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Abstract

Fusing data from multiple modalities is shown to be valuable in gaining further under-
standing of the learning experience. The learning technology research field is mostly
analysed through easy-to-collect data as click-streams or log-data, and the incorporation
of multimodal data is in the early stages; especially for the collaborative experience which
is still quite unexplored. This article describes the development of a collaborative web-
based code editor for data collection, and the integration of data streams from multiple
modalities: (1) eye-tracker, (2) wristband, (3) video, and (4) audio. Following the de-
velopment, data was collected from 15 pair-programming experiments (30 participants)
to investigate the predictive accuracy of multimodal data for programming performance
in collaborative settings. The results show that a fusion of all extracted features from
the different modalities predicted pairs performance with an error-rate of 8%, only de-
creasing to 7% when including a measure of prior knowledge. Moreover, some features
extracted from sensor data, (e.g., cognitive load) is shown to be more important than
prior knowledge in increasing prediction accuracy. The findings in this research provides
new insight into the collaborative programming experience that can be used in designing
learning technologies.
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Sammendrag

Kombinering av sensordata fra ulike datakilder er blitt vist til å gi ny og dypere forståelse
av læringsprosessen. Læringsteknologi er som oftest forsket på og analysert gjennom
begrensede datakilder oftest basert på direkte input som tasteklikk. Bruken av alternative
datakilder som fysiologisk data i forskning av læringsprosessen, samt kombinasjonen av
datakilder, er fortsatt i en tidlig fase; spesielt for læring ved samarbeid. Denne rapporten
beskriver utvikling og implementasjon av en samarbeids-basert kode editor på web og
datainnhenting fra flere kilder som (1) eye-tracker, (2) sensor-armbånd, (3) webcamera,
(4) lydopptak, samt synkronisering av datakildene. Etter utviklingen av systemet ble det
utført 15 par-programmering eksperimenter (30 deltakere) for samling av data. Innsamlet
data er videre analysert for å utforske hvilke variabler som er prediktive for prestasjon i
par-programmering. Resultatene viser at samlingen av alle variabler fra samtlige sensorer
predikerte parenes prestasjon med en feilrate på 8%, og sank kun til 7% ved inkludering
av mål på forkunnskaper. Enkelte variabler, som mål på kognitiv belastning, ble funnet
til å være viktigere enn forkunnskaper for prediktering av prestasjon. Funnene i dette
arbeid bidrar med nye innsikt i forståelse par-programmering prosessen som kan brukes
til å forbedre design av fremtidige læringsteknologier.
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1 Introduction

With the continuous advance in technology, universities are utilizing online education
to a greater extent. More and more universities are offering online classes and makes
greater use of blended classrooms (i.e., partially online classes). Moreover, the popularity
of online education has increased dramatically the past few years due to the COVID-19
pandemic. The interaction between the teacher and individual students in online classes
is severely limited, especially in programming courses. In order to receive help, students
are usually required to share their screen which may feel like an invasion of privacy.

Collaborative learning is suggested to be the superior learning strategy, (Johnson et al.,
2007; Johnson and Johnson, 2009) and is further supported in terms of programming
(McDowell et al., 2002; Williams and Kessler, 2000; Nosek, 1998). With the strong case
for collaborative programming and the challenges of online programming courses, the
need for supporting tools is undeniable.

Fusion of MMD have been shown to more accurately measure cognitive and affective
states, and enables us to gain deeper insight in the learning process (Ochoa and Worsley,
2016; Giannakos et al., 2019; Sharma and Giannakos, 2020; Sharma et al., 2019; Lane and
D’Mello, 2019; Zheng et al., 2019). Despite the strong evidence for collaborative learning
and MMD, there is a gap in research of collaborative programming from a MMD.

This report sets out to describe the development (e.g., design and implementation) of
a collaborative code editing tool integrated with data collection from logs and through
sensor, and an educational dashboard for presenting the data in a meaningful way. The
research question guiding this work is as following;

Which metrics derived from MMD are useful in predicting the pair programming
performance?

In what way can a dashboard presenting students current progress along with MMD
be beneficial for teachers?

2 Background and related work

2.1 Collaborative Coding

Pair Programming is the process of two programmers working together at one computer
on the same task (Williams et al., 2000). Collaborative learning is suggested to be the su-
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perior learning strategy, resulting in increased learning outcome and enjoyment (Johnson
et al., 2007; Johnson and Johnson, 2009). The benefits of collaborative learning seems to
be reflected in pair programming, as pair programming has been shown to be an effect-
ive strategy resulting in less code errors and greater enjoyment for entry-level students
(McDowell et al., 2002), senior students (Williams and Kessler, 2000), and experienced
programmers (Nosek, 1998). Students’ engaging in pair programming may also have a
lower dropout rate (McDowell et al., 2002), are less likely to deliver assignments late, and
achieves more consistent results (Williams et al., 2000). However, pair programming is
subject to practical limitations as geographic location and the need for a physical space,
and thus may not always be feasible.

Current research comparing collocated and distributed pair programming did not find a
significant difference in productivity, quality of code, or feedback from developers (Ba-
heti, Williams, Gehringer, Stotts and Smith, 2002; Baheti, Gehringer and Stotts, 2002),
which indicates the the benefits of collocated pair programming translates to distributed
scenarios. With the continuous growth of online education (Kumar et al., 2017), further
magnified by the COVID-19 pandemic, the need for tools supporting online education
and work is greater than ever.

2.2 Tools Supporting Distributed Pair Programming

Several tools have been developed to enhance the opportunities of pair programming,
but all with different goals in mind. Some tools are designed to support interactions
between teachers and learners, while others are intended to assist collaboration between
developers in professional settings. Jo and Arnold (2003) built a standalone program for
collaborative coding with a professional work setting as the primary focus. The program
supports textual communication between collaborators, and noted distributed learning as
a possible use case. The study did not mention compatibility with different operating
systems [OS], and it is unclear whether a user is limited to a single session.

Plugins exist that enables online concurrent programming in integrated development en-
vironments [IDE] (e.g., CoVSCode (Fan et al., 2019)), but the plugins tend to be designed
only for the purpose of collaboration and does not support data collection. (Boyer et al.,
2008) made a collaborative plugin (RIPPLE) for Eclipse 1, and performed a usability test
with students relatively new to programming. RIPPLE adds to Eclipse in the way that
multiple people can connect to a same session and includes a window for textual com-
munication. The results were promising for the case of distributed pair programming;
students reported significantly greater enjoyment from collaborative work than previously

1https://www.eclipse.org/

2
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individual assignments Boyer et al. (2008). However, the findings are due to some lim-
itations; the results were computed solely from questionnaire data and the test-sessions
were only 50 minutes. Considering the data were gathered at a single point in time, the
students may have been affected by unmeasured factors such as emotions (e.g., happy
emotion after test completion).

In contrast to the trend of collaborative programming environments as standalone pro-
grams or IDE plugins, CodeHelper is a lightweight web application [web-app] (Liu and
Woo, 2021). It was developed with the intent to support online mentoring in programming
courses. As a simple web-app, CodeHelper can be easily accessed from most browsers
and effectively circumvents the challenges related to OS compatibility and installation
that standalone programs and plugins are facing. On the other hand, it is designed mainly
for one-to-one teacher-student interactions which presents some issues. A session can
only be started by an administrator (or e.g., teacher) and may only be used as long as the
administrator is present, eliminating the possibilities for collaboration between students.
Each sessions starts with a blank editor and code have to be manually inserted by the
teacher or student, which limits the usability for complex programs.

The lack of multi-session support is recurring in existing collaborative tools, resulting
infeasible for use in a classroom setting where a teacher would like to observe multiple
groups simultaneously. Although the collaborative environment created by Jo and Arnold
(2003) support the creation of sub-groups for communication, it does not support separ-
ate and private work-spaces for different groups. Integrating support for multiple sessions
in IDE plugins (e.g., CoVSCode (Fan et al., 2019) and RIPPLE (Boyer et al., 2008)) is
a complex task. An alternative solution to monitoring multiple groups simultaneously
through plugins is to open a separate instance of the IDE for each group, though not
very convenient. Shen and Sun (2000) describes the (previously developed) collaborative
programming environment RECIPE, made to assist in the research of distributed collab-
orative programming. RECIPE differs from similar collaboration tools in that the admin
of a session can control access rights of the participants (e.g., read only, read/write). RE-
CIPE is in line with previous findings in terms of multi-session support, as a user cannot
be connected to multiple sessions simultaneously.

The lack of data logging is recurrent in existing tools for collaborative code editing. Being
able to reconstruct the collaborative process can provide valuable data for further studies
(Edson and Phillips, 2021; Boyer et al., 2008). Logging of editor-contents and user-data
(i.e., cursor position, selection) has previously been implemented in the Eclipse plugin
RIPPLE Boyer et al. (2008). Although RIPPLE does not support multiple real-time ses-
sions, every session can be fully reconstructed post-test from the logged data.

3



2.3 Educational Dashboard

An educational dashboard is defined by Yoo et al. (2015) as ”a display which visualizes
the results of educational data mining in a useful way”. The amount of raw data produced
by different sources when capturing the learning process may be plenty and can be dif-
ficult to interpret. Processing (if necessary) and making sense of such data can provide
valuable real-time insights to both students and teachers (Yoo et al., 2015). Visualizations
tend to be in the form of graphs and charts. The presented data differs for each dashboard
due to different cases. The challenges related to dashboards include presenting actually
meaningful data and finding the optimal way of presenting such data (Schwendimann
et al., 2017).

In a literature review of existing studies related to dashboard, Yoo et al. (2015) reported
a research gap in students reactions to their data presented in dashboards. Dashboards
have in the recent years seen a steady growth in popularity. However, the information
presented in dashboards from existing studies tend to originate from a single data source
(Schwendimann et al., 2017). Schwendimann et al. (2017) reviewed 55 studies related
to educational dashboard and found approximately two-thirds to only use a single data
source, with log-data being the most used. Due to the complexity of the learning process,
there is a need for further research of educational dashboards with multiple data sources
to gain better insight in the learning process.

Edson and Phillips (2021) tested the usability of dashboards for teachers in monitoring
student collaboration in a mathematics course. The test were conducted in a classroom
environment. Initially, the teachers reported limited use of the dashboard as they pre-
ferred to be actively walking around the classroom and helping students. As the primary
downsides were strictly related to the physical classroom setting, such dashboard may be
of great use in an online setting. The test were carried out over multiple years and an in-
creased use of the dashboard were observed. When asked about this, the teachers agreed
that the dashboard showing students’ progress were very helpful in determining when to
transition from the working phase to the summarize phase of the class.

2.4 Multimodal Data for Learning Analytics

The process of learning is complex and is affected by the learners cognition and affective
state. Technology provides great opportunities in capturing a multitude of data streams
from the learning process. Some data types commonly used in analyzing the learning
process are video, audio, eye-tracking, physiological data, and click-streams (Giannakos
et al., 2019). A single data source may be adequate in capturing a specific aspect of a
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students learning experience: e.g., Giannakos et al. (2019) found eye-tracking data to be
a good predictor for skill acquisition of subjects playing the Pac-Man game. However,
Giannakos et al. (2019) found a fusion of eye-tracking, electroencephalogram [EEG], and
facial data to result in even greater accuracy in predicting skill acquisition. The overall
learning process is a product of innumerable sub-processes and thus cannot be completely
captured from a single data source. Existing research of the learning experience from a
MMD (MultiModal Data) perspective have shown great potential by resulting in more
accurate predictions of effort (i.e., measured engagement) (Sharma et al., 2019), perform-
ance (Sharma et al., 2019; Giannakos et al., 2019; Andrade, 2017), and emotions (Zheng
et al., 2019), among other things. Zheng et al. (2019) found both EEG and eye-tracking to
be individually good predictors for emotions; however, EEG were superior in recognizing
happy emotion and eye-tracking in recognizing fear emotion, strengthening the case for
multiple data sources.

