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Abstract

In this thesis, the possibility of using Non-autoregressive Predictive Coding (NPC)
for learning speech representations is investigated. NPC is a self-supervised deep
learning method that, as opposed to other common self-supervised methods, is not
autoregressive, and can therefore be trained faster. Three different NPC models
are trained, one English, one, Norwegian and one adaptation model trained into
Norwegian with the English model as a basis.

Examination of the learned representations shows that the representations
are on a sub-phonemic level and many different vectors are used to represent
different stages of one phoneme. Different speakers have some overlap in the
representations used for the same phonemes, but it is not completely equal.

Testing the learned representations with a phoneme recognizer shows that in
these experiments the NPC features were not able to outperform Mel Frequency
Cepstral Coefficients (MFCC), neither the English, the Norwegian, nor the adapt-
ation model. The adaptation model was able to outperform the the Norwegian
model and that can mean that adaptation training might be useful for speech
representations in languages with small speech databases.
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Chapter 1

Introduction

Speech recognition systems as well as speaker recognition systems are increas-
ingly becoming more and more accessible to the common user today. Due to the
increase in accessibility of mobile phones, computers, smart devices and more
computing power and storage, these systems will only increase in usage. Because
of these technological advances, new options and innovations have become avail-
able for speech recognition systems. One of those are the possibility to use machine
learning and Deep Neural Networks (DNN) in speech recognition.

Earlier, MFCCs (Mel Frequency Cepstral Coefficients) have been seen as the
gold standard for speech features, but throughout the last years, several new op-
tions have emerged. Non-Autoregressive Predictive Coding (NPC) is one such
method utilizing deep neural networks with the perspective of learning speech
representations in a better way than before.

The main goals in this thesis are to examine the properties of the learned rep-
resentations and latent representations by using NPC and to test their perform-
ance in a phoneme recognition system. Their performance will be compared to
MFCCs. Both an English and a Norwegian NPC model will be trained. In addition,
adaptation training between different languages will also be examined, and its
performance will be assessed in an phoneme recognizer as well.
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Theoretical background

2.1 Speech recognition systems

An Automatic Speech Recognition (ASR) system is a system which tries to digit-
ally process natural language and recognize the spoken words. It differs from an
Automatic Speaker Recognition system by focusing on the content and meaning of
the speech as opposed to differentiating between speakers or verifying a known
speaker. A simplified overview of the main elements in a ASR system is shown in
Figure 2.1.

Speech
models
Acoustic, lexical and language models

Feature
Audio Feature vectors

el Recognized

Decoder

extractor words

Figure 2.1: A simplified ASR system

A complete ASR system will take raw audio as input before extracting features
from the audio in the Feature extractor. Afterwards, speech models (acoustic, lex-
ical and language models) and the feature vectors are input to the decoder. The
decoder will, by use of the applied speech models, try to figure out what words or
phones the input audio consists of, before a decision is done and and recognized
words will be the output of the system. In this thesis, feature extraction from the
audio into corresponding feature vectors, stays the main focus and thus, the other
parts of the system will not be discussed any further from this point on.
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2.2 Feature extraction

Feature extraction in an ASR system is as mentioned in 2.1, the process in which
the most important information in the input, i.e. the features, is extracted and isol-
ated from the full sound waveform or audio input to the ASR system as well as
disregarding the less important information in the speech signals. The goal in fea-
ture extraction is to reduce dimensionality but still enable the system to perform
as good as possible. However, there are some trade-offs. The more information in
the features, the more processing is necessary in the next steps in the ASR system

[1].

2.3 Speech features

Good speech features have some differing demands for different applications. Ac-
cording to Wolf [2, p.2044-2045], should features in a speaker recognition system
contain the following kinds of information:

occur naturally and frequently in normal speech,

be easily measurable,

not change over time or be affected by the speaker’s health,
not be affected by reasonable background noise nor depend on
specific transmission characteristics, and

¢ not be modifiable by conscious effort of the speaker, or, at least,
be unlikely to be-affected by attempts to disguise the voice.

A last point he noted is that the features should "vary as much as possible
among speakers, but be as consistent as possible for each speaker". The last point
would not be valid for a pure speech recognition system as is the target for this
thesis, but the other points he noted would also apply for speech recognition sys-
tems as well as a speaker recognition system. In a speech recognition system, the
variance between speakers should not be very large as the focus is to classify utter-
ances from different speakers together, where as in a speaker recognition system,
the main goal should be to find the differences between the speakers from the fea-
tures. Therefore, the features used in these two kinds of systems, should not be the
same. The other points noted by Wolf, however, seems to fit a speech recognition
system very well.

Today, there are several different techniques used for feature extraction and
most of them, if not all, are using spectral representations of the audio signals.
Some of the most commonly used are PLP (Perceptual Linear Prediction), LPC
(Linear Prediction Coefficients) and MFCC (Mel Frequency Cepstral Coefficients),
which is maybe the best known and most used of them all [3]. By using spectral
representations, the computational burden of extracting these features, are quite
low, compared to what is possible with the modern technologies of today. In the
last few years, however, other variants of speech feature extraction using deep
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neural networks have emerged as good options and they have been shown very
promising results.

2.3.1 Log mel spectrograms

Log mel spectrograms is a basic representation of speech, commonly used as
a basis for several different speech feature representations such as for instance
MFCC. The log mel spectrogram can be obtained by taking a short time Fourier
Transform on the audio before mapping to the mel scale and finally applying the
logarithm to the whole signal. The mel frequency scale is thus given by

)
= 25951 1+ — 2.1
m =259 oglo( - @1)

where m is the mel frequency and f is frequency. Its relationship with the
regular frequency is shown in Figure 2.2. As can be seen from the figure, the
relationship between the two is almost linear up to 1000 Hz before flattening
more out in the higher frequency range.

