
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Eivind Bjørnebøle

Reconstruction of Compressive
Sensed Hyperspectral Images by
Deep Convolutional Neural Network

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
Co-supervisor: Jon Álvarez Justo
June 2022M

as
te

r’s
 th

es
is





Eivind Bjørnebøle

Reconstruction of Compressive Sensed
Hyperspectral Images by Deep
Convolutional Neural Network

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
Co-supervisor: Jon Álvarez Justo
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Abstract

The Hyperspectral Smallsat for Ocean Observation (HYPSO) mission is an earth observational satellite for
detecting algae blooms along the coast of Norway. The satellite is based on the CubeSat standard, making
it small and affordable compared to conventional satellites. HYPSO-1 has a hyperspectral camera onboard,
which captures hyperspectral data cubes. The imager scans the scene and sends the hyperspectral image to
the ground station. The files being transmitted get large and thus take a long time to transfer from space.
One way to reduce the amount of data being transferred is through the sampling technique of compressive
sensing. This technique requires reconstruction, which has long been done with the help of optimization or
iterative algorithms. Though these algorithms make good reconstruction results, they take a long time and
often require handcrafted priors for optimality. The field of deep learning has grown in size and has found
its way into compressive sensing reconstruction. Convolutional neural networks have shown state-of-the-art
performance in image classification. The DeepCubeNet is a convolutional neural network, with a U-Net
architecture, for reconstructing compressive sensed hyperspectral images. In this thesis, the DeepCubeNet
is used to reconstruct hyperspectral images with up to 80 % discarded data. By training the U-Net with
existing hyperspectral datasets like ICVL and Aviris, the model can reconstruct hyperspectral images with
PSNR of 34 dB and SSIM of 0.887 taken of earth observational scenes.
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Samandrag

Hyperspectral Smallsat for Oacen Observation (HYPSO) er ein satellitt for jord observasjonar, meint for å
detektera algar langs kysten av Noreg. Satellitten er bygd på CubeSat standarden, noko som gjer den liten og
rimeleg samanlikna med konvensjonelle satellittar. HYPSO-1 er utstyrt med eit hyperspektralt kamera, som
fangar hyperspektrale data kubar. Kamerasystemet skannar området under seg og sender det hyperspektrale
biletet til bakkestasjonen. Det er ofte store filer som skal sendast frå rommet, og overføringa tar tid. Ein
måte å redusera mengda av data som skal sendast er igjennom ein samplingsmetode kalla compressive sens-
ing. Denne metoden er krevjar ein rekonstruksjon av den komprimerte dataen. Rekonstruksjonen har lenge
blitt utført ved hjelp av optimerings- eller iterative algoritmar. Desse algoritmane har vist gode rekonstruk-
sjons resultat, men brukar lang tid og må ofte finjusterast for å oppnå optimalitet. Djup lærings feltet har
ekspandert og funne sin veg inn i compressive sensing rekonstruksjon. Konvolusjonere nevrale nettverk
har vist toppmoderande ytelse innanfor bilete klassifisering. DeepCubeNet er eit konvolusjonert nevralt
nettverk, med ein U-Net arkitektur, som blir brukt til å rekonstruera hyperspektrale bileter. DeepCubeNet
er brukt til å rekonstruera hyperspektrale bileter med opp til 80 % kasta data. Ved å trena nettverket med
eksisterande hyperspektrale datasett, som ICVL og Aviris, klarte modellane å rekonstruera hyperspektrale
bileter med PSNR på 34 dB og SSIM på 0.887 frå bileter av jord observasjonar.
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1 Introduction

Observing the surroundings has always been an essential part of the humans, watching for potential pred-
ators sneaking behind the next bush or seasonal changes to decide when to harvest the corps. In order to
survive, it has been crucial to make the right decisions on the information that is currently available, and
the spectre of observations has grown as technology allows it, such as sensors, imagers and satellites. Fast
forward, the complex ecosystems are observed from every direction at a macro level through the lenses
of satellites and at micro levels by on-ground sensors. This brings high expectations to the “observer”,
which must handle a significant amount of data. Computers can now process and analyze data streams at
an ever-growing pace.

The demand for high-quality images and sensor data is essential for analyzing and observing abnormalities
and environmental changes, such as toxification of drinking water or land soils or melting of glaciers [1].
The sensors are part of remote sensing applications, where the sensing device observes the scene at a
distance. Data collected from these remote sensing applications must be transmitted to a shared database
for analysis. This comes at the cost of transmitting power, which the sensing stations often lack due to their
harsh and challenging environments controlled by sun cells and batteries. The transmission takes time,
so the data is compressed before sending it. Data compression is a trade-off between losing information
and keeping compression rates high. Thus making a need for high performing processing methods, such
as compressive sensing, a sampling technique that uses much lower samples than classic sampling while
keeping the same quality [2].

Compressive sensing (CS) has found its way into many image processing applications. From medicine
to earth observations, all have turned their attention to the next data acquisition stage. The ever-growing
demand for faster transmitting speeds and more extensive data files has long been bounded by the Nyquist
theorem and compression standards for keeping quality across the data pipeline. Compressive sensing
makes it possible to compress signals at a more significant rate than bounded by the Nyquist theorem while
still keeping the quality high [2]. The process is possible due to the behaviour of the signals in a transform
domain and by using reconstruction methods to recover the original data. This makes compressive sensing
useful for extensive data demanding systems such as hyperspectral images (HSI), which are images that
contain more spectral bands than regular three-banded RGB (red, green, blue) images. The extra spectral
information is what makes HSIs unique when it comes to remote sensing. The bands are collections of
wavelengths, often outside the human vision, representing spectral reflectance from substances and objects.
Spectral reflectance is the characteristic of light when reflected from a surface [3].

Compressing sensing methods involve everything from sampling devices to reconstruction algorithms. Un-
til recent years, the reconstruction methods have been performed with sparse optimization algorithms, which
have proven high-quality reconstructions. Methods such as Orthogonal Matching Pursuit [4], TwIST [5]
has shown promising reconstructions. Unfortunately, these methods tend to have slow reconstruction times.
Nevertheless, researchers have worked on methods for faster reconstruction times and no need for fine-
tuning parameters with the help of artificial intelligence (AI) or deep learning (DL). This has resulted in
reconstructions achieving qualities that compete with state-of-the-art optimization algorithms [6, 7, 8].

Hyperspectral imaging has long been accomplished by scanning methods like push broom- and whisk
broom- imagers. These have delivered high spectral- and spatial resolution [9]. However, they suffer from
bad temporal resolutions. Temporal resolutions set limits for how fast the scene being captured can change.
Snapshot imagers, on the other hand, are not as bounded by the temporal resolution. These capture the HSI
in a less time consuming manner, by using liquid-crystal cells in front of the senor as a dispersive element
[10, 11].

A significant candidate for earth observations is satellites. There has been a new contribution in satellite
design in the last decade, where size has been the main topic. The CubeSat standard has allowed smaller
teams to reach space, like SmallSat Lab at NTNU.

The HYPSO (HYPer-spectral Smallsat for ocean Observation) CubeSat is a project developed by the Small
Satellite Lab at NTNU. The platform is based on the CubeSat structure, supporting the primary payload of
one hyperspectral camera and one RGB camera. The mission of the HYPSO-1 is to observe ocean colour
and detect harmful algal blooms [12]. The satellite is in low-earth-orbit and thus has a fast revisiting time,
which is the time between the satellite passing over an area and when it passes over the same area next time,
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making it suitable for Earth observation. The hyperspectral camera can capture spectral bands outside the
human vision and provide information about the algae blooms that are are other ways difficult to detect.
In 2019 algae bloom killed 10 000 tons of salmon along the coast of Norway [13]. Developing a system
for observing and detecting harmful algae blooms in the coastal environment help the aquaculture industry
protect itself against the potential extinction of its salmon population. With this system in full operation,
the Norwegian aquaculture can keep exporting over 13 billion meals globally (numbers from 2020) [14].

Compared to higher-end commercial satellites, the tiny design limitations of the CubeSats set the bar for
the components and payload on-board. These limitations are a sound basis for creative solutions and new
research to arise. On-board processing power and power distributions are critical factors for operating the
satellite, and these are resources for transmitting power and payload operation. Transferring data can be a
time-consuming task for distances from low-earth-orbits back to the ground stations. Thus the amount of
data should always be limited to what is necessary. This is where compressive sensing comes in. Com-
pressive sensing limits the data being collected at the sensor, and thus data being transmitted down to the
ground station is reduced. This thesis aims to explore compressive sensing for hyperspectral imagers to
minimize the data being transmitted from satellites and find a CS recovery method that can be used for
the next generations of CubeSats. Despite the amount of work in compressive sensing reconstruction, few
studies have focused on satellite hyperspectral imagers. One potential approach is to use snapshot imagers
with liquid crystal phase retarders, which can capture HSIs faster than scanning methods. Using liquid
crystals as dispersive elements allows for immediate adoption of compressive sensing, as the spectral in-
formation is modulated according to the CS theory [10]. Using this sampling as a basis, the reconstruction
method can be designed. A reconstruction method used in CS HSIs is to train a deep learning model called
U-Net. DeepCubeNet [6] is an already developed U-Net, the initial network for exploration and testing in
this thesis.

In order to accomplish the thesis’s aim of reconstructing CS HSIs, the thesis gives an overview of current
state-of-the-art methods. The reconstruction is done with the help of deep learning, a method within ma-
chine learning. The network structure will be an adaptation of the convolutional neural network (CNN)
called U-Net. The network is trained with datasets of hyperspectral images and tested with state-of-the-
art hyperspectral data such as Cuprite and Salinas. The reconstructions are also tested on other less used
datasets like the ones provided by The Interdisciplinary Computational Vision Laboratory (ICVL) [15] and
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [16].

The proposed solution consists of a compressive sensing reconstruction method that utilizes deep learning
for training on existing datasets. A U-Net architecture inspired by DeepCubeNet [6] is used for training
and reconstruction. The compressive sensing is inspired by CS-MUSI [17], with a different approach to the
spectral modulation of the HSI in the sampling process. An extra emphasis is given that the compressive
sensing is done on already sampled HSIs from datasets and not applied directly in the acquisition process
of the images. This is beyond the project’s scope, which is focused on the reconstruction of CS HSIs.

The remainder of this work is organized as follows. Section 2 introduces the background theory used
in this thesis and further gives an overview of previous work in the field of CS, HSIs and reconstruction
methods. Section 3 presents the system description, explaining the network structure, training and data
pre-processing. Section 4 provides the results and analysis of the thesis with different models that are
trained. The results are then discussed and compared to previous works in the field. Section 5 concludes
the thesis by discussing the performance of the proposed system, the advantages and disadvantages, as well
as proposing further work.
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2 Theoretical Background

This Section will give the reader the groundwork for understanding the theoretical process behind the im-
plementations and decisions throughout the thesis. The goal of this section is to cover, the topics concerns
sensing of the data namely compressive sensing, deep learning with convolutional nets, and hyperspectral
images. The Background Section will first explain compressive sensing theory with introduction about
signal sparsity. Then the optimization problem of compressive sensing will be presented followed by a
gerneral introduction to deep learning and convolutional neural networks, with the U-Net architecture be-
ing the main structure. After this, hyperspectral images will be considered followed by quantitative image
quality metrics for reconstruction validation. At the end, a brief introduction to the MUSI hyperspectral
imager will be given.

2.1 Compressive Sensing Theory

Compressive sensing (CS) is a signal processing technique consisting of using lower samples than standard
sampling theory while keeping acceptable quality of the final representation of the data. The theory of
CS states that a signal can be reconstructed using a small set of samples randomly acquired if the signal
is sparse in a certain transform domain [2]. In the field of signal acquisition and processing, the physical
processes and parameters that are most interesting to capture are continuous while their measurements are
discrete. The continuous signals are hence compressed by sampling the infinite set of points with a discrete
finite set of points. Via Nyquist sampling, the continuous waveform is recovered and the Shannon-theorem
allows a lossless recovery of the original analog signal. Compressive sensing in the acquisition process
is a linear operation where the reconstruction of the samples can be found by solving a system of linear
equations. The original signal is being sampled according to the Nyquist theorem, which states that in order
to ensure reconstruction the sampling rate must be twice the highest frequency, in a given domain is f and
contains N samples:

fNx1 =


f(1)
f(2)
...

f(N)

 . (1)

A transform matrix Ψ is used to transform the signal f into a transform domain of choice. Matrix Ψ has
dimensions N x N where N is the number of samples in the original signal f. The transform domains that
are commonly used for matrix Ψ are the Discrete Cosine Transform (DCT), Discrete Fourier Transform
(DFT), Hermite Transform, Polynomial Fourier Transform or the Discrete Wavelet Transform (DWT) [2,
18]. Matrix Ψ is given as follows:

ΨNxN =


ψ(1,1) ψ(1,2) . . . ψ(1,N)

ψ(2,1) ψ(2,2) . . . ψ(2,N)
...

...
. . .

...
ψ(N,1) ψ(N,2) . . . ψ(N,N)

 . (2)

The signal f can be represented in a transform domain as x, then f can be expressed as:

f = Ψx, (3)

where x has also dimensions N x N. The random sampling in compressive sensing is performed using a
measurement matrix Φ. The measurement matrix has dimensions M x N, where M is the number of samples
of the compressed signal f, and M ≪ N [4]. The matrix Φ is given as follows:

ΦMxN =


φ(1,1) φ(1,2) . . . φ(1,N)

φ(2,1) φ(2,2) . . . φ(2,N)
...

...
. . .

...
φ(M,1) φ(M,2) . . . φ(M,N)

 . (4)
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The matrix Φ must be designed to give an unique representation of the signal x from the measurements.
Several measurement matrices are available for CS applications, where the Gaussian matrix is the most
used one [2]. The variables in the Gaussian matrix are randomly chosen according to a normal distribution.
Other highly used matrices are the Bernoulli matrices, where the variables are between +1 and -1 and have
the same probability of appearing, and partial random Fourier matrices [19].