The research of MMLA is still in an early stage Sharma and Giannakos (2020). Despite
the promising results of MMLA, the number of data sources used in existing studies of
the learning experience tend to be limited (Sharma and Giannakos, 2020). The collec-
tion of data and fusion of modalities poses several challenges related to privacy, cost,
and technical difficulties (Ochoa and Worsley, 2016; Sharma and Giannakos, 2020; Gi-
annakos et al., 2019). Sharma and Giannakos (2020) reviewed studies related to MMD

capabilities for learning, and found a significant negative correlation between the number
of modalities and sample size, for studies using more than two modalities. MMLA (Mul-
tiModal learning Analytics (Blikstein and Worsley, 2016)) has the potential to provide
unique insight in the learning experience, but research is currently lacking due to the
aforementioned challenges.

Previous studies have found physiological data (e.g., blood volumse pulse [BVP] and
heart rate variability [HRV]) Sharma et al. (2019); Giannakos et al. (2019) to be bene-
ficial in explaining cognitive aspects of the learning experience, as skill acquisition and
problem solving. Understanding the cognitive abilities is an empathized matter in edu-
cation research, and is the primary target of tests in the educational system Lane and
D’Mello (2019). A major advantage of including physiological data is that its’ collected
from sensors that can produce a continuous stream of data. As opposed to user-generated
data as questionnaire data which is only representative for a single point in time, continu-
ous data from sensors can capture every little change and reflects reality more accurately.
Different related states (e.g., cognitive: cognitive load, fatigue) can be observed simultan-
eously by capturing and fusing multiple streams of continuous data, providing a stronger
fundamental for a more fine-grained analysis (Lane and D’Mello, 2019; Sharma et al.,
2019).
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Despite the advantages of utilizing multiple streams of data in capturing different aspects
of the learning experience, the measurements that can be derived often overlap. Estimates
for learners cognitive state, such as cognitive load, can be derived from multiple different
data sources, including EEG data Sharma and Giannakos (2020), motion data, and eye-
tracking (pupil diameter) (Cowley et al., 2016). Integrating multiple modalities may be
considered superfluous in studies not having MMLA as a primary focus. On the flip side,
analyses utilizing overlapping metrics from MMD is less likely to result in erroneous
conclusions due to increased validity of findings.

As previously mentioned, the research of MMLA is in the early stages and its full capabil-
ities in terms of understanding the learning process is still unknown (Ochoa and Worsley,
2016; Blikstein and Worsley, 2016; Sharma and Giannakos, 2020). The arguably slow
progress in MMLA research is due to difficulties in collecting and analyzing data. Firstly,
collecting data can be an expensive process. Recording devices (e.g., cameras, micro-
phones, eye-tracker, wristbands) tend to be expensive itself, and may be tricky to set up.
Collecting MMD from online courses [or MOOC - Massive Open Online Course] is dif-
ficult as it requires the subjects to be in possession of the required recording devices.
Sensors may communicate through different protocols (e.g., BLE; Empatica E4 Wrist-
band 2, which requires additional technical setup for real-time streaming of data. In cases
were computer-integrated webcams and microphones are considered adequate recording
devices, privacy becomes an issue (Sharma and Giannakos, 2020). The collection of
MMD is usually done in physical environments due to the infeasibility of online data
collection, and the class-room setting has been found to be the most used Sharma and
Giannakos (2020). Moreover, fusing MMD and making sense of large amounts of raw
data is technically difficult (Ochoa and Worsley, 2016).

2.5 Multimodal Data and Distributed Pair Programming

MMLA has been shown to provide great insight in the collaborative learning process.
(Sharma and Giannakos, 2020). Spikol et al. (2016) developed a framework for analyzing
MMD in collaborative programming. Currently there is a gap in research of collaborative
programming with MMD.

2https://www.empatica.com/research/e4/
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3 Implementation

As no system exists that can gather and synchronize the data required for this research,
this had to be developed. This section describes the development, architectural decisions,
and challenges faced during the process.

3.1 Requirements

Due to uncertainty regarding the difficulty of integrating the different data sources, and the
devices only being available to use for a limited time, the requirements were indecisive.
However, the goal was to develop a collaborative code editor and collect physiological
data from Empatica E4 wristbands3, facial landmarks from webcameras, gaze data from
eye-trackers, and audio recordings.

The objectives of the development can be broken down into four main parts:

(1) : A code editor that supports concurrent collaboration, integrated with extensive
logging

(2) : Gather data from multiple data streams (i.e., eye tracking, webcam, audio and
wristband)

(3) : Synchronize all gathered data from editor and user sensors

(4) : Replay the the experiments in a teacher-dashboard through logged data

The plan was initially to present real-time data in the dashboard, but this changed during
the development due to unforeseen problems further described later in this section.

3.2 Front-end

3.2.1 Code editor

Technical decisions regarding the code editor were primarily affected by the planned dash-
board, amount of data to be collected, and need for both users to be able to compile the
code. Although several IDE plugins for collaborative programming exists, few support
code compiling for both users and none, to my knowledge, includes sufficient logging
required for this project. The final design of the code editor webapp can be seen in Figure
1.

3https://www.empatica.com/research/e4/
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Firepad and Firebase
One option that stood out when selecting a text editor was Firepad4. Firepad is a collabor-
ative web-based text editor integrated with Firbase Realtime Database5. Firebase realtime
is a cloud hosted NoSQL database that automatically synchronizes changes and resolves
merge conflicts. This is particularly useful for this project in the event of a user losing
connection during an experiment, as lack of data integrity can be detrimental to the replay
of a code session. Moreover, real-time synchronization enables multiple live collabor-
ation sessions to be viewed in the dashboard in real-time. The Firepad text editor also
includes features such as undo & redo, presence detection, text highlighting, and cursor
position. These features are key to recreating a pair-programming session. Another fea-
ture of Firepad is version checkpointing, which is useful for both detecting and solving
issues related to data integrity. Additionally, Firepad comes with a userlist6 that is simple
to integrate. The list of users are especially useful in a classroom-setting where a lecturer
may frequently change between groups.

CodeMirror
Although Firepad itself only supports text editing, it can render the text from web-based
code editors as Ace7 and CodeMirror8. CodeMirror and Ace are shortly said just text
editors with desired features for code editing such as syntax highlighting and code folding.
CodeMirror was chosen for this project, simply due to superior documentation.

React
The JavaScript9 library React10 was used to build the front-end. The decision to use
React was made with the dashboard in mind, as React being component-based. Reusable
components with differing state is highly desired for a dashboard that does not only show
each pair as a component in the overview, but also the many components visualizing
metrics in each group view. For just the collaborative editor, disregarding the dashboard,
a simple web-page would suffice.

After deciding on a React project embedded with a Firebase and CodeMirror editor for
the front end, there was still missing functionality. Firepad is built only with real-time
collaboration in mind and all user-related data is continuously overwritten in the database.
An example of this is that data regarding a users action, e.g., cursor placement, is limited

4https://firepad.io/
5https://firebase.google.com/docs/database
6https://github.com/FirebaseExtended/firepad/blob/master/examples/firepad-userlist.js
7https://ace.c9.io/
8https://codemirror.net/
9https://www.javascript.com/

10https://reactjs.org/
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to the last recorded value only. All user data are also dependent on the presence of the
respective user, and removed if no presence is detected. The only persistent data after a
collaboration session are modifications of the code.

Logging
As Firepad uses but does not store user data that is relevant for recreating the collaborative
experience, such as cursor position and selection, Firepad had to be modified. The library
was downloaded as shown in Code listing 1.

1 wget https://firepad.io/releases/v1.5.10/firepad.min.js

Listing 1: Downloading Firepad

In order to make the data persistent, the library were modified to, whenever a user event
were pushed to the database, to also push the same data to another document in the
NoSQL database that would never be overwritten. This way the functionality of Firepad
is never affected and the user data persists. An example of how this were implemented in
the sendCursor function is found in Code listing 2, where the added code are in the lines
3-18, and userLogRef is a reference to the log-document the database.

1 i.prototype.sendCursor = function (t) {

2 this.userRef_.child("cursor").set(t);

3 // START new code

4 let dt_client = new Date().getTime();

5 let sStart = null;

6 let sEnd = null;

7 if (t !== null) {

8 sStart = t.position;

9 sEnd = t.selectionEnd;

10 }

11 // userLogRef_ is a reference to a document in the NoSQL db

12 this.userLogRef_.child("cursor").push({

13 selectionStart: sStart,

14 selectionEnd: sEnd,

15 client_timestamp: dt_client,

16 timestamp: firebase.database.ServerValue.TIMESTAMP })

17 }

18 // END new code

19 this.cursor_ = t;

20 }

Listing 2: Extending Firepad
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Code compilation
After developing a functioning collaborative editor, the last step was to find a way for
users to compile and run their code. Initially, this was done using the library Pyodide
(The Pyodide development team, 2021) which is a Python distribution for the browser.
A webapp (e.g., the editor) cannot execute Python code on client machines, but Pyodide
works in the way that it executes the code in a virtual machine. The output and error data
streams from executing Python code, stdout and stderr, respectively, were redirected to a
function updating the compile-box of the editor. The compile-box can be seen in Figure
1 at number 5. This worked well in the sense that all users can compile and run the code
independently, and the output a user can see is limited to the output from when the user
ran the program.

The debug task (see appendix B) for the experiment was provided by the supervisor of
this project who intends to run further analysis on the collected data after this project. The
debug task involved debugging a Python game built with the Python library Pygame11.
Unfortunately, Pyodide showed to be incompatible with Pygame. The first issue that was
faced when trying to make Pyodide run Pygame was loading assets for the game. Pyodide
runs in the browser and JavaScript is not allowed to access local data files, however, this
could be worked-around by loading all assets from a server12. Before implementing a
server for assets, all assets were temporarily removed from the game to find out if that
was the only issue causing problems. Unfortunately, Pyodide was not able to load the
Pygame package. This was initially thought to be due to incompatibility between Python
versions, as each version of Pyodide runs on a specific Python version and each version
of Pygame only support specific Python versions. However, after trying out (almost) all
permutations of Pyodide and Pygame versions, this was found to not be the cause of the
error. Pyodide only support external packages that are pure Python, and as Pygame is not
pure python due to SDL-libraries dependencies for hardware access, the Pyodide-Pygame
combination turned out to be impossible.

The work-around for running a Pygame-game from the browser ended up being to send
the code to a server running locally on both client computers, where the server executed
the code and responded with the output and error streams. The implementation and details
of the server is described in Section 3.4.

11https://www.pygame.org/docs/
12https://pyodide.org/en/stable/usage/faq.html#how-can-i-load-external-files-in-pyodide
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Figure 1: Final design of the code editor

3.2.2 Dashboard

Then plan was originally to develop a teacher-dashboard displaying metrics from the
sensor data alongside the code editor (right side of the editor, see Figure 1), and eval-
uate said dashboard through qualitative interviews. The key metrics to display was going
to be derived from the quantitative analysis of multimodal data and pair performance.

This was initially implemented in the same ReactJS-based webapp as the code editor by
rendering additional components for users with privileged admin-roles. The data dis-
played were updated the same way as the text inside the code editor; through a websocket
connection to Firebase where the data was stored. Unfortunately, this implementation was
discarded due to restrictions related to storing personal data (described in Section 3.5).

The restriction of data storage mentioned above resulted in all data being stored loc-
ally. The second iteration of the dashboard used the Dash13 framework for building the
user-interface and the plotly14 library for visualizing data. However, the time-cost of re-
modelling the system resulted in insufficient time for evaluating the dashboard, and the
dashboard was therefore decided to be a part of future work.

13https://dash.plotly.com/
14https://plotly.com/python/
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3.3 Capturing data streams

3.3.1 Empatica E4 wristband

The E4 wristbands stream collected data in real-time over BLE (Bluetooth Low Energy)
to a BLED112 USB dongle15. Empatica’s E4 streaming server for Windows16 is used to
forward the data received by the BLED112 dongle to socket connections over TCP, and
includes an API for subscribing to devices and and their data streams. A Python client
(named pyE4Client in figures) was developed for capturing and saving wristband-data
from the E4 server in real-time. The E4 data collection process is illustrated in Figure 2
in the form of a sequence diagram.

