Sindre Jacobsen Faeroe

Fine-grained Multithreading for Deterministic

Concurrency in Safety-Critical Systems

Master thesis
for the degree Master of Science in Embedded Systems

Trondheim, June 2022
Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

®@NTNU

Innovation and Creativity

NTNU

Norwegian University of Science and Technology

Master thesis
for the degree of Master of Science in Embedded Systems

Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

© 2022 Sindre Jacobsen Faeroe

Abstract

Integrating multiple tasks of differing criticality levels onto a single hardware platform, known
as a mixed-criticality system, has become a growing research topic in real-time embedded
systems. The correctness of these systems depends not only on the software’s functionality
but also on the timing behavior. Therefore, the underlying hardware platform must provide
both spatial and temporal isolation guarantees and predictability to have high confidence in
the timing behavior of the software. Unfortunately, even though existing hardware consisting
of multiple single-core, multi-core, or multithreaded processors supports hardware-based
isolation, they do not manage to exploit the hardware resources available on the platform
entirely. Under-utilizing hardware resources can, as a result, cause a decrease in the overall
throughput for a set of tasks.

This report presents a microarchitecture intended for mixed-criticality systems that allow
exchanging hardware-based isolation between tasks to increase hardware resource utilization
and vice versa. The microarchitecture has been designed and simulated in Simulink, a
model-based design tool that enables fast feedback on design requirements and decisions.
The design incorporates cycle-by-cycle hardware thread interleaving, also known as fine-
grained multithreading, to increase the resource utilization of the platform. Additionally,
a configurable hardware thread scheduler and timing instructions have been added to the
microarchitecture to enable the programmer to make compromises between hardware-based
isolation, predictable timing behavior, and overall instruction throughput.

Preface

The work presented in this thesis was carried out in the Department of Electronic Systems,
Faculty of Information Technology and Electrical Engineering at the Norwegian University of
Science and Technology (NTNU). The Master Thesis was supervised by Professor Per Gunnar
Kjeldsberg (NTNU) and former co-worker at UBIQ Aerospace, Shibarchi Majumder, Ph.D.
(Nordic Semiconductor). I am thankful for their well-informed insight while working on the
project. In addition, they provided me with exceptional guidance and motivation throughout
this process.

I am grateful to my friends and co-workers for their vast support. They have given me
inspiration and exceptional advice through their work and study experiences.

Finally, I would also like to thank my family, my father, mother, and brother, for
encouraging me to pursue a Master’s degree. I am also grateful for my lovely girlfriend’s
support during the course of the year. Her limitless patience through long evenings of work
and the affection that she offers me have kept me motivated during my Master’s Thesis at
NTNU.

vii

Contents

[1.2 Objectives| e
L3 Contributions| e

Background and Related Work]

2.1 Mixed-Criticality Systems| oo o
2.2 Timing Instructions| L
2.3 Hardware Multithreading Techniques|.
2.4 Model-Based Engineering] oo
2.5 RISC-VI . . o e
[2.5.1 RV32I Base Integer Instruction Set|.
[2.5.2 Control and Status Registers|
[2.5.3 Machine-level Timer Registers|
I2,(i I If:yinl{i &!Szll{l
[2.6.1 Single-operation RISC-V Architecturel

[3.3.1 Timing Instruction Set|.o oL
[3.3.2 Memory Mapped Timer Registers|
3.4 Assembler for the Microarchitecturel

ix

vii

xvii

B~ W N =

X CONTENTS

4 System Analysis| 49

4.1 System Configurations| 49

[4.1.1 System Execution Time| 49

[4.1.2 System Response| Lo 56

4.2 Coarse-grained Multithreading 62

[6__Conclusion and Future Workl 65
ADPP O

[A_Codé 69

[A.1 Python code|. o 69

[A.2 Assembly codel 77

|Bibliography| 81

List of Tables

4.1 'The slots configuration for the single-threaded system. 50
4.2 'The mode configuration for the single-threaded system. 50
-t ints of the tasks.] 51

4.4 The slots configuration for the multi-threaded system using only soft real-time

threads (SRTT).| 52
4.5 The mode configuration tor the multi-threaded system using only soft real-time |
threads (SRTT). 53
4.6 The mode configuration for the multi-threaded system using only hard real- |
time threads (HRTT).| o oo o 54

xi

List of Figures

2.1 Mixed Criticality Systems Application Integration| 6
2.2 DO-178C Design Assurance Levels| 6
2.3 Coarse-grained Multithreading| 10
2.4 Fine-grained Multithreading|. 11
2.5 RV32I instruction type formats| oL, 13
[2.6 I-type operation instruction formats| 0oL 14
2.7 RV32I 5-stage pipeline| oo 14
B TSIOE CSRI « o o v o e e e e e 17
2.9 Mode CSRI 18
3.1 High-Level Model of Microarchitecture| 20
[3.2 Control Unit Simulink Design| 23
B3 CSR Modelsl. o o 25
3.4 Branch Data Hazards in Schedulel.o 0000000 27
3.5 Timer Compare First Solution|, 28
3.6 Timer Compare Second Solution|, 29
3.7 Memory Unit Simulink Design| 0000 . 30
3.8 Memory Address Check| oo 31
3.9 Hardware Thread Scheduler Simulink Design| 32
[3.10 Thread Scheduler Configuration Example| 33
[3.11 Main Scheduler Logic Example|00, 33
[3.12 Simple Ring Bufter Model|o o0 35
[3.13 Main Ring Bufter Example| 000000 36
[3.14 SRT'T Scheduler Logic Example|. 0 .. 37
[3.15 SRT'T Ring Buffer Example] o o000 38
[3.16 Thread Select Logic] 39
B17 Stall Unitl o 40
13.18 Hardware Thread Scheduler Example|. 40
13.19 Timing Diagram ot Hardware Thread Scheduler{. 41
13.20 Hardware Thread Scheduler Example with Stall|. 41
13.21 Timing Diagram of Hardware Thread Scheduler with Stallf. 41
[3.22 Timing Instruction Set|. o 43
13.23 Memory Mapped Timer Registers|. 44
[3.24 Compare Block| 45
[3.25 Delay Until Unit| 46
[3.26 Timer Interrupt Unit|. o 46
4.1 Execution times for single threaded configuration| 52
4.2 Execution times for multi-threaded SRT'T configuration| 54

xiii

LIST OF FIGURES

4.3 Execution times for multi-threaded HR'1'T' configuration| 55
4.4 Execution times for multiple tasks| o000 56
4.5 Total execution times o7
4.6 Model of Response and Reaction Times| 58
|4.7 Response Time Analysis SingleThreaded| 59
4.8 Response Time Assembly Instructions| 59
4.9 Response Time Analysis Multithreaded 8 threads| 60
|4.10 Response time as a tunction of thread scheduling frequency| 61

[4.11 Overall Latency|. o 64

Source code

2.1 timingcontrolalo 8
[2.2 timingcontrolcase2.a]o 8
B.I Dbranchthread.al 22
[3.2 timinginstructions.a] 43
8.3 assemblerbeforeal L oo 47
3.4 assemblerafter.al. L 47
4.1 singlethreadedconfig.al Lo o 50
4.2 fibonaccialo 51
4.3 srttconfig.al Lo 52
44 srttmain.al oL 93
4.5 hrttconfig.alo 55
[4.6 responsetimetask.alo Lo 58
[A.1 RiscvAssembler.py| Lo 69
|A.2 DataHazardsSingleThreaded.af. 77
[A.3 DataHazardsMultiThreadedal o 000000 78

XV

List of abbreviations

CSR Control and Status Register
DAL Design Assurance Level

FPGA Field-Programmable Gate Array
GPS Global Positioning System
HDL Hardware Description Language
HRTT Hard Real-Time Thread

I/O Input/Output

IPC Inter-Process Communication
ISA Instruction Set Architecture
LSB Least Significant Bit

MBD Model-Based Design

MBE Model-Based Engineering
MCS Mixed-Criticality System
MMIO Memory Mapped Input/Output
MSB Most Significant Bit

PC Program Counter

PLL Phase-Locked Loop

PMP Physical Memory Protection
RF Register File

RTC Real-Time Clock

RTL Register-Transfer Level

RTOS Real Time Operating System
SRTT Soft Real-Time Thread

VGA Video Graphics Array

xvii

xviii CHAPTER 0. LIST OF ABBREVIATIONS

VHDL Very high-speed integrated circuit Hardware Description Language

WCET Worst-Case Execution Time

Chapter 1

Introduction

1.1 Introduction and motivation

A real-time system is a computer system that must react to events in the given environment
within a predetermined period, called a deadline [I},2]. Consequently, the system’s behavioral
correctness depends not only on a calculation’s logical correctness but also on the moment
in which the system produced these results [3, [4]. In contrast to a general-purpose system,
where the objective is to have fast computation to minimize the average response time of a
given set of tasks, the goal of a real-time system is to meet the timing requirement of each
task. The significance of an average-case execution time is minor for the real-time system
behavior if several tasks are executed with different timing constraints. For example, consider
the following quote made by Howard Marks:

Never forget the 6-foot-tall man who drowned crossing the stream that was 5 feet
deep on average.

As the quote implies, even though the average depth was less than the height of the man,
it could still be deeper in various places. Similarly, although the average-case performance of
the system is less than the timing constraints placed on the system, a specific task execution
may still be too slow to meet its timing constraint. Hence, a real-time system should have a
predictable timing behavior rather than having a fast average-case performance.

In a real-time embedded system, a software task is assigned a criticality level based on
how important it is to finish the task within a specified deadline. The tasks required to meet
their respective deadlines to avoid catastrophic consequences are hard real-time tasks. On
the other hand, a task is referred to as a soft real-time task if the system will still function
correctly even though the deadlines are occasionally missed [5]. For example, an autonomous
drone contains several real-time tasks that must keep up with external changes affecting
the drone [6]. The obstacle avoidance and the global positioning system (GPS) tasks are
among these tasks. If the obstacle avoidance task cannot react quickly enough to external
changes, it can result in the drone crashing into an object, potentially destroying the drone
and objects, and can lead to injury. Meanwhile, a late transmission from the GPS task
reduces the reliability of the GPS location of the drone, meaning that the received location
lags behind the actual location of the drone. Thus, the obstacle avoidance task must have a
high criticality level as the task must finish within a given deadline. On the other hand, the
GPS task can have a lower criticality level as missing a deadline is tolerable.

Real-time systems traditionally located multiple tasks with different criticality levels on
separate hardware platforms to prevent unwelcome interference between tasks [7]. However,

1

2 CHAPTER 1. INTRODUCTION

having respective hardware platforms results in excessive resource consumption. For example,
a drone with multiple tasks of different criticality levels would require numerous hardware
platforms. As a result, the drone would be costly and energy inefficient due to the extra
components needed to isolate the tasks. The drone would additionally be large and heavy due
to the number of components required and the increased battery size due to the energy usage.
Therefore, a solution integrates multiple components of more than one distinct criticality
level onto a shared hardware platform. This integration method is an increasingly popular
approach to designing real-time embedded systems, known as a mixed-criticality system [§].

With the integration of multiple criticality levels onto the same hardware platform, two
interference issues arise; spatial and temporal interference. Temporal interference is the
ability of a group of tasks on the same hardware platform to interfere with each other’s time
constraints [9]. This type of interference can cause a highly critical task to miss its deadline
due to a lower criticality task obstructing the predicted timing schedule of the highly critical
task. Spatial interference is the ability of a group of tasks on the same hardware platform to
alter each other’s code or private data [10]. Spatial interference can cause a highly critical
task to have corrupted data due to the lower criticality task modifying the private data of
the highly critical task, resulting in either incorrect or delayed task execution.

For a mixed-criticality system to be certifiable, there is a need for each task of varying
criticality levels to meet their timing constraints to different levels of assurance. For example,
the RTCA DO-178C avionics standard categorizes the criticality levels into five levels of
assurance, ranging from A to E [I1]. The worst-case execution time (WCET) used for analysis
and certification is usually a conservative upper bound that exceeds the actual WCET of the
system [12] [13]. Having tight bounds on the WCETSs of the tasks is thus desirable, where it is
preferable to have the WCET values as close as possible to the actual WCET. Furthermore,
by maintaining sound spatial and temporal isolation, each independent task can avoid being
negatively influenced by other tasks, resulting in predictable task execution. This predictable
execution due to sound task isolation further leads to tight bounds on the WCET [14].

Because of the inefficient hardware resource utilization of hardware-based isolation using
one processor per task, substantial research on software scheduling of mixed-criticality sys-
tems has been carried out over the past two decades [15], 16 [I7]. In particular, research into
real-time operating systems (RTOS) provided a method to enable software-based isolation
while drastically reducing hardware costs. However, the RTOS must be certified, where over-
heads such as task switch latency, preemption time, and inter-process communication (IPC)
must be considered [I8| [19]. This overhead results in timing requirements in milliseconds,
which is not precise enough for some applications. For example, applications that use software
to replace functionality implemented initially in hardware or that interact with various
hardware devices demand precision-timed input/output (I/O) with timing accuracy and
precision on the order of nanoseconds which is at clock cycle granularity for processors [20].

1.2 Objectives

Instead of having a hardware platform for each application, it is possible to implement a
processor where each task is deployed on separate computational components, such as cores in
a multicore processor or hardware threads in a multithreaded processor. However, allocating a
core to each task can result in the hardware resources being vastly underutilized because a less
computationally heavy task can occupy an entire core. Meanwhile, a multithreaded processor
allows multiple hardware threads to share a pipeline, resulting in fewer hardware resources
for each computational component. Thus, having each task allocated a hardware thread
enables better hardware resource utilization when multiple tasks are executing on the same

1.3. CONTRIBUTIONS 3

processor. However, many multithreaded processors do not have hardware thread scheduling
mechanisms that manage to preserve hardware-based temporal isolation between tasks. Thus,
a thread scheduling mechanism that manages to keep the hardware-based temporal isolation
while utilizing the hardware resources better must be explored.

A typical processor can contain several components leading to a context-dependent execu-
tion time, such as memory, caches, pipelines, and branch prediction. This context-dependency
leads to the execution time of individual instructions and memory accesses depending on the
execution history [2I]. For example, dynamic branch prediction allows the program to have
insight into the execution history to avoid flushing pipeline stages when a branch is taken.
However, there are instances where the information received from the execution history is not
enough to make an assumption based on branch outcomes. Because the branch prediction
is dynamic, it is challenging to foresee until the program run-time how the execution of
instructions will behave exactly. The outcomes of the dynamic branch predictions may
mainly vary when external influences coming from sensors are presented to the system,
resulting in less predictable instruction latencies. Because the instruction’s execution time
depends mainly on the execution history, the processor lacks fine-grained predictability. As
a result, the architectural features such as complex branch prediction and multilevel cache
used to optimize the average-case performance reduce the coarse-grained predictability of the
processor and make the WCET analysis cumbersome [14].

Fine-grained multithreading is a technique used in recent processor designs where instruc-
tions from different hardware threads are interleaved every clock cycle in the pipeline. This
technique can enable hardware-based temporal and spatial isolation between tasks by allowing
each task running on a hardware thread to use the pipeline for one clock cycle periodically. As
a result, several tasks can run on the same mixed-criticality system without interfering with
each other’s timing constraints. Furthermore, the performance penalty caused by removing
dynamic branch prediction and caches can be significantly reduced because of the concurrent
execution of tasks provided by fine-grained multithreading. By removing the dependency on
execution history, the fine-grained predictability of the processor can be maintained, and the
WCET analysis becomes less demanding. However, even though fine-grained multithreading
enables hardware-based isolation and predictable timing behavior, it cannot fully utilize the
processor unless all threads are constantly running.

1.3 Contributions

This report presents a fine-grained multithreaded microarchitecture designed in Simulink that
provides a means for each hardware thread to select between predictability and hardware-
based isolation or increased instruction throughput. A hardware thread focusing on pre-
dictability will simplify the verification and certification of the safety-critical tasks. Addition-
ally, the hardware-based isolation of the hardware thread allows the task to meet its timing
constraints accurately. In comparison, having the hardware thread focusing on increased
instruction throughput allows the less critical tasks to maintain good hardware resource
utilization.

The designed microarchitecture contains a hardware thread scheduler and timing in-
structions inspired by the theory provided by the FlexPRET research paper [14]. Like
the research paper, the microarchitecture contains a hardware-thread scheduler that uses
two active round-robin schedulers to decide the hardware thread schedule. However, the
microarchitecture utilizes a unique design to implement configurable round-robin schedulers
of variable sizes. These configurable schedulers use CSRs to configure the hardware schedule,
allowing the software to adjust the content and length of the thread schedule. The designed

4 CHAPTER 1. INTRODUCTION

microarchitecture also introduces a unique implementation of the four timing instructions
presented by FlexPRET. The timer unit presented in this microarchitecture incorporates
memory-mapped timer registers that expand on the mtime and mtimecmp registers described
in the RISC-V documentation. Here, in addition to providing the original real-time timer
interrupt functionality, the timer instructions give direct control over the thread schedule
with fine-granularity resolution. Thus, the timer instructions allow the timing behavior of a
task with hard real-time execution requirements to be specified in software while reallocating
spare hardware resources to tasks with soft real-time execution requirements.

By designing the microarchitecture in Simulink, it was possible to continuously test and
verify the design decisions made from start to finish. This design process made it possible
to spot bugs early in the design process, thus drastically reducing the number of mistakes
made. Additionally, the understanding received from previous research theory was used
to inspire some of the design requirements during the design process. By using Simulink
to test and verify the design, these design requirements could be adjusted or discarded
based on the understanding and results provided by the simulations. As a result, a custom
microarchitecture molded by inspiration from previous theory was achieved.

1.4 Thesis Structure

This thesis presents a fine-grained multithreaded microarchitecture incorporating a config-
urable hardware thread scheduler aimed at mixed-criticality and safety-critical systems. Any
essential background information and prior work in the field that is necessary to explain the
design decisions and reasoning is described in Chapter [2] Further, some of the design choices
made throughout the microarchitecture design are discussed in Chapter[3] Additionally, some
design issues and other enhancements or modifications are explained here. Chapter [4] will
configure the hardware thread schedule of the microarchitecture in several ways to perform
analyses on the execution times, response times, and its ability to hide instruction latencies.
These results are then used to reason why specific threads provide high predictability, making
them better for higher criticality tasks, while other threads are better for low criticality tasks
prioritizing high instruction throughput. Finally, Chapter [will conclude the work done
during this master thesis and discuss any problems that would be interesting in future works.

Chapter 2

Background and Related Work

2.1 Mixed-Criticality Systems

In Real-time systems, temporal correctness is just as important as logical correctness [3 [4].
A real-time system is required to respond to stimuli from its given environment within time
intervals decided by that particular environment. The moment in time that a result must
be available is called the deadline [I}, 2]. The timing constraints of a real-time system are
usually represented by how it enforces the deadlines placed on executing tasks. A deadline
is classified as soft if the result of a task still has some value after the deadline has elapsed;
otherwise, the deadline is firm.

In some cases, however, the result of a missed firm deadline can have severe consequences
such as destruction of property or loss of life [22]. These deadlines are hard. Any real-time
system classifies a system with at least one hard deadline as a hard or safety-critical real-time
system. The system is a soft real-time system when there are no hard deadlines. For a
hard real-time system to achieve functional correctness, all tasks with hard deadlines must
meet their assigned deadlines. If such a task fails to meet its deadline, the executed task is
considered a failure, and the system did not function as intended. Sometimes, failure in a hard
real-time system could lead to catastrophic ramifications. In contrast, a soft real-time system
has more relaxed constraints on its tasks. In these types of systems, it may be acceptable
for a task to finish its execution after its deadline. However, the usefulness of the results in
a soft real-time system decreases gradually with an increase in delay.

A safety-critical system can consist of functionalities with different levels of criticality.
Criticality is used as a label to specify the level of assurance against failure needed for a
system [I1I]. For example, a weather drone can contain flight control and weather sensing
applications. If a failure within the functionality of the flight control application occurs, it
could lead to the drone’s destruction and possibly cause injury. As a result, the flight control
application must be considered highly critical to avoid such circumstances. In comparison,
the weather sensing application is of a lower criticality, where the drone could experience
a failure by being unable to gather data for the weather station. This failure will only be
perceived as an inconvenience for the weather station as it will at most require the drone
to return to the weather station to fix the issue. Suppose both of these applications have
separate physical hardware units on the drone. In that case, there is isolation between
the functionality of both applications, meaning that the low-criticality task will not affect
the high-criticality one. This isolation provides high safety guarantees and simplifies the
certification process by limiting it to only the critical functions [22]. However, having a
physical hardware unit for each application on the drone will result in inefficient resource
utilization, an increase in costs and size, and a heavy drone with a significant amount of

6 CHAPTER 2. BACKGROUND AND RELATED WORK

energy consumption. Alternatively, as illustrated in Figure [2.1] it is possible to integrate
the applications on the same hardware unit to reduce the drone’s cost, weight, size, and
energy consumption. This integration will require the applications on the hardware unit to
be assigned individual criticality levels to avoid having the drone prioritize gathering data the
same way as the flight controls. Because of the mentioned advantages, integrating multiple
applications with different levels of criticality onto a common hardware platform, known as a
Mixed-Criticality System (MCS), is a growing trend in the design of real-time and embedded

systems [23] [§].
Weather Flight Weather
Sensing ﬁ Controls Sensing

Figure 2.1: Applications of different criticality levels can be located on separate hardware
units to achieve isolation between applications. Integrating these applications onto a shared
hardware unit reduces the hardware’s cost, weight, size, and energy consumption.

Flight
Controls

To allow a safety-critical system to be implemented and deployed, it must be certified
due to the risks that could occur during system failures. To become certified, a third party
known as the Certification Authority must perform a certification process to verify that the
safety-critical system is safe. The certification standard usually used in the avionic systems’
certification process is the RTCA DO-178C standard [I1I]. The RTCA DO-178C standard
defines five Design Assurance Levels (DAL), categorized by their criticality from the highest
criticality level (DAL-A) to the lowest (DAL-E) [I7]. Because of the consequences of a failure
or malfunction in an application of higher criticality levels, it is clear that the higher the DAL,
the more activities, and objectives must be performed and met. In total, DO-178C includes
71 objectives, where 43 of these are related to verification. Therefore, for an application
to pass with a DAL-A assurance, all 71 objectives must be met, as seen in Figure 2.2] In
comparison, a DAL-E assurance does not require any objectives to be met because there are
no consequences to the safety of the aircraft if a failure should occur. Thus, the flight control
application would be regarded with a DAL-A assurance for the drone example above. In
contrast, the weather sensing application could be as low as DAL-E.

High Criticality Low Criticality

DAL D:
o 0:26
e VO:9

O = Objectives
VO = Verification Objectives

Figure 2.2: The number of objectives and verification objects required in each DAL decreases
from left to right [II]. Notice how DAL-E is not on the scale due to not requiring any
objectives to be met.

A vital characteristic of any real-time system is that it behaves predictably. This char-

2.2. TIMING INSTRUCTIONS 7

acteristic means the system can perform all applications correctly (functional predictability)
and within a given timing bound (timing predictability). A significant concern when in-
tegrating multiple applications on the same hardware is the partitioning of the system [g].
Unfortunately, by combining various applications onto the same hardware, the tasks from one
application will share compute resources with tasks from other applications. This sharing of
resources increases the interference between the tasks regardless of the criticality level [24].
This interference means testing and verification must also account for the interference’s timing
behavior when determining the system’s functional correctness. Introducing spatial and
temporal isolation in the system can prevent independent tasks from affecting each other’s
behavior [20]. Spatial isolation is responsible for protecting a task’s state that is stored in
various forms of memory, while temporal isolation protects the timing behavior of a task [7].
When complete isolation is introduced, each task can be tested and verified for correctness
by itself and still have identical behavior when integrated into the system. As a result, an
isolated task will have better timing predictability, which will provide tighter bounds on the
worst-case execution time (WCET) analysis [2I]. These WCET bounds resulting from the
WCET analysis determine the timing partitions that a scheduling tool or system designer
must reserve for executing each task [I2, [I3]. Thus, as a consequence of having tighter bounds
on the WCET of a system, fewer system resources will be required to maintain guarantees
in the system behavior [16].

2.2 Timing Instructions

Real-time systems assign deadlines and periods to tasks. To meet every deadline and know
when the real-time system should perform the task, the system requires a sense of time. An
instruction that specifies the minimum amount of execution time for a section of code was
introduced by Ip and Edwards [25]. A deadline instruction was implemented that forces the
program to pause its execution while a timer register decrements. The pause lasts until the
specified timer register reaches zero. Once the timer is zero, it is reloaded with the source
value of the deadline instruction, and the program continues to the following instruction. This
deadline instruction provided a software solution for specifying a lower execution time-bound
on specific program code segments. Finally, they demonstrated the deadline instruction
by showing how a video controller could be implemented in software and hardware. They
concluded that an application that would usually only be possible in hardware is now much
easier to write and debug in software, where they wrote roughly four times as many lines of
code in VHDL compared to assembly.

Lickly et al. added this deadline instruction to their fine-grained multithreaded proces-
sor [26]. In addition, they included a replaying mechanism to the deadline instruction that
allowed a particular thread to be stalled without stalling the entire pipeline. Each thread has
twelve deadline registers, where eight of these count instruction cycles while the other four
count at a different frequency specified by a phase-locked loop (PLL). Because the architecture
uses a 6-stage pipeline, the instruction cycle is six clock cycles, as this is the time it takes an
instruction to pass through the pipeline. Finally, they illustrated that the architecture could
use the deadline instruction to meet VGA real-time constraints using a video game example
with three main tasks running on separate threads.

To provide temporal isolation in a multiprocessing architecture, Bui et al. identified four
timing control cases that are desirable to have at an ISA level [27]:

1 - Executing a code segment takes a specified minimum amount of time [25].

