to be studied, the way you would in an experiment.
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It is necessary to look at the group and their work from di�erent perspectives, and in a

true environment.

In the design of a case study there are a few decisions that need to be made. These

will be explored now.

Types of Case Studies

Oates describes three types of case studies: A descriptive study, an explanatory study,

and an exploratory study.

This study is an exploratory study that seeks to find challenges and opportunities for

the use of software repository mining in a project-based software engineering course. The

aim is to get an understanding of how to use mining of GitLab in this setting, and the

challenges that should be considered when implementing the technique in a similar case.

Approach to Time

In Oates [1], three approaches to time are presented: A historical study, a short-term,

contemporary study, and a longitudinal study.

This study is a short-term, contemporary study. That means it examines a case that is

occurring at the time of the research. The course that is chosen as the case is held during

the same semester as the data collection happens. This is the best suited approach to

time for this study. We are interested in seeing if dysfunctions in a team can be predicted

during the semester. A historical study could have been an option if the chosen case was

a course that had been held in a previous semester, but since it introduces the uncertainty

of the participants’ memories, and the case chosen is an appropriate one for this study,

that was not an option that was considered.

Selection of Cases

Being a student writing my thesis at the Norwegian University of Science and Technology,

and wanting to study dysfunctional student teams in software engineering, it was natural

to seek a collaboration with a course at the university. TDT4140 Software Engineering
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was chosen because it is a project course with a large number of students participating.

It is also a course that is similar to many software engineering courses o�ered worldwide.

It is what is considered a typical instance. As mentioned above, this is a case that can be

generalized to similar courses and with the large number of students attending, it allows

for gathering su�cient data.

Generalizations

Oates [1] presents the four main types of generalizations suggested in Walsham’s article

from 1995 [52]. They are: A concept, a theory, implications, and rich insights.

This study does not aim to contribute new concepts or theories, but will explore what

implications the findings might have for similar cases. Implications are defined in Oates

as: “suggestions about what might happen in other similar instances, possibly with

specific recommendations for action.”

Data Generation Methods

The data generation methods chosen for this study are a questionnaire, interviews, and

data collected from GitLab. These methods will be discussed further in Sections 3.2.1,

3.2.2, and 3.2.3.

Research Process

Figure 3.1 shows the process followed in this study. At first, during a specialization

project fall 2021 literature was explored to find metrics for the focus of this study, as

well as to find inspiration for research questions that make up the aim of this study. A

case study was chosen to be the best fitting research strategy. Data would be gathered

through interviews, questionnaires, and documents in the form of GitLab data. The

data collected would be both qualitative and quantitative in nature, and require both

kinds of analysis.
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Figure 3.1.: Model of the research process [1, p. 33].

3.1.2. TDT4140 Software Engineering Spring 2022

As mentioned in Section 3.1.1, TDT4140 was chosen as an appropriate case for this study.

TDT4140 Software Engineering is a course o�ered at NTNU. According to the course

website [53], it focuses on: “Practical and theoretical understanding of software engineering

for small, co-located development teams, with special emphasis on development processes,

requirements engineering, software quality, and technological choices.”

Structure of the Course

TDT4140 is a project-based course where the students are divided into teams to complete

a semester project. The groups are free to make most of their choices during development,

including the technology stack. But, the course has a focus on agile development, and

the groups are required to use the Scrum methodology and document their process in

di�erent deliverables throughout the semester.

During spring 2022 the course was divided into five phases, as can be seen in Figure
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3.2. The first phase was a theory module that lasted for three weeks. During these weeks

the students had six four-hour lectures about general software development and themes

in agile development. For this phase, they had one submission: S2 - Theory test, where

the students were individually tested on the knowledge they had gained during the phase.

Figure 3.2.: Plan for TDT4140 Software Engineering spring 2022. [2]

The next phase was the planning phase. The student groups met their supervisor, who

also acted as the product owner for the project. The supervisor described the product

they wanted the students to make, and during the planning process, the team started the

preparation for the project by completing two submissions: S1 - Group Contract. This

was a document the student teams created together that set the rules and expectations

for the project work; and S3 - Pre-study. In this delivery, the students made a report

documenting and arguing their choices for the project.

During the first iteration, the student groups started the development. At the end of

the first iteration, they had two assessments: S4 - Review. Here the groups demonstrated

their work to the product owner and another teaching assistant who acted as an evaluator;

and S5 - Retrospective. The groups had a retrospective meeting and delivered a report,

where they evaluated and reflected upon their process, teamwork, and the state of their

product. The second iteration was carried out in the same way as the first one, ending in

two assessments, S6 - Review 2, and S7 - Retrospective 2.

The last phase had a focus on reflection. During this time, the students had three

submissions. First, in S8.1 each individual student wrote a reflection essay, where they

could show what they had learned in the course by connecting theory and experience

about a given theme in the course curriculum. The second deliverable, S8.2, was a peer

review of two other students’ essays. Lastly, the group wrote a group reflection report in

S9. The report should discuss their project work and process work concerning the course
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curriculum and account for 30% of the students’ grades.

The course was divided into four villages. Each village had seven teaching assistants,

and one of them was the village leader. The remaining six teaching assistants each

supervised three student teams and acted as evaluators for three other student groups.

For the groups they supervised, they also acted as product owners for the project, and

they had weekly meetings with the groups.

Students

Approximately 500 students attended the course during spring 2022, during the students’

fourth semester. These students came from eight di�erent study programs. Some of the

students had participated in a project-based software engineering course before, while

others had minimal experience with software development.

3.1.3. Setting the Scope for the Project

In Section 2.4.3 the work done in my Specialization project was presented. From the

dysfunctions found in Table 2.1 six final dysfunctions were formed and focused on in

the study. These were chosen as the ones that were most likely to be identifiable from

GitLab data, and they are problems that might occur in the student groups that make

up the participants of the study.

D1: Unfair or unevenly distributed workload.

This is defined as: Some in the group put more time and e�ort into the

project than others.

D2: Too little time is spent working on the project.

This is defined as: The group members do not spend su�cient time working

on the project compared to what is planned or expected.

D3: The participants are not committed to the project.
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This is defined as: A lack of e�ort and willingness to work for good results.

D4: Lack of a plan or strategy for the project.

This is defined as: The group does not communicate about the approach and

strategy for the project.

D5: Poor leadership.

This is defined as: The group does not have anybody who takes responsibility

for the project, its progress, and implementation.

D6: Too specialized tasks.

This is defined as: The group has distributed work tasks to a degree where

the members do not learn all they are supposed to in the course.

3.2. Data Generation Methods

From Oats, a data generation method is defined as: “The means by which you produce

empirical (field) data or evidence.” We look at the four data generation methods covered

in the book:

Interviews: Interviews are conversations between a researcher and a

participant who gives the researcher information for their study. Interviews

can be structured, semi-structured, or unstructured.

Observations: Observations are when a researcher studies the participants

of their study through direct observation to see what they do, not just what

they report to do.

Questionnaires: Questionnaires are a set of questions the participants of

a study answer. The researcher then analyzes the responses and looks for

patterns.
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Documents: Documents can be found documents, where the information is

produced outside of the study and gathered and analyzed by the researcher.

They can also be researcher-generated documents, where the researcher

documents things that would not exist if not for the study.

In this case study, the data generation methods are interviews with teaching assistants,

a questionnaire sent to the students of the course, and documents in the form of data

extracted from GitLab.

3.2.1. Online Questionnaire

In this study, di�erent metrics derived from GitLab data are compared to the students’

experiences of group dynamics in their teams. To collect data about the students’

experiences, a self-administered questionnaire was chosen as a fitting data generation

method.

Questionnaire Design

For each of the six dysfunctions presented in Section 3.1.3, three questions were made

to find the student’s experience with that problem in their team. The majority of the

questions were formatted as Likert scale questions with the options “Strongly Disagree”,

“Disagree”, “Neutral”, “Agree”, and “Strongly Agree”. To make sure the students read

the questions and considered them before answering, some questions had a “positive”

answer being “Strongly Agree”, while others had “negative” answers being “Strongly

Agree”. The questions were not sorted by theme for the same reason. The idea was

that if the questions were too predictable, in that the questions belonging to the same

dysfunction followed each other, they would be read less carefully by the students. After

answering the Likert questions, a single open question followed, which asked the students

about their opinion about their GitLab data being gathered and analyzed to give them

better feedback from their supervisors.

The full questionnaire can be found in Appendix B.
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Data Collection

The questionnaire was made and hosted in nettskjema.no [54]. The website has a

focus on security which was a requirement for a questionnaire that gathered anonymous

data from the participants. The students were given a five-day window to answer the

questionnaire. The majority of the responses came within the first two days. Since a high

response rate was considered important, a gift card was promised to a randomly selected

student who answered the questionnaire. Registration for the chance of winning the gift

card happened voluntarily in a Google Form so that the students’ emails could not be

connected to their responses, and any student who wanted to participate in the study

and be entirely anonymous had that option. Information about the questionnaire was

posted to Blackboard, the Learning Management System(LMS) used by NTNU. It was

also sent to the students per email. In the end, 52 students answered the questionnaire.

With a total of approximately 500 students taking the course, this gives a response rate

of 10%.

3.2.2. Interviews

This study is motivated by the prospect of using GitLab data to better guide student

teams. An important perspective of the case is therefore that of the supervisors of the

groups. As explained in Section 3.1.2, the teaching assistants had dual responsibilities.

They acted as supervisors and product owners for some groups, and they acted as

evaluators for other groups. Teaching assistants were therefore invited to partake in

interviews regarding their roles as supervisors, and what they had observed from the

student groups they were guiding.

Interview Guide

The aim of the interviews had two focuses:

1) To find out which of the six dysfunctions the supervisors identified in the

student teams, and how they concluded that it was a problem in the group.
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2) To find out how supervisors preferred to have findings from GitLab data

presented to them, to be e�ective in helping the students. And to see if

the supervisors could see any possible problems in using GitLab data when

helping the student teams.

To best answer these questions an interview guide was prepared. The first part of

the interview revolved around the first focus. For each group, the teaching assistant

supervised they were first asked which problems they had identified in the group. After

that, they were given the definitions of the six dysfunctions introduced in Section 3.1.3.

For each of them, the supervisor was asked whether they could see the problem in the

group and how it was observable to them. Then they were asked to rate the problem in

the group following the tra�c light model.

The tra�c light model is a version of Likert scale questions, and was introduced to

the teaching assistants thus: Green means that the group does not face this challenge

at all, or that their problems from this challenge are insignificant. Yellow means that

the group faces the challenge and that there can be a risk of them developing greater

problems from it. Red means that the challenge gives the group significant problems.

The second part of the interview concerned the second focus. Here, the supervisors

were asked how they preferred to have findings from the GitLab data presented, what

should be considered when presenting this data to supervisors, and if they could see any

problems using this data to help guide students.

The full interview guide can be found in Appendix C.

Data Collection

When finding participants for the interviews, I was set in contact with two villages. While

recruiting, I was allowed to take part in a weekly meeting to present my research. From

the first village, only two were willing to participate. For the second village, I o�ered free

lunch sponsored by the department as compensation. This led to an increase in interest,

but eventually, three teaching assistants from this village partook in interviews. In total,

five teaching assistants were interviewed. As mentioned in Section 3.1.2, each village
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had six teaching assistants acting as supervisors. Out of the teaching assistants invited

to interviews, 42% accepted. Out of all the teaching assistants in the course, 21% were

interviewed.

Two of the interviews were performed online using a video conferencing tool. The

remaining three interviews were performed in person. There is no reason to suspect that

the format of the interview impacted the responses of the participants.