The M measurements from the signal f are collected in the vector y, which is the random projection of f
over Φ:

y = Φf. (5)

Eq. (3) can now be combined with Eq. (5) which gives:

y = ΦΨx, (6)

where the product of Φ and Ψ is also denoted as the dictionary matrix A, which is called the sensing matrix
[4]. Eq. (6) can then be rewritten as:

y = ΦΨx = Ax. (7)

The figure below shows the concept of compressive sensing. The vector x is the sparse representation of
the signal f in a transform domain. The white spots are zero values while the colors represents the non-zero
coefficients. The matrix Ψ is the orthogonal basis transform matrix, thus controlling the transform domain
of the linear system. Φ is the measurement matrix. The vector y is the measurement vector obtained after
CS.

Figure 1: Compressive sensing as a concept, with the white squares being zeros [2].

In Eq. (7) the number of unknowns N is greater than the number of measurements M and the equation
is an undetermined system of linear equations, meaning that there are infinitely many solutions [19]. An
underdetermined system of linear equation is a mathematical expression that has to be approximately solved
[20]. Compressive sensing algorithms allow for this undetermined system of linear equations to be solved,
often using the sparsity constraint. With a properly chosen transform basis, the signal can be represented
as sparse, which opens for accurate reconstructions. A signal is sparse if most coefficients are zero in
the transform domain representation of the signal [21]. Mathematical algorithms are used in compressive
sensing for error minimization. Algorithms which have been popular resolve l1-minimization for finding
the minimum l1-norm solution to the underdetermined system of equations [22], thus finding the sparsest
solution. l1-minimization algorithms for finding the sparsest solution are Basis Pursuit (BP) [23] and the
greedy algorithms with the Orthogonal Matching Pursuit (OMP) being the most popular [24, 2].
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Sparsity

The sparsity of the signal x is defined by the number of non-zero coefficients in the transform domain. The
signal is said to be κ-sparse if there are κ-non-zero coefficients in the transform domain [21]. Most real
applications signals can be considered sparse when they are represented in the proper domain. Looking back
at Eq. (7) with the sparsity property; most of the samples of x are zero, which then reduces the dimension
of the problem. The l0-norm defines the number of non-zero elements in a vector:

∥X∥0 = card {supp(x)} ≤ κ. (8)

If κ ≪ N, x is considered sparse, and thus a reconstruction method can be used to give an approximate
solution the linear system of equations.

Restricted Isometry Property

The restricted isometry property (RIP) is one of the two important conditions to be met for a reconstruction
to be successful, the other is the incoherence property which will be described after. It is used to describe
approximately orthonormal matrices. Orthonormal matrices hold the relationship that the inverse of the
matrix is equal to the transposed of the matrix: a matrix O is othonormal if O−1 = OT . The relationship
between Φ and Ψ is of importance in CS [25]. The matrix Φ satisfies the RIP if

(1−δ ) ∥ x∥2 ≤ ∥ Φx∥2 ≤ (1+δ ) ∥ x∥2, (9)

holds for the vector x with κ nonzero coefficients or less [26].

Incoherence Property

The other important condition to be met for successful reconstruction is the incoherence property. This is
the mutual coherence between the measurement matrix Φ and transform domain matrix Ψ. The property
gives a measure of the similarity between the two matrices. The maximum similarity needs to be as low
as possible in order to reconstruct the signal. Larger incoherence means fewer samples required for good
reconstruction [27]. The incoherence of matrix Φ and Ψ is expressed by µ(Φ,Ψ):

µ(Φ,Ψ) =
√

nmax
i, j

|⟨ϕi,ψ j⟩|. (10)

Here Φi is the i-th row in matrix Φ and ψ j is the j-th column in matrix Ψ. The coherence measure, µ is
expressed in the range between 1 and

√
n [21].

2.2 Optimization Problems

In computer science, an optimization problem is the question of finding the best solution of all possible
solutions [28]. As described earlier, in order to solve Eq. (7) one can search for the sparsest solution. The
search is done by minimizing the l0-norm of x:

min∥x∥0 subject to y = Ax. (11)

This is a non-convex optimization problem, which replaces l1-norm by lp-norm [25] where, the solution is
found by demanding searches over the subset of columns in the CS-matrix A [2]. All sparse vectors x with
κ samples are needed to be searched over. The κ-positions of entries are from the set {1,2, ...,N}. The total
number of κ-position subsets are

(N
κ

)
, this yields an exponential order of complexity. For example if one

has N = 256 and κ = 6 there will be over 1011 systems to solve. Because of this complexity isn’t scalable
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and one gets a exponentially growing number of systems to solve, one use the closest convex l1-norm of the
transform instead [2].

min∥x∥1 subject to y = Ax. (12)

Vector norms are mathematical expressions of distances between vectors. A vector x with i elements is
given in the p-norm as [29]:

∥x∥p =

(
∑

i
|xi|p

)1/p

. (13)

This enables the use of linear programming to solve the optimization problem. The l1-norm is given by the
following expression [2]:

∥x∥1 =
N

∑
i=1

|xi|. (14)

2.3 Machine Learning

Machine learning algorithms builds models established on sets of sampled data, called datasets, and makes
predictions and decisions based on the learned patterns in the datset, without being directly programmed to
do so [30]. The learning can be supervised, by using labeled data, or unsupervised, which learns patterns
in unlabeled data. The end goal of a machine learning algorithm can be to cluster datasets, classify data or
predict data [21].

2.4 Deep Learning

Deep learning is a machine learning branch in which features are automatically extracted from data. Deep
learning falls into the category of end-to-end learning, which concerns about learning a mapping between a
given input and the desired output automatically. The advantage of this branch is the continuous improve-
ment of the network with increasing data [31]. A comparison of classical machine learning methods and
deep learning methods is given in Fig. 2.

Figure 2: Difference between classical machine learning methods in classifying animals and deep learning
methods.

The figure above shows the advantage of automatically feature extraction with the use of deep learning
methods, by classifying images. Whereas the classical method relies on manually chosen features, in order
for correct classification [32].
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2.5 Neural Networks

In 1980 the computer scientist Kunihiko Fukushima made the first artificial neural network called Neo-
cognitron. This where a mathematical model of neural networks, and shared the same characteristics of
today’s deep convolutional neural networks, with multi-layered perceptron structure, convolution, nonlin-
ear dynamical nodes, and max pooling operation being some of them. The network was inspired by Huble
and Wiesel’s discoveries of the structure of the visual nervous system [33]. Today the convolutional neural
network (CNN) is a popular deep learning design which is specialized in the work of dimensional data, such
as images. CNNs have been used in image segmentation applications, for classifying structures in images,
due to their ability to learn image features [31]. Popular applications of CNNs are ResNet [34], VGG [35],
Inception [36] and AlexNet [37].

Layers

CNN’s “building blocks” are their layers. A CNN consists of multiple layers, and each layer can learn
different features of an image. The layers are arranged accordingly: input layer - hidden layers - output
layer, and define filters for the training images at different resolutions [21]. The output of each layer is the
input of the next. Fig. 3 shows an overview of the layers in a classical CNN.

Figure 3: CNN with its layer categories

The feature extraction gets more complex the deeper into the hidden layers one go and this is the advantage
of neural networks. The operation which makes the layers learn features is the convolutions.

Convolution

The word “convolutional” in convolutional neural networks implies that the network employs a mathemat-
ical operation called convolution on the data. The CNNs use convolution in at least one of its layers instead
of general matrix multiplication. The operations are linear, where a set of weights are multiplied by the
input. The method was designed for the use of multi-dimensional inputs, thus the multiplication is done on
multi-dimensional input and multidimensional weights, called kernels or filters [21]. There is a size differ-
ence between the input data and the filters, where the filters are smaller in size. The reason for this is to let
the filter be multiplied by the input data multiple times at different input points. The filter is systematically
sliding over the image, left to right and top to bottom, and detecting features along the image. Fig. 4 shows
an illustration of the convolution operation where the input image with dimensions 4x4 is convolved with a
kernel or filter with dimensions 3x3 which gives a output of dimensions 2x2 called the feature maps.
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Figure 4: A basic illustration of the convolution operation with a 4x4 pixel input image convolved with a
kernel of size 3x3 and the corresponding output of 2x2 pixels.

Max-pooling

Max-pooling is the operation that down-samples the data into smaller dimensions. The down-sampling of
data is important for the networks for learning features in the sub-regions of the down-sampled input [21].
Max-pooling helps to prevent overfitting, which means that the model learns too many details in the training
data and makes the model perform worse on unseen data [21]. Max-pooling also reduces the computational
cost by reducing parameters by progressively reducing the dimension size of the representation. Fig. 5
shows the max-pooling operation on a 4 x 4 matrix and a filter size of 2 x 2. In order to not overlap regions
the stride is set to 2. The stride can be visualized in Fig. 5 as the filter is jumping 2 steps in-between the
max pooling as seen in the four color tiles. The output is then a 2 x 2 matrix with each of the maximum
values from the initial regions.

Figure 5: Max-Pooling operation with a filter size (pool-size) of 2 x 2.

Loss Functions/Cost Function

A cost function is used to calculate the cost which is the difference between the predicted value from the
model on the validation data and the actual value. By using the loss function the gradients, which are used
to update the weights, can be found. The cost is the average over all losses. The neurons in each layer
process information by using a non-linear activation function. By propagating information through layers
of neurons the network is gradually learning. Through a process called backpropagation, the weights are
iteratively changed and by combining these, with input information the outputs can be motivated towards
the expected outcome.

The operation of one single neuron in a network can be viewed as the data is multiplied by a random weight
and added to a random bias. The result of this will be the input of the neuron. In order to change the result,
bias and weight are found during training. Eq. (15) shows the input to one neuron:

input = data×weight +bias (15)
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The neuron represents a non-linear activation function, and this function transforms the input into a value
within a specified range related to the chosen activation function. The output is compared to the expected
output and the difference is measured with a cost function. The difference is sent back to the beginning and
used to update the weight and the bias, this is known as backpropagation in the network. This procedure is
repeated until the output is reasonably close to the expected output [21].

Optimization Functions

Training times can be reduced exponentially with the right optimization algorithm. In order for the neural
network to reduce the losses, the optimizer changes network parameters such as weights and learning rates.
When mapping the input to the output the optimization algorithm finds the weights that minimize the error
of the mapping. During the training of the network, the weights are updated each epoch and the loss
function is minimized. Choosing these weights is a complex task as the network can consist of millions of
parameters, which sets the bar for the optimization algorithm’s performance for the given task. There exist
different optimization algorithms for giving the most accurate result possible and some of them are given
below.

• Gradient Descent: the gradient descent algorithm is widely used in linear regression and classific-
ation algorithms, as well as in backpropagation in neural networks. The gradient descent optimizer
is depending on the first-order derivative of the loss function and uses the information to calculate
which direction to alter the weights such that the loss function can reach the minima. Using gradi-
ent descent as an optimizer is computationally simple, and implementation is straightforward. The
downsides are that it might get stuck in a local minima, which happens when the gradient of the loss
function is calculated to be zero at a point that is not corresponding to the global minima. Datasets
can be large, and the gradient descent to calculate all gradients for the whole datasets can often take
a substantially long time.

• Stochastic Gradient Descent: the stochastic gradient descent (SGD) optimizer is a variant of the
gradient descent, which updates parameters more frequently in the model. On each training example,
the parameters are updated, compared to the standard gradient descent where the parameters are
updated after one cycle through the training data. This results in faster convergence, and fewer values
to store hence requiring less memory. SGD has some downsides as well, with model parameters
having high variance and learning rates are slowly reduced in order to converge at the same point as
gradient descent.

• Adaptive Moment Estimation (Adam): is an extension of the stochastic gradient descent (SGD) for
updating weights during training. Adam optimizer updates the learning rates of each weight indi-
vidually compared to the SGD which maintains a single learning rate. It is widely used throughout
the deep learning community, with its faster running time, minor memory requirements, and fewer
adjustments than other optimization algorithms are required. Adam optimizers also have a downside,
which is that they focus on faster computation times and thus generalize less than SGD.

2.6 U-Net

U-Net is a neural network architecture that is focused on segmentation. The name comes from the shape
of the network layer structure that forms the shape of a U, as can be seen in Fig. 6. The U-shape divides
the network into two sides, where the left slope is the encoder and the right slope is the decoder. The left
side of the U-Net is referred to as the contracting part used to capture the context of the data, which follows
the same architecture as a standard CNN. On the right side is the expansive path, used to capture the data
context [38].
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Figure 6: U-Net architecture, each blue rectangle corresponds to a feature map with multiple channels. The
arrows represent different operations characteristic of the U-Net architecture [39].

The contractive path consists of convolutional blocks, and the amount of blocks is configurable. A skip
connection or concatenation is applied to the outputs from each convolutional block, except the last block.
The blocks are composed of two convolutional layers with a kernel size of 3x3. With a stride of 1 and a
kernel of 3x3, the image height and width are reduced by 2 pixels for each convolution, which can be seen
in the example in Fig. 6, where the highest block has reduced the image from 572 x 572 to 568 x 568
after the last convolution. Each convolution is followed by a ReLU activation function. The max-pooling
operation is performed between each block, this has a 2x2 pool size and a stride of 2. The max-pooling is
the operation which down-samples the data by half the pixel width and height, which is seen in the figure
above where the input starts at 572 x 572 and ends up with a dimension of 32 x 32 at the bottom layer. The
compensation is a doubling in feature map size where the last layer has 1024 feature maps and the upper
layer has 64. This shows that the U-Net learns more features at lower dimensions than higher ones, and thus
balances computational resources. The expansive path is similar to the contractive path only inverse. The
data is being upsampled instead of downsampled, with the same configurations. The upsampling decreases
the feature maps by 2. The skip connections or the concatenation doubles the number of feature maps.
After the two convolutional layers with the same configuration as the contractive path, the feature maps are
back to the original size. At the end of the expansive path, the output will be the upsampled image with an
initial amount of feature maps [38]. The concatenation serves as an “information-keeper”, which adds extra
information from the decoder side to the encoder side that might be lost due to the down-sampling of the
network. The concatenation is a way to combine the contracting path with the expansive path, this utilizes
end-to-end training approaches and thus learning can increase [40].