2

CHAPTER 2. BACKGROUND AND RELATED WORK

- Execute a code segment and branch afterward if the code segment exceeds the specified

execution time limit.

3 - Execute a code segment and branch immediately if the code segment exceeds the

4

specified execution time limit.

- Finish a code segment within a maximum execution time.

The first three capabilities can be added to a given ISA relatively simply, where the following
four pseudo-instructions, proposed in previous work, can express this [20]:

get__time: Loads the current time of a timer register into a destination register.

delay_ until: Stall the program execution until the value in the timer register exceeds
the value in the provided register.

interrupt__on__expire: Interrupt program execution when the value in the timer
register exceeds the value in the provided register.

deactivate__interrupt: Disables the interrupt_on_ expire operation that is already
in progress.

Consider a weather sensing drone that reads a sensor and adds up to 1000 samples to an
average before transmitting the value to the weather station, shown in Listing[2.1] The sensor
task uses the interrupt_on_ expire and deactivate interrupt to achieve case 3 mentioned
above. Here, the sensor task is allocated 1 ms of time, interrupting the task’s execution
if it exceeds the time limit. To ensure that the task uses a specific amount of time, the
delay_until task is added to achieve case 1, where the task will stall until 1 ms has elapsed
since the retrieval of the current time.

Listing 2.1: timingcontrol.a

© 0w N O Ul R W N =

= o= = e
w N = O

14
15
16

addi x6, x0, 1000 //Set loop limit
read_sensor:
get_time x1 //Get current time
addi x1, x1 1000000 //Calculate time 1 ms in future
addi x2, x0 0 //Set iterator to 0
addi x5, x0 0 //Set sensor sum register to 0
interrupt_on_expire x1 //Set a timer interrupt to trigger in 1 ms
poll_input:
1w x4, 0(x3) //Read sensor
addi x2, x2, 1 //Increment iterator

. Add to Average Calculation Code ...
blt x2, x6, poll_input //Branch if less than loop limit

output_average:

deactivate_interrupt //Deactivate interrupt
sw x5, 4(x3) //Write sensor average
delay_until x1 //Stall until 1 ms from current time

To achieve case 2, a comparison between two get_ time instructions can be performed. By
reading the timer before and after some code segment, the program can see whether the code
segment’s duration lasted too long, where the program will branch to deadline_miss if more
than 1 ms elapsed.

Listing 2.2: timingcontrolcase2.a

2.3. HARDWARE MULTITHREADING TECHNIQUES 9

get_time x1
addi x1, x1, 1000000
. Code ...
get_time x2
bgt x2, x1, deadline_miss

Gl W N =

Implementing the mentioned pseudo-instructions in hardware is relatively simple, where many
possible alternative implementations exist [20]. The timing control cases’ general idea is to
stall, branch, or interrupt program execution due to a timer comparison. As a result, increased
predictability in the timing behavior of a task can be achieved, where the timing instructions
can allocate a specific amount of time to a task.

2.3 Hardware Multithreading Techniques

Hardware multithreading is a popular method used to improve the utilization of processor
resources by integrating multiple hardware threads into the same processor core [28]. A
hardware thread is logically equivalent to a processor, where each hardware thread has
individual state registers, such as a register file (RF), a program counter (PC), and control
and status registers (CSR) [29]. However, a hardware thread shares a pipeline and frequently
the same memory space as other hardware threads within the same processor. By sharing
the same or parts of the same memory space, the hardware threads can effortlessly access the
data of other hardware threads, thus enabling data sharing [30].

In an operating system with multiple software threads, a software thread switch would
spend many clock cycles storing the state of the software thread before fetching the state of
a different software thread. As a result, having multiple software tasks allocated a certain
amount of computing time will add significant latency to the overall execution time due to the
context switching performed in software. In comparison, by having a software task allocated
to a hardware thread in a multithreaded processor, the processor can perform hardware
thread switching at clock cycle granularity, thus removing the latency due to the storing and
retrieving of the task state.

In addition to removing the latency caused by context switching, hardware multithreading
has an additional latency-related benefit. In a single-threaded processor, branching and cache
miss results in short and long stalls in the task execution, respectively. Short stalls refer to
a delay in executing a task of a few clock cycles, while a long stall can be many hundreds of
clock cycles. Because of the poor hardware resource utilization caused by these stalls, much
research is being performed on branch and cache prediction mechanisms to hide the added
delay to the program execution [31} B2, B3]. In addition to these prediction mechanisms, it
was discovered that an inherent benefit of hardware-based multithreading is that it can be
used to hide these delays in program execution by switching to a different thread instead of
stalling.

Coarse-grained multithreading, or block interleaving, is a hardware multithreading tech-
nique introduced to hide long stalls [30]. For example, the thread schedule of a coarse-grained
multithreaded processor with five pipeline stages can be seen in Figure When the
coarse-grained technique notices a more prolonged stall such as a cache miss, it performs
a thread switch [29]. This thread switch allows a different thread to execute while the thread
that was stalled fetches the required data from a higher level cache, such as the L3 cache.
However, when the thread has managed to retrieve the necessary data from the L3 cache,
it must either wait until the other thread gives away the compute resources, or the thread
has to preempt the thread currently occupying the pipeline. As a result, the thread that was
stalled may have significant latency added to its task execution.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Thread Coarse-Grained Multithreading

Branch Cache

Figure 2.3: An example thread schedule using the coarse-grained multithreaded technique.
The technique manages to hide most of the latency caused by cache miss, but is incapable of
hiding the branch latency.

As can be seen in Figure the program execution latency in a coarse-grained multi-
threaded processor caused by the cache miss is five clock cycles compared to the hundreds
of clock cycles latency present in a single-threaded processor without cache prediction. The
five-clock cycle delay is because the pipeline must be emptied of instructions from the previous
thread and filled with instructions from the new thread. Thus, the number of clock cycles
delayed depends on the number of pipeline stages in the processor architecture. Because
of this pipeline delay, the coarse-grained multithreaded technique does not benefit from
switching on shorter stalls. If the coarse-grained multithreaded processor example performs
thread switching on branch stalls, the latency introduced to the pipeline will be three clock
cycles longer than if it did not perform any thread switching. As a result, coarse-grained
multithreading is used to hide a large portion of the latency caused by longer stalls such as
cache misses. In contrast, it cannot conceal branch latencies without a branch prediction
mechanism.

Fine-grained multithreading, or cycle-by-cycle interleaving, is another hardware multi-
threading technique introduced to hide long and short stalls [30]. For example, the thread
schedule of a fine-grained multithreaded processor with five pipeline stages and five hardware
threads can be seen in Figure The fine-grained multithreaded technique performs thread
switching at the clock cycle granularity. The thread scheduler usually switches between
available hardware threads each clock cycle in a round-robin fashion |29, 34]. This scheduling
method means that if there are as many threads as pipeline stages, the next instruction
from any particular thread is, in principle, fed to the pipeline once the previous instruction
is completed. Thus, the need for data forwarding is eliminated, and any data hazards that
would otherwise cause a flush of the pipeline stages are avoided. As a result, the fine-grained
multithreaded technique can avoid short stalls by having other threads use the pipeline stages
that would otherwise be flushed. This avoidance can be seen in Figure [2.4] where the branch
operation performed by thread0 does not lead to a stall because threadl and thread2 are
using the thread cycles where a pipeline flush would otherwise have occurred.

An example thread schedule using the coarse-grained multithreaded technique. The
technique manages to hide most of the latency caused by cache miss, but is incapable of
hiding the branch latency.

In addition to hiding shorter stalls by performing hardware thread interleaving every clock
cycle, the fine-grained multithreaded technique can hide longer stalls, as seen in Figure [2.4
Here, thread0 notices a cache miss where the thread scheduler is notified of this occurrence.
While thread(fetches the required data from the L3 cache, the hardware thread scheduling
technique will decide how the unused cycles are allocated. For example, PTARM is a fine-
grained multithreaded processor that uses fixed round-robin scheduling, alternating between

2.4. MODEL-BASED ENGINEERING 11

Thread Fine-Grained Multithreading

Branch Cache
Miss

Figure 2.4: An example thread schedule using the fine-grained multithreaded technique. The
technique manages to hide the cache latency, except the cycle causing the cache miss. Here,
other threads are using the spare cycles while Thread0 is stalling. Additionally, the technique
manages to hide branch latency by scheduling other threads during the cycles that can be
flushed due to a branch.

all hardware threads regardless of the thread status [35]. Because the scheduler does not care
about the thread status, the threadO cycles will be left unused until the thread stops stalling.
Furthermore, if other threads result in cache misses, those cycles will also be left unused.

On the other hand, XMOS is a fine-grained multithreaded processor that uses active
round-robin scheduling, alternating between all hardware threads ready to execute [36]. This
scheduling method can be seen in Figure where threadl and thread2 use the cycles
initially allocated to thread0. The disadvantage of this technique is that it can introduce some
latency due to branch stalls, where two adjacent thread cycles can potentially be assigned to
the same thread. For example, the figure shows threadl being adjacent to another threadl
cycle and thread2 having a single thread cycle between another thread2 cycle. If the first
thread cycle, in either case, performs a branch, the other cycle will result in a stall. Thus,
there is a potential for some branch latency in the active round-robin scheduling method.
However, active round-robin scheduling can allocate most unused cycles to other threads,
resulting in better hardware resource utilization than fixed round-robin scheduling.

Although the fine-grained multithreaded technique is capable of hiding both short and
long stalls, there is a trade-off that must be made. Because the method is performing
cycle-by-cycle interleaving, where the scheduler will interleave several threads, the frequency
of any specific thread will be reduced. For example, using the fine-grained processor above
running at 100MHz clock frequency, each thread will execute at 20MHz. As a result, the
frequency of each thread is inverse proportional to the number of actively scheduled threads.
However, even though each thread is executing slower, concurrent thread execution results in
a total throughput equivalent to that of a single-threaded processor when disregarding stall
latency. In comparison, the coarse-grained technique has a similar thread-specific throughput
as the single-threaded processor. For example, with a 100MHz frequency coarse-grained
multithreaded processor, a single thread will execute at 100MHz due to the seemingly se-
quential behavior of the thread scheduling method. Finally, the overall throughput of the
coarse-grained technique is equivalent to the fine-grained approach when disregarding stall
latency.

2.4 Model-Based Engineering

Model-based design (MBD) is an effective and efficient method for understanding various
systems, such as those found in microcontrollers and processors. MBD helps reduce the
complexities that arise during the development of a system through visual prototyping and

12 CHAPTER 2. BACKGROUND AND RELATED WORK

continuous testing and validation of system characteristics [37, [38]. By continuously testing
and validating the system throughout the design process, spotting bugs and areas in the design
or requirements that need modification is made easy. This continuous checking enables rapid
prototyping by fast feedback on requirements and design decisions that result in an overall
reduction of development risks [39, 40]. Furthermore, traditional design processes usually
handle the design information in a text-based approach that can lead to misinterpretations
and be challenging to understand. Standard document-based procedures can also be more
time-consuming and prone to errors due to the code and data being created manually in
a text-based form. These reasons are essential when designing large and complex systems,
such as satellites, aircraft, and automobile systems, where mistakes in the system can lead
to catastrophic failure. With a model-based approach, it is possible to break a complex
system into smaller digital models. These models are then verified to reduce the number of
defects injected due to a lack of overview and validation of design decisions in a traditional
document-based approach. These designed models do not necessarily need to represent the
system perfectly. However, they serve as a method to supply the designer with valuable
knowledge and feedback on the devised system sooner and more cost-effectively than system
implementation alone.

Because of its ability to reduce development time, resolve design problems early, and
provide less ambiguous system documentation, Model-Based Engineering (MBE) is an ex-
panding field in multiple industries, including the automotive and aerospace industries [41],
42]. Amongst the many areas within these industries, MBE can also be used to accelerate
FPGA development [43]. In a traditional FPGA design process, a systems engineer produces
a high-level computer simulation of the system to be designed [44]. Further, the designer com-
municates with a hardware developer that will write the code for the model to be implemented
on an FPGA. The hardware developer must understand the simulated system’s logic before
engaging in the HDL design. MBE significantly speeds up the design and verification process
by allowing the hardware developer and systems engineer to cooperate using functional models
of the design specifications. These are executable models and are easier for designers coming
from different fields of expertise to interpret similarly. Consequently, the hardware developer
does not need to spend the same amount of time trying to decipher the simulated design and
can directly start the process of implementation and verification on an FPGA.

Simulink is an effective MBE tool that can further accelerate FPGA development using
the available HDL Coder add-on. The tool can generate HDL code from the model by having
the designer create an HDL-compatible Simulink Model [45] 46]. Thus, it is possible to design
functional models that can be continuously tested and verified throughout the entire design
process and later used to generate HDL code. Furthermore, Simulink provides methods
for reusing reference models in design verification and performing FPGA-based debug and
verification [47, 48]. This debug and verification method allows the RTL code to be verified
against the reference model through simulation and on an FPGA. As a result, less time is
spent correcting design mistakes, reducing the total development time considerably.

Moreover, as the generated HDL code has been designed and verified on an FPGA,
Simulink also provides the capability to integrate the model into a more extensive system and
perform Hardware-in-the-loop (HIL) simulation [49]. This simulation will allow the design
to be further tested by providing the design implemented on an FPGA with various stimuli.
These stimuli are then handled by the FPGA, which further outputs signals relative to the
stimuli. The simulation then provides new stimuli dependent on the output signals retrieved
from the FPGA. As a result, the algorithms implemented on the FPGA can be verified in an
environment that simulates the real world, allowing critical systems to be tested in detail to
ensure that no errors are possible.

2.5. RISC-V 13

2.5 RISC-V

RISC-V is a non-profit organization with billions of chips on the market and a large and
growing community [50]. This organization provides the community with an open-source In-
struction Set Architecture (ISA). An ISA is a computer model that defines how the processor
is controlled by software, allowing developers to understand better what the instruction set
can do, allowing for more efficient code to be written [51, [30]. Because RISC-V’s ISA is
open-source and the growing community, there is a myriad of resources available related to
custom microarchitecture design based on this ISA [52] 53] 54]. RISC-V has a collection of
available extensions that can be added to the baseline ISA, making it possible for designers
to pick between various functionality options to add to their design, reducing the amount of
custom functionality required.

2.5.1 RV32I Base Integer Instruction Set

The 32-bit base integer instruction set, also known as RV32I, is one of the most straight-
forward architectures available in the RISC-V extension libraries. The RV32I is an ISA
designed to reduce the required hardware with minimal implementation while forming a
compiler target able to support modern operating system environments [55]. RV32I contains
40 unique instructions that can be used to emulate all of the ISA extensions available except
for the atomic-instruction extension, which requires additional hardware [56]. Creating a
hardware implementation using this ISA, including the machine-mode privileged architecture,
would require the addition of the 6 CSR instructions mentioned in Section [2.5.2)

RV32I also has several types of instructions. Namely, R-type, I-type, S-type, B-type,
U-type, and J-type, shown in Figure These instructions have their unique purpose,
where, e.g., B-type instructions are branch instructions and I-type instructions are register-
immediate operations [55]. First, the operation code stored in the seven least-significant bits
(LSB), called opcode, is checked to determine which type of instruction is being executed.
Then, based on the instruction type that has been established, it is possible to extract the
instruction fields. As can be seen in the figure, most fields come from the same set of bits
regardless of the instruction type. The immediate field, however, is constructed of different
bits depending on the kind of instruction.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
y funct? [rs2 [sl [funct3 | rd [opcode | R-type
‘ imm[11:0] | rs1 | funct3 | rd | opcode | I-type
\ imm(11:5] \ rs2 [rs1 | funct3 | imm(4:0] | opcode | S-type
| imm[12] [imm[10:5] | rs2 | sl | funct3 |imm[4:1] [imm[11] | opcode | B-type
| imm|[31:12] | rd | opcode | U-type
[imm[20] | imm[10:1] [imm[11] | imm[19:12] | rd | opcode | J-type

Figure 2.5: The types of instructions available in the RV32I ISA.

Figure [2.6) shows the instruction encoding formats for several of the math operations that
the RV32I architecture is capable of performing. The term I-type means that the instruction
is of Immediate-type. These instructions only use one source register, rsl, whereas the other

14 CHAPTER 2. BACKGROUND AND RELATED WORK

value, imm[11:0], is derived from the instruction. The 3 bits in the middle of the 32-bit
instruction format are the functional bits, which specify which operation is to be performed.
These bits are used along with the opcode in the 7 LSBs to select the instruction operation.
Once the operation has been performed on these two values, the result is placed in the
destination register, rd.

imm[11:0] sl 000 rd 001001 1|Itype addi rd,rsl,imm
imm[11:0] rsl 010 rd 001001 1|Itype slti 1rd,rsl,imm
imm/[11:0] rsl 011 rd 001001 1|Itype sltiu rd,rsl,imm
imm[11:0] rsl 100 rd 001001 1|Itype xori rd,rsl,imm
imm[11:0] rsl 110 rd 001001 1|Itype ori rd,rsl,imm
 imm[11:0] sl |1 11 d |00 1001 1Itype andi rd,rsl,imm

Figure 2.6: Example instruction formats for various I-type operations.

The instructions of RV32I are of the same lengths and can be fetched in a single cycle.
Because of this, it is beneficial to divide the microarchitecture into pipeline stages [57].
Thus, a reduced clock time and throughput improvement can be achieved, where multiple
instructions are overlapped in execution [58]. An example of a pipelined RV32I is the 5-stage
pipeline, shown in Figure 2.7 This pipelined microarchitecture contains the fetch, decode,
execute, memory access, and write-back stages, performed in the respective order [59] [60].

o N

Control &
Status
Registers

Program Instruction

Counter Memory —| Decode Logic

[’ Register
File

Data
Memory

LA LA
Fetch - Stage Decode - Stage Execute - Stage Memory - Stage Writeback - Stage

Figure 2.7: An example of a 5-stage pipeline containing the stages fetch, decode, execute,
memory access, and write back, separated by a register.

10919 YorqaIIM

Arithmetic
Logic Unit

2.5.2 Control and Status Registers

To perform any control and status register (CSR) operations, RISC-V defines specific CSR
instructions to read or write a CSR, known as Zicsr [6I]. There are six available CSR
instructions within Zicsr, where three (CSRRW, CSRRS, and CSRRC) use a source register.
The other three instructions (CSRRWI, CSRRSI, and CSRRCI) use a 5-bit zero-extended
immediate value to read/write a CSR. These instructions within the standard RISC-V ISA
have a 12-bit encoding space set aside for up to 4096 CSR. The 2 MSB of this encoding space
indicates whether the register is read/write or read-only. The following two bits encode the
lowest privilege level that can access the CSR. This CSR address convention constrains the
mapping of CSRs into the address space but makes the hardware easier to check for errors

2.5. RISC-V 15

and provides a larger CSR space [61]. The highest privilege mode available in a RISC-V
system is the machine mode. This mode is used for low-level access to the hardware platform
and is the first mode entered at a hardware reset. The machine mode additionally allows the
implementation of features that would otherwise be implemented in hardware directly but is
either too difficult or expensive to realize [62].

The machine-level ISA contains a list of several important CSRs that were added to the
designed microarchitecture, described in Chapter|[3] to allow certain features to be added [63].
For example, embedded systems rely heavily on handling asynchronous events, known as
interrupts, which are designed to be managed by the processor [64]. Therefore, within the
machine-level ISA, there are several CSRs described that are used to configure interrupts.
These CSRs are part of the CSRs referred to as trap setup and trap handling CSRs, which
are used to manage interrupts and exceptions. The term trap refers to the synchronous
transfer of control to a trap handler caused by either an interrupt or an exception. The
term exception refers to unusual conditions associated with the instruction in the currently
running thread that can occur during run-time, such as illegal instructions and instruction
address misalignment.

The CSRs required as a bare minimum to handle interrupts are the mstatus, mie, and
mtvec trap setup CSRs and the mepc, mcause, and mip trap handling CSRs [64]. By having
these CSRs, a RISC-V architecture can enter and exit the interrupt handler, although it
will lack certain features that are not within the scope of this report. In addition to the
CSRs necessary to handle traps, the mhartid CSR is essential in a multithreaded system.
The mhartid is a read-only register that holds an integer value corresponding to the ID
of the hardware thread that is running some code. Due to the occasional call for startup
configuration, e.g., a system reset, one of the threads must have a thread ID of 0. Additionally,
the magnitude of the largest thread ID used in the system should be as low as possible for
higher efficiency.

2.5.3 Machine-level Timer Registers

The machine-level timer register, mtime, is a memory-mapped register that provides the
RISC-V architecture with a real-time counter [65]. This timer register is required to increment
at a constant frequency, and the architecture must have a mechanism that determines the
time base of the counter. Once mtime reaches the maximum value, the register will overflow,
and the register will wrap around. In both 32-bit (RV32) and 64-bit (RV64) RISC-V systems,
the mtime register is 64 bits.

In addition to the mtime register, another register known as mtimecmp is defined [65].
This register is a 64-bit memory-mapped timer compare register, which in combination with
mtime, is used for timer interrupts. Whenever mtime contains a value greater than or equal
to the value in mtimecmp, a timer interrupt becomes pending [64]. This interrupt will remain
pending until the value of mtimecmp becomes greater than mtime, which typically results
from writing mtimecmp. To allow a timer interrupt to occur, the timer interrupt bit, MTIE,
must be set in the mie register. Otherwise, the architecture will not be able to treat the
pending interrupt.

An accurate real-time clock (RTC) is relatively expensive and must be able to run even
when the rest of the system is powered down [65]. As a result, the RTC is usually shared
between threads in the same system, and accessing the RTC may result in the penalty of a
voltage-level-shifter and clock-domain crossing. Thus, it is more natural to have the mtime
register exposed as a memory-mapped register rather than a CSR. Finally, although the
mtime register is shared between threads, having at least one mtimecmp register for each
thread is typical, allowing the thread to perform timer interrupts.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 Previous Work

2.6.1 Single-operation RISC-V Architecture

The single-operation RISC-V architecture was implemented in Simulink during the specializa-
tion project, TFE4590, last semester at the Norwegian University of Science and Technology
(NTNU) [66]. This project aimed to implement a microarchitecture with a 5-stage pipeline
capable of performing the addi operation from the RISC-V’s base integer instruction set
(RV32I) using a custom-made design methodology. The first step of this methodology was
to design the functionality of each stage using Matlab scripts, followed by the design of the
microarchitecture in Simulink. The third step of the methodology was to implement the
microarchitecture in Verilog, where the knowledge from the Simulink design reduced errors
during code writing. Finally, the last step was to use the Simulink model (step 2) as a
golden reference model to test the Verilog code implemented on an FPGA. The idea of the
specialization project was to develop a proper design methodology that could be used to design
a fine-grained multithreaded microarchitecture. However, the time required to implement the
fine-grained multithreaded microarchitecture, including the testing, resulted in only step 2
being considered. It should be noted, however, that the single instruction microarchitecture
used in the previous semester was further used in this project as the baseline. However, the
entire 5-stage pipeline was redesigned due to a better understanding of Simulink, resulting
in better model-based testing and more readable models.

2.6.2 FlexPRET

FlexPRET is a fine-grained multithreaded RISC-V processor that allows thread-level hardware-
based isolation and predictability to be traded for instruction throughput [I4]. The processor
enables an arbitrary interleaving of threads controlled by a unique hardware thread scheduler.
This scheduler allows for a flexible thread schedule where threads can either be characterized
by isolation and predictability or efficient processor utilization. FlexPRET also utilizes timing
instructions that enable direct control over timing in nanoseconds resolution, as mentioned
in Section 2.2

As described in Section a fine-grained multithreaded system performs clock-by-
clock thread interleaving. To achieve such fine-granularity hardware thread switching, some
mechanism is required to decide which thread should be selected for each clock cycle. In
the FlexPRET processor, the unit responsible for this is the hardware thread scheduler,
a configurable scheduler capable of scheduling anywhere between 0 and 8 threads in a
round-robin fashion.

Unlike most multithreaded systems, the hardware thread scheduler presented in Flex-
PRET classifies the threads as either hard real-time threads (HRTTS) or soft real-time threads
(SRTTs). An HRTT is a thread that can only use the thread cycles allocated to that specific
thread, meaning that the thread is locked to a slot in the repeating sequence. If the thread
is not assigned any slots in the sequence, then the thread will stay inactive. In contrast, if a
thread is configured as an SRTT, then the thread can have specific thread cycles allocated
like an HRTT in addition to using any spare thread cycles available. This means that if
unused slots are in the repeating sequence in the hardware thread scheduler, an SRTT can
use these cycles. The hardware thread scheduler utilizes two active round-robin schedulers
for the threads; one that schedules both HRTT and SRTT for fixed slots in the sequence and
one that schedules SRTTs for spare cycles.

To configure the hardware thread scheduler, FlexPRET implemented two configuration
registers: mthreadmode and mthreadslot. The mthreadslot register, shown in Figure [2.8

2.6. PREVIOUS WORK 17

is responsible for selecting the repeating thread sequence that is delivered from the thread
scheduler to the fetch stage of the pipeline. The register is divided into eight 4-bit registers,
called slots. As the name implies, a slot is a placeholder for a thread ID in the repeating
sequence. Each of these slots can have a value from 0 to 15, specifying which thread should
have priority for that slot in the sequence. For example, the values 0 to 7 indicate specific
thread IDs, meaning that if slot0 contains the value 4, then thread4 is prioritized for the zeroth
slot in the repeating sequence. The meaning of prioritized in this case is that if the thread
is awake, it has priority for that slot. However, if the thread is asleep, other threads, namely
SRTTs, can use this slot until the prioritized thread wakes up again. Thus, each slot value
specifies the thread ID with priority and not whether the slot is private to a specific thread
ID. When the value eight is allocated to a slot, it means that the slot is soft. Any SRTTs can
use this particular slot in the repeating sequence. A soft slot functions the same way as a slot
containing the value of a thread ID that is sleeping. Finally, it should be possible to disable
a slot in the sequence when a repeating sequence of length 8 is undesirable. To disable a slot
in the sequence, any other values, 9 to 15, can be stored in the slot the programmer wants
to disable.

mthreadslot
Slot7 | Slot6 | Slot5 | Slot4 | Slot3 | Slot2 | Slotl | Slot0

31 28 27 24 23 2019 16 15 1211 8 7 4 3 0

Slot(n):

0-7: Thread ID
8: Soft
9-15: Disabled

Figure 2.8: The slot CSR of the hardware thread scheduler. Each slot can either contain a
thread ID (0-7), a soft thread value (8), or be inactive (9-15).