3.2.3. GitLab Data

Section 2.2.2 shows details about the tool. The purpose of this study is to see if data

from GitLab can be analyzed to predict problems in student teams. The dataset collected

from GitLab should include data fields that make it possible to construct metrics that

might reveal the six dysfunctions presented in Section 3.1.3.

Data Collection

To collect data from GitLab a Python script was made to fetch the following fields

through the GitLab API:

1) Commits:

• author

• title

• message

• authored date

• committed date

• additions, deletions, and total of the two

• di�: old path, new path, changes in file (There were a few other fields

that were not used within the di�)

2) Issues:

• title
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• description

• date created

• date updated

• date closed

• issue state (opened/closed)

• author

• issue type

• time statistics

• status of tasks completed

• milestone due date

• milestone start date

• assignees

Anonymization

According to Oates [1], a typical disadvantage of case studies is that it can be di�cult

and time-consuming to gain the right access to necessary data sources. For me, getting

access to student repositories was a hurdle in this study. After negotiation with the

Norwegian center for research data (NSD) the options were:

1) Informed consent from all participants to use their data. The problem with this

option is that to study the group dynamics of a group, all members would have to opt

into the study. The risk here would be that few or no groups would agree to this.

2) Extracting an anonymized dataset from GitLab and using the anonymized data in

the study. The problem with this approach is mainly that it can be di�cult to do quality

control of the dataset. This will be discussed in Section 5.3.3.

The risks of 1), that there would be given consent to extract too little data to support

the research, were deemed to be too great. Therefore, work was done to create an

anonymized dataset for the analysis. The anonymization happened as the dataset was
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extracted. The author field in both commits and issues was anonymized and given

incremental IDs. The anonymization process introduced some weaknesses and possible

uncertainties to the dataset. These will also be discussed in Section 5.3.3.

Measures of the Groups’ Experiences with the Dysfunctions

For the GitLab Analysis, di�erent metrics were constructed and compared to measures of

the groups’ experiences with the previously introduced dysfunctions (See Section 3.1.3).

In preparation for this comparison, the data from the questionnaire was processed. In

the process the di�erent questions were given numbers from 1-5, taking into account

that some of the questions were negated. The questions were grouped into six categories,

one for each dysfunction. For each response and each dysfunction, the mean value of

the questions was calculated. Then, for groups with multiple respondents, the mean of

the dysfunction values was calculated. This gave a dataset with 39 groups, that all had

six dysfunction values. A few groups had to be excluded because they structured their

projects into subprojects in a way that was di�cult to process. Because of this, the final

number of groups that were analyzed was 36.

Omitted Commits

At the beginning of the GitLab analysis, it became clear that a few of the commits were

outliers, and they influenced the results of the analyses. These commits were omitted

from the analyses. In total, for all groups, 5 commits were omitted. The condition for

the omission was the date of the commits. A start date was set as the date of the first

commit that could reasonably be expected to have been part of the project. One group

used a template that had a commit by GitLab in 2019. The remaining four commits

were all made after the end of the project, and it did not seem from the commit messages

as if any additional work was done.
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3.3. Analysis

The methods of analysis for the di�erent data collected will be presented in this section.

For the di�erent data sources, it is necessary to do both qualitative and quantitative

analysis.

3.3.1. Questionnaire

Analysis of the questionnaire was done in two ways. Quantitative analysis was done for

the Likert scale questions. Here each question was explored to see what portion of the

students experienced the problem. The di�erent answers were coded to a value from 1-5.

From this, the mean was calculated for each question. The mean represents how prevalent

the problem is amongst the teams. For the three questions aiming at discovering the

same dysfunction the average of the means were calculated to understand how much of a

problem the dysfunction is for the class. The answers to the Likert scale questions were

further used in the GitLab analysis. This was explained in Section 3.2.3.

The last question of the questionnaire was analyzed qualitatively. Each response was

read carefully and the problems were categorized and will be presented in Section 4.1.3.

Test of Quality of Questions

After designing the questionnaire, it was pre-tested by my supervisor and two fellow

master’s students. Due to time constraints, a pilot test was not performed. An assumption

was made that the extra time it would take to conduct a pilot test, would lead to a

lower response rate, as this would mean the data collection would happen closer to the

students’ exams. A high response rate was considered more important than an extra

step of quality control before data collection. To compensate for the lack of a pilot test,

quality control of the questions in the questionnaire was performed after the data was

collected. To test whether students answer consistently on questions that aim at revealing

the same dysfunction we look at each student’s responses to the three questions. For each

question, the responses are given a value between 1-5. If the response indicates that the

36



3.3. Analysis

group faces the problem (“Strongly Agree” to a question that asks if they face a problem

or “Strongly Disagree” to negated questions) the corresponding value is 1, and if the

response indicates that there is no problem the corresponding value is 5. A high number

is an optimal situation in a group, while a low number means that they experience a

problem. The distance from the lowest score to the highest score for a student reveals

the consistency in their answer for that dysfunction. Averaging the distance for each

student gives a measure of the consistency in answers for a dysfunction. This is done for

all the dysfunctions and the results can be found in Section 4.1.1.

3.3.2. Interviews

The interviews were first transcribed, then analyzed mostly qualitatively. For each

dysfunction, it is explained how prevalent it is in the groups and how the teaching

assistants identified the problem. The groups that the teaching assistants were supervisors

for were all classified as somewhere between green and red. These classifications were

compared to the students’ answers to the questionnaire. In Section 5.1.11 the comparison

between the two will be presented.

After focusing on the dysfunctions, the teaching assistants’ opinions on how they would

like the GitLab analyses presented to them are presented. Thereafter, we look at possible

problems with using GitLab data for analysis of the group dynamics, as identified by the

teaching assistants.

3.3.3. GitLab Data

For the analysis of the GitLab data that was collected in this study, a list of possible

metrics that could reveal problems within the groups was created and edited throughout

the process. As new information was learned the priority of the di�erent metrics changed.

The metrics that were explored are not comprehensive. The final metrics will be described

in this section, and the results of the analysis will be presented in Section 4.3.
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Tops in Work Done

For each of the days in the project duration, the work done that day was measured. Work

done was first measured in commits. The number of commits in total was calculated.

Then, for each day the group committed, the number of commits was counted. This lets us

calculate the portion of the total work for each day. Tops are the days where the commit

portion is over a certain percentage. After checking di�erent options, the ones that had

the closest to a linear relationship for the portion of commits and group experience were

1% and 15%. Counting up the number of days exceeding the set percentages, we have

the following metrics:

• Number of Days With More Than 1% of Total Commits

• Number of Days With More Than 15% of Total Commits

A commit can be anything from a few lines to multiple features being implemented.

Therefore, another method of calculating work was also used, that is lines of code.

However, looking at the total code lines for each commit, the work done by the students

would drown in the imported Libraries, and automatically generated files. Therefore,

some processing had to be done to get a realistic and useful measure for code lines. First,

commits that were merges were disregarded. This might mean that some work could be

overlooked, but the member doing the merge should not necessarily get credited with the

code lines written in the branch that is merged. Also, if this was not done, most work

would be counted at least twice, because the groups generally followed the practice of

not pushing directly to the master branch.

The groups were allowed to choose a technology stack at will. This meant that the

structure of files and file endings di�ered for each group. After printing each file ending,

to see which would contain student work, and examining which locations did not contain

work done by the students, the following file endings were included, and paths that

included the following strings were excluded:

The following file endings were included: “.py”, “.js”, “.css”, “.ts”, “.jsx”,

“.java”, “.vue”, “.tsx”, “.md”, “.html”, “.scss”, “.kt”, “.sql”

38



3.3. Analysis

Paths including the following strings were excluded: “/migrations/”,

“/.bin/”, “/bin/”, “/.env/”, “/Lib/”, “settings.py”, “.config”, “cypress”,

“node_modules”, “package.json”, “package-lock.json”, “/index.html”,

“LICENSE”

After doing the same process for code lines as was done for commits, we get the

following metric:

• Number of Days With More Than 7% of Total Code Lines

Last Minute Work

Something else that might reveal problems in group dynamics is how much of the total

work is done right before a deadline. To measure this, the portion of the total code lines

for the project done within the last 5 days before the final deadline was calculated. Since

metrics that can reveal the problem before the end of the semester are preferred, the

same metric is calculated for the last 5 days before the Midterm Deadline. This gives us

the following metrics:

• Percentage of Total Work Done the Last 5 Days Before Midterm Deadline

• Percentage of Total Work Done the Last 5 Days Before End of Project Deadline

Time of Commits

To reveal the students’ work habits, and their relationships especially with their planning,

we explore when commits are made. To do this, the committed date field is used to find

the day of the week or the time of the day to get the following metrics:

• Percentage of Total Lines of Code Committed During Weekends

• Percentage of Total Lines of Code Committed Between 08:00 - 16:00

• Percentage of Total Lines of Code Committed Between 16:00 - 00:00

• Percentage of Total Lines of Code Committed Between 00:00 - 08:00
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Workload Distribution Within the Groups

It was also interesting to see how the work was distributed amongst the members. The

attempt to look into this had some weaknesses for this project. Each commit has an

author field that is used to link it to a member of the student group. This name, however,

can be di�erent from the name of the student. Typically, it can be the email address

the student uses in their integrated development environment(IDE) or the email that is

connected to their GitHub account. But it can be something else as well, and a single

student may have di�erent author names throughout the project. To try to see the

distribution of commits amongst the members of the group the following was done in the

anonymization process: Every time a commit was processed that had a new author name

it was given an anonymized ID. This ID replaced the original name in the data set. A

dictionary kept a connection between the first three letters of the author name and the

anonymized ID. Then, the next time an author name starting with those three letters

was processed it was given the same anonymized ID. The problem with this is that a

single member could have di�erent author names that did not necessarily start with the

same three letters, and therefore be split into two members in the analysis. Another

possible problem is that a group might have two members starting with the same three

letters. They would then be merged into one member in the analysis. This is not ideal,

and because of the anonymization process, it was not possible to check the frequency of

these problems. However, the same way of connecting author name and team member

was done in a master’s project earlier with success [55]. The two measures for work that

was introduced earlier were used here as well. For each member, their portion of the total

commits and lines of code within the project was calculated. The standard deviation of

the di�erent members’ portion of the work was then used as a metric that might reveal

problems in group dynamics. We call the metrics:

• Standard Deviation - Portion of Commits per Member

• Standard Deviation - Portion of Lines of Code per Member
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Comparison to Other Groups

From the data set, it is possible to look at a group compared to the other groups. It

is interesting to see if how the group compares to the average at Midterm can reveal

problems in their group dynamic. This is done here by calculating the average number

of code lines for all the groups and comparing the group’s code lines to the average. This

gives the following metric:

• Group’s Lines of Code Compared to the Average at Midterm

Issues

Information about issues in GitLab was also extracted in the data collection process.

Using issue assignment as an additional measure of workload distribution was an option,

but it su�ers from the same weaknesses as commit distribution does. Looking into issues

might still reveal useful relationships. Three metrics that were explored are these:

• Number of Unique Dates of Issue Creation

• Ratio of Edited to Non-Edited Issues

• Average Number of Days Between Creation of Issues and when it was Last Updated

Pearson Product-Moment Correlation

On statistics.laerd.com [4] the Pearson product-moment correlation is described:

“The Pearson product-moment correlation is used to determine the strength

and direction of a linear relationship between two continuous variables.”