2.7 Hyperspectral Remote Sensing

Remote sensing is the technique of long-range detection of objects or substances and natural phenomena by
capturing information from a distant scene. Remote sensing can perceptually define a phenomenon or object
by measuring the collected reflected electromagnetic wave. What makes this technique possible and further
makes hyperspectral images useful is the fact that all objects or substances reflect different electromagnetic
waves due to different features and environmental conditions. Hyperspectral imaging or spectroscopic
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imaging is an imaging technique that captures spatial and spectral information of a scene. The information
acquired in the acquisition process is stored in a three-dimensional datacube, where the spatial information
is represented in the x- and y-axis. In contrast, the spectral information is represented in the z-axis or the
depth of the cube. Fig. 7 shows a hyperspectral cube of Jasper Ridge dataset. The hyperspectral image is a
representation of the characteristically electromagnetic waves reflected by substances and objects from the
scene. Hyperspectral images have gained popularity in the area of remote sensing due to their potential to
classify different phenomena, like the detection of mammal herds, seasonal variations and toxation of algae
blooms [41]. Different techniques exist when capturing HSIs, where the most used are whisk broom, push
broom and snapshot [9, 17]. Whisk- and push broom are scanning methods for capturing the spatial-spectral
information, and snapshots are capturing the scene in one ”shot”. [3]

Figure 7: Hyperspectral data cube with spatial and spectral information. x- and y-axis are the spatial
dimensions, while z-axis is the spectral bands dimension. The colors are not calibrated and are only for
visualisation. Figure is made in MATLAB using the Volume Viewer app.

The spectral dimension (depth) contains the wavelength that the imager is capturing, this dimension is di-
vided into sampled wavelengths called bands. If the hyperspectral imager is capable of capturing wavelengths
between 400 nm and 700 nm with 100 bands, this will give each band a wavelength of 3 nm. For a snapshot
imager the spatial resolution is defined by the number of pixels in the image detector, while for the scanning
methods the spatial resolution is defined by the duration of the scanning. Looking at one individual pixel in
the spectral domain reveals spectras, which is one pixel with all of its bands, shown in Fig. 8. This wave
representation of a pixel makes it possible to see what object or signature the pixel represents in the scene
being captured [3].
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Figure 8: A hyperspectral cube separated by its different bands into spatial images. The spectra of one pixel
is shown in the plot to the right [42].

2.8 Quantitative Image Quality Metrics

In order to quantify the quality of compression reconstruction, there are some useful metrics. These compare
the reconstructed image to the original image. Three such metrics will be explained below.

Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE)

PSNR is used to quantify the reconstruction of a compressed image compared to the uncompressed version.
The ratio concerns the maximum power of the signal and the power of the corrupted noise that affects the
fidelity of the representation [43]. The PSNR is logarithmic using the decibel scale, and higher dB means
better quality. Eq. (17) and (16) shows how the PSNR is calculated:

PSNR = 10log10

(
R2

MSE

)
, (16)

where R is the maximum fluctuation in the image data type. If the image is 8-bit unsigned integer type
data, the R will be 255. Eq. (17) shows the expression of mean square error (MSE), where M and N are the
spatial dimensions of the images, and I1 and I2 are the two images being compared:

MSE =
∑M,N [I1(m,n)− I2(m,n)]2

M ∗N
. (17)

As with PSNR the MSE is a measurement for comparing the quality of image compressions. MSE is
the cumulative squared error between the compressed and the original image, whereas PSNR represents a
measure of the peak error.

Structural Similarity Measure (SSIM)

The SSIM is a perception-based model which measures degradation in structural information in images. The
model does not measure absolute errors such as MSE and PSNR. The spectral information is that close pixels
have strong inter-dependencies, which carries important information about the image scene like structures
and objects [44]. SSIM is calculated from three measurements: luminance (l), contrast (c) and structure (s),
and the weighted combination of these reveals the SSIM as seen in the equations below:
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l(x,y) =
2µxµy + c1

µ2
x +µ2

y + c1
, (18)

c(x,y) =
2σxσy + c2

σ2
x +σ2

y + c2
, (19)

s(x,y) =
σxy + c3

σxσy + c3
. (20)

With x and y being the two images to measure between. µ the averages, σ2 the variances and σ the
covariance. c1 and c2 are variables and c3 is equal to c2/2. SSIM can then be expressed as:

SSIM(x,y) =
[
l(x,y)α ,c(x,y)β ,s(x,y)γ

]
, (21)

where α,β ,γ are weights.

2.9 Compression Ratio (CR)

Compression ratio, or CR for short, is the ratio between the compressed number of samples M and the
original number of samples N. This states how much of the original bands that are left from the true image.
This means that if M = 30 and N = 150, the CR is 30/150 = 0.2, i.e. 80% of the original samples are
discarded in the acquisition.

2.10 MUSI

This subsection goes through the theory from the paper “Compressive Sensing Hyperspectral Imaging by
Spectral Multiplexing with Liquid Crystal”, by Yaniv Oiknine et al [10].

MUSI stands for miniature compressive ultra-spectral imaging system and utilizes a single liquid crystal
(LC) phase retarder, which encodes only the spectral domain. By applying different voltages to the LC
cell, the refracting index is modified which again changes spectral modulation. Due to the LC-retarder, the
signal is multiplexing entirely in the spectral domain. Two polarizers are placed on each side of a liquid
crystal cell. By changing the applied voltage on the LC cell, variations in the cell’s birefringence occur,
which again causes the refractive index to change. This controls the spectral transmission. [10]

Birefringence

Birefringence is a property of optics a material has. The material has a refractive index which depends on
the orientation and polarization of incoming light. The quantification of a material’s birefringence is often
defined by the maximum difference between the refractive indices and the material effects [45]. Transparent
objects are optically isotropic, this means that the index of refraction is equal in all directions throughout
the crystalline lattice. The entering light is reflected at a constant angle in an isotropic crystal, and passes
through it at a constant velocity. The light is not undergoing the effects of polarization caused by interactions
in the electronic components inside the crystalline lattice.

Measurements

The methods of measurements can be divided into two subgroups; direct measurements and indirect meas-
urements, such as multiplexed or coded measurements. Coded measurements have gained popularity in
the use of spectroscopy even though they are needing post-processing and are more complex systems than
direct measurements. Sensing matrices for the indirect measurements are following a non-zero off-diagonal
element structure.
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Sensing Matrix

The sensing matrix is orthogonal with N columns and N rows. The hypercube grid comprises N points
and the direct- and indirect measurement systems thus need several measurement points, M, greater or
equal to N. However, MUSI requires significantly fewer measurement points M, than hypercube points N.
A compact cost-effective, single LC variable retarder is used with the theory of compressive sensing to
sample the hypercube with a great amount of measurement point less than before.

In the approach of MUSI the spectral encoding is accomplished in the spectral domain alone, thus no need
for spectral-to-spatial transformation. The modulator comprises a liquid crystal cell (LCC) and photosensor
array. The CS theory is preserved in the specific design of the LCC. The form factor of such a sensor device
can be a width of only a few millimetres. Which is a huge advantage compared to other methods of spectral
measurements. These methods tend to be based on direct spectral measurement with narrow-band spectral
scanning, and they are often optically less efficient due to a few cascaded spectral filters.

The M spectrally multiplexed images can be recovered using reconstruction algorithms. The spectral en-
coding is done by the LCC, where the refractive index is controlled by changing the voltage over it. By
changing the refractive index different phase delays for different wavelengths are implemented, which leads
to wavelength-dependent attenuation. The representation of the spectral encoding of the system as a func-
tion of the voltage applied is the system spectral matrix. Each pixel of the sensor array integrates the
modulated light that is passing through the LCC. The spectral and spatial encoding are separate because
each pixel is similarly spectrally encoded. The separate encoding further means that the spatial-spectral
matrix can be modelled.

Figure 9: Illustration of MUSI acquisition process (a). MUSI optical scheme diagram (b) [17].

The CS-MUSI camera has a single liquid crystal (LC) phase retarder. This follows the same principles as
described above (liquid crystal cell, spectral modulation). When the LC cell’s optical axis is at 45° to two
perpendicular polarizers, the spectral response of the phase retarder is given by:

φLC(λ ,Vi) =
1
2
− 1

2
cos
(

2π∆n(Vi)d
λ

)
, (22)

where the thikness of the cell is given by λ , ∆n(Vi) is the birefringence formed by the voltage Vi. The LC
cell is applied either a sine or square wave with a frequency in the order of kHz. The spectral response map
is measured in the calibration process and is showed in the figure bellow.
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Figure 10: Spectral response map for the CS-MUSI with voltages from 0 to 10 volts at the left and a zoom-
in at the voltages from 1.3 to 3.5 volts [10].

By selecting M rows from the response map in 10 a sensing matrix A can be found. The figure bellow
shows the spectral sensing matrix with M = 32 and N = 391.

Figure 11: Sensing matrix A with 32 measurements (row) and 391 original bands (columns) [6].
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2.11 Previous Work

Under this Section, previous research in compressive sensing, hyperspectral imaging and reconstruction
methods are being provided. The aim is to give the reader an overview of the groundwork that was used to
decide upon the methods proposed in this thesis.

Compressive Hyperspectral Imaging

Several methods have been proposed for capturing spatial information across many wavelengths. The push-
broom spectral sensor is a hyperspectral imager that captures a spectral cube with one focal plane array
(FPA) measurement per spatial line of the scene [9]. Spectrometers acquire hyperspectral data by scanning
several zones linearly in proportion to the desired spatial and spectral resolution. Spectrometers are based
on optical baseband filters. These filters are tuned in steps in order to scan the scene sequentially. The
aforementioned acquisition techniques all share the same disadvantage: they are time-consuming and re-
quire considerable data storage. Thus, a different spectral imager called CASSI (coded aperture snapshot
spectral imagers) exists. An advantage of the CASSI is that it preserves compressive sensing principles.
The entire data cube is sensed with just a few FPA measurements [11]. Looking at the principles of CS, the
random projections occur naturally due to the optical dispersion phenomena affecting coded aperture light
fields as they traverse a prism before the imaging detector integrates these.

MUSI

MUSI stands for miniature compressive ultra-spectral imaging system and utilizes a single liquid crystal
(LC) phase retarder, which encodes only the spectral domain. Changing the applied voltage on the LC cell,
variations in the cell’s birefringence, which again causes the refractive index to change. This controls the
spectral modulation of the incoming light [10].

Reconstruction Methods for CS HSIs

ConvCSNet: A convolutional compressive sensing framework based on deep learning (2018):

Earlier works of compressive sensing reconstruction of hyperspectral images have suffered from blocking
artefacts in the recovered images. Instead of recovering block by block, Lu, Xiaotong, et al. implemented
a convolutional CS framework which sensed the entire image using a set of convolutional filters. Then the
whole image was reconstructed from the linear convolutional measurements. The CNN in ConvCSNet per-
formed both the convolutional sensing and the nonlinear reconstruction. The advantage of this framework
is highlighted when comparing it with the substantial random sensing matrices and the slow convergence
of the sparsity optimization reconstructions. Sensing the input image is done through the first layer by
convolving the whole image with a set of random filters, followed by subsampling. The tiny filters are
stored and use little storage space compared to the random matrices used in the sparse recovery methods.
The authors claimed that their method substantially outperformed previous state-of-the-art methods in both
visual quality and PSNR [8].

Hyperspectral image reconstruction using deep external and internal learning (2019)

Zhang, Tao, et al. presented a CNN-based channel attention reconstruction network developed to effi-
ciently exploit the spatial-spectral correlation of HSIs. The reconstruction process consists of three steps:
1. Present a CNN-based reconstruction method for coded HSI to effectively combine deep external and
internal learning. 2. Exploit the spatial-spectral correlation of the HSI by external learning. 3. Guarantee
generalization ability and adapt itself to variant scenes by internal learning. They aimed to implement an
efficient CNN-based method for coded HSI reconstruction learning the deep prior from an external dataset
and internal input image, combining deep external and internal learning.
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Their proposed systems were based on multiplexing a 3D cube into a 2D spatial sensor. This acquisition
method previously sacrificed spatial resolution. And coding-based methods showed potential in overcoming
the temporal and spatial resolution trade-off. The optical design elaborates coding-based techniques to
encode the 3D HSI into a 2D compressive sensor. The bottleneck was now shifted to the reconstruction of
the HSI. Due to the model-based methods relying upon carefully designed priors, learning-based methods
were used, as they implicitly learned the priors from external datasets. The learning-based methods had a
problem; however, they often attempted to brute-force the input and output mapping, ignoring the internal
imaging model.

They suggested a convolutional neural network for coded HSI reconstruction, which learned deep priors
for external datasets and spectral-spatial constraints from internal input image information. The method
outperformed state-of-the-art, according to the authors. [46]

DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural
networks (2019)

Gedalin, Daniel, Yaniv Oiknine, and Adrian Stern contributed to DeepCubeNet. The DeepCubeNet is set
around the CS-MUSI and can reconstruct hundreds of spectral bands. The reconstruction is performed
through a deep neural network consisting of two parts; a pseudo-inverse operation as an approximate solver
and a U-net architecture where the 2D convolutions are replaced with 3D convolutions. The pseudo-inverse
operation back-projects the CS-MUSI data from the compressed domain to the hyperspectral domain. This
means transforming the CS-MUSI sensing matrix, which is the initial back-projection. It was introduced to
prior information about the imaging system, which gave the network an initial guess, allowing it to converge
to desired minima. In the U-net, all layers are 3D convolutions. The architecture exploits the spatial context
of neighbouring pixels and the spectral correlation of neighbouring bands. The network is based on the
acquisition of a compressive sensing system for hyperspectral imaging called CS-MUSI. DeepCubeNet
claims to outperform previous state-of-the-art by at least 10 dB. Using pseudo-inverse projection as part of
the network prevents overfitting, and the neural network gets prior knowledge of the physical measurement
system. This knowledge reduces the complexity of the network, allowing a reduction in the number of
parameters [6].

HyperMixNet: Hyperspectral image reconstruction with deep mixed network from a snapshot meas-
urement (2021):

In [47], the authors Yorimoto, Kouhei, and Xian-Hua Han reconstructed the underlying HSI from a single
snapshot image. Instead of conventional convolutional layers, HyperMixNet has integrated a MixConv
block. This has the advantage of reducing the size of the reconstruction model, which in turn is handy
when being embedded in the natural imaging system. The number of network parameters is decreased,
and multi-level context is learned for more representative feature extraction. This outperforms the previous
state-of-the-art methods in quantitative values, visual effect, and reconstruction model scale [47].