The mthreadmode register, shown in Figure is responsible for selecting whether a
hardware thread should be an HRTT or SRTT and whether the thread is awake or asleep.
The register only uses the lower 16 bits of the 32-bit register, where the used bits are divided
into eight 2-bit registers, called mode registers. Each mode register has a thread ID, where
mode0 relates to thread(). Compared to the slots CSR, the mode registers allocates 1 bit to
select the mode of the thread and the other to choose the state. The mode register’s least
significant bit (LSB) is used to determine the thread’s state; when the bit is 0, it means that
the thread is awake, while a bit value of 1 means sleeping. The most significant bit (MSB)
of the mode register selects the thread’s mode; when the bit is 0, the thread is configured as
an HRTT, while a bit value of 1 means that the thread is configured as an SRTT.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

mthreadmode
T7|T6|T5|T4|T3|T2|T1|TO

31 161514131211109 8 7 6 5 4 3 2 1 0

T(n)_

00: Hard Active (HA)
01: Hard Sleeping (HZ)
10: Soft Active (SA)
11: Soft Sleeping (SZ)

Figure 2.9: The mode CSR of the hardware thread scheduler. This CSR configures each
thread as either hard or soft real-time threads and whether the thread is awake or asleep.

Chapter 3

The Microarchitecture Design

The architecture presented in Section [3.1] consists of a 32-bit RISC-V microarchitecture with
five pipeline stages and uses vectored interrupts. Because the design is made in Simulink
and has not been converted to HDL code, the critical paths of the system are unknown,
meaning that the microarchitecture cannot provide any specific frequency at the time of this
writing. Next, Section presents the microarchitecture’s reconfigurable software-controlled
hardware thread scheduler. A dynamic scheduler allows the software to freely adjust the
schedule and mode of the hardware threads whenever required. These hardware threads can
be configured as hard real-time threads (HRT'T) or soft real-time threads (SRTT). Classifying
these hardware threads as either HRTTs or SRTTs makes it possible to tailor each thread’s
predictability, isolation, and throughput. However, changing one of these parameters may
cause the other parameters to deteriorate. It is then necessary to select these levels with care.
The microarchitecture contains a timing extension that improves the overall throughput of
the program, presented in Section and makes it possible to add real-time constraints.
This extension contains a few timing instructions that allow the program to implement
real-time functionality. Finally, Section presents a custom assembler designed for this
microarchitecture that understands instructions from the base integer RISC-V ISA, the Zicsr
extension instructions, and the custom timing instructions.

3.1 Architecture

The microarchitecture consists of three primary modules: The 5-stage RISC-V pipeline, the
memory unit, and the control unit, as shown in Figure|3.1

3.1.1 5-Stage RISC-V Pipeline

The pipeline is based on a typical 5-stage RISC-V pipeline containing the stages: fetch,
decode, execute, memory, and write-back, as seen in Figure To enable the microarchi-
tecture to use fine-grained multithreading, additional state components, such as register files
and program counters, must be integrated into the pipeline to allow multiple threads to run
on the same microarchitecture. The following paragraphs detail the modifications done to
each pipeline.

The pipeline must be expanded with additional program counters in the fetch stage to
allow multithreading in the microarchitecture. These program counters enable each thread to
point to different locations in the instruction memory. Hence, pointing to separate memory
regions allows each thread to perform separate software tasks. Thus, eight program counters
were added to the fetch stage, making it possible to schedule eight hardware threads. As a

19

20 CHAPTER 3. THE MICROARCHITECTURE DESIGN

J

A

Writeback Select

Timer
Unit
Data
Memory
Private

Memory Controller

o
Data
Memory
Shared

i
'

A

Arithmetic
Logic Unit

<

\
/

g]
s
2 B2 ‘
< £875 RF Select Read
S S v
= T o« 5
= — 51
2 &
° 2]
= 2
5 i
o 5 £58 o
g3 g‘gwg 7
F& B=2 =)
B Sk Q
I 4 &
\ / RF Select Write '

Decode
Logic
Instruction
Memory
/\

‘| Read PC Select

E
(7]
g

o - ~
S Es| |Ez| |Es
o| D¢t D c oD c
0|23 S 3 S 3
Eﬂ-u L) L)
8
[=2]
=]
e
o

‘ Write PC Select

Figure 3.1: A high-level model of the microarchitecture. The design consists of three main
parts: a 5-stage RISC-V pipeline, Control Unit, and a Memory Unit, colored in blue, green,
and red, respectively.

3.1. ARCHITECTURE 21

result, eight distinct software tasks can execute concurrently in the microarchitecture while
maintaining hardware-based isolation between the tasks. However, a mechanism must be
available to select which program counter to forward and increment. Selection between
hardware threads is achievable using a multiplexer to choose which program counter should
access the instruction memory. Additionally, the signal used to select the program counter
also increments the program counter. Furthermore, the pipeline must know which program
counter to update when performing operations such as branching. This update is achievable
by adding a demultiplexer to the input to write the branch value to the correct program
counter.

The multiplexer and demultiplexer used respectively for reading and writing utilize a
thread ID that identifies the program counter to access. As can be seen in Figure the
multiplexer receives the thread ID from the hardware thread scheduler. In comparison, the
demultiplexer receives the thread ID from the execute stage since this is the stage responsible
for deciding any jumps in the instruction memory. Thus, the thread ID from the hardware
thread scheduler must be forwarded to the other stages to make the pipeline aware of the
thread ID residing in each stage. This awareness allows the stages to identify which thread is
occupying the stage, thus limiting access to the state components with identical thread ID.

As mentioned previously, each thread must be supplied with a register file. Thus, to equip
the microarchitecture with eight threads, the decode stage must contain eight register files,
where each register file is private to a thread. By having a private register file, a hardware
thread can maintain its state when the pipeline is shared with other hardware threads.
However, although the decode stage contains eight register files, a mechanism similar to the
program counters must be added to select the correct register file for a thread. As a result,
a multiplexer and demultiplexer select port is added to the output and input, respectively.
Compared to the program counter, the multiplexer uses the thread ID from the pipeline
register between the fetch and decode stages. Since the write-back stage writes the register
file, the demultiplexer uses the thread ID from this stage to select the corresponding register
file.

The execute stage communicates with the control unit, where the control and status
registers (CSRs) reside. To allow the threads to be individually configured, each thread
must have separate CSRs. Thus, similar to the fetch and decode stage, the CSRs must be
duplicated where a multiplexer and demultiplexer are used to read and write the correct
CSRs, respectively. However, compared to the program counter and register file, the CSR
stack requires an additional CSR unit where shared CSRs are located. In the shared CSR
unit, the configuration registers for the hardware thread scheduler, and the CSR that limits
the shared data memory region reside. A different solution is to have only thread 0 to
configure these CSRs, as this is the default thread used when starting any software program
on the microarchitecture. However, this microarchitecture does not limit thread access to
shared CSRs, meaning any thread can modify these registers. This flexibility can accidentally
modify the thread schedule or change the shared memory region if the software program is not
carefully considered. Additionally, once thread 0 configures the hardware thread scheduler,
the other threads will begin fetching instructions from address 0 in the instruction memory.
This initialization means that these threads will also run the same configuration procedure
if there are no restrictions.

Two potential methods are explored to avoid all threads running the same configuration
procedure; one purely software solution and one combined hardware and software. Each
thread can read its thread ID from its private CSR register, called mhartid, to avoid running
the same configuration on all threads in software. This thread ID can decide where the
program should branch in memory and begin its thread-specific execution. Listing [3.1] shows

22 CHAPTER 3. THE MICROARCHITECTURE DESIGN

the implementation of this method, where all threads with a thread ID unequal to 0 branches
to main. This will, however, require all threads to read the mhartid register from its private
CSRs, and branch to a different location depending on the thread id. As a result, each
thread’s program execution will spend several instruction cycles deciding where the thread
should jump.

In contrast, the combined hardware and software solution utilizes an enable signal that
is active only when the thread ID is 0. The enable signal allows access to the shared CSRs,
meaning that only thread 0 can read and write these CSRs. However, this does not remove the
issue of the starting location in memory. Thus, even though only thread 0 can modify and read
the shared CSRs, the other threads will still run the configuration instructions. Although, the
hardware restricts these registers to thread 0, resulting in the assembly instructions that are
trying to modify the shared CSRs to act as NOP instructions. To further improve the startup
procedure, additional CSRs that specify which PC value each thread should be initialized
to could be added. As a result, instructions must be executed during the startup procedure
to configure the PC CSRs. Thus, the latter solution would require modifications to both
hardware and software.

Because the additional cycles required by the software solution are negligible, adding the
additional hardware logic required to achieve the combined hardware and software solution
is unnecessary. Additionally, by carefully designing the software, it should not be necessary
to have any limitations on access to the shared CSRs.

Listing 3.1: branchthread.a

1 startup:
2 csrrsi x1, 3860, 0 //set x1 = mhartid
3 bne x1, x0, main //1if x1 !'= 0, Jump to main

Similar to how the execute stage communicates with the control unit, the memory stage
communicates with the memory controller. The memory controller must ensure that each
thread has a private memory region to ensure that multiple threads can read and write the
same memory without data races occurring. The upper and lower boundaries of these private
memory regions are configured in the CSRs. Once a thread wants to read or write a memory
location, the upper and lower boundaries for that particular thread are fetched from the CSR
and matched against the address that the thread tries to access. The thread cannot access
the memory location if the address is outside the memory bound. This makes it possible for a
single thread to access a region that no other thread can access. A shared memory region can
also be configured to share data between threads. For example, if thread 1 depends on some
calculations done by thread 2, thread 2 can store the values in the shared memory region
so that thread 1 can retrieve the values. Thus, the memory controller provides the memory
stage with private and shared memory regions to enable spatial isolation and data sharing
between software tasks.

In addition, the memory stage communicates with a timer unit using custom timing
instructions. These timing instructions can either read a timer or set a timer compare unit to
perform a thread-specific timer interrupt or put a thread to sleep. Similar to the register file,
the timer compare unit checks the thread ID to select the unit to access. This check allows the
threads to have individual timer compare units, resulting in each thread performing timing
control operations without affecting other threads individually.

Due to the addition of these modifications to the 5-stage pipeline, the microarchitecture
can have several threads running concurrently. The features added to the microarchitecture
enable both spatial and temporal isolation. Spatial isolation is achieved by having private

3.1. ARCHITECTURE 23

state registers and memory regions for each hardware thread. A shared memory region is
also available to make it possible for threads to share data. Additionally, the private and
shared memory regions are configurable through software, thus allowing the programmer
to decide how much memory each thread should be assigned. For temporal isolation, the
hardware thread scheduler decides which thread should access the pipeline for each clock
cycle. In addition, these threads have timing capabilities, enabling the assignment of real-time
constraints to the software tasks. First, Section[3.1.2]looks further into the control unit, where
all the logic that can change the program’s behavior is present. Next, Section looks
further into the memory unit containing the data memory and any memory-mapped registers.

3.1.2 Control Unit

As mentioned above, the control unit is responsible for the logic that changes the program’s
behavior. A top-level Simulink model of the control unit can be seen in Figure Each
of the components of the control unit will be discussed in this section except the hardware
thread scheduler. Instead, the hardware thread scheduler will be discussed in Section as
this is one of the most significant contributions to the microarchitecture.

Thread Scheduler h 7
T Control & Status Registers "~ Timeop Select =
= |
--=+Trap Handler i MDPC Unit e
o G0 L T
-
ot o
FI
Flush Unit -~
)

Figure 3.2: A top-level model of the control unit designed in Simulink. The components are
responsible for controlling the behavior of the pipeline.

Control and Status Registers

The control and status registers (CSRs) are essential in the microarchitecture. This compo-
nent is responsible for the configurations required in the microarchitecture to enable features
such as interrupt handling and hardware thread scheduling. As mentioned in Section a
thread has private and shared CSRs. The models shown in Figure [3.3] are simplified models
to illustrate how the CSR unit is structured. The signal bus in the figure is an arbitrary bus
containing all signals connected to the CSR unit. Therefore, it does not consider that the
bus differs for the private and shared thread CSRs.

24 CHAPTER 3. THE MICROARCHITECTURE DESIGN

As can be seen in Figure there are private CSRs for each thread. The private
thread CSRs use the mhartid CSR, shown in Figure to select which of the private
thread CSRs the execute stage should access; if the thread ID of the execute stage finds a
matching mhartid, the execute stage gains access to that private thread CSR. However, if
the thread ID in the execute stage does not find any matches, it is unable to read or modify
any private thread CSRs. Because the mhartids available in the private thread CSRs and
the thread IDs that are schedulable in the hardware thread scheduler are fixed, the program
will never meet this issue. However, the mhartid only verifies access to the private thread
CSRs. Thus, if the mhartid value is modified in the Simulink model while the thread ID
check is not modified, e.g., in the program counter demultiplexer, this could cause an issue.
A solution would be to retrieve the mhartids from the private thread CSRs and map each of
these to various thread-duplicated components, such as program counters and register files.
Thus, when modifying mhartid from "1" to "13", the thread ID of program counter 1 will
automatically change to 13. By doing so, only the mhartid must be changed, whereas all
other locations that the mhartid maps to change accordingly. This method has not been
added but will be considered as future works.

As seen in Figure [3.3b] each private thread CSR is divided into 4 CSR modules; mhartid,
trap CSRs, timing CSRs, and memory-mapped CSRs. As mentioned above, the mhartid
register compares against the thread ID that wants access to the private thread CSRs. This
ID match is required to access the other 3 CSR modules in the private thread CSR. Most of
the trap CSRs and a few registers from the timing CSRs are based on the specifications given
in the RISC-V documentation, which was described in Section and will thus not be
described here. The modification to the trap CSR compared to the RISC-V documentation
is that the interrupt__on_ expire and deactivate_interrupt instructions can enable or disable
MTIE in the mie CSR. When an interrupt_on_ expire instruction is executed, the 7th bit
in the mie register is set, while deactivate_interrupt clears the same bit. As a result, these
timer instructions can enable and disable the timer interrupt of its associated thread without
manually configuring the CSRs.

An additional register, mdpc, was added to the timing CSR module. This register is used
similarly to the mepc register in the trap CSR, where a return PC is stored when entering
the interrupt handler. In contrast, the mdpc is used to hold the return PC of the delay_ until
instruction that is causing the thread to fall asleep. Thus, when the thread wakes up, it
retrieves the PC from this CSR. Similarly, when the sleeping thread receives an interrupt
it must handle, the value of mdpc is stored in mepc before entering the interrupt handler.
When the interrupt handler executes the MRET instruction, the value of mepc is stored in
the program counter, like a standard return from an interrupt. The thread will then perform
the delay_until instruction, where it will return to sleep if the duration has not elapsed.

A different solution would be to update the program counter with the PC value residing
in the memory stage during a delay until instruction, similar to how a branch to PC
+ 0 would be performed in the execute stage. The advantage of this solution is that it
removes the need for the additional register since it uses the program counter instead. This
removal is possible because the program counter will stay inactive during sleep, significantly
reducing the microarchitecture’s complexity. The former solution was implemented in the
microarchitecture, but the latter could be a better solution in future works.

The memory-mapped CSR module should contain all the boundaries for the memory-
mapped registers that are private to the thread. Currently, only the upper and lower
boundaries of the private data memory region are present here, named mdmemupper and
mdmemlower, respectively. Software decides on these regions to make the microarchitecture
as configurable as possible. Thus, the programmer’s job is to decide the optimum upper

3.1. ARCHITECTURE 25

Check Thread
ID
> mhartid
g Trap CSRs
§ Private Thread CSRs [
— =)
s ” Timing CSRs
=
N
Memory Mapped
Shared Thread CSRs CSRs

(b) The private thread CSRs. A check
between the thread ID currently residing in

(a) A top-level view of the CSR unit. Both the execute stage and the mhartid must be
the shared and private thread CSRs share the done to access a private thread CSR. Thus,
same signal bus. However, the shared thread the execute stage will only access the private
CSRs do not check the thread id. thread CSR with an identical thread ID.

Thread Scheduling
CSRs

Signal Bus

msharedmemupper

(¢) The shared thread CSRs. These CSRs
do not require a check for thread ID, as any
thread can access these CSRs.

Figure 3.3: Models of the various CSRs available in the microarchitecture.

26 CHAPTER 3. THE MICROARCHITECTURE DESIGN

and lower boundaries for the private data memory regions. If these registers are not written
with care, the memory regions of various threads could overlap. This overlap could result
in various threads unintentionally sharing a memory region that is supposed to be private.
Consequently, the programmer must consider this when selecting the memory boundaries for
each thread. Although, this flexibility in selecting the boundaries makes it possible for some
threads to share a part of their memory regions while others do not have access. By doing
so, a few threads can have private data sharing instead of sharing with all threads like in the
shared memory region.

The CSRs shared between the threads can be seen in Figure Within the shared
CSR unit, there are two modules; the msharedmemupper register and the thread scheduling
CSRs. As was mentioned previously, the components related to hardware thread scheduling
will be discussed in Section The msharedmemupper register is the upper boundary of
the memory region that is shared between all threads. The shared memory region begins at
address 0 and ends at the upper boundary specified by this register. By having this register,
the programmer can decide how much of the memory should be shared.

In summary, the control and status registers mentioned in this section are new contribu-
tions and modifications to existing registers in the RISC-V specification. The CSRs that were
modified achieved the original specifications still but had additional features added. The idea
was to enable the timing instructions to swiftly set or clear the relevant bits in the CSRs
necessary for timer interrupts. The new CSR contributions to the microarchitecture are added
to complement the multithreaded feature. Here, CSRs are added to specify which regions in
memory each thread can use, how the hardware thread scheduler should be configured, and
a register to keep track of the PC when a thread is put to sleep.

Trap Handler

The trap handler is responsible for performing the hardware operations necessary to place
the software program in the interrupt handler. The hardware logic designed in this handler
is based on the described operations performed when an interrupt is received. These design
decisions are not described in detail in this section since the design is based on the functional
description given in the RISC-V documentation. However, parts of the trap handler required
some altercation to consider the use of multiple threads. These changes will be described in
the following paragraphs.

The primary modification to the trap handler is how it fetches the PC that should be
placed in the machine exception program counter (mepc). The trap handler fetches the PC of
the current instruction and stores it in mepc while loading the interrupt PC into the thread’s
PC. An issue seen during the trap handler’s design was during the exchange of PC values.
Without a content verification, the value stored in the mepc register is the value present in
the stage initializing the trap handling, which is the execute stage in this microarchitecture.
However, if a branch has recently occurred, the execute stage will be empty because of a
flush. Therefore, if the PC value in this stage is fetched, it will store the value "0" in the
mepc register. Consequently, when the program returns from the interrupt handler, it will
start from the first instruction in memory, resulting in a program restart. A solution is to
check if the PC value in the execution stage is 0. However, this may prevent a valid instruction
memory address from being used. As a result, flushing the entire pipeline stage does not give
enough information to the trap handle to avoid fetching the PC of that stage.

An alternative method is to flush everything except the PC value in the pipeline stages.
However, the trap handler must then view the other registers in the execute stage to verify
whether the stage is flushed. Combinatorial logic must then be added to decide whether the
PC present in the execute stage is valid. Additionally, if the execute stage is flushed, the trap

3.1. ARCHITECTURE 27

handler must check the prior stages for a valid PC. Thus, the same combinatorial logic must
also be added to those stages, leading to considerable extra logic required to ascertain the
status of the pipeline stages. Instead, an additional register can be added to each pipeline
stage that holds the status of the stage. When the pipeline stage is flushed, the register is
set logically high, making the trap handler aware that it can not fetch the PC of this stage.
The trap handler will then look through each prior stage (fetch and decode) until it finds a
stage where the register is logically low. If neither of these stages contains a valid PC value,
the trap handler will fetch from the program counter instead.

Following the addition of the status registers, the trap handler can fetch the correct PC
whenever running as a single-threaded microarchitecture. However, when there are other
threads present, another issue emerges. As mentioned in Section 2.3 an advantage of fine-
grained multithreading is its ability to avoid data hazards by having other threads use these
cycles instead. However, the microarchitecture presented in this report has a fine-granularity,
configurable thread schedule.

For example, a thread schedule where three branches occur can be seen in Figure [3.4]
where the flushed cycles are colored red. The first branch performed by thread) manages to
avoid the data hazards by having threadl and thread2 allocated to the following cycles. In
comparison, the second and third branches do not manage to hide the data hazard. Here,
threadl has another thread cycle scheduled following the branch, resulting in a flush of the
decode stage. Finally, the third branch caused by thread2 notices that the same thread is
occupying the fetch stage, resulting in a flush.

Consequently, the flush status may tell the trap handler to fetch from a previous stage.
The trap handler will then fetch the PC of the decode stage if it has not been flushed.
However, the trap handler is unaware that a different thread could be occupying this stage,
where it fetches the PC of a thread. Using the weather drone as an example would mean that
the thread running the flight controls task could suddenly perform the weather sensing task.
As a consequence, two threads are running the weather sensing task, leading to the complete
removal of a highly critical task. As a result, a check for thread ID was added to each stage
to ensure that the trap handler fetches the PC of the correct thread.

Thread Schedule:
[T{] TllTEITBITEIITl T2ITBIT41T2 T1

Branch Branch Branch

Figure 3.4: There is a possibility of branch latencies in this fine-grained technique when
allowing other threads to use the spare cycles. The thread cycles colored red are stalled due
to a flush of the stage holding an identical thread ID as the thread that is branching.

While the trap handler is based on the RISC-V specifications, there are some additions
to the design. First, the flush status ensures that a flushed PC is not fetched into the mepc
register by entering the trap handler routine. Finally, to complement the addition of multiple

28 CHAPTER 3. THE MICROARCHITECTURE DESIGN

threads interleaved every clock cycle, an additional check for a thread ID is required to ensure
that an incorrect thread ID is not fetched.

Flush Unit

In the single-threaded 5-stage RISC-V pipeline, the microarchitecture must flush the decode
and fetch stage when a branch, interrupt, or similar is performed in the execute stage. This
flush operation would only require using the branch control signal in the execute stage to
signal a flush of the decode and fetch stages. However, when instructions from multiple
threads are present in the pipeline, it could lead to a stage used by a different thread to
be flushed. Consequently, the instructions from other threads in the pipeline are lost since
no logic updates the program counters with the flushed PC. As a result, the other threads
will have corrupted program execution due to lost instructions caused by a different thread’s
pipeline flush. Thus, a check for thread ID must be added to the flush logic of each stage to
ensure that a thread does not accidentally flush the instructions of other threads.

Furthermore, the delay until timing instruction, presented in Section must also be
able to flush the pipeline stages with an identical thread ID. However, compared to most
other operations causing flushes, the timing instruction is performed in the memory stage.
Additionally, the delay__until instruction must first set the time compare register, mtimecmp,
before verifying whether the thread should be put to sleep. Therefore, two solutions were
conceived for the flushing of the stages due to the delay_until instruction.

The first method, shown in Figure [3.5] compares the sleep_time value from the de-
lay__until instruction while writing it to mtimecmp. Here, the input of the time compare
unit uses an is_ delay_ until signal to select between the input or output of mtimecmp. The
selected value is then compared against mtime to see if the thread should be sleeping. If
the thread is put to sleep, the output of mtimecmp will be constantly selected since the
is_delay_until signal stays low until the next delay until instruction. As a result, the
method will allow the thread to be put to sleep one cycle earlier, where only the stages prior
to the memory stage must be flushed.

/ Time Compare v1 \

Figure 3.5: A multiplexer can be used to select between the input and output of the mtimecmp
register to make it possible to check if the thread should be put to sleep before updating the
register with the compare value. As a result, threads can be put to sleep faster.

is_delay_until

sleep_time

The second method restricts the comparison to the output of mtimecmp, as shown in
Figure As a result, an additional cycle is required before the timer unit will know
whether to put the thread to sleep. Consequently, an additional stage, namely the memory
stage, must be flushed by the flush unit if the same thread occupies the stage following the
delay__until instruction.

3.1. ARCHITECTURE 29

/

Time Compare v2

mtimecmp

mtime < mtimecmp? }—»issleeping

=

Figure 3.6: Only comparing the output of the mtimecmp register is a simple solution.
However, the thread will require an additional cycle to fall asleep. This cycle is because
the mtimecmp register must be updated before comparing the new value.

Of these solutions, the latter was selected as it was simple to implement the flush logic
needed for the additional stages. Additionally, the added logic by the second solution is less
than for the first solution. However, it could be beneficial to implement the first solution
as it reduces the number of stages that must be flushed. Also, it would save a clock cycle
each time a delay_ until operation is executed. Nonetheless, these minor benefits result in
the least complex method being selected.

Select Modules

The timeop select and mdpc unit seen in Figure [3.2] are minor units that were added to
the control unit due to the inputs being signal buses containing signal lines for each thread.
These units select which signal lines should be used based on the thread ID.

3.1.3 Memory Unit

The memory unit, shown in Figure is responsible for anything related to the memory of
the microarchitecture. The microarchitecture has three types of memory available; the data
memory, the memory-mapped timer unit, and the memory-mapped input/output (MMIO)
unit. Additionally, the microarchitecture has a memory controller implemented to restrict
access to certain memory regions.