In the GitLab analysis in this study, the metrics described above are compared to the

experience of dysfunctions within the student teams. To determine if any relationship

exists, the Pearson product-moment correlation is calculated. This is done using SPSS

[56], which is a statistical analysis program. The Pearson correlation, as it will be called

in this section, is a number between -1 and 1. 1 is a perfect positive correlation between
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the two data sets examined. -1 is a perfect negative correlation. 0 means there is no

correlation.

For a Pearson correlation to be determined accurately, three conditions have to be met

[4]:

1. There must be a linear relationship between the two variables.

2. There must be no significant outliers.

3. There must be bivariate normality in order to assess statistical significance.

For the last one, it is di�cult to assess whether there is bivariate normality. A step

taken instead to get to an acceptable level of assurance is to test both variables for

normality. Normality is tested for in SPSS by doing the Shapiro-Wilk test.

For the group experience of dysfunctions, the results of the test of normality can be

seen in Table 3.1. For there to be normality, the Shapiro-Wilk significance value must be

greater than .05. As can be seen in the table, only three of the six dysfunctions fulfill the

requirements of normality. D6 is particularly far from normality, and because of this,

the Pearson correlations will not be calculated for metrics against D6. For D2 and D3

correlations will still be explored, since, according to laerd: “The test is somewhat robust

to deviations from normality.” In the cases where there are findings for D2 or D3, the

lack of normality will be reiterated.

Table 3.1.: Shapiro-Wilk significance value for the six dysfunctions.

Dysfunction Shapiro-Wilk Significance Value

D1 .256

D2 .040

D3 .020

D4 .114

D5 .065

D6 <.001
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The normality of the data sets for the metrics will be described along with the results of

the correlation analyses in Section 4.3. According to Oates [1], any correlation coe�cient

between 0.3 and 0.7 demonstrates a reasonable correlation. According to Cohen [57] the

strength of the correlation is as seen in Table 3.2.

Table 3.2.: Strength of associations. Table found on statistics.laerd.com [4]

Coe�cient value Strength of association

0.1 <| r | <0.3 Small correlation

0.3 <| r | <0.5 Medium/moderate correlation

| r | >0.5 Large/strong correlation
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This chapter presents the results found in the study. Qualitative and quantitative findings

from the questionnaire, qualitative findings from interviews with teaching assistants, and

quantitative findings from Pearson correlation analysis of GitLab metric data sets are all

presented here.

4.1. Questionnaire

This section will present the results of the questionnaire that was described in Section

3.2.1. First, the Likert scale questions will be presented grouped by the dysfunction they

attempt to identify. Next, we will look at the similarity in answers between members of

teams that had multiple members respond to the questionnaire. After that, the students’

opinions about GitLab data being used to analyze their group dynamics will be explored.

4.1.1. Dysfunctions

For each dysfunction defined in Section 3.1.3 three questions were asked to the students.

In this section, we will look at how the students answered these questions, and what

that says about the dysfunctions in the student teams. The questions here are translated

from Norwegian. As explained in Section 3.3.1 each option in the Likert scale part of

the questionnaire is given a value between 1-5. These are used to calculate the mean

response for each question and each dysfunction in this section.
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D1: Unfair or unevenly distributed workload

In an attempt to learn the students’ experience of this dysfunction in their team, three

questions were asked:

1. Someone in our group has spent more time on the project than others.

2. The e�ort put into the project was unevenly distributed in our group.

3. In our group, every one put in an approximately equal amount of work to the

project.

The distribution of answers can be found in Table 4.1. The average score of the three

questions is 2.4. There is a di�erence of 1.0 between question 1 and the two other

questions.

To test whether students answer consistently on questions that aim at revealing the

same dysfunction we use the method described in Section 3.3.1. This gives a consistency

score of 1.35 for D1.

Table 4.1.: Questionnaire responses to D1 - Unfair or unevenly distributed workload.

Response Q1 Q2 Q3

Strongly Disagree 1.9% (N=1) 9.6% (N=5) 13.5% (N=7)

Disagree 3.8% (N=2) 23.1% (N=12) 40.4% (N=21)

Neutral 3.8% (N=2) 15.4% (N=8) 11.5% (N=6)

Agree 44.2% (N=23) 34.6% (N=18) 30.8% (N=16)

Strongly Agree 46.2% (N=24) 17.3% (N=9) 3.8% (N=2)

D2: Too little time is spent working on the project

To find out how the students experienced this dysfunction in their team, they answered

the following three questions.

1. Our group worked approximately the number of hours expected in the course.

46



4.1. Questionnaire

2. In our group, some members worked less on the project than we had agreed upon.

3. We experienced a shortage of time on the project because we did not spend enough

hours compared to what was planned.

The distribution of answers can be found in Table 4.2. The average score of the three

questions is 3.4. There is a di�erence of 0.6 between question 2 and question 3. The

consistency score for D2 is 1.81.

Table 4.2.: Questionnaire responses to D2 - Too little time is spent working on the project.

Response Q1 Q2 Q3

Strongly Disagree 5.8% (N=3) 15.4% (N=8) 23.1% (N=12)

Disagree 28.8% (N=15) 36.5% (N=19) 48.1% (N=25)

Neutral 9.6% (N=5) 11.5% (N=6) 15.4% (N=8)

Agree 42.3% (N=22) 21.2% (N=11) 7.7% (N=4)

Strongly Agree 13.5% (N=7) 15.4% (N=8) 5.8% (N=3)

D3: The participants are not committed to the project

To figure out the students’ experience with this dysfunction in their team, these three

questions were asked.

1. In our group, some showed a lack of e�ort.

2. Everyone in our group worked to get a good grade.

3. We experienced that not everyone in the group was committed to the work.

The distribution of answers can be found in Table 4.3. The average score of the three

questions is 3.7. There is a di�erence of 1.1 between question 1 and question 2. The

consistency score for D3 is 1.4.
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Table 4.3.: Questionnaire responses to D3 - The participants are not committed to the

project.

Response Q1 Q2 Q3

Strongly Disagree 17.3% (N=9) 1.9% (N=1) 30.8% (N=16)

Disagree 26.9% (N=14) 3.8% (N=2) 26.9% (N=14)

Neutral 26.9% (N=14) 5.8% (N=3) 13.5% (N=7)

Agree 15.4% (N=8) 44.2% (N=23) 17.3% (N=9)

Strongly Agree 13.5% (N=7) 44.2% (N=23) 11.5% (N=6)

D4: Lack of a plan or strategy for the project

In an attempt to learn how the students experience this dysfunction in their team, they

were asked three questions.

1. Our group had a plan for what to do.

2. Not everyone in the group understood how the project was to be carried out.

3. We had good communication in the group about the strategy for the project.

The distribution of answers can be found in Table 4.4. The average score of the three

questions is 3.5. There is a di�erence of 1.0 between question 1 and question 2. The

consistency score for D4 is 1.46.

Table 4.4.: Questionnaire responses to D4 - Lack of a plan or strategy for the project.

Response Q1 Q2 Q3

Strongly Disagree 1.9% (N=1) 17.3% (N=9) 1.9% (N=1)

Disagree 5.8% (N=3) 21.1% (N=11) 5.8% (N=3)

Neutral 13.5% (N=7) 11.5% (N=6) 15.4% (N=8)

Agree 57.7% (N=30) 36.5% (N=19) 59.6% (N=31)

Strongly Agree 21.2% (N=11) 13.5% (N=7) 17.3% (N=9)
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D5: Poor leadership

Three questions were asked to learn about the students’ experience of this dysfunction in

their team.

1. In our group we had someone who made sure we had good progress.

2. No one in our group took clear responsibility for the organization of the project.

3. In our group, someone was given the responsibility of following up on all or parts

of the project.

The distribution of answers can be found in Table 4.5. The average score of the three

questions is 3.4. There is a di�erence of 0.8 between question 2 and question 3. The

consistency score for D5 is 1.44.

Table 4.5.: Questionnaire responses to D5 - Poor leadership.

Response Q1 Q2 Q3

Strongly Disagree 3.8% (N=2) 19.2% (N=10) 5.8% (N=3)

Disagree 5.8% (N=3) 48.1% (N=25) 36.5% (N=19)

Neutral 23.1% (N=12) 13.5% (N=7) 23.1% (N=12)

Agree 57.7% (N=30) 17.3% (N=9) 28.8% (N=15)

Strongly Agree 9.6% (N=5) 1.9% (N=1) 5.8% (N=3)

D6: Too specialized tasks

To understand the students’ experience of this dysfunction in their team, they were asked

the following three questions.

1. In our group, there was little variation in the work tasks for each member.

2. Each group member did not get to cover the entire curriculum through the project

work.
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3. We made sure that everyone got to try di�erent tasks during the project.

The distribution of answers can be found in Table 4.6. The average score of the three

questions is 3.3. There is a di�erence of 0.7 between question 2 and question 3. The

consistency score for D6 is 1.48.

Table 4.6.: Questionnaire responses to D6 - Too specialized tasks.

Response Q1 Q2 Q3

Strongly Disagree 11.5% (N=6) 11.5% (N=6) 3.8% (N=2)

Disagree 50% (N=26) 17.3% (N=9) 15.4% (N=8)

Neutral 15.4% (N=8) 32.7% (N=17) 13.5% (N=7)

Agree 17.3% (N=9) 26.9% (N=14) 55.8% (N=29)

Strongly Agree 5.8% (N=3) 11.5% (N=6) 11.5% (N=6)

4.1.2. Agreement within the Groups

The experience of a group with the di�erent dysfunctions was used in the GitLab analysis

in the study. Few of the groups had multiple members answer the questionnaire. It is

interesting to see whether the groups that had multiple students answer the questionnaire

agreed on which problems their group faced. A total of 52 students answered the

questionnaire. 9 groups had 2 members answer, 2 groups had 3 members answer. For

each of the groups who had multiple members answer the questionnaire the following

procedure was done to see whether they agreed when identifying problems: For each

of the three questions belonging to a dysfunction the di�erence from the highest score

and the lowest score amongst the members was calculated. Then, for the dysfunction,

the di�erences for the three questions were averaged. This was used as a measure of

agreement within the group for that dysfunction. To see the general agreement in groups

with multiple respondents, the mean of the agreement scores was calculated, and was as

follows for the six dysfunctions:

D1 - Unfair or unevenly distributed workload: 0.90
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D2 - Too little time is spent working on the project: 0.92

D3 - The participants are not committed to the project: 0.67

D4 - Lack of a plan or strategy for the project: 0.90

D5 - Poor leadership: 0.77

D6 - Too specialized tasks: 0.87

4.1.3. Students’ Opinions about Using GitLab Data

At the end of the questionnaire, the students were asked a single open question. Translated

from Norwegian, this is what they were asked:

“ What do you think about letting teaching assistants analyze your

GitLab data in order to provide better guidance? GitLab stores

data such as issues and commits. If you analyze this data and look at e.g.

when things are pushed and how often, as well as who is assigned to various

issues, etc., you can say something about collaboration and group dynamics.

Knowledge of this can give teaching assistants a tool to help groups solve

problems they encounter during their projects. Do you see any possible

challenges with this?”

The respondents had di�erent opinions about this. Some were positive to the idea.

One respondent answered: “I see this as a great advantage, and as a tool to increase the

learning outcome by correcting the work along the way”. Another student said: “I think

this can be a good solution. This will make it possible for teaching assistants to comment

if someone in the group does not contribute much, so that the burden [of handling that]

does not remain on the group. At the same time, the assistant can then make suggestions

for improving collaboration based on the analysis.”

Others were more skeptical, and mentioned di�erent challenges that would have to be

handled in order for an analysis to be helpful. These challenges can be seen in Table 4.7

along with how many of the respondents brought them up in their answers.
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In the next sections, findings from the students’ responses will be presented in order

from most frequently to least frequently mentioned. All quotes are translated from

Norwegian to English.