Reconstruction Methods in General

Deep generative adversarial neural networks for compressive sensing MRI (2019):

Mardani, Morteza, et al. focused on high diagnostic-quality image reconstruction from highly under-
sampled MR measurements. The authors propose a tandem network consisting of a generator, an affine
projection operator, and a discriminator. The generator aims to create gold-standard images from the un-
dersampled images. This is done using a deep residual network (ResNet) with skip connections to retain
high-resolution information. The discriminator network consists of a multilayered convolutional neural
network. The discriminator aims to distinguish fake images (from the generator) from real images (corres-
ponding gold standards). The network’s training is like playing a game with conflicting objectives between
the discriminator and the generator. The generator aims to map the subsampled input image to a fake image
that fools the discriminator into believing it is fed an actual image. The discriminator tries to score one for
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the actual gold-standard image and zero for the fake. The perceptual quality was achieved with the ability
to confirm diagnostics. The GANCS were significantly faster than the state-of-the-art methods [7].

Interesting approaches in the field of hyperspectral images

Super-Resolution

In ”Deep hyperspectral prior: Single-image de-noising, inpainting, super-resolution” [48] Sidorov, Oleksii,
and Jon Yngve Hardeberg, propose an approach to de-noising, inpainting and super-resolution of hyper-
spectral images by using properties of a convolutional neural network without training. The performance is
comparable with previously trained networks and has the advantage of not being restricted by the available
training data sets. The work extends the ”deep-prior” algorithm to the hyperspectral imaging domain and
3D-convolutional networks. The algorithm is used in restoring hyperspectral images that suffer from noise,
low dimensions and corruption.

Image-Fusion

In the article “Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network”
[49] by Palsson, Frosti, Johannes R. Sveinsson, and Magnus O. Ulfarsson. The authors propose a method
for using a 3D convolutional neural network to fuse multispectral and hyperspectral images to obtain a
higher resolution hyperspectral image. The 3D CNN learns filters used to fuse the multispectral image with
the hyperspectral image. The method is based on supervised learning and requires a hyperspectral target
image. However, the author did not have the multispectral and hyperspectral pair and used spatial low-pass
filtered and downsampled versions of the hyperspectral images instead. Experiments with simulated data
show that the proposed method gives acceptable results.
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3 System Description

Figure 12: Illustration of the reconstruction of the sub-sampled cube.

The following Section addresses the steps that are followed throughout this project. First, the sensing of
the data is presented here with transform domains like DFT and DCT. The different datasets used and
their limitations are presented, as well as the training set preparations—followed by a preview of the U-Net
architecture and its different components. The training process is further explained, and data types and tools
will be highlighted at the end. When researching methods for compressive sensing Hyperspectral imaging
systems, the goal was to find a creative solution that was inspired by the growing interest in deep learning
in previous image applications. There is a few options for already developed methods for these kinds of
systems which uses different structures of CNNs [50, 51], convolutional autoencoders [52] and MixConv
[53] to name some of them. They all share the same advantage over the classical iterative methods like
Orthogonal Matching Pursuit, Basis Pursuit, or Gradient Projection for Sparse Reconstruction [4], in terms
of speed and no need for hyper-parameter tuning. Two methods stand out in particular when looking
at imaging systems that could enable compressive sensing directly in the sampling process. These are
the Coded Aperture Snapshot Spectral Imaging (CASSI) [11] and the Compressive Sensing Ultra-Spectral
Imager (CS-MUSI) [17]. These are both in the category of snapshot hyperspectral imagers, meaning that the
sensing times compared to scanning methods will decrease. CASSI has a more complex sensing strategy
and uses a coded aperture, where the CS-MUSI only compress the image in the spectral domain. As a
concept for a new hyperspectral imager for CubeSats, the CS-MUSI is the choice. Daniel Gedalin, Yaniv
Oiknie and Adrian Stern, had great success with the combination of CS-MUSI and their deep learning
reconstruction method using U-Net architecture [6]. They used the ICVL Hyperspectral Database [15], and
with a compression ratio of approximately 0.1 (32 of 391 bands), they achieved PSNR results of 48 dB. That
is over 10 dB better than state-of-the-art deep learning methods at that time. The results and documentation
from DeepCubeNet and the CS-MUSI inspired this thesis goal of a new hyperspectral image reconstruction
system for CubeSats. The first milestone would be to get results close to those of the original paper, and the
second would be to get better results by changing some parameters.

3.1 Sensing the Data

The CS should be implemented directly in the acquisition of the data. With the limiting resources within
the CubeSat, this plays a huge role, where power can be saved in operating the detector, storing data and
transmitting data. Imagers built on compressive sensing principles like CS-MUSI use a liquid crystal phase
retarder as a dispersive element. The LC encodes the spectral domain of the incoming signal. The voltage
over the LC controls the encoding, and the LC’s spectral transmission response will change. In this thesis,
the aim is to emulate compressive sensing as done using a real LC phase retarder. Building an actual
imager is beyond this project’s scope, but using the same principles will be a proof of concept for this CS
hyperspectral imaging.
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3.2 Datasets

Since the thesis addresses the concept of reconstructing CS hyperspectral images, the testing will be done
on already collected datasets. The datasets used in this thesis are well established in the hyperspectral image
processing field, with some of the more widely used being Cuprite, Jasper Ridge, and Salinas. These are
collected under the same dataset named Compact Dataset in this thesis. Another dataset used is the one
provided by The Interdisciplinary Computational Vision Laboratory (ICVL) [15]. ICVL database consists
of over 200 images with dimensions 1392x1300x519. These are images from an urban city scene. The
Aviris dataset contains hyperspectral images from the database from the Aviris project, collected over the
USA for a decade. The images from Aviris were handpicked, meaning that the images that are given
in Table 1 are chosen due to their quality in the form of spatial and spectral dimensions. Fig.13 shows
some examples of images in the ICVL database, and Fig. 14 shows some examples from some popular
hyperspectral datasets. Table 1 gives an overview of the different earth observational datasets used.

Dataset overview Images Dimensions Wavelengths Data-type Targets Category
ICVL 29 1392x1300x519 400-1000 double City, urban
Compact Dataset
Jasper Ridge 1 100x100x198 380-2500 double Nature, river
Cuprite 1 250x190x188 370-2480 double Nature, ridge
Airport-Beach-Urban 1 100x100x205 NA double City, urban
The China Dataset 2 420x140x154 NA int16 Nature, fields
The USA Dataset 2 307x241x154 NA int16 Nature, fields
Kennedy Space Centre 1 512x614x176 NA double Urban and nature
Salinas 1 512x217x224 NA double Nature, fields
Aviris
SaltLake 1 2808x786x224 360-2500 int16 Nature, ridge, water
Olympic 1 2447x742x224 360-2500 int16 Nature, ridge, water
Campbell 1 2313x777x224 360-2500 int16 Nature, ridge, water
St. George 1 2128x749x224 360-2500 int16 Nature, ridge
Playmounth 1 5104x737x224 360-2500 int16 Nature, fields

Table 1: The table shows an overview of the different hyperpsectral datasets used throughout this project.

Figure 13: Example images from the ICVL Hyperspectral Database [15].
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Figure 14: Example images from different public hyperspectral datbases.

ICVL database has high-quality images. These are taken at ground level in a city environment. The Com-
pact Dataset and the Aviris dataset include both nature and urban scenes with a birds-eye-view or earth
observational. In order to train the deep learning model, the training samples must have equal dimensions.
The earth observational dataset has a broad spectrum of dimensions; some images have higher resolutions
than others. In order to have as high a spectral dimension as possible with the limited datasets, the spectral
boundary was set to 150 bands; however, this left out some of the images from the Compact Dataset. The
bands for each image are down-scaled to 150 bands from their original length. This ensures that the bands’
structure remains the same because the spectral resolution is different from image to image.

The hyperspectral image is the signal f from the CS theory. In the pre-processing of the data, the CS is
performed on each pixel. Keeping the same sensing matrix throughout this process will ensure that the final
result will be the spectral encoded image with M bands. Thus keeping the emulation of sampling as equal
to a practical example as possible. Fig. 15 shows a schematic overview of the compressive sensing for this
project. The hyperspectral image is compressive sensed according to the CS-theory and with a compression
ratio given by the ratio between M and N.

Figure 15: An overview of the compressive sensing stage for every hyperspectral image in the dataset to
create patch-pairs of true image and CS-image.

Following the CS theory, the sensing process needs to follow certain constraints. The constraints are:
sparsity, restricted isometry property and incoherence property between the measurement matrix and trans-
form domain matrix. The first approach is to define the random measurement matrix Φ. The measurement
matrices can be optimized for better incoherence with the transform domain matrix, which can improve
the performance of the reconstructed signal [54]. For simplicity, the thesis will follow the principles of the
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well-established Gaussian random matrix. The transform domain matrices used in this thesis are the DCT
and DFT. The sensing matrix A , where the M-samples are defining number of rows from Ψ to be acquired,
and Φ defines which rows from Ψ to sample for making matrix A. This process is shown below, where the
figure shows the transform domain matrix as IDFT matrix with dimmensions 20 x 20 and how the M =
5 rows are randomly selected and creates the measurement matrix A. This will result in a compression of
20% sampled data:

Figure 16: The figure shows the structure of matrix A.

Fig. 17 shows the plot of one pixel from a hyperspectral image. The left plot is the compressed pixel with
20% of the data sampled, the middle is the original pixel, and the right plot shows the sparsified version of
the original pixel.

Figure 17: The figure shows one pixel after compressive sensing (left), original pixel (middle) and sparsified
pixel (right). The spectral domain has been reduced from 150 samples to 30 samples on the compressive
sensed plot.

3.3 Data Pre-processing

Three datasets used in this thesis, the ICVL, Aviris and one consisting of a dozen publicly available earth
observational images, will be referred to as the Compact Dataset. The training will be performed by using
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them individually for comparisons in the results section. For training-, validation- and test set, the data
needs to be pre-processed to have the same dimensions. In order to reduce the parameter complexity and
the computational times, the input training sample images are reduced in spatial dimensions. Each image is
divided into patches of 64x64x150 with 32 pixels overlapping in the spatial domain. The spatial dimension
of 64x64 includes enough spatial data for the model to learn features while keeping training memory low.
By overlapping with 32 pixels, the amount of training data is increased. This operation is shown in Fig. 18.

Figure 18: The figure shows the data being divided into sub-cubes.

Before the images are divided into patches, CS is performed over each image. Then one creates a patch-pair
with both the original data and the CS data, as shown in Fig. 19 below.

Figure 19: The figure shows the concept of patch-pairs of original image at the left and CS representation
at the right.

Several training datasets are made for training the model to see which gave the best results. The different
training sets are shown in the table below:
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Models Dataset Sparse CR Patches
ICVL CR 0,2 ICVL No 0,2 3809
ICVL CR 0,6 ICVL No 0,6 2951
ICVL CR 0,2 Sparse ICVL Yes 0,2 3809

Aviris CR 0,2 Aviris No 0,2
Aviris CR 0,6 Aviris No 0,6 2584
Aviris CR 0,2 Sparse Aviris Yes 0,2 2584

Table 2: The table shows an overview of the different training datasets built in the pre-processing stage.

Different compression ratios were tested for reconstruction, to see the impact that less samples have on
the model’s ability to keep quality in the reconstructed image. Compression ratios are given in Table 2
above. The data is divided into smaller patches to reduce computational times and complexity in training
the model. The patching will also increase the training data samples, thus eventually better generalising the
model.

3.4 DeepCubeNet

In order to reconstruct the CS hyperspectral image, a reconstruction method is needed, which for a long time
has been sparse recovery algorithms [4], which can further be divided into convex optimization algorithms
and greedy algorithms. These have been used for many compressive sensing tasks like imaging, MRI and
HSIs, and with great results. However, the great results from these algorithms are bounded by handcrafted
priors and their computational times. These reconstruction methods have evolved in the last years to pre-
trained models that learn the priors by themself and take considerably less time to recover the data from the
CS. These pre-trained models are from deep learning methods like CNNs. In this thesis, a U-Net is used as
the structure for training the model for mapping the CS image to the original image. The U-Net architecture
used is the DeepCubeNet. The DeepCubeNet differs from the original U-Net architecture [39], where it
uses 3D convolutions instead of 2D convolutions. By changing 2D convolutions with 3D convolutions,
the network can be used for hyperspectral data reconstruction, learning features from neighbouring spatial
pixels and spectral bands. The 3D convolution is showed in Fig. 21. The max-pooling operation is also
changed to work with 3D data like hyperspectral images. The 3D max-pooling is showed in Fig. 22. The
original layout of the DeepCubeNet is given in the figure below.

Figure 20: An overview of the DeepCubeNet U-Net architecture [6]

The original DeepCubeNet architecture is two parted. The first block is a pseudo-inverse operation that
backprojects the input data from the compressed domain with 30 bands to the hyperspectral domain with
150 bands. This block is non-trainable to avoid overfitting the model, which means the training gets too
specific to the training data.
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Another difference from the standard U-Net is that the input data does not reduce spatially going down the
different layers but spectrally. The data dimensions will be reduced in the spectral domain.

Figure 21: 3D convolution example with input data, kernel and features.

The figure above shows the 3D convolution. It has a 3 dimensional kernel that can move in 3 dimensional
space (x, y, z) over the input data, in order to learn the low level features. The output is a 3 dimensional
cube. Such convolutions are used for detection medical images, videos and hyperspectral images.

The 3D max-pooling is performed on the layer’s 3D convoluted output from the last convolutional block.
The operation is similar to the standard max-pooling. The difference is that the operation is performed on
each convoluted output. In the example, in Fig. 22 the window size is 2 x 2 with a stride of two, which
gives a 2 x 2 output. The outputs from each max-pooling operation are then stored back in the same order
as the 3D convoluted output before max-pooling. By doing this particular max-pooling, one get an output
that is half the height and width but has the same depth as before.

Figure 22: 2 x 2 3D max-pooling of 3D convolutional output, with stride 2 [55].
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3.5 Training

The training sets tend to be significant when working with hyperspectral images, and this project is no
exception. The ICVL and the Aviris datasets are too large for the graphic card memory to process. The
graphic card used in this project is the GeForce 3080 RTX, which has a memory of 10 GB. ICVL CR 0.2
Sparse, which is the ICVL dataset sparsified, contains 3809 training pairs. Using 20% of the data for the
validation set leaves 3047 samples for training which is 3,5 GB in memory for the compressive sensed
samples and 17,8 GB for the true images. For each epoch, the model needs to process 20 GB of memory
with only 10 GB in its hands. This will give an “Out of memory” error. This can be overcome by running
training and validation on different GPUs, decreasing the number of samples or loading the training data as
batches with generators in TensorFlow. Since the two first are not an option, generators to load batches are
used. The generators load the data as batches to our memory from the disk.