3200 T T I E— T T T T T T T T

3000 + : : e o
2800 |- f b : .
2600 |- Q e ST ; §
2200 |- et i ; .
1] T Tt T T
1800 |- T : : : ~
1400
1200
1000
800
600
400
200

Mel scale

| I 1 1 I I 1 1 I I I 1 1 I I 1 1 I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Heriz scale

Figure 2.2: Hertz frequency vs Mel frequency. Figure from [4].

The mel scale is a perceptually motivated scale used in order to try to model
the human hearing more accurately than the regular frequency axis. The scale is
experimentally based and tries to model the human hearing in that the ears’ sens-
itivity for frequencies is not purely linear, but rather more logarithmic, especially
for frequencies above 1000 Hz. Since the human ear can more easily distinguish
between lower frequencies than higher with the same relative difference, the mel
scale is widely used in speech speech recognition because of these properties [5,
p.33].
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2.3.2 MFCC

Mel Frequency Cepstral Coefficients, or MFCC for short, is arguably the most com-
monly used speech feature used in automatic speehc recognition systems today.
Davis and Mermelstein used the MFCC as speech features originally in 1980 [6]
with great success, and since they have been used extensively for such applica-
tions. In order to obtain the MFCCs, the first thing that needs to be done is to
window the signal and emphasizing higher frequencies. Then, the Fast Fourier
Transform is applied before transforming the signal into the mel scale. Afterwards
a log is taken before applying the discrete cosine transform (DCT). The DCT en-
sures that the coefficients are decorrelated [3]. Figure 2.3 shows in more detail
how to extract the MFCCs.

Pre-emphasis,

Fast Fourier Mel-Scale filter
Trasform (FFT) bank

Continuous

speech Frame Blocking

and windowing

Discrete Cosine

Transform (DCT)

Figure 2.3: Block diagram of MFCC extraction. Based on figure 1 in [3].

Equation 2.2 shows how to calculate the MFCCs:

k
¢, =;(log§k)cos [n(k—%)%] (2.2)
where k is the total number of coefficients, S, the output of the mel filter bank
and C,, is the output coefficients.

In speech recognition, the coefficients used from the MFCC are mostly the 2nd
and up to the 13th. These coefficients are usually the most important regarding
the spectral information in the speech and therefore most useful for speech and
speaker recognition.

2.3.3 Phonemes

A phoneme is the smallest unit of speech, distinguishing one word from another
by by representing a single sound [7]. Phonemes, as opposed to phones, are
language-specific, and changing a phoneme in a word in one language, changes
the meaning of the word. A phone is rather the sound itself and in fact, two phones
can represent the same phoneme. E.g. in Norwegian there are two different pro-
nunciations of the 'r’ consonants in different dialects even though they are con-
sidered the same phoneme. The number of phonemes in a language is usually
between 30 and 50, but a common choice in phoneme recognition is 39. Correct
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recognition of phonemes, or rather reducing the phoneme-error-rate, PER, is the
goal of phoneme recognizers.

Monophone is a term used when considering only one phone and not taking
into account the previous or latter phone. Triphones are context-dependent and
considers both the previous phone and the following. These terms are often used
in phoneme recognizers. A recognizer using triphones will likely have a better PER
due to more information being considered.

2.4 Predictive coding

The term Predictive coding, coined in 1955 by Peter Elias [8] is the process where,
based on the current and previous inputs to a network, a system tries to predict
future, missing or contextual information. These methods have been shown to
provide good results in learning speech representations for speech recognition
and speaker recognition tasks. Some noteworthy examples are Contrastive Pre-
dictive Coding [9], Autoregressive Predictive Coding [10] and Vector-Quantized
Autoregressive Predictive Coding [11].

2.4.1 Non-autoregressive Predictive Coding

Non-autoregressive Predictive Coding is a self-supervised method for learning
speech representations. This method was proposed in 2021 by Liu, Chung and
Glass as an alternative to other methods for learning speech representations [12].
NPC was shown to have good qualities in representation learning as well as being
of lower complexity than other comparable methods.

The goal of NPC is to derive high-level representations (hq, h,, ...hr) from sur-
face feature audio (x;, x5, ...x7) where T is the length of the sequences. Compared
to APC and CPC, NPC is not autoregressive, and can therefore be parallelized in
time, since outputs are not dependent on previous outputs. This makes NPC more
useful for tasks requiring less time usage [12].

A diagram of the NPC structure is shown in Figure 2.4.

In order for the NPC to work and to acquire its features, h,, at time t, a re-
ceptive field is chosen with a size of R = 2r + 1, where r is the distance from the
center.

The main goal of the NPC is to minimize the L1 difference between the input
feature, x,, and the output, y,, based on the learned representation, h, at all time
instances:

T
Doyt (2.3)
t=1

Because of the model’s willingness to learn the representation simply as a copy
of the input, some of the inputs are masked and prohibited to use in the model.
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Masked
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Figure 2.4: An example NPC structure. Based on Fig 1(a) in [12]. The orange
frames are prohibited to use in NPC. Here, the receptive field size is 13, and the
input mask size is M;,, = 3.

Explicitly, the input mask size, M;,, decides which inputs the model are not allowed
to use. These are marked with orange in Figure 2.4.

The first layer of the model is a row of convolutional blocks, as shown in
Figure 2.5.