Table 4.7.: Challenges mentioned by students in the questionnaire.

Challenge # Mentions

Pair programming 17

GitLab does not Represent Reality 17

Other Parts of the Course Work is not Represented 7

Improper Use of Git 7

Problems with Issue Assignment 5

Students Misrepresenting Their Work 4

Di�erent Skill Levels Amongst Students 3

The Feeling of Being Surveilled 3

Pair Programming

From the responses from the students, it is clear that they consider pair programming an

obstacle to getting accurate data on the distribution of workload. A respondent answered

the question: “Also, we were encouraged to work using the pair programming method,

where often only one person in the pair could be seen directly in GitLab. For example,

in our group, there was one person who had 0 commits on GitLab, but there is another

person who I feel contributed less.” An option some of the students mentioned they had

used to solve this problem was adding a co-author in the commit message. But a few of

the respondents mentioned how they either had problems adding a co-author or didn’t pay

much attention to it: “It was a bit tricky to get co-authors right when we pair program,

so it can be wise to keep in mind that it may be missing in some places.” To get a

more correct representation of who did the work, some students, therefore, recommended

getting a proper introduction to how to add someone as a co-author. However, even if
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all commits that had multiple students working on it had them added as co-authors,

that does not solve all problems. Another student pointed out: “’Co-authored’ is easily

thrown in if someone sits and watches for a while while others do the whole job.”

GitLab does not Represent Reality

Another fact made clear in the students’ responses is that not all trust the data gathered

from GitLab to accurately represent the reality of their group’s work. A variation of

the following statement was one of the most common comments: “Using git as a tool

to analyze group dynamics would probably give a very incorrect picture of my group.”

Some comment that the work done can be complex and that data from GitLab cannot

represent the complexity in a good way. However, many of the students who felt that

GitLab data could not accurately represent their group’s work were still positive about

using an analysis as an additional tool: “The GitLab data should not be used as a basis

for describing the collaboration and group dynamics, but perhaps [it could be used] as a

small supplement.”

Other Parts of the Course Work are not Represented

One reason why students did not think GitLab could accurately represent the work done in

the groups, is because a large part of the course was focused on writing reports. One of the

students phrased their concerns thus: “In addition to delivering a product, PU[Software

Engineering] is about delivering various assignments that are often time-consuming. In

our group, it was therefore common for someone to start on a report, make a presentation

for review, etc. while others continued programming. This made it possible to reach

the finish line with all the deliveries and was a dynamic the group agreed on. As a

consequence of this, if you only look at GitLab, you will make assumptions that some in

the group contributed less than others, even if this is not the case when you look at the

course as a whole. I’m afraid that the teaching assistant would misinterpret the data and

choose to focus on the wrong things.”
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Improper Use of Git

Another concern amongst the students was that since git is not part of the curriculum of

the course, some students would not have the foundational understanding of the tool to

use it in a good way. One student shared these thoughts: “The idea behind using GitLab

statistics and history is good, and can probably help provide valuable insight into work

style, the quantity of work, and distribution. However, this presupposes that everyone

involved uses the git tool for all its worth, with frequent commits with good descriptions,

links to issues, and MRs[Merge Request]. Our group experienced that some did well,

while others had never cloned a repo without using a step-by-step guide. PU[Software

Engineering] has students with very di�erent backgrounds and experiences and it will

probably be di�cult to do valuable research with GitLab as the only source as the tool is

used very di�erently between students and groups.” Other students shared their di�culties

using Git in their team. “It could have worked well, but then we would have needed an

introduction to Git. In our group, a minority had any knowledge of it, and instead of

everyone pushing and pulling and using Git, we sent code to one member who then pushed

from his [computer].”

Problems with Issue Assignment

A problem when using issues in GitLab as a measure of who worked on what was revealed

by a few students: “At [the department’s instance of GitLab], it is not possible to assign

two or more people to an issue, which means that it may seem as if someone has been less

involved in the project because they have worked with someone else.” Others commented

that assignments to issues and pull requests were often forgotten.

Students Misrepresenting Their Work

Another thing that was mentioned a few times was that students knowing their data

would be analyzed would likely adapt their Git behavior accordingly. One student phrased

that like this: “I do not think it will help much, as it will primarily increase the workload

in the course, which is already too large. And because of this, people will only make more
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and more complicated workarounds to avoid the problems.” Another concern was that the

knowledge of their GitLab statistics being analyzed could lead to members prioritizing

quantity of commits over quality, as explained by a student here: “A possible challenge is

that there will be a great focus on how many pushes / commits each person makes, which

could then take the focus away from good pushes/commits (where good code is written

and a certain amount of work is done) to pushing/committing often to “showcase” that

they work a lot.”

Di�erent Skill Levels Amongst Students

A few students had concerns about how di�erent skill levels would impact the analyses.

They pointed out that students who already knew the technology stack they were going

to use could work an equal amount to someone new to the stack, but would likely end up

with more code lines, commits, and issues assigned to them.

The Feeling of Being Surveilled

The last problem revealed in the questionnaire was that a few students found the idea of

their GitLab data being analyzed to be surveilling. One of the students expressed his

opinion: “I think that seems very monitoring. My perception of the point of the project

work is that we should learn Scrum, not be monitored to see who pushes the most.” Others

were okay with the group getting the results of an analysis, but found it uncomfortable

for the teaching assistants to get the information.

4.2. Interviews with Teaching Assistants

Interviews with teaching assistants were done in the time frame February 28 to March

29 2022. A total of five interviews were conducted, with each teaching assistant being

supervisor for three student groups. In the following sections the findings from the

interviews will be presented.
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4.2.1. Identification of Problems in Groups

This section will focus on the six dysfunctions defined in Section 3.1.3. For each

dysfunction we will see how often it seems to be a problem for the groups, and for

the cases where the teaching assistant identified a problem, we will see how they observed

it in the group. In the presentation of the findings, the results will be presented after the

tra�c light model defined in Section 3.2.2. An overview of how the teaching assistants

classified the 15 groups for each dysfunction can be seen in Table 4.8

Table 4.8.: Problem identification by teaching assistants.

Group D1 D2 D3 D4 D5 D6

A Green Green Green Green Green Green

B Yellow Green Green Yellow Yellow Yellow

C Green Green Green Green Green Green

D Yellow Green Yellow Green Green Yellow

E Green Green Green Green Green Yellow

F Yellow Green Green Green Green Red

G Green Green Green Green Green Green

H Yellow Green Green Green Green Yellow

I Yellow Red Yellow Green Yellow Green

J Yellow Green/Yellow Green Green Green Yellow

K Yellow/Red Yellow Yellow/Red Yellow Yellow Green

L Green Green Green Green Green Green

M Green Green Green Green Green Green

N Yellow Green Yellow Red Yellow Yellow

O Yellow Green Yellow Yellow Yellow Yellow
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D1 - Unfair or unevenly distributed workload

With 6 / 15 groups being classified as green, “Unfair or unevenly distributed workload”

was the dysfunction most often identified in the groups by the teaching assistants. Eight

of the groups were considered yellow, and one was considered between yellow and red.

When prompted to tell about the challenge in the group that fell between yellow and red,

the teaching assistant explained that the group had complained about a large workload

and that some members seemed to have a lack of motivation. The teaching assistant

pointed out that even though the students spend most of their time in the course on

programming, that part does not matter much in the final evaluation.

Two of the teaching assistants identified an uneven distribution of the workload by

uneven participation in discussions. One of them said: “When you are asking a question it

is very clear who answers. And that is whether it is something technical or process-related

or about evaluation.” Another teaching assistant experienced varying attendance. A

couple of the members would sleep past the meetings, and the members expressed

that that also happened when they were supposed to work. That group also had one

particularly motivated member and a few members that did not know how to proceed

with the project.

Lastly, there were a couple of groups where the students expressed no issues, but the

teaching assistant still classified them as yellow. For one of them, the teaching assistant

saw that one of the members was a strong resource for the group that they relied on

heavily. The group utilized pair programming, but the teaching assistant would have

liked to see them switch the pairs more often so that more could learn from the most

resourceful.

Another teaching assistant said that the group never mentioned anything about it

when asked about uneven distribution of work during their meetings, but continues: “But

I do get the impression that some of them make more of an e�ort and have more will

than others. Or are more engaged.” The assistant goes on to say that the group works

together in 4-hour work sessions and that when looking at their registered hours of work

they all have the same number of hours. Still, the teaching assistant decided that they
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were yellow, saying: “Because some may have a better ability to gain knowledge or are

willing to spend more time [on the project].”

D2 - Too little time is spent working on the project

This dysfunction is the one that had most groups classified green with 12/15. One group

was classified as red, one yellow, and one between green and yellow. For most of the

groups, the teaching assistants said they spent more time than what they were expected

to use on the course. A couple of the groups had problems with time estimates within

the project but still spent as much time as could be expected working. One teaching

assistant said this: “I would say that they used enough time, but that they might have

miscalculated how long it would take to do certain things like setting up the foundation

[of the project.]”

For the group that was considered red, the teaching assistant said: “I have experienced

it is a problem that they spend too little time. For example, they started working on

the presentation the day before a review.” This teaching assistant also said that he had

brought it up in their meetings.

For the group that was classified as yellow, the teaching assistant identified the problem

through their mid-term review. After having looked at their registered hours he saw

that the di�erence between the member who spent the least time and the most time

working on the project was well over 10 hours, which the teaching assistant considered a

significant di�erence in a course where they were expected to work 12 hours a week.

For the group that was placed between green and yellow, the teaching assistant said

that they had not spent less time than what was expected. Still, he placed them between

green and yellow. No further explanation was given.

D3 - The participants are not committed to the project

For D3 4/15 groups were classified as yellow, one was classified as between yellow and

red, and the rest were green.

For two of the groups that were classified as yellow, one of the reasons they were
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considered less committed to the project was because they did not know or care about the

assessment criteria in the course. One teaching assistant said: “They have not familiarized

themselves with the assessment criteria, so they had to ask me about information that is

readily available on Blackboard.” Another teaching assistant said that the members of a

group seemed to not care about getting an A. They were putting in the e�ort it would

take to give them a B or a C.

For another of the groups that were classified as yellow, the teaching assistant talked

about when he took part in a user test for them. Whenever he pointed out something

that could be changed they were eager to improve. He contrasted this to their meetings

where only two of the members participated in discussions. Because he could not gauge

the commitment of the other members the teaching assistant chose to put the group

yellow.

For the group that was said to be between yellow and red, the teaching assistant

focused his answer on one member and said: “We had a meeting yesterday, and there was

one person. You could see from their body language that it seemed like they did not want

to be there if you understand? You can hear when they talk about what they have done or

ask questions. It just showed. Yes, they seemed tired of it. It’s just how they are.”

D4 - Lack of a plan or strategy for the project

For this dysfunction, 3/15 groups were classified as yellow, one as red, and the rest were

green. For the groups that were considered green, they were described as well structured,

thinking far ahead, being good at communicating, and using their resources by asking

questions as soon as they had any. One of the teaching assistants said this about one

of the green groups: “On this [problem] they are actually green. Even if they are not

accomplishing it, they have a pretty clear plan. They are good at that.”

For the teams that were considered yellow, one of them did not have problems with

communication within the team. But the teaching assistant felt like he could have helped

them make a clearer plan, and more actively worked towards using more of the curriculum.