If for any reason the BLE connection between E4 and the E4 streaming server (through
BLED112) disconnects, the server is set to automatically reconnect. This was never ob-
served to happen during testing nor in the experiments. The pyE4Client run independently
of the webapp and must be started and stopped manually. When the client receives data
from the E4 server, it first decodes the message and then appends each row of data to
temporary lists with the corresponding data type (e.g., rows with data type E4 HR are
appended to list HR temp). Data in temporary lists are saved to disk when the list reaches
a certain size or the process is stopped. The Python module atexit17 was used to mit-
igate potential data loss by triggering a save of captured but unsaved data (i.e., data in
temporary lists) in the event of an unexpected termination.

In the first implementation, all incoming data were appended to pandas.DataFrame’s(Reback
et al., 2022) and only written to file when the program was stopped. The time-cost of ap-
pending dataframes increases with the size of the dataframe, and the increasingly poor
performance during a session eventually lead to data incoming at a higher rate than what
the program was able to save. Although all data would eventually be saved if the program
kept running after unsubscribing from the device (i.e., wristband) data streams, the ever-
increasing time cost of appending new data makes this highly impractical, and the data
would not be in real-time and thus unsuitable for a real-time dashboard. Depending on the
duration of the data collection, this may also cause memory-related issues. To summarize
this paragraph; performance is important when dealing with continuous data streams.

15https://www.silabs.com/documents/public/data-sheets/BLED112-DataSheet.pdf
16https://developer.empatica.com/windows-streaming-server.html
17https://docs.python.org/3/library/atexit.html
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Figure 2: Sequence diagram of the E4 data collection process

3.3.2 Video

Video from the webcamera is streamed and processed in the front-end code of the code
editor, and the process is set to automatically start when the user clicks a browser prompt
starting the coding session in the editor. The Media Streams API18 is used for accessing
the data stream and the JavaScript API face-api.js19 for processing. Face-api processes the
video stream in real-time using pre-trained neural network models for image recognition
to detects faces, facial landmarks, and facial expressions, among others. The video stream
is not recorded since it is processed in real-time.

The decision to process the video in the browser was made at a time where the webcam-
era’s were integrated and all data stored in firebase. The processed data were timestamped
by the same clock as the editor log, so no need for additional synchronization. However,
the data could no longer be saved in firebase due the personal data storage restrictions
described in Section3.5, and ended up being sent to the server described in Section 3.4
instead.

18https://developer.mozilla.org/en-US/docs/Web/API/Media Streams API
19https://justadudewhohacks.github.io/face-api.js/docs/globals.html
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The limited time to redesign the system away from storing data in firebase resulted in
some poor technical decisions, with they way face-api data was handled being one of
them. Collected was only sent to the server over HTTP at the end of a test (25 minutes),
instead of e.g., continuously over a TCP connection. A major overlooked issue with this
was the risk of data loss that came with collecting the data in the browser. A reload of
the webpage would result in loss of all data not already sent to the server. This risk was
somewhat mitigated by sending data to the server at frequent intervals. In retrospect, a
more optimal solution would be capturing and processing the video stream in a process
separate from the webapp, whether it be running on the server or locally on the same
machine.

3.3.3 Audio

The audio stream is started and captured the same way as the video stream (described in
the previous paragraph), however, it is not processed for features in real-time but rather
just saved as a recording. The audio is compressed in an OGG-container before being
sent to the same server as the video data, and is saved once a minute for backup pur-
poses. Similar to the video data, the sub-optimal technical design and the data-loss risks
following the browser implementation also applies to this.

Mitigating the potential data loss is done slightly different for the audio data as it is not a
collection of observations already timestamped (e.g., data from video processing). When
the recording starts, a timestamp is logged to the database. Timestamps for the start of
each recording (only multiple if a user refresh the webapp connection) can be used to
detect exact intervals of missing audio. Valid audio segments can then be combined to
a single file with each segment at their correct timestamp, and the empty intervals either
filled (e.g., with silence) or excluded from further use.

3.3.4 Gaze data

The eye-trackers used were Tobii Pro X3-12020 which connects over USB and broadcasts
to localhost. Tobii’s SDK for Python21 is a programming interface for communicating
with the eye-tracker, and was used in form of the Python package tobii research22. To-
bii research simplified the process of collecting gaze data to a large extent, where it was
down to a few function calls for connecting to the device and subscribing data streams.

20https://www.tobiipro.com/product-listing/tobii-pro-x3-120/
21https://developer.tobiipro.com/python/python-sdk-reference-guide.html
22https://pypi.org/project/tobii-research/
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Gaze data is saved in similar fashion as wristband data from E4, and also uses the atexit-
module to mitigate risk of data-loss.

Gaze data are timestamped by the eye-tracking devices internal clock, and some the clock
in Tobii devices have been found to drift several seconds over sessions lasting approxim-
ately 20 minutes (Nüssli, 2011). Therefore, the client (named pyEyeClient in later figures)
developed for capturing (through tobii research) and saving the gaze data timestamps
all data the the computers internal clock, eliminating clock drift between different data
sources (e.g., gaze, wristband, etc).

3.4 Game and data server

A server for running the game and receiving data from the browser (i.e., facial features and
audio data) was developed in Python using the Flask (Grinberg, 2018) framework. Two
instances of the server ran separately on the two computers used in the experiments, and
was only connected available on local network of each computer. The server is referred
to as GameServer in architectural views shown later in this chapter.

The reason for running the games on a server was a workaround due to incompatibility
between Pygame and browser-based python compilers, which was discovered at a late
time, only days prior to starting the data collection (further described in the end of Section
3.2.1 and in Section 3.5).

The workaround for running a python script (i.e., Pygame) from the browser was to,
whenever a user clicked the Run-button (see Figure 1), all code from the editor was sent
to the server. The server has a directory with the game files (main script, assets) and runs
in an environment where the Pygame-package is installed. Upon receiving code from
the user, the server overwrites the main script (i.e., python file executed to run the game)
with the received code. Then, the server proceeds to run the updated main script in a new
process using Python’s subprocess module23. Stdout and stderr (i.e., the output and error
streams, respectively) in the sub-process are redirected to local variables so the server can
return a proper response including any relevant information from running the program.
The communication between the webapp and server is over HTTP, so the webapp only
receives the output in a single response after the game is closed. Thus, in this workaround,
the programs’ output is only displayed to the user after closing the game, in contrast to
the initial implementation (not Pygame) where the code was executed in the browser and
output/error streams displayed in real-time,.

Assuming the code is free for breaking errors, the servers sub-process call opens the game

23https://docs.python.org/3/library/subprocess.html
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in a new window. A downside of running the game in a sub-process is that the window
opens in the background (i.e., behind the layers of currently active windows), and must be
manually opened from the application bar. This was solved using Dexpot24 - a program
for Windows customization - by writing a custom rule forcing the game to be displayed
in the foreground.

The server also has endpoints for receiving video and audio data from the browser, and
writes said data to disk. This is simply for usability reasons; data saved directly from
the browser must be downloaded and each download trigger a pop-up message, which is
inconvenient in a pair-programming experiment and could be a source for annoyance.

3.5 Early iterations and challenges affecting the architecture

Initially, the plan was to send all collected data straight to the firebase database, so that
any collaborate coding session could be observed from a dashboard in real-time. This
involved each of the two computers collecting data from the respective users sensors. The
E4 wristband was the first implemented data source external of the code editor, and Figure
3 illustrates the initial setup.

Figure 3: E4 wristband first iteration - physical view

During the development process, the value of connecting the sensor devices to a shared
computer (with a shared server for data captured in the browser), was slowly realized.
Running data collection scripts (for gaze and e4) and processing the data on the same
device has multiple advantages: real-time clock synchronization of the data, less technical

24https://dexpot.de/?lang=en
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setup before experiments (scripts only run on shared, not separate on both computers), no
risk of users accidentally terminating data collection scripts, and the researcher can mon-
itor the processing computer to quickly observe any potential errors. Moreover, starting
the scripts simultaneously on the same device removes the need to start each script in-
dividually and before the experiment resulting in less data being saved (file size), and
reduces the chance of errors in the setup process.

Figure 4 shows architecture from the first iteration of the system as a whole. In this itera-
tion it was assumed that the computers to be used in the data collection would be laptops
with integrated webcameras, therefore, the video and audio data were still collected in the
browser before being sent to the processing server.

Figure 4: First version of the system - physical view with main processes

3.5.1 Personal data restrictions

Permission to collect and store the personal data was applied for to the Norwegian Centre
for Research Data (NSD)25. The first application was sent in the middle of February,
and was unfortunately rejected five weeks later, at the middle of March. The reason for
rejection was because the personal data was planned to be stored in the firebase database.
It is required that any external service processing personal data has an agreement with the
university, and firebase, being hosted by Google, did not have such an agreement with the
university.

25https://www.nsd.no/en/
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Consequently, the personal data could no longer be stored in firebase. This did data stor-
age restriction did not only affect the data collection, but was detrimental to the dashboard
considering the dashboard got all data directly from firebase. The subsequent iteration of
the system saved all data locally on the shared processing computer, illustrated in Figure
5, where removed lines of communication are marked with ”X”.

Figure 5: Second version of the system: data stored in firebase limited to logs

3.5.2 Multiple eye-trackers not supported

Data collection devices was only available for a limited time, and the second eye-tracker
was received a two weeks prior to starting the data collection. As illustrated in Figure
5, the eye-trackers were planned to be connected to the same computer which used the
developed pyEyeClient to collect data from both devices. However, it turned out that
connecting multiple eye-tracking devices to the same computer was not supported.

This lack of support for multiple devices was first discovered during calibration in Tobii’s
Eye Tracker Manager software where the program would only display a single eye-tracker
at a time, regardless of the number of connected devices. This was thought to maybe be
due to both devices broadcasting on the same port, however, it could not be concluded
as no solution was found for configuring broadcast settings. On the other hand, the issue
might not be port-related considering the tobii research Python-package has a function
for finding all devices running on a network. If the issue is due to limitations of the
eye-tracking devices’ internal software that which cause a conflict when multiple devices
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(i.e., eye-trackers) request processing from the same processing device (i.e., computer),
a potential solution could be to process the two streams on separate intermediate devices
such as Tobii’s external processing unit26. These devices were not available and therefore
this is not tested.

An alternative working solution to this problem is connecting the two eye-trackers to the
user’s two computers, disable the computers firewall, and then connect with the shared
processing computer to capture the data. This was not done in the final implementation
(see Figure 6) for security and privacy reasons.

3.5.3 Pygame in debug task

The debug task for data collection involved running a Python-based game through the
Pygame-package. Pygame was incompatible with the compiler implemented in the code
editor, further described in the end of Section 3.2.1 under Code compilation. As a con-
sequence, a server had to be developed (see Section 3.4) so users could run the game.
Although this did not affect existing lines of communication in the system, it increased
complexity of the architecture.

3.6 Final architecture

Because of the challenges described in the previous subsection it was eventually decided
to collect and save all sensor data separately on the two computers. Logs from the code
editor are the only data stored in firebase. Data from all the streams are timestamped by
the respective computers internal clock, and then synchronized after the data collection in
respect to firebase’s server time as described in section 4.6.1. Removing the processing
computers also increases the need for additional pre-processing of the data before it can
be analyzed. The pre-processing is described in Section 4.6.

26https://www.tobiipro.com/product-listing/external-processing-unit/
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Figure 6: Final implementation - physical view with main processes

Regarding the dashboard; the restrictions to personal data storage broke the initial imple-
mentation. Development of a new dashboard not connected to firebase was in progress
but due to the many setbacks it was eventually decided to be proposed for further work.

Figure 6 shows the physical view including some main processes in the final implement-
ation.