In the ConvBlock, there is first a one-dimensional convolutional layer, before
batch normalization (BN) which is basically re-scaling and re-centering of the
features before a ReLU activation function. The next layer consists of a linear layer,
batch normalization and dropout. After that, a residual connection is added before
a final ReLU activation. The features will go through two layers of ConvBlocks
before the masked convolutional blocks. The masked ConvBlocks are shown in
Figure 2.6.

The masked ConvBlock hides the center inputs and only takes inputs from
the edges into a one-dimensional convolutional layer, before a tanh activation
function. The kernel-wise convolution in the masked ConvBlock can be described
as:

(WeD)xZ, (2.4)

where Z € RT*? denotes the intermediate features from the model with se-
quence length T and dimension d. W € R**? is the learnable kernel weight with
size k and D € {0,1}**? is the mask with each element di; =1 nt1
[12].

Finally, a Vector Quantization (VQ) layer and a linear projection layer is added.
The VQ is used as a bottleneck and an extra constraint for the model in order to
only learn the most essential information from the speech. The linear projection

Lok .S k
lSE— 12§+m
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....... > O O O O Q >

Conv
block

RelLU

A\
>

Linear + BN + Dropout

Y

Convl1D + BN + RelLU

....... > O d) O O O -»

Figure 2.5: The ConvBlock is made up of a convolutional layer, Conv1D, batch
normalization, BN and a rectified linear unit activation function before a linear
layer, batch normalization, BN, and dropout layer. Finally the residual is added
before another ReLU activation. Based on fig 1(b) in [12].

layer will act as a transformation back to a more "spectrogram-like" domain. When
a latent representation is used later in the experiments, it is extracted between the
VQ layer and the linear projection layer, meaning that the latent representation
will probably not resemble a spectrogram, since it has not been through the linear
projection layer.

2.5 Other methods for representation learning

One of the best end-to-end automatic speech recognition systems in use today is
the Wav2Vec2.0 [13]. Its representation learning is based on contrastive learn-
ing instead of predictive coding as in NPC. However, there are several similarities
between the two. Wav2Vec2.0 also uses self-supervised learning, convolutional
layers, masking and vector quantization, although the full structure is a little bit
different than NPC. This method have shown very good results in phoneme re-
cognition, even better than NPC [12].

2.6 Adaptation

Transfer learning or more specifically domain adaptation is when previous know-
ledge is used as a basis for training a deep neural network into a similar, but not
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T
block

Convl1D

Figure 2.6: The Masked ConvBlock is made up of a single convolutional layer,
Conv1D, only taking the edges of its receptive field as input and then a Tanh
activation function.Based on fig 1(c) in [12].

equal domain [14]. In feature-extraction-for-speech-terms, this can for instance
be training an English feature model with Norwegian training data in order to be
used on Norwegian datasets. This process could ease the need for large amounts
of training data for several languages if only a small adaptation training set is
necessary.
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Methods

3.1 Datasets

In order to conduct the experiments for this thesis, some datasets are needed. Both
English and Norwegian datasets are used, with one labeled and one unlabeled
dataset for each language. The chosen datasets are shown in Table 3.1. The un-
labeled datasets are used for self-supervised training of the speech representation
models while the labeled are used for testing and and phoneme recognition tasks.

Table 3.1: The datasets used for the conducted experiments.

| Unlabeled Labeled
English Librispeech  TIMIT
Norwegian NST NbTale

3.1.1 Unlabeled datasets

The Librispeech [15]! and has several different sets included. The chosen training
set consists of 100 hours of read audio books denoted as ’clean’. This means by
Librispeechs own definition that there is little noise and only American English
accents used in the dataset. The NST dataset® from the SVoG research project is
used for training the Norwegian models. The training set used from NST consists
of about 365 hours of speech, mostly from read manuscripts. It contains texts in
both Nynorsk (&~ 12%) and Bokmaél (~ 88%) and speakers with different dialects,
but since it is read manuscripts in either Bokmal or Nynorsk, the dialect differences
are not as audible as they would have been in natural speech. The corresponding
development and test sets are also used for both Librispeech and NST. An overview
of the training set contents and length and duration of the datasets used are given
in Table 3.2.

Librispeech datasets are available at https://www.openslr.org/12
INST datasets are available at https://www.nb.no/sprakbanken/en/resource-catalogue/
oai-nb-no-sbr-54/

10
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Table 3.2: The unlabeled training sets used in the experiments.

Dataset ‘ Speakers Duration Context
Total Male Female | Perspeaker  Total
train-clean-100 | 251 126 125 25 min 100 h | Audio books
NST trainset ‘ 900 415 485 ‘ 312 sentences 365 h ‘ Manuscripts

3.1.2 Labeled datasets

For testing and phoneme recognition, labeled datasets are used. For the English
model, the TIMIT dataset was used®. The dataset consists of 10 30 second sen-
tences from each of 630 speakers from 8 different major dialect regions in the
United States. The audio recordings are from read manuscripts, and have a total
duration of around 52.5 hours. The phonetic transcriptions in the TIMIT dataset
are based on a set of 61 phones, but with some alterations training are done based
on a set of 48 phones while scoring and testing usually is done with 39 phones.
For the Norwegian models, the NBTale dataset is used*. More specifically, part 1 of
the dataset. This consists of 240 speakers with 20 sentences each. These speakers
are from different regions of Norway and thus speak different dialects. But still,
as for the NST dataset, only manuscripts are used, so the differences are not very
large. Part 3 of the NBTale dataset contains free speech, and thus more difference
in dialects, but this is not used in these experiments. NBTale’s transcriptions uses a
set of 50 phones, so it is not completely comparable to the 48 used by TIMIT (Usu-
ally transformed into 39 phonemes). Table 3.3 shows a summary of the labeled
datasets.