Another teaching assistant had this to say about his yellow group: “Yes, that would be
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yellow. There is some control, but they may not have a goal they are working so clearly

towards. There may be more individuals who take some initiative on their own, and it is

not a streamlined production” About the one team that was considered red, the teaching

assistant said this when asked to explain how he could see the problem in the group:

“The meetings. There is a lot of back and forth. It is quite clear that they have made

technical choices that not everyone has been included in making.”

D5 - Poor leadership

For this dysfunction, no group was observed to have a problem that warranted them

being classified as a red team. 5/15 groups were considered yellow. The remaining

were considered green. An interesting finding here is that amongst the teams that

were classified as green there were a variety of leadership compositions. There were

groups where there was a clear leader, one group had two clear leaders who had taken

responsibility for di�erent parts of the project, and one group was described as having a

flat structure where all members were pushing them in the right direction. There was

no mention of any team that had explicitly chosen a leader, but that may still have

happened for some. One group that had a single leader that was likely implicitly chosen

was described by their teaching assistant: “I do not know if they have a leader. But I

have an impression of who the leader is. Because it is the person who talks the most.

And if I ask questions, it is often the case that the others in the group look back at that

person or mention the person’s name to see if they have any input.”

For the groups that were considered yellow, it seemed like they had not discussed

leadership. One group was described like this: “They are having a hard time structuring

things. There is no single person that steps forward as a leader. They throw out

suggestions.” Another teaching assistant mentioned the group meeting unprepared, and

the members not being aware of where they were at in the project.
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D6 - Too specialized tasks

For the final dysfunction, 7/15 groups were classified as green. One was red, and the rest

were yellow. For one of the green groups, the teaching assistant said they had divided

the work to some degree, with some students having more of their focus on programming,

and others doing more of the writing. However, the teaching assistant said it did not

seem to be a problem in the group because they worked so closely as a team.

For the red group, the teaching assistant described the problem like this: “Yes, it is

a problem. One of the first times I met them, the person I assume knew a lot was not

present. So the others in the group, even though they showed up for their work session,

could not work properly, because they could not extract data from the database. So it was

a clear problem, where the only thing they could do was work on frontend and design.

And I know there are many in the group that says they know either backend or frontend,

but not both. It might be connected to how they do pair programming. Compared to

other groups it was very clear that this problem existed here. Also because they have

commented themselves that they know there are di�erences and that some might not have

the knowledge of all parts of the project that they should have had.”

For the yellow groups, there were a couple of reasons mentioned why they were classified

that way. For a few of the teams, the teaching assistants said that based on how they

answered questions they assumed some did more of the programming and others more of

the writing.

One of the groups classified as yellow had a pretty clear division of work within the

project, where one person was skilled at backend development and another took the

responsibility of designing, and they had problems communicating and making trade-o�s.

The group was described thus: “It definitely felt like some were more in control of design,

at least one in the group was skilled at backend and took care of that. And then I think

they divided it so that the remaining do most frontend work.” This teaching assistant

also said that the ideal situation would be one where everyone was equally involved in all

processes.
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Other Problems Identified

Before going through the six defined dysfunctions the teaching assistants were asked to

talk about the problems each group faced. Three challenges were mentioned that fall

outside the scopes of the defined dysfunctions previously presented. Some groups had

problems with the technical aspects of development. One group had di�ering expectations

that lead to some internal conflicts. The teaching assistant explained what they had

observed: “So a computer science student had the expectation that an industrial economy

student would fully participate in the programming, while the industrial economy student

thought he could write [reports] and the computer science student could write code.” The

last challenge that was mentioned a few times for di�erent groups was members having an

uneven level of knowledge. One group was described this way: “Some are very competent

and do things very quickly and without including the others.”

4.2.2. Teaching Assistant’s Perspective

At the end of the interview, a few questions were asked regarding how the teaching

assistants would prefer to have an analysis of GitLab data presented to them, and if they

could think of any problems using such an analysis as a tool for supervision. The findings

are presented in this section.

How to Present the Data

The teaching assistants were presented with a few options for how data from GitLab

could be presented to them. The options were: using the tra�c light model, having a

metric be presented as a number on a line between significant values, or as numbers in a

table. All but one of the teaching assistants would prefer the data being presented by the

tra�c light model. They thought the tra�c light model was intuitive, easy to understand,

and required less e�ort. One teaching assistant said this: “Yes, I do think that as a

teaching assistant, color code actually works quite well. It is easy to get acquainted with

and it is quick, so you also have time to spend on the students.”
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When asked if they had any other ideas for presentations that would fit better than

any of the mentioned, one teaching assistant would prefer something that could cluster

and categorize the problems.

One thing the teaching assistants considered important to think about when presenting

the data to them was that it should be presented in an organized way and be easy to

interpret. The data should focus on what the groups can improve. It was also mentioned

that teaching assistants need to use it as a tool to further understand the groups and not

as an exclusive way of telling what the group is struggling with.

Possible Problems

The teaching assistants mentioned many of the same possible problems as the students

did in the questionnaire. Some mentioned how pair programming could make the data

less representative. Another thing mentioned was that if they knew that their GitLab

data was analyzed, they would change their use of GitLab. An assistant said this: “But

when [I had the subject last year] we distributed the issues and such so that it would look

nice in GitLab without us actually doing it like that in practice.”

Someone else mentioned that the results of the analyses might be impacted by user

error in GitLab since most of the students do not have experience using the tool.

Lastly, there was a concern about privacy and the students feeling surveilled. “It’s

important that they do not feel monitored, I think. Because then they will just add

nonsense on GitLab that is not really true.” The teaching assistant that said this felt that

the student should be informed about the process beforehand with it being made clear

that it was the supervisor who would use the data to help them and not the evaluator.

They should be informed that their data from GitLab would not be used to evaluate

them.
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4.3. Analysis of GitLab Data

In this section, the results of the Pearson correlation analysis of the data sets made

for each of the metrics introduced in Section 3.3.3 will be presented. The statistically

significant results can be seen in Table 4.10, and will also be explained in Sections 4.3.1

and 4.3.2. The dysfunctions will only be mentioned by their ID, but the names are

repeated in Table 4.9, and the definitions can be found in Section 3.1.3.

Table 4.9.: ID’s and names of the six dysfunctions focused upon in the analyses.

ID Name of Dysfunction

D1 Unfair or unevenly distributed workload

D2 Too little time is spent working on the project

D3 The participants are not committed to the project

D4 Lack of a plan or strategy for the project

D5 Poor leadership

D6 Too specialized tasks

4.3.1. Commits

Amongst the metrics created and described in Section 3.3.3, and that were created from

commit data, four of them gave statistically significant results for Pearson’s correlation

analyses. None of the statistically significant results had any outliers removed.

For the metric “Portion of Work Done Between 8:00 and 16:00”, statistically significant

results were found for D1, D2, and D3. The data set for the metric is normally distributed,

with a Shapiro-Wilk significance value 0.448 (>.05). The scatter plots for the metric

and dysfunctions can be seen in Figures 4.1, 4.2 and 4.3. For D1 there is a moderate

positive correlation, r(36) = 0.419, p < 0.05. D1 is normally distributed as determined

by Shapiro-Wilk’s test (p > .05). D2 is not normally distributed. With that in mind,

there is a moderate positive correlation, r(36) = 0.402, p < 0.05. D3 is also not normally

distributed. There is a strong positive correlation between the metric and D3, r(36) =

64



4.3. Analysis of GitLab Data

Table 4.10.: Pearson correlation coe�cients and significance value for each statistically

significant finding.

Metric N = 36 D1 D2 D3 D4

Unique dates for Issue Creation Pearson Correlation -.437 - -.448 -.395

Sig. (2-tailed) .008 - .006 .017

Portion of work during day Pearson Correlation .419 .402 .543 -

Sig. (2-tailed) .011 .015 <.001 -

Portion of work during evening Pearson Correlation -.381 -.355 -.541 -

Sig. (2-tailed) .022 .034 <.001 -

Tops >7% (Code lines) Pearson Correlation .562 .524 .571 .519

Sig. (2-tailed) <.001 .001 <.001 .001

Tops >1% (Commits) Pearson Correlation - - - -.352

Sig. (2-tailed) - - - .035

0.543, p < 0.01

For the metric “Portion of Work Done Between 16:00 and 00:00” there were statistically

significant findings for three of the dysfunction. Also for this metric, that was D1-D3. The

data set for the metric was normally distributed, with a Shapiro-Wilk significance value

0.327. The scatter plots for the metric and dysfunctions can be seen in Figures 4.4, 4.5 and

4.6. D1 has a moderate negative correlation with the metric, r(36) = ≠0.381, p < 0.05.

For D2 there is also a moderate negative correlation, r(36) = ≠0.355, p < 0.05. D3 has a

strong negative correlation to the metric with r(36) = ≠0.541, p < 0.01.

Looking at “Number of Days Where Over 7% of Total Code Lines were Committed”,

the metric is normally distributed with a Shapiro-Wilk significance value 0.12. The

scatter plots for the metric and dysfunctions can be seen in Figures 4.7, 4.8, 4.9 and

4.10. For this metric, there were findings for the dysfunctions D1-D4. All of the

dysfunctions have strong positive correlations. D1 has the following correlation for the

metric, r(36) = 0.562, p < 0.01. For D2 the correlation is r(36) = 0.524, p < 0.01. D3 has a
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Figure 4.1.: Scatter plot: Portion of work done between 8:00 and 16:00 (D1).

correlation of r(36) = 0.571, p < 0.01. And D4 has a correlation of r(36) = 0.519, p < 0.01.

D4 is normally distributed, as reported in Section 3.3.3.

The last metric with results for commit data is ��Number of Days With Over 1% of

Total Commits”, which has a moderate negative correlation of r(36) = ≠0.352, p < 0.05

with D4. The metric is normally distributed with a Shapiro-Wilk significance value 0.448.

The scatterplot for the metric and dysfunction can be seen in Figure 4.11.

Four of the metrics had data sets that were not normally distributed. These were:

“Portion of Work Done Between 00:00 and 8:00”, “Portion of Work Done During

Weekends”, “Number of Days With Over 15% of Total Commits”, and “Percentage

of Work Done (Code Lines) the last 5 Days Before End of Project”. Because of the lack

of normality, these metrics were not further examined. For the remainder of the metrics

made from commit data, there were no significant findings.
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Figure 4.2.: Scatter plot: Portion of work done between 8:00 and 16:00 (D2).

Figure 4.3.: Scatter plot: Portion of work done between 8:00 and 16:00 (D3).
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Figure 4.4.: Scatter plot: Portion of work done between 16:00 and 00:00 (D1).

Figure 4.5.: Scatter plot: Portion of work done between 16:00 and 00:00 (D2).
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Figure 4.6.: Scatter plot: Portion of work done between 16:00 and 00:00 (D3).

Figure 4.7.: Scatter plot: Number of days where over 7% of total code lines were

committed (D1).
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Figure 4.8.: Scatter plot: Number of days where over 7% of total code lines were

committed (D2).

Figure 4.9.: Scatter plot: Number of days where over 7% of total code lines were

committed (D3).
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Figure 4.10.: Scatter plot: Number of days where over 7% of total code lines were

committed (D4).

Figure 4.11.: Scatter plot: Number of days with over 1% of total commits (D4).
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4.3.2. Issues

For the three metrics that were constructed using issue data, one of them had statistically

significant findings, “Number of Unique Days of Issue Creation”. The two remaining

had no significant findings. For the metric, the data set is normally distributed with

a Shapiro-Wilk significance value 0.114. Significant results were found for D1, D3,

and D4. For D1 there is a moderate negative correlation, r(36) = ≠0.437, p < 0.01.

D3 has a moderate negative correlation to the metric with r(36) = ≠0.448, p < 0.01.