4 Method

4.1 Context

An experiment was designed to collect quantitative data for a multimodal dataset repres-
enting the pair-programming experience. A total of 15 experiments each involving two
participants were conducted over the course of two weeks. The experiments consisted
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of an individual pre-test followed by a collaborative programming task, both provided by
the supervisor of this project who will run further analysis on the collected data after this
research project. The pre-test and the collaborative programming task, further referred to
as the debug task, can be found in appendix A and B, respectively. The debug task in the
appendix includes all of the six bugs which are marked with code-comments. The com-
ments stating the bugs were not in the original source code used in the experiments, and
the participants were unknown of the number of bugs. The debug task was time-limited
and the objective was to detect and fix bugs in a Space Invader game written in Python,
by collaborating in the web-based code editor described in Section 3. Space Invader, il-
lustrated in Figure 7, has a basic concept with limited game controls (space bar and arrow
keys) that most are familiar with.

Figure 7: Screenshot of Space Invader

4.2 Participants

A total of 15 pair-programming experiments were conducted. The 30 participants (26
male, 4 female) age range from 22 to 29 years old. The sampling strategy convenience

sampling was used to recruit participants. The participants were recruited from my own
personal network, open calls on social media platforms (Facebook27, Slack28), e-mail,
and through previous participants. I collaborated with a group of two fellow students

27https://www.facebook.com/
28https://slack.com/

21

https://www.facebook.com/
https://slack.com/


conducting a similar experiment, and all the participants contacted via e-mail had given
consent after participating in the other groups experiment. The inclusion criteria were
programming skills at minimum equivalent to what is expected after the NTNU course
Object-Oriented Programming29, with no exclusion criteria. The majority of the parti-
cipants consists of computer science students from NTNU, and five (5) of the participants
were professional software developers. All participants were compensated with a gift card
(Midtbykortet30) worth NOK200, and two NOK500 gift cards were given to a randomly
selected pair after all the experiments. The experiments were conducted in May, which
is a time were a lot of students are busy with exams or gone for the semester. Due to
the difficulties of recruiting enough participants and the logistics of scheduling pairs, any
previous participant recruiting a pair was awarded with a NOK200 gift card recruitment
bonus. This bonus was only active at the end of the data collection phase.

4.3 Settings and Procedure

The experiments took place at a laboratory at NTNU (UX-lab). Each experiment star-
ted with the participants signing a contract, granting consent to collection, storage, and
processing of their personal data. This was followed by an individual pre-test that was
time-limited to 10 minutes. Afterwards, both participants were assigned a computer each.
The monitors faced opposite ways and blocked the pairs view of each other, in order to
simulate a remote collaboration process. The setup including all the devices can be seen
in Figure 8.

29https://www.ntnu.no/studier/emner/TDT4100
30https://midtbyen.no/midtbykortet-gavekort-for-trondheim-sentrum
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Figure 8: Environment of the experiment

The participants were then helped to put on the Empatica E4 wristbands31 on their non-
dominant hand as recommended in the user manual32, although current research is con-
flicting on the importance of this (Schuurmans et al., 2020). The reason for assisting the
participants in equipping the wristband is that in the pilot-tests, incorrect placement (e.g.,
on the wrist joint instead of above) were observed to have detrimental effects on the de-
tection of interbeat intervals. Both wristbands were then connected to an E4 streaming
server33 running on the wearers computer. Then, the Tobii X3-12034 eye-trackers were
calibrated with a 7-point calibration using Tobii’s Eye Tracker Manager35. Height and
tilt of the monitors were adjusted before the calibration to assert proper positioning for
each participant. The webcamera and microphone were tilted post-calibration for proper
positioning.

The participants were subsequently presented with a brief introduction to the code editor
where they learned how to run the game and where to look for output. They were then
showed a short gameplay preview of how the game was intended to work. The pair were
told that the game they receive is broken and their task is to collaborate in finding and

31https://www.empatica.com/research/e4/
32https://support.empatica.com/hc/en-us/articles/206374015-Wear-your-E4-wristband-#

EDA-note
33https://developer.empatica.com/windows-streaming-server.html
34https://www.tobiipro.com/product-listing/tobii-pro-x3-120/
35https://developer.tobiipro.com/eyetrackermanager.html
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fixing the bugs breaking the game. Both participants had access to a headset that were
optional to use, with no value beyond listening to the game sounds. Two python scripts
for collecting wristband and eye-tracking data (described in Section 3.3.1 and 3.3.4, re-
spectively) were then started on both of the computers.

Finally, the pair was informed of the option to ask for help in case they got stuck (and
the point reduction that comes along), and started the debug task by clicking a prompt
overlaying the editor. The task was time-limited to 25 minutes and a timer was triggered
upon starting the test, automatically ending the test if reaching the time limit. Pairs com-
pleting the task in less than the available time were ordered to click a button on the E4
wristband to timestamp the end of the session. The pairs spent on average 22 minutes and
29 seconds (SD = 3 minutes 49 seconds) on the task.

4.4 Data collection and measurements

The initial plan for this study included a follow-up qualitative study of a teacher-dashboard
visualizing the metrics that were found to be the most significant in this study. As a result,
the collected data is not limited to the data meant for analysing the collaborative experi-
ence, but also includes data necessary to recreate the experiment. The data were collected
quantitatively and in the forms of questionnaire data (pre-test), sensor data, and log files.
Data were collected from the following sources: pre-test, wristband, webcamera, micro-
phone, eye-tracker, and the code editor. The measurements associated with the collected
data are a mix of predefined and post-computed, and is further explained in the subsequent
paragraphs. The physical setup of the data collection devices can be seen in Figure 8.

Pre-test
The pre-tests (see appendix A) were carried out on paper and the predefined measurement
was the total score. The pre-test was time-limited to 10 minutes and consisted of 10
questions worth one point each.

Wristband data
The python client described in Section 3.3.1 was used to collect data from the E4 wrist-
bands. The data collected from the wristbands were blood volume pulse (BVP) at 64
Hz, galvanic skin response (GSR) at 4 Hz 3-axis acceleration (ACC) at 32 Hz, body-
temperature (TEMP) at 4 Hz, interbeat intervals (IBI), and hearth rate (HR). IBI and HR
were captured at irregular intervals due to limitations of the wristband. Each and every
measurement included a timestamp and a number identifying the user. All variables are
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associated with pre-defined measures, and additional measures of change in the variables
were post-computed.

Video
Video streams from the webcameras were processed in real-time during the experiments
by using the JavaScript API face-api36, so the video were never recorded. Integration and
features of face-api are previously described in Seciton 3.3.2. Data were collected from
the real-time processing at 1 Hz. The data included a timestamp, a 68-point list of facial
landmarks with coordinates, and an estimate for each of seven different emotional states:
(1) neutral, (2) happy, (3) sad, (4) angry, (5) fearful, (6) disgusted, and (7) surprised. The
values representing emotional state were a predefined measurement. The facial landmarks
were only intended for the dashboard and further research with the same dataset.

Audio
Audio was recorded from two Thornmax Pulse37 microphones; one for each participant.
The measurements for sound data were time proportions of silence, one speaking, overlap
in speech, and were all post-computed. The audio was recorded by a script in the front-end
and automatically began as the participants clicked to start the debug task. The technical
details are described in Section 3.3.3.

Gaze data
Data from the eye-tracker was collected through a python client described in Section
3.3.4. The gaze data was collected at 120 Hz using Tobii X3-120 eye-trackers with a
7-point calibration. The gaze data consisted of pupil diameter and gaze point on screen
individually for both eyes. In terms of the planned dashboard, all observed gaze points
were important for recreating the collaborative process. For this analysis however, all
measurements were post-computed. The measurements include cognitive load from pupil
data and saccades from gaze points.

Code editor / webapp
Every single change in the code editor (write, remove, replace) were instantly logged to
the firebase realtime database with a timestamp and user id. The editor was developed
for this project and is based on the text-editor Firepad. Both users selection (i.e., single
point, no selection, multiple characters/lines) within the code editor were logged with a
timestamp upon change. Implementation and details of the code editor are described in

36https://github.com/justadudewhohacks/face-api.js/
37https://www.thronmax.com/product/thronmax-pulse/
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Section 3. Data was also collected from interactions with elements in the editor that was
not part of the text area specifically, and includes the timestamp at which a pair started the
test, change of user colors with timestamps, timestamp of clicking Run and the output,
and timestamp of clearing the output by clicking Clear. The output from running the
program was independent for both users and logged accordingly. Moreover, both users
front-end requested timestamps from the database server at 1 Hz to log request times and
timestamps, which was later used for synchronization purposes described in Section 4.6.1.

All data collected from the webapp are essential in recreating the process in a dashboard.
As the scope of this research changed, the data relevant for this research analysis is limited
to the history of events in the code editor, timestamps of test starts, and the synchroniza-
tion data. The code history was used to recreate the state of the code at the time the test
was over, for computing pairs score on the debug task. The start-timestamps and syn-
chronization data were used for trimming the dataset and synchronizing the data sources,
and is further described in Section 4.6.2 and 4.6.1, respectively.

4.5 Research Design

The research design of this study is correlation research. All the pairs participating went
through the exact same experiment with no manipulation of variables, resulting in no in-
dependent variable as all variables are strictly observed. This research design investigates
relationships between performance (i.e., score on the debug task) and multimodal data,
and if a fusion of modalities can be a more accurate predictor for performance than the
pre-test. The relationships investigated are indeeed non-casual, as correlations does not
necessarily imply causation.

4.6 Pre-processing

This section describes pre-processing of the data and post-computed measurements. The
pre-processing was done using Python38 with the pandas(Reback et al., 2022) library for
data manipulation.

4.6.1 Time synchronization

Because all data relevant for the analysis were logged and collected on the two computers
separately, each with their own clock, the first step of pre-processing was to synchronize

38https://www.python.org/
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data from the two users. This involved replacing all timestamps with new computed

timestamps of estimated server time.

As described under Code editor in section 4.4, both computers logged their timestamp,
server timestamp, and request time in ms at 1 Hz. This process consisted of three steps:

(1) : Client requests server at client timestamp T0

(2) : Server receives request, responds with servers timestamp S

(3) : Client receives response at client timestamp T1

This was used to compute estimates for expected server timestamps (ES) by using Cris-
tian’s algorithm Cristian (1989) for probabilistic clock synchronization.

ES = T0 + (T1 − T0)/2

Briefly explained, the expected server timestamp is the clients’ timestamp plus half of
the request time, i.e., an estimated time at which the server is expected to receive the
request. The algorithm is probabilistic and the request-response times are not always
equal and may vary, so the results are not error-free. The expected server timestamps
were then used to find the time offset (D) between client and server, by subtracting the
clients expected server time from the actual server time:

D = S − ES

Before actually computing the estimated server time described above, the collection of
client-server timestamps were split by minute-intervals where each new collection rep-
resented the data for the respective minute since start of the test. Then, for each minute-
collection, only the row with the lowest request-response time were kept. The reason for
this is that Cristian’s algorithm is more accurate for lower request-response times as it is
an estimation. Then, the calculations above for expected server time and offset were done
for the one remaining row in each of the minute-collections.

The process described above resulted in one value for each minute representing the client-
server offset using the lowest request-response time. The offset was observed to drift
0.2-1 ms per minute, totalling 5-25 ms over a full 25 minute test duration. This drift can
be due to drift in the clients internal clock, but may also be due to performance issues
of the webapp as the timestamps were sent from the front-end. However, this drift was
considered negligible in this research. The mean of the offsets (one value for each minute)
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were used as a single value representing the client-server offset. The original timestamps
(Tx) of all sensor-data were then replaced with computed timestamps (Ty) by adding the
offset mean (Dm).

Ty = Tx +Dm

Computing server offset and modifying timestamps were done individually for each of the
participants. This process resulted in all of a users data being synchronized to the server
time. Post-synchronization of both users data with the shared server removes the need for
a designated processing server, effectively cutting a line of communication. Collecting
data separately and directly on the computers can be beneficial in situations with limited
network capacity or large amounts of data. Moreover, particularly for experiments of
longer duration, the internal clock drift of each computer can be observed and taken into
account.