Table 3.3: The labeled datasets used in the experiments.

Number of Duration
Dataset Context
speakers Per speaker Total
TIMIT 630 5 min 52.5 h | Manuscripts
NBTale (Part 1) 240 20 sentences 4800 sentences | Manuscripts

3.2 Code

A simplified overview of the flow of the data between different programs used in
this master thesis is shown in Figure 3.1.

The dataset inputs are the datasets mentioned in section 3.1. The NPC train-
ing block represents the representation learning by the neural networks using the
NPC method. NPC model represents the trained models, be it the English, the
Norwegian or the adaptation models. Inference / Feature extraction represents

STIMIT datasets are available at https://catalog.ldc.upenn.edu/LDC935S1
4NBTale datasets are available at https://www.nb.no/sprakbanken/en/resource- catalogue/
oai-nb-no-sbr-31/


https://catalog.ldc.upenn.edu/LDC93S1
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/

Chapter 3: Methods 12

‘ : Code
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NPC training

Inference /
Feature extraction

Dataset

NPC
features

Python -
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figures
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MFCC
features

Kaldi phoneme
recognition

Recognition
results

Figure 3.1: The flow of data between different programs used.

the forward methods from the NPC and creation and storage of features gen-
erated by using the NPC model. The NPC features are the learned features and
representations which will be used for plotting and phone recognition later on.
The Python - Matplotlib block represents the code for visualization and plotting
of the learned representations and comparisons with other types of features. The
Kaldi MFCC feature extraction block represents simply extracting MFCC features
from datasets by using the Kaldi codebase and scripts. Kaldi phoneme recognition
represents the code used for a phone recognizer both by using the NPC features
and MFCC features. Finally, recognition results are stored and used in tables for
comparisons.

3.2.1 Representation learning

The basis for the experiments in this thesis is the code from Liu, Chung and Glass’
github repository for the NPC [12]°. This repository is mainly used for NPC train-
ing. For inference and feature extraction both code from the NPC repository and
some of Janine Rugayans work® for her masters thesis in 2021 about deep learn-
ing in spoken language acquisition [16] is used. In addition to this, self-written
code is used for tying it all together and creating a more streamlined program for
running the experiments.

3.2.2 Examination of the representations

Examination of the learned representations and the speech features are done with
Python and mostly its Pandas [17] and Numpy [ 18] library for data processing and
Matplotlib [19] library for visualization. In addition, Praat sowftware’ is used for
making figures with waveforms, MFCCs and phonetic labels combined from audio
files.

5Code available at https://github.com/Alexander-H-Liu/NPC.
5Code available at https://github.com/janinerugayan/masterthesis/tree/master/VQ-APC
7https://www.fon.hum.uva.nl/praat/
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3.2.3 Testing trained speech representation features in ASR system

The testing of the trained speech representation models are done with Kaldi [20].
Kaldi is a speech recognition toolkit used for speech recognition and similar ap-
plications. For this thesis, the TIMIT example included in the Kaldi codebase is
used as a basis for testing the English model as well as the Norwegian. For the
Norwegian models, more modifications to the original TIMIT examples have been
made in order to read the speech corpora correctly.

When testing the trained NPC model features in Kaldi, some additional modi-
fications to the code were needed. Most of the modifications were done following
the guidance in [21], in addition to some own modifications needed to tie all the
different programs better together and to make the speech recognizer working
correctly.

3.3 Training

Training of the NPC models are done with the same parameters as in [12]. These
are shown in Table 3.4.

Table 3.4: NPC parameters

Parameter Value
Dataset batch_size 32
audio_max_frames 1500
feat type fbank
feat dim 80
Audio frame length 25
frame_shift 10
cmvn True
kernel size 15
mask_size 5
n_blocks 4
Model hidden_size 512
parameters drqpout 0.1
residual True
batch _norm True
activate relu
disable cross layer  False
Vo codebook_size [64,64,64,64]
code dim [128,128,128,128]
parameters —
gumbel temperature 1.0
Hvper optimizer Adam
paraynfeters Ir 0.001
epoch 100
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The batch size used in training is 32 and the maximum length of the audio
frames is 1500 samples. Audio features used as inputs for training will be 80
dimensional fbank features which are simply log mel filterbank features. They
will use a frame length of 25 ms and have a 10 ms frame shift. Cepstral mean and
variance normalization (CMVN) is also applied to the mel spectrograms.

For the model parameters, the kernel size is 15, mask size is 5 and the number
of stacked ConvBlocks, n_blocks, is 4. This results in a receptive field size, R, of:

R=kernel _size+2-n_blocks =15+2-4=23. (3.1)

The hidden dimension size of all layers is 512. In the ConvBlocks, the dropout
is 0.1, a residual connection is added, and batch normalization is done. The ac-
tivation function of the ConvBlocks is the ReLU. Not disabling cross layer means
that the Masked ConvBlocks are at only the last layer. For the VQ parameters, the
codebooks are four codebooks of size 64 with a dimension of each at 128, and
finally, the temperature of the Gumbel Softmax is 1.0.

Adam is used as the optimizer, the learning rate is set to 0.001 and the number
of epochs is set to 100.

3.3.1 Models

Three different NPC models are trained for the experiments. The English model
is trained according to the parameters in Table 3.4 with the Librispeech training
and development datasets. The Norwegian model is trained with the NST dataset
with the same parameters as the English model. The adaptation model is trained
with the same parameters as the English and Norwegian models, with the only
difference that is only trained for 20 epochs with the Norwegian dataset on top
of the previously trained English model. Training is done with the NST dataset.
This makes the total number of epochs trained for the adaptation model 120. In
addition to the regular output from the NPC, latent representations extracted after
the VQ-layer and before the linear projection layer, are used as well.