Lastly, there is also a moderate negative correlation between D4 and the metric of

r(36) = ≠0.395, p < 0.05.

Figure 4.12.: Scatter plot: Number of unique days of issue creation (D1).

There was no significant finding for any metric, neither based on commit data nor

issue data, with D5 - Poor leadership.
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Figure 4.13.: Scatter plot: Number of unique days of issue creation (D3).

Figure 4.14.: Scatter plot: Number of unique days of issue creation (D4).
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In this chapter, results from the analysis of di�erent data sources will be compared to

each other and sources from the literature. The section presents a discussion of the

implications of the findings in this study to courses that follow similar structures as the

chosen case.

5.1. Challenges

This section will go into di�erent challenges when implementing software repository

mining in a project-based software engineering course. It will discuss problems identified

by students and teaching assistants, as well as limitations when identifying dysfunctional

teams using the chosen tools.

5.1.1. Pair programming

Throughout the study, pair programming has been mentioned as a challenge multiple

times. In Section 4.1.3, we see that it tied for the most mentioned challenge by the

students in the questionnaire. The teaching assistants also mentioned in Section 4.2.2 how

pair programming could make GitLab data less accurate to reality. While constructing

GitLab metrics for analysis, the limitation that pair programming posed, became clear.

In an attempt to see if both members in a pair could get credited with the work they

collaborated on, some groups’ commit data sets were examined to see how they noted pair

programming in their commit messages. Some groups had routines for documenting this,

while others lacked such. The attempt to identify commits that were collaborations and
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the members that participated was unsuccessful. The two metrics that took into account

the work done by individual members were “Standard Deviation - Portion of Commits

per Member” and “Standard Deviation - Portion of Lines of Code per Member”. Looking

at the results of the Pearson correlation analysis, none of these showed any significant

correlation to any of the dysfunctions, even though the metrics were designed in the hope

of revealing D1 - Unfair or unevenly distributed workload. The reason why these metrics

were unsuccessful in identifying dysfunctions could likely be because pair programming

lead to an impression of workload distribution that did not fit well with reality. In any

software engineering course attempting to reveal unfair or unevenly distributed workload

by examining the number of commits or code lines per member, it is advisable to require

a structure for documenting pair programming that lends itself to analysis. Requiring

the teams to add “Co-authored by [student]” is an option. However, as mentioned by

a student previously, self-reporting pair programming in commit messages can lead to

some students mostly watching others work but still getting much of the credit.

Considering the di�culty of determining who did the actual work in a commit, it is

also an option not to focus on individual work, but rather focus on the analysis of the

group’s work as a whole. None of the significant findings in Section 4.3 came from data

on individual members’ contributions. However, if a metric can be derived that e�ectively

measures contribution, the likelihood of identifying D1 is higher, and, looking at the

results of the questionnaire in Section 4.1.1, unfair or uneven distribution of workload is

the most common of the six dysfunctions of this study.

5.1.2. GitLab does not Represent Reality

Some students are skeptical of the accuracy of the GitLab data. From the discussion over,

that is not an unreasonable concern. One student told about a previous experience he

had that made him think that GitLab statistics about contribution give a false picture of

reality: “I experienced this in [a previous course]. The statistics measured the group’s most

competent and active member to be the least contributing, which was absurd.” Looking at

the metrics that were tested in this study, the vast majority of them found no correlation.
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Focusing on the few that gave significant results, it may still be possible to reasonably use

predictions from GitLab data as an additional tool for teaching assistants when guiding

student teams. But even the strongest correlations identified in this study were far from

complete correlations. It is important that supervisors that want to use predictions from

GitLab analyses as an aid, remember that they can only be supplements. They should

not be the only observations made about the teams. Regular meeting points for feedback

are recommended in literature [27] [23] and should still be prioritized.

5.1.3. Other Parts of the Course Work are not Represented

As was pointed out by the students in the questionnaire, the course, that makes up the

case for this study, does not revolve solely around software development. Most of the

students’ grades are determined by other deliverables. A student explained how this

shaped the focus of the groups’ work: “Personally, I experienced that many groups did

the minimum expected in order to get a good grade in the subject, and that was to place

the main emphasis on the reports.” Looking at the deliverables presented in Section 3.1.2,

the only times the actual software product was evaluated was during the sprint reviews,

with each review counting 5% of the final grade. A teaching assistant had this to say: “I

find it weird that you are evaluated on the other work when you use most of your time

working on the code, and that does not really matter.” Multiple students explained that

they gladly delegated work within the team, so that some students focused more on

writing reports and others more on coding. Still, if the members of the group contributed

equally, though on di�erent parts, that should not be identified as an uneven or unfair

distribution of work. But because only the software product is counted in a GitLab

analysis, it would necessarily mean that the students who focused more on reports would

be attributed a smaller contribution than they deserved.

5.1.4. Improper Use of Git

One student summarized a problem with the use of GitLab data for analysis by focusing

on the di�erent usage of the tool by students in the course: “[The course] has students
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with very di�erent backgrounds and experiences attending, and it will probably be di�cult

to do valuable research with GitLab as the only source since the tool is used very di�erently

between students and groups.” The students were not the only ones to see this problem.

Teaching assistants were also worried about user errors in GitLab. Inexperience was also

here pointed out as a reason for this. A student suggested that learning Git should be

an essential part of previous courses. At NTNU, many students that attend the previous

IT courses have those as their only experience with programming, and they might not

need to learn about Git. The students should however have an understanding of how

to use the tool properly during, or at the end of, TDT4140, if we want to reduce the

limitations introduced by improper use of Git. One of the students was skeptical about

having set routines for GitLab that all students had to follow, saying: “But then you

will in a way “force” the group to follow certain git routines, which is a bit contrary to

the intention that the group should find out for themselves what is good.” Whether to

teach the students a set of git routines or whether they should independently figure out

which routines they want to implement in their teams and for their project, should be

decided according to the learning objectives for the course. The trade-o� is between:

Independently and by experience learning about best practices of version control systems;

or having a set routine taught to the students so that their GitLab data can be more

accurately analyzed to describe the group dynamics within the team.

5.1.5. Problems with Issue Assignment

In the responses to the open question in the questionnaire, it was revealed that the

department’s instance of GitLab does not allow for multiple assignees. This leads to

the same problems for the analysis of issues as pair programming does for commit data

analysis. During the GitLab analysis, in the process of deriving metrics, the number of

issues assigned to each member was explored. Comparing the issue assignments with

the member contribution in commits showed an inconsistency that made me choose not

to focus on the distribution of work through issue assignments. If someone intends to

investigate issue distribution as a way of revealing workload distribution, they should
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make sure that members can be assigned to all the issues they work on, even if they

work on the same issue as someone else. If it cannot be done through assignments in the

VCS, there should be a procedure for it in the issue description. As seen in Section 4.3.2,

issue data can reveal dysfunctions even if the metrics used are independent of assigned

members.

5.1.6. Di�erent Skill Levels Amongst Students

Di�erent skill levels among members can lead to problems within the teams, as identified

by the teaching assistants in this study. Some groups in the study experienced an uneven

distribution of work due to some being more knowledgeable than others, or they had some

members making decisions for the project without involving other students. In cases such

as this course, where students from di�erent programs are put in teams together, the

di�erence in skills and experience should be considered. The di�erence in skills was not a

main focus of this study, but since it was brought up by teaching assistants and students

as a team dysfunction, further research should be done on how a di�erence in competency

impacts collaborative learning in project-based software engineering courses, and whether

a di�erence in skills can be identified through the analysis of software repository data.

5.1.7. The Feeling of Being Surveilled

An expected finding in this study would be for students to feel surveilled if they knew

their GitLab data was being analyzed. There were not many of the students reporting this

as a problem. The ones who did, shared their discomfort at the idea of individuals being

singled out and inspected during meetings. It is advisable to consider these students when

instructing teaching assistants on how to give group feedback. However, the majority of

the students did not mind having their software repository data inspected, and they saw

many possible benefits. A teaching assistant pointed to a possible connection between

the students knowing how their work is being monitored and students then changing

their Git behavior to give the impression of good work habits or well-functioning group

dynamics rather than them actually changing their work behavior.
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According to Brown [26], it is important to make an environment where students feel

free, to be honest about the problems they face in their work. If they think they are

always being assessed, they will not ask for help. It is therefore important to explain to

the students that analysis would only be used for feedback by their supervisor and that

the evaluator that decides their grade will not be given this insight.

With the consequences that may come from the students being aware that their software

repository data is being inspected, some may find it a good idea not to inform them. That

is, however, not an ethically sound decision. In Gold and Krinke’s article from 2021 [58],

the ethics of mining VCS is discussed. Informed consent is there considered necessary

for the ethical mining of software repositories. As described in Section 3.2.3, I was not

permitted to work on a non-anonymized data set in this project for that reason. This

leaves educators with a choice between working on an anonymized data set or making

sure that the students are aware and agree to their data being used. Because of the

di�culties of anonymizing GitLab data, and the need to quality check the data [59], I

recommend operating with informed consent where possible.

5.1.8. Manual Work is Required

As mentioned in Sections 5.1.1 and 5.1.5 deciding who does the actual work is a challenge,

that would require manually entering co-authors and a procedure for doing so. Other

work would have to be done manually to set up software repository mining in a software

engineering course. If GitLab is chosen as a tool, it would be necessary to check that

students are not merged if they have similar names or split if they use di�erent author

names. This should be done manually, or one would need to find another way of ensuring

a good matching between author and student.

If the course coordinator wishes to look at di�erent metrics from GitLab data or

di�erent dysfunctions, these will have to be derived. However, there should be no

problems having a modular system that can be extended upon.

The most time-consuming manual work done in this project was making a quality

measure of lines of code. There are di�erent ways of measuring contribution. The number
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of commits could be used. As mentioned in Section 2.3, Parizi, Spoletini, and Singh [37]

used five di�erent ways of measuring contribution. In this study, I found that commits

varied so greatly in size, and the students had such di�erent commit habits, that using

the number of commits as a measure of contribution worked poorly. It could be possible

to look more into the other three metrics used by Parizi et al: time spent working on the

project, the number of merge pull requests, and the number of files. I found these to be

either more di�cult to derive or less likely to give results than lines of code. The manual

work done to end up with the measure used for lines of code in this study was described

in Section 3.3.3. In a course with a set technology stack, it would be easier to determine

which file endings to include and which paths to exclude when counting code lines. In a

course such as TDT4140, it would be necessary to inspect students’ files to map which

file endings are relevant for that semester. The course coordinator cannot know whether

a team will use a new technology stack, which would likely make them an outlier in the

analyses, as a portion of their work is not counted.

Another problem with using lines of code in a course with di�ering technology stacks

is that some languages lead to more or fewer code lines because of the language itself.

How much this has impacted the di�culty of finding good measures of contribution is

di�cult to say, and it could be further explored.

5.1.9. Di�erent Leadership Compositions

D5 - Poor leadership did not correlate with any of the GitLab metrics it was tested

against. D5 was normally distributed by the Shapiro-Wilk test. A possible reason might

be that poor leadership simply cannot easily be identified by looking at GitLab data.

Another reason for the lack of findings might be that good leadership can look so di�erent.

By examining what the teaching assistants said about leadership in their groups in

the interviews, we can observe that green groups, that is groups that did not face this

problem, had very di�erent leadership compositions.

Also, whether the groups implicitly or explicitly chose a leader may have a�ected

how they answered questions regarding the dysfunction in the questionnaire. One of
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the questions asked whether someone in the group had been given the responsibility of

following up on all or parts of the project. Here the groups were split. The largest portion

of students, 42.3%, disagreed with the statement. In the calculation of the students’

experience, agreeing to this statement would give a positive score. However, because of

the di�erent leadership compositions in functional teams, it is not likely that the answer

to this question would help identify dysfunctions.