4.6.2 Trimming data

Data collection from the different devices were manually started and stopped and there-
fore the dataset included a few observations from before and after the debug task. Start

and end timestamp of each experiment were used to remove all data before and after,
respectively. The start-timestamp used was the timestamp logged to the database when
a pair clicked to start the debug task. The experiment ended automatically 25 minutes
after the start, logging the end-timestamp to the database (although this was superfluous
considering the known start-timestamp). Pairs finishing the debug task in less than the
available time were asked to click a button on the wristband that marked the end of their
test.

4.6.3 Debug score

The history of events in the code editor (i.e., changes in code) were used to reproduce
the exact state of the code editor at end-time of the debug task. This was used asses the
results of each group and give scores. The debug task had six (6) bugs, all worth the same
amount of points. The task, including the bugs marked by comments, is found in appendix
B. Each pairs’ final score (S) were calculated by dividing the sum of points (P by time
used (i.e., seconds available (S0) - seconds remaining (S1)) to credit pairs completing the
task early.

S = P/(S0 − S1)
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4.6.4 Audio measures

The Python library PyDub39 was used for processing the audio files. The measurements,
as stated in 4.4, were the amount of silence, one speaking, and speech overlap for each
minute. The audio data were compressed during the data collection to lower the file size
as it was sent to a server. Compressed audio has a reduced dynamic range of signals
which evens out quiet and loud elements, and is highly undesirable for this analysis as
each microphone is meant to only capture audio from one user. Naturally, the audio files
were uncompressed before post-computing the measures.

First, silence intervals for each users were detected using Pydub.silence as shown in code
listing 3. The minimum length of a silence interval was set to 1 second (1000 ms) to not
incorrectly mark slow speech as silence. The threshold for detecting silence was set to
volume at or below -30 dBFS (i.e., 30 less than relative maximum input). A threshold at
-30 dBFS is rather high, but was necessary due to the microphones weak noise reduction
causing the microphones to capture too much of the other participants voice. The meas-
ures (i.e., silence, one speaking, speech overlap) were the derived from comparing the
two participants’ silence intervals.

1 Pydub.silence.detect_silence(

2 audio_segment, # input

3 silence_thresh=-30,

4 min_silence_len=1000,

5 )

Listing 3: Detecting silence

4.6.5 Gaze measures

Post-computed measures for gaze included cognitive load, saccades, and fixations. The
metric calculated as an indicator for cognitive load is the Index of Pupillary Activity (IPA)
(Duchowski et al., 2018), measured from the frequency of pupil diameter oscillation. The
process for this computation were as described by Duchowski et al. (2018). First, any
gaze data 200 ms before and after a blink was removed (Jiang et al., 2014). The original
code for calculating IPA is found in Duchowski et al. (2018), but was modified (see code
listing 4) to work with Python3 and a different input type (pandas.DataFrame). One IPA
value was computed for each minute interval of the test, representing the users cognitive
load in the respective minute. The two measures used from cognitive load were (1) the
pairs’ average and (2) the difference in-between the pair. Both of these measures had one
value for each minute.

39https://github.com/jiaaro/pydub/
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1 import math

2 import pywt

3 import numpy as np

4

5

6 def modmax(d):

7 # compute signal modulus

8 m = [0.0] * len(d)

9 for i in range(len(d)):

10 m[i] = math.fabs(d[i])

11

12 # if value is larger than both neighbours , and strictly

13 # larger than either , then it is a local maximum

14 t = [0.0] * len(d)

15 for i in range(len(d)):

16 ll = m[i - 1] if i >= 1 else m[i]

17 oo = m[i]

18 rr = m[i + 1] if i < len(d) - 2 else m[i]

19 if (ll <= oo and oo >= rr) and (ll < oo or oo > rr):

20 # compute magnitude

21 t[i] = math.sqrt(d[i] ** 2)

22 else:

23 t[i] = 0.0

24 return t

25

26

27 def ipa(d):

28 # obtain 2- level DWT of pupil diameter signal d

29 try:

30 (cA2, cD2, cD1) = pywt.wavedec(d.pupildata.values, "sym16", "

per", level=2)

31 except ValueError:

32 return

33

34 # get signal duration (in seconds )

35 tt = ((d.timestamp.values[-1] - d.timestamp.values[0]).item()) /

1000

36

37 # normalize by 1/2 j , j = 2 for 2- level DWT

38 cA2[:] = [x / math.sqrt(4.0) for x in cA2]

39 cD1[:] = [x / math.sqrt(2.0) for x in cD1]

40 cD2[:] = [x / math.sqrt(4.0) for x in cD2]

41

42 # detect modulus maxima , see Listing 2

43 cD2m = modmax(cD2)

44

45 # threshold using universal threshold univ = (2 log n)
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46 # where is the standard deviation of the noise

47 univ = np.std(cD2m) * math.sqrt(2.0 * np.log2(len(cD2m)))

48 cD2t = pywt.threshold(cD2m, univ , mode="hard")

49

50 # compute IPA

51 ctr = 0

52 for i in range(len(cD2t)):

53 if math.fabs(cD2t[i]) > 0:

54 ctr += 1

55 IPA = float(ctr) / tt

56 return IPA

Listing 4: Modified implementation of IPA (Duchowski et al., 2018)

Saccades and fixations were identied using velocity-threshold fixation identification (I-
VT) (Salvucci and Goldberg, 2000). This identification method involves measuring the
duration of and distance between a users gaze points on the display, and uses the user-
monitor distance to compute the velocity of eye movements in degrees/sec. Eye move-
ments with speed (i.e., distance/time) higher than a set threshold are labeled saccades,
while the rest (speed lower) are labeled fixations. The monitors used in the experiments
were borrowed from the university and of unequal size in cm, and they were unfortu-
nately not measured. However, both monitors had the same resolution of 1920x1080
pixels. Therefore, the velocity metric used for identifying saccadic eye movements was
pixels/sec as opposed to the traditional degrees/sec.

The process of computing velocity is illustrated in code listing 5. Velocity was only
computed for two consecutive valid values. The x and y gaze coordinates are relative
numbers within the [0, 1] interval and were multiplied by monitors resolution x and y
resolution.

1 # df = dataframe of gaze points

2

3 # If current and last gaze point are both valid (blinks or missing data

= invalid)

4 if df.at[index, "gaze_validity"] and df.at[index-1, "gaze_validity"]:

5 # Compute distance: gaze_point_x and _y are values in the [0,1]

range

6 last_x = df.at[index - 1, "gaze_point_x"] * 1920

7 last_y = df.at[index - 1, "gaze_point_y"] * 1080

8 now_x = df.at[index, "gaze_point_x"] * 1920

9 now_y = df.at[index, "gaze_point_y"] * 1080

10 distance = math.sqrt(

11 math.pow(now_x - last_x, 2) + math.pow(now_y - last_y, 2)

12 )

13 # Velocity (pixels / sec)
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14 velocity = distance / (df.at[index, "timestamp"] - df.at[index - 1,

"timestamp"])

Listing 5: Computing velocity of eye-movements

The velocity threshold for labeling eye-movements saccadic depends on multiple factors
as sampling frequency and distance to monitor, and is often inferred from the collected
data (Salvucci and Goldberg, 2000; Sen and Megaw, 1984). The velocity threshold for
this research were set to >= 10 px/ms and resulted in an average of 16% labeled as
saccades and 84% as fixations.

For each user, the average saccade velocity, saccade-fixation ratio, number of saccades
and number of fixations was computed for each minute. The final measures for each
group (all with one value for each minute) were the groups average saccade velocity,
difference in velocity between users, saccade-fixation ratio, difference in saccade-fixation
ratio between users, total number of saccades, and total number of fixations.

4.7 Data Analysis

First, the dataset for each pair was quantified to a single value for each feature. Second, the
non-casual relationships between performance (i.e., debug score) and each of the selected
features (see Table 1) were then investigated through correlation analysis. The predictive
value of fusing all features from the modalities was then computed through a non-linear
random forest analysis with cross validation. Last, the random forest analysis was run a
second time with the pretest score included to investigate if it could predict with higher
accuracy than multimodal data alone.

4.7.1 Final features for analysis

The first step of the data analysis was to reduce the predefined (see Section 4.4) and post-
computed (see Section 4.6) measures down to single variables representing the feature,
which could be compared to a groups performance (i.e., debug score). It should be noted
that this step was exclusive to sensor data and did not include pretest- and debug score,
and minute-values for some features were computed in the pre-processing (e.g., features
from gaze data - see Section 4.6.5). First, for each user, the data collected for each meas-
ure was split into minute intervals and then each interval replaced by one value; the mean
of the entire interval. For the normal features (see Table 1), the minute-values for a pair
was set to be the average of the two participants in each minute. For features with name
including ” change” and ” change abs”, minute-values was the change in a pairs average
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between each minute and the absolute of the value, respectively. For features with name
ending in ” diff users”, the values were the difference between the participants. For audio
features, the minute-values was numbers in the [0,1] range reflecting the relative amount
of silence, both speaking and speech overlap in each minute. Finally, a single value for
each of a pairs features were computed by taking the mean of the respective features
minute-values.

Computing minute-values for each feature instead of simply using the mean of the entire
data have several advantages with two of the most important being: (1) additional fea-
tures as ” change..” can be extracted, and (2) features extracted from data stream with
inconsistent logging rate (e.g., HR, eye-tracking) are less sensitive to the inconsistency.

Table 1: All 58 features - predefined and post-computed

Data stream Feature Supplemental features

Pre-test pretest score
Logs debug score
Video neutral neutral change, neutral change abs

happy happy change, happy change abs
sad sad change, sad change abs
angry angry change, angry change abs
fearful fearful change, fearful change abs
disgusted disgusted change, disgusted change abs
surprised surprised change, surprised change abs

Wristband hr hr change, hr change abs
ibi ibi change, ibi change abs
bvp bvp change, bvp change abs
gsr gsr change, gsr change abs
acc x acc x change, acc x change abs
acc y acc y change, acc y change abs
acc z acc z change, acc z change abs

Audio silence
both speaking
one speaking

Eye-tracking cognitive load mean cognitive load diff users
saccades velocity saccades velocity diff users
saccade ratio mean saccade ratio mean diff users
saccade count
fixation count

4.7.2 Correlation analysis

The correlation analysis was conducted in Python using the packages pandas(Reback
et al., 2022) and SciPy(Virtanen et al., 2020) for data manipulation and statistical ana-
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lysis, respectively.

Computing the correlations involved of the following steps:

(1) : Check each variable for normal distribution by running Shapiro-Wilk tests (SHA-
PIRO and WILK, 1965)

(2) : Compute the correlations between performance and each of the variables - using
Pearson (Freedman et al., 2007) if both variables are normal distributed, otherwise
Spearman (Spearman Rank Correlation Coefficient, 2008)

4.7.3 Regression analysis

The relationship between performance and the fusion of all features was investigated
though a non-linear random forest analysis with cross validation, and was done using
R (R Core Team, 2021).

Before training the model, the dataset was artificially increased due to the small sample
size. Computing the results invovled the following steps:

(1) : Inflate the dataset - for every group of five values in each feature, an additional
five were added (SD = standard deviation): (1) mean of the values, (2) mean - SD,
(3) mean - (2*SD), (4) mean + SD, and (5) mean + (2*SD).

(2) : Then the random forest model using the inflated dataset was trained with a 5-fold
cross validation

Subsequently, a second model was trained with pretest-scores included in the dataset.

