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Abstract 

In the last decades, increasing global energy demand, a foreseen reduction of available 

fossil fuels and increasing evidence for global warming have shown the urgency to 

rethink the built environment and promote energy transition. Indeed, in most 

industrialised nations, the building sector accounts for about 40% of the total energy 

consumption (space heating and cooling, domestic hot water, ventilation, lighting and 

appliance use). A significant share of this energy is used to thermal control buildings 

and provide thermally comfortable indoor environments. However, technical building 

systems are typically designed and operated considering fixed set-point temperatures 

based on the ‘one-size-fits-all’ principle – which has been questioned in the last fifty 

years – assuming universal thermal comfort requirements. Furthermore, the indoor 

environment frequently changes abruptly across buildings or between various parts 

within a single building. For instance, manually operating thermostats, windows and 

solar shades can result in considerable and not systematic changes in the indoor 

environment. Also, automatic controllers exhibit, to a lesser degree, a similar behaviour. 

Moreover, individual activity modifies the basal metabolic rate over time, and the 

addition or removal of clothes affects the heat balance of the human body as well. In 

other words, the steady-state temperature settings are the exception rather than the 

rule. Building temperature ranges should instead be based on real-time empirical 

evidence regarding the needs of its occupants, which is obtained through their feedback 

(usually on a rating scale). This thesis investigates these topics and relies upon an 

experimental study to explore the human reaction to dynamic thermal environments.  

The general approach utilised in this thesis encompasses a 

technical/methodological aspect, namely a newer controlled experimental procedure 

and a robust and replicable methodology for human feedback acquisition, and a 

statistical aspect, namely an original statistics-enabled occupant-centric modelling. The 

technical/methodological aspect refers to how thermal comfort data are collected; that 
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is, the specific approach and experimental set-up utilised. The statistical aspect refers 

to how thermal comfort data are analysed, namely, the specific statistical technique to 

be adopted and the needed modelling steps. 

It was found that the human reaction to dynamic thermal stimuli is asymmetric with 

respect to heating and cooling processes, and two distinct mechanisms cause 

discomfort due to overheating and overcooling. Compared to the recommendations 

regarding temperature cycles, drifts and ramps included in the ASHRAE Standard 55, 

this result showed that current recommendations underestimate the risk of thermal 

discomfort during a cooling process while overestimating it during a heating one. 

Concerning the subjective thermal comfort data analysis, the choice of the statistical 

method affects the conclusions. While it may seem a trivial consideration, till now, it is 

common in the thermal comfort field to find studies that use, for example, linear 

regression on ordinal data following an old approximation used to overcome the lack of 

statistical tools and computational power (which are not anymore limiting aspects in 

statistical analysis). Particularly, we showed that applying a linear regression model to 

ordinal data suggested that there is no difference in means and effect size between 

genders (female/male). In contrast, an ordinal regression model leaded to the opposite 

conclusion. This is considered one of the reasons why there is no consensus in the 

scientific literature on whether gender is an influential factor when assessing the 

perception of the thermal environment. This result points out that greater attention 

should be paid to the choice of the statistical method used to analyse subjective data, 

which should consider the level of measurement used during the data gathering. 

Furthermore, two different procedures were proposed to facilitate the integration of the 

occupants and their actual needs into the design and operation of buildings: the former 

is suitable for a better-informed design phase, where the target is the optimal thermal 

comfort conditions expressed for an ‘average’ occupant; the other is appropriate for 

including the human-in-the-control-loop of a building, where satisfying the needs of a 

specific occupant is the primary goal.  

Through this thesis work, new knowledge concerning the human reactions to a 

dynamic thermal environment was created, which can improve the understanding of the 

extent to which the indoor environmental conditions can vary both naturally and 

artificially. Designing and implementing thermally comfortable set-point modulations 



Abstract 

vii 

that consider the occupant feedback capabilities would be beneficial to increase 

perceived thermal comfort and productivity, potentially reduce energy consumption and 

significantly support the clean energy transition. In addition, several recommendations 

for future research are presented. 
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Sammendrag 

I løpet av de siste tiårene har økende global energietterspørsel, en forventet reduksjon 

av tilgjengelig fossilt brensel og økende bevis for global oppvarming, vist at det haster 

med å tenke nytt om det bygde miljøet og fremme energiomstilling. I de fleste 

industrialiserte land står byggesektoren for omtrent 40 % av det totale energiforbruket 

(oppvarming og kjøling av rom, varmtvann til husholdningsbruk, ventilasjon, belysning 

og bruk av apparater). En betydelig andel av denne energien brukes til å 

varmekontrollere bygninger og gi termisk komfortable innendørsmiljøer. Imidlertid er 

tekniske bygningssystemer vanligvis designet og drevet med tanke på faste 

settpunkttemperaturer som baserer seg på “one-size-fits-all”-prinsippet – hvilket det de 

siste femti årene har blitt stilt spørsmål ved– som stiller universelle krav til termisk 

komfort. Videre endrer innemiljøet seg ofte brått på tvers av bygninger eller mellom 

ulike deler i bygningen. For eksempel kan manuelt betjente termostater, vinduer og 

solskjermer resultere i betydelige og ikke-systematiske endringer i innemiljøet. 

Automatiske kontroller viser i mindre grad en lignende oppførsel. Kroppslig aktivitet 

endrer dessuten basalstoffskiftet over tid, og tilføyelse eller fjerning av klær påvirker 

varmebalansen i menneskekroppen. Med andre ord er steady-state 

temperaturinnstillingene unntaket snarere enn regelen. Temperaturområdet i et bygg 

bør i stedet være basert på sanntids empiriske bevis angående behovene til brukerne, 

som er innhentet gjennom deres tilbakemeldinger (vanligvis på en vurderingsskala). 

Denne oppgaven undersøker disse temaene og baserer seg på en eksperimentell studie 

for å utforske menneskets reaksjon på dynamiske termiske miljøer. 

Den generelle tilnærmingen som benyttes i denne oppgaven omfatter et 

teknisk/metodologisk aspekt, nemlig en nyere kontrollert eksperimentell prosedyre og 

en robust samt replikerbar metodikk for innhenting av menneskelig tilbakemelding, og 

et statistisk aspekt, nemlig en original statistikkaktivert occupant-sentrisk modellering. 

Det tekniske/metodiske aspektet refererer til hvordan termisk komfordata samles inn; 
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det vil si den spesifikke tilnærmingen og eksperimentelle oppsettet som benyttes. Det 

statistiske aspektet refererer til hvordan termisk komfordata analyseres, nemlig den 

spesifikke statistiske teknikken som skal tas i bruk og de nødvendige 

modelleringstrinnene. 

Det ble funnet at den menneskelige reaksjonen på dynamiske termiske stimuli er 

asymmetrisk i forhold til oppvarmings- og kjølingsprosesser, og to distinkte mekanismer 

ble funnet til å forårsake ubehag på grunn av overoppheting og overkjøling. 

Sammenlignet med anbefalte temperatursykluser, drifter og ramper inkludert i ASHRAE 

Standard 55, viste dette resultatet at gjeldende anbefalinger undervurderer risikoen for 

termisk ubehag ved en kjøleprosess mens den overvurderes ved en 

oppvarmingsprosess. Når det gjelder den subjektive termiske komfordataanalysen, 

påvirkes konklusjonen av valgt statistisk metode. Selv om det kan virke som en triviell 

vurdering, er det frem til nå vanlig innen termisk komfort å finne studier som bruker for 

eksempel lineær regresjon på ordinære data etter en eldre tilnærming brukt for å 

kompensere for mangelen på statistiske verktøy og beregningskraft (som ikke lenger er 

begrensende aspekter i statistisk analyse). Spesielt viste vi at bruk av en lineær 

regresjonsmodell på ordinaldata antydet at det ikke er forskjell i gjennomsnitt og 

effektstørrelse mellom kjønn (kvinne/mann). Derimot førte en ordinær regresjonsmodell 

til motsatt konklusjon. Dette anses som en av grunnene til at det ikke er konsensus i 

vitenskapelig litteratur om hvorvidt kjønn er en påvirkningsfaktor når man vurderer 

oppfatningen av det termiske miljøet. Dette resultatet peker på at det bør vies større 

oppmerksomhet til valget av den statistiske metoden som benyttes ved analyse av 

subjektive data, som bør ta hensyn til målenivået som brukes under datainnsamlingen. 

Videre ble det foreslått to forskjellige prosedyrer for å lette integreringen av brukerne 

og deres faktiske behov i design og drift av bygninger: førstnevnte er egnet for en bedre 

informert designfase, hvor målet er de optimale termiske komforforholdene uttrykt for 

en “gjennomsnittlig” bruker; sistnevnte er hensiktsmessig for å inkludere mennesket-i-

kontroll-sløyfen i en bygning, der det å tilfredsstille behovene til en spesifikk bruker er 

hovedmålet. 

Gjennom denne avhandlingen har det blitt skapt ny kunnskap om menneskets 

reaksjoner på et dynamisk termisk miljø, som kan forbedre forståelsen av hvilken grad 

innemiljøforholdene kan variere både naturlig og kunstig. Å designe og implementere 
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termisk komfortable settpunktmodulasjoner som tar hensyn til tilbakemeldingsevnen for 

beboere vil være fordelaktig for å øke opplevd termisk komfort, og produktivitet, samt 

potensielt redusere energiforbruket og betydelig støtte overgangen til ren energi. I 

tillegg presenteres flere anbefalinger for fremtidig forskning. 
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Sommario 

Negli ultimi decenni, l’aumento dei consumi energetici mondiali, la minore disponibilità 

di combustibili fossili e la crescente evidenza del riscaldamento globale hanno 

manifestato la necessità di ripensare l’ambiente edificato e promuovere la transizione 

energetica. Infatti, nella maggior parte dei paesi industrializzati, il settore edile 

rappresenta circa il 40% del consumo totale di energia (riscaldamento e raffrescamento 

degli ambienti, acqua calda sanitaria, ventilazione, illuminazione e utilizzo di 

elettrodomestici). Una quota significativa di questa energia viene utilizzata per il 

controllo termico degli edifici e per fornire ambienti interni termicamente confortevoli. 

Tuttavia, i sistemi tecnici per l’edilizia sono generalmente progettati e gestiti 

considerando temperature di setpoint fisse basate sul principio ‘one-size-fits-all’ – che 

è stato messo in discussione negli ultimi cinquant’anni – assumendo requisiti di comfort 

termico universali. Inoltre, le condizioni ambientali interne possono cambiare 

bruscamente da un edificio all’altro o tra le varie zone di uno stesso edificio. Ad esempio, 

il funzionamento manuale di termostati, finestre e tende solari può comportare 

cambiamenti considerevoli e non sistematici nell’ambiente interno. Inoltre, i controllori 

automatici mostrano, in misura minore, un comportamento simile. In aggiunta, il 

metabolismo basale cambia a seconda dell’attività fisica della singola persona, ed 

indossare o togliere gli indumenti influisce sull’equilibrio termico del corpo umano. In 

altre parole, considerare la temperatura in regime stazionario è l’eccezione piuttosto 

che la regola. Gli intervalli di temperatura degli edifici dovrebbero invece essere basati 

su prove empiriche in tempo reale relative ai bisogni dei suoi occupanti, ottenute 

attraverso i loro feedback (di solito su una scala di valutazione). La presente tesi analizza 

questi aspetti proponendo uno studio sperimentale per esplorare la reazione umana agli 

ambienti termici dinamici. 