5.1.10. Ideal Distribution of Tasks

Because of the lack of normality in D6: Too specialized tasks, it was not possible to

study correlations between the dysfunction and any of the GitLab metrics.

Multiple of the respondents to the open question in the questionnaire admitted to

some students doing more coding and others writing reports. These groups should have

been identified as having too specialized tasks. However, whether the group would be

dysfunctional for such a distribution of tasks is up for debate. In a professional setting,

where the aims of a project are mainly focused on the software product, distributing

tasks to the most experienced members might be the ideal situation. The student teams

in this course were made up of students from di�erent study programs. If the goal of the

course is for all students to gain experience with di�erent parts of software engineering,

too much division of labor is unfortunate.

The students who reported in the open question that they divided the work, did not

consider this problematic. One student described his team: “In my group, we gradually

got an uneven distribution between report writing and coding, but this was not perceived as

a problem, as people had di�erent strengths and wanted di�erent things from the course,

and that it helped to keep motivation up and ensure that everyone could contribute. Those

who were good at writing reports then also communicated the syllabus well to those who

were more interested in coding, and they analyzed the software from a more objective

point of view. And I think the vast majority learned a lot in the course, even though there

was a more skewed distribution of work tasks. Also, a skewed work distribution in this

course is necessary, due to the large amount of work [it requires].”
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Looking at what the teaching assistants considered when determining whether a student

team faced this challenge, one considered a group green despite being told that they

divided work, because of how closely they worked together. Another group was considered

yellow, and the teaching assistant explained that by saying that ideally everyone would be

involved in all processes. It is clear from this that the teaching assistants have di�erent

opinions on what constitutes a problem in the groups with regards to D6 - Too specialized

tasks.

5.1.11. Di�erences in Students’ and Teaching Assistants’ Perceptions

Not all groups were represented in the questionnaire. Therefore, there is not data

from both the teaching assistant and students for more than nine groups. Also, the

questionnaire was answered between 7 and 12 weeks after the interview with the teaching

assistants, so it is not unlikely that the dynamics in the groups shifted during that

time. With this in mind, the di�erences between the problems identified by the teaching

assistants and by the students can be seen in Table 5.1. The cells are color-coded so that

a good match (<1 between a teaching assistant’s perception and the group’s) is green, a

di�erence over 1 but not over 2 gives yellow, and a di�erence greater than 2 gives red.

As can be seen in Table 5.1, the teaching assistants and students do not share the same

perception of the groups’ dysfunctions, or the dysfunctions shifted from the interviews

were conducted to the questionnaire was answered.

In the interviews with the teaching assistants, all of them at some point said that the

questions were di�cult to answer with the level of insight they had about the groups.

One of them said this: “You must understand that I do not have the best insights.”

Another reason for the di�erence in perception might be that the dysfunctions in

the groups have changed from the interviews were performed to the questionnaire was

answered at the end of the semester. To get a better understanding of the development of

the group dynamics during a semester, it would be wise to run a longitudinal collection of

students’ experiences. Reviews in between the sprints, and weekly meetings set conditions

where the students can get frequent feedback and early intervention to help them with
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Table 5.1.: Comparison of dysfunctions identified by teaching assistants and students.

Group D1 D2 D3 D4 D5 D6

TA S TA S TA S TA S TA S TA S

A 5 2.3 5 3.5 5 4.2 5 4.2 5 3.8 5 2.5

B 3 3.4 5 3.8 5 4.3 3 4.1 3 3.8 3 4.1

D 3 1.0 5 3.3 3 3.0 5 3.0 5 3.7 3 4.0

E 5 2.0 5 2.7 5 2.0 5 2.3 5 3.0 3 2.7

F 3 1.7 5 3.3 5 3.3 5 4.3 5 3.3 1 3.7

G 5 3.3 5 3.7 5 4.3 5 3.7 5 2.7 5 3.7

H 3 1.0 5 2.3 5 1.3 5 2.0 5 3.3 3 1.0

I 3 1.0 1 1.3 3 1.0 5 2.7 3 3.7 5 3.7

J 3 3.7 4 4.0 5 4.7 5 3.7 5 4.3 3 4.3

their problems. According to the theory of supervision in project-based learning, such a

feedback culture is ideal for improving dysfunctional teams (See Section 2.1.3).

5.1.12. Student Experience as a Measure of Group Dynamics

In this study, group experience was a measurement constructed from individual team

members’ responses to a questionnaire. The questionnaire was answered once, at the

end of the semester. The experience of dysfunction in a group is subjective. Looking

at the scores for agreement within groups found in Section 4.1.2, we see that the

di�erence between the answers within a group on average doesn’t exceed one for any of

the dysfunctions. On the question of commitment to the projects, the opinions of the

members were the most similar. An average of less than one shows that there is some

agreement within groups, but there would also likely be situations with disagreement in

individual teams. If student experience should be used as a measure of group dynamics

it would be beneficial to get a higher response rate than what was achieved in this study,

and, as mentioned in the previous section, gathering data on experience more often could
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strengthen student experience as a measure.

An alternative to using group experience as a measure of group dynamics could be to

use grades. This could then clearly not be done before the students were assessed. But it

could be possible to analyze students one year and use correlations discovered then to

help identify dysfunctional groups the next time the course is o�ered. However, Mierle et

al [Mierle2005] examined 200 CVS repositories in an attempt to predict students’ grades

from 166 di�erent features of work habits and found that none of them had significant

correlations. Also, if it is possible to predict students’ grades from their work habits, it

would then not be linked to specific dysfunctions. That could make it more di�cult for

teaching assistants to use the findings to guide the students. For instance, in Mierle et

al’s article, the highest correlation between grades and work habits was when looking at

the number of times a space followed a comma in the code. This is not something that

can easily be used for recommendations to the student teams.

5.1.13. Correlation vs Causation

When finding a relationship between variables through correlation coe�cients, we are, as

the name suggests, looking at correlation. This means that there is no foundation for

claiming causation based on these analyses. If we can see a trend between a metric of

the GitLab data and the students’ experience of dysfunction in their group, that does

not mean that the metric explored is the reason why they experience a problem. As an

example of this, we look at a finding in this study: There is a statistically significant

correlation between the number of days a group does more than 7% of their total work on

the project and the group’s experience of D1: Unfair or unevenly distributed workload.

There can be a multitude of di�erent reasons why the group had few days of intensive

work. A group might have members with hectic schedules who cannot work together.

The members working at di�erent times of the week could lead to more small commits.

Without seeing the other members contribute, the group members could assume the

others did less work than their share. This could lead to frustration amongst the members,

and they identify D1 as a problem. The cause of the problem in the group would then
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likely rather be identified thus:

“D1 is a problem in the group because the members are not aware of the

work the others do in the project”, than

“D1 is a problem in the group because there was a low number of days where

a considerable part of the total work of the project was done.”

5.2. Possibilities

Having explored and discussed the challenges of implementing software repository mining

in a project based software engineering course, this section discusses the opportunities

and benefits that can be gained by the implementation.

5.2.1. Significant Findings from the GitLab Analysis

There were significant findings for five of the GitLab metrics explored in this study. These

correlations could be used to help the teaching assistants get extra insight to the group

dynamics of the teams they supervise, and to discover and correct dysfunctions early.

The first metric, “Number of Unique Dates of Issue Creation”, gave a negative

correlation to D1 - Unfair or unevenly distributed workload, D3 - The participants

are not committed to the project, and D4 - Lack of a plan or strategy for the project. A

high number of days of issue creation means that the student teams likely did not plan

far ahead, or lacked an understanding of what they were doing. For D4, it makes sense

that the students would experience a lack of plan and strategies, when tasks were added

as they were working. It is interesting to see a high correlation also to D1 and D3. If

I were presented with a student team that had a high number of unique days of issue

creation, and now knowing the relationship between that and D1 and D3, I would ask

if all members of their team participated in sprint planning meetings. Further research

could try to replicate this and see if they could find the cause of the relationships between

the metric and the dysfunctions.
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Next, two metrics focused on when code was committed. “Percentage of Total Lines of

Code Committed Between 08:00 - 16:00” showed a positive correlation and “Percentage

of Total Lines of Code Committed Between 16:00 - 00:00” showed a negative correlation

to D1 - Unfair or unevenly distributed workload, D2 - Too little time is spent working on

the project, and D3 - The participants are not committed to the project. The finding for

D2 is not surprising, but it is interesting, as there was an agreement amongst students

and teaching assistants that the teams generally spent more time than expected working

on the project. What these findings say is that teams that do large portions of their

work within normal working hours seem to distribute work more evenly, not have time

pressure, and experience their team as committed. Some teaching assistants mentioned

that their groups had joint work sessions. It seems likely that that would happen during

the workday and help in distributing work more evenly.

“Number of Days With More Than 7% of Total Code Lines” is the metric that has the

strongest correlations, and which has positive correlations to D1, D2, D3, and D4. What

this means is that a high number of days where a decent amount of work is done gives

the students a general good experience. Opposite, we can say that if the work was spread

out more, with more days of work and less work each time, that is a sign of dysfunction.

I would expect groups that work together in joint work sessions would likely score higher

on this metric, as most of their commits would likely happen during their common work

time. An issue with this metric is that it is calculated from the total code lines during

the project. This means it can not be used as is to give feedback to students during

a semester. But the correlation is worth exploring further. If the gathering of student

experiences happened throughout the semester, this metric could possibly be reworked

to also be useful during the semester.

“Number of Days With More Than 1% of Total Commits” gives a negative correlation

for D4. What this says is that the more days of work the group has, the less happy they

are with their planning. This makes sense, and follows the same logic as the number of

days of issue creation. In the same way as for the previous metric, this one can also not

be used to identify problems in teams during the semester as it is now.
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5.2.2. Di�erences in Identification of Dysfunctions amongst Teaching

Assistants

When the teaching assistants identified a possible problem, or a problem, within a team,

they were asked: “How can you see this dysfunction in this team?” The responses to

this question varied greatly, showing that teaching assistants have individual opinions on

what constitutes a problem. Using software repository mining can help even this out, by

giving more objective insight into the teamwork.

5.3. Limitations

This section discusses the limitations of this study. Some trade-o�s had to be weighed

throughout the di�erent processes, and some challenges may have had an impact on the

results of the study.

5.3.1. Questionnaire

For each dysfunction a consistency score was calculated as explained in Section 3.3.1.

The consistency score looks at the di�erences between the highest and lowest score for

questions regarding the same dysfunction. If each question could reveal the same problem

in the group, the consistency score should be low. The consistency scores for the di�erent

dysfunctions varied from 1.35 for D1 to 1.81 for D2. These reasons for the variation for

the di�erent questions can be that the questions reveal di�erent problems within the

group, even if they fall under the same dysfunction. An example of this can be for D3 -

The participants are not committed to the project. One question, “In our group, there

were some who showed a lack of e�ort”, had 44.2% strongly disagree or disagree. For

the question “Everyone in our group worked to get a good grade”, a total of 88.4% of

the students either strongly agreed or agreed. In this case, both questions show that a

majority of the students had a positive experience, but far more students thought their

group members were working for good grades.

Something else that might speak of the quality of the data from the questionnaire is
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how long the students spent answering it. The student who answered fastest spent only

1 minute 45 seconds. After removing a few outliers, the average response time for the

questionnaire was 5 minutes 8 seconds. Some of the respondents spent so little time

answering the questions that it would be fair to say they could not have considered them

particularly carefully.