5 Results

5.1 Distribution of variables

All variables were first checked for normality in Shapiro-Wilk test, with the chosen alpha
level .05 (5%). This was done in order to select appropriate correlation tests for each
variable. Results from checking normal distributions are grouped by modality and shown
in the following tables.
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Table 2: Results from checking normal distribution for pretest- and debug-score

Feature p-value Normal distributed

debug score .553 Yes
pretest score .488 Yes

Table 3: Results from checking normal distribution for wristband features

Feature p-value Normal distributed

hr .322 Yes
hr change .726 Yes
hr change abs .063 Yes
ibi .842 Yes
ibi change .784 Yes
ibi change abs .327 Yes
bvp .002 No
bvp change .233 Yes
bvp change abs .454 Yes
gsr .004 No
gsr change .006 No
gsr change abs .014 No
temp .602 Yes
temp change .251 Yes
temp change abs .093 Yes
acc x < .001 No
acc x change .253 Yes
acc x change abs .193 Yes
acc y .841 Yes
acc y change .761 Yes
acc y change abs .888 Yes
acc z .305 Yes
acc z change .659 Yes
acc z change abs .855 Yes

Table 4: Results from checking normal distribution for eyetracking features

Feature p-value Normal distributed

cognitive load mean < .001 No
cognitive load diff users < .001 No
saccades velocity .048 No
saccades velocity diff users .449 Yes
saccade ratio mean .37 Yes
saccade ratio mean diff users .028 No
saccade count .497 Yes
fixation count .261 Yes
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Table 5: Results from checking normal distribution for video features

Feature p-value Normal distributed

neutral .069 Yes
neutral change .333 Yes
neutral change abs .067 Yes
happy .002 No
happy change .531 Yes
happy change abs .038 No
sad < .001 No
sad change .021 No
sad change abs < .001 No
angry .001 No
angry change < .001 No
angry change abs .001 No
fearful .001 No
fearful change < .001 No
fearful change abs < .001 No
disgusted .001 No
disgusted change < .001 No
disgusted change abs < .001 No
surprised < .001 No
surprised change .02 No
surprised change abs .008 No

Table 6: Results from checking normal distribution for audio features

Feature p-value Normal distributed

silence .888 Yes
both speaking .17 Yes
one speaking .178 Yes

5.2 Correlation analysis

Pearson- and Spearman-correlation tests were used to investigate the non-causal rela-
tionship between debug score (i.e., measure for performance) and each of the individual
features. The distribution of debug scores is found to be normally distributed (see Table
2) so choice of correlation tests was decided by the distribution of the other variable in
each comparison. Pearson correlation tests were used in in cases where the other variable
was also normally distributed, and Spearman tests for the remaining. The alpha value was
set to .005 (5%) in both tests.
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pretest score
Since both debug score and pretest score are normally distributed, the Pearson correlation
coefficient was computed to assess the linear relationship between them. The correlation
between debug score and pretest score (see Figure 9) is not statistically significant,

r(13) = .43, p = .107

Figure 9: Scatter plot of debug score and pretest score with a linear regression line

neutral
Since both debug score and neutral are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and neutral (see Figure 10) is not statistically significant,

r(13) = −.28, p = .320

Figure 10: Scatter plot of debug score and neutral with a linear regression line
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neutral change
Since both debug score and neutral change are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and neutral change (see Figure 11) is not statistically
significant,

r(13) = −.08, p = .786

Figure 11: Scatter plot of debug score and neutral change with a linear regression line

neutral change abs
Since both debug score and neutral change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and neutral change abs (see Figure 12) is not statistic-
ally significant,

r(13) = .14, p = .617

Figure 12: Scatter plot of debug score and neutral change abs with a linear regression
line
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happy
Since happy is not normally distributed, Spearman’s rank correlation was computed to
assess the relationsihp between debug score and happy. The correlation between de-
bug score and happy (see Figure 13) is not statistically significant,

r(13) = −.2, p = .476

Figure 13: Scatter plot of debug score and happy with a linear regression line

happy change
Since both debug score and happy change are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and happy change (see Figure 14) is not statistically significant,

r(13) = .37, p = .170

Figure 14: Scatter plot of debug score and happy change with a linear regression line
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happy change abs
Since happy change abs is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and happy change abs. The
correlation between debug score and happy change abs (see Figure 15) is not statistically
significant,

r(13) = −.19, p = .497

Figure 15: Scatter plot of debug score and happy change abs with a linear regression
line

sad
Since sad is not normally distributed, Spearman’s rank correlation was computed to assess
the relationsihp between debug score and sad. The correlation between debug score and
sad (see Figure 16) is not statistically significant,

r(13) = .02, p = .934

Figure 16: Scatter plot of debug score and sad with a linear regression line
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sad change
Since sad change is not normally distributed, Spearman’s rank correlation was computed
to assess the relationsihp between debug score and sad change. There is is a moderate
negative correlation between debug score and sad change (see Figure 17),

r(13) = −.66, p = .007

Figure 17: Scatter plot of debug score and sad change with a linear regression line

sad change abs
Since sad change abs is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and sad change abs. The correlation
between debug score and sad change abs (see Figure 18) is not statistically significant,

r(13) = .17, p = .552

Figure 18: Scatter plot of debug score and sad change abs with a linear regression line
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angry
Since angry is not normally distributed, Spearman’s rank correlation was computed to
assess the relationsihp between debug score and angry. The correlation between de-
bug score and angry (see Figure 19) is not statistically significant,

r(13) = .34, p = .216

Figure 19: Scatter plot of debug score and angry with a linear regression line

angry change
Since angry change is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and angry change. The correlation
between debug score and angry change (see Figure 20) is not statistically significant,

r(13) = −.11, p = .693

Figure 20: Scatter plot of debug score and angry change with a linear regression line
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angry change abs
Since angry change abs is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and angry change abs. The
correlation between debug score and angry change abs (see Figure 21) is not statistically
significant,

r(13) = .16, p = .561

Figure 21: Scatter plot of debug score and angry change abs with a linear regression
line

fearful
Since fearful is not normally distributed, Spearman’s rank correlation was computed to
assess the relationsihp between debug score and fearful. The correlation between de-
bug score and fearful (see Figure 22) is not statistically significant,

r(13) = −.42, p = .122

Figure 22: Scatter plot of debug score and fearful with a linear regression line
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fearful change
Since fearful change is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and fearful change. The correlation
between debug score and fearful change (see Figure 23) is not statistically significant,

r(13) = −.46, p = .086

Figure 23: Scatter plot of debug score and fearful change with a linear regression line

fearful change abs
Since fearful change abs is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and fearful change abs. The
correlation between debug score and fearful change abs (see Figure 24) is not statistically
significant,

r(13) = −.46, p = .085

Figure 24: Scatter plot of debug score and fearful change abs with a linear regression
line
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disgusted
Since disgusted is not normally distributed, Spearman’s rank correlation was computed
to assess the relationsihp between debug score and disgusted. The correlation between
debug score and disgusted (see Figure 25) is not statistically significant,

r(13) = −.19, p = .489

Figure 25: Scatter plot of debug score and disgusted with a linear regression line

disgusted change
Since disgusted change is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and disgusted change. The correla-
tion between debug score and disgusted change (see Figure 26) is not statistically signi-
ficant,

r(13) = −.22, p = .437

Figure 26: Scatter plot of debug score and disgusted change with a linear regression
line
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disgusted change abs
Since disgusted change abs is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and disgusted change abs. The
correlation between debug score and disgusted change abs (see Figure 27) is not statist-
ically significant,

r(13) = −.21, p = .452

Figure 27: Scatter plot of debug score and disgusted change abs with a linear regres-
sion line

surprised
Since surprised is not normally distributed, Spearman’s rank correlation was computed
to assess the relationsihp between debug score and surprised. The correlation between
debug score and surprised (see Figure 28) is not statistically significant,

r(13) = −.14, p = .610

Figure 28: Scatter plot of debug score and surprised with a linear regression line
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surprised change
Since surprised change is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and surprised change. The correla-
tion between debug score and surprised change (see Figure 29) is not statistically signi-
ficant,

r(13) = .34, p = .208

Figure 29: Scatter plot of debug score and surprised change with a linear regression
line

surprised change abs
Since surprised change abs is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and surprised change abs. The
correlation between debug score and surprised change abs (see Figure 30) is not statist-
ically significant,

r(13) = −.13, p = .646

Figure 30: Scatter plot of debug score and surprised change abs with a linear regres-
sion line
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hr
Since both debug score and hr are normally distributed, the Pearson correlation coefficient
was computed to assess the linear relationship between them. The correlation between
debug score and hr (see Figure 31) is not statistically significant,

r(13) = .46, p = .088

Figure 31: Scatter plot of debug score and hr with a linear regression line

hr change
Since both debug score and hr change are normally distributed, the Pearson correlation
coefficient was computed to assess the linear relationship between them. The correlation
between debug score and hr change (see Figure 32) is not statistically significant,

r(13) = −.13, p = .638

Figure 32: Scatter plot of debug score and hr change with a linear regression line
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hr change abs
Since both debug score and hr change abs are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and hr change abs (see Figure 33) is not statistically significant,

r(13) = −.16, p = .563

Figure 33: Scatter plot of debug score and hr change abs with a linear regression line

ibi
Since both debug score and ibi are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and ibi (see Figure 34) is not statistically significant,

r(13) = −.47, p = .074

Figure 34: Scatter plot of debug score and ibi with a linear regression line
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ibi change
Since both debug score and ibi change are normally distributed, the Pearson correlation
coefficient was computed to assess the linear relationship between them. The correlation
between debug score and ibi change (see Figure 35) is not statistically significant,

r(13) = .02, p = .940

Figure 35: Scatter plot of debug score and ibi change with a linear regression line

ibi change abs
Since both debug score and ibi change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and ibi change abs (see Figure 36) is not statistically
significant,

r(13) = −.24, p = .384

Figure 36: Scatter plot of debug score and ibi change abs with a linear regression line
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bvp
Since bvp is not normally distributed, Spearman’s rank correlation was computed to assess
the relationsihp between debug score and bvp. The correlation between debug score and
bvp (see Figure 37) is not statistically significant,

r(13) = −.03, p = .914

Figure 37: Scatter plot of debug score and bvp with a linear regression line

bvp change
Since both debug score and bvp change are normally distributed, the Pearson correlation
coefficient was computed to assess the linear relationship between them. The correlation
between debug score and bvp change (see Figure 38) is not statistically significant,

r(13) = .43, p = .110

Figure 38: Scatter plot of debug score and bvp change with a linear regression line
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bvp change abs
Since both debug score and bvp change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and bvp change abs (see Figure 39) is not statistically
significant,

r(13) = −.47, p = .079

Figure 39: Scatter plot of debug score and bvp change abs with a linear regression line

gsr
Since gsr is not normally distributed, Spearman’s rank correlation was computed to assess
the relationsihp between debug score and gsr. The correlation between debug score and
gsr (see Figure 40) is not statistically significant,

r(13) = .06, p = .824

Figure 40: Scatter plot of debug score and gsr with a linear regression line
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gsr change
Since gsr change is not normally distributed, Spearman’s rank correlation was computed
to assess the relationsihp between debug score and gsr change. The correlation between
debug score and gsr change (see Figure 41) is not statistically significant,

r(13) = −.01, p = .959

Figure 41: Scatter plot of debug score and gsr change with a linear regression line

gsr change abs
Since gsr change abs is not normally distributed, Spearman’s rank correlation was com-
puted to assess the relationsihp between debug score and gsr change abs. The correlation
between debug score and gsr change abs (see Figure 42) is not statistically significant,

r(13) = −.12, p = .669

Figure 42: Scatter plot of debug score and gsr change abs with a linear regression line
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temp
Since both debug score and temp are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and temp (see Figure 43) is not statistically significant,

r(13) = .03, p = .916

Figure 43: Scatter plot of debug score and temp with a linear regression line

temp change
Since both debug score and temp change are normally distributed, the Pearson correlation
coefficient was computed to assess the linear relationship between them. The correlation
between debug score and temp change (see Figure 44) is not statistically significant,

r(13) = −.14, p = .623

Figure 44: Scatter plot of debug score and temp change with a linear regression line
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temp change abs
Since both debug score and temp change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and temp change abs (see Figure 45) is not statistically
significant,

r(13) = −.29, p = .288

Figure 45: Scatter plot of debug score and temp change abs with a linear regression
line

acc x
Since acc x is not normally distributed, Spearman’s rank correlation was computed to
assess the relationsihp between debug score and acc x. The correlation between de-
bug score and acc x (see Figure 46) is not statistically significant,