For training, the validation data is chosen to be 20% of the training data. The batch size is set to 6, with
30 epochs. The batch size defines how many training samples the model will input before the internal
parameters are updated. A batch size of six means that six and six samples are loaded into the model before
the model parameters are updated. The epochs define how many times the whole training set is loaded into
the model. An epoch of 30 means that the training set will be loaded 30 times into the model. Having
an epoch of one means that every training sample has had the opportunity to adapt the internal parameters
once. When creating the datasets, the data is stored naturally in an order which gives neighbouring patches
a high correlation. If the data is loaded into the model in their original order, the data can easily overfit
and learn the neighbouring patterns too much. This is prevented by enabling shuffling in the training step.
Shuffle ensures that the training samples order is loaded randomly into the model. The shuffling still ensures
that the patch-pairs are shuffled to the same position.

The model uses the Adam optimizer for training. Adam optimizer is used due to its ability to update weights
with high computational efficiency and low memory requirements. Adam optimizers are also well suited
for extensive data and parameter problems [56], which is suitable for training with HSIs and U-Nets with
over 1 million trainable parameters. The learning rate, which is a hyperparameter that controls the change
of internal parameters of the model from the error estimations every time these are updated, is set to 0.0001.
The learning rate impacts training times, and the stability of the training process [57]. A lower learning
rate can cause longer training processes, and too big can make the training process unstable, and weights
can be sub-optimally. The loss function is the mean-square-error. The loss function is used to calculate
how good the predicted data is compared to the true data: the higher loss, the worse predictions. The
mean-square-error ensures that the model’s performance is good on most of the data.

3.6 Reconstruction

After training the model through its epochs, the model is stored with a specified model name referring to
the training data. A test set which is built on the same principles as the training set is used to test the
model’s ability to reconstruct the hyperspectral images. The reconstructed result will define the model’s
ability of generalization, which is how good the model performs on “unseen” data [58]. The test set must
be of patches that are not in the training set and are therefore picked beforehand and stored in a separate
folder.

Different models with different parameters and set-ups are tested and will further be presented in the result
section. Reconstruction is done by using the model.predict function within TensorFlow, and the reconstruc-
tion quality valuation is done using PSNR values and SSIM. PSNR is calculated using the formula from
the theory section and with the built-in function within MATLAB. The SSIM is also calculated for the
reconstructed and original images.

3.7 Data Types

The ICVL dataset contains images of the data type double, which is 64-bit double-precision floating vari-
ables. These are too large to use for model training, so the training data should be normalized. Normalizing
the data helps speed up the training process and reduce the computational complexity of higher value vari-
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ables. The data is first cast to a 16-bits value or uint16 data class. Uint16 means that the variables are
integers and can be valued from 0 - 65 535. After this, the training data is normalized between 0 and 1. The
normalization is done by dividing each number by 65 535. After reconstruction, the data is multiplied by
65 535 to reveal the uint16 image.

3.8 Tools

The data processing, namely the compressive sensing, the patch subsampling, data post-processing, visu-
alization and stitching of patches together, are done with MATLAB. Comparing the reconstructed images
with the original images are done with Hyperspectral Viewer’s help in MATLAB, where the images can be
visually inspected. The U-Net implementation is done in Python with the use of TensorFlow API. Tensor-
Flow is a machine learning platform that is open-source; it contains many libraries for developers to create
powerful machine learning applications. Codes for both MATLAB and Python are given in the appendices.

3.9 Architecture

The building of the different datasets is done using MATLAB, and Fig. 23 shows the concept of how this
is achieved. The database could be ICVL or AVIRIS, i.e. the source the images are from. The images
are divided into CS patches and GT (ground truth), i.e. original patches. Fig. 24 shows how the folder
structures are built up. First, the training data folder is created, and inside the different HSI images are
represented with a name, i.e. Olympic, followed by one folder for CS patches and one for GT patches.
Inside each of these folders, the patches of 64x64x30 (for CS) and 64x64x150 (for GT) will be in the order
created when building the datasets. It is important that the respective GT patch is loaded into the model
for a given CS patch. This is because the patch-pairs must be loaded at the same time. The patch files are
stored as .mat files, a MATLAB format for storing matrices or cubes in this case. A Python package called
mat73 is used to load the files inside the Python environment. The process is the same for making the test
data.

Figure 23: A chart showing the principle of building datasets for this project
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Figure 24: Figure shows the folder structure for the training data.

Fig. 25 shows the concept of training the model. This part is done in Python using TensorFlow. The U-Net
is trained by using the training data as input to the train-test-split block, where the data gets divided into
training data and validation data. The split is a percentage of the training data. Using a split of 20%, the
model uses 20% of the training data as validation data. The data is then loaded into the model through a
batch generator block. This is done such that the computer does not run into any out-of-memory errors.
After the model has finished its epochs, it can be used to reconstruct the images from the testing data, using
the model.predict function within TensorFlow. The code for both MATLAB and Python is provided in the
Appendix.

Figure 25: Figure shows the folder structure for the training data.
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4 Results and Discussion

In this section the results are presented and discussed. The results are the reconstruction of the hyperspec-
tral images with different trained models and datasets. They give an overview of the current state of the
reconstruction system, and give important feedback that can later be combined with theory to find new
solutions. The results will be discussed after each topic; these are under AVIRIS and ICVL. Hyperspectral
Viewer is used for side-by-side comparisons of reconstructed and original images, and pixel comparison
plots are used to see how the models perform on a detailed spectral level. In order to see the reconstruction
performance in all axis of images, PSNR and SSIM are provided in tables.

4.1 ICVL Dataset

The ICVL dataset is the dataset with the urban hyperspectral images from the Interdisciplinary Compu-
tational Vision Laboratory [15]. The dataset is used here to train three models, one standard model with
80% discarded data before reconstruction, one with 40% discarded data and one with 80% discarded data
which is sparsified. 27 images are used in the training process giving 3809 training samples. Training
samples are referred to as patch-pairs of 64x64x30 CS-images and 64x64x150 true-images. Two images
are referred to in this section in particular, this is The Bench images and The View image. These are re-
named from the ICVL database, where The Bench has the filename bgu 0403-1439, and The View has the
file name eve 0331-1705. These images are excluded from the training data and used to test the models’
reconstruction ability of new unseen data. The Bench and The View are given in Fig. 26 below.

Figure 26: The left image is The View and the right image is The Bench from the ICVL dataset.

ICVL CR 0,2

The ICVL CR 0,2 is the training data of the ICVL dataset where 80% of the original samples have been
discarded. This leaves us with a CS HSI with 30 bands compared to 150 original bands. 27 images are used
in the training process to create patches that give 3809 patch-pairs in total, divided into compressed and
true image folders. The model is trained with batch sizes of 6 and 30 epochs. Fig. 27 shows three randomly
picked pixels from The Bench from the ICVL testing set. The test image has the same CR and is categorized
as unseen data for the model. Fig. 28 shows the pixel comparison of The View image reconstructed with
the ICVL CR 0.2 model. The pixel is picked from one of the recovered patches.
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(a) (b) (c)

Figure 27: (a) PSNR = 31,2 dB and SSIM = 0,809 (b) PSNR = 32,1 dB and SSIM = 0,809 (c) PSNR = 32,9
dB and SSIM = 0,803.

(a) (b) (c)

Figure 28: (a) PSNR = 26,6 dB and SSIM = 0,867 (b) PSNR = 25,8 dB and SSIM = 0,866 (c) PSNR =
26,4dB and SSIM = 0,862.

Table 3 shows the PSNR and SSIM for a patch in The Bench image. Table 4 shows the PSNR and SSIM for
a patch in The View image.

PSNR Value [dB] SSIM Value
Whole image 31,5 Whole image 0,8
Pixel average 31,7 Pixel average 0,81
Band average 33,1 Band average 0,803
MatLab function 31,5

Table 3: Table shows the PSNR and SSIM values for a reconstructed patch from The Bench image.

PSNR Value [dB] SSIM Value
Whole image 24,6 Whole image 0,837
Pixel average 24,8 Pixel average 0,834
Band average 26,7 Band average 0,835
MatLab function 24,6

Table 4: Table shows the PSNR and SSIM values for a reconstructed patch from The View image.

Fig. 29 and Fig. 30 shows the full reconstruction of The Bench image and The View image respectively.
The patches are reconstructed one by one and stitched back together.
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Figure 29: The Bench image stitched together with reconstructed and original image as reference. PSNR is
29,2 dB and SSIM is 0,826.

Figure 30: The View image stitched together with reconstructed and original image as reference. PSNR is
25,4 dB and SSIM is 0,850.
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ICVL CR 0,6

The model is trained using the same ICVL images as with ICVL CR 0,2 model. However, the compression
ratio is now 0,6, which means that 40% of the original bands are discarded. This means that 90 spectral
bands from the original 150 are left for reconstruction. The batch size is set to 6 with 30 epochs. Fig. 31
shows three randomly picked pixels from The Bench from the ICVL testing set. The test image has the
same CR and is categorized as unseen data for the model. Fig. 32 shows the pixel comparison of The View
image reconstructed with the ICVL CR 0,6 model. The pixel is picked from one of the recovered patches.

(a) (b) (c)

Figure 31: (a) PSNR = 24,7 dB and SSIM = 0,795 (b) PSNR = 32,3 dB and SSIM = 0,825 (c) PSNR = 21
dB and SSIM = 0,699.

(a) (b) (c)

Figure 32: (a) PSNR = 20,9 dB and SSIM = 0,705 (b) PSNR = 22,7 dB and SSIM = 0,734 (c) PSNR = 25,5
dB and SSIM = 0,776.

Table 5 and Table 6 shows the PSNRs and SSIMs for The Bench and The View respectively.

PSNR Value [dB] SSIM Value
Whole image 31,2 Whole image 0,81
Pixel average 31,6 Pixel average 0,822
Band average 32,6 Band average 0,82
MatLab function 31,2

Table 5: Table shows PSNR and SSIM values for reconstruction of a patch from The Bench image in ICVL,
with CR = 0,6.

ICVL CR 0,2 Sparse

This time the U-Net was trained using sparsified images. The images are sparsified in the DCT-domain by
setting all frequency coefficients above 30 to zero. Additionally, the training procedure is identical to the
method used when training with non-sparsified CR 0,2 images from ICVL. Both training images, i.e. the
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PSNR Value [dB] SSIM Value
Whole image 23,5 Whole image 0,799
Pixel average 24 Pixel average 0,735
Band average 26,7 Band average 0,853
MatLab function 23,5

Table 6: Table shows PSNR and SSIM values for reconstruction of a patch from The View image in ICVL,
with CR = 0,6.

CS images with 30 bands and the true images with 150, are sparsified. Fig. 33 shows the pixel comparisons
between original and reconstructed pixels in The Bench image, while Fig. 34 shows the same for The View
image.

(a) (b) (c)

Figure 33: (a) PSNR = 30,6 dB and SSIM = 0,956 (b) PSNR = 37,2 dB and SSIM = 0,978 (c) PSNR = 24,7
dB and SSIM = 0,916.

(a) (b) (c)

Figure 34: (a) PSNR = 28,7 dB and SSIM = 0,888 (b) PSNR = 31,0 dB and SSIM = 0,891 (c) PSNR = 32,9
dB and SSIM = 0,863.

Table 7 shows the quality metrics as PSNR and SSIM values for the reconstruction of a patch in The View
image. Table 8 shows the same for The Bench image.

PSNR Value [dB] SSIM Value
Whole image 27,3 Whole image 0,856
Pixel average 28,3 Pixel average 0,887
Band average 29,1 Band average 0,854
MatLab function 27,3

Table 7: PSNR and SSIM values from a reconstructed patch from The View image in the ICVL dataset using
model 30.
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PSNR Value [dB] SSIM Value
Whole image 19,1 Whole image 0,743
Pixel average 22,8 Pixel average 0,819
Band average 23,2 Band average 0,744
MatLab function 19,1

Table 8: PSNR and SSIM values from a reconstructed patch from The Bench image in the ICVL dataset
using model 30.

Fig. 29 and Fig. 30 show the full reconstruction of The Bench and The View respectively. The color images
represent three bands of the hyperspectral images. Reconstructed images are displayed on the bottom and
the original images at the top. Both reconstructed images show histograms that follow the same shape as
their originals. The histograms are shifted a bit in both instances. These are both reconstructions with
the ICVL CR 0,2 model. When using the ICVL CR 0,6 model, the reconstructions are similar to what is
obtained by the ICVL CR 0,2 model. The PSNRs are mostly the same, with a slight decrease in SSIM and
PSNR for the reconstruction of The View. The reconstructed image pixel follows the shape of the original,
but there is a significant difference between the pixel comparisons for ICVL CR 0,2 and ICVL CR 0,2.
When looking at Fig. 32 one can see that the model does not follow the drop around band number 90, but
in Fig. 31 the reconstructed pixel follows the same drop. ICVL CR 0,2 Sparse provides results similar in
PSNRs to the two beforehand, but with a higher SSIM for The Bench, with 0,856 for the whole image. The
View, however, suffers in the reconstruction compared to the previous models. Looking at the first model,
ICVL CR 0,2, which is trained on images with 80% discarded bands, the reconstruction of The Bench
image achieves the highest PSNR values with a 31,5 dB when taking PSNR of the whole image. This is 6
dB better than what the reconstruction of The View did, even though looking at the pixel comparison plots
in Fig. 27 and Fig. 28 the reconstructed pixel looks better for The View than The Bench. Here one have
to look at the y-axis in the figure; the distance between the reconstructed pixel and the original pixel are
sometimes in the order of thousands in the plot of The View, while in the reconstruction of The Bench the
distance is at its most 1500. However when looking at the SSIM values The View gets the highest values
with a total SSIM of 0,837 compared to 0,803 for The Bench. This shows the importance of having several
quality measurements in order to state the performance of the model.