5.3.2. Interviews

The main limitation when it comes to the interviews in this study, is, as mentioned

previously, that it was so long between the interviews and the questionnaire that the

situation in between might have changed. However, since the interviews were not used in

the analyses they should not have much of an impact on the results of the study.

5.3.3. Anonymization

During the data collection process of GitLab data, member names were anonymized.

As they were, author names with the same three first letters were assembled into one

anonymized member. This was explained in Section 3.3.3. The same way of doing this

was done in Haugse’s master’s thesis from 2021 [55]. However he did not work with

an anonymized data set, and in his case, a manual check was performed to ensure that

members were not split or merged. That may have happened to some degree in this

study. Because of the anonymization that had to be done (See Section 3.2.3) it was not

possible to do quality control on the commit data, the issues, or the member assembly

that should have been done if there was not anonymization.

5.3.4. Statistical Analysis

A Pearson correlation analysis assumes linearity. For simplicity, and because it may

still reveal significant correlations, this statistical method was chosen. However, more

correlations could have been discovered if we did not require linearity, but simply a

monotonic relationship between the values. A monotonic relationship means that as

one value grows, so does the other, but not necessarily linearly. Pearson correlations

89



5. Discussion

work with raw data, while an alternative, Spearman correlation, works with ranked data.

Linear relationships would also be easier to use for prediction. Therefore, the linear

correlations discovered could be more useful than any monotonic relationships discovered.

5.3.5. Choice of Dysfunctions

Comparing the six dysfunctions focused upon in this study, to the five team dysfunctions

in the Lencioni model presented in Section 2.4.2, there is a slight overlap. If we look

at the questions asked for D3 - The participants are not committed to the project, it

corresponds to “Lack of commitment” and somewhat to “inattention to results” in the

Lencioni model. The other dysfunctions mentioned in the Lencioni model: “Avoidance

of accountability”, “Fear of conflict”, and “Absence of trust” were considered di�cult

to determine from GitLab data. The process of determining the six dysfunctions of

this study was not a systematic one. A limitation of this study is therefore that the

dysfunctions chosen may not have been the most important ones.

5.3.6. Identifying Problems in Well-Functioning Teams

In general, few teams could be classified as dysfunctional in the course. The course

is well designed with information easily accessible, and regular opportunities for the

students to ask questions and get feedback. Looking at the scatter plots for most of the

dysfunctions, we can see that the majority of the points are in the upper half of the

Student-Experience-axis. This proves a limitation in this study, as identifying problems

that do not exist is not possible.
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This chapter attempts to answer the research questions of the study. The contributions

of the project are presented as a list of implications for similar cases. Lastly, some themes

for future work are suggested.

6.1. Conclusion and Contributions

This thesis has tried answering the following research questions:

RQ1: How can metrics derived from data from software repositories be

analyzed and presented in a way that gives value to students and supervisors?

From the qualitative analysis of interviews with teaching assistants and

responses to a questionnaire answered by students in the course, I found

that some possible benefits of using software repository mining were early

intervention in cases of uneven distribution of workload and more detailed

feedback. Some metrics tested in this study did have a statistically significant

correlation to the following four dysfunctions: D1 - Unfair or unevenly

distributed workload, D2 - Too little time is spent working on the project,

D3 - The participants are not committed to the project, and D4 - Lack of a

plan or strategy for the project. The metrics explored in this study are not

comprehensive, and more metrics can likely be derived to better predict these

dysfunctions or to reveal new ones.

According to literature, students benefit from elaborate feedback [29]. Early

intervention is important to help dysfunctional teams [26]. The correlations
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found between GitLab data and students’ experiences of dysfunctions in their

group dynamic, make it likely that we can automatically identify some group

dysfunctions, and thus help the students have more functional teamwork.

Supervisors preferred data to be presented to them in an organized and easily

interpreted way so that they could spend more of their time working with

the students. A possible way to present the data could be using a tra�c light

model, with a challenge being green would mean the team has no issues with

it, yellow showing potential for problems, and red meaning a problem is likely

occurring in the group.

RQ2: What do students and supervisors think about the idea of using

metrics from software repositories to identify problems within the group?

Both the students and teaching assistants in this study identified multiple

challenges concerning the accuracy of the data from GitLab to reality. From

their feedback and from experiences I had while mining the students’ GitLab

data, the following list of practical implications is the main contribution of

this thesis. The implications can be used as advice for anyone who wishes to

use software repository mining to help with feedback in their project-based

Software Engineering Courses.

Practical Implications

• If the students in the course use the practice of pair programming, that

should be taken into account. Either there should be a common Git

routine that sets the co-authors of a commit, or commit data will likely

not be representative enough to say anything about work distribution

by looking at individual members’ commits. Unequal work distribution

might still be revealed by analyzing the group as a whole if a set Git

routine goes against other learning objectives in the course.

• Using code lines as a measure of work done requires filtering of the

commit data. Some paths must be excluded and only certain file endings
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6.2. Future Work

should be included.

• In the same way as with pair programming, issue assignment should be

linked to all members that work on an issue in some way, or it should

be disregarded.

• GitLab analysis should not be used as the main way of observing the

groups and providing feedback, but it can be a useful supplement.

• If part of the course work is not related to programming, that should be

considered during analysis and when giving feedback to the groups.

• Consider making sure all students know how to properly use Git. If

the students are already experienced with Git, set routines may make it

easier to analyze their data, and can eliminate some uncertainty.

Limitations of the study were discussed in Section 5.3. Anonymization of the data sets

during data extraction made it di�cult to do quality control. The questionnaire, which

was used as the foundation for the measure of student experience of dysfunctions in their

teams, was mostly answered by a single member of the team. And there were overall few

dysfunctional teams.

6.2. Future Work

This study focused on six dysfunctions and fifteen GitLab metrics. Further work can

be done by expanding on both of these. A team dysfunction that was prevalent in the

groups in this course was that of di�erent skill levels among members of a team. It would

be interesting to see if this could be identified from GitLab data.

Further work could be done to find a better measure of member contribution. Lines of

code require manual pre-processing to be used as a measure. In courses with di�ering

technology stacks, lines of code will vary based on the languages used by the groups, and

a comparison between groups is not possible.

Two of the GitLab metrics, “Number of Days With More Than 7% of Total Code

93



6. Conclusion

Lines” and “Number of Days With More Than 1% of Total Commits”, gave statistically

significant correlations but could only reveal dysfunctions after the end of the project.

More work should be done on the metrics to see if they can also reveal something during

the development process.
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A. Google Trends Version Control Systems

A. Google Trends Version Control Systems

Week Git Mercurial Concurrent Versions System Apache Subversion

2021-01-03 75 1 <1 4

2021-01-10 82 1 <1 4

2021-01-17 84 1 <1 4

2021-01-24 85 1 <1 4

2021-01-31 87 1 <1 4

2021-02-07 79 1 <1 4

2021-02-14 84 1 <1 4

2021-02-21 85 1 <1 4

2021-02-28 92 1 <1 4

2021-03-07 89 1 <1 4

2021-03-14 86 1 <1 4

2021-03-21 89 1 <1 4

2021-03-28 85 1 <1 4

2021-04-04 84 1 <1 4

2021-04-11 88 1 <1 4

2021-04-18 87 1 <1 4

2021-04-25 86 1 <1 4

2021-05-02 81 1 <1 3

2021-05-09 84 1 <1 4

2021-05-16 89 1 <1 4

2021-05-23 86 1 <1 4

2021-05-30 85 1 <1 4

2021-06-06 91 1 <1 4

2021-06-13 89 1 <1 4

Table 1.: Most searched for VCS on google for 2021 - First half.
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Week Git Mercurial Concurrent Versions System Apache Subversion

2021-06-20 91 1 <1 4

2021-06-27 88 1 <1 4

2021-07-04 90 1 <1 4

2021-07-11 92 1 <1 4

2021-07-18 89 1 <1 4

2021-07-25 88 1 <1 4

2021-08-01 85 1 <1 4

2021-08-08 83 1 <1 3

2021-08-15 88 1 <1 4

2021-08-22 83 1 <1 3

2021-08-29 90 1 <1 4

2021-09-05 88 1 <1 4

2021-09-12 97 1 <1 4

2021-09-19 91 1 <1 3

2021-09-26 96 1 <1 4

2021-10-03 96 1 <1 4

2021-10-10 95 1 <1 4

2021-10-17 94 1 <1 4

2021-10-24 96 1 <1 4

2021-10-31 91 1 <1 4

2021-11-07 95 1 <1 4

2021-11-14 100 1 <1 4

2021-11-21 89 1 <1 4

2021-11-28 96 1 <1 4

2021-12-05 97 1 <1 4

2021-12-12 96 1 <1 4

2021-12-19 82 1 <1 4

2021-12-26 60 1 <1 2

Table 2.: Most searched for VCS on google for 2021 - Second half.
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B. Questionnaire

B. Questionnaire

Likert scale questions:

1. Someone in our group has spent more time on the project than others.

2. No one in our group took clear responsibility for the organization of the project.

3. Our group worked approximately the number of hours expected in the course.

4. In our group, there were some who showed a lack of e�ort.

5. We experienced that not everyone in the group was committed to the work.

6. Our group had a plan for what to do.

7. Not everyone in the group understood how the project was to be carried out.

8. In our group, there were some members who worked less on the project than we

had agreed upon.

9. Each group member did not get to cover the entire curriculum through the project

work.

10. The e�ort put into the project was unevenly distributed in our group.

11. Everyone in our group worked to get a good grade.

12. We had good communication in the group about strategy for the project.

13. In our group we had someone who made sure we had good progress.

14. In our group, someone was given the responsibility of following up all or parts of

the project.

15. In our group, everyone put in an approximately equal amount of work to the

project.

16. In our group, there was little variation in the work tasks for each member.
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17. We experienced a shortage of time on the project because we did not spend enough

hours compared to what was planned.

18. We made sure that everyone got to try di�erent tasks during the project.

Open question:

What do you think about letting teaching assistants analyze your GitLab data in order

to provide better guidance?

GitLab stores data such as issues and commits. If you analyze this data

and look at e.g. when things are pushed and how often, as well as who is

assigned to various issues, etc., you can say something about collaboration

and group dynamics. Knowledge of this can give teaching assistants a tool to

help groups solve problems they encounter during their projects. Do you see

any possible challenges with this?
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C. Interview Guide

C. Interview Guide

Trying to figure out:

• Which of the challenges considered in my analysis of the GitLab data are their

groups facing, by their perception?

• For each challenge, give the group a color: Red, yellow, or green.

• How would you like to have the data presented?

• Do you see any problems with using metrics derived from GitLab as an aid in

advising students in the project?

Questions:

1. For group X, what challenges would you say they face as a group?

“Having analyzed the data gathered from GitLab, I am looking at some specific

challenges. I will now present the challenges and ask you a couple of questions

about the group in relation the challenges.”

2. Tell me about group X’s experiences with challenge A.

“We are now using a tra�c light model. Green means the group has no problems or

insignificant problems with a challenge. Yellow means that the group is at risk for

having problems with the challenge. Red means that the challenge is a problem for

the group.”

3. For challenge Y, what color would you give to group X?

Repeat for each challenge and each group

4. A few options for presenting the information are: Tra�c light, number line, numbers

in tables. Would you prefer any of the presentation formats over others? What do

you think would be a good representation of the GitLab data for you as a teaching

assistant?
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5. Are there any presentations you would prefer other than these?

6. What are issues that should be taken into account when presenting this information

to teaching assistants and supervisors?

7. Do you see any problems with using metrics derived from GitLab as an aid in

advising students in the project?
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