L’approccio generale utilizzato in questa tesi comprende un aspetto 

tecnico/metodologico, ovvero una procedura sperimentale innovativa e una 
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metodologia robusta e replicabile per l’acquisizione del feedback da parte degli utenti, 

e un aspetto statistico, ovvero una modellazione statistica originale incentrata 

sull’occupante. L’aspetto tecnico/metodologico si riferisce alle modalità di raccolta dei 

dati di comfort termico; cioè lo specifico approccio e l’impostazione sperimentale 

utilizzata. L’aspetto statistico si riferisce al modo in cui i dati sul comfort termico vengono 

analizzati, ovvero la specifica tecnica statistica da adottare e le fasi di modellazione 

necessarie. 

È stato riscontrato che la reazione umana agli stimoli termici dinamici è asimmetrica 

rispetto ai processi di riscaldamento e raffreddamento, e che due meccanismi distinti 

causano disagio da surriscaldamento e sovraraffreddamento. Rispetto alle 

raccomandazioni relative a “temperature cycles, drifts and ramps” incluse nello 

Standard ASHRAE 55, questo risultato ha mostrato che le attuali raccomandazioni 

sottovalutano il rischio di disagio termico durante il processo di raffreddamento mentre 

lo sovrastimano durante quello di riscaldamento. Per quanto riguarda l’analisi soggettiva 

dei dati di comfort termico, la scelta del metodo statistico influisce sulle conclusioni. 

Anche se può sembrare una considerazione banale, nel campo del comfort termico è 

comune trovare studi che utilizzino, ad esempio, la regressione lineare su dati ordinali 

basandosi su una vecchia approssimazione, utilizzata per sopperire alla mancanza di 

strumenti statistici e potenza computazionale (che non sono più aspetti limitanti 

nell’analisi statistica). In particolare, abbiamo mostrato che l’applicazione di un modello 

di regressione lineare su dati ordinali suggerisce che non vi è alcuna differenza nella 

media e nell’ampiezza dell’effetto tra i sessi (femmina/maschio). Al contrario, un modello 

di regressione ordinale ha portato alla conclusione opposta. Questo è considerato uno 

dei motivi per cui non c’è consenso nella letteratura scientifica sul fatto che il sesso sia 

un fattore influente nella valutazione della percezione dell’ambiente termico. Tale 

risultato evidenzia la necessità di porre una maggiore attenzione nella scelta del metodo 

statistico utilizzato per l’analisi dei dati soggettivi, il quale dovrebbe considerare la scala 

di misura utilizzata durante la raccolta dei dati. Inoltre, sono state proposte due diverse 

procedure per facilitare l’integrazione degli occupanti e le loro effettive esigenze nella 

progettazione e nel funzionamento degli edifici: la prima è utile per informare una fase 

progettuale più consapevole, dove l’obiettivo sono le condizioni ottimali di comfort 

termico espresse per un occupante ‘medio’; l’altra procedura è adatta per includere 
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l’essere umano nel circuito di controllo dell’ edificio, dove soddisfare i bisogni di uno 

specifico occupante è l’obiettivo primario. 

Attraverso questo lavoro di tesi è stata creata nuova conoscenza riguardante la 

reazione umana ad un ambiente termico dinamico, la quale può migliorare la 

comprensione dell’entità con cui le condizioni ambientali interne possono variare sia 

naturalmente che artificialmente. Progettare e implementare modulazioni termicamente 

confortevoli del setpoint, che tengano conto delle capacità di feedback degli occupanti, 

sarebbe utile per aumentare il comfort termico e la produttività, ridurre potenzialmente 

il consumo di energia e supportare in modo significativo la transizione verso l’utilizzo 

sostenibile di fonti energetiche rinnovabili. Infine, vengono presentate alcune 

raccomandazioni per la ricerca futura. 
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Glossary 

Beta mixed-effects model — A mixed-effect model which assume a beta distribution 

for the conditional distribution of the response variable.  

Central tendency — A measure of a central or typical value for a probability 

distribution. Mean, median, and mode are examples of possible measures of central 

tendency. 

Cluster-specific procedure — An approach used to handle the group-level residual 

(i.e., group-level random effect) during the prediction. The probabilities calculated with 

this approach have a cluster-specific interpretation (i.e., describe only the unit belonging 

to the specific cluster). 

Cumulative probit model — A cumulative link model (belonging to the broad class of 

ordinal regression models) in which the link function is the probit. 

Dispersion — A measure of variability of a distribution, usually around its central 

tendency. Variance, standard deviation, and interquartile range are example of possible 

measures of dispersion.  

Logit — Sometimes called log-odds, it is the inverse of the cumulative distribution 

function of the standard logistic distribution. It is a type of function that maps probability 

values from (0,1) to real numbers in (−∞, +∞). 

Mixed-effects model — A synonym of multilevel model. See multilevel model. 

Multilevel model — A statistical technique suitable to model the relationship between 

the dependent(s) and independent(s) variables when there is a correlation between 

observations (e.g., whenever the data are clustered and/or nested) [1]. 

Ordinal mixed-effect model — A mixed-effect model which assume a multinomial 

distribution for the conditional distribution of the response variable. 

Population-averaged procedure — A simulation-based approach used to handle the 

group-level residual (i.e., group-level random effect) during the prediction. The 

probabilities calculated with this approach have a population-averaged interpretation 

(i.e., averaged across the random effects). 

Probability density function — Provides the probability distribution for continuous 

variables. It allows to determine the probability of an observation being within a set range 

around a target value [2]. 

Probability mass function — Provides the probability distribution for discrete variables. 

It allows to determine the probability of an observation being exactly equal to a target 

value [2]. 
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Probit — The inverse of the cumulative distribution function of the standard normal 

distribution. It is a type of function that maps probability values from (0,1) to real 

numbers in (−∞, +∞). 

Random effect — A term that refers to the randomness in the probability model for the 

group-level coefficients of a multilevel model [1]. 
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Introduction 

In the last decades, increasing global energy demand, a foreseen reduction of available 

fossil fuels and increasing evidence for global warming have sparked a surge in 

promoting the energy transition. In most industrialised nations, buildings energy 

consumption account for a considerable amount (about 40 % [3]) of total energy 

consumption and is used for space heating, cooling, ventilation, and lighting of rooms, 

as well as the generation of domestic hot water and electric appliances used by 

inhabitants. Typically, space heating and cooling are the most energy-intensive 

processes. For instance, in 2018, they accounted for almost 40 % of all energy 

consumed by buildings worldwide [4]. Rethinking how buildings are designed and 

operated is necessary to reduce their energy consumption. However, the design and 

operation of buildings have significant implications for people’s comfort, well-being, and 

health, especially considering that humans spend approximately 90  % of their time 

indoors [5]. Consequently, measures to reduce energy consumption in buildings should 

be centred on the occupants.  

The human sensory system is exposed to a variety of environmental stimuli. In 

buildings, four ecological factors are identified as the main aspects characterising the 

indoor environment, namely thermal, visual, auditory, and air quality stimuli. Human 

senses allow people to perceive these stimuli and subsequently evaluate and respond 

to them, often through behavioural actions. Although not all interactions between 

occupants and the built environment are motivated by a reaction to an unpleasant 

stimulus (i.e., discomfort), perception and behaviour have a strong correlation [6]. 

Nevertheless, there are few studies linking perception and action. Furthermore, the 

scientific literature in this field frequently treats these various stimuli separately. 

The thermal domain is, to date, the most studied in climatic chamber experiments 

among the four environmental factors typically considered in buildings. However, most 

focus is on stationary thermal environments, while the experiments on dynamic 



Introduction 

2 

conditions mainly involve step-changes. Unsurprisingly, technical building systems are 

typically designed and operated considering fixed set-point temperatures based on the 

‘one-size-fits-all’ principle assuming universal thermal comfort requirements. On the 

one hand, maintaining a tight temperature range demands more energy than allowing a 

wider operative temperature shift. On the other, the understanding of the human 

response to changing thermal environments is still limited. So, to what extent the indoor 

thermal conditions of buildings can be modulated without sacrificing the thermal comfort 

perceived by their occupants remains an unresolved research subject. 

Therefore, it is evident that indoor environmental monitoring and control strategies 

play an essential role in the design and operation of a building (both for energy 

consumption and the thermal comfort of the occupants). Tailoring services such as 

Heating, Ventilation, and Air Conditioning (HVAC), lighting, and electrical power have 

the potential to save a significant amount of required energy. In addition to 

environmental awareness, occupant-aware control schemes have been shown to save 

between 10–42 %, depending on factors such as outdoor climate and control 

strategy [7,8]. A more detailed view of the building environment and its occupants opens 

the door to more energy efficient building services tailored to specific purposes and 

target groups. 

Aims and structure of the thesis  

The general aim of this thesis is to investigate how indoor thermal conditions may be 

modulated while guaranteeing satisfactory thermal comfort conditions. The general 

approach utilised in this thesis encompasses both a technical/methodological and a 

statistical point of view. The technical/methodological aspect refers to how thermal 

comfort data are collected; that is, the specific approach and experimental set-up 

utilised. On the other, the statistical aspect refers to how thermal comfort data are 

analysed, namely, the specific statistical technique to be adopted and the needed 

modelling steps. Both of these aspects are essential and interrelated. They compose 

the research design – the overall strategy for data collection and analysis – which, in 

turn, is based on the specific question driving the research. 

The introduction provides a brief preface to the context and the aims of the thesis. 

Chapter 1 offers a more detailed theoretical background for the research. It summarises 
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historical research on ‘static’ thermal comfort, its integration into standards and the most 

recent development of ‘dynamic’ thermal comfort. An overview of human thermal 

perception and thermoregulation is also provided with a hint of thermophysiological 

models. It also describes the individual differences in thermal comfort and briefly 

introduces the new paradigm of ‘personalised thermal comfort’. In addition, the 

subjective assessment of the thermal environment and the behaviour of occupants in 

buildings are discussed. The knowledge gap identified from the theoretical background, 

as well as the primary research topics addressed in this thesis, are given in Chapter 2. 