4.2 Aviris

The Aviris dataset contains images from Airborne Visible/Infrared Imaging Spectrometer hyperspectral
database [16]. The images are named after the area they cover in The United States: Salt Lake, Olympic
and St George. The image of St George is used for testing, while the other two are the training data. All
images are divided into the same patch-pair configuration as the previous datasets. Salt Lake and Olympic
makes 2584 patch-pairs of size 64x64x30 and size 64x64x150. Three models are trained individually and
presented in this section with their respective results. The training pattern is the same as for the ICVL
dataset models. One model is trained with 80% of bands discarded, another with 40% bands discarded, and
a final one with 80% discarded bands and sparsified data. Fig. 35 shows RGB-representations of the three
hyperspectral images used for the three upcoming models.
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Figure 35: The Aviris dataset.

Aviris CR 0,2

The model is trained using images from the Avirs dataset. These images are handpicked from the Aviris
database online, with roughly the same scenes and spatial dimensions. Salt Lake and Olympic are used
for training, resulting in patch-pairs of 2584. St George is used as a test set for the reconstruction. The
compressed data has a compression ratio of 0,2, meaning that 80% of the original samples are discarded.
The batch size is set to 6 and epochs to 30. Fig. 36 shows the pixel comparison of pixels in St George.

(a) (b) (c)

Figure 36: PSNR = 26,8 dB and SSIM = 0,861 (b) PSNR = 27,9 dB and SSIM = 0,899 (c) PSNR = 28,1 dB
and SSIM = 0,920.

Table 9 shows the PSNR and SSIM values from the reconstructions of a patch in the St George using Aviris
CR 0,2.

35



PSNR Value [dB] SSIM Value
Whole image 25,3 Whole image 0,863
Pixel average 25,4 Pixel average 0,869
Band average 34,9 Band average 0,886
MatLab function 25,3

Table 9: The table shows the PSNR and SSIM values for a patch reconstruction from St George image.

Fig. 37 shows the full reconstruction of the St George image. The patches are individually reconstructed
and then stitched together.

Figure 37: St George image stitched together with reconstructed and original image as reference. PSNR is
26,0 dB and SSIM is 0,846.

Aviris CR 0,6

The model is trained on Salt Lake and Olympic with a compression ratio of 0,6, meaning that 40% of the
bands are discarded for the compressive sensed samples for training. The batch size is set to 6 with 30
epochs. Fig. 38 shows the pixel comparisons of the reconstructed St George image using the Aviris CR 0,6
model.
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(a) (b) (c)

Figure 38: PSNR = 21 dB and SSIM = 0,407 (b) PSNR = 22,6 dB and SSIM = 0,462 (c) PSNR = 22,8 dB
and SSIM = 0,445.

Table 10 shows the PSNR and SSIM for the reconstructed patch of St George.

PSNR Value [dB] SSIM Value
Whole image 19,8 Whole image 0,42
Pixel average 20,4 Pixel average 0,424
Band average 25,3 Band average 0,552
MatLab function 19,8

Table 10: The table shows the PSNR and SSIM values for a patch reconstruction from St George image with
CR = 0,6.

Fig. 39 shows the full reconstruction of the St George image. The patches are reconstructed individually
and stitched together.

Figure 39: St George image stitched together with reconstructed and original image as reference. CR is 0,6.
PSNR is 20,5 dB and SSIM is 0,486.

37



Aviris 0,2 Sparse

Aviris 0,2 Sparse model is trained on Salt Lake and Olympic with compression ratio 0,2, which means
that 80% of bands are discarded for the compressive sensed samples for training. The spectral bands are
sparsified by removing coefficients above 30 in the DCT-domain. The batch size is set to 6 with 30 epochs.
Fig. 40 shows the pixel comparisons for pixels in St George.

(a) (b) (c)

Figure 40: (a) PSNR = 27,6 dB and SSIM = 0,832 (b) PSNR = 33,8 dB and SSIM = 0,870 (c) PSNR = 32,8
dB and SSIM = 0,857.

Table 11 shows the full reconstruction of St George. Patches are individually reconstructed and stitched
together.

PSNR Value [dB] SSIM Value
Whole image 29,1 Whole image 0,858
Pixel average 29,7 Pixel average 0,837
Band average 34,8 Band average 0,886
MatLab function 29,1

Table 11: The table shows the PSNR and SSIM values for a patch reconstruction from St George image
which is sparsified.

When looking at the three models’ reconstruction performances on St George, the sparsified model gives
the highest PSNR values, presented in Table 11. This is expected as sparsified signals have fewer high-
frequency components to recover. These high-frequency components make the small saw-like shapes in
the spectral plots. As presented in the theory section, many signals and images are naturally sparse. By
sparsifying the data, some information will always be lost from the removal of high-frequency components.
The more sparsification one do, the less the example can be validated for real-life scenarios. Aviris CR
0,2 model, trained on 80% discarded bands, has its PSNR and SSIM values in Table 9. These are not as
different as the sparsified ones. In Fig. 36 three pixels are presented with both reconstructed and original.
Here one can see that the model can recover the original shape of the pixel at an adequate level, but it lacks
in the intensity axis at points. This results in PSNR values lower than the sparsified model but with an SSIM
value which can compete with it. Aviris CR 0,6 model, performed worst of the three models. This model
is trained on images with 40% discarded bands. This means that the model with the most original bands
performs worst on reconstruction. In Fig. 38 we can see that the pixel struggles to follow the shape of the
original pixel. It does manage to keep the same shape for some of the peaks, but the overall reconstruction
lacks quality. This can be seen in the SSIM values in Table 10 where the spectral similarity is too low for the
reconstruction and original. The low performance of the reconstruction of patches where most bands are
kept is the most interesting result from the Aviris dataset models. One should expect that keeping more data
would result in easier reconstructions since more of the spectral bands are available for the model. However,
this does not seam to be the case for this instance. This can have something to do with the model’s training,
but the training methods are the same as for the CR 0,2 and the sparse, with a batch size of 6 and 30 epochs.
One explanation can be that there are more peaks and jittering in the pixel-spectral domain for the CS
images when more bands are kept, while fewer samples lead to a more sparse pixel-spectral domain. When
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looking at the results from the sparse training, it appears to deliver the best reconstruction results. The
images used in the training and testing are quite similar regarding scenes and resolution, i.e. the number of
pixels per meter matches quite well. The scenes are earth observations of fields, rivers, ridges, water and
woods. Images that follow similar structures and scenes are used to train these models to observe results
obtainable from maximizing the similarity in the training and testing sets. The model achieves acceptable
reconstruction of St George, which is expected given that the model is trained on similar data.

4.3 Other Experiments and Generalizability

This section presents other types of experiments. Generalizability describes a model’s performance on
unseen data, which is data that is not used in the model’s training. The models’ ability to reconstruct
images from datasets they are not trained on is presented in this section. This means that images from the
Compact Dataset are reconstructed using models trained on the Aviris dataset. The results will state how
adaptable the different models are for entirely different hyperspectral images by testing them in a more
relevant scenario. The images in the three databases Aviris, ICVL, and the Compact Dataset are of different
characters. ICVL is the database least similar to the two others since it consists of images from an eye-level
view of a city scene. The Compact Dataset and Aviris dataset images have the same point-of-view; they are
all earth observational images. This section will therefore contain reconstructions of the Compact Dataset
using Aviris models. Fig. 33 shows the pixel comparisons for pixels from reconstructed Salinas image
using the Aviris CR 0,2 model.

(a) (b) (c)

Figure 41: (a) PSNR = 16,0 dB and SSIM = 0,334 (b) PSNR = 22,5 dB and SSIM = 0,510 (c) PSNR = 22,1
dB and SSIM = 0,503.

Table 12 shows the PSNR and SSIM values from a reconstructed patch from the image Salinas from The
Compact Dataset using Aviris CR 0,2 model.

PSNR Value [dB] SSIM Value
Whole image 17,3 Whole image 0,427
Pixel average 18 Pixel average 0,383
Band average 21,2 Band average 0,724
MatLab function 17,3

Table 12: PSNR and SSIM values of patch from Salinas image reconstructed with Aviris CR 0,2 model

Fig. 42 shows the pixel comparisons for pixels from reconstructed Cuprite image using the Aviris CR 0,2
model.
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(a) (b) (c)

Figure 42: (a) PSNR = 10,8 dB and SSIM = 0,327 (b) PSNR = 9,9 dB and SSIM = 0,269 (c) PSNR = 10,1
dB and SSIM = 0,288.

Table 13 shows the PSNR and SSIM values from a reconstructed patch from the image Cuprite from The
Compact Dataset using Aviris CR 0,2 model.

PSNR Value [dB] SSIM Value
Whole image 10 Whole image 0,325
Pixel average 10 Pixel average 0,124
Band average 13,3 Band average 0,250
MatLab function 10

Table 13: PSNR and SSIM values of patch from Cuprite image reconstructed with Aviris CR 0,2 model

40



Table 14 gives a summary of the models reconstruction performances, the model names are showed at the
left of the table and and PSNRs and SSIM are showed accordingly at the right hand side. The PSNR values
and SSIM values are given as the highest values obtained.

Table 14: Recovery of Compressed HSI Data Cubes : PSNR and SSIM

Data Set Model Name PSNR [dB] SSIM Recovered
Bands [%]

ICVL
ICVL CR 0,2 31.7 0.837 80.0
ICVL CR 0,6 31.6 0.822 40.0
ICVL CR 0,2

Sparse
29.1 0.887 80.0

AVIRIS
Aviris CR 0,2 34.9 0.886 80.0
Aviris CR 0,6 25.3 0.552 40.0
Aviris CR 0,2

Sparse
34.8 0.886 80.0

Compact Dataset Aviris CR 0,2 21.2 0.724 80.0
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4.4 Discussion

This thesis has addressed the usage of U-Nets trained on existing datasets for reconstruction of compressive
sensed hyperspectral images. Trying to generalize the models is important when dealing with machine
learning. ICVL and AVIRIS are datasets which contains many high quality HSIs, making them suitable for
training sets. This is visible in the reconstruction results from models trained on these datasets. The term
“reconstructed images” is somewhat ambiguous because there is no boundary or limit deciding when a CS
HSI can be called “reconstructed”. The level of reconstruction is up to the user of a given observational
system to decide. However, one should expect reconstruction results to be of a certain quality. Original
signatures of substances and objects in scenes should be apparent in reconstructions so that classifying and
detection tasks are not limited. The models trained using datasets from ICVL and AVIRIS can generalize
to a point where the reconstruction follows the shape of the original pixels when reconstructing images
within their datasets. The internal dataset contains images with similar scenes to those in the Aviris dataset.
However, the results are rather poor when reconstructing images from the internal dataset using the Aviris
models. The model cannot reconstruct the image, although the scenes are fairly similar. One reason for
this could be the spatial resolution of the images. The Aviris dataset contains many high-resolution images,
which give more prominent shapes and features than the images in the internal dataset. An image similar to
St George, containing fields and mountain ridges, is reconstructed with PSNRs of 26 dB and SSIM of 0,846.

One of the goals of this project is to explore the possibility of using pre-trained models to reconstruct CS HSI
for Earth observations. The expectations were high after reading about what the authors of DeepCubeNet
are able to do with their U-Net architecture along with a snapshot imager. The goal is to get at least as
good results as them and prove that the method can be used for Earth observational images, making it a
candidate for future CubeSat-projects hyperspectral systems. The results do however not beat the current
state-of-the-art model reconstructions. At one point, the results are close, but the model and its results can
not be considered official results for this project due to the lack of reproducibility. The same results are not
obtained when attempting to train a similar model. It is assured that the convincing first model is not trained
on the test image. However, when using the same testing image, this time compressive sensed in a separate
batch, the reconstructions are not as impressive, as the pixel spectra are shifted in the band domain. This
suggests that the model suffered from overfitting to that particular compressive sensed batch.

4.5 Compressive Sensing

The CS in this project were achieved by following the CS theory and images were compressed in the
spectral domain leaving the spatial resolution as is. The method for CS in this project distinguish it self
from the method used in the original DeepCubeNet-paper, where they did compressive sensing as a spectral
modulation due to their use of LC-cell phase retarders in the acquisition process. Here we also tried for a
long time to figure out how to achieve this spectral modulation within or programs when trying to emulate
the compressive sensing on established HSIs. This were harder than first thought, were several attempts
were tried to get this to work. The way it were thought of was to use a transform domain at the spectral
responsemap and that by following the same equations that were used in the DeepCubeNet project the
compressive sensing would be done as spectral modulations. This were not successful and instead we
decided to go for the more traditional CS. This could have an effect on the models ability to generalize, but
is not confirmed since no experiments were done using spectral modulation method. In the future it would
be highly interesting to explore this way of CS on HSIs and see the difference in results compared to this
thesis. To our knowledge this would require a snapshot imager with CS integrated directly in the acquisition.
The transform domains used in the CS were the DFT and DCT, these showed no noticeably difference in
results, and in the end the DCT were used for all model training, because of the DCT domain not having
any complex components to be sorted out. Keep in mind that the exploration of transform domains effect on
compressive sensing were not of this project highest priority and therefore the difference in the CS domain
were negligible for the two transform domains.
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4.6 Compression Ratios

The CR is the most interesting parameter in CS in our minds. This decides how much data to keep from
the original data, and then also how much data must be reconstructed. One would want to have the CR as
low as possible and still manage to keep the quality of the reconstructions high. In this project we sat the
benchmark of reconstructions at CR = 0,2, meaning that 80% of the original bands are discarded and needs
to be recovered. The reason why the CR were set to 0,2 were that this were thought of being a achievable
rate for the models to reconstruct HSIs. The state-of-the-art methods has sometimes lower than CR = 0,1,
and authors of DeepCubeNet were using CR = 0,08. Since the project were to explore the possibilities
of deep learning in the reconstruction of CS HSIs the aim where not set as high as CR = 0,1 and bellow,
because getting results of reconstruction using deep learning was more important than achieving the best
CR. However after proving reconstruction abilities on CR = 0,2 this could be for future improvements to
try to see what the limit of CR could be for such a setup.