3.4 Inference

Running inference of the trained NPC models is done separately with the three dif-
ferent models. For these experiments, inference is done in two occasions as well.
One for the creation of features for visualization and plotting and one in combin-
ation with the phoneme recognizer. During inference for the speech recognizer,
labeled datasets are used. For the visualization of features, labeled datasets are
also most practical. It is easier to examine the features in combination with labels.
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3.5 Phoneme recognition

Phoneme recognition for the experiments in this thesis will be done with the Kaldi
speech recognition toolkit. There are several different options for testing phoneme
recognition in Kaldi. In this thesis I have looked at the tests called 'Mono’, "Tri1’,
"Tri2” and "Tri3’.

"Mono’ is the simplest and is a monophone training and decoding which does
not take into account surrounding phones, e.g. a context-independent test, but
also uses the delta features. The 'Tril’ uses a triphone model and uses delta and
delta-delta as well. 'Tri2’ is also triphones, but it uses LDA and MLLT (Linear Dis-
criminant Analysis and Maximum Likelihood Linear Transform). "Tri3’ the same
as 'Tri2’ with the addition of SAT (Speaker Adaptive Training).

The Kaldi phoneme recognition also has the option to use more advanced
methods like Deep Neural Networks (DNN) and Subspace Gaussian Mixture Mod-
els (SGMM) for decoding as well, but these are not used in these experiments for
simplicity.



Chapter 4

Results

Results in this chapter will include both visual and phonetic inspection of the
learned representations as well as results from using the learned representations
in a working phone recognition system. Latent representations will not be ex-
amined visually as the information in those are very hard to interpret visually, but
they are used in the phoneme recognition. In addition, comparisons with MFCCs
are shown and discussed.

4.1 Learned representations

By training NPC models, and running inference we can save the representations
learned. By plotting the output from inference, the NPC representations can be
visualized and examined. Figure 4.1 shows the how the NPC features can look
like compared to the waveform, spectrogram and MFCCs.

16
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Figure 4.1: Waveform, phonetic transcription, NPC representation and MFCCs of
one single sound clip.

Purely visually we can see that the NPC features resembles the spectrogram
more than the MFCCs. It is also clear that it contains more information than the
MFCC by having 80-dimensional features while the MFCCs (at least in this figure)
utilize only 12 coefficients. That again is 6.7 times more information if the window
length and stride is the same, which it is in this case.

Form Figure 4.1 we can also see that the learned representations are on a sub-
phonemic level because of their short time span. Each vector represents 10 ms of
speech so it is natural that most phonemes are represented with more than one
vector. For example the ’s’-phoneme at around sample 90-110 in the NPC features
is represented by approximately 20 vectors. An other thing to note is that several
different vectors are used for each phoneme, meaning they can represent different
stages of a single phoneme, not only one vector for each phoneme. Since there
are 256 different possible VQ vectors used in the output from the NPC, we can
with great confidence assume that more than one vector is associated with each
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phoneme since the number of phonemes used ranges between 39-50. This is very
clear from the figure, as the within the time frame from one phoneme, several
different vectors are used to represent this phoneme. Figure 4.2 shows how the
NPC representation of an ’s’-phoneme will look like and supports that observation
further.

10

152 154 156 158
Samples

160 162 164

Figure 4.2: NPC representation of an ’s-phoneme.
The ’s’-phoneme in this case with this speaker consists of several different

vectors with some of them being multiples. Figure 4.3 shows how the NPC rep-
resentation of two different speakers saying the same sentence will be.

Same senctence, different speakers

Frequency bin
w & u

w B

Frequency bin

samples

Figure 4.3: Two speakers saying the same sentence. NB: The alignment is a bit
off due to the time used pronouncing the words is a little different for the two
speakers.

Here we can see that there are some minor differences between the represent-
ations used, even though the main shapes and looks are quite similar. For easier
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distinguishing between the two, one can look at the VQ-codebook index associ-
ated with each representation. Figure 4.4 shows which codebook index is used for
every output vector of the NPC for two different speakers of the same text. Note
that two equal codebook indices does not necessarily correspond to two equal
output vectors, because of the context dependency and the linear projection in
NPC.

Speech segment: sal

Speaker: faem0

Frequency bin
w o ou

=

%

3
Codebook index

Frequency bin
w B ow
Codebook index

Figure 4.4: NPC output and corresponding VQ-vectors for two different speakers
with the same sentence. The blue dots correspond to VQ vectors and their y-
position to an arbitrary indexation of those vectors.

Here we see that for some phonemes we have long stretches using only one
VQ vector or alternating between two. This will mean that in many cases one
vector can be used to represent a phoneme. On the edges between phonemes
we see more jumping between several VQ vectors meaning that there are sev-
eral vectors representing transitions between phonemes on a more sub-phonemic
level. We can also see that for some phones, the same codebook indices are used
for both speakers, meaning that the latent representation will be the same for
both speakers in those cases. This means that there are some generalization in
the codebook vectors, giving us a set of codebook vectors used for each phoneme
or sub-phoneme. Determining exactly which vectors are used for which phoneme
(or sub-phoneme) for different speakers, would be a very extensive task and is
therefore left for future work. From this figure alone, we can see that there is
overlapping between different users, and we can safely assume there are sets of
vectors used for each sub-phoneme in general.

Figure 4.5 shows how the Norwegian and English model differs when applied
to the same (English) sound clip.
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Figure 4.5: English and Norwegian NPC model applied to English audio. The
third row is shows the absolute difference between the two.