Chapter 3 presents the methodology undertaken in this thesis. The results are 

presented in Chapter 4 and discussed in Chapter 5. Finally, the conclusions and future 

developments are presented in Chapter 6. 
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Chapter 1 

Background 

Thermal comfort models for the human body have been available for over 40 years as 

a result of considerable efforts in the 1960s and earlier to develop such models for 

military and aerospace applications. Currently, the most adopted international thermal 

comfort standards, ASHRAE 55:2020 [9], ISO 7730:2005 [10] and EN 16798-1:2019 [11] 

(formerly EN 15251:2007 [12]), propose requirements based on Fanger model (beyond 

also including other approaches), which solves the heat balance between the human 

body and its surroundings represented as a uniform environment. Fanger introduced 

the ‘Predicted Mean Vote’ (PMV) as the index that predicts the mean thermal sensation 

vote on a standard scale for a large group of persons exposed to a given combination 

of activity level, clothing insulation and four thermal environmental variables (dry-bulb 

air temperature, mean radiant temperature, air velocity and relative humidity) [13]. The 

PMV-model is generally referred to as a static model because it is only suited to predict 

thermal sensation under steady-state or slowly changing indoor conditions (i.e., rate of 

change lower than 2.0 K/h) [10]. Based on the PMV, the ‘Predicted Percentage of 

Dissatisfied’ (PPD) was determined: 

PPD = 100 − 95 ∙ 𝑒(−0.03353∙PMV4−0.2179∙PMV2) Eq. (1) 
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Fig. 1 – Predicted percentage dissatisfied (PPD) as a function of predicted mean vote 

(PMV). From ASHRAE 55:2020 [9]. 

In Fig. 1 can be seen that the relationship between PMV and PPD has a minimum 

of 5% at PMV = 0 – generally referred to in the literature as thermal neutrality. 

Furthermore, it is also symmetric on the cooler (i.e., for negative PMV values) and the 

warmer (i.e., for positive PMV values) sides. In this regard, the issue that arises is 

whether the outcome of Fanger’s analysis (specifically, minimum of dissatisfied of 5  % 

and symmetry of the curve centred at PMV = 0) are correct. Different studies have found 

other relationships than the one described by Fanger [14-17]. 

In the 1970s, the same period when Fanger developed his model, Nicol and 

Humphreys [18] hypothesised the presence of ‘control mechanisms’ (feedback loops) 

between the occupants’ thermal comfort perception and their behaviour in buildings. 

They suggested that the building design may concentrate on how to allow for the 

‘control mechanisms’ to operate rather than trying to establish optimum indoor climates. 

In the first meta-analysis of thermal comfort field studies worldwide, Humphreys [19] 

compiled data from more than 30 field studies of thermal comfort and shows, with 

compelling evidence, the disparity between physiological model predictions and 

empirical field study. In a subsequent reanalysis of the data, Humphreys [20] evaluated 

the influence of climate and found that the indoor temperature required for thermal 

comfort is related to the prevailing outdoor mean temperature. Later on, the analysis of 

the two studies was brought together [21]. It can be said that these papers are the 

ancestors of what is nowadays known as the adaptive thermal comfort model since they 

have shaped its development (e.g., see [22-25]). The hypothesis of adaptive thermal 
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comfort predicts that contextual factors and past thermal history modify occupant’s 

thermal expectations and preferences [26]. People in warm climate zones would prefer 

higher indoor temperatures than people living in cold climate zones, which contrasts 

with the assumptions underlying comfort standards based on the PMV model [26]. 

Adaptation is defined as the gradual decrease of the human response to repeated 

environmental stimulation, and can be both behavioural (e.g., clothing adjustment), 

physiological (e.g., acclimatisation) as well as psychological (e.g., 

expectation) [24,26,27]. Therefore, the adaptive model recognises the adaptation of 

people; however, it focuses on long-term adaptation mechanisms, ignoring short-term 

ones. 

In current standards, Fanger’s PMV/PPD model is the prerogative of mechanically 

heated and/or cooled buildings, while the adaptive thermal comfort model is reserved 

for free-running buildings. Both are steady-state and whole-body thermal comfort 

models that predict the mean thermal sensations for a group of people. Therefore, they 

can account neither for dynamic and non-uniform thermal environments nor for 

individual differences. 

1.1 Dynamic and non-uniform thermal environments  

Manually operating thermostats, ventilation fans, windows, and window shades can 

result in considerable and not systematic changes in the indoor environment. Automatic 

controllers exhibit, to a lesser degree, a similar behaviour. The indoor environment 

frequently changes abruptly across buildings or between various parts within a single 

building. Individual activity modifies the basal metabolic rate over time, and the addition 

or removal of clothes affects the heat balance as well. In other words, the steady-state 

temperature settings that define most comfort studies are the exception rather than the 

rule. In 1981, Rohles [28] stated that ‘human response to the thermal environment 

depends on seven variables’ (air temperature, relative humidity, mean radiant 

temperature, air velocity, clothing, physical activity, and time). He also mentioned that 

‘even though the thermal conditions to which humans are exposed are never constant 

for long periods of time, time has received only modest attention as a variable in comfort 

research’ [28]. These days, ‘time’ continues to be the least understood variable in the 

field of thermal comfort research. 
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Nowadays, all thermal comfort standards include definitions of the requirements 

for indoor thermal conditions in buildings both for design and operational assessment. 

However, current standards only indicate the maximum variations in operative 

temperature for non-steady-state thermal environments. ASHRAE 55:2020 [9] and 

ISO 7730:2005 [10] classify temperature variations as either temperature drifts and 

ramps or temperature cycles. Drifts and ramps are defined as ‘monotonic, non-cyclic 

changes in operative temperature’ [9], and their limits during a period are shown in 

Table 1. Drifts refer to passive temperature changes in an enclosed space, while ramps 

denote actively controlled ones. In contrast, cycles refer to ‘those situations where the 

operative temperature repeatedly rises and falls, and the period of these variations is 

not greater than 15 min’ [9]. For these changes, ASHRAE 55 allows a maximum peak-

to-peak cyclic variation in operative temperature of 1.1 K and recommends treating 

cyclic variations with a period greater than 15 min as drifts or ramps.  

Table 1 – Limits on temperature drifts and ramps by ASHRAE 55:2020 [9]. 

Time period (h) 

Maximum operative 

temperature to 

change allowed (K) 

0.25 1.1 

0.5 1.7 

1 2.2 

2 2.8 

4 3.3 

 

ISO 7730:2005 [10] provides less detailed indications. For temperature cycles, it 

sets a maximum peak-to-peak variation of 1 K, whereas, for drifts and ramps with a rate 

of change lower than 2.0 K/h, it prescribes steady-state methods. These standards also 

include step-changes, which involve changing the environment (i.e., moving to/from 

another space) rather than a change within the environment. Consequently, they are 

not described here because they are out of the scope of this thesis.  

The limiting criteria in Table 1 are probably based on early laboratory studies of 

thermal comfort under transient exposure [29-31]. During the same period (the 1970s 

and 1980s), other studies were conducted on both cyclical [32,33] and monotonic 

temperature variations [34-38]. Hensen [39] reviewed these studies meticulously and 

found inconsistent results. He offered several possible explanations for these 
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dissimilarities, including the different voting scales and acceptability criteria and the 

distinct experimental conditions, among others. Despite these discrepancies, Hensen 

argued that the experimental results support a 2.2 K/h constraint for cyclical variations 

in operative temperature. As no evidence had been found to the contrary, he also 

concluded that this limit could also apply to temperature drifts and ramps. Since this 

review, only a handful of studies have been conducted on cyclical [40-42] and 

monotonic variations [43]. Under cyclical variations, these recent studies indicate a 

positive effect on occupants’ thermal comfort. In contrast, for monotonic variations, 

different rates of temperature change result in inconsistent effects. As mentioned 

earlier, different acceptability criteria and voting scales could plausibly be the main 

source of the discrepant findings. Another factor that might be responsible for these 

differences involves human thermal perception and thermoregulation.  

1.2 Human thermal perception and thermoregulation: 

a brief overview 

The skin, the largest organ in the human body, is an interface that separates the body 

from the rest of the world. On a daily basis, its surface processes at least hundreds of 

physical sensations, among them environmental thermal stimuli. These stimuli are 

detected by the free nerve endings of the primary sensory neurons in the skin. These 

neurones, located in the dorsal root ganglia, convert the external stimuli into electrical 

signals that are then transmitted to second-order neurons (namely dorsal horn 

neurons), which are located in the spinal cord [44]. At this first relay centre, thermal 

information is further processed before being sent to the brain. This pathway is 

illustrated in Fig. 2. 
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Fig. 2 – Pathways for autonomous thermoregulatory responses and thermal perception 

from peripheral tissues. Adapted from Ref. [45]. 

In neurophysiology, significant progress has been made in identifying primary 

sensory neurons’ thermal response profiles [44,46,47]. Researchers have ascertained 

that the principal detectors of the thermal stimuli in the peripheral nervous system are 

the ion channels of the transient receptor potential (TRP) family [44]. These 

thermosensitive TRPs are triggered at specific threshold temperatures and function as 

dedicated transducers of distinct thermal modes. Among them, TRPM2/TRPV1 and 

TRPM8 are the primary sensors of hot and cold temperatures, respectively. Conversely, 

the understanding of spinal cord temperature encoding remained limited until recently, 

when Ran et al. [48] showed that the representation of heat and cold in the dorsal horn 

is substantially different from the operation of TRPs. They observed that the response 

of cold-sensitive spinal neurons is mostly determined by the rate of cooling and rapidly 

adapts to the steady-state value. Heat-sensitive spinal neurons, on the other hand, 

respond primarily to absolute temperatures and are not as adaptable. The interested 

reader is referred to Ref. [45] for a more detail description and further discussions of 

this topic. 
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1.2.1 Thermophysiological models 

As mentioned previously, Fanger’s PMV model predicts thermal responses (i.e., thermal 

sensation votes) to a given steady-state environment. These predictions are based on 

formulae obtained from experimental conditions, making this model empirical. However, 

the environment where humans carry out their everyday tasks is intrinsically dynamic 

and non-uniform. Furthermore, Fanger’s model regards the body as a whole, de facto 

excluding the human thermoregulatory system. As a consequence, the human being is 

viewed as a passive recipient of thermal stimuli. 

As an alternative to Fanger’s steady-state heat balance model, models that include 

the thermoregulatory system have emerged. These models include a ‘passive system’ 

and an ‘active system’. The former simulates the human body and its energy transfer 

physical mechanisms (both within and between the human body and its environment). 

In contrast, the latter simulates the thermoregulatory mechanisms that regulate the 

internal body temperature –vasodilation, vasoconstriction, sweating and shivering.  

One of the first and well-known examples of these type of models is Gagge two-

node thermal model [49], which is a lumped-parameter model. They split the body into 

two concentric shells, with the inner shell representing internal organs, bone, muscle, 

and subcutaneous tissue and the outer shell representing the skin layer. As the 

temperatures of both shells are usually assumed to be uniform, the model thermally 

consists of two nodes. Human thermoregulation models have evolved in the past 50 

years and more advance complex model have been developed (e.g., the Berkeley 

Comfort Mode [50], Tanabe [51], Fiala [52], ThermoSEM [53] and Takada [54]). 

According to Fu ([55] cited in [56]), different models can be classified into four 

categories: (i) one-node thermal models, (ii) two-node thermal models, (iii) multi-node 

thermal models and (iv) multi-element thermal models. These models either represent 

the human body as a single segment or divide it into several parts (i.e., multi-segment) 

(see Fig. 3). The interested reader is referred to Ref. [57] for further discussions on this 

topic. 
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Fig. 3 – Comparison of the model segmentation. Adapted from Ref. [57]. 