4.7 Sparsity

The sparsification of the data is a method used to make reconstruction “easier” for methods such as iterative
algorithms searching for the sparsest solution. In this case when using deep learning methods sparsifying
the data does not seam to have the larges impact on the performance of the models, even with the high
sparsifying rate as used here. Here we tested the models by setting all frequency components higher than
30 to zero in the DCT-domain. The results were sometimes worse than the results atained at non-sparsified
data. This could indicate that the pre-sparsification of the data does not have the same impact on model
performance to reconstruct data as one could expect when comparing to iterative reconstruction methods
such as OMP and Adaptive Gradient Descent. This is however a good thing to notice, bacause of the
effect the pre-sparsification has to the data. By canceling out the higher frequency components one loses
information about the scene, and spectral signatures will be distorted which can results in false predictions
in segmentation and classification of substances in the HSI. As explained in the Theory natural data such
as images and natural signals has already sparse characteristics. Some smaller sparsifications could filter
out high frequency noise and make the image more smooth, but would have the disadvantage of training
the models on images that are unrealistic in a real life scenario. In a real application one should expect
distortions and noise in the images captured by a hyperspectral imager in space, whether its clouds or
random noise from radiation in space.

4.8 Normalization and Artifacts

The ICVL dataset sparsified gives good results for reconstructing image of the same nature, using the testing
image one can see that that the pixel is following somewhat the same shape as the original. The side-by-side
view in Hyperspectral Viewer shows the patch-pairs built back togheter. One can clearly see the checker
marks in the stitched image, this is because of the exposure rescale intensity function used in order to
convert the data back to 16bit from the normalized version that contains values from 0-1. This function is
done on each of the patches individually and therfore the rescale function will use the whole dynamic range
for that particullarly patch, thats why in the original image we can also see the exposure levels are different
in the tiles.

4.9 Other Problems

When testing different sizes of the network, one issue were more prominent than others, namely ”OOM
errors”, where OOM stands for Out-Of-Memory. This error was showing whenever the network parameters
increased, due to batch size increase, more training data or deeper U-Net configurations. By doing some
research on the issue, revealed that this was a problem of large parameters when training networks. Hyper-
spectral data can quickly add up memory for the graphichs card and the internal RAM, and suggestions for
avoiding these problems is to use two graphichs cards at once; one for training and one for validation. The
workstation that were provided for this project had only one graphic card. The workaround for this problem
were to use batch generators when training the model. These loads the desired batch size of data into the
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model and prevent the memory to fill it self up by providing the model the whole dataset. This were a huge
benefit, where we before got a lot of OOM-errors when testing higher batch sizes and larger datasets. In the
current state of the project, the model is suffering of memory allocation problems when trying to train on
bigger datasets. In future it would be of highly prioritization to fix this problem in order to see what bigger
datasest would do to the generalization of the models. One should expect the model to perform better when
trained on larger datsets as is proven by many deep learning methods before.

4.10 Overall

In some of the reconstruction instances the PSNR is in an adequate level but the reconstruction does not
follow the original pixel wave well. When then looking at the SSIM values these shows low quality, this
shows the importance of having different quality metrics when looking at compressions. One metric can
focus on one aspect of the similarity between the two instances while the other can focus on another aspect.
The DeepCubeNet were used in the paper DeepCubeNet: reconstruction of spectrally compressive sensed
hyperspectral images with deep neural networks, to reconstruct images from ICVL database. In the paper
they reconstructed 391 bands from 32 bands which were compressive sesed using a spectral modulation
technique utilized by a liquid crystal phase retarder. They include pixel comparison plots between original
and reconstructed pixel, with PSNRs between 38,4 dB and 41,8 dB. In this project we aimed to produce
the same quality in reconstruction, and ended up with model Aviris CR 0,2 giving PSNR of 34.9 dB. The
compression ratio is less promising in this project with 80% discarded spectral bands compared to their
92%. If we are not comparing the results to results gained by Daniel Gedalin et. al. our trained model are
capable of reconstructing the hyperpsectral image at a adequate quality. It even showed in one instance that
data from other datasets were in fact “shape-reconstructed” in the spectral dimension. The reconstructed
image would be useless for analysis of hazardous algae blooms if one look at the reconstruction of the
Compact Dataset using Aviris model for example. If one expect the hyperspectral images delivered by
a CubeSat to have the same quality as Aviris one should expect that the Aviris model would be able to
reconstruct the images.
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5 Conclusion

This project explored the potential of using deep learning methods for the reconstruction of compressive
sensed hyperspectral images for CubeSats. Through this project, a U-Net architecture called DeepCubeNet
was adapted for, and trained on existing hyperspectral Earth observational datasets such as AVIRIS. The
trained model was able to reconstruct a compressive sensed hyperspectral image where 80% of the spectral
bands were discarded. The reconstructed image was from the same database as the training images but is
still characterized as unseen data for the model.

The reconstruction quality compared to the original image was measured by PSNR, SSIM and visual ana-
lysis. The reconstruction did not improve the current state-of-the-art methods for reconstructing compress-
ive sensed hyperspectral imaging but shows the potential for using such a method for CubeSats, since one
should expect similar images from the satellite as the one from AVIRIS. The project also managed to explore
different public databases for hyperspectral images like AVIRIS and ICVL.

The trained models are able to reconstruct hyperspectral images from the same database as expected. The
models are not able to reconstruct hyperspectral images that are from a different database source, and
thus the ability of generalization of the model can be questioned. The compressive sensing was done in
the spectral domain only, and the initial plan was to use compressive sensing as spectral modulation for
the bands. However, this was unsuccessful, and the compressive sensing was done on a more traditional
method.

The motivation for exploring compressive sensing reconstructions for hyperspectral images came from the
research of CubeSats. The project presents a method that could be further developed for remote sensing
CubeSats. This is shown from the reconstruction of St George hyperspectral image from the model trained
on two images from AVIRIS datasets.

The U-net were also tested on the ICVL dataset, and the results showed that the models were able to
reconstruct the images at an adequate level in terms of PSNR, SSIM and visualization. This did not beat the
reconstructions from the original DeepCubeNet paper.

5.1 Further Work

Although the project managed to reconstruct compressive sensed hyperspectral images, the models could
be drastically improved. Generalization should be further explored and would be the first thing to improve
if the project was to be further worked on. At the end of the project period, there were attempts to train
a model using far more data from the AVIRIS database. This contained 20 large hyperspectral images.
Due to time limitations and errors regarding the size of the training data, the model was not successfully
trained. This could have further improved the model and resulted in a more generalized model, due to
the data being less hand-picked for the given model. The SmallSat Lab at NTNU was this thesis’s project
provider, and the research is a part of their HYPSO project. While writing this thesis, the HYPSO-1,
a CubeSat launched by SmalSat Lab, was capturing hyperspectral images and transferring these back to
SmallSat Lab. The images are not used in this thesis due to the fact that they are not publicly available at
the time this thesis is being written. In the future, it would be interesting to see if the AVIRIS model would
be able to reconstruct images from the HYPSO-1 satellite. An even more interesting approach would be
to train a model on already existing images from the satellite to see if the images can be used to build a
model used to reconstruct hyperspectral images from the next generation of earth observational CubeSats.
The project’s lowest compression ratio was 20% of data kept after compressive sensing. The compression
ratios could be further explored to see what happens with the reconstructions at different steps. One should
expect the results to get worse if one were to use the same dataset as used for the other models. The final
stage for this project would be to build a fully connected system of snapshot imagers for CubeSats with
integrated compressive sensing for capturing hyperspectral images, which could then be transferred down
to be reconstructed by a trained U-Net architecture.
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Appendix

Making Datasets (MATLAB)

clc; clear all;

% give the path where the images are stored

filedir = 'C:\Users\NN\Desktop\Aviris\';

% gives lists of folder content

matfiles = dir(filedir);

t = 8; %length of the name list

% all file names are stored in cell

for i = 1:t

cell{i} = getfield(matfiles(i),'name');

end

% throw away the first two cells, these are "fill-ins"

cell(1:2) = [];

% waiting-bar to show the progress

wait = waitbar(0, 'Starting');

for l = 1:(t-2)

% for the waitbar

waitbar(l/20, wait, sprintf('Progress: %d %%', floor(l/20*100)));

pause(0.1);

% file path for the file

file = append(filedir,cell{l});

% loading the file

folder = load(file);

% extract the cube

data = folder.cube;

[x,y,z] = size(data);

% normalize the spectral band

k = z/150;

data = data(:,:,1:k:end);

[x y z] = size(data);

% define the amount of patches in rows and columns from the original

% image

data_rad = floor(x/64);

data_col = floor(y/64);

jump=64;

% devide the cube into vectors of each pixel

for i=1:x

for j=1:y

f{i,j}=permute(data(i,j,1:150),[3 2 1]);
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end

end

% define the N and M for the CR

N = 150;

M = 30;

% DCT-transfrom matrix

B = dctmtx(N);

Binv = inv(B);

% selecting random rows of the DCT matrix

q = randperm(N);

q = q(1:M);

q = sort(q);

% sensing matrix A

A = Binv(q,:);

% CS is performed on each of the pixels in the spectral domain

for i=1:x

for j=1:y

xf{i,j} = B*double(f{i,j});% taking dft of the signal

ff = xf{i,j};

tf = A*ff;

tt{i,j} = tf;

end

end

% the cs pixel vectors are re-aranged back to cubes

Z = cellfun(@(x)reshape(x,1,1,[]),tt,'un',0);

o = cell2mat(Z);

% the gt pixel vectors are re-aranged back to cubes

Y = cellfun(@(x)reshape(x,1,1,[]),f,'un',0);

data = cell2mat(Y);

% this is to have both cs and gt be the same class

d = double(data);

cd(filedir)

% making foldernames for the images in order to create cs-folder and

% gt-folder

foldername = cell{l};

foldername=erase(foldername,'.mat');

% making folders

mkdir(foldername)

path = append(filedir,foldername);

cd(path)

sub_folder = ['gt','cs'];

% storing d for data into gt and o for out into cs

for a = 1:2

mkdir('gt')

mkdir('cs')

counter = 0;
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if a == 1

% build patches of 64x64x150 from the gt image

for g=1:data_rad

for h=1:data_col

gt = d((g*jump)-(jump-1):64+(g*jump)-jump,...

(h*jump)-(jump-1):64+h*jump-jump,...

:);

counter = counter+1;

% define automatic cube-names

if counter < 10

filename_i = sprintf('cube_000%.f',counter);

elseif counter < 100

filename_i = sprintf('cube_00%.f',counter);

elseif counter >= 100

filename_i = sprintf('cube_0%.f',counter);

elseif counter >= 1000

filename_i = sprintf('cube_%.f',counter);

end

% store the patch into the folder gt

filename = filename_i;

save(['gt\', filename_i, '.mat'] ,'gt');

end

end

end

if a == 2

% build patches of 64x64x30 from the cs image

for g=1:data_rad

for h=1:data_col

gt = o((g*jump)-(jump-1):64+(g*jump)-jump,...

(h*jump)-(jump-1):64+h*jump-jump,...

:);

counter = counter+1;

% define automatic cube-names

if counter < 10

filename_i = sprintf('cube_000%.f',counter);

elseif counter < 100

filename_i = sprintf('cube_00%.f',counter);

elseif counter >= 100

filename_i = sprintf('cube_0%.f',counter);

elseif counter >= 1000

filename_i = sprintf('cube_%.f',counter);

end

% store the patch into the folder cs

filename = filename_i;

save(['cs\', filename_i, '.mat'] ,'gt');

end

end

end

end

% emptying f and tt for next iteration

f = {};

tt = {};

end

% wait-bar is closed when last image is done

close(wait)
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Stacking Reconstructed Patches (MATLAB)

clc; clear all;

% set the number of rows and columns according to number of patches in rows

% and columns in the image

rows = ;

col = ;

% define the reconstructed images folder path

filedir = 'C:\Users\NN\Desktop\Avirs CR 0.2 model outputs\'

matfiles = dir(filedir);

% number of elements in the dir list

t = ;

% store the file names in cell array

for i = 1:t

cell{i} = getfield(matfiles(i),'name')

end

% delete two first cells which are fill-ins

cell(1:2) = [];

% define the first cube of the reconstructed cubes

cube_i = load('C:\Users\NN\Desktop\Avirs CR 0.2 model outputs\cube_001.mat');

cube_i = cube_i.org;

cube1 = 0;

var = 1;

for m = 1:rows

%Stacking patches back together to full image

f_name = append(filedir,cell{1+col*(m-1)});

cube_i = load(f_name);

cube_i = cube_i.org;

for n = 2:col

filename = cell{(m-1)*col+n}

f_name = append(filedir, filename);

cube = load(f_name);

cube_ = cube.org;

cube_i = cat(2,cube_i, cube_);

end

if var

var = 0;

cube1 = cube_i;

else

% cube 1 is the full image

cube1 = cat(1,cube1, cube_i);

end

end
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Training The Model (Python)

from encodings import normalize_encoding

from tabnanny import verbose

from sklearn.model_selection import train_test_split

from sklearn.utils import shuffle

import tensorflow as tf

import time

import os

import numpy as np

import scipy.io

import mat73

#import Unet as Unet

#import Unet2 as Unet

import Unet3 as Unet

#import Unet4 as Unet

from skimage import exposure, img_as_ubyte, img_as_uint

from tensorflow.keras.layers import UpSampling3D #upsampling layers for 3D

inputs↪→

from net_blocks import *

from utils import *

from Unet import *

from scipy.io import loadmat

from tqdm import tqdm

from keras.callbacks import TensorBoard

from tensorflow.compat.v1 import ConfigProto

from tensorflow.compat.v1 import InteractiveSession

# define the patch dimensions

IMG_WIDTH = 64

IMG_HEIGHT = 64

IMG_CHANNELS_CS = 30

IMG_CHANNELS_GT = 150

#change folder-name for choosing the right training data

train_path = 'Big_model_training/'

length = 0

counter = 0

# find the folder names

datasets = next(os.walk(train_path))[1]

t_train = []

# go through each folder

for i in range(len(datasets)):

# /Training_data/set1 training_path = /set1/

train_path_ = train_path + datasets[i] + '/'

train_ids = next(os.walk(train_path_))[1]

cs_path = train_path_ + train_ids[0] + '/'

gt_path = train_path_ + train_ids[1] + '/'

train_ids_cs = next(os.walk(cs_path))[2]

train_ids_gt = next(os.walk(gt_path))[2]
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length += len(train_ids_cs)