The data memory of the microarchitecture is 48 bytes in size and can be accessed using the
memory instructions described in the RV32I ISA [67]. The limited data memory is because
the compilation time of the Simulink model significantly increases with the size of the system.
Thus, a small amount of memory was added to show a proof of concept, whereas an actual
implementation would have more memory.

The MMIO unit consists of 3 memory-mapped registers; the output register, the input
register, and the direction register. As the name implies, the output register is used to write
to general-purpose I/O pins whenever the direction register specifies that the pin is used as an
output pin. When the direction register specifies that the pin is an input, the input register
will be updated with the value placed on the I/O. The program can then load the value into
the register file and operate on the value of the I/O pin.

Because the timer unit is an integral part of the microarchitecture, it will be described in
Section [3.3] while the memory controller will be described below.

30 CHAPTER 3. THE MICROARCHITECTURE DESIGN

Data Memory o (L

Data lmary

Memory Controller —— X Timer Unit =

b

JLoTy]

hemory Foardia

ogus st { T bl s
NP Y - -

MMIO Unit

JRpo— N g

Figure 3.7: A top-level model of the memory unit designed in Simulink. The memory
controller decides which of the memory blocks should be accessed.

Memory Controller

In most microarchitectures, there is a requirement for some limitation to access various areas
in memory. For example, various privilege levels may restrict access to certain memory
regions to avoid a higher privilege level from being accessed by a lower privilege level. In this
microarchitecture, there are no privilege levels other than the machine level. However, using
multiple threads requires the same concept of restrictions on memory access. For example,
consider the weather drone from earlier examples. Initially, the microarchitecture does not
have any means to restrict the memory accesses for various threads. The weather sensing and
flight control tasks will then be able to access the same memory region. Consequently, either
task can overwrite the data stored in a memory location used by the other task, resulting in
a data race between the tasks. Thus, the memory lacks spatial isolation where a task can
modify important data or state information of another task.

Protecting certain memory regions from being accessed by unwanted threads is essen-
tial. The RISC-V documentation describes a method called Physical Memory Protection
(PMP) [68] [69]. This method is a standard feature used for memory isolation in security-
critical systems, where it provides control registers for each hardware thread that specifies
the access privileges for physical memory regions [70].

The memory controller shown in Figure [3.7) utilizes this method of restricting access
to physical memory regions. Here, the memory controller receives both the private and
shared memory regions from the CSRs containing the upper and lower memory boundaries,
as described in Section Then, based on those memory regions, the controller will decide
whether the thread can access the memory location.

Figure [3.8] shows a simplified model of the memory restriction the memory controller
performs. The mdmemupper and mdmemlower values are fetched from the private thread
CSRs of the thread trying to access a memory address. Simultaneously, the mdmemshared

3.2. HARDWARE THREAD SCHEDULER 31

value is fetched from the shared CSRs. These values are compared against the address the
thread is trying to access. When both the mdmemlower and mdmemupper comparisons are
valid, the thread is allowed access to the address within its private memory region. On the
other hand, if either of these compare units returns a false value, then the address is not
within the private memory region of the thread. The other possibility for letting the thread
access the memory address is through the mdmemshared comparison. When this comparison
returns true, the memory address is within the shared memory region. Both the private and
shared memory regions are used to produce a mask signal. When the mask signal is true, it
allows the is_ store and is_ load signals to pass through. In contrast, the is_ store and is_ load
signals are cleared if the mask is a logical ’0’.

/Memory Address\
Check

addr

S=
mdmemlower D
D
<
<

mdmemupper
mdmemshared L]
. — is_valid_store
is_store

N
. —is_valid_load
is_load \ /

Figure 3.8: A simple solution to restrict access to certain memory regions. The address of the
memory operation is compared against the regions to produce a mask signal. This masking
signal decides whether the is_ store and is_ load signals should be forwarded to the memory.

Adding the memory controller to the microarchitecture makes it possible to restrict
memory access to specific threads. This restriction provides the microarchitecture with an
increase in spatial isolation. As a result, there is an increase in the predictability of task
execution where thread-specific data can be unavailable for other threads.

3.2 Hardware Thread Scheduler

The hardware thread scheduler designed in Simulink can be seen in Figure[3.9] This scheduler
consists of seven modules: hardware thread scheduling CSRs, main scheduler logic, main
ring buffer, thread select logic, SRTT scheduler logic, SRTT ring buffer, and stall logic. The
configuration CSRs are responsible for selecting the type of hardware threads to use and how
these threads should be scheduled. The main scheduler logic and main ring buffer combined
are referred to as the main scheduler, while the SRTT scheduler logic and the SRTT ring
buffer refer to the SRTT scheduler. Here, the scheduler logic is responsible for deciding the
length of the repeating sequence and what values to load the various slots in the ring buffer.
The thread select logic is responsible for choosing which of the ring buffers to output from
the hardware thread scheduler to the fetch stage of the RISC-V pipeline. Finally, a stall
logic block is added in case a cycle is left unused, and there are no other hardware threads
available that can take these thread cycles.

32 CHAPTER 3. THE MICROARCHITECTURE DESIGN

[t

|

Main Scheduler Logic —-| Main Ring Buffer I
[

]

—————— ~o—— SRTT Scheduler Logic —-

Stall Logic [

Figure 3.9: A top-level view of the hardware thread scheduler designed in Simulink. The
design consists of two schedulers; the main and SRTT schedulers. The main scheduler
comprises the main scheduler logic and main ring buffer, while the SRTT scheduler consists
of the SRTT scheduler logic and SRTT ring buffer. The thread select logic decides which
scheduler should have access to the pipeline. The stall unit ensures that the pipeline only
uses active thread cycles.

3.2.1 Hardware Thread Scheduling CSRs

The hardware thread scheduling CSR module is the only module residing outside the hardware
thread scheduler in the Simulink model seen in Figure Instead, the module is placed with
the other CSRs shared between threads, as seen in Figure [3.3d This module contains the
mthreadslot and mthreadmode CSRs described in Section As a result, these CSRs
provide the microarchitecture with a configurable hardware thread scheduler that can be
programmatically adjusted through software. Thus, the programmer can decide how many
threads that should be scheduled (0 to 8 threads possible), whether the threads are SRTTs
or HRT'Ts, and whether the threads are awake or asleep.

Following the configuration of the scheduling CSRs, two control signals indicate that the
hardware thread scheduler must update the ring buffers. To reduce the signal wiring and
logic of the system, any modifications that should be done to the thread sequence or the
mode of a thread should be configured through the CSR module. For example, any run-time
changes to the mode of a thread, such as placing a thread in sleep mode, must update the
mthreadmode CSR prior to the hardware thread scheduler. Consequently, it would require an
additional clock cycle compared to updating mthreadmode and the hardware thread scheduler
simultaneously. This extra cycle is because the ring buffers will not be updated until the cycle
after the updated CSR. However, this added latency is negligible to the system performance
since a sleeping thread will generally stay asleep for many cycles.

The modules presented below will be described in detail using an example configuration
of the mthreadslot and the mthreadmode CSRs, shown in Figure [3.9] This example is by no
means a good representation of how these CSRs should be configured in a mixed-criticality
system, but it is used to showcase the various features of the hardware thread scheduler.

3.2.2 Main Scheduler

The main scheduler is the part of the hardware thread scheduler that performs all scheduling
based on the data stored in mthreadslot. That is, it uses all of the active slots present in
the mthreadslot CSR to create an active round-robin scheduler. The active slots in this
round-robin scheduler can either contain a thread ID in the range of 0 to 7 or be classified

3.2. HARDWARE THREAD SCHEDULER 33

mthreadslot
1000 | 0011 | 1000 | 0100 | 0010 | 1111 | 1111 | OOOO

31 4]

mthreadmode
01/00|11({10/10|11 ({01 00

31 16 15 0

Figure 3.10: An example configuration of the hardware thread scheduler.

as a soft slot when containing the value 8. As the name implies, the main scheduler contains
the primary thread schedule for the hardware thread scheduler. Thus, any time the main
scheduler outputs a location in the ring buffer with a valid thread ID that is awake, the
thread ID will be forwarded to the fetch stage of the RISC-V pipeline. However, when the
main scheduler outputs a location containing a sleeping thread ID or a soft slot, the SRTT
scheduler will gain access to the output.

Main Scheduler Logic

The main scheduler logic contributes to the main scheduler by configuring the main ring buffer
based on the information retrieved from the mthreadslot CSR. The module continuously
reads the value stored in the mthreadslot, performs some operations, and outputs the signals
NumSlots and MainSchedule. The NumSlots signal tells the main scheduler’s ring buffer
the sequence’s length. That is, the signal configures the number of registers that the ring
buffer should use based on this value, ranging from 0 to 8. Meanwhile, the MainSchedule
signal contains the rearranged data received from the mthreadslot CSR. To explain the main
scheduler logic, a simplified model that abstracts away the hardware design to focus on the
functionality can be seen in Figure

> NumSlots

/ Main Scheduler Logic \

mthreadslot —*»{ 1000 \ 0011 \ 1000 \ 0100 \ 0010
31

/
/

| 1111 | 1111 | 2000 | 0011 | 2000 | 0100 | 0010 | 0000 | MainSchedule
31 Q

Figure 3.11: The slot CSR is fetched into the hardware thread scheduler when modified.
Each slot is checked for a value less than or equal to 8. A slot is placed in the main schedule
if it contains such a value. Otherwise, it is discarded. The number of slots with such values
is counted up to provide the ring buffer with the correct length of the repeating sequence.

The example shown in Figure takes the example mthreadslot configuration from
Figure [3.10] as its input value. To show the difference between enabled and disabled slots,

34 CHAPTER 3. THE MICROARCHITECTURE DESIGN

they are colored green and red, respectively. The white slots in the figure are irrelevant data
values placed in the MSBs to indicate unused slots.

When the main scheduler receives a value from the mthreadslot CSR, it performs 2
operations on the data: counts the number of enabled slots and rearranges them. The
module must check the validity of each slot to perform these operations. This check is done
by having an active enable signal only when a slot’s value is less than or equal to 8. As can
be seen, the slots that are colored red contain a value greater than 8. Thus, the enable signal
for these slots will stay low while the others are set high.

For the module to obtain the NumSlots value, a summation of all the enable signals is
performed. Here, the sum is the total number of signals that are set high. In the example, it
can be seen that there are six green slots in the mthreadslot value, resulting in the value six
on the NumSlots output.

The complex functionality of the main scheduler logic resides in the rearrangement of the
slots provided by the mthreadslot CSR. Similar to the NumSlots signal, the MainSchedule
signal requires an enable signal from each slot to indicate whether the slot is disabled or
enabled. As can be seen in Figure [3.11] all slots with a value that indicates that the slot is
enabled (green) are mapped to MainSchedule, while other slots (red) are discarded. The unit
responsible for this functionality is called the mapping unit and is responsible for mapping
all enabled slots from mthreadslot to MainSchedule.

When mapping the slots of mthreadslot to MainSchedule, the mapping unit starts by
mapping the LSB. Since slot0 contains a valid thread ID, the slot can be mapped to slotO of
MainSchedule. In contrast, when trying to map slot1 of mthreadslot to slot1 of MainSchedule,
the enable signal alerts the mapping unit that the slot is disabled. As a result, the mapping
unit will continue to the next slot of mthreadslot and check if slot2 is enabled. Again, the
mapping unit notices that this slot is disabled and moves on to the next slot. Finally, when
the mapping unit checks slot3, it notices that the enable signal is set high, and the slot
can be mapped to slotl of MainSchedule. The mapping unit will then continue mapping
slot4 of mthreadslot to slot2 of MainSchedule. This process is continued until all the slots
of mthreadslot have been either mapped or discarded. Once all the slots are mapped, the
mapping unit will append the remaining empty slots of MainSchedule with 1’s, as these slots
are inactive and thus irrelevant to the ring buffer.

As a result of this example, the main scheduler logic will write the ring buffer with the
content of MainSchedule, shown in Figure and configure the length of the ring buffer to
the value of NumSlots.

Main Ring Buffer

The ring buffer is the module responsible for producing a repeating pattern of thread IDs for
the hardware thread scheduler to forward to the fetch stage of the RISC-V pipeline. The ring
buffer consists of eight 4-bit registers connected as a shift register, where the final register
(Reg7) is connected to the first (Reg0). To make the ring buffer more flexible, each register
has the possibility of looping back to Reg0, as seen in Figure [3.12] This figure shows a
configurable ring buffer that is used by both the main and SRTT schedulers. Here, a value
placed on the input signal called Length indicates which register should loop back to Reg0.
Additionally, the ring buffer provides a 32-bit signal called Schedule, and a write enable signal
called is_ modified to update the content. For example, if Length is set to 4, the lower 16
bits of the Schedule signal will be used, as Reg3 will loop back to Reg0, thus discarding the
values stored in registers 4 through 7. Thus, the value placed in Length must correspond to
the part of Schedule that should be used. Finally, the ring buffer has an output signal called

3.2. HARDWARE THREAD SCHEDULER 35

Reg Value. This signal outputs the value stored in the upper-most register. That is, if Reg3
loops back to Reg0, then it is Reg3d that is connected to Reg_ Value.

/ Ring Buffer \

Length —

Length ==2

Schedule —|

Length ==7 Length == 3 — Reg_Value

Length == 6 Length == 4

is_modified —|
Length==5

o /

Figure 3.12: A simple model of the generic ring buffer that visualizes how the ring buffer
functions. The Length signal decides which of the registers should connect to the input
Reg0. The Schedule signal holds the content that is written to the registers in the ring buffer
using the is__modified signal. The upper-most register that connects back to Reg0 is also the
register provided to the Reg_ Value output signal.

As mentioned above, the main scheduler uses the configurable ring buffer to produce a
repeating pattern. To implement it in the main scheduler, the Length and Schedule signals
must be connected to the NumSlots and MainSchedule signals of the main scheduler logic.
To update the main ring buffer, a signal called is_mthreadslot_ modified is connected to
is_ modified. This signal looks for a change in the content of the mthreadslot CSR, where
it goes high when there is a change. Using the example output of the main scheduler logic,
shown in Figure the resulting main ring buffer is as shown in Figure As can be
seen, because there are only 6 slots enabled, there are only 6 registers used in the ring buffer,
where the other registers are disregarded. Additionally, the values stored in the used registers
correspond to the 6 enabled slots of the mthreadslot CSR mapped onto MainSchedule.

3.2.3 SRTT Scheduler

Compared to the main scheduler, the SRTT scheduler creates a repeating sequence based on
the values stored in the mthreadmode CSR. For example, if mode0 and mode2 are configured
as active SRTTs, then thread0 and thread2 will be placed in the SRTT scheduling sequence.
Additionally, the SRTT scheduler is responsible for keeping track of which threads are awake
and asleep. This information is forwarded to a different module where it is selected which
of the ring buffers that should have access to the output of the hardware thread scheduler.
Furthermore, the SRTT scheduler keeps track of the number of active threads and SRTTs
in the scheduler. These values are forwarded to other modules to configure the SRTT ring

36 CHAPTER 3. THE MICROARCHITECTURE DESIGN

NumSlots —

MainSchedule —

— Slot_Value

is_mthreadslot_modified —|

Figure 3.13: An example configuration of the main ring buffer using the values from the main
scheduler logic. Notice how the NumSlots (Length) signal selects which register should loop
back to the first register.

buffer and potentially stall the pipeline. Section and Section will describe the
mentioned functionalities further.

SRTT Scheduler Logic

The SRTT scheduler logic is the module responsible for deciding the status of each thread by
reading the content of the mthreadmode CSR. The SRTT scheduler logic provides two enable
signals for each thread, the first specifying an active thread and the second an active SRTT.
The enable signals indicating an active thread are used as output signals and are given the
name is_ threadn_ active, where n is the thread ID. These signals are connected to the thread
select logic module, described in Section to select which ring buffer that should have
access to the output of the hardware thread scheduler.

The SRTT scheduler logic performs a similar summation to the NumSlots in the main
scheduler logic. However, this unit performs two distinct summations of the enable signals;
a summation of the total number of active threads (NumActiveThreads) and a summation
of the total number of active SRTTs (NumActiveSRTTs). These signals are connected to
the stall logic module, described in Section Additionally, the NumActiveSRTTs are
connected to the SRTT ring buffer to configure the length of the ring buffer.

Like the main scheduler logic, the SRTT scheduler logic contains a mapping unit re-
sponsible for mapping values onto the schedule signal, called SRTTSchedule. However, in
contrast to the main scheduler logic, the value of the mthreadmode is not directly mapped to
the SRTT'Schedule. Instead, the mapping unit will use the SRT'T enable signals to retrieve
the thread IDs from a constant vector containing the thread IDs from 0 to 7. To fetch the
correct thread ID, the location of the mode value is used as index. That is, mode0 is at
location 0 and will thus collect thread0, model will collect threadl, etc. As a result, when
the SRTT enable signal is set for a mode, the thread ID of that mode will be mapped onto
SRTTSchedule. For example, if mode2 contains the value "10", then the SRTT enable signal
is set high. Thus, the value "0010" will be retrieved from the thread ID vector and mapped

3.2. HARDWARE THREAD SCHEDULER 37

to a slot in the SRTTSchedule. This process will continue until all active SRTTs are mapped
onto the SRTTSchedule.

By using the content of mthreadmode CSR value the example configuration shown in
Figure [3.10], a simple model of the SRTT Scheduler Logic, shown in Figure[3.14] can be used
to explain how the module operates. First, the content of mthreadmode is retrieved and
divided into eigth 2-bit mode signals, mode0 through mode7. As mentioned above, each bit
of these mode signals produce an enable signal. Here, the LSB specifies if the thread is active
while the MSB indicates if the thread is an SRTT or HRTT. As can be seen in Figure [3.14
the mode signals have different colors based on these bits. For example, the signal is colored
red whenever the LSB indicates that a thread is sleeping. However, if the thread is active,
there are two possible outcomes based on the MSB; either the thread is an HRTT (white) or
it is an SRTT (blue).

/ SRTT Scheduler Logic

NumActiveThreads

» > NumSRTTs

is_thread7_active

is_threadl active

is_thread0_active

mthreadmode }oiﬂ\'oo | u\ 10]10]11 \oi 00|
B A

| 011'71'{\'”011'6"-\ 0161 | 0100 | 0011 | 6510 \-.‘6501“‘\“6500 |
3l \ [0

y !
\1111 | 1111 | 1211 | 1211 | 121 | 1111 | 0100 | omi—»srm'smedule
31 0

Figure 3.14: The mode CSR is fetched into the hardware thread scheduler when modified,
where the content is partitioned into 2-bit mode signals. These mode signals locate the active
threads and identify these threads as either soft or hard. The thead IDs of the active SRTTs
are further mapped onto the SRTTSchedule signal.

As was mentioned above, the NumActiveThreads signal provides the number of active
threads while the NumSRTTs signal yield the number of active SRTTs. Thus, the Nu-
mActiveThreads will sum all signals colored both white and blue while the NumSRTTs will
sum only blue signals. Similarly, the is_ threadn_ active signals consist of the same enable
signals as the NumActiveThreads, meaning that all signals colored white or blue have their
is_ threadn_ active signal set high.

The way the mapping unit of the SRTT scheduler logic functions can be seen below the
colored mode signals in Figure Here, there are two vector signals containing eight
4-bit slots. The first vector, the thread ID vector, contains all thread IDs available in the
microarchitecture. The mapping unit uses the thread ID vector similarly to how mthreadslot
was handled by the main scheduler logic mapping unit in Section However, instead of
looking for a valid slot, the mapping unit looks for an active SRTT. If both of these enable
signals tell the mapping unit that the thread is an active SRTT, then the thread ID can
be mapped to the SRTTSchedule. This mapping can be seen for thread IDs 3 and 4 in the
example, colored in green. Finally, the mapping unit performs the same padding operation
on the locations in the SRTTSchedule that are left unused.

38 CHAPTER 3. THE MICROARCHITECTURE DESIGN

SRTT Ring Buffer

The ring buffer of the SRTT scheduler uses the generic ring buffer design described in
Section However, in contrast to the main ring buffer, the SRTT ring buffer should
only be shifted when it has access to the output of the hardware thread scheduler. Thus,
the SRTT ring buffer must stay dormant whenever it is not accessed to allow each SRTT
the same amount of unused thread cycles. Otherwise, occasionally, only some of the SRTTs
can utilize the unused thread cycles may occur. For example, the SRTT scheduler is allowed
access to the pipeline every fourth clock cycle while there are only 2 SRTTs present in the
ring buffer. Therefore, if the ring buffer is not kept dormant, the SRTT that is allowed access
to the output will always be the same. To solve this issue, an additional signal is added to
the SRTT ring buffer compared to the generic design. Here, the signal tells the ring buffer
when the SRTT scheduler has access to the output, thus allowing the ring buffer to shift.
Meanwhile, when the signal is low, the SRTT scheduler does not have access, postponing the
shift operation. As a result, a ring buffer that is only shifting when the ring buffer is accessed
was designed.

Using the example values from Section a simple model of the SRT'T ring buffer was
made, shown in Figure[3.15] The module receives the length and the sequence values from the
SRTT scheduler logic, known as NumSRTTs and SRTTSchedule, respectively. Using these
values the structure of the ring buffer is as shown, where threads 3 and 4 are scheduled. To
write these values into the SRTT ring buffer, an is_ mthreadmode_modified signal is used
that is set high whenever the content of mthreadmode changes. Finally, the ring buffer will
stay dormant until is. SRTT is set high, indicating that the SRTT scheduler was accessed.
As a result, the pattern 0100, 0011, 0100, 0011, ... will be retrieved from the SRTT scheduler
when the hardware thread scheduler accesses this scheduler.

NumsrTs SRTT Ring Buffer

SRTTSchedule

is_mthreadmode_modified %
is_SRTT

Figure 3.15: An example configuration of the SRTT ring buffer using the values from the
SRTT scheduler logic. Compared to the main ring buffer, the SRTT ring buffer uses an
additional signal, called is_ SRTT, to only shift when the ring buffer is accessed.

ThreadID

3.2.4 Thread Select Logic

The thread select logic is the module responsible for selecting which scheduler that should
have access to the output of the hardware thread scheduler. This module is one of the least
complex parts of the hardware thread scheduler and the functionality can be seen in the flow
chart in Figure The thread select logic receives the Slot_ Value signal from the main
scheduler, where the value is checked to see if it is an SRTT slot. If the slot is an SRTT slot,
the is_ SRTT signal is set high. On the other hand, if the slot contains a thread ID, a check
to see if the thread is active is performed. Thus, the module retrieves the is_ threadn_ active
signals from the SRTT scheduler logic to compare against the thread ID. For example, if
Slot_ Value contained thread5, then is_ thread5_ active would be checked. If this signal tells

3.2. HARDWARE THREAD SCHEDULER 39

the module that the thread is active, the is_ main signal will be set high. As a result, the
main thread scheduler is allowed access to the output of the hardware thread scheduler. In
comparison, if the signal tells the module that the thread is sleeping, the is_ SRTT signal
will be set high, resulting in the SRTT scheduler having access. Thus, the two outcomes of
the thread scheduler logic will decide which of the thread schedulers should have access to
the output of the hardware thread scheduler.

Slot_Value

is Slot_Value == 10007

is thread active?

is SRTT iS_main is_ SRTT

Figure 3.16: Flowchart representation of the functionality of the thread select logic. The
module produces two outcomes used to select between the main and SRTT scheduler.

3.2.5 Stall Unit

When there are no active threads present in the hardware thread scheduler, or if a thread is
sleeping and there are no SRTTs available, a problem arises in the hardware thread scheduler.
Although the hardware thread scheduler knows that there are no active threads available that
cycle, the RISC-V pipeline does not have this knowledge. As a result, the pipeline can receive
a thread ID without knowing that it is inactive. Instead, a "bubble" should be inserted into
the pipeline to indicate that the current cycle is left unused. This insertion of an empty cycle
can be achieved by adding a module to the hardware thread scheduler that looks for these
situations. Thus, the stall unit, shown in Figure was added to the design.

As can be seen in the figure, the stall unit looks for two conditions. In the first condition,
the thread select logic has set the is. SRTT signal high. When this signal is set high, the
stall unit must verify that there are SRTTs available in the SRTT ring buffer. Thus, if
NumSRTTs is zero, then the is_stall signal must be set high, indicating to the fetch stage
that it should stall the pipeline that cycle. In the second condition, if no threads are active
in either scheduler, then the is_ stall signal should be set high.

3.2.6 Hardware Thread Scheduler Example

Following the description of each module, a simple model of the hardware thread scheduler
using the same example was made, shown in Figure The thread IDs located in the
SRTT scheduler are colored green to make it easier to see in the timing diagram, shown in
Figure which of the schedulers that have access to the ThreadID output signal. Next,
inside the main scheduler there is a red thread ID, indicating that the thread is sleeping.
Finally, the blue values in the main scheduler indicates that those locations are soft slots.

40 CHAPTER 3. THE MICROARCHITECTURE DESIGN

4 Stall Unit N

is_ SRTT
NumSRTTs

— is_stall

NumActiveThreads >

Figure 3.17: The stall unit verifies whether any threads are available that thread cycle. The
unit will stall the pipeline stage if there are no threads available.

The thread select logic will consider both the red and blue colored slots as unused slots
in the main scheduler, thus allowing the SRT'T scheduler to use those cycles. As can be seen
in the timing diagram, the thread ID given to the RISC-V pipeline alternates between the
main and SRTT schedulers. Also, a thing to note is that even though both thread3 (0011)
and thread4 (0100) are SRTTs, they can still have fixed slots allocated in the main schedule
while still using the thread cycles of sleeping and soft slots.