While these models are invaluable to deepen the understanding of dynamic thermal 

comfort, they require more ‘invasive’ measurements (e.g., skin temperature sensors) 

that would make them difficult to be applied directly in everyday control strategies (e.g., 

temperature control in an office). For this reason, these types of models have been not 

analysed in this thesis. 

1.3 Individual differences 

In thermal comfort, individual differences refer to situations where distinct people 

perceive the same thermal environment differently (i.e., inter-individual differences) 

and/or when the same individual assesses the same environment differently at different 

times or in different situations (i.e., intra-individual differences). Humphreys and 

Nicol [58] suggested that inter-individual differences encompass both temperature 

differences to be considered neutral and differences in the interpretation of the semantic 

scale categories. In contrast, intra-individual differences refer to personal judgments 

that differ from time to time. 

In an effort to summarise the factors that in thermal comfort might lead to the 

individual differences and to assess their significance, Wang et al. [59] reviewed 112 
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papers (only peer-reviewed conference or journal articles) including both chamber and 

field studies but presenting them separately. They found out that no consistent 

conclusions could be drawn on the size and significance of inter-group differences in 

the preferred/neutral temperature between females and males, nor the young and the 

elderly. However, it is believed that certain groups of occupants (females and the 

elderly) are more critical towards the indoor thermal environment, and more sensitive 

to deviations from an optimal environment, than other sub-populations (males and the 

young) [60]. Furthermore, numerous contextual factors can also influence occupants’ 

thermal comfort perception, including behavioural and cultural aspects, individual 

preferences, space layout, architectural features, and adaptive opportunities 

available [61]. 

1.3.1 Personal comfort paradigm 

Nowadays, all thermal comfort standards are based on models that inherently do not 

account for individual differences. As a consequence, buildings are designed and 

operated accordingly. For instance, a traditional, centralized air-conditioning system 

strives to always maintain an ideal indoor environment with uniformly distributed 

temperature across the occupied zone. However, because of individual variances in 

comfort requirements, this ‘one-size-fits-all’ strategy unavoidably disappoints a 

considerable portion of building inhabitants. Unsurprisingly, the actual satisfaction 

percentage of existing building occupants frequently does not reach the ASHRAE 

Standard’s goal satisfaction rate of 80 % [62-64]. 

To address individual differences, a new modelling approach called personal 

comfort model was derived [65]. In these models, the unit of analysis is the individual 

rather than a group of people. Personal comfort models can be used to understand 

individual occupants’ specific needs and desires, potentially specifying a set of variables 

that would fulfil their thermal comfort in a given environment. In this setting, a valid 

solution is using personally-owned thermal control devices, such as personal comfort 

systems (PCSs). PCSs concentrate on conditioning the micro-environment of each 

occupant rather than the entire volume of space within a given thermal zone of a 

building. For example, PCS such as heated and cooled chairs can address the individual 

differences in thermal comfort while providing potential energy savings [66]. In this 

situation, the centralised system oversees keeping the ambient temperatures within a 
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range that allows the PCS to compensate for each individual’s thermal comfort 

demands. While this approach looks promising, most of these PCSs were tested under 

controlled conditions, and long-term performance studies from real buildings are 

lacking. Furthermore, there is a knowledge and tool gap that must be bridged in order 

for these systems to be extensively used in buildings. For this reason, PCSs have been 

not used and analysed in this thesis. 

1.4 Rating scales for subjective assessment of thermal 

environments 

According to a commonly cited definition, thermal comfort is ‘the condition of mind that 

expresses satisfaction with the thermal environment and is assessed by subjective 

evaluation’ [9]. Regardless the apparent simplicity of this definition, determining such 

conditions is a complex and partially unsolved matter. In general, capturing the volatile 

nature of constructs (e.g., thermal comfort) is, to any extent, notoriously difficult. It can 

be very challenging with just one question or item to consider. However, in thermal 

comfort research single-item scales are commonly used. The most adopted of which is 

the ASHRAE 7-point thermal sensation scale, consisting of seven verbal anchors: ‘cold’, 

‘cool’, ‘slightly cool’, ‘neutral’, ‘slightly warm’, ‘warm’, and ‘hot’. This is a perceptual 

judgement (single-item) scale [67] and is utilised to measure thermal sensation. Other 

rating scales are also employed in thermal comfort studies: the most common ones 

being thermal evaluation, preference, and acceptability. ISO 10551:2019 [67], beyond 

those already mentioned, also introduces a ‘tolerance scale’, which is rarely used in the 

scientific literature. When utilising single-item scales, three significant problematics are 

commonly expressed: (i) it is improbable that they can capture the construct (poor 

content validity), (ii) they have fewer discrimination points (low sensitivity), and (iii) they 

do not have an internal consistency metric (reliability). In 1981, Auliciems [68] specified 

that the scales of thermal comfort have not been tested for validity and reliability. To our 

knowledge, thermal comfort scales have not yet been tested. Although the verification 

of the validity, sensitivity and reliability of the thermal comfort scales is of fundamental 

importance, it is beyond the scope of this thesis and, therefore, not analysed here. 

Furthermore, we believe this issue should be addressed with a collaborative effort 
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among researchers within the thermal comfort community and not as a ‘single’ 

individual.  

Each one of these (single-item) scales used in thermal comfort research can be 

presented in different formats (e.g., discontinuous versus continuous format) and 

methods (e.g., paper- versus computer-based). Independently of the format and method 

used, it is common practice to assign a numerical value to each level (i.e., the verbal 

anchors) of a scale. For instance, the ASHRAE 7-point thermal sensation scale generally 

varies from -3 (‘cold’) to +3 (‘hot’) with one-unit steps. However, different values can be 

assigned, such as 1 for ‘cold’ and 7 for ‘hot’. This interchangeability is possible because 

these numbers are merely placeholders without underlying meaning. Nevertheless, it is 

common practice to calculate the mean of the thermal sensation votes of a group of 

people (e.g., [13,26]). The reasoning behind this method is that, while the variable is 

ordinal in nature, a vote created by averaging different responses is continuous. 

Furthermore, the averaged votes will result in a more normal-looking distribution and, 

therefore, statistical methods that assume normality (e.g., linear regression and analysis 

of variance) can be applied. The origin of this approach can be found in early works to 

measure attitudes, such as in Thurstone [69] and Likert [70]. However, there are two 

problems with this approach. Firstly, it is not appropriate to calculate the mean of an 

ordinal variable because its linearity (i.e., equally spaced divisions) is an arbitrary 

assumption imposed to the original scale values. This assumption was also recently 

questioned by Schweiker et al. [71,72]. Secondly, this approach conflates the problem 

of the level of measurement with that of the distribution of a variable. Averaging ordinal 

data may improve the degree to which the distribution of votes resembles a normal 

distribution, but it does not change the nature of the observations from ordinal to 

interval. 

Consequently, in the field of thermal comfort, it is common practice to analyse 

subjective human thermal responses independently of how they have been measured. 

That is, the statistical analysis is unrelated to the modalities of the data that have been 

acquired. For example, even if measured on an ordinal scale, thermal sensation vote 

(TSV) is generally treated as continuous and analysed with linear regression or other 

statistical tests that assume (conditional) normality. Since thermal comfort ‘is assessed 

by subjective evaluation’ [9], the choice of an appropriate method to analyse these data 
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is essential. As mentioned in Section 1.1, Hensen [39], in his review, assigned to 

different voting scales and acceptability criteria as one of the possible explanation for 

the inconsistent results.  

Discussion regarding the different types of rating scales employed (e.g., categorical 

scale, visual analogue scale, and graphic categorical scale), the number of anchors 

utilised, and the assumptions underlying their usage are outside the scope of this thesis. 

The interested reader is referred to previous studies such as [71-74] for further 

discussions of these topics. 

1.5 Occupant behaviour 

Occupant behaviour is complicated and requires a multidisciplinary approach to be 

appropriately comprehended (if at all possible). On the one hand, both external 

elements like culture, economics, and climate and internal factors such as individual 

comfort preferences, physiology, and psychology influence occupant behaviour. On the 

other hand, occupant behaviour involves interactions with building systems (e.g., 

adjusting the thermostat, switching lights, opening/closing windows), which greatly 

influence building operations and, therefore, energy consumption, costs, and comfort. 

This, in turn, affects the behaviour of the occupants, establishing a closed-loop. 

The field of occupant modelling emerged over 40 years ago (e.g., [75]) but has 

increased recently – particularly because of Annex 66 ‘Definition and Simulation of 

Occupant Behavior in Buildings’ (https://annex66.iea-ebc.org/) promoted by the 

International Energy Agency’s Energy in Buildings and Communities Programme (IEA 

EBC). Experimental research methodologies, modelling strategies and model validation, 

and occupant simulation were all formalised in this Annex. However, several open 

questions about occupant comfort and behaviour and the implementation of advanced 

occupant modelling paved the way for the follow-up IEA EBC Annex 79 ‘Occupant-

Centric Building Design and Operation’ (https://annex79.iea-ebc.org/). 

While it is not within the objectives of this thesis to develop occupant behaviour 

models, to design and operate (low energy) buildings, it is essential to have a thorough 

understanding of occupant behaviour and the ability to analyse and quantify its influence 

on the use of building technologies. 

 

https://annex66.iea-ebc.org/
https://annex79.iea-ebc.org/


 

17 

Chapter 2 

Knowledge gap and research 

questions 

As highlighted in Section 1, although thermal comfort models for the human body are 

available for over four decades, several research gaps (both from a 

technical/methodological and statistical point of views) affect the understanding of this 

topic. The following gaps were identified as relevant for investigation in this thesis: 

− Some knowledge gaps still affect understanding of the human response to 

changing thermal environments. Among them, ‘time’ continues to be the 

least understood variable. 

− Despite the fact that thermal comfort is, by definition, ‘assessed by subjective 

evaluation’ [9], the relevance of the proper use of rating scales for subjective 

assessment of thermal environments seems to be overlooked. Particularly, 

the importance of an appropriate processing of these data and model 

development. 

− Nowadays, although not formally considered into standardisation, the 

presence of individual differences in thermal comfort is a recognised fact. 

However, its integration (e.g., in the form of human feedback) in both the 

design and operation of buildings is still lacking. 

− There is a little knowledge about occupants’ interactions with building 

technologies. For example, on thermal comfort-driven actions caused by 

multiple and interdependent environmental influences. Moreover, there is a 

lack of guidelines and documentation for applying occupant behaviour 

models during building design and operation. 
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2.1 Research questions 

This thesis aimed to close these knowledge gaps by investigating how enhancing user 

comfort in (dynamic) thermal indoor environments with particular emphasis on the 

technical/methodological perspective (i.e., ‘experimental aspect’) and the subsequent 

data analysis (i.e., ‘modelling and statistics aspect’). It also aims to provide more 

occupant-centric design and control strategies for the buildings’ indoor environment 

(i.e., ‘applicational aspect’). This results in the following research questions: 

RQ1. To what extent can the indoor thermal condition be modulated without 

compromising occupants’ thermal comfort? 