As can be seen from the figure, the absolute difference between the two is
not very large, with mainly just small differences at the edges of some phonemes.
The largest differences are found around sample 100. Here we find "ae’ (IPA: /a/)
and ’dcl’ phonemes, which is the closing phase before a ’d’ in the word ’had’. All of
these phonemes are prevalent in Norwegian so the difference here was not very
expected. It would be reasonable to expect more differences in sounds that are
not in both languages, not common sounds. The main thing to note here is that
most of the differences are in transitional areas between phonemes.

4.2 Phoneme recognition tests

4.2.1 English phone recognition test

The results from testing the Phoneme-error-rate (PER) on the English NPC fea-
tures (both regular output and latent) versus the standard MFCC features is shown
in Table 4.1.

Table 4.1: PER for the english NPC model features compared to MFCC. E-NPC-L
denotes latent English NPC features.

Mono Tril Tri2 Tri3

E-MFCC | 31.7 26.3 23.7 22.3
E-NPC 51.1 494 36.0 35.2
E-NPC-L | 50.2 49.3 37.2 36.1

These results show that the MFCC outperforms the NPC features in all four
tests, and quite substantially as well. MFCCs oupterforms the NPC with 12.3
('Tri2’) to 23.0 ('Tril’) percentage points difference with the 'Tri2’ test being the
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closest and the 'Tril’ having the largest difference. The latent representation is
slightly better than the regular in the 'Mono’ and "Tril’ test, while the regular is
better in the last two tests.

4.2.2 Norwegian phone recognition test

The results from testing the PER of the Norwegian NPC features (both regular
output and latent) versus the standard MFCC features is shown in Table 4.2.

Table 4.2: PER for the norwegian NPC model features compared to MFCC. N-
NPC-L denotes latent NPC features.

Mono Tril Tri2 Tri3

N-MFCC | 43.4 34.1 31.5 29.7
N-NPC 67.4 67.1 44.2 42.5
N-NPC-L | 66.3 63.2 47.3 46.1

Here we see the same picture as for the English model with the MFCC features
outclassing the NPC features with from 12.7 to 29.1 percentage points for the
different tests. Here the difference between the two NPC models are a bit larger
than for the English one, but still the latent model is best for 'Mono’ and "Tril’
while the regular is best in "Tri2’ and "Tri3’.

4.2.3 Adaptation model phone recognition test

The test results of the PER of the adaptation model is shown in Table 4.3. This
test is done with only the different Norwegian models.

Table 4.3: PER for the adaptation model features compared to the Norwegian
NPC models. The best results are highlighted with a bold font. N-NPC the regu-
lar Norwegian NPC model, N-NPC-L is the latent Norwegian NPC model, A-NPC
is the adapted-to-Norwegian NPC model and A-NPC-L is the latent adapted-to-
Norwegian NPC model.

Model | Mono Tril Tri2 Tri3
N-NPC 674 67.1 442 425
N-NPC-L | 66.3 63.2 47.3 46.1
A-NPC 67.2 658 434 41.9
A-NPC-L | 61.2 614 456 443

Here we can see that the adaptation models actually are performing better
than its counterpart on their respective best tests. For 'Mono’ and 'Tril’ the A-NPC-
L model is clearly the best and outperforms N-NPC-L with 5.1 and 1.8 percentage
points, while A-NPC is slightly better than the N-NPC model. For "Tri2’ and "Tri3’ A-
NPC is the best and beats N-NPC with 0.8 and 0.6 percentage points respectively.
A-NPC-L is better than N-NPC-L here, but is slightly worse than N-NPC.
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It is clear from all these experiments that the latent representations are better
than the regular for 'Mono’ and "Tril’, but the standard NPC model is better for
"Tri2” and "Tri3’. Another thing to note from these experiments is that the MFCCs
are outclassing all of the trained NPC models in all tests, which was not expected.

4.2.4 Types of errors

It can be interesting to look at what kinds of errors occur the most often while us-
ing the NPC-features for phoneme recognition. Table 4.4 shows a simple overview
of error types and percentage of correct phonemes in the "Tri3’ decoding test.

Table 4.4: Correct phonemes (%) and error type percentages in the "Tri3’ decod-
ing test. The E-prefix denotes tests with English datasets, N-prefix is Norwegian,
and A-prefix is the adaptation model. The L-postfix denotes latent representation

features.

Category E-MFCC E-NPC E-NPC-L | N-MFCC N-NPC-L A-NPC-L

Correct 80.9 70.3 70.3 76.0 62.7 63.9
Substitutions 14.0 22.0 22.0 15.3 25.6 25.0

Deletions 5.1 7.7 7.6 8.7 11.7 11.0

Insertions 3.2 5.5 6.4 3.9 8.8 8.3
Total errors 22.3 35.2 36.1 27.9 46.1 44.3

It is clear that substitutions is the main source for errors in this phoneme re-
cognition test, both for the MFCC-features and the NPC-features. Almost half of
all errors for all features, both MFCC and NPC, are substitutions, so here the main
difference between the two is simply the error rate, and not the type of errors.

4.2.5 Substitutions

Substitutions is the most frequent errors in the phoneme recognition and is there-
fore the most interesting to investigate. A substitution is here defined as one phon-
eme changed with another, and substitutions are listed both ways. Table 4.5 shows
the top ten confusion pairs and their relative error rate for A-NPC-L in the "Tri3’
decoding test.
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Table 4.5: Top ten confusion pairs (substitutions) for latent NPC adaptation
model, A-NPC-L, in the 'Tri3’ decoding test.

% of total subs.