r(13) = −.02, p = .949

Figure 46: Scatter plot of debug score and acc x with a linear regression line
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acc x change
Since both debug score and acc x change are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and acc x change (see Figure 47) is not statistically significant,

r(13) = −.17, p = .551

Figure 47: Scatter plot of debug score and acc x change with a linear regression line

acc x change abs
Since both debug score and acc x change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and acc x change abs (see Figure 48) is not statistically
significant,

r(13) = −.35, p = .196

Figure 48: Scatter plot of debug score and acc x change abs with a linear regression
line
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acc y
Since both debug score and acc y are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and acc y (see Figure 49) is not statistically significant,

r(13) = −.2, p = .472

Figure 49: Scatter plot of debug score and acc y with a linear regression line

acc y change
Since both debug score and acc y change are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and acc y change (see Figure 50) is not statistically significant,

r(13) = .36, p = .183

Figure 50: Scatter plot of debug score and acc y change with a linear regression line
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acc y change abs
Since both debug score and acc y change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and acc y change abs (see Figure 51) is not statistically
significant,

r(13) = −.44, p = .099

Figure 51: Scatter plot of debug score and acc y change abs with a linear regression
line

acc z
Since both debug score and acc z are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and acc z (see Figure 52) is not statistically significant,

r(13) = .39, p = .156

Figure 52: Scatter plot of debug score and acc z with a linear regression line
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acc z change
Since both debug score and acc z change are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and acc z change (see Figure 53) is not statistically significant,

r(13) = .21, p = .444

Figure 53: Scatter plot of debug score and acc z change with a linear regression line

acc z change abs
Since both debug score and acc z change abs are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The
correlation between debug score and acc z change abs (see Figure 54) is not statistically
significant,

r(13) = −.22, p = .425

Figure 54: Scatter plot of debug score and acc z change abs with a linear regression
line
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silence
Since both debug score and silence are normally distributed, the Pearson correlation coef-
ficient was computed to assess the linear relationship between them. The correlation
between debug score and silence (see Figure 55) is not statistically significant,

r(12) = .4, p = .154

Figure 55: Scatter plot of debug score and silence with a linear regression line

both speaking
Since both debug score and both speaking are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. There is is
a moderate negative correlation between debug score and both speaking (see Figure 56),

r(12) = −.55, p = .042

Figure 56: Scatter plot of debug score and both speaking with a linear regression line
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one speaking
Since both debug score and one speaking are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and one speaking (see Figure 57) is not statistically significant,

r(12) = .16, p = .592

Figure 57: Scatter plot of debug score and one speaking with a linear regression line

cognitive load mean
Since cognitive load mean is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and cognitive load mean. The
correlation between debug score and cognitive load mean (see Figure 58) is not statistic-
ally significant,

r(13) = −.08, p = .770

Figure 58: Scatter plot of debug score and cognitive load mean with a linear regression
line
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cognitive load diff users
Since cognitive load diff users is not normally distributed, Spearman’s rank correlation
was computed to assess the relationsihp between debug score and cognitive load diff users.
The correlation between debug score and cognitive load diff users (see Figure 59) is not
statistically significant,

r(13) = .25, p = .359

Figure 59: Scatter plot of debug score and cognitive load diff users with a linear re-
gression line

saccades velocity
Since saccades velocity is not normally distributed, Spearman’s rank correlation was
computed to assess the relationsihp between debug score and saccades velocity. The cor-
relation between debug score and saccades velocity (see Figure 60) is not statistically
significant,

r(13) = −.13, p = .632

Figure 60: Scatter plot of debug score and saccades velocity with a linear regression
line
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saccades velocity diff users
Since both debug score and saccades velocity diff users are normally distributed, the
Pearson correlation coefficient was computed to assess the linear relationship between
them. The correlation between debug score and saccades velocity diff users (see Figure
61) is not statistically significant,

r(13) = −.07, p = .792

Figure 61: Scatter plot of debug score and saccades velocity diff users with a linear
regression line

saccade ratio mean
Since both debug score and saccade ratio mean are normally distributed, the Pearson cor-
relation coefficient was computed to assess the linear relationship between them. The cor-
relation between debug score and saccade ratio mean (see Figure 62) is not statistically
significant,

r(13) = .21, p = .445

63



Figure 62: Scatter plot of debug score and saccade ratio mean with a linear regression
line

saccade ratio mean diff users
Since saccade ratio mean diff users is not normally distributed, Spearman’s rank correla-
tion was computed to assess the relationsihp between debug score and saccade ratio mean diff users.
The correlation between debug score and saccade ratio mean diff users (see Figure 63)
is not statistically significant,

r(13) = .28, p = .318

Figure 63: Scatter plot of debug score and saccade ratio mean diff users with a linear
regression line

saccade count
Since both debug score and saccade count are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
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tion between debug score and saccade count (see Figure 64) is not statistically significant,

r(13) = −.04, p = .875

Figure 64: Scatter plot of debug score and saccade count with a linear regression line

fixation count
Since both debug score and fixation count are normally distributed, the Pearson correla-
tion coefficient was computed to assess the linear relationship between them. The correla-
tion between debug score and fixation count (see Figure 65) is not statistically significant,

r(13) = −.41, p = .130

Figure 65: Scatter plot of debug score and fixation count with a linear regression line
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5.3 Regression analysis

The random forest algorithm with 5-fold cross validation was used to investigate how the
strongly the combination of features (see Section 4.7 can predict pairs’ performance. The
algorithm was first ran once without including the pre-test data, and a second time with
the pre-test included.

First model:
Validation R-squared value = 0.81
Validation normalized root mean squared error (NRMSE) = 0.08
Top 10 most important variables is shown in Table 7 - values are in the [0,100] range
and reflect the variable’s relative importance (most important variable=100, least import-
ant=0).

Table 7: First run (without pretest) - Top 10 most important variables

Overall

gsr change 100.00
hr change 92.46
cognitive load diff users 89.78
hr 83.09
cognitive load mean 79.02
saccades velocity diff users 76.16
saccades velocity 71.12
one speaking 65.25
both speaking 63.60
gsr 60.82

Second model:
Validation R-squared value = 0.82
Validation normalized root mean squared error (NRMSE) = 0.07
See Table 8 for variable importance.
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Table 8: Second run (with pretest) - Top 10 most important variables

Overall

hr change 100.00
cognitive load mean 98.23
pretest score 79.72
hr 78.68
gsr 77.50
cognitive load diff users 73.56
one speaking 69.44
both speaking 65.56
saccades velocity diff users 63.97
saccades velocity 56.57

6 Discussion

In the correlation analysis, only two variables were found to be significantly correlated
with performance: (1) sad change with coefficient -.66, and (2) both speaking with coef-
ficient -.55. The first model in the regression analysis predicts performance with an error-
rate of 8% (NRMSE=0.08). The second model, including the pre-test, resulted did not
achieve signficantly greater accuraty for predicting performance, and had an error-rate of
7% (NRMSE=0.07). The pre-test was expected to be significantly correlated with per-
formance because it is a measure of prior knowledge (Dochy et al., 1999), but correlation
analysis resulted insignificant. For the random forest model, it was expected to be sig-
nificant due to the inflated dataset and amounts of model training - and was found to be
the third most import variable. However, it did not significantly increase prediction per-
formance compared to when it was not included. This means that the multimodal data
alone can achieve a high accuracy - and there is very little room for improvement as the
multimodal data already explains a large proportion of variance in performance.

Interestingly, gsr change was the most important variable in the first model, and disap-
peared from the top 10 in the second – actually down to second least important – after
including the pre-test. The mutual information between two pairs of variables can reduce
the mutual information between other pairs of variables. Including the pre-test in the set
of predictors might have similar effect on the mutual information between gsr change and
performance – which means the mutual information between pretest and performance can
be partially explained by change in GSR.

One of the features found to be significant in the correlation analysis, Sad change - the
average change between each minute - where a higher value indicates the sad-expression
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occurring at an increasing rate over the test duration. Sad facial expressions is a natural
reaction when facing problems that seem overwhelming, and the negative correlation to
performance is expected to be due to participants with lower performance feeling gradu-
ally more overwhelmed during the debug test.

Students with low performance have been found to be generally less engaged in collabor-
ative activities (Chi and Wylie, 2014). Further, students performing well tend to engage in
the collaborative process to a greater extent by sharing ideas and thought process (Haus-
mann et al., 2004). People with high performance tend to perform less individual problem
solving in collaborative settings, and consequently, high performing pairs is expected to
have more similar mental effort (Hausmann et al., 2004). The difference in cognitive load
between participants in each pairs was the third most important variable in the first model
and the 6th most important in the second – complementing current knowledge on the pre-
dictive value of mental effort difference in collaboration (Sharma et al., 2021). Moreover,
the groups average cognitive load was found to be the third and second most important
variable in the first and second model, respectively.

Another interesting find is the second significant correlation from the correlation analysis -
both speaking, the relative amount of time with speech overlap – which was found to have
a negative correlation with performance. This contradicts current theories of how greater
engagement in the collaborative process lead to higher performance (Chi and Wylie, 2014;
Hausmann et al., 2004; Sharma et al., 2021). The significance of speech overlaps’ affect
on performance prediction is further strengthened by the fact it was valued in he top 10
variables from both regression models (9th and 8th most important, respectively). Further
adding to the importance of engagement; GSR (note: referred to as EDA in some studies)
is indicative of engagement and both models considered gsr to be one of the 10 most
important variables, and gsr change the most important by the first model. However, it
is unknown how this indicator of engagement (GSR) relates to performance due to the
insignificant results in the correlation analysis.

To further elaborate on the results from the audio features, the variables for time ratio
of one-speaking and speech-overlap (i.e., both speaking) were both top 10 most import-
ant features in both regression models. Audio is one of the least common modalities in
learning analytics research, and features are often extract from pitch and sound levels.
The significance of features derived from speech-detection in predicting collaborative
performance is a novel contribution to the research field.

Heart rate is known to be indicative of physiological stress and high values is expected to
negatively affect performance. Although the correlations resulted invalid due to insuffi-
cient alpha level, the regression models considered heart rate to be an important feature in
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predicting performance: hr ranked fourth most important by both models, and hr change
the most important by the second model.

Saccade velocity and the difference in a pair is indicative of familiarity and was ranked
in the top 10 by both models. Low difference for a pair reflects greater engagement in
collaboration and is expected to result in higher performance (Sharma et al., 2021; Chi
and Wylie, 2014; Hausmann et al., 2004). Saccade-features were found to be important
in predicting performance, however, the relationship to performance cannot be further
investigated due to insignificant alpha levels from the correlations.

Although the teacher-dashboard implementation was eventually discarded due to unfore-
seen data storage restrictions (see Section 3.5, these findings show metrics that can be
valuable to include in a dashboard for monitoring the collaborative learning experience.
Displaying a metric for cognitive load can be helpful so that teachers can intervene and
help - when a pair has high mental effort, or motivate – when a pair lack mental effort.
A metric for saccadic velocity can be used to detect unfamiliarity which can be reduced
by providing the pair with additional tips. Further, metrics from different modalities can
be used in the dashboard to simultaneously describe multiple aspects of the learning pro-
cess; providing teachers a way to immediately detect the exact need of a pair and act
accordingly.

6.1 Limitations

A major limitation of this research is the small sample size and was detrimental to the
correlation analysis. Another limitation was due to the pairs different social setting in
the experiment environment: approximately half of the sample was recruited from the
researchers private network, and some participants joined as a pair, while others were
matched with strangers. Different social settings where some pairs naturally feel more
comfortable is not ideal when physiological data is being collected.

The pre-test measuring participants prior knowledge consisted of ten questions where six
of them were multiple-choice type. The multiple-choice questions did not have options for
“I dont know” which added a degree of randomization to the pre-test results. Although this
limitation may be interpreted as speculative, and insignificant for similar studies with a
sufficient sample size, the results in this research are most likely affected by the additional
randomization due to the very small sample size.