RQ2. How are the rating scales analysed for the subjective assessment of thermal 

environments? 

RQ3. How can the description of occupants’ thermal preferences be used to provide 

more satisfying control strategies? 

As shown in Fig. 4, the answers to these research questions are given using the 

work developed in three peer-reviewed scientific journal articles: Article I, II and III. 

These articles constitute the ‘main’ publications of this thesis. In addition, six peer-

reviewed scientific journal articles are appended as ‘supplementary’ publications: 

Article a, b, c, d, e and f. These publications constitute the groundwork and points of 

reflection concerning occupant behaviour and thermal comfort in buildings, used for the 

different elements analysed in this thesis. More details about the scientific publications 

are provided in Fig. 5. 
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Fig. 4 – Outline of research with main research question, objectives, and research 

activities. 
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Fig. 5 – Journal publications in this thesis. 
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Chapter 3 

Methods 

As mentioned in the Introduction, the general aim of this thesis is to investigate how 

indoor thermal conditions may be modulated while guaranteeing satisfactory thermal 

comfort conditions. The general approach utilised in this thesis encompasses both a 

technical/methodological and a statistical point of view. Both aspects are essential and 

interrelated since they compose the research design which is based on the specific 

question driving the research. The research methods used are presented below, 

arranged by each study. 

3.1 Literature review and theoretical framework 

These reviews and theoretical frameworks were conducted under the umbrella of the 

IEA EBC Annex 79 ‘Occupant-Centric Building Design and Operation’ 

(https://annex79.iea-ebc.org/) and were the result of a collaborative effort of 

international researchers. These activities were performed to identify current trends, 

experiences, and outcomes of various aspects related to occupant behaviour in 

buildings, which constitute the groundwork and point of reflections for the different 

elements analysed in this thesis (Fig. 4). Specifically, the ‘experimental aspect’ (Article 

a, b, and c), ‘modelling and statistics aspect’ (Article d) and ‘applicational aspect’ (Article 

e and f). 

3.2 Experimental aspect 

The core of this PhD thesis is based on the design and implementation of an exploratory 

study performed in a climatic chamber furnished like a typical single-office. The 

experimental study was used to answer RQ1 (‘To what extent can the indoor thermal 

https://annex79.iea-ebc.org/
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condition be modulated without compromising occupants’ thermal comfort?’) and 

benefited from some outcomes of the Article a, b, and c of the ‘supplementary 

publications’. 

3.2.1 Experimental set-up 

The facility 

The experiment was conducted in the ZEB Test Cell Laboratory on the Norwegian 

University of Science and Technology (NTNU) premises (Trondheim campus) between 

September 2019 and January 2020. Two identical climatic chambers (Fig. 6), furnished 

like a typical single office, were used to recreate a change in the environment induced 

by thermal ramps. Space heating and cooling were provided from a constant air-volume 

system that supplied 100 % fresh air from outside, distributed by a 2 m-long perforated 

fabric tube installed at the ceiling. Further details on the facility’s experimental 

equipment can be found in Article I. 

 

Fig. 6 – Floor plan of the facility. 
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Participants 

Thirty-eight participants (29 females, 9 males) were recruited from the university 

campus with a targeted age between 20 and 67. Participation in the experiment was 

voluntary and in agreement with the principles and instructions of the European General 

Data Protection Regulation (GDPR). To comply with the GDPR, the experiment 

description was submitted to the Norwegian Centre for Research Data (NSD) and 

approved with reference code 525790. Further details about the main demographic and 

anthropometric characteristics of the subjects can be found in Article I. 

Experimental conditions 

The operative temperature set-point of 22.0 °C ± 1.0 °C was defined in accordance with 

the thermal comfort limit for winter according to Category A of ISO 7730:2005 [10]. Both 

space heating and cooling variations were tested within winter conditions. The rates of 

temperature changes, derived from the limit in ASHRAE 55:2020 [9] (Table 1), were: (i) 

±4.4 K/h, (ii) ±3.4 K/h, (iii) ± 2.2 K/h and (iv) ±1.4 K/h. The study’s design was a 

randomised crossover trial, a longitudinal study in which participants received a 

randomised sequence of thermal ramps. The experimental session was seven and a 

half hours, including a half-hour lunch break. The day could be split into half days to 

increase participation, meaning one-morning session (8:00–11:30) and one-afternoon 

session (12:00–15:30). However, participants were required to attend an even number 

of morning and afternoon sessions. Further details about the experimental procedure 

can be found in Article I. 

Data collection 

The indoor environment was monitored during the experiments by measuring ambient 

and indoor air temperatures, surface temperatures, globe temperature, relative 

humidity, airspeed, CO2 concentration, and horizontal and vertical illuminance every 

minute throughout every session. The mean radiant temperature (MRT) was calculated 

according to ISO 7726:1998 [76] based on the surrounding surfaces’ measured 

temperature and the angular factor computed for a seated person in the specific climate 

chamber. The calculated MRT was combined with the measured air temperature and 

air velocity to calculate the operative temperature. In addition, a weather station installed 

in proximity to the southern façade of the ZEB Test Cell measured ambient air 

temperature, relative humidity, wind speed and direction, global solar irradiance on the 
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horizontal plane and precipitation in 10-minute intervals. Further details about the 

environmental measurements are given in Article I. 

Participants were asked to fill out computer-based questionnaires at different 

scheduled intervals to evaluate the indoor environment during the experiment. By 

means of graphic categorical scales (see Fig. 7.a), these questionnaires were used to 

assess perception, evaluation, preference, and acceptability of the thermal, visual, 

acoustic and air quality of the environment. It is vital to illustrate how the participants 

vote and how we acquire this information. Participants could manually draw a diagonal 

line on the rating scale of the computer-based questionnaire. This questionnaire was an 

interactive PDF file in which a hidden button allowed, if pressed, to change the scale 

format into the one shown in Fig. 7.b. This graduated scale allowed us to quantify the 

vote precisely. 

 

Fig. 7 – Extract from the rating scale used to assess the perception of the room 

temperature; (a) rating scale displayed by the participant and (b) rating scale displayed 

for the data analysis. 



3.2 Experimental aspect 

25 

Furthermore, participants were instructed to press a digital button (see Fig. 8) as 

soon as they felt uncomfortable. Here uncomfortable was defined as the decision to 

‘take action to restore a comfort condition’ (e.g., if the environment is too warm, then 

regulate the thermostat or open the window). It is essential to point out that participants 

could press the button for any source of discomfort related to the indoor environment 

(e.g., stuffy air, noise from the ventilation system, lack of daylight) and not only for 

temperature-related discomfort. After pressing the digital button, a computer-based 

questionnaire appeared on the dedicated laptop. This questionnaire was used to assess 

the environment and record the source(s) of discomfort through multiple-choice 

answers. 

 

Fig. 8 – Digital interface for the discomfort button. 

In addition, there were two other questionnaires, one at the beginning and one at 

the end of each session. After arrival, participants were asked to fill out a questionnaire 

related to demographic and anthropometric characteristics, current clothing level and 

satisfaction with the workplace. At the end of the session, subjects were asked to fill out 

a questionnaire about their satisfaction with the workplace as a whole, expressed on a 

Likert scale. All the survey questions and rating scales are given in the appendix of 

Article I. 
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3.2.2 Experimental data analysis 

Environmental, demographic and anthropometric data were studied using survival 

analysis. Survival analysis comprises a family of methods that examine and model the 

time it takes for events to occur. However, its goal is not limited to investigating the 

effects on the time until the event occurs but also evaluating the relationship of survival 

time to covariates. Covariates (often referred to interchangeably as predictors or 

independent/explanatory variables) assess the impact of certain features on the 

dependent variable. The prototype event is death – hence the name ‘survival analysis’ 

and much of its terminology – but the range of applications of survival analysis is much 

broader. For example, the same methods are known as ‘failure-time analysis’ in 

engineering and ‘event-history analysis’ in sociology. Further details about survival 

analysis can be found in Article I. 

Kaplan-Meier method and Cox regression 

Survival analysis is the name for a collection of statistical techniques. These techniques 

can be summarised into three categories: (i) non-parametric models, (ii) parametric 

models, and (iii) semi-parametric models. The main difference between the three 

categories is whether the survival time is assumed to follow a specific distribution. Non-

parametric methods are used when no theoretical distribution adequately fits the data; 

therefore, they are distribution-free. The Kaplan-Meier method is an example of this 

category. Conversely, in the parametric model, the underlying distribution of the 

outcome is specified. For survival analysis, several parametric distributions can be used 

to describe time to event data, such as exponential, Weibull and log-normal distribution, 

each of which is defined by a different hazard function. Semi-parametric models are a 

combination of the two previously mentioned categories. Even if these models’ 

regression parameters (the betas) are known, the outcome’s distribution remains 

unknown. The Cox proportional hazards (PH) model belongs to this category. Since the 

survival time distribution is unknown during the analysis, non-parametric and semi-

parametric models were utilised, more specifically, the Kaplan-Meier method and Cox 

regression. The former has been used only to describe and visualise the survival curves 

at a preliminary stage, while the latter evaluates the relationship of survival time to 

covariates. Details on the mathematical formulation and assumption underlying the 

Kaplan-Meier method and Cox regression can be found in Article I. 



3.3 Modelling and statistics aspect 

27 

3.3 Modelling and statistics aspect 

This analysis was used to answer the RQ2 (‘How are the rating scales analysed for the 

subjective assessment of thermal environments?’) and benefited from some aspects 

analysed in the Article d of the ‘supplementary publications’. 

3.3.1 Statistical modelling 

One of the goals of thermal comfort research is to establish a relationship between the 

thermal environment and the human response. In a statistical modelling framework, this 

is generally achieved through regression analysis. Regression analysis is ‘the blanket 

name for a family of data analysis techniques that examine relationships between 

variables’ [77], which are categorised into a dependent variable (‘outcome’ or ‘response’ 

variable), 𝑌, and one or more independent variables (‘explanatory variables’, 

‘predictors’, ‘covariates’ or ‘features’), 𝑋. Here, two different modelling strategies to 

analyse subjective thermal comfort data were compared: the cumulative probit model 

and the classical linear regression, referred to as gaussian (ordinal-as-metric) model. 

Further details on the mathematical formulation of these models can be found in 

Article II. 

Bayesian approach 

Bayesian approach was used to analyse the data. This approach is not entirely new in 

thermal comfort studies (e.g., [78-80]); however, it is not an established practice either. 

Since statistical knowledge in this field generally tends towards ‘frequentist’ principles, 

it is essential to explain the Bayesian approach and compare it with the frequentist one. 