/ Hardware Thread Scheduler \

\

Stall Unit >7Hisfstall

-~ _

Thread Sele\ct
R —ThreadlD
Logic :

—

T
SRTT Scheduler

//

Figure 3.18: An example model of the Hardware Thread Scheduler. The Thread Select Logic
decides whether the slot in the Main Scheduler should be allocated to the Main or SRTT
Scheduler. The blue slots indicate that it is by default allocated to the SRTT Scheduler
due to the slot’s content. The red slot indicates that the thread ID allocated to that slot is
sleeping, thus distributing those thread cycles to the SRTT Scheduler. The green slots are
used to identify thread IDs that are allocated to spare thread cycles. Notice how the Main
Scheduler has one colored slot between white slots. As a result, every other thread cycle will
be allocated to the SRT'T Scheduler

-
Main Scheduler

Compared to the sequence shown in Figure[3.19] situations, where all SRTTs are sleeping,
may occur. Figure [3.20] shows an example of how the thread scheduling of the hardware
thread scheduler would look when the SRTTs are sleeping. Here, the thread select logic and
the SRTT scheduler will notify the stall unit every thread cycle when there is an unused slot

3.2. HARDWARE THREAD SCHEDULER 41

Clock
ThreadID[0000 | 0100 | 0100 | 0011 | 0011 [0100 | 0000 | 0011 | 0100 | 0100 | 0011 | 0011 |

is_stall

Figure 3.19: A timing diagram of the output of the Hardware Thread Scheduler. Notice how
the Thread Select Logic has allocated every other cycle to the SRTT Scheduler.

in the sequence. The stall unit will then set the is_ stall signal high, alerting the fetch stage
of the pipeline that there are no threads available. The fetch stage will then stall the pipeline
stage instead.

The updated timing diagram of the signals provided to the pipeline can be in Figure(3.21
Since thread0 (0000) is an HRTT, meaning that it only uses cycles allocated explicitly to
that thread, it is incapable of using the unused cycles. As a consequence, 5 out of 6 thread
cycles are left unused. This schedule is an undesirable situation that leads to poor hardware
resource utilization of the microarchitecture. As a result, it is important to allocate the
threads properly to avoid such circumstances. However, it may be unavoidable in some
situations, where no other tasks need processing except for the active HRTTs.

/ Hardware Thread Scheduler \

Main Scheduler

0000 Stm—" is_stall

@ Thread Select ™\
. —ThreadID
Logic

SRTT Scheduler

Figure 3.20: Continuation on the example model of the Hardware Thread Scheduler where

the SRTTs are sleeping. Thus, there are no SRTTs available that can use the spare cycles,
resulting in all thread cycles to be stalling except for the cycles used by the active HRT'T.

Clock
ThreadID| 0000 0000
is_stall \

Figure 3.21: The timing diagram of the Hardware Thread Scheduler when there are no SRTTs
available. Most of the cycles are now stalling, resulting in the is_ stall signal being a logical
17 for 5 out of 6 cycles.

42 CHAPTER 3. THE MICROARCHITECTURE DESIGN

3.3 Timer Unit

The timer unit of the microarchitecture was designed to provide each task running on a thread
with an awareness of time. As a result, the programmer can add real-time timing constraints
to the software. These real-time constraints include placing threads in a sleeping state
whenever needed, interrupting task execution after a certain amount of time, and branching
to some specific location if task takes too long. To access this unit, the microarchitecture
provides four timing instructions similar in functionality to the once mentioned in Section [2.2]
Section will describe further how the timing instructions are implemented and what
operations they perform in the microarchitecture. Finally, section [3.3.2] will go into detail
on the designed memory mapped timer unit.

3.3.1 Timing Instruction Set

The timing instruction set, shown in Figure [3.22] was designed to provide timing instructions
capable of doing multiple things simultaneously. That is, in the description of mtime and
mtimecmpin in the RISC-V documentation, the trap handling CSRs mentioned in Sec-
tion and the value written to mtimecmp is set separately [71]. Instead, the inter-
rupt_on__expire instruction does both simultaneously; it sets the MTIE bit in the MIE CSR,
and stores the value of rs2 in the mtimecmp register.

The mtimecmp register is also used by the delay_until instruction to sleep a thread for
a certain amount of time, specified by rs2. Additionally, this instruction will set a register
indicating that the mtimecmp register is used to sleep a thread. A different solution would be
to have separate registers for sleeping and timer interrupt. Initially, this solution was viewed
as unnecessary as both functionalities will never be performed simultaneously. However, an
advantage of this solution is that the RISC-V convention can be used for both timer interrupts
and sleeping threads. Thus, there is no requirement for adding additional instructions to the
compiler. Despite this advantage, the method was not implemented as it seemed unnecessary
at the time. Although, it may be a good idea for future work to place these functionalities
on separate mtimecmp registers.

In addition to the delay_until and interrupt_on_ expire instructions, two other instruc-
tions are added to the design; deactivate_interrupt and get_ time. The deactivate_ interrupt
instruction is a trivial instruction that clears the MTIE bit in the MIE CSR. The get_ time
instruction retrieves the content of the mtime register, and stores it in the rd register specified
by software. Thus, the task can know the current time using this instruction, making it
possible to place accurate timing bounds on tasks.

Looking at the delay_until, interrupt_on_ expire, and get_time instructions in Fig-
ure [3.22], it can be seen that bits 31-25 are identical. Additionally, bits 11-7 for delay_ until
and interrupt_on_ expire, and bits 24-20 for get_time are identical. Furthermore, notice
how delay_ until and interrupt_ on_ expire both use the rs2 register while get_ time uses the
rd register. The reason behind this is that get_time is based on the load instruction of the
RV32I instruction set. Here, bits 31-25 and 24-20 combined produce the offset, while rd is
the destination register and rsl is set to 0.

Similarly, the interrupt_on_ expire and delay_ until instructions are based on the store
instruction of the RV32I instruction set. As a result, the reading and writing of the timer
registers are equivalent in behavior to the instructions seen in Listing 3.2 Here, the value
804 is the base address of the timer unit, which was selected as the offset of the timer
instructions. To access the mtimecmp registers, the memory controller adds the thread ID
to the base address to access the correct memory-mapped mtimecmp register.

3.3. TIMER UNIT 43

31-27 26-25 24-20 19-15 14-12 11-7 6-2 1-0
o\o\1|1\o o|1 rs2 o\o|o\o\o o|o\o o|o\1\o|o o\1\o|1\o 1|1

31-27 26-25 24-20 19-15 14-12 11-7 6-2 1-0
o\o\1|1\o o|1 rs2 o\o|o\o\o o|1\1 o|o\1\o|o 1\0\1|1\o 1|1

31-27 26-25 24-20 19-15 14-12 11-7 6-2 1-0
o\o\o|o\o o|o o\o\o|o\o o\o|o\o\o o|o\o o|o\o\o|o 1\1\1|1\o 1|1

31-27 26-25 24-20 19-15 14-12 11-7 6-2 1-0
o\o\1|1\o o|1 o\o\1|o\o o\o|o\o\o 1|o\o rd o\o\o|1\o 1|1

Figure 3.22: The Timing Instruction Set that was added to the microarchitecture’s Instruction
Set Architecture (ISA). These instructions are used to provide timing capabilities that are
compatible with the hardware thread scheduler.

Listing 3.2: timinginstructions.a

1 SW rs2, 804(0) //interrupt_on_expire/delay_until rs2
2 LW rd, 804 (0) //get_time rd

By basing the fields of the timing instructions on the SW and LW instructions, the
amount of logic required can be reduced significantly. For example, the get_ time instruction
is capable of reusing the forwarding logic used by the LW instruction, thus reducing hardware
complexity. However, the timer instructions require some additional logic to configure the
required registers.

3.3.2 Memory Mapped Timer Registers

As mentioned in Section [3.1.3] the memory-mapped timer registers are located in the memory
unit. This unit is responsible for making each thread-aware of time by allowing a task to put
the thread to sleep or perform a timer interrupt. Figure [3.23] shows a simple model of the
memory-mapped timer registers. Here, the is_store signal is used by interrupt_on_ expire,
delay_ until, and SW to write the registers. More specifically, the interrupt_ on_ expire and
delay until uses is_ store to write the mtimecmp register of a specific thread, while SW can
write any register based on the address. Similarly, the is_load signal is used by the get_ time
instruction to read the mtime register, while LW reads the content of any register based on
the address.

The delayuntil request signal in the figure is an enable signal connected to the mtimecmp
registers that are set high whenever a delay_until instruction is executed in the memory
stage. The data line contains the data that is written or read from all the registers in the
memory-mapped timer unit by using the is_store and is_ load signals, respectively.

The address line is the final signal connected to the memory-mapped registers of the
timer unit. This signal is used to select which memory-mapped registers the program wants
to access. As mentioned in Section [3.3.1] the timer instructions have the base address of the
memory-mapped timer unit contained in the offset value of the instruction. That is, the timer

44 CHAPTER 3. THE MICROARCHITECTURE DESIGN

Memory Mapped Timer Registers

delayuntil_request addr data is_store is_load

mtime

mtime

—t—
) —»is_sleeping0
T| mer —»is_fall_asleep0
Com pareo — is_wakeup0
—» is_timer_interrupt0
mtime
) —»is_sleepingl
T| mer —»is_fall_asleepl

Com pare 1 —» is_wakeupl
—is_timer_interruptl

mtime
——
. —» is_sleeping?
T| mer —is_fall_asleep7

Com pare7 ——>is_wakeup7
—is_timer_interrupt?
-

Figure 3.23: A simplified model of the memory-mapped timer registers. The output of mtime
is delivered to each of the Timer Compare units. These units then check to see if mtime is
greater than or equal to the value in the mtimecmp register. This comparison produces the
four output signals on each timer compare unit.

instructions by default contain the offset value 804 to directly point the first register of the
timer unit, namely mtime. However, the interrupt_on_ expire and delay_ until instructions
must hold other address values to access the mtimecmp registers. Thus, a calculation using
the thread ID is performed while performing either instruction to retrieve the correct address.
The memory controller is the unit responsible for this, mentioned in Section That is,
the memory controller performs the calculation shown in Equation to retrieve the correct
memory address for the mtimecmp register of a specific thread.

addr = base + 4 x (1 + threadI D) (3.1)

The Timer Compare units shown in Figure [3.23] consists three blocks; the compare block,
and the delay until and timer interrupt units. The compare block, shown in Figure [3.24] is
responsible for performing a comparison between mtimecmp and mtime. The block utilizes
a technique used in existing hardware timers, shown in Equation [3.2] where an unsigned
subtraction of the values is performed. The result from this subtraction is then considered
as a signed value [20].

signed(unsigned(mtime) — unsigned(mtimecmp)) > 0 (3.2)

3.3. TIMER UNIT 45

This comparison operation is used to avoid the expiration problem that occurs using the
comparison operation, shown in Equation due to the possibility of overflows.

mitime > mtimecmp (3.3)

Once the subtraction is performed, the value is checked to see if it is greater than zero. It
is enough only to check the MSB of the subtraction result since the value is signed. Thus,
when the MSB is a "1’ it indicates a negative number, meaning that the value in mtimecmp
is greater. On the other hand, when the MSB becomes ’0’, the comparison should set the
is_ elapsed signal high. As a result, the >’ comparison is the inverse of the MSB of the
subtraction result.

4 Compare Block A

Subtraction
Block

mtimecmp

/l

%

Figure 3.24: The compare block performs a comparison technique used to avoid the possibility
of overflows. A subtraction of the mtime and mtimecmp registers is performed, where the
is_ elapsed signal is set high if the result is negative.

The delay_until unit designed for the Timer Compare unit can be seen in Figure [3.25
This unit is determines whether the thread should fall asleep, wake up, or if the thread is
currently sleeping. The delayuntil_request is the signal previously mentioned that is set high
whenever the delay_until instruction is being executed in the memory stage of the pipeline.
When this signal is set high, the delayuntil logic will decide whether the delayuntil register
will be set high, indicating that the thread should fall asleep. Once the delayuntil register
is set high, the is_ sleeping signal will be set to "1’ iff the is_elapsed signal coming from the
compare block is '0’, indicating that the sleep duration has not passed.

Once the is_sleeping signal is set high, the rising edge logic will notice that the signal
is going from a ’0’ to '1’, indicating that the delayuntil unit wants to put the thread to
sleep. The is_fall asleep signal will then be set high, telling the mthreadmode CSR to set
the LSB of the thread ID’s mode to '1. The hardware thread scheduler will then update
the schedule to take into account that a thread is now sleeping. While the thread is still
sleeping, it is possible to wake the thread using external interrupts. For example, if an 1/O
interrupt occurs, the mpie CSR will provide an interrupt pending signal to the delayuntil
logic, telling the delayuntil logic to clear the delayuntil register. The is_ sleeping signal will
then be cleared, resulting in a falling edge being detected by the falling edge logic. Thus, the
is_ wakeup signal will be set to '1’°, indicating to the mthreadmode CSR that the LSB of the
thread ID’s mode should now be cleared.

Once the interrupt handling is finished, the thread will perform the same delay_ until
instruction, causing the thread to fall asleep again if the duration has not elapsed. Finally,
the is_ elapsed signal from the compare block will be set high, thus clearing the delayuntil
register and causing another wake-up procedure.

In comparison to the delay_ until unit, the timer interrupt unit, shown in Figure [3.26
consists of a single ’AND’ gate. This ’AND’ gate makes sure that the timer interrupt can only

46 CHAPTER 3. THE MICROARCHITECTURE DESIGN

/ DelayUntil Unit \

. " . . DelayUntil
delayuntil request DelayUntil Logic Register %
is_elapsed
Falling Edge
D@ Logic
Rising !Edge —is_fall_asleep
K Logic /

Figure 3.25: The delay until unit is responsible for selecting whether a thread should be
sleeping, and for how long. The delay_until instruction writes the DelayUntil Register,
where the is_ sleeping signal is set high if the is_ elapsed signal is low. To write the Hardware
Thread Scheduler CSRs, the is_ fall_asleep signals and is_ wakeup are used to locate the
start and end of the delay_until operation.

mpie

is_sleeping

r+is_wakeup

occur when the MTIE bit in the MIE register is set. By executing the interrupt_on_ expire
instruction, the MTIE bit is set and the mtimecmp register is written with the content of
rs2, thus initializing the timer interrupt.

Timer Interrupt
Unit

h 4

is_elapsed
— is_timer_interrupt

h 4

mtie

- /

Figure 3.26: The timer interrupt unit is responsible for deciding whether the is_ elapsed signal
is valid as a timer interrupt signal by verifying the machine timer interrupt enable (MTIE)
bit.

3.4 Assembler for the Microarchitecture

A simple assembler, shown in Appendix was designed to encode RISC-V and custom
assembly instructions to 32-bit binary format to test the microarchitecture. That is, the
assembler converts the assembly code to machine code in order for the microarchitecture to
understand the instructions. The current assembler is a new design inspired by the assembler
created in the previous semester for the single instruction RISC-V microarchitecture [66].
The assembler was designed in parallel with the microarchitecture, where each instruction
encoding was added to the assembler once the microarchitecture could execute the instruction.
Thus, the assembler was a means to provide a simple method to test each instruction that
was added to the microarchitecture. By continuously adding more instruction encodings to
the assembler while extending the microarchitecture, a total of 42 assembly instructions were

3.4. ASSEMBLER FOR THE MICROARCHITECTURE 47

added. As a result, entire programs could be written in assembly code where the assembler
could produce a text file that was easy for the Simulink model to interpret.

As the microarchitecture extended into the multithreading domain, it was necessary to
have different threads executing functions from different areas in the instruction memory.
Using the assembler with only instruction encoding functionality would be difficult for this
purpose, since the assembler could not understand labels or comments. Thus, the programmer
had to manually input the branch PC value, where the assembly code would look like

Listing

Listing 3.3: assemblerbefore.a

1 beqg x1, x0, 60

Manually calculating the branch PC becomes troublesome if any other instructions are
added to the program code. For example, if threadl is executing a function that needs to be
modified, then the branch PC required for thread2 to jump to the starting PC of a task must
be recalculated. Otherwise, thread2 will use a branch PC leading to a different instruction,
since the task’s location is moved in the instruction memory.

Consequently, the possibility of using labels and comments was added to the assembler,
shown in Listing[3.4] Furthermore, the assembler also uses the labels to calculate the distance
from the branch or jump operations to the label’s starting address. Thus, the assembler can
automatically calculate the branch and jump PC values instead of being manually calculated
by the programmer.

Listing 3.4: assemblerafter.a

1 beq x1, x0, threadO_function

Using a simple assembler to convert low-level assembly code to machine code can be an
issue when working with more complex functionality. Thus, when testing more extensive,
complex code, it would be better to use a compiler such as GCC or Clang and write in a
higher-level language, such as C or C++. However, Simulink does not have a method for
reading the compiled binary file into the instruction memory. That is, the current instruction
memory cannot read a binary file that the microarchitecture can fetch instructions from and
understand. A possible solution is to add a Matlab or Python script that converts the binary
file format to a format that the microarchitecture can understand. However, this is not part
of this thesis and will be part of future work.

Chapter 4

System Analysis

This chapter uses several methods to analyze the microarchitecture in various areas. In Sec-
tion the microarchitecture is configured in three modes: single-threaded, multithreaded
with only HRTTs, and multithreaded with only SRTTs. FEach of these configurations is
simulated with various tasks to compare the execution times and the response time to I/O
signals. Finally, in Section the microarchitecture is theoretically compared against a
coarse-grained multithreaded architecture.

4.1 System Configurations

4.1.1 System Execution Time

The execution time of a system is an important attribute that specifies how quickly it can
complete a task or a set of tasks. In a safety-critical system, poor execution time means
requiring looser deadline constraints on hard real-time tasks. However, in a system with
multiple tasks of high criticality, the insufficient execution time can become a problem; each
task must have looser timing bounds to avoid failure. Consequently, the safety-critical system
only applies to areas that do not require fast response and execution times.

For example, a weather drone uses a safety-critical system to retrieve enough weather
data to transfer, which takes 4 seconds. Unless the drone aborts the data gathering during
this period, it cannot perform other tasks such as flight controls. Thus, if the drone performs
each task sequentially, it results in a 4-second lag in the flight controls task. A solution would
be to let the higher criticality task interrupt the lower criticality task. However, continuously
aborting the data collection for the higher criticality task results in the data collection task
being redundant.

In comparison, if the data collection task takes 0.1 seconds, the drone is more than
capable of collecting data and, at times, aborts the collection to control the drone. Hence, a
faster execution time will result in a system that can be applied to areas requiring speedier
computation. Additionally, it enables a more rapid response to external events handled by
high criticality tasks, such as the flight controls.

A single-threaded system is good at executing a few tasks quickly. However, when
branching, the system flushes all prior stages to the execute stage before fetching from a
new location. Thus, the branch instruction takes three cycles to complete instead of one.
The stalling caused by the branching is a very common stall that occurs to protect the
system from data hazards. A different stall that can happen is a cache miss, in which the
pipeline will stall for many cycles. Having such stalls injected into the pipeline significantly
degrades the single-threaded system’s execution time.

49

20 CHAPTER 4. SYSTEM ANALYSIS

A test program was written in assembly code with eight tasks of differing computation
times to analyze the microarchitecture as a single-threaded configuration, shown in Ap-
pendix Table and Table show the single-threaded configuration of the hardware
thread scheduler. To schedule a single thread, either all slots but one can be disabled, or a
single thread ID is scheduled, as seen in Table Additionally, as a precaution, the other
threads are kept in sleep mode in the mode configuration register. As a result, only thread0
will be able to use the pipeline to perform the eight tasks.

The startup procedure required to configure the microarchitecture as a single-threaded
system can be seen in Listing Here, only the mthreadmode CSR must be set to a new
value since the mthreadslot CSR is set to 0, meaning that all slots are already set to thread0.
As a result, only two lines of code are required, resulting in a small amount of initialization
overhead before being able to perform the tasks.

’ Slot7 ‘ Slot6 ‘ Slot5 ‘ Slot4 ‘ Slot3 ‘ Slot2 ‘ Slot1 ‘ Slot0 ‘
’ Thread0 ‘ Thread0 ‘ Thread0 ‘ Thread0 ‘ Thread0 ‘ Thread0 ‘ ThreadO ‘ Thread0 ‘

Table 4.1: The slots configuration for the single-threaded system.

’ Thread7 ‘ ThreadG‘ ThreadS‘ Thread4‘ Thread3‘ Thread2‘ Threadl‘ ThreadO‘
| Sz | sz | sz | Sz | sz | Sz | SZ | HA |

Table 4.2: The mode configuration for the single-threaded system.

Listing 4.1: singlethreadedconfig.a

1 addi x1, x0, -4
2 csrrw x0, 1280, x1 // Set mthreadmode (SZ%, SZ, S%, SZ, SZ, SZ, SZ, HA)

Once the system has been initialized as a single-threaded system, it can begin running the
eight tasks. Table shows the tasks’ deadlines, periods, and execution times used in the
example from Appendix[A.2] Furthermore, Figure shows a graphical representation of the
execution times of each task executed in a sequential. This graph results from the simulation
result of the tasks running on the microarchitecture designed in Simulink. An example task
performed by the microarchitecture can be seen in Listing Here, the task computes the
first 15 numbers of the Fibonacci sequence and stores the 15th Fibonacci number in the
register file. Here, to calculate the 15 numbers, the task must branch 15 times. This results
in 45 cycles spent on branching alone due to the single-threaded configuration flushing the
pipeline each time a branch is taken.

4.1. SYSTEM CONFIGURATIONS o1

Listing 4.2: fibonacci.a

1 thread6_fibonacci:

2 addi x14, x0, 15

3 addi x15, x0, O

4 addi x16, x0, O // Show

5 addi x17, x0, O // a

6 addi x18, x0, 1 // Db

7 add x16, x17, x18 // show = a + b
8 addi x17, x18, 0 // a =Db

9 addi x18, x16, 0 // b = show
10 addi x15, x15, 1

11 blt x15, x14, -16

As mentioned above, if the execution times of the tasks are too slow, the system will not
be able to complete the tasks within the specified deadline. In this example, because the
tasks are executed sequentially, each task is dependent on the execution time of other tasks.
Consequently, the deadline specified in the example will not be able to meet all deadlines. If
all tasks have high criticality levels, multiple failures will be present in the system, specifically
tasks 7 and 8 in the example shown in Figure 4.1

Additionally, these tasks are executed periodically in a round robin fashion, with a period
identical to the deadline. Thus, an increasing number of tasks will produce a failure each
periodic interval. This means that in the next periodic interval from the example above,
tasks 4 through 8 will fail due to the delayed start of Taskl at time 538. As a result, either
tasks 7 and 8 must be discarded, or the deadline and period must be extended to beyond the
execution times of the tasks.

Task Thread ID Thread Mode Execution Period /

Time Deadline
T 0 HA 70 400
T 0 HA 83 400
T3 0 HA 95 400
T, 0 HA 27 400
15 0 HA 47 400
Ts 0 HA 50 400
T7 0 HA 107 400
T3 0 HA 51 400

Table 4.3: Real-time constraints of the tasks.

To configure the microarchitecture as a fine-grained multithreaded system, a setup proce-
dure, shown in Listing must be performed. This procedure is only performed by thread0,
where the other threads will not be able to access the pipeline until after the mthreadslot
CSR is written. Lines 2 and 3 are added to make sure that the other threads do not
execute the setup procedure, whereas they will jump directly to the main function. Once
the setup procedure has been performed, the resulting slots CSR is shown in Table
and the modes CSR in Table As can be seen in the mode CSR configuration, all
threads are configured as SRTTs. Thus, when a thread is finished with its task, it will
sleep and let the other threads use the spare cycles. As a result, the configuration will
provide dynamic thread scheduling frequency where the scheduling frequency increases for
the active threads whenever a thread falls asleep. Consequently, the system configura-

52 CHAPTER 4. SYSTEM ANALYSIS

Task Execution Times Single-Threaded Configuration

Task 8
Task 7
Task 6

Task 5

Task 4

o [

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M Execution Time (Number of Clock Cycles)

Figure 4.1: The execution times required to finish eight different tasks using the single-
threaded configuration. Each of these tasks are executed sequentially. Adding concurrency
to this configuration would require additional overhead due to context switching.

tion has traded its isolation and predictability for an increased instruction throughput.

Listing 4.3: srttconfig.a

1 startup:

2 csrrsi x1, 3860, 0 //set x1 = mhartid

3 bne x1, x0, main //1if x1 !'= 0, Jump to main

4 lui x2, 1048565 //x2 = 11111111111111110101

5 xori x2, x2, 2730 //%x2 = Sext (1010 1010 1010 1010)

6 csrrw x0, 1280, x2 //Set mthreadmode

7 //(SA, SA, SA, SA, SA, SA, SA, SA)
8 lui x31, 484675 //Set Upper bits of mthreadslot

9 //(T7, T6, T5, T4, T3, 0, 0, 0)

10 addi x31, x31, 528 //Set Lower bits of mthreadslot

11 //(, 0, 0, 0, 0, T2, T1, TO)

12 csrrw x0, 1281, x31 // Set mthreadslot

13 //(T7, T6, T5, T4, T3, T2, T1, TO)
14 jal x30, main //(T0) Jjump to main

When the setup procedure is finished, the program jumps to the main function, shown in

| Slot7 | Slot6 | Slot5 | Slot4 | Slot3 | Slot2 | Slotl | Slot0 |
| Thread7 | Thread6 | Threadb | Thread4 | Thread3 | Thread2 | Threadl | Thread0 |

Table 4.4: The slots configuration for the multi-threaded system using only soft real-time
threads (SRTT).

4.1. SYSTEM CONFIGURATIONS 93

’ Thread7‘ ThreadG‘ ThreadS‘ Thread4‘ Thread3‘ Thread2‘ Threadl‘ ThreadO‘
| SA | SA | SA [SA | SA [SA | SA | SA |

Table 4.5: The mode configuration for the multi-threaded system using only soft real-time
threads (SRTT).