Correct phone

Recognized phone

2.02
1.97
1.84
1.66
1.61
1.36
1.31
1.31
1.31
1.29
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a
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This shows that the errors mostly are very similar sounds, with the mos com-
mon error being between ’a:’ and ’a’ which is just a long and short a-sound. In
fourth place we have the same phonemes only the other way around. In fact, all
of the top five errors have its counterpart also in the top ten substitution list.

Table 4.6 shows the top ten substitutions for the N-NPC-L model.

Table 4.6: Top ten Norwegian NPC latent, N-NPC-L, confusion pairs in the "Tri3’

decoding test.

O O N A WDN

—_
o

Correct | Recognized
a: a
m n
a a:
n m
i: i

1 r
i i
o a
e: e
r 1

This table show almost exactly the same errors as Table 4.5, which means that
the same problems are evident both for the adaptation model as the standard
Norwegian NPC model. Table 4.7 shows the errors from the MFCC features.
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Table 4.7: Top ten Norwegian MFCC, N-MFCC, confusion pairs in the "Tri3’ de-
coding test.

Correct | Recognized
1 a: a
2 i i
3 a a
4 m n
5 i i
6 o o:
7 0 a
8 e: e
9 y i
10 d t

These errors are not exactly the same as for the NPC models, but still, the top
8 of these are in both of the top ten for the NPC features. One thing to notice from
these results is that the most common substitutions are vowels, especially substi-
tutions between long and short versions of the same vowel, with the exception
of the ’l-r’ and 'm-n’ confusion pairs. The results from these tests show that even
though the error rates by using the different features are different, we get roughly
the same types of errors.

Table 4.8 shows the substitution errors for the English features in the "Tri3’
decoding test.

Table 4.8: Substitutions for the English features as percentage of total substitu-
tions in the "Tri3’ decoding test.

E-MFCC E-NPC E-NPC-L
Corr. Rec. % | Corr. Rec. % | Corr. Rec. %
z S 4.6 | ah ih 3.7 | ah ih 3.8
ah ih 4.3 zZ S 2.5 ih ah 2.8
ih ah 3.6 ih ah 24 z S 2.3
m n 238 m n 23| eh ih 2.0
eh ih 25| ih iy 18| m n 1.8

gua b WONR

The results by using English features is quite similar to what was shown for
the Norwegian features. Here again we see that mostly the same errors are reoc-
curring, and especially the ’ah’-’ih’ confusion pair is prevalent being listed twice
for all features. Once again we see that errors are quite similar using different
features.

4.2.6 Deletions

The error type defined as deletions is when the recognizer simply removes a phon-
eme, without replacing it with another. Table 4.9 shows the five most frequent de-
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letion errors as a percentage of the total deletion errors for the English decoding
test in a "Tri3’ system.

Table 4.9: Deletion errors for the English features as percentage of total deletion

errors.
E-MFCC E-NPC E-NPC-L
Phone % | Phone % | Phone %

1 sil 16.0 sil 11.1 sil 11.1
2 r 8.4 ih 8.9 ih 9.5
3 ih 7.9 ah 6.2 ah 6.4
4 ah 6.5 r 6.0 r 6.2
5 t 4.6 n 5.1 n 5.1

Silence is clearly the most common deletion with 'r’, ’ih’ and ’ah’ being the
second to fourth most common deletion for all, including MFCC. This shows that
the same deletion errors occur both for MFCCs and NPC features even though the
error rates are somewhat different.

Table 4.10 shows the same tests but for Norwegian features.

Table 4.10: Deletion errors for the Norwegian features as percentage of total
deletion errors.

N-MFCC N-NPC-L A-NPC-L
Phone % | Phone % | Phone %
1 r 12.0 r 11.7 r 12.4
2 e: 6.8 | 6.2 1 6.0
3 e 6.7 i 5.5 e: 5.6
4 i 6.2 e: 54 i 5.3
5 d 4.8 v 5.2 e 5.2

Here the '’ phoneme is the most common deletion with ’e:” and ’i’ occurring
in all three tests. One thing to notice here is that I’ is also a struggle for the NPC
models, while not being in the top five deletions for the MFCC. But in general, the
deletion errors are quite similar for all the models tested in the same language.

4.2.7 Insertions

Insertion errors is when the phone recognizer inserts an extra phone into the
recognition results compared to the transcription. The most common insertion
error is by far insertion the silence phone into the recognition results for all models
and features. An overview of the top three insertion errors is shown in Table 4.11.
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Table 4.11: Insertion errors by percentage of total insertion errors for the differ-
ent English features in "Tri3’ decoding test.

E-MFCC E-NPC E-NPC-L
Phone % | Phone % | Phone %
1 sil 23.4 sil 19.9 sil 16.8
ih 10.8 ih 8.8 ih 8.8
3 r 8.6 1 5.0 k 6.0

In addition to the silence phone, the ’ih’ phoneme for the English features seem
to be a problem for all, being a clear number two of the insertion errors. One thing
to notice here is that the NPC models seem to make the silence-phone-error less
than the MFCC relative to the total number of errors, but since the total number
of insertion errors is larger, this may or may not be of relevance.

Table 4.12 shows the insertion errors for the Norwegian features.

Table 4.12: Insertion errors by percentage of total insertion errors for the differ-
ent Norwegian features in 'Tri3’ decoding test.

N-MFCC N-NPC-L A-NPC-L
Phone % | Phone % | Phone %
1 sil 17.0 sil 23.6 sil 23.3
i 8.6 r 10.0 r 8.6
3 r 8.1 i 6.2 i 6.4

\O]

Here we see that the NPC features struggles more with insertion of silence
phones than the MFCC, both the pure Norwegian model and the adaptation model.
The ’" and ’r’ phones are number two and three for all of the feature tests, which
shows that all of the features have a problem with inserting these phones.