Frequentist statistics have a more recent history than its philosophical adversary, 

Bayesian statistics. Frequentist statistics were established mostly in the early 20th 

century and have lately emerged as the dominant paradigm in inferential statistics, 

whereas Bayesian statistics were invented in the 19th century. Despite this dominance, 

there is no consensus on whether frequentism or Bayesian statistics are superior. In 

addition, the statistical nomenclature is not as old as the philosophical interpretations. 

The modern statistical terminology ‘Bayesian’ and ‘frequentist’ consolidated in the 

second part of the 20th century.  

Essentially, the divide between frequentists and Bayesians is in the definition of 

probability. For frequentists, probabilities are associated with frequencies of events. For 
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Bayesian, probabilities are related to their own understanding (i.e., certainty or 

uncertainty) of events. This difference has important implications in the analysis of data. 

Nevertheless, the aim is neither to go into details about their differences, nor to be a full 

introduction to either approach. For a more complete treatment, see, for example, [81] 

and [82]. Furthermore, it is essential to emphasise that we are not advocating that the 

specific approach used is the best way to analyse subjective thermal comfort data 

measured on an ordinal scale: the approach presented is merely one of the possible 

ways to do so. For instance, ordinal models in a frequentist framework provide another 

valid solution for analysing ordinal data (see ordinal package [83]). Statistics is a field 

that is an art as much as it is a science. Although statistical theory is founded on exact 

assumptions and conditions, the real world is seldom that straightforward. 

Consequently, the practice of statistics involves a tremendous number of choices, and 

the challenge is how to make those choices. 

Dataset 

The analysis was carried out on Indraganti et al.’ study [84] dataset, included in ASHRAE 

Global Thermal Comfort Database II [85]. This dataset comprised 6048 observations 

(~27 % female) collected during 14 months from 2787 individuals (all Indian nationals 

within the age group of 18–48 years). More details regarding the field survey can be 

found in Indraganti et al. [84]. This dataset was selected because there are no missing 

values for either thermal sensation votes (i.e., the dependent variable), or gender and 

air temperature (i.e., the independent variables). Furthermore, the data were collected 

under a wide range of indoor air temperatures. The analysis was not carried out on the 

entire ASHRAE Global Thermal Comfort Database II for the following reasons: 

− The dependent variable needs to be measured on the ordinal scale. 

Unfortunately, the Comfort Database II does not distinguish between scales, 

and ordinal and continuous measurements are mixed. 

− There are conspicuous missing values in the Comfort Database II. This issue 

does not derive from the database itself but originates from the lack of 

explicit agreement on measuring the ‘essential’ variables in thermal comfort 

studies.  

− Different datasets composed the Comfort Database II. Even though all these 

datasets went through a rigorous quality assurance process to harmonise 
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their contents, it is reasonable to assume that each dataset has some unique 

peculiarities – different measurement protocols, questionnaires, or 

instruments. This aspect of the database would require that analysis of the 

entire database be carried out with an ‘appropriate’ method that considers 

these peculiarities (e.g., multilevel modelling). 

3.4 Applicational aspect 

This analysis was used to answer the RQ3 (‘How can the description of occupants’ 

thermal preferences be used to provide more satisfying control strategies?’) and 

benefited from some outcomes of the Article e and f of the ‘supplementary publications’. 

3.4.1 Statistical modelling 

Multilevel models (commonly referred to as mixed or hierarchical models) were used to 

deal with clustered and nested data. When individuals form groups or clusters, it is 

reasonable to expect that two randomly selected individuals from the same group will 

tend to be more alike than two individuals chosen from different groups; for example, 

on the same floor of the same building, two people sharing an office facing south 

compared to two people sharing an office facing north. Following similar reasoning, 

measurements taken on the same individual on different occasions will be more highly 

correlated than measurements taken from different individuals. Therefore, whenever 

data are clustered and/or nested, the assumption of independent errors is violated.  

The dataset used during the analysis comes from the experimental investigation 

described in Section 3.2 (all the information about the experimental design can be found 

in Article I). This experimental study examined a mixture of nested and crossed 

relationships. As shown in Fig. 9, different measurements on the thermal environment 

(level 1) are nested within experiment conditions (level 2), which, in turn, are cross-

classified by participant and day (level 3). It is essential to mention that the multilevel 

structure defined here is not the property of a model but rather the property of the 

experimental/study design, which is then reflected in the data, which the model then 

encapsulates. 
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Fig. 9 – Schematic of the three-level hierarchical study: repeated measures within 

experimental conditions cross-classified by participant and day. 

Within the multilevel framework, different modelling strategies can be used. Here, 

two different modelling strategies were applied: the beta mixed-effects model (a beta 

model including random effects) and the ordinal mixed-effects model (an ordinal model 

including random effects). The beta mixed-effects model is a suitable choice when the 

thermal preference votes are measured on a continuous, but bounded, scale. In 

contrast, the ordinal mixed-effects model is appropriate when a categorical scale is 

used. For the sake of clarity and brevity, the beta mixed-effects model and the ordinal 

mixed-effects model will hereafter be referred to as simply the beta model and ordinal 

model, respectively. Variable selection was performed with an automated backward 

elimination employing the Akaike information criterion (AIC) as the selection criterion. 

Further details about these models can be found in Article III. 

Computing predictions suitable for building design and operation 

Two different procedures were used to handle the group-level residual during 

prediction. For the ordinal model, the first procedure consisted of holding the group-

level residual at its mean of zero and calculating the probabilities for some specific 

values of the predictors. Holding the group-residual at zero means considering only a 

part of the subject, namely the one whose random effect is zero. Random effects allow 

accounting for heterogeneity in the data, for instance, the inherent differences among 

peoples. However, fixing the random effects to zero is not a requirement, and a different 

estimated value for the random effect could be chosen. The response probabilities thus 

calculated have a cluster-specific (or subject-specific in this case) interpretation. This 

procedure is appropriate during the building operation phase, where the focus should 

be on satisfying the needs of the specific occupant or type of occupants (i.e., the specific 
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cluster). The second procedure outlined a simulation-based approach, which resulted 

in probabilities with a population-averaged interpretation. This interpretation derives 

from the fact that the calculated probabilities are an average of all simulated random 

effects (i.e., averaged across experimental conditions, participants and days). This 

procedure is suitable for the occupant-centric building design phase, where the target 

is the ‘general’ occupant whose needs represent those of a large group of typical 

building users. The same two procedures were applied to the beta model, with the 

difference that the prediction was not a vector (i.e., probabilities of voting in each 

category) but rather a single number (i.e., predicted mean). Further details about the 

two procedures can be found in Article III. 
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Chapter 4 

Results 

The results of the main research activities are presented in the following subsections, 

arranged by each study. 

4.1 Human thermal comfort under dynamic 

environmental conditions 

The aim of RQ1 was to explore the human response to dynamic thermal environments. 

The results are grouped according to (i) general results and observations, (ii) descriptive 

analysis from the KM method, and (iii) results obtained from the extended Cox model. 

4.1.1 General observations 

A total of 314 thermal ramps were performed, which led to 223 recorded thermal 

discomfort events. Fig. 10 presents a time course of the discomfort events during 

exposure to the different thermal ramps for both the space heating and cooling 

processes. In this figure, the right-censored observations are also represented (dots 

without the black outline). Right-censored observations were observed when the 

experimental session was interrupted because the time available for the session was 

over. For ease of interpretation, the ASHRAE 55-2020 [9] comfort limit (dark grey X-

shaped cross) and a fitted line between this limit (grey dashed line) are also plotted in 

Fig. 10. It can be clearly seen that the thermal discomfort events are not symmetrical. 

Participants were more sensitive to a cold variation than a warm one. In fact, 83% of the 

discomfort events for cold are within the ASHRAE comfort limit, while on the warm side, 

only 30% are within the comfort limit. 
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Fig. 10 – Thermal ramps endpoint. 

An overview of participants’ assessment of perception, evaluation, preference, and 

acceptability of the thermal environment during the discomfort event is presented in 

Fig. 11. In this figure, participants’ votes on the four previously mentioned rating scales 

are divided between heating and cooling mode. Particularly: 

a) Thermal sensation: Discomfort events are not symmetric. During space 

heating, thermal behaviours were undertaken mostly when the environment 

was sensed as ‘warm’ (+2) with a temperature difference (ΔT) up to 5 K. On the 

other hand, during space cooling, actions were undertaken when the 

environment was perceived as ‘slightly cool’ (-1) and ‘cool’ (-2). Here the same 

range of operative temperature change (-3 K) was perceived differently.  

b) Thermal comfort: The distribution of discomfort events for space heating and 

cooling is remarkably similar. Most of the thermal behaviours were undertaken 

when the environment was judged to be ‘slightly uncomfortable’ (+1) or 
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‘uncomfortable’ (+2) for both space heating and cooling processes. This 

suggests that, indeed, thermal comfort is the driver for thermal behaviour.  

c) Thermal preference: Most of the actions were undertaken with a thermal 

preference vote different from ‘without change’ (0). Reasonably, a participant 

would initiate a thermal behaviour out of a desire for a higher or lower 

temperature. 

d) Thermal acceptability: For both space heating and cooling processes, 

discomfort events follow a skewed distribution, specifically a negative skew (or 

left-skewed) for acceptable environments and a positive skew (or right-skewed) 

for unacceptable ones. Consequently, most of the actions were undertaken at 

the boundary between an acceptable and unacceptable environment.  
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Fig. 11 – Rating scales for thermal discomfort events.  

Note. The data shown here represent only the ‘right-here-right-now’ votes on the 

questionnaire at the moment of the thermal discomfort event (i.e., when the digital 

button was pressed). 
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4.1.2 KM survival curves 

Fig. 12 shows the KM curves for the various thermal ramps, where the plus symbol 

represents the right censoring. In this figure, it is noticeable that the survivability for 

warm variations was higher than for cold ones. Also, for both space heating and cooling 

processes, slower variations led to longer survival than faster variations. 

 
Fig. 12 – KM survival curves for different rates of temperature change. 

Fig. 13 shows the log-log plot drawn for each slope (in absolute value). The initial 

distance between the curves for space heating and cooling processes is greater for a 

ramp slope of 1.4 K/h than a ramp slope of 4.4 K/h, indicating an effect between the 

temperature change and the direction of the change (i.e., increase or decrease of the 

temperature). Moreover, on the whole, all the curves show a divergent-convergent 

shape: that is the curves initially separate but eventually join up. 
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Fig. 13 – Log-log survival chart for heating and cooling based on the rate of temperature 

changes. 

In the context of monotonic temperature variations (thermal ramps), warm changes 

induce thermal discomfort with some delay compared to cold ones, but this delay 

progressively wears off. The underlying process, that is, the discomfort from thermal 

ramps, is delayed on the warm side, or stated analogously, the survival is prolonged 

temporarily. However, it is important to point out that the number of participants still at 

risk decreased towards the curve’s end. Therefore, caution is generally required not to 

over-interpret the right side of this part of the plot. 
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4.1.3 Cox-regression 

Two separate models were developed for the space heating and cooling processes. 

This choice had the advantage of assessing the selected covariates’ significant 

predictors separately for the two models. Table 2 lists all the covariates used in the 

inference of the heating and cooling models. 