Listing [4.4] Here, each thread will jump to its designated task if there is a thread ID match.
This step allows the threads to be running in different locations in the instruction memory.
Because of the increase in the number of instructions performed before the task execution, the
startup overhead has significantly increased compared to the single-threaded configuration.
Even though the overhead is close to a quarter of the total simulation time for the entire
test program, it is disregarded in the analysis because the overhead is static. Meanwhile, the
execution time of any task may increase or decrease depending on the amount of computation
required. For example, if the Fibonacci function in Listing [4.2] computes 60 values instead
of 15, the execution time of the task would be approximately quadrupled. As a result, the
overhead becomes negligible with an increase in the execution times of the tasks.

Listing 4.4: srttmain.a

1 main:

2 beq x1, x0, thread0O_incrementer //if mhardid == 0,

3 //Branch to threadO_incrementer

4 addi x2, x0, 1

5 beq x1, x2, threadl_multiplication //if mhardid == 1,

6 //Branch to threadl_multiplication
7 addi x2, x2, 1

8 beq x1, x2, thread2_division //if mhardid == 2,

9 //Branch to thread2_division

10 addi x2, x2, 1

11 beq x1, x2, thread3_read_time //if mhardid == 3,

12 //Branch to thread3_read_time
13 addi x2, x2, 1

14 beq x1, x2, thread4_shift_left //if mhardid == 4,

15 //Branch to thread4_shift_left
16 addi x2, x2, 1

17 beq x1, x2, thread5_shift_right //if mhardid == 5,

18 //Branch to thread5_shift_right
19 addi x2, x2, 1

20 beq x1, x2, thread6_fibonacci //if mhardid == 6,

21 //Branch to thread6_fibonacci
22 addi x2, x2, 1

23 beq x1, x2, thread7_even //if mhardid == 7,

24 //Branch to thread7_even

25 beq x0, x0, O / /NOP

Once the system is configured and the threads have branched to the their respective
tasks, the system will perform the same tasks as in the single-threaded configuration, shown
in Appendix The resulting execution times of the tasks can be seen in Figure A
major difference from the single-threaded execution is that it performs all tasks concurrently
instead of sequentially, with a clock cycle granularity. As can be seen, this leads to Task4
finishing first because it is the least computationally heavy task. Once this task finishes, the
slot allocated to thread3 will be used by the other threads in a round robin fashion. As a
result, there is an increase in performance for the other tasks that are still executing in the
pipeline.

54 CHAPTER 4. SYSTEM ANALYSIS

Task Execution Times Dynamic Scheduling Configuration

Task 8
Task 7
Task 6
Task 5
Task 4
Task 3
Task 2

Task 1

o
(O]
o

100 150 200 250 300 350 400 450 500 550 600 650

M Execution Time (Number of Clock Cycles)

Figure 4.2: The execution times required to finish eight different tasks using the multi-
threaded SRTT configuration. These tasks are executed concurrently, thus starting their
task execution clock cycles apart.

As mentioned previously, an important benefit of the fine-grained multi-threaded configu-
ration is its capability to avoid data hazard stalls by cycle-by-cycle thread interleaving. As a
result, close to all the branch stalls present in the single-threaded configuration are avoided,
which significantly reduces the execution time of the system. The reason for the phrasing
"close to all" is because as more threads are sleeping, the more the schedule approaches a
single-threaded schedule. Thus, when task3 in Figure falls asleep, only task? is scheduled.
By avoiding the branch stalls, the total task execution time has been almost halved for
the fine-grained multi-threaded system in comparison to the single-threaded system. Thus,
because of the significantly reduced execution time, all tasks are now capable of meeting the
deadlines specified in Table

Although the fine-grained multi-threaded system tested above is capable of executing the
tasks significantly faster than the single-threaded system, it can be much slower using other
thread configurations. As an example, the mode CSR shown in Table [£.6] depicts such a
configuration, where all threads are HRTTs. Consider the same slots CSR configuration as
used in the SRTT example. Because all threads are configured as HRTTs, the threads are
only capable of using the cycles that are allocated to that particular thread in the slots CSR.
That is, each thread has a static thread scheduling frequency of 1/8. Consequently, when a
thread finishes its task, the slot will be left empty, and the hardware thread scheduler will
instead stall the pipeline that cycle.

| Thread7| Thread6| Thread5| Thread4| Thread3| Thread2| Thread1| Thread0|
[HA | HA | HA | HA | HA | HA | HA | HA |

Table 4.6: The mode configuration for the multi-threaded system using only hard real-time
threads (HRTT).

4.1. SYSTEM CONFIGURATIONS 95

When configuring the threads as HRTTs, the CSRs can be to zero since an active HRTT
thread is denoted by ’00°, resulting in the CSR operation shown in Listing Once it has
been configured with only HRTTs, the same code can be run as in the previous example. As
a result of running the simulation with this configuration, the tasks will have the execution
times seen in Figure [4.3

Notice how Task 4 for both configurations have the same execution times while execution
times for the other tasks deviate more depending on how many threads are sleeping. As
mentioned above, the reason for the significant increase in execution time is because of the
fixed schedule. As a result, a stall is introduced to the pipeline each cycle a sleeping thread is
scheduled. Consequently, once Task 3 finishes its execution and puts thread2 to sleep, only 1
out of 8 threads are active, meaning that 7 out of 8 cycles are wasted. However, because the
scheduling frequency is fixed, the isolation and predictability has been maximized. That is,
the timing behavior of the tasks are known and bounded since the timing of each instruction
is known and the threads are temporally and spatially isolated. As a result, the configuration
has traded throughput for high predictability and isolation.

Listing 4.5: hrttconfig.a
1 csrrw x0, 1280, x0 //Set mthreadmode (00 00 00 00 00 00 00 00)

Task Execution Times Static Scheduling Configuration

Task 8
Task 7
Task 6
Task 5
Task 4
Task 3
Task 2

Task 1

o

50 100 150 200 250 300 350 400 450 500 550 600 650

B Execution Time (Number of Clock Cycles)

Figure 4.3: The execution times required to finish eight different tasks using the
multi-threaded HRTT configuration. These tasks are isolated and have a fixed
thread-scheduling frequency. Thus, the tasks will execute the same even when other tasks
finishes their execution. As a result, because there is no interference between the tasks, it is
less tedious to perform WCET analysis.

A comparison of the task specific execution times for all three configurations can be
seen in Figure [£:4 Notice how there is a large gap in the execution times for each of the
configurations. As mentioned earlier, the single-threaded configuration is faster at performing

56 CHAPTER 4. SYSTEM ANALYSIS

a single task compared to the multi-threaded configurations. Even task 4, the least compute
intensive task, has half the execution time in the single-threaded configuration compared to
the multi-threaded configurations. Also, notice how the multi-threaded HRTT configuration
deviates more when there are fewer threads left active. As a result, the HRTT configura-
tion has almost 6 times as long execution time on Task7 compared to the single-threaded
configuration, while the SRTT configuration is only 3 times as long.

Execution Times for Each Task
Task8
Task?7
Taské
Task5
Task4
Task3
Task2

Task1

1” “r

o

50 100 150 200 250 300 350 400 450 500 550 600 650

m Dynamic Scheduling m Static Scheduling ~ E Single-Threaded

Figure 4.4: The execution times for eight tasks when running on three different system
configurations.

In comparison, Figure shows how each configuration performed in terms of the total
execution time required to complete the same set of tasks. Here, even though the single-
threaded configuration outperformed both multi-threaded configurations in terms of specific
task execution times, it is not the case for the total execution time. Instead, the single-
threaded configuration only managed to outperform the HRTT configuration while the SRTT
configuration was faster than both. As mentioned previously, the reason for the faster total
execution time for the SRTT configuration is that it avoids most stalls in the pipeline. If
there would have been no stalls in the tasks being tested, the SRTT and single-threaded
configurations would have identical overall execution times. However, due to the branch
stalls, the SRTT configuration managed to reduce the stall latency by almost 200 cycles.

4.1.2 System Response

Certain real-time cyber-physical systems may require fast reaction and response times to
external stimuli. If these system behaviors are slow, it may cause the system to be unable to
respond quickly enough, resulting in deadline requirements not being met. For example, a
strong gust hits the weather drone, causing it become unstable and spin out of control. As a

4.1. SYSTEM CONFIGURATIONS o7

Total Execution Times

Dynamic Scheduling

Static Scheduling

Single-Threaded

o

50 100 150 200 250 300 350 400 450 500 550 600 650

M Execution Time

Figure 4.5: The total execution time each system configuration require to complete all eight
tasks.

consequence, the drone will crash if it is not stabilized in time. To counteract this, the drone
is equipped with sensors to keep the drone stabilized.

A simple representation of the reaction and response time of the task can be seen in
Figure [£.6] The time it takes the drone to retrieve sensor data, compute a counteracting
thrust, and output the thrust to the motors, is the reaction time of the drone’s stabilization
task. However, this time does not consider the duration required to stabilize the drone. The
time it takes the drone to react to the problem and stabilize the drone is the response time of
the task. Thus, if the reaction time is too slow, the drone will not have enough time available
to stabilize. Also, if the reaction time is fast, but the stabilization time is slow, the drone
will not reach the stable region before it is too late.

In contrast, if the reaction and response times are fast, the drone will recover from the
unstable region. As a result, it is important for the stabilization task to be able to quickly
respond to changes in the sensor data to counteract potential instability. Similarly, it is
important in other cyber-physical systems with real-time tasks to react swiftly to changes in
sensor data.

As was mentioned in Section the single-threaded configuration is capable of execut-
ing singular tasks quickly. Thus, because the execution time of a task is a large portion of
the response time, it should be able to respond quickly to changes in sensor input. However,
if the drone’s software contains multiple tasks of high criticality that must be scheduled
periodically, it will result in each task having slower response and reaction times.

A potential solution to this could be to incorporate preemptive task scheduling, where the
critical tasks can interrupt other less critical tasks at specific times [4]. However, the timing
behavior of the software will become unpredictable, as the stabilization task can preempt
other tasks at random moments depending on the behavior of the physical world. This leads

o8 CHAPTER 4. SYSTEM ANALYSIS

[Responfse Time J

l Reaction Time J

Received Signal Actuator Output Stabilized

Figure 4.6: A simple model that shows the response time and reaction time of an I/O task.
When the sensor notices a signal change, the task should begin execution. The reaction time
is the time it takes the task to output a value in response to the sensor data. The response
time it the time it takes to finish the response to the sensor data, which in this case is when
drone is stabilized.

to preemptive scheduling not being a viable solution for the drone. Additionally, if there are
multiple such high criticality tasks that depends on the physical world, it could lead to other
important software tasks being ignored completely. Finding a proper scheduling method
that takes this issue into consideration can be a tedious task, and will most likely restrict the
drone’s software to less optimal timing constraints.

Instead, adding fine-grained multithreading to the drone’s processor could be a potential
solution, where multiple tasks are executed concurrently, as seen in Section Although
individual tasks will have a lower instruction throughput, it is possible to place the task
interacting with the physical world onto separate threads, allowing the software to have more
optimal timing constraints.

To show the difference in response time between the fine-grained multithreaded and single-
threaded configurations, an example program with an I/O polling task will be analysed in
detail. As mentioned previously, the execution time is a large portion of the response time
of a task. Because an execution time analysis was performed in the previous section, where
each configuration was compared in terms of its computation ability, it is not necessary to
add additional complexity to the response time task. That is, a task, seen in Listing will
poll the MMIQ’s input register until the value is nonzero. Once the value in register x4 is
nonzero, the task will store the value of x4 in the MMIQO’s output register. Thus, the time it
takes from the input register is updated, until the value is present on the output register is
referred to as the response time of the task.

By running the program in a Simulink simulation, the best and worst-case response times
of the single-threaded configuration were found, shown in Figure The best-case response
time is when the task executes the load instruction right after the MMIO’s input register has
been modified. In constrast, the worst-case response time is when the task executes the load
instruction right before the MMIO’s input register has new content.

Listing 4.6: responsetimetask.a

poll_input:

1w x4, 0(x3)

beqg x4, x0, poll_input
set_output:

sw x4, 4(x3)

gk W N

4.1. SYSTEM CONFIGURATIONS 99

Single-Threaded Response

Clock Cycles
S k=B N W bR O~

Best-case Worst-case

Figure 4.7: The best-case and worst-case response times using a single-threaded configuration.

To illustrate the best and worst-case response times of the single-threaded configuration,
a diagram, shown in Figure [{.8| showing the details of the execution of each instruction was
made. On the left is the worst-case behavior of the input, output, and x4 registers. The boxes
colored red indicates when the worst-case notices the changes in value, and when it manages
to output the same value in response. Here, the worst-case behavior receives an update
on the input register during the 5th cycle, which is the cycle after reading that register.
Consequently, the task is not aware yet of the value update and must branch to read the
value again, resulting in two cycles lost to a pipeline flush. The following load instruction will
then retrieve the new register value, thus exiting the polling loop. Finally, the task will write
the same value to the output register, where the register will be updated with new content in
the 11th cycle. As a result, the task spent 6 cycles to respond to an I/O signal. In constrast,
the best-case performance can be seen starting during the 8th cycle. Here, the register has
just updated as the task starts reading the register. Finally, the best-case scenario writes the
output register, where the new content is available in the 11th cycle.

Worst-Case Behavior Clock Cycle
Input Output x4 Instruction | 1 2 3 4 5§ 6 7 8 8§ 10 u
Register Register
0x03030303 X 0x03030303 LW F [o] E]m][w]
0xFFOOFFOD X 003030303 BEQ (F o TJE[mMm]w)]

OxFFOOFFO0 | 0x03030303 | 0x03030303 instr [F [0]

OxFFOOFFOD | 003030303 | 0x03030303 instr F
0xFFOOFFO0 | 003030303 | OXFFOOFFO0 LW [F o [E]M] W)
OxFFOOFFDO | 0x03030303 | OXFFOOFFOO BEQ [F D [E]M] W]
0xFFOOFFDO | DxFFOOFFDO | 0xFFOOFFO0 sSw (F []E]M][W

Figure 4.8: The best-case and worst-case response time of the assembly code in Listing

60 CHAPTER 4. SYSTEM ANALYSIS

The fine-grained multithreaded configuration used in this example is the same as the
static scheduling configuration used in Section As a result, all tasks will be isolated,
meaning that the other tasks running on the system will not interfere with the analyzed task.
Moreover, the response time analysis will execute the same tasks as in the execution time
analysis. However, task 3 has been exchanged for the task seen in Listing [1.6] By simulating
the program in Simulink, the best and worst-case response times of the multithreaded config-
uration with 8 HRTTs were found, shown in Figure It can be seen that having 8 threads
executing concurrently increases both the best and worst-case response times of the task.

Multithreaded (8 Threads)
35
30
25
20
15
10

Clock Cycles

Best-case Worst-case

Figure 4.9: The best-case and worst-case response times using a multithreaded configuration
with 8 threads.

By simple math, a relationship between the thread scheduling frequency and total latency
difference can be established. Equation [.1] shows the relationship between the worst-case re-
sponse times of the single-threaded and multithreaded configuration. Similarly, Equation (4.2
shows the relationship of the best-case response times.

WCRTs — Latency

WCRTy = 7 (4.1)
ts

BCRTyy — BCRTs — Latency + fis — 1 (4.2)
fts
where: WCRT); = Worst-Case Response Time Multithreaded Configuration
WCRTs = Worst-Case Response Time Single-Threaded Configuration
BCRT) = Best-Case Response Time Multithreaded Configuration
BCRTs = Best-Case Response Time Single-Threaded Configuration
Latency = Total difference in instruction latency
fts = Thread scheduling frequency

To verify that the best and worst-case equations are correct, two additional simulations
were performed with different thread scheduling frequencies on the thread executing the
response time task (Task3). The first test had a thread scheduling frequency of %, which
resulted in a best and worst-case response time of 5 and 10 clock cycles, respectively. The
second test had a thread scheduling frequency of %, resulting in a best and worst-case response
time of 7 and 12, respectively. Using the equations above, it can be seen that the exact same
values are achieved. Finally, to show the relationship graphically, the best and worst-case

4.1. SYSTEM CONFIGURATIONS 61

values from the simulations are plotted, shown in Figure [£.10] These best and worst-case
lines form the upper and lower bounds on the response time of the task. Here, it can be seen
that the task’s response time bounds increases almost linearly with a reduction in thread
scheduling frequency. However, there is an exception at a thread scheduling frequency of %,
because there is a one cycle branch latency present in the worst-case response time.

Response Time Bounds

35
30
25

20

== Best Case
15 —4— \Worst Case
10

5 —

Clock Cycles

1 0.5 0.333 0.125
Thread Scheduling Frequency

Figure 4.10: The best-case and worst-case response times of the microarchitecture due to
the thread scheduling frequency. The graph is only valid when the number of threads used
is the inverse of the thread scheduling frequency, or when there are enough thread cycles
in-between each thread execution to avoid the branch latency. Thus, there must be at least
2 thread cycles between each time a thread is executed.

As aresult of this analysis, it can be seen that there is a direct correlation between response
times and the thread scheduling frequency. Here, it was shown that the single-threaded
configuration outperformed the multithreaded configuration. However, due to the polling
nature of this task, the single-threaded configuration is incapable of executing other tasks.
A solution to perform more tasks would be to allocate time slices for each task, where a task
can execute for a certain amount of time before letting other tasks use the pipeline. However,
because of the overhead of switching tasks in addition to the execution times of other tasks, the
response time of the single-threaded system can have a significantly worse response time than
its multithreaded counterpart. Additionally, the fine-grained multithreaded configuration
manages to hide branch latencies, thus reducing the response time further while also making
the timing behavior more predictable. Finally, the multithreaded configuration is capable of
executing multiple I/O tasks concurrently with fine granularity, which the single-threaded
configuration is incapable of.

In conclusion, while adding threads to the system adds latency to the response time of a
single task, it makes it possible to run multiple tasks of differing criticality levels concurrently.
These tasks can be scheduled with a static scheduling frequency, thus providing high temporal
isolation and predictability. As a result, because of the temporal isolation between the
threads, multiple tasks can respond to data from the physical world without degrading the
response time of the other tasks.

62 CHAPTER 4. SYSTEM ANALYSIS

4.2 Coarse-grained Multithreading

A coarse-grained multithreaded system will for short stalls operate the same as a single-
threaded system. That is, a branch operation will in a coarse-grained multithreaded system
flush the pipeline and continue execution as normal. The reason that this technique does
not change threads on a branch operation is because the cycles required to change threads
are greater than the stall introduced by flushing the pipeline. Thus, there is no benefit by
performing thread switching for a coarse-grained multithreaded system when the program
wants to perform a branch.

However, for longer stalls such as cache misses, the coarse-grained multithreaded system
will deviate in functionality compared to a single-threaded system. Whereas the single-
threaded system would wait for the required data that caused the cache miss, the coarse-
grained system will switch threads and continue execution of a different task. This switching
will cause the program to lose as many cycles as there are pipeline stages in the system.
That is, the pipeline must be flushed and new instructions from the new thread must fill the
pipeline. For example, if the pipeline was 5 stages, the program execution will only be stalled
for 5 cycles instead of the number of cycles required to fetch the data causing the cache miss,
which could be as many as hundreds of cycles.

As mentioned in Section the fine-grained multithreaded technique is capable of
hiding both short and long stalls while the coarse-grained multithreaded technique is used to
hide long stalls. The fine-grained multithreaded microarchitecture is capable of performing
concurrent thread execution where the goal is to execute multiple tasks at the same time. It is
further capable of configuring the threads as either hard or soft, making it possible to increase
isolation between threads for mixed-criticality and safety-critical systems. Meanwhile, the
coarse-grained multithreaded technique focuses on execution of a single task as quickly
as possible. It is incapable of hiding short stalls, thus making the timing behavior of
the real-time system less predictable. As a result, it can be said that the coarse-grained
multithreaded technique focuses on task specific throughput and less on timing behavior and
predictability. Meanwhile, the fine-grained multithreaded microarchitecture can exchange
task specific throughput for better timing behavior and predictability, and vice versa.

As an example, consider both the fine-grained multithreaded microarchitecture and a
coarse-grained multithreaded system having 5 hardware threads and a 5-stage pipeline. When
a thread has to branch, the fine-grained system will be able to hide the latency by allowing
other threads to use those cycles. Similarly, if there is a cache miss it allows other threads
to use the spare cycles while the thread is waiting for the data it requires. Moreover, once
the thread has manages to get the required data, the thread will return to normal execution.
Meanwhile, the coarse-grained system is incapable of hiding the branch latencies, resulting
in a two-cycle latency when a branch is taken. However, the coarse-grained system manages
to hide most of the cache miss latency by performing a thread switch once. As a result,
the coarse-grained system will only have a five-cycle latency on cache misses. Additionally,
once the thread manages to retieve the required data, it will wait until the thread scheduler
allows it to switch back. This delay will depend on the type of thread scheduler implemented,
but there is at least another five-cycle delay due to the thread switching. As a result, the
fine-grained multithreaded system is capable of returning to normal execution faster after a
long stall than the coarse-grained system.

Continuing the example, the systems are executing a program where both have a total
number of 100 cache misses and 500 branches throughout the program execution. The fine-
grained multithreaded design is capable of hiding the branch latencies by having other threads
use those cycles. During a cache miss, the fine-grained system will allow other threads to

4.2. COARSE-GRAINED MULTITHREADING 63

use the spare cycles. However, the system is incapable of hiding the cycle that resulted in
a cache miss. Thus, for every cache miss there is a one-cycle latency added to the program
execution, resulting in an overall latency of 100 clock cycles throughout program execution.

In contrast, the coarse-grained system only manages to reduce the cache miss latency to a
five-cycle latency, while it is incapable of hiding the branch latency. Thus, the coarse-grained
system will have an overall latency of 1500 clock cycles throughout the program execution due
to cache misses and branches. As a result, the coarse-grained multithreaded system will have
an overall execution time that is 1500 clock cycles slower than the fine-grained multithreaded
system. Although, the coarse-grained multithreaded system will have the same throughput as
a single-threaded system when executing a single task. Thus, it will have better task-specific
throughput than the fine-grained multithreaded microarchitecture.

In addition, consider the designed microarchitecture configured as a single-threaded sys-
tem executing the same program. Because it only consists of a single thread, it is inca-
pable of hiding cache miss and branch latencies. Consider that a cache miss requires the
microarchitecture to spend 200 clock cycles to retrieve the data from main memory. As a
result, the single-threaded configuration will have a 21,000-cycle latency added to the program
execution. Thus, the execution time for the single-threaded configuration will be significantly
deteriorated due to the added latencies caused by the branches and cache misses.

The total latency of each system is shown in Figure As can be seen, the coarse-
grained multithreaded system is capable of hiding most of the cache latency that is present
in the single-threaded configuration. However, it is not capable of hiding the branch latency,
resulting in the same branch latency as the single-threaded configuration. Meanwhile, the
fine-grained multithreaded system is capable of hiding the branch latency and most of the
cache latency by switching threads. As a result, the fine-grained multithreaded system will
have a 1400 clock cycles better overall execution time than the coarse-grained multithreaded
system. Furthermore, it will have a 21000 clock cycles better overall execution time than the
single-threaded configuration. It should be mentioned, however, that this is only the overall
execution time, whereas the task specific execution time will be better for the other systems.

64 CHAPTER 4. SYSTEM ANALYSIS

Overall Latency

25000

20000
wEn 15000 B Cache
& W Branch
o
& 10000
Q

5000

0 R I

Fine-grained Coarse-grained Single-threaded

Figure 4.11: The overall latency of the different hardware threaded systems. Notice how
the coarse-grained and single-threaded systems have the same branch latency, but most of
the cache latency is removed. In comparison, the fine-grained system has almost no latency
added.

Chapter 5

Conclusion and Future Work

In cyber-physical and real-time applications, it is necessary to have a high degree of con-
fidence in the software functionality and the timing behavior. Notably, it is crucial for
safety-critical applications. Integrating such applications of different criticality levels onto
a shared hardware platform, known as a mixed-criticality system (MCS), is a trending
topic in reducing cost, power consumption, size, and weight. However, this integration
results in difficulties with verification and certification of the system due to spatial and
temporal resource sharing causing interference between applications of different levels of
criticality. Using real-time operating systems (RTOS) on general-purpose processors is a
common approach to enable software-based isolation while drastically reducing hardware
costs. However, RTOS adds significant overheads, such as task switch latency, preemption
time, and inter-process communication (IPC), resulting in timing requirements in millisec-
onds. Additionally, general-purpose processors result in more unpredictable timing behavior
due to, e.g., interrupts and hardware prediction mechanisms. Consequently, the MCS will
be harder to verify and certify and can also have timing accuracy and precision that are
unsatisfactory for specific input/output (I/O) applications. This report’s central theme
is on microarchitectures providing confidence in software functionality and timing behav-
ior through hardware-based isolation while maintaining overall instruction throughput and
precision-timed I/O with accuracy and precision at clock cycle granularity.

The microarchitecture designed and presented in this report can compromise by ex-
changing predictability for efficiency, and vice versa, through configurable hardware-based
isolation between applications. In addition, the design utilizes a hardware thread scheduler
capable of fine-grained multithreading with software customizable threads and schedule. The
scheduler can execute two thread types; hard real-time threads (HRTT) and soft real-time
threads (SRTT). Furthermore, the scheduler provides static and dynamic thread scheduling
frequency capability by restricting HRTTs to predetermined cycles while allowing SRTTs to
use predetermined and unused cycles. In addition, the microarchitecture contains custom
timing instructions and timing units contributing to the timing control cases identified by
Bui et al. [27], resulting in fine-precision timing behavior while producing spare cycles when
threads are inactive.