In general all of the models struggles with very similar errors and error types,
so the main difference between the MFCC and NPC is not what kinds of errors
they make, but rather the amount of errors.



Chapter 5

Discussion

5.1 NPC vs VQ-APC

Even though it has been proven that VQ-APC can perform better that NPC PER-
wise[12], the time needed and complexity of training and inference of the NPC
is so much lower that for many cases, NPC will be the best option of the two.
The theoretical complexity of the VQ-APC is O(T - d?), with T usually 512. NPC’s
theoretical complexity is O(k - d2) with k in this case 15. Empirical inference time
show that NPC is 29 times faster than VQ-APC [12].

5.2 Phoneme recognition

The results in the phoneme recognition for the NPC representations compared to
MFCCs was not as good as expected. While the best results achieved here is a
PER of 35.2 for English and 41.9 for Norwegian (Adaptation model), the MFCC
achieved 22.3 and 29.7 PER in the same tests. In [12], the PER achieved was 27.9
and they noted a log-Mel spectrogram performance of 50.3, which is a significant
difference. Although log-Mel spectrograms are not the same as MFCC, the differ-
ence is very large here. Another difference from these experiments and [12], is
that they use a 360 hour training set where as only 100 hours have been used
here. Still, the difference in performance is a bit strange.

Some other possible explanation to the relatively poor performance of these
NPC features is that there might have been some unnoticed errors somewhere
in the implementation or the extraction of the features. Also, the test sets used
in this thesis is not the same as in [12]. The variability in the test sets might be
larger than in the training sets and causing some of the poor results. However, all
datasets used, both in training and testing, are recordings from read manuscripts
or audiobooks, so the dataset differences should not be very large, and not skew
the results too much. More robustness against dataset variations could have been
achieved by using part three of the NST dataset for training. Since it contains free
speech, it might have had an positive effect on dataset variations.

27
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The latent representations outperform the regular NPC representations in the
'Mono’ and 'Tri1’ tests but not in the other ones. The reason of this is hard to say,
but it is still an interesting find. The overall best NPC results are then from the
regular NPC representations in the "Tri3’ tests.

5.3 Adaptation

The results from the adaptation model features are interesting. At least one of the
adaptation models outperforms the pure Norwegian model in all the tests con-
ducted, with the latent being best for 'Mono’ and "Tri1’ and the regular adaptation
model for the other two tests. There might be several explanations to this, and
simply more available training data can be one. Since the Norwegian and English
are quite phonetically similar, the adaptation training might in practice only be
more available training data, and thus resulting in better performance. Testing
this with other less similar languages would be very interesting.

It could also be the case that the representations learned is on a sub-phonemic
level that is more generalized across languages and that these kinds of adapta-
tions will work in many different languages. If that is the case, the need for large
amounts of training data for many languages can be greatly reduced, and adapt-
ation training can be done in a larger scale for speech recognition systems. The
amount of training time could also be reduced as the need of training models from
scratch would be gone. Even though the representations are quite well general-
ized between languages, it is still reasonable to prefer using as similar languages
as possible for the best performance.

5.4 Issues and time wasting

Even though a lot of code used for this thesis was already written by others, there
have been a lot of issues regarding running the experiments. Especially, the phon-
eme recognition have caused problems. At first, the preferred solution was to find
a working phoneme recognizer on Github, and change the feature extraction from
MFCC features to the NPC features. This proved to be more difficult than expec-
ted. Differences in library versions, Python version and other problems regarding
GPU usage made this option unfeasible even when trying five different phone
recognition repositories. Then, a choice was made to change to Kaldi for phone
recognition, which is mostly written in other languages than Python that were
quite unfamiliar, which was also a new challenge. But after a lot of work, trial and
error, generation of some phone recognition results were possible.

In addition to code-specific problems, there have been issues with the GPUs
in the server being used by multiple users at the same time and consuming all the
available RAM, disrupting the execution of some programs further delaying the
experiments.
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5.5 Future work

For future work, more studying into adaptation training between languages would
be interesting. The possibility of maybe proving that the performance can be good
even with adaptation training on a more general basis would be very exciting. Also
figuring out exactly why the MFCCs outperforms the NPC features in these exper-
iments will be left for future work. Determining which VQ-vectors corresponding
to which phonemes, sub-phonemes and transitions will also be something that
can be examined more thoroughly in the future.
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Conclusion

In this thesis, speech representations learned with NPC have been investigated and
tested in a phoneme recognition system. The learned representations can, on a
sub-phonemic level, be used for representing speech and representing transitions
between phonemes as well as phonemes itself. They can be used with some degree
of success in phoneme recognition systems. The experiments conducted showed
that the NPC representations were not able to outperform MFCC, managing a
PER of 35.2 and 42.5 for the English and Norwegian representations respectively
compared to the MFCCs which achieved 22.3 and 29.7 on the same tests. The
latent representations performed better than the regular NPC features in some
tests, but the overall best PER results with NPC representations were the regular
NPC in the 'Tri3’ tests. The types of errors for both MFCCs and the NPC feature
are very similar, with the main difference simply being the error rate.

Adaptation training have also been investigated for the speech representa-
tions. It has been shown that there are possibilities of training NPC models into
other languages. Adaptation can both reduce time and reduce the need of large
amounts of training data. This have shown promising results with the adaptation
model representation outperforming the Norwegian with a PER of 41.9 compared
to 42.5 for the Norwegian.
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