# define zero_arrays to insert training data

x_train = np.zeros(((length), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS_CS),

dtype=int)↪→

y_train = np.zeros(((length), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS_GT),

dtype=int)↪→

# define zero_arrays to insert scaled data to uint16

x_train_uint16 = np.zeros(((length), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS_CS),

dtype=np.uint16)↪→

y_train_uint16 = np.zeros(((length), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS_GT),

dtype=np.uint16)↪→

for i in range(len(datasets)):

#walk through the folder, give the folder name plus the file name

train_path_ = train_path + datasets[i] + '/'

train_ids = next(os.walk(train_path_))[1]

cs_path = train_path_ + train_ids[0] + '/'

gt_path = train_path_ + train_ids[1] + '/'

train_ids_cs = next(os.walk(cs_path))[2]

train_ids_gt = next(os.walk(gt_path))[2]

counter = counter

# load the .mat files (patches) into x_train and y_train

for j, id_ in tqdm(enumerate(train_ids_cs), total=len(train_ids_cs)):

path = cs_path

# load the .mat patch

cs = mat73.loadmat(path + id_)

counter = counter + 1

x_tmp = cs['gt']

# change data to integer

x_tmp = x_tmp.astype(int)

# insert array from .mat into x_train

x_train[(counter-1)] = x_tmp

# do the same for y_train as for x_train

path = gt_path

gt = mat73.loadmat(path + id_)

y_tmp = gt['gt']

y_tmp = y_tmp.astype(int)

y_train[(counter-1)] = y_tmp

# set values that are negative to zero for y_train

for u in tqdm(range(y_train.shape[0])):

for i in range(y_train.shape[1]):

for j in range(y_train.shape[2]):

for k in range(y_train.shape[3]):

if(y_train[u,i,j,k] < 0):

y_train[u,i,j,k] = 0
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# set values that are negative to zero for x_train

for u in tqdm(range(x_train.shape[0])):

for i in range(x_train.shape[1]):

for j in range(x_train.shape[2]):

for k in range(x_train.shape[3]):

if(x_train[u,i,j,k] < 0):

x_train[u,i,j,k] = 0

x_train_uint16 = np.zeros((x_train.shape[0], x_train.shape[1], x_train.shape[2],

x_train.shape[3]), dtype=np.uint16)↪→

y_train_uint16 = np.zeros((y_train.shape[0], y_train.shape[1], y_train.shape[2],

y_train.shape[3]), dtype=np.uint16)↪→

# exposure.rescale_intensity for x_train which then is stored as x_train_uint16

for i in tqdm(range(x_train.shape[0])):

x_train_uint16[i] = img_as_uint(exposure.rescale_intensity(x_train[i]))

# exposure.rescale_intensity for y_train which then is stored as y_train_uint16

for k in tqdm(range(y_train.shape[0])):

y_train_uint16[k] = img_as_uint(exposure.rescale_intensity(y_train[k]))

# normalize x_train_uint16 and y_train_uint16 between 0-1

x_train_uint16_norm = x_train_uint16 / 65535

y_train_uint16_norm = y_train_uint16 / 65535

# return a list of physical devices visible to the host runtime, here GPU

physical_devices = tf.config.list_physical_devices('GPU')

for dev in physical_devices:

print(dev)

# helps for OOM errors

config = ConfigProto()

config.gpu_options.allow_growth = True

session = InteractiveSession(config=config)

# resets all state generated by Keras

tf.keras.backend.clear_session()

# split training into training and validataion set

x_train, x_test, y_train, y_test = train_test_split(

x_train_uint16_norm,

y_train_uint16_norm,

test_size=0.2,

random_state=5,

)

# generator for loading batches of data into the model

class DataGenerator(tf.keras.utils.Sequence):

def __init__(self, x_set, y_set, batch_size):

self.x, self.y = x_set, y_set

self.batch_size = batch_size

def __len__(self):

return int(np.ceil(len(self.x) / float(self.batch_size)))

def __getitem__(self, idx):

batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]

batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]
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return batch_x, batch_y

# defines the input to the generators, 2 referres to batch size of 2

train_gen = DataGenerator(x_train, y_train, 2)

test_gen = DataGenerator(x_test, y_test, 2)

# define the Unet to use

model = Unet.get_model_3()

# loggs tensorboard training graphs

NAME = "Hyp-Reconstruction-unet3-aviris-model_name-{}".format(int(time.time()))

tensorboard = TensorBoard(log_dir='new-logs/logs/{}'.format(NAME))

# define early-stopping parameters

callbacks = [

tf.keras.callbacks.EarlyStopping(patience = 10, monitor = 'val_loss'),

tensorboard]

# train the model using model.fit with train_gen and test_gen as inputs

history = model.fit(train_gen,

epochs=30,

validation_data=test_gen)

# give the model an appropriate name

model.save("model_43")
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Testing The Model (Python)

# define the path to the cs patches

test_path = 'cuprite_30/cs/'

# define where the reconstructed patch will be saved

output_path = 'model_40_outputs/cuprite/rec/'

# get array with all file names

testing_data = next(os.walk(test_path))[2]

# reconstruct every patch in the folder

for i in tqdm(range(len(testing_data))):

data = test_path + testing_data[i]

# define empty array

test = np.zeros((64, 64, 30), dtype=int)

# load data into tmp

# and test after casting to integers

tmp = mat73.loadmat(data)

tmp = tmp['gt']

test = tmp.astype(int)

# set negative values to 0

for u in range(test.shape[0]):

for t in range(test.shape[1]):

for j in range(test.shape[2]):

if(test[u,t,j] < 0):

test[u,t,j] = 0

# use exposure.rescale_intensity for data inside test

test = img_as_uint(exposure.rescale_intensity(test))

# normalize the test data between 0 and 1

test = test/65535

# define the pre-trained model to use for reconstruction

model = tf.keras.models.load_model("model_40", custom_objects = ({'psnr':

psnr, 'SSIM': SSIM}))↪→

# change the dimenion of the input data

test = np.expand_dims(test, axis=0)

# rec is the reconstructed patch from test

rec = model.predict(test)

# delete the first dimension which are made by the model

rec = rec[0, :, :, :]

# scale the patch back to 16-bit values

rec = rec * 65535

# set the output to uint16 datatype

rec = rec.astype(np.uint16)

# defines the name according to output path and the patch name

file_path = output_path + testing_data[i]
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# patch is saved as .mat file

scipy.io.savemat(file_path, {'rec': rec})

# Now we need to do the same scaling and casting procedure for the original data

in order for the↪→

# comparisons between reconstructed and original patches to be fair

org_path = 'cuprite_30/gt/'

output_path = 'model_40_outputs/cuprite/org/'

print(output_path)

orginal_data = next(os.walk(org_path))[2]

for i in tqdm(range(len(orginal_data))):

data = org_path + orginal_data[i]

test = np.zeros((64, 64, 30), dtype=int)

tmp = mat73.loadmat(data)

#tmp = mat73.loadmat('cuprite_set/30_no_overlap/cs/cube_1_1.mat')

tmp = tmp['gt']

test = tmp.astype(int)

#test= np.round(tmp['gt'])

#test = test.astype(int)

for u in range(test.shape[0]):

for t in range(test.shape[1]):

for j in range(test.shape[2]):

if(test[u,t,j] < 0):

test[u,t,j] = 0

org = img_as_uint(exposure.rescale_intensity(test))

file_path = output_path + orginal_data[i]

scipy.io.savemat(file_path, {'org': org})
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DeepCubeNet (Python)

from tabnanny import verbose

import tensorflow as tf

import time

import os

import numpy as np

import scipy.io

from tensorflow.keras.layers import UpSampling3D

from net_blocks import *

from utils import *

# the U-Net model based on DeepCubeNet

def get_model_3():

input1 = tf.keras.layers.Input(shape=(64, 64, 30), batch_size=None,

name='input1')↪→

bp = tf.keras.layers.Conv2D(150,(1,1), activation=None, trainable=False,

use_bias=False, name='bp1')(input1)↪→

# the backprojection from CS domain to HS domain

bp_exp = tf.keras.layers.Lambda(expand)(bp)

# the contracting path

# 3D convolutional layers

d_1 = conv3D_block(8,(3,3,11), input = bp_exp) #8 filters

d_1 = conv3D_block(8,(3,3,11), input = d_1) #8 filters

# 3D max-pooling

d_1_p = tf.keras.layers.MaxPooling3D((1,1,2))(d_1)

# 3D convolutional layers

d_2 = conv3D_block(16,(3,3,9), input = d_1_p) #16 filters

d_2 = conv3D_block(16,(3,3,9), input = d_2) #16 filters

# 3D max-pooling

d_2_p = tf.keras.layers.MaxPooling3D((1,1,2))(d_2)

# 3D convolutional layers

d_3 = conv3D_block(32,(3,3,7), input = d_2_p) #32 filters

d_3 = conv3D_block(32,(3,3,7), input = d_3) #32 filters

# 3D max-pooling

d_3_p = tf.keras.layers.MaxPooling3D((1,1,2))(d_3)

# 3D convolutional layers

d_4 = conv3D_block(128,(3,3,5), input = d_3_p) #128 filters

d_4 = conv3D_block(128,(3,3,5), input = d_4) #128 filters

# the expanding path

# 3D up-sampling layer

u_1 = UpSampling3D((1,1,3))(d_4)

# cropping

u_1 = tf.keras.layers.Cropping3D(cropping=((0,0),(0,0),(0,17)))(u_1) #17

# 3D convolutional layer

u_1 = conv3D_block(32,(3,3,7), input = u_1) #32 filters

# 3D convolutional layer + concatination

u_1 = conv3D_block(32,(3,3,7), input = u_1, concat = d_3) #32 filters

# 3D up-sampling layer

u_2 = UpSampling3D((1,1,2))(u_1)

# cropping

d_2_c = tf.keras.layers.Cropping3D(cropping=((0,0),(0,0),(0,1)))(d_2)

#cropping↪→

# 3D convolutional layer

u_2 = conv3D_block(16,(3,3,9), input = u_2) #16 filters

# 3D convolutional layer + concatination
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u_2 = conv3D_block(16,(3,3,9), input = u_2, concat = d_2_c) #16 filters +

concat↪→

# 3D up-sampling layer

u_3 = UpSampling3D((1,1,3))(u_2)

# cropping

u_3_c = tf.keras.layers.Cropping3D(cropping=((0,0),(0,0),(0,72)))(u_3)

#cropping↪→

# 3D convolutional layer

u_3 = conv3D_block(8,(3,3,11), input = u_3_c) #8 filters

# 3D convolutional layer + concatination

u_3 = conv3D_block(8,(3,3,11), input = u_3, concat = d_1) #8 filters +

concat↪→

# Final Projection

pr = conv3D_block(1,(1,1,1), input = u_3)

# Creates the final HSI with initial dimensions

final = tf.keras.layers.Lambda(squeeze)(pr)

# defines the model

model = tf.keras.models.Model(input1, final)

# define optimizer

opt = tf.keras.optimizers.Adam(learning_rate = 0.0001, name = 'Adam')

# compile model

model.compile(optimizer = opt, loss='mse', metrics=[psnr,'mse','mae',SSIM])

return model
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Utils for DeepCubeNet (Python)

import numpy as np

from hdf5storage import loadmat,savemat

from scipy.interpolate import griddata

import os

from tqdm import tqdm

import keras

import tensorflow as tf

import keras.backend as K

import skimage

# these are utils from the DeepCubeNet from GitHub

# these defines the calculations of SSIM and PSNR

def psnr(y_true, y_pred):

return tf.image.psnr(y_true, y_pred, max_val=K.max(y_true))

def cos_distance(y_true, y_pred):

def l2_normalize(x, axis):

norm = K.sqrt(K.sum(K.square(x), axis=axis, keepdims=True))

return K.maximum(x, K.epsilon()) / K.maximum(norm, K.epsilon())

y_true = l2_normalize(y_true, axis=-1)

y_pred = l2_normalize(y_pred, axis=-1)

return K.mean(K.sum(y_true * y_pred, axis=-1))

def relRMSE(y_true,y_pred):

true_norm = K.sqrt(K.sum(K.square(y_true), axis=-1))

return K.mean(K.sqrt(keras.losses.mean_squared_error(y_true,

y_pred))/true_norm)↪→

def SSIM(y_true,y_pred):

return tf.image.ssim(y_pred,y_true,K.max(y_true))

def spectral_TV(y_true,y_pred):

return K.mean(K.mean(K.sqrt(K.square(y_pred[:, :, :, 1:] - y_pred[:, :, :,

:314]))))↪→

Layer Definitions DeepCubeNet (Python)

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import InputSpec, Layer

# these are definitions for the U-Net layers: 3D conv, expand,

squeeze↪→

# these are functions used in the original DeepCubeNet which is on

GitHub↪→

class ReflectionPadding3D(Layer):

def __init__(self, padding=(1, 1 ,1), **kwargs):

self.padding = tuple(padding)

self.input_spec = [InputSpec(ndim=5)]

super(ReflectionPadding3D, self).__init__(**kwargs)

def compute_output_shape(self, s):

""" If you are using "channels_last" configuration"""

return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 *

self.padding[1], s[3]+2*self.padding[2],s[4])↪→
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def call(self, x, mask=None):

w_pad,h_pad,z_pad = self.padding

return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad] ,

[z_pad,z_pad], [0,0] ], 'REFLECT')↪→

def conv3D_block(n_filters,kernel,input,stride=1,name=None,concat =

None,dropout=0,bias_reg=None):↪→

if concat != None:

input= tf.keras.layers.Concatenate()([input,concat])

x = ReflectionPadding3D((int(np.floor(kernel[0]/2)),

int(np.floor(kernel[1]/2)),

int(np.floor(kernel[2]/2))))(input)

↪→

↪→

x = tf.keras.layers.Conv3D(n_filters, kernel,

padding='valid',strides=stride, name=name,

activation=None,bias_regularizer=bias_reg)(x)

↪→

↪→

x = tf.keras.layers.Activation('relu')(x)

if dropout!=0:

x = tf.keras.layers.Dropout(dropout)(x)

return x

def squeeze(x):

import keras

return keras.backend.squeeze(x,axis=-1)

def expand(x):

import keras

return keras.backend.expand_dims(x,axis=-1)
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