The microarchitecture was designed in Simulink, a tool enabling visual prototyping and
continuous testing and validation of system characteristics, thus reducing the number of
development risks. In addition, the tool enables the development of a simple test environment,
where software programs were simulated on the microarchitecture by reading instructions
from a text file. Also, using the simulation time, it was possible to retrieve the test’s
instruction results with cycle-accurate timing. As a result, it was possible to perform various
analyses with Simulink to verify the functional correctness and timing behavior at both

65

66 CHAPTER 5. CONCLUSION AND FUTURE WORK

instruction and task granularity.

The microarchitecture was analyzed for two application areas; mixed-criticality systems
and precision-timed 1/O operations. Here, response time and execution time analyses of
several thread scheduling configurations were performed. As a result, the analyses show
that tasks should map to threads based on the criticality level, partitioning away the mixed-
criticality characteristic. For example, highly critical tasks should apply static thread schedul-
ing to achieve considerable isolation and have predictable timing behavior, resulting in
simpler worst-case execution time (WCET) analysis. Meanwhile, less critical tasks should
prioritize improving overall efficiency, thus applying dynamic thread scheduling. In addi-
tion, by utilizing fine-grained multithreading with proper thread scheduling, the potential
branch latency is removed, thus improving instruction throughput and the timing behavior
of the software. Furthermore, although multithreading responds more slowly to a single
I/O task than single-threaded processors, it allows concurrent execution of multiple tasks
while maintaining good response time on the I/O task. Finally, leveraging fine-grained
multithreading, predictable instruction timing behavior, and timing instructions enable the
software to interact with various separate I/O operations.

During the microarchitecture design, the priority was to implement a readable model
that functions correctly, leading to the use of unconventional implementation decisions that
the HDL coder tool does not support. Consequently, the design requires some modification
to allow the tool to convert the model-based design (MBD) into HDL code. Additionally,
Simulink does not provide a method to verify the critical paths of the microarchitecture. Thus,
it is unknown at the time of writing what clock speed the design can achieve. As a result,
once the HDL code of the model is available, an analysis of the microarchitecture’s critical
paths should be performed, and optimize the paths if needed. Due to design complexity,
there is some suspicion that the hardware thread scheduler is a limiting factor for the
maximum clock frequency and may require some modification. Following the critical path
analysis, the microarchitecture should be programmed onto an FPGA to perform on-target
functional verification and analysis to ascertain that it is functioning as expected in hardware.
Furthermore, hardware testing with external stimuli allows MCS and precision-timed 1/0O
analyses on various thread scheduling configurations to compare and verify timing behavior
and response times.

A benefit of using Simulink is the extensive testing capabilities that are possible using the
tool. For example, performing Hardware In the Loop (HIL) or Processor In the Loop (PIL)
testing of the microarchitecture will provide a detailed picture of how the design operates
and where it could fail, leading to rapid fixes in the design choices. As a result, the tool can
further expand the testing capabilities, thus making both the hardware and software design
choices less error-prone and providing higher confidence for certification.

The custom assembler allowed the writing of simple programs that could be tested in
simulation. However, the assembler limits the quality of the analyses that can be performed.
Hence, it is worthwhile to adjust the instruction memory to allow the use of a proper compiler,
such as GCC or CLANG, where cross-compilation for RISC-V architectures is possible.
Furthermore, using such a compiler allows the writing of code in C/C++, making it easier to
design more extensive test programs for in-depth analyses. Finally, as a consequence of using
a higher-level language such as C/C++, it is possible to include existing software scheduling
algorithms to perform complex analyses of larger MCS with tight timing bounds.

The current use of memory is a limiting factor for the design to be implemented in
hardware. For example, the instruction memory consists of a script storing the instructions
from a text file into a data array. Additionally, the data memory available in the Simulink
model is 48 bytes made using registers. Therefore, because there is a limited amount of

67

registers available, the method does not scale if increasing the size of the data memory when
implemented on an FPGA. Furthermore, adding cache for instruction and data memory
becomes a problem due to the context-dependent execution time. Consequently, adding cache
could significantly degrade the fine-grained prediction of the microarchitecture. However,
there are methods available to make the cache more predictable; locking cache lines, caching
entire functions, or separate cache for stack and heap [72, [73]. Otherwise, FlexPRET
demonstrates the use of scratchpad memories for timing predictable memory [14]. Thus,
integrating a more predictable cache or scratchpad memory into the design is desirable for
future implementation in hardware.

Appendix A

Code

In this appendix chapter, the detailed code written during this project is provided.

A.1 Python code

Python-code A.1: RiscvAssembler.py

1 import pathlib
2 import textwrap

3

4 class RISCV:

5

6 i_type_ operations = ["addi", "slti", "sltiu", "xori", "ori", "andi', "jalr",
"slli", "srli", "srai']

7 r_type_ operations = ["add", "sub", "sll", "slt", "sltu', "xor", "srl', "sra',
"or", "and"]

8 b_type_operations = ["beq", "bne', "blt", "bltu", "bge", "bgeu']

9 j_type_operations = ["jal"]

10 s_type_operations = ["sw"]

11 1 _type_ operations = ["lw"]

12 u_type_operations = ["lui", "auipc"]

13 csr_type_ operations = ["csrrw', "csrrs", "csrrc', "csrrwi', "csrrsi', "csrrci']

14 t_type_operations = ["delay until", "interrupt on expire",
"deactivate interrupt", "get time"]

15 ret__type_operations = ['mret"]

16

17 def _init__ (self) —> None:

18 self.assembly__instructions = []

19 self. file = "'

20 self.label pcs = {}

21 self .num_ labels = 0

22 self .num_ assembly_lines = 0

23 self.encoded instructions = []

24

25 def print_lines(self):

26 for line in self.assembly_instructions:

27 print (line)

28

29 def print_starting_ instructions(self):

30 for label in self.label pcs:

31 print ("PC: ", int(self.label pcs[label]), " \tInstr: ",

self.assembly_instructions|[int(self.label_pcs[label] / 4)])

32

33 def print_labels(self):

34 for label in self.label_ pcs:

35 print ("Label:\t", label, "\nPC:\t", self.label_ pcs[label])

36

37 def print_encoded_instructions(self):

69

70

38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63

64
65
66

67
68

69
70
71

72
73
74

75
76

7
78

79
80

81
82

83
84

85
86

87
88

89
90

91

APPENDIX A. CODE

for idx, instruction in enumerate(self.encoded_ instructions):
print ("ID:\t", idx, "\tInstruction:\t", instruction, "\tSize:\t",
len (instruction))

def read_ instructions(self, file name : str):
file = pathlib.Path(file_name)
if not file.exists():
print ("The file does not exist!\r\n")

return []
read file = open(file, 'r')
lines = read_ file.readlines ()

self. append assembly instruction(lines)
read_ file.close ()
return self.assembly_instructions

def encode_riscv_instructions(self, assembly_instructions = []):
if assembly_instructions:
self.assembly_ instructions = assembly_instructions

for line in self.assembly_instructions:
encoded__instruction = "'
self.__compute_label_branch_value ()
if any(operation in line for operation in self.s_type_operations):
s_type_immediate, s_type_rsl, s_type_ rs2 =

self. convert_to_machine_ code(line, 'store')
imm__upper = s_type_immediate [:7]
imm_lower = s_type_immediate [7:]

if 'sw' in line:
encoded__instruction = imm_upper + s_type_rs2 + s_type_rsl +
'010" + imm_ lower + '0100011"'
self.encoded_instructions.append(encoded__instruction)
elif any(operation in line for operation in self.l type operations):
l_type_immediate, 1_type_rsl, 1 type_rd =
self. convert_ to_machine code(line, 'load'")
if '"lw' in line:
encoded__instruction = 1_type_immediate + 1_type_rsl 4+ '010"' +
l_type_rd + '0000011'
self.encoded_instructions.append(encoded__instruction)
elif any(operation in line for operation in self.i type operations):
i_type_imm, i_type_rd, i_type_rsl =
self. convert_ to_machine code(line,
i_type_shamt = i_type_imm [7:]
if 'addi' in line:
encoded_instruction = i_type_imm 4 i_type_rsl + '000' +
i_type_rd + '0010011"'
elif 'slti' in line:
encoded__instruction = i_type_imm 4+ i_type_rsl 4+ '010' +
i_type_rd + '0010011"'
elif 'sltiu' in line:
encoded__instruction = i_type_imm 4+ i_type_rsl 4+ '0O11' +
i_type_rd + '0010011"
elif 'xori' in line:
encoded__instruction = i_type_imm 4+ i_type_rsl + '100' +
i_type_rd 4+ '0010011"'
elif 'ori' in line:
encoded__instruction = i_type_imm 4+ i_type_rsl 4+ '110' +
i_type_rd + '0010011"'
elif 'andi' in line:
encoded__instruction = i_type_imm 4+ i_type_rsl 4+ '"111'" +
i_type_rd + '0010011"'
elif 'slli' in line:

'

i type')

encoded__instruction = '0000000' 4+ i_type_shamt + i_type_rsl +
"001" + i_type_rd + '0010011"
elif 'srli' in line:
encoded__instruction = '0000000' 4 i_type_shamt + i_type_rsl +
"101" + i_type_rd + '0010011'
elif 'srai' in line:
encoded__instruction = '0100000"' + i_type_shamt + i_type_rsl +
"101" + i_type_rd + '0010011'
elif 'jalr' in line:

A.l.

92

93
94
95

96

97

98
99

100
101

102
103

104
105

106

108
109
110

111
112

113
114

115

116
117

118
119

120
121

122
123

124
125

126
127

128
129

130
131

132
133

134

PYTHON CODE

encoded__instruction = i_type_imm 4+ i_type_rsl 4+ '000' +
i type_rd + '1100111'
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in

b_type_imm, b_type_rsl, b_type_ rs2 =
self. convert_to_machine_ code(line, 'b type')
if 'beq' in line:
encoded__instruction = b_type imm[0] + b_type imm[2:8] +
b_type_rs2 + b_type_rsl + '000' + b_type imm[8:12] +
b_type imm[1] + '1100011"
elif 'bne' in line:
encoded_instruction = b_type imm[0] + b_type imm[2:8] +
b_type_rs2 + b_type_rsl + '001' + b_type imm[8:12] +
b_type_imm[1] + '1100011"
elif 'blt' in line:
encoded__instruction = b_type_imm[0] + b_type_imm[2:8] +
b_type_rs2 + b_type rsl + '100' + b_type imm[8:12] +
b_type_imm[1] + '1100011"
elif 'bltu' in line:
encoded__instruction = b_type_imm[0] + b_type_imm[2:8] +
b_type rs2 + b_type rsl + '110' 4+ b_type imm[8:12] +
b_type imm[1] + '1100011'
elif 'bge' in line:
encoded__instruction = b_type imm[0] + b_type imm[2:8] +
b_type_rs2 + b_type_rsl + '101' + b_type imm[8:12] +
b_type imm[1] + '1100011"
elif 'bgeu' in line:

:8] +
b_type imm[8:12] +

encoded_instruction = b_type imm[0] + b_type imm[2
b_type_rs2 + b_type_rsl + '"111"' +
b_type imm[1] + '1100011"'
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in
j_type_imm, j type rd = self._ convert_ to_machine code(line,
"j_type')
if 'jal' in line:
encoded__instruction = j_type imm[0] + j_type imm[10:20] +
j_type imm[9] + j type imm|[1:9] 4+ j type_rd + '1101111"'
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in

self.b_type_operations):

self.j_type_operations):

self.r_type_operations):

r_type_rd, r_type_rsl, r_type_ rs2 =
self._convert_to_machine_code(line, 'r_type')
if 'add' in line:
encoded__instruction = '0000000' + r_type_rs2 + r_type_rsl +
'000" + r_type_rd + '0110011"'
elif 'sub' in line:

encoded instruction =
'"000" + r_type_rd
"sIl" in line:
encoded instruction =
'001" 4+ r_type_rd
"slt' in line:
encoded instruction =
'010" 4+ r_type_rd
"sltu' in line:
encoded_instruction =
'"011" + r_type_rd
'xor' in line:
encoded instruction =
"100" + r_type_rd
elif 'srl' in line:
encoded instruction =
"101" + r_type_rd
"sra' in line:
encoded_ instruction =
"101" + r_type_rd
elif 'or' in line:
encoded instruction =
"110" + r_type_rd
'and' in line:

elif

elif

elif

elif

elif

elif

'0100000" + r_type_rs2
4+ '0110011"

'0000000" + r_type_rs2
4+ '0110011"'
'0000000" 4+ r_type_rs2
+ '0110011"'

'0000000" + r_type_rs2
4+ '0110011"

'0000000" + r_type_rs2
+ '0110011"'

'0000000" + r_type_rs2
+ '0110011"

'0100000" + r_type_ rs2
4+ '0110011"

'0000000" + r_type_ rs2
+ '0110011"'

+

+

+

+

+

+

+

+

r_type_rsl +

r_type_rsl +

r_type_rsl +

r_type_rsl +

r_type_rsl +

r_type_rsl +

r_type_rsl +

r_type_rsl +

71

72

135

136
137
138

140
141
142
143
144
145

146
147

148
149

151

152
153

154

156
157

158
159

161
162

163
164

165
166

167
168

170
171
172
173
174

176
177
178
179
180
181
182
183
184
185
186
187
188

190

APPENDIX A. CODE

encoded__instruction = '0000000' 4+ r_type_rs2 4+ r_type_rsl +
"111" + r_type_rd + '0110011"'
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in self.u_type_operations):
u_type_imm, u_type_rd = self._convert_to_machine_code(line ,
'u_type')
if '"lui' in line:
encoded__instruction = u_type_imm 4+ u_type_rd 4+ '0110111"'
elif 'auipc' in line:
encoded__instruction = u_type_imm + u_type_rd 4+ '0010111"'
self.encoded__instructions.append(encoded_instruction)
elif any(operation in line for operation in self.csr_type operations):
csr_type_imm, csr_type_ rd, csr_type_rsl =
self.__convert__to_machine_code(line, 'csr_type')
if 'csrrw!' in line:
encoded__instruction = csr_type_imm 4+ csr_type_rsl + '001' +
csr_type_rd + '"1110011"'
elif 'csrrs' in line:
encoded__instruction = csr_type_imm 4+ csr_type_rsl + '010' +
csr_type_rd + '1110011"

elif 'csrrc' in line:
encoded__instruction = csr_type_imm 4+ csr_type_rsl + '011' +
csr_type_rd + '1110011'

elif 'csrrwi' in line:
encoded__instruction = csr_type_imm 4+ csr_type_rsl + '101' +
csr_type_rd + '1110011"
elif 'csrrsi' in line:
encoded__instruction = csr_type_imm 4+ csr_type_rsl + '110' +
csr_type_rd + '1110011"
elif 'csrrci' in line:
encoded_instruction = csr_type_ imm 4+ csr_type_rsl + '111' +
csr_type_rd + '1110011"'
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in self.t_type_operations):

t_type_rd, t_ type rs2 = self. convert to_ machine code(line,
"t_type')

if 'get time' in line:
encoded instruction = '001100100000"' + '00000'" 4+ '"100' +

t_type_rd + '0001011"'
elif 'delay until' in line:
encoded__instruction = '0011001"' 4+ t_type_rs2 4+ '00000' + 'O11'
+ '00100' 4+ '0O101011"'
elif 'interrupt_ on_expire' in line:
encoded__instruction = '0011001"' 4+ t_type_rs2 4+ '00000' + 'O11'
+ '00100' + '1011011'
elif 'deactivate interrupt' in line:
encoded instruction = '0000000" 4+ '00000' + '0O0O00O0" 4+ '0O00' +
'00000"' 4+ '1111011"
self.encoded instructions.append(encoded instruction)
elif any(operation in line for operation in self.ret_type_ operations):
if 'mret' in line:
encoded__instruction = '00110000001000000000000001110011 "'
self.encoded_instructions.append(encoded__instruction)
return self.encoded instructions

def write_ instructions(self, file name, encoded riscv_instructions = []):
file = pathlib.Path(file_name)
if not file.exists():
print ("The file does not exist!\r\n")
return False
if encoded riscv_instructions:

encoded riscv__instructions = encoded riscv__instructions
else:

encoded riscv__instructions = self.encoded instructions
write_file = open(file , 'w')
for encoded__instruction in encoded_riscv_ instructions:

encoded__bytes_list = textwrap.wrap(encoded__instruction, 8)

for encoded__byte in encoded__bytes_ list:
write file.write (encoded byte.strip () + '"\n')
write_file.close ()

A.1. PYTHON CODE 73

191
192
193
194
195
196

197
198
199
200
201
202

204
205
206
207

208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234

235

237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
253
254
255

def

def

def

def

def

def

def

def

def

def

return True

__compute_label pc(self, filtered line , idx):
if filtered_ line:
if ':' in filtered__line:
self .label pcs[filtered_ line.strip().replace(':', '")] =
self .num__assembly_linesx4
return "'
else:
self .num_ assembly_lines += 1
return filtered_ line

_append__assembly_instruction(self, lines : list):
for idx, line in enumerate(lines):
filtered line = self._ filter instructions(line)
assembly__instruction = self._compute_label_pc(filtered__line , idx)
if assembly_ instruction:
self.assembly_instructions.append(assembly_instruction.lower().repla

)splie(n)

_remove_comment (self ; line : str):
split_line = line.split("//")
return split_ line [0]

_remove_empty_lines(self , line : str):

if line and not line.isspace():
return line

else:
return "'

_remove_newlines(self , line : str):

return line.replace("\n", "")

_filter__instructions(self, line):

no_comment_line = self._remove_comment(line)

no_empty_ line = self._ remove_empty_lines(no_comment_line)
no_newlines = self._remove_newlines(no_empty_line)

return no_newlines.strip (' ")

_find_label pc(self, assembly instruction):
for label in self.label_ pcs:
if label in assembly_instruction:
return self.label pcs[label]
return —1

_replace__branch_label__with_value(self , labeled__assembly_instruction ,
branch_immediate, line_number):

current__pc = line_number * 4

jump_to_pc = branch__immediate — current_ pc

return labeled__assembly_ instruction|[:—1] 4+ [str (jump_to_pc)]

__compute_label branch_value(self):
for idx, assembly_instruction in enumerate(self.assembly_instructions):
branch_ immediate = self._ find_ label pc(assembly instruction)
if branch__immediate > 0:
self.assembly instructions[idx]| =
self._replace_branch_label_with_value(assembly__instruction ,
branch__immediate , idx)

_convert__to_machine_code(self , assembly_instruction, operation_type):

if operation_type =— 'store':
s_type_immediate = self._extract_mem_immediate(assembly__instruction)
s_type_rsl, s_type_ rs2 = self. extract_mem_regs(assembly instruction)
return s_type_immediate, s_type_rsl, s_type_ rs2

elif operation_type =— 'load':
1_type_immediate = self._extract_mem_immediate(assembly_ instruction)
l_type_rsl, 1 _type_rd = self._extract_mem_regs(assembly_ instruction)
return 1 _type_immediate, 1_type_rsl, 1 _type_rd

elif operation type = 'i type':
i_type_imm = self._ extract_i type_ immediate(assembly instruction)

74

256
257
258
259
260

261
262
263
264
265
266
267

268
269
270
271
272
273
274
275

276
277
278
279

281
282
283
284
285
286
287
288
289
290
291
292

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

316

317
318

def

def

def

def

def

def

def

APPENDIX A. CODE

i_type_rd, i_type_rsl = self. extract_i_ type_ regs(assembly_ instruction)
return i_type_ imm, i_type_rd, i_type_rsl
elif operation_type = 'b_type':
b_type imm = self._extract_b_type_ immediate(assembly instruction)
b_type_rsl, b_type_rs2 =
self. extract_b_type_ regs(assembly instruction)
return b_type imm, b_type_rsl, b_type_ rs2
elif operation_type =— 'j type':
j_type_imm = self._extract_j_ type_immediate(assembly__instruction)
j_type_rd = self. extract_j type reg(assembly instruction)
return j_type imm, j_ type_rd
elif operation_type = 'r_type':
r_type_rd, r_type_rsl, r_type_ rs2 =
self.__extract_r_type_regs(assembly_instruction)
return r_type_rd, r_type_rsl, r_type_rs2

elif operation_type = 'u_type':
u_type imm = self. extract_u_type immediate(assembly instruction)
u_type_rd = self._extract_u_type_reg(assembly_instruction)
return u_type imm, u_type_rd
elif operation_type = 'csr_type':
csr_type_imm = self._ extract_csr_type_immediate(assembly_ instruction)

csr_type_rd, csr_type_rsl =
self.__extract__csr_type_regs(assembly__instruction)
return csr_type_imm, csr_type_rd, csr_type_rsl

elif operation_type = 't_type':
t_type_rd = "'
t_type_rs2 = "'

if 'get time' in assembly_instruction:
t_type_rd = self._ extract_t_type_ reg(assembly instruction)
else:
t_type_rs2 = self._ extract_t_ type reg(assembly instruction)
return t_type_rd, t_type_ rs2
else:
print (assembly__instruction)

_extract__mem__immediate(self , assembly instruction):

starting parenthesis = assembly instruction[—1].find('(")
memop_ offset = assembly_ instruction[—1][:starting parenthesis]
return self._convert_signed__binary (memop_offset, 'itype')
_extract_i_type_immediate(self , assembly_instruction):

itype immediate = assembly instruction|[—1]

return self._convert_signed_binary (itype_immediate, 'itype')
_extract_b_type_immediate(self , assembly_instruction):
btype_immediate = assembly__instruction|[—1]

return self._ convert_signed_ binary (btype immediate, 'btype')
__extract_j type_ immediate(self , assembly instruction):
jtype_immediate = assembly_instruction|[—1]

return self.__convert_signed_binary (jtype_immediate, 'jtype')
_extract__u__type_immediate(self , assembly_instruction):
utype_immediate = assembly instruction[—1]

return self._convert_signed_binary (utype_immediate, 'utype')
_extract__csr__type_immediate(self , assembly_instruction):
csr_type immediate = assembly instruction [2]

return self._convert_signed_binary (csr_type_immediate, 'itype')
_extract_mem_regs(self , assembly instruction):

starting_ parenthesis, ending_ parenthesis =

assembly instruction[—1].find('("'), assembly_ instruction[—1].find(')")
rsl__value__binary =

self. convert_signed binary(assembly instruction[—1][starting parenthes]

'reg')
rd_rs2_value_binary =
self._ convert_signed_ binary (assembly instruction[1][1:], 'reg')

return rsl_value_binary, rd_rs2_value_binary

s+2:ending__parel

A.1. PYTHON CODE

319
320

321

322
323
324
325

326

327
328
329
330

331
332
333
334

335
336
337
338

339

340

341
342
343
344
345
346
347
348
349

350
351
352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376

def

def

def

def

def

def

def

def

def

75

_extract_i_type_regs(self, assembly instruction):
rd__value__binary = self.__convert_signed__binary(assembly__instruction [1][1:],
1 reg 1)
rsl__value__binary =
self._convert_signed_binary (assembly_instruction [2][1:], 'reg')
return rd_ value_binary, rsl_value_binary
__extract_b_type_regs(self , assembly_ instruction):
rsl__value__binary =
self. convert_signed binary(assembly instruction[1][1:], 'reg')
rs2__value__binary =
self. convert_ signed binary(assembly instruction [2][1:], 'reg')
return rsl_value_binary, rs2_value_binary
_extract_j type_ reg(self, assembly instruction):
rd__value__binary = self.__convert_signed__binary(assembly__instruction [1][1:],
'reg ')
return rd_ value_ binary
_extract_u_type_reg(self, assembly_ instruction):
rd_value binary = self. convert signed binary(assembly instruction[1][1:],
'reg ')
return rd_ value_ binary
_extract_r_type_regs(self, assembly_instruction):
rd_value binary = self._ convert_signed binary(assembly instruction[1][1:],
! reg !)
rsl_value_ binary =
self. convert_signed binary (assembly instruction [2][1:], 'reg')
rs2__value_ binary =
self. convert_signed binary (assembly instruction [3][1:], 'reg')
return rd_ value_binary, rsl_value_binary, rs2_value_binary
_extract_csr_type_regs(self , assembly_instruction):
val = 0
if 'x' in assembly instruction [3]:
val = assembly instruction [3][1:]
else:
val = assembly_ instruction [3]
rd_value_ binary = self._ convert_ signed binary(assembly instruction[1][1:],
1 I'Cg 1)
rsl_value binary = self._ convert_ signed binary(val, 'reg')
return rd_value__binary, rsl_value_binary
_extract_t_type_reg(self, assembly instruction):
reg_value_binary =
self. convert_signed binary (assembly instruction[1][1:], 'reg')
return reg_value_ binary
_convert_signed__binary(self , decimal_ value, conversion_type):
if conversion_type = 'itype':
return format (int (decimal value) & OxFFF, '012b'")
elif conversion_type == 'btype':
return format (int(decimal value) & Ox1FFF, '013b")
elif conversion_type = 'jtype':
return format (int (decimal value) & OxIFFFFF, '021b')
elif conversion_type == 'utype':
return format (int (decimal value) & OxFFFFF, '020b'")
elif conversion_type = 'reg':
return format (int (decimal_value) & O0x1F, '05b')
else:
return '
compare_ file_contents(self , filel_name : str, file2_name : str, file3_name
str):

filel = pathlib.Path(filel_name)

if not filel.exists():
print ("The file does not exist!\r\n")
return False

file2 = pathlib.Path(file2_name)

76

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398
399
400
401
402

404
405
406
407
408
409
410
411

412
413
414
415

416

if

APPENDIX A. CODE

if not file2.exists():
print ("The file does not exist!\r\n")
return False

file3 = pathlib.Path(file3_name)

if not file3.exists():
print ("The file does not exist!\r\n")
return False

read_filel = open(filel, 'r'")

lines_ filel = read_filel.readlines ()
read_file2 = open(file2, 'r'")
lines_ file2 = read_file2.readlines ()
read_file3 = open(file3 , 'r'")
lines_ file3 = read_file3.readlines ()

for idx, line in enumerate(lines_filel):

if line != lines_ file2[idx]:
print ("ID:\t", idx, "\t IS INCORRECT!!!\n")
print (filel__name)
print ("\tValue:\t", line.strip('\n'))
print ("\tASM:\t", ',

'.join(self.assembly instructions[int (idx/4)]))
print (file2__name)
print ("\tValue:\t", lines_file2 [idx].strip('\n'))
print ("\tASM:\t", lines_file3 [int (idx/4)])
read__filel.close ()
read_file2.close ()
return False

read_ filel.close ()
read_file2.close ()

return True

__name — ' main ':
assembler__riscv = RISCV ()
assembly instructions =
assembler riscv.read instructions('src/multi threaded.txt')
encoded_instructions = assembler_ riscv.encode_riscv_instructions()

is_file__written = assembler_riscv.write_instructions('Output/instructions.txt"')

if assembler_riscv.compare_file_contents('Output/instr.txt ',
"Output/instructions.txt', 'src/mthread.txt'):
print ("The results are correct!!")