Table 2 – List of covariates used in the model for both space heating and cooling 

processes. 

Variable Code Type  Unit 
    

Thermal resistance of 

clothing 

Clothing Continuous, time-

independent 

clo 

Gender Gender Categorical, time-

independent 

Female (reference) / Male 

Age Age Continuous, time-

independent 

Years 

Body Mass Index  BMI Continuous, time-

independent 

kg/m2 

Time lived in Norway Time.Norway Categorical, time-

independent 

Less than or equal to 3 

years (reference) / More 

than 3 years 

Air velocity Air.vel Continuous, time-

dependent 

m/s 

Time of day Time.day Categorical, time-

independent 

Morning (reference) / 

Afternoon 

Vapour pressure Vap.pre Continuous, time-

dependent 

N/m2 

Operative temperature 

change 

Top.delta Continuous, time-

dependent 

K 

Initial operative 

temperature 

Top.start Continuous, time-

independent  

°C 

Participant ID-code ID.subj Categorical, time-

independent 

― 

 

Before proceeding with the analysis, it is essential to briefly explain how survival 

analysis evaluates the relationship of survival time to covariates. In survival analysis, the 

measure of effect is called hazard ratio and is expressed as an exponential of one or 

more regression coefficients in the model. By taking the logarithm of the hazard on each 

variable is possible to evaluate if the relationship between each variable and the hazard 

itself (i.e., the functional form) is linear or not. Further details can be found in Article I.  

For spacing heating process four significant predictor were identified (Body Mass 

Index, time lived in Norway, operative temperature variation and initial operative 

temperature) all positively associated with increased risk of ‘warm discomfort’. Gender, 

even though was not statistically significant, was still maintained in the model. This 
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because gender was found to be a confounder for BMI. Among the statistically 

significant predictors, there are three continuous variables. Their functional form (i.e., 

their relationship with the hazard) were showed in Fig. 14. BMI, formerly called the 

Quetelet index, is a measure for indicating nutritional status in adults. Fig. 14.a shows 

that the hazard increases from low BMI to around ‘normal weight’ BMI levels, where it 

flattens out and then rises slightly in the pre-obesity category, but not significantly. This 

indicates that participants with lower BMI values have a lower hazard of experiencing 

‘warm discomfort’ than participants with normal and pre-obesity BMI values. This result 

is not completely in line with the literature. While it is true that the underweight 

population (BMI < 18.5 kg/m2) is associated with a higher comfortable temperature, the 

overweight population (i.e., BMI > 25.0 kg/m2) is associated with a lower comfort 

temperature. However, BMI does not actually measure body fat nor the proportion of 

muscle-to-fat. Therefore, it is possible that some of the participants were incorrectly 

classified in the pre-obesity category. Concerning the initial operative temperature, 

Fig. 14.b shows that a linear fit is within the confidence interval; therefore, a linear 

relationship between the log(hazard) and the initial operative temperature is assumed 

(red line). Fig. 14.c shows that the hazard increases linearly with the increment in 

operative temperature until about +4 K, where it flattens out. Nevertheless, conceptually, 

it is hard to believe that the hazard of thermal discomfort associated with a monotonous 

rise in operative temperature levels off as higher delta temperatures are reached. A 

more logical fit would be a continuation of the linear relationship before the +4  K 

increment (the solid green line in Fig. 14.c). A possible explanation for the hazard’s 

flattening upon reaching higher delta temperatures is that different individuals have 

different frailty levels. More frail individuals are more likely to experience the discomfort 

event early. Consequently, over time, the ‘risk set’ has an increasing proportion of less 

frail individuals, and the hazard flattens out. 
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Fig. 14 – Penalised spline fit of (a) Body Mass Index, (b) initial operative temperature 

and (c) operative temperature change for heating.  

Note. The red line is the chosen relationship; the green line is the hypothesized 

relationship (logical fit); rug plots at the bottom of each plot. 
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For spacing cooling process three significant predictor were identified (time lived 

in Norway, time of day and operative temperature variation). Time of day and operative 

temperature variation were negatively associated with an increased risk of ‘cold 

discomfort’, while time lived in Norway was positively associated with the same 

outcome. Gender and thermal resistance of clothing, even though were not statistically 

significant, were still maintained in the model. In this case, they remained because their 

presence improved the model’s overall fit compared to the model without them. Fig. 15 

showed the relationship between the log(hazard) and the operative temperature 

variation. Here, the hazard decreases fairly linearly with the decrement in the operative 

temperature. Therefore, a linear relationship was assumed (red line). 

 
Fig. 15 – Penalised spline fit of operative temperature change for cooling.  

Note. The red line is the chosen relationship; rug plots at the bottom of the plot. 

4.2 Analysis of subjective thermal comfort data 

The aim of RQ2 was to highlight the implication of the choice of the statistical method 

used to analyse subjective thermal comfort data. In this field, it is common practice to 

analyse subjective human thermal responses independently of how they have been 

measured. Subjective thermal comfort data are usually measured on an ordinal scale 

but then treated as continuous and analysed with linear regression or other statistical 

tests that assume (conditional) normality. The results comparing the cumulative probit 

and gaussian (ordinal-as-metric) model are grouped according to the modelling step. It 

is important to mention that this analysis should be regarded as an indicative example: 
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as such only two variables (gender and air temperature) were used as covariates during 

the analysis. Thermal sensation vote (TSV) was selected as dependent variable.  

4.2.1 Unconditional model 

The goal of a modelling strategy is to try to reproduce or predict an observable 

phenomenon via the lens of a model. Before incorporating a predictor, the unconditional 

model can be used to test the ‘goodness’ of the modelling technique. The posterior 

predictions from the two models are shown in Fig. 16. Here the data generated from the 

models are compared with the empirical data. 
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Fig. 16 – Posterior prediction for (a) the thresholds-only and (b) intercept-only model. 

The posterior predictive distribution for the cumulative probit model (Fig. 16.a) 

accurately describes the distribution of the outcomes. Conversely, the posterior 

predictions for the gaussian (ordinal-as-metric) model (Fig. 16.b) are not a good fit, and 

they also have impossible predictive outcomes (i.e., value below the category ‘1’ that is, 

‘cold’ and above the category ‘7’, that is, ‘hot’).  

4.2.2 Fitting a categorical variable 

In this section, the categorical variable gender is added to the unconditional model. 

Table 3 shows the results of the fitted cumulative probit and gaussian (ordinal-as-metric) 

model. The six thresholds for the cumulative probit model and the intercept for the 

Gaussian (ordinal-as-metric) model were omitted for brevity. The full table can be found 

in Article II (see Table 5). Moreover, the standard deviation (SD) was modelled on the 

log scale to constrain its value to be 0 or larger. However, there is a difference in the 

approach to model the unequal SD for the cumulative probit and the conventional 

Gaussian model. In Table 3, the Disc.Male parameter is not related to the standard 

deviation (SD) itself, but to the inverse of the SD, that is, 𝜎 = 1 𝑑𝑖𝑠𝑐⁄ . Consequently, the 

estimated SD for male is 𝜎 = 1 exp(0.14)⁄ = 0.87 and 𝜎 = exp(0.28) = 1.32 for the 

cumulative probit and gaussian (ordinal-as-metric) model, respectively. 
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Table 3 – Regression coefficients for the model with only a categorical variable (allowing 

the standard deviation to vary by group). 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Gender female reference    

 male 0.06 0.03 0.00 0.12 

Disc.Male  0.14** 0.02 0.09 0.18 

Gaussian (ordinal-as-metric) model    

Gender female reference    

 male 0.06 0.04 -0.02 0.14 

Sigma.Female  0.39** 0.02 0.36 0.42 

Sigma.Male  0.28** 0.01 0.26 0.31 

* CI stands for credible interval (based on quantiles). 

** Values expressed on the logarithmic scale. 

 

Fig. 17 shows the marginal posterior distribution of the parameters (i.e., the means 

and standard deviations) and the effect sizes for the cumulative probit (Fig. 17.a) and 

gaussian (ordinal-as-metric) (Fig. 17.b) models, respectively. The cumulative probit 

model does not have a distribution for female because this is the reference category, 

and its mean and standard deviation are fixed. In this figure, the black line and dot at 

the bottom of each distribution represent the highest density interval (HDI) and the 

mode, respectively. The HDI is a way to summarise the distribution by defining an 

interval that spans over the distribution so that every point inside the interval has higher 

credibility than any point outside it. These intervals (i.e., the black lines) are defined here 

to span over 95 % of the distribution; therefore, they represent the 95 % HDIs. 

Focusing on effect sizes and differences in means and standard deviations, two 

different results can be observed from Fig. 17. For the cumulative probit model, it can 

be seen that zero is outside the 95 % HDI for the effect size and the difference in means 

and SD. However, in the gaussian (ordinal-as-metric) model, zero is included in the 95 % 

HDIs for the effect size and the difference in SD, while it is outside the 95 % HDI for the 

difference in means. As a consequence, the two models convey different conclusions. 

More details about the result can be founded in Article II. 
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Fig. 17 – Posterior distributions for the model that include the variable Gender: 

(a) cumulative probit and (b) gaussian (ordinal-as-metric) model. 

4.2.3 Fitting a linear predictor 

In this section, the continuous variable air temperature was added to the previous 

model, that is, the model with the variable gender and unconstraint standard deviation. 

However, air temperature was standardised (i.e., subtracting the mean and dividing by 

its standard deviation) before entering the model. The results of fitting this model are 

presented in Table 4. The six thresholds for the cumulative probit model and the 

intercept for the Gaussian (ordinal-as-metric) model were omitted for brevity. The full 

table can be found in Article II (see Table 6). Here it can be seen that after adding the 

standardise air temperature as a predictor, the upper and lower 95 % CI (i.e., L-95 % CI 

and U-95 % CI) for the male coefficient of the gaussian (ordinal-as-metric) model does 
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not include zero. Consequently, the two models now convey the same conclusions for 

gender. 

Table 4 – Regression coefficients for the model with a categorical and continuous 

variable (allowing the standard deviation to vary by group). 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Gender female reference    

 male 0.09 0.03 0.03 0.14 

Tair.s  0.34 0.01 0.31 0.37 

Disc.Male  0.12** 0.02 0.07 0.16 

Gaussian (ordinal-as-metric) model    

Gender female reference    

 male 0.09 0.04 0.01 0.16 

Tair.s  0.47 0.02 0.44 0.51 

Sigma.Female  0.32** 0.02 0.28 0.35 

Sigma.Male  0.22** 0.01 0.20 0.25 

* CI stands for credible interval (based on quantiles). 

** Values expressed on the logarithmic scale. 

 

The marginal distribution of the standardised regression coefficient for air 

temperature is shown in Fig. 18. This is a standardised regression coefficient and 

represents a sort of effect size for air temperature. The two models give a different 

distribution for the coefficient, with a distinct mode and 95 % HDIs. The coefficient of the 

cumulative probit model is expressed on the underlying latent scale, while the gaussian 

(ordinal-as-metric) coefficient refers to the ordinal scale. As a consequence, the 

gaussian (ordinal-as-metric) coefficient for air temperature is overestimated. 
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Fig. 18 – (a) Standardised and (b) ‘original’ regression coefficient for air temperature for 

the cumulative probit (green) and gaussian (ordinal-as-metric) (orange). 