Another limitation of this research is the extraction of eye-movement- and audio-features.
The velocity of eye-movements for labeling saccades and fixations was computed in
pixels/time, instead of the traditional degress/time (described in Section 4.6.5). In prac-
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tice this serves the same purpose, however, the results are less comparable to other stud-
ies. Regarding the audio features, the short distance between a pair in combination with
the microphones poor noise filtering caused overlap in the audio streams. The speech-
detection used a set sound level and had varying accuracy for time segments where the
communication were generally louder or quieter.

7 Conclusion and Future Work

First, this work provides insight to the development behind a web-based collaborative
code editor, multimodal data collection from a collaborative process, and clock-synchronization
of not only the modalities - but also between users. Second, this work provides detailed
technical insight in computation of features.

This work shows that fusing features from multiple modalities - (1) eye-tracker, (2) video,
(3) audio, (4) wristband - can provide high accuracy for predicting performance in collab-
orate programming. Last, the most predictive features are discussed in terms of how they
can improve the design of learning technologies for the collaborative process.

The first proposal for further work is to train additional models with the random forest
algorithm and grouping the models by modality to investigate which being the most pre-
dictive.

Second, conduct a similar study with an adequate sample size and investigate the relation-
ship between performance and the features individually.

Last, finish the implementation of the teacher-dashboard visualizing metrics from this
study, or from a follow study, and evaluate through a qualitative analysis.
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A Pre-test
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Pre-test: Debugging

Name:

For each question you will be given a code snippet and you have to figure out what the ouput of the snippet is or what it
does.

Question 1

What is the output of this program? Circle the correct answer.

a)

for i in range(10):

    if i == 5:

        break

    else:

        print(i)

else:

    print("Here")

A. 0 1 2 3 4 Here
B. 0 1 2 3 4 5 Here
C. 0 1 2 3 4
D. 1 2 3 4 5

Question 2

What is the output of this program? Circle the correct answer.

for i in range(5):

    if i == 5:

        break

    else:

        print(i)

else:

    print("Here")

A. 0 1 2 3 4 Here
B. 0 1 2 3 4 5 Here
C. 0 1 2 3 4
D. 1 2 3 4 5

Question 3

What is the output of this program? Circle the correct answer.

a = [0, 1, 2, 3]

i = -2

for i not in a:

    print(i)

    i += 1

A. -2 -1
B. 0
C. error
D. none of the mentioned

Question 4

What is the output of this program? Circle the correct answer.

Answer: C

Answer: A

Answer: C
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class Demo:

    def __new__(self):

        self.__init__(self)

        print("Demo's __new__() invoked")

    def __init__(self):

        print("Demo's __init__() invoked")

class Derived_Demo(Demo):

    def __new__(self):

        print("Derived_Demo's __new__() invoked")

    def __init__(self):

        print("Derived_Demo's __init__() invoked")

def main():

    obj1 = Derived_Demo()

    obj2 = Demo()

main()

A.

1. Derived_Demo’s __init__() invoked
2. Derived_Demo's __new__() invoked
3. Demo's __init__() invoked
4. Demo's __new__() invoked

B.

1. Derived_Demo's __new__() invoked
2. Demo's __init__() invoked
3. Demo's __new__() invoked

C.

1. Derived_Demo's __new__() invoked
2. Demo's __new__() invoked

D.

1. Derived_Demo’s __init__() invoked
2. Demo's __init__() invoked

Question 5

What is the output of this program? Circle the correct answer.

class Test:

    def __init__(self):

        self.x = 0

class Derived_Test(Test):

    def __init__(self):

        self.y = 1

def main():

    b = Derived_Test()

    print(b.x,b.y)

main()

A. 0 1
B. 0 0
C. Error because class B inherits A but variable x isn’t inherited
D. none of the mentioned

Answer: B

Answer: C78



Question 6

What is the output of this program? Circle the correct answer.

count={}

count[(1,2,4)] = 5

count[(4,2,1)] = 7

count[(1,2)] = 6

count[(4,2,1)] = 2

tot = 0

for i in count:

    tot=tot+count[i]

print(len(count)+tot)

A. 25
B. 17
C. 16
D. Tuples can’t be made keys of a dictionary

Question 7

What is the output of this program? Write down the output.

def fn(**kwargs):

    for emp, age in kwargs.items():

        print ("%s's age is %s." %(emp, age))

fn(John=25, Kalley=22, Tom=32)

Answer:

Question 8

What is the output of this program? Write down the output.

class PC: # Base class

    processor = "Xeon" # Common attribute

    def set_processor(self, new_processor):

        processor = new_processor

class Desktop(PC): # Derived class

    os = "Mac OS High Sierra" # Personalized attribute

    ram = "32 GB"

class Laptop(PC): # Derived class

    os = "Windows 10 Pro 64" # Personalized attribute

    ram = "16 GB"

desk = Desktop()

print(desk.processor, desk.os, desk.ram)

lap = Laptop()

print(lap.processor, lap.os, lap.ram)

Answer:

Answer: C

John's age is 25.
Kalley's age is 22.
Tom's age is 32.

Xeon Mac OS High Sierra 32 GB

Xeon Windows 10 Pro 64 16 GB
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Question 9

What is the output of this program? Write down the output.

class PC: # Base class

    processor = "Xeon" # Common attribute

    def __init__(self, processor, ram):

        self.processor = processor

        self.ram = ram

    def set_processor(self, new_processor):

        processor = new_processor

    def get_PC(self):

        return "%s cpu & %s ram" % (self.processor, self.ram)

class Tablet():

    make = "Intel"

    def __init__(self, processor, ram, make):

        self.PC = PC(processor, ram) # Composition

        self.make = make

    def get_Tablet(self):

        return "Tablet with %s CPU & %s ram by %s" % (self.PC.processor, self.PC.ram, self.make)

if __name__ == "__main__":

    tab = Tablet("i7", "16 GB", "Intel")

    print(tab.get_Tablet())

Answer:

Question 10

What is the output of this program? Write down the output.

def multiply_number(num):

    def product(number):

        'product() here is a closure'

        return num * number

    return product

num_2 = multiply_number(2)

print(num_2(11))

print(num_2(24))

num_6 = multiply_number(6)

print(num_6(1))

Answer:

Tablet with i7 CPU & 16 GB ram by Intel

22
48
6
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B Debug task

1 import math

2 import random

3 from os import environ

4

5 environ["PYGAME_HIDE_SUPPORT_PROMPT"] = "1"

6 import pygame

7 from pygame import mixer

8

9 # Intialize the pygame

10 pygame.init()

11

12 # create the screen

13 screen = pygame.display.set_mode((800, 600))

14

15 # Background

16 background = pygame.image.load("background.png")

17

18 # Sound

19 mixer.music.load("background.wav")

20 mixer.music.play(-1)

21

22 # Caption and Icon

23 pygame.display.set_caption("Space Invader")

24 icon = pygame.image.load("ufo.png")

25 pygame.display.set_icon(icon)

26

27 # Player

28 playerImg = pygame.image.load("player.png")

29 playerX = 370

30 playerY = 480

31 playerX_change = 0

32

33 # Enemy

34 enemyImg = []

35 enemyX = []

36 enemyY = []

37 enemyX_change = []

38 enemyY_change = []

39 num_of_enemies = 6

40

41 for i in range(num_of_enemies):

42 enemyImg.append(pygame.image.load("enemy.png"))

43 enemyX.append(random.randint(0, 736))

44 enemyY.append(random.randint(50, 150))

45 enemyX_change.append(4)
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46 enemyY_change.append(40)

47

48 # Bullet

49

50 # Ready - You can't see the bullet on the screen

51 # Fire - The bullet is currently moving

52

53 bulletImg = pygame.image.load("bullet.png")

54 bulletX = 0

55 bulletY = 480

56 bulletX_change = 0

57 bulletY_change = 10

58 bullet_state = "ready"

59

60 # Score

61

62 score_value = 0

63 font = pygame.font.Font("freesansbold.ttf", 32)

64

65 textX = 10

66 testY = 10

67

68 # Game Over

69 over_font = pygame.font.Font("freesansbold.ttf", 64)

70

71

72 def show_score(x, y):

73 score = font.render("Score : " + str(score_value), True, (255, 255,

255))

74 screen.blit(score, (x, y))

75

76

77 def game_over_text():

78 over_text = over_font.render("GAME OVER", True, (255, 255, 255))

79 screen.blit(over_text, (200, 250))

80

81

82 def player(x, y):

83 screen.blit(playerImg, (x, y))

84

85

86 def enemy(x, y, i):

87 screen.blit(enemyImg[i], (x, y))

88

89

90 def fire_bullet(x, y):

91 global bullet_state
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92 bullet_state = "fire"

93 screen.blit(bulletImg, (x + 16, y + 10))

94

95

96 def isCollision(enemyX, enemyY, bulletX, bulletY):

97 distance = math.sqrt(

98 math.pow(enemyX - bulletX, 2) + (math.pow(enemyY - bulletY, 2))

99 )

100 # Bug 1: Bullet-enemy collision

101 # Distance is only 0 if both objects are on the exact same (x,y)

coordinate

102 if distance < 0:

103 return True

104 else:

105 return False

106

107

108 # Game Loop

109 running = True

110 while running:

111

112 # RGB = Red, Green, Blue

113 screen.fill((0, 0, 0))

114 # Background Image

115 screen.blit(background, (0, 0))

116 for event in pygame.event.get():

117 if event.type == pygame.QUIT:

118 running = False

119

120 # if keystroke is pressed check whether its right or left

121 if event.type == pygame.KEYDOWN:

122 if event.key == pygame.K_LEFT:

123 # Bug 2: Spaceship movement logic

124 # Left arrow should set playerX_change to be a negative

value

125 playerX_change = 15

126 # Bug 3: Player input

127 if event.key == pygame.K_UP: # Should be right arrow (

pygame.K_RIGHT)

128 playerX_change = 15

129 if event.key == pygame.K_SPACE:

130 if bullet_state == "ready":

131 bulletSound = mixer.Sound("laser.wav")

132 bulletSound.play()

133 # Get the current x cordinate of the spaceship

134 bulletX = playerX

135 fire_bullet(bulletX, bulletY)
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136

137 if event.type == pygame.KEYUP:

138 if event.key == pygame.K_LEFT or event.key == pygame.

K_RIGHT:

139 playerX_change = 0

140

141 # 5 = 5 + -0.1 -> 5 = 5 - 0.1

142 # 5 = 5 + 0.1

143

144 # Bug 4: Spaceship movement

145 playerX = playerX_change # Add playerX_change to playerX

146 if playerX <= 0:

147 playerX = 0

148 elif playerX >= 736:

149 playerX = 736

150

151 # Enemy Movement

152 for i in range(num_of_enemies):

153

154 # Game Over

155 if enemyY[i] > 440:

156 for j in range(num_of_enemies):

157 enemyY[j] = 2000

158 game_over_text()

159 break

160

161 enemyX[i] += enemyX_change[i]

162 if enemyX[i] <= 0:

163 enemyX_change[i] = 4

164 enemyY[i] += enemyY_change[i]

165 elif enemyX[i] >= 736:

166 enemyX_change[i] = -4

167 enemyY[i] += enemyY_change[i]

168

169 # Collision

170 collision = isCollision(enemyX[i], enemyY[i], bulletX, bulletY)

171 if collision:

172 explosionSound = mixer.Sound("explosion.wav")

173 explosionSound.play()

174 bulletY = 480

175 bullet_state = "ready"

176 # Bug 5: Increasing score

177 score_value = 1 # Increment score

178 enemyX[i] = random.randint(0, 736)

179 enemyY[i] = random.randint(50, 150)

180

181 enemy(enemyX[i], enemyY[i], i)
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182

183 # Bullet Movement

184 if bulletY <= 0:

185 bulletY = 480

186 bullet_state = "ready"

187

188 # Bug 6: Bullet movement

189 if bullet_state == "fire":

190 fire_bullet(bulletX, bulletY)

191 bulletY = bulletY_change # Subtract bulletY_change from

bulletY (y starts from bottom)

192

193 player(playerX, playerY)

194 show_score(textX, testY)

195 pygame.display.update()

Listing 6: Debug task
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