Python-code A.1: RiscvAssembler.py

A.2. ASSEMBLY CODE

A.2 Assembly code

Assembly-code A.2: DataHazardsSingleThreaded.a

7

1 startup:

2 addi x1, x0, —4

3 csrrw x0, 1280, x1 // Set mthreadmode (SZ, SZ, SZ, SZ, SZ,
SZ, SZ, HA)

4 addi x29, x0, 25

5 delay__until x29 // delay until time 300

6

7 thread0O incrementer:

8 addi x1, x0, 16

9 addi x2, x0, 0 /] x2 =0

10 addi x2, x2, 1 // x2 =x2 + 1

11 bne x1, x2, —4 // if x2 = 32, PC=PC — 4

12

13 threadl_ multiplication:

14 addi x3, x0, 17

15 addi x4, x4, 1

16 addi x5, x5, 10

17 blt x4, x3, —8 // if x4 < 17, PC =PC — 8

18

19 thread2 division:

20 addi x6, x0, 400

21 addi x7, x0, 20

22 bge x7, x6, 16

23 addi x8, x8, 1

24 sub x6, x6, x7

25 blt x7, x6, —8 // if x7 < x6, PC=PC — 4

26

27 thread3 read_ time:

28 get_time x9

29 addi x9, x9, 25

30 get__time x10

31 blt x10, x9, —4

32

33 thread4_shift_left:

34 lui x11, 1

35 addi x12, x0, 1

36 slli x12, x12, 1

37 blt x12, x11, —4

38

39 thread5_shift_right:

40 lui x13, 1

41 srli x13, x13, 1

42 blt x0, x13, —4

43

44 thread6 fibonacci:

15 addi x14, x0, 15

46 addi x15, x0, 0

47 addi x16, x0, 0 // Show

48 addi x17, x0, 0 // a

49 addi x18, x0, 1 // b

50 add x16, x17, x18 // show = a + b

51 addi x17, x18, 0 // a=Db

52 addi x18, x16, 0 // b = show

53 addi x15, x15, 1

54 blt x15, x14, —16

55

56 thread7__even:

57 addi x19, x0, 25

58 addi x20, x0, O

59 addi x20, x20, 2

60 blt x20, x19, —4

Assembly-code A.2: DataHazardsSingleThreaded.a

78 APPENDIX A. CODE
Assembly-code A.3: DataHazardsMultiThreaded.a
1 startup:
2 csrrsi x1, 3860, 0 //set x1 = mhartid
3 bne x1, x0, main //if x1 != 0, Jump to main
4 lui x2, 1048565 //x2 = 11111111111111110101
5 xori x2, x2, 2730 //x2 = Sext (1010 1010 1010 1010)
6 csrrw x0, 1280, x2 //Set mthreadmode
7 //(SA, SA, SA, SA, SA, SA, SA, SA)
8 lui x31, 484675 //Set Upper bits of mthreadslot
9 //(T7, T6, T5, T4, T3, 0, 0, 0)
10 addi x31, x31, 528 //Set Lower bits of mthreadslot
1 //(0, 0, 0, 0, 0, T2, T1, TO)
12 csrrw x0, 1281, x31 // Set mthreadslot
13 //(T7, T6, T5, T4, T3, T2, T1, TO)
14 jal x30, main //(T0) jump to main
15
16 main:
17 beq x1, x0, thread0O_incrementer //if mhardid = 0,
18 //Branch to threadO__incrementer
19 addi x2, x0, 1
20 beq x1, x2, threadl_ multiplication //if mhardid = 1,
21 //Branch to threadl_ multiplication
22 addi x2, x2, 1
23 beq x1, x2, thread2_division //if mhardid = 2,
24 //Branch to thread2_division
25 addi x2, x2, 1
26 beq x1, x2, thread3_ read_time //if mhardid = 3,
27 //Branch to thread3_read_time
28 addi x2, x2, 1
29 beq x1, x2, thread4_ shift_left //if mhardid = 4,
30 //Branch to thread4 shift_left
31 addi x2, x2, 1
32 beq x1, x2, thread5_shift_right //if mhardid = 5,
33 //Branch to thread5_ shift_right
34 addi x2, x2, 1
35 beq x1, x2, thread6_fibonacci //if mhardid = 6,
36 //Branch to thread6 fibonacci
37 addi x2, x2, 1
38 beq x1, x2, thread7_even //if mhardid = 7,
39 //Branch to thread7_ even
40 beq x0, x0, 0 / /NOP
41
42 threadO incrementer:
43 addi x29, x0, 200
44 delay__until x29 //delay_until time 800
45 addi x1, x0, 16
46 addi x2, x0, 0
a7 addi x2, x2, 1
48 bne x1, x2, —4
49 lui x29, 10
50 delay__until x29 //delay__until time 40960
51 beq x0, x0, 0 / /NOP
52
53 threadl_multiplication:
54 addi x29, x0, 200
55 delay__until x29 //delay until time 800
56 addi x3, x0, 17
57 addi x4, x4, 1
58 addi x5, x5, 10
59 blt x4, x3, —8
60 lui x29, 10
61 delay until x29 //delay until time 40960
62 beq x0, x0, 0 / /NOP
63
64 thread2_ division:
65 addi x29, x0, 200
66 delay__until x29 //delay__until time 800
67 addi x6, x0, 400

addi x7, x0, 20

A.2. ASSEMBLY CODE

69
70
71
72
73
74
75
76

bge x7, x6, 16
addi x8, x8, 1
sub x6, x6, x7
blt x7, x6, —8
lui x29, 10
delay_until x29
beq x0, x0, O

77 thread3_read_time:

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

addi x29, x0, 200
delay until x29
get__time x9

addi x9, x9, 25
get__time x10

blt x10, x9, —4
lui x29, 10
delay_ until x29
beq x0, x0, 0

thread4_shift_left:

addi x29, x0, 200
delay__until x29
lui x11, 1

addi x12, x0, 1
slli x12, x12, 1
blt x12, x11, —4
lui x29, 10
delay_until x29
beq x0, x0, 0

thread5_shift_right:

addi x29, x0, 200
delay_ until x29
lui x13, 1

srli x13, x13, 1
blt x0, x13, —4
lui x29, 10
delay_until x29
beq x0, x0, 0

thread6_ fibonacci:

addi x29, x0, 200
delay until x29
addi x14, x0, 15
addi x15, x0, O
addi x16, x0, 0
addi x17, x0, O
addi x18, x0, 1
add x16, x17, x18
addi x17, x18, 0
addi x18, x16, 0
addi x15, x15, 1
blt x15, x14, —16
lui x29, 10
delay_ until x29
beq x0, x0, 0

thread7 even:

addi x29, x0, 200
delay_ until x29
addi x19, x0, 25
addi x20, x0, 0
addi x20, x20, 2
blt x20, x19, —4
lui x29, 10

delay until x29
beq x0, x0, 0

//delay until
/ /NOP

//delay__until

//delay until
/ /NOP

//delay__until

//delay__until
/ /NOP

//delay until

//delay until
/ /NOP

//delay__until

//Show
//a
//b

//show = a + b

//a =b
//b = show

time

time

time

time

time

time

time

time

79

40960

800

40960

800

40960

800

40960

800

//delay until time 40960

/ /NOP

//delay__until time 800

//delay until time 40960

/ /NOP

Assembly-code A.3: DataHazardsMultiThreaded.a

Bibliography

1]

M. Colnaric, “State of the art review paper: advances in embedded hard real-time
systems design,” in ISIE ’99. Proceedings of the IEEE International Symposium on
Industrial Electronics (Cat. No.99TH8465), vol. 1, pp. 37-42 vol.1, 1999.

)

X. Fan, “Chapter 1 - introduction to embedded and real-time systems,” in Real-Time

Embedded Systems (X. Fan, ed.), pp. 3-13, Oxford: Newnes, 2015.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer Publishing Company, Incorporated, 2nd ed., 2011.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Springer Publishing Company, Incorporated, 3rd ed., 2011.

A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada, Real-
Time Java and C/Real-Time POSIX. Glenview, IL, USA: Addison-Wesley Educational
Publishers Inc, 4th ed., 2009.

V. Kangunde, R. Jamisola, and E. Theophilus, “A review on drones controlled in real-
time,” International Journal of Dynamics and Control, vol. 9, pp. 1-15, 12 2021.

A. Crespo, A. Alonso, M. Marcos, J. A. de la Puente, and P. Balbastre, “Mixed criticality
in control systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 12261-12271, 2014.
19th TFAC World Congress.

A. Burns and R. 1. Davis, Mized Criticality Systems - A Review : (13th Edition, February
2022). White Rose, February 2022. This is the 13th version of this review now updated
to cover research published up to the end of 2021.

Z. Hu, J. Luo, X. Fang, K. Xiao, B. Hu, and L. Chen, “Real-time schedule algorithm
with temporal and spatial isolation feature for mixed criticality system,” in 2021 7th
International Symposium on System and Software Reliability (ISSSR), pp. 99-108, 2021.

B. Leiner, M. Schlager, R. Obermaisser, and B. Huber, “A comparison of partitioning
operating systems for integrated systems,” in Computer Safety, Reliability, and Security
(F. Saglietti and N. Oster, eds.), (Berlin, Heidelberg), pp. 342-355, Springer Berlin
Heidelberg, 2007.

D. Wright, Z. Stephenson, and M. Beeby, “Efficient verification through the do-178c life
cycle,” in DO-178C handbook, 2012.

P. Puschner and A. Burns, “Guest editorial: A review of worst-case execution-time
analysis,” Real-Time Systems, vol. 18, pp. 115-128, 05 2000.

81

[13]

[14]

[20]

[21]

[24]

[25]

[26]

S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,” in 28th IEEFE International Real-Time Systems Symposium
(RTSS 2007), pp. 239243, 2007.

M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “Flexpret: A processor platform for
mixed-criticality systems,” in 2014 IEEFE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 101-110, 2014.

Renesas, “Issues with real time performance in conventional rtos and performance
improvements through hw-rtos,” tech. rep., Renesas, September 2018.

M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos, “Mixed-
criticality real-time scheduling for multicore systems,” in 2010 10th IEEE International
Conference on Computer and Information Technology, pp. 1864—1871, 2010.

S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple
criticality specifications,” in 2008 FEuromicro Conference on Real-Time Systems,
pp- 147-155, 2008.

C. Garre, D. Mundo, M. Gubitosa, and A. Toso, “Performance comparison of real-
time and general-purpose operating systems in parallel physical simulation with high
computational cost,” in SAE Technical Paper, vol. 1, 04 2014.

J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M. Johnson, “Rtos
support for multicore mixed-criticality systems,” in 2012 IEEE 18th Real Time and
Embedded Technology and Applications Symposium, pp. 197-208, 2012.

M. Zimmer, Predictable Processors for Mixed-Criticality Systems and Precision-Timed
I/0. PhD thesis, EECS Department, University of California, Berkeley, Aug 2015.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenstrom, “The worst-case execution-time problem - overview of methods and survey
of tools.,” ACM Trans. Embedded Comput. Syst., vol. 7, 01 2008.

R. Kahil, Schedulability in Mized-criticality Systems. Theses, Université Grenoble Alpes,
June 2019.

S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable mixed-criticality
systems,” in 2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 13-22, 2010.

D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of mixed-criticality
real-time task sets,” in 2009 30th IEEE Real-Time Systems Symposium, pp. 291-300,
2009.

N. J. H. Ip and S. A. Edwards, “A processor extension for cycle-accurate real-time
software,” in Embedded and Ubiquitous Computing (E. Sha, S.-K. Han, C.-Z. Xu, M.-H.
Kim, L. T. Yang, and B. Xiao, eds.), (Berlin, Heidelberg), pp. 449-458, Springer Berlin
Heidelberg, 2006.

B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee, “Predictable
programming on a precision timed architecture,” in Proceedings of the 2008 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems, CASES
'08, (New York, NY, USA), pp. 137-146, Association for Computing Machinery, 2008.

82

[27] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke, “Temporal isolation on multiprocessing
architectures,” in Proceedings of the 48th Design Automation Conference, pp. 274-279,
Association for Computing Machinery, 2011.

[28] S. Suijkerbuijk and B. Juurlink, “Implementing hardware multithreading in a vliw
architecture.,” in IASTED PDCS, pp. 674-679, 01 2005.

[29] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts. Wiley
Publishing, 10th ed., 2018.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth FEdition: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
6th ed., 2017.

[31] S. G. Nayak, “Dynamic branch prediction for embedded system applications,” in 2019
International Conference on Communication and Electronics Systems (ICCES), pp. 966—
969, 2019.

[32] V. P. Bharadwaj and M. Kohalli, “Dual decode architecture for dynamic branch
prediction,” in 2017 2nd International Conference for Convergence in Technology
(I2CT), pp. 1140-1143, 2017.

[33] J. E. Bennett and M. J. Flynn, “Reducing cache miss rates using prediction caches,”
tech. rep., Stanford University, Stanford, CA, USA, 1996.

. Kongetira, K. Aingaran, an . Olukotun, lagara: a 32-way multithreaded sparc
34| P. K ira, K. Ai d K. Oluk “Ni 32 Itithreaded
processor,” IEEE Micro, vol. 25, no. 2, pp. 21-29, 2005.

[35] I. Liu, Precision Timed Machines. PhD thesis, EECS Department, University of
California, Berkeley, May 2012.

[36] D. May, The XMOS XS1 Architecture. XMOS Semiconductor Ltd, 2009.

[37] “Why is model-based design important in embedded systems?” https://www.
einfochips.com/blog/why-is-model-based-design-important-in-embedded-systems.
Accessed: 2022-05-01.

[38] “Model-based systems engineering.” https://www.scaledagileframework.com/
model-based-systems-engineering/. Accessed: 2022-05-01.

[39] N. Shevchenko, “An introduction to model-based systems engineering (mbse).” Carnegie
Mellon University’s Software Engineering Institute Blog, Dec. 21, 2020. [Online].
Accessed: 2022-Apr-28.

[40] “Maximizing the benefits of model-based design through early verification.”
https://embeddedcomputing.com/technology /software-and-os/simulation-modeling-
tools/maximizing-the-benefits-of-model-based-design-through-early-verification, Nov
2011.

[41] D. Kaslow, B. Ayres, P. T. Cabhill, L. Hart, and R. Yntema, “A model-based systems
engineering (mbse) approach for defining the behaviors of cubesats,” in 2017 IEEE
Aerospace Conference, pp. 1-14, 2017.

83

https://www.einfochips.com/blog/why-is-model-based-design-important-in-embedded-systems
https://www.einfochips.com/blog/why-is-model-based-design-important-in-embedded-systems
https://www.scaledagileframework.com/model-based-systems-engineering/
https://www.scaledagileframework.com/model-based-systems-engineering/

[42]

[43]

B. SchA xitz, M. Broy, S. Kirstan, and H. Kremar, What is the Benefit of a Model-Based
Design of Embedded Software Systems in the Car Industry?, vol. 1, ch. 13, pp. 343—-369.
IGI Global, 01 2011.

S. Sharma and W. Chen, “Using model-based design to accelerate fpga development
for automotive applications,” SAE International Journal of Passenger Cars - Electronic
and Electrical Systems, vol. 2, 04 2009.

J. Luke and C. Swenson, “Model based design and auto coding of an fpga based satellite
control system.” Small Satellite Conference, 2016.

MathWorks, “Create hdl-compatible simulink model” https://se.mathworks.
com/help/hdlcoder/gs/create-hdl-compatible-simulink-model.html. Accessed:
2022-05-02.

MathWorks, “Generate hdl code from simulink model.” https://se.mathworks.com/

help/hdlcoder/gs/example-generating-hdl-code-from-a-simulink-model.html.
Accessed: 2022-05-02.

MathWorks, “Reusing reference models in design verification.” https://se.mathworks.
com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/
design-verification.html. Accessed: 2022-05-02.

MathWorks, “Fpga-based debug and verification.” |https://se.mathworks.
com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/
fpga-debugging.html. Accessed: 2022-05-02.

T. KelemenovAj, M. Kelemen, A. MikovAj, V. Maxim, E. Prada, T. LiptAjk, and
F. Menda, “Model based design and hil simulations,” American Journal of Mechanical
Engineering, vol. 1, pp. 276-281, 11 2013.

RISC-V, “About risc-v.” https://riscv.org/about/, Visited: 2022-06-16, 2015.

ARM, “What is an instruction set architecture?.” https://www.arm.com/glossary/
isa, Visited: 2022-06-16.

A. Singh, N. Franklin, N. Gaur, and P. Bhulania, “Design and implementation of a
32-bit isa risc-v processor core using virtex-7 and virtex- ultrascale,” in 2020 IEEE
5th International Conference on Computing Communication and Automation (ICCCA),
pp. 126-130, 2020.

J. Gray, “Grvi phalanx: A massively parallel risc-v fpga accelerator accelerator,” in 2016
IEEFE 2/th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 17-20, 2016.

G. Zhang, K. Zhao, B. Wu, Y. Sun, L. Sun, and F. Liang, “A risc-v based hardware
accelerator designed for yolo object detection system,” in 2019 IEEE International
Conference of Intelligent Applied Systems on Engineering (ICIASE), pp. 9-11, 2019.

F. EmbedDev, “Rv32i base integer instruction set, version 2.1,” Five EmbedDev, 2019.
https://five-embeddev.com/riscv-isa-manual/latest/rv32.html#rv32, Visited:
2022-06-16.

84

https://se.mathworks.com/help/hdlcoder/gs/create-hdl-compatible-simulink-model.html
https://se.mathworks.com/help/hdlcoder/gs/create-hdl-compatible-simulink-model.html
https://se.mathworks.com/help/hdlcoder/gs/example-generating-hdl-code-from-a-simulink-model.html
https://se.mathworks.com/help/hdlcoder/gs/example-generating-hdl-code-from-a-simulink-model.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/design-verification.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/design-verification.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/design-verification.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/fpga-debugging.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/fpga-debugging.html
https://se.mathworks.com/campaigns/offers/next/verifying-algorithms-on-fpgas-and-asics/fpga-debugging.html
https://riscv.org/about/
https://www.arm.com/glossary/isa
https://www.arm.com/glossary/isa
https://five-embeddev.com/riscv-isa-manual/latest/rv32.html#rv32

[56]

[57]

[68]

[69]

F. EmbedDev, “A standard extension for atomic instructions, version 2.1
https://five-embeddev.com/riscv-isa-manual/latest/a.html#atomics, Visited:
2022-06-16.

S. K. Chen C., Novick G., “Pipelining,” RISC Architecture, 2000. https:
//cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/
index.html, Visited: 2022-06-16.

W. N. Wawrzynek J., “Discussion 7 - pipelined cpu.” https://inst.eecs.berkeley.
edu/~cs61c/sp18/disc/7/disc07_sol.pdf], Visited: 2022-06-16, 2018.

W. N. Wawrzynek J., “Pipelining.” https://inst.eecs.berkeley.edu/~cs61lc/spl8/
lec/13/1lec13.pdf], Visited: 2022-06-16, 2018.

I. E., “Five stages of risc pipeline,” Gitconnected, 2021. https://levelup.
gitconnected.com/five-stages-of-risc-pipeline-aad0c3eb1233, Visited: 2022-
06-16.

F. EmbedDev, “Control and status registers (csrs),” Five EmbedDev, 2019.
https://five-embeddev.com/riscv-isa-manual/latest/priv-csrs.html#chap:
priv-csrs| Visited: 2022-06-16.

F. EmbedDev, “Machine-level isa, version 1.12,” Five EmbedDev, 2019. |https:
//five-embeddev.com/riscv-isa-manual/latest/machine.html#machine, Visited:
2022-06-16.

F. EmbedDev, “Machine-level csrs,” Five EmbedDev, 2019. https://five-embeddev.
com/riscv-isa-manual/latest/machine.html#machine-level-csrs) Visited: 2022-
06-16.

S. Inc, “Sifive interrupt cookbook,” tech. rep., SiFive Inc, December 2019.

F. EmbedDev, “Machine timer registers (mtime and mtimecmp),” Five Embed-
Dev, 2019. https://five-embeddev.com/riscv-isa-manual/latest/machine.html#
machine-timer-registers-mtime-and-mtimecmp, Visited: 2022-06-16.

S. Faeroe, “Logic driven verification of functionality for custom microarchitecture,”
project report in TFE4590, Department of Electronic Systems, NTNU — Norwegian
University of Science and Technology, Dec 2021.

A. Waterman and K. Asanovic, “The risc-v instruction set manual, volume ii:
Privileged architecture, document version 1.12-draft,” Five EmbedDev, 2019. https://
five-embeddev.com/riscv-isa-manual/latest/rv32.html#sec:rv32:1dst, Visited:
2022-06-09.

A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic, “The risc-v
instruction set manual volume ii: Privileged architecture version 1.9,” Tech. Rep.
UCB/EECS-2016-129, EECS Department, University of California, Berkeley, Jul 2016.

A. Waterman and K. Asanovic, “The risc-v instruction set manual, volume ii:
Privileged architecture, document version 1.12-draft,” Five EmbedDev, 2019. https:
//five-embeddev.com/riscv-isa-manual/latest/machine.html#sec:pmp, Visited:

2022-06-08.

85

https://five-embeddev.com/riscv-isa-manual/latest/a.html#atomics
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
https://inst.eecs.berkeley.edu/~cs61c/sp18/disc/7/disc07_sol.pdf
https://inst.eecs.berkeley.edu/~cs61c/sp18/disc/7/disc07_sol.pdf
https://inst.eecs.berkeley.edu/~cs61c/sp18/lec/13/lec13.pdf
https://inst.eecs.berkeley.edu/~cs61c/sp18/lec/13/lec13.pdf
https://levelup.gitconnected.com/five-stages-of-risc-pipeline-aad0c3eb1233
https://levelup.gitconnected.com/five-stages-of-risc-pipeline-aad0c3eb1233
https://five-embeddev.com/riscv-isa-manual/latest/priv-csrs.html#chap:priv-csrs
https://five-embeddev.com/riscv-isa-manual/latest/priv-csrs.html#chap:priv-csrs
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-level-csrs
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-level-csrs
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-timer-registers-mtime-and-mtimecmp
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-timer-registers-mtime-and-mtimecmp
https://five-embeddev.com/riscv-isa-manual/latest/rv32.html#sec:rv32:ldst
https://five-embeddev.com/riscv-isa-manual/latest/rv32.html#sec:rv32:ldst
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#sec:pmp
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#sec:pmp

[70]

K. Cheang, C. Rasmussen, D. Lee, D. Kohlbrenner, K. Asanovié¢, and S. A. Seshia,
“Verifying risc-v physical memory protection,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) Workshop on Secure RISC-V
Architecture Design, 2020.

A. Waterman and K. Asanovic, “The risc-v instruction set manual, vol-
ume ii: Privileged architecture, document version 1.12-draft,” Five Embed-
Dev, 2019. https://five-embeddev.com/riscv-isa-manual/latest/machine.html#
machine-timer-registers-mtime-and-mtimecmp, Visited: 2022-06-09.

I. Puaut, “Wecet-centric software-controlled instruction caches for hard real-time
systems,” in 18th Euromicro Conference on Real-Time Systems (ECRTS’06), pp. 10
pp-—226, 2006.

M. Schoeberl, “Time-predictable cache organization,” in 2009 Software Technologies for
Future Dependable Distributed Systems, pp. 11-16, 2009.

86

https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-timer-registers-mtime-and-mtimecmp
https://five-embeddev.com/riscv-isa-manual/latest/machine.html#machine-timer-registers-mtime-and-mtimecmp

	Abstract
	Preface
	List of abbreviations
	Introduction
	Introduction and motivation
	Objectives
	Contributions
	Thesis Structure

	Background and Related Work
	Mixed-Criticality Systems
	Timing Instructions
	Hardware Multithreading Techniques
	Model-Based Engineering
	RISC-V
	RV32I Base Integer Instruction Set
	Control and Status Registers
	Machine-level Timer Registers

	Previous Work
	Single-operation RISC-V Architecture
	FlexPRET

	The Microarchitecture Design
	Architecture
	5-Stage RISC-V Pipeline
	Control Unit
	Memory Unit

	Hardware Thread Scheduler
	Hardware Thread Scheduling CSRs
	Main Scheduler
	SRTT Scheduler
	Thread Select Logic
	Stall Unit
	Hardware Thread Scheduler Example

	Timer Unit
	Timing Instruction Set
	Memory Mapped Timer Registers

	Assembler for the Microarchitecture

	System Analysis
	System Configurations
	System Execution Time
	System Response

	Coarse-grained Multithreading

	Conclusion and Future Work
	Code
	Python code
	Assembly code

	Bibliography