4.2.4 Structured thresholds 

In all the previous cumulative probit models, the thresholds were defined as ‘flexible’ 

providing the standard unstructured thresholds. However, restrictions such as 

equidistance can be imposed on the thresholds, which restricts the distance between 

consecutive thresholds to be of the same size (i.e., equally spaced). This allows 

assessing the assumptions that the subjects used the response scale (i.e., TSV) in such 

a way that the distance between adjacent response categories is the same. The spacing 

of the equidistant threshold is plotted in Fig. 19.a. Here, the average distance between 

consecutive unstructured thresholds is also plotted (Fig. 19.b). It can be seen that zero 

is outside the 95 % HDI for the difference between the spacing for structured and 
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unstructured thresholds (Fig. 19.c), suggesting that, in terms of ‘standard decision 

rules’, the thresholds should not be approximated as equidistant. 

 

Fig. 19 – Spacing for (a) structured and (b) unstructured thresholds and (c) their 

difference. 

Furthermore, whether the restriction on the thresholds is warranted by the data can 

be assessed formally by comparing the relative fit of the computed models to the data. 

One method to assess relative fit is approximate leave-one-out cross-validation 

(LOOCV) [86], where smaller values indicate better fit. Table 5 shows the estimated 

LOO information criterion (LOOIC) for the two models and their differences. The 

cumulative probit model with unstructured thresholds has a significantly better fit 

(smaller LOOIC value) than the structured thresholds one since the difference in LOOIC 

is very large (more than 12 times the corresponding standard error). In the context of 

model selection, a LOOIC difference higher than twice its associated standard error 

suggests that the model with the lower LOOIC value fits the data significantly better. 

Table 5 – Values of the Leave-One-Out Information Criterion (LOOIC) and their 

difference for the cumulative probit model with structured and unstructured thresholds. 

Model LOOIC SE LOOIC.diff* SE.diff** 

Cumulative probit model 

(unstructured thresholds) 
19,449.2 100.0 0.0 0.0 

Cumulative probit model 

(structured thresholds) 
20,014.0 97.2 564.81 44.39 

* LOOIC.diff is the difference between the two LOOIC scores. 

** SE.diff is the standard error of the LOOIC.diff. 
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4.3 Human-in-the-loop methods for occupant-centric 

building design and operation 

The aim of RQ3 was to predict the thermal preference vote of human subjects exposed 

to a dynamic thermal environment. Two different modelling strategies were applied: the 

ordinal model and beta model. The results are grouped accordingly. 

4.3.1 Ordinal model 

Five significant predictors were identified – thermal resistance of clothing, Body Mass 

Index, air velocity, time of day and operative temperature – all negatively associated 

with Logit(𝜸𝑘). A negative coefficient for 𝛽 indicates that an increase of the associated 

variable 𝑥𝑖 decreases the thermal preference vote. Stated analogously, votes for higher 

categories (e.g., prefer ‘higher’) are less likely. Here, the coefficient estimates are given 

in units of ordered logits (or ordered log-odds). Fig. 20 shows the predicted probabilities 

as functions of the operative temperature for the cluster-specific and population-

averaged procedures. The probabilities calculated with the two methods are dissimilar. 

For example, the maximum predictive probability for ‘without change’ is about 91 % for 

the cluster-specific approach, while it is only 55 % for the population-averaged one. 
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Fig. 20 – Predicted probabilities of a thermal preference vote using the (a) cluster-

specific and (b) population-averaged procedures. 

Fig. 21.a shows the probability mass for the ordinal model and cluster-specific 

procedure. These probabilities are plotted as a function of three different operative 

temperatures while holding the other covariates constant at their centred values and 
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fixing the random effects at zero. Fig. 21.b shows the population-averaged procedure’s 

results. 

 

Fig. 21 – Predicted probabilities of a thermal preference vote using the (a) cluster-

specific and (b) population-averaged procedures for three different operative 

temperatures. 

4.3.2 Beta model  

Four significant predictors were identified – thermal resistance of clothing, Body Mass 

Index, time of day and operative temperature – all negatively associated with Logit(𝝁) . 

Here, the coefficient estimates are given in units of ordered logits (or ordered log-odds). 

Fig. 22 shows the predicted responses as functions of the operative temperature using 

the cluster-specific and population-averaged procedures. The points are the observed 
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thermal preference votes. While the predicted central tendency follows the general 

trend of the data, the predictions do not agree well with the observations, particularly 

close to the upper (i.e., prefer ‘higher’) and lower (i.e., prefer ‘lower’) boundaries. 

 

 

Fig. 22 – Predicted responses using the cluster-specific (black line) and population-

averaged (red line) procedures.  

Note. The points are the observed thermal preference votes.  

Fig. 23.a shows the probability density functions (pdfs) generated from the beta 

model’s estimated parameters using the cluster-specific procedure. Each pdf is plotted 

as a function of three different operative temperatures while the other covariates are 

held constant at their centred values and the random effects are fixed at zero. It can be 

observed that the dispersion of the probability densities is relatively high. For instance, 

for an operative temperature of 26 °C, the probability of voting equal or lower 0.50 (i.e., 

from ‘lower’ to ‘without change’ on the continuous scale) is about 93 %, implying a 7 % 

probability of voting higher than that. Fig. 23.b shows the categorised probabilities of 
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the predicted thermal preference votes. Fig. 24 is analogous to Fig. 23 but shows the 

population-averaged procedure’s results. 

 

Fig. 23 – (a) Probability densities and (b) categorised probabilities of the predicted 

response using the cluster-specific procedure for three different operative 

temperatures. 

Note. The dotted lines in (a) represent the thresholds used for categorisation. 
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Fig. 24 – (a) Probability densities and (b) categorised probabilities of the predicted 

response using the population-averaged procedure for three different operative 

temperatures.  

Note. The dotted lines in (a) represent the thresholds used for the categorisation. 

4.3.3 Models’ comparison 

As explain in Section 4.3, the focus of the study is prediction and not inference; 

therefore, the specific value of the models’ coefficients is not of interest. However, it is 

useful to compare variables selection across the models and contrast the relative 

importance of these variables. The automated backward elimination selected different 

sets of predictors for the two models. Four out of five predictors are shared by the two 

models, while the fifth variables differ. For the ordinal model, automated backward 



4.3 Human-in-the-loop methods for occupant-centric building design and operation 

57 

elimination selected air velocity, whereas for the beta model, vapour pressure was 

selected. 

In any attempt to understand the relative importance of the parameters estimated 

for the models, a direct comparison between their absolute values would be 

meaningless because the variables are measured using different units. Furthermore, 

several units could be used to measure the same variable. For example, if the operative 

temperature had been measured in degrees Fahrenheit instead of degrees Celsius, its 

estimated regression coefficient would have been different. However, the importance of 

the variable would not have changed. The relative importance of the predictors could 

be obtained via standardisation (i.e., subtracting the mean from each observed variable 

and dividing by its standard deviation) before conducting the statistical analysis. The 

resulting parameters estimated by the model are on the same scale and can be directly 

compared. The results of this procedure are show in Table 6. Here, even though the 

two models have different predictors, the order of relative importance of the common 

predictors is the same. The variables that differ between the two models are of minor 

relative importance. However, this importance is purely statistical. To determine the 

practical importance of the variables, subject-area expertise is required. Note that p-

values cannot be used directly to assess the importance of the predictors. A predictor 

can have a small p-value when it has a very precise estimate, low variability, or a large 

sample size. As a result, even effect sizes that are small in practice might have extremely 

low p-values. Understanding the practical importance of the predictors is beyond the 

scope of this study and is not pursued further. However, for inferential purposes, it is of 

the utmost importance.  
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Table 6 – Predictors’ relative importance for both the beta and ordinal models. 

Modelling strategy Predictor Standardise coeff Rank* 

Ordinal model Clothing  -0.464 4 

 BMI  -0.567 2 

 Air.vel  -0.163 5 

 Time.day morning Reference  

  afternoon -0.474 3 

 Top  -2.917 1 

     

Beta model Clothing  -0.172 4 

 BMI  -0.199 2 

 Time.day morning Reference  

  afternoon -0.177 3 

 Vap.pre  -0.102 5 

 Top  -0.793 1 

*the higher the absolute value of the standardise coefficient, the higher the rank. 

 

The AIC was used for variable selection. This metric is based on the maximised 

log-likelihood value with a penalty for including more parameters; it is a trade-off 

between goodness of fit (assessed by the likelihood function) and parsimony (the 

smaller the number of parameters, the lower the penalty). However, the AIC tends to 

over-parameterised, thus selecting models with a higher number of predictors, which 

could explain why the first four relatively important predictors were common to the two 

models, while their least relatively important predictors differed. 

The AIC is generally used to compare different possible models and determine 

which one best fits the data. However, it cannot be used to compare models with 

different likelihood functions. For example, for a discrete distribution (e.g., ordinal 

response), the likelihood refers to the joint probability mass of the data, whereas for a 

continuous distribution (e.g., continuous response), the likelihood refers to the joint 

probability density of the data. Therefore, models based on continuous and ordinal 

responses cannot be compared directly. For this reason, the two models are compered 

graphically in terms of predicted probabilities. However, it is important to point out that 

this method poses a limitation: a different categorisation of the beta distribution would 
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lead to different probabilities. The same applies for the categorisation of the thermal 

preference vote used to estimate the ordinal model. Nevertheless, by comparing the 

probabilities estimated by the two models, the following general observations can be 

made. On the one hand, the ordinal model is more flexible in the sense that it can handle 

different probability distributions (virtually any probability distribution). For example, in 

Fig. 21, it can handle the spike in the probabilities for the ‘without change’ category for 

an operative temperature of 23 °C. On the other hand, the beta model is more detailed 

since it provides a probability density function. For example, in Fig. 23.a, the predicted 

probability of observing a thermal preference vote between 0.45 and 0.55 for an 

operative temperature of 23 °C is 19.2 %. 

An alternative would be to calculate the mean of the estimated probabilities for the 

ordinal model and compare it with the predicted mean response of the beta model. 

Here, the category prefer ‘lower’ was mapped to 1 and the category prefer ‘higher’ was 

mapped to 5. The resulting mean probabilities were then rescaled between +0.001 and 

+0.999 to match the predicted mean response of the beta model. Fig. 25 shows this 

comparison. 
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Fig. 25 – Predicted responses using the cluster-specific (black solid and dashed 

lines) and population-averaged (red solid and dashed lines) procedures for the beta 

and ordinal models, respectively.  

Note. The points are the observed thermal preference votes.  

The curve produced by using the cluster-specific procedure for the ordinal model 

has three inflexion points. This particular behaviour can be explained by looking at the 

predicted probabilities in Fig. 21.a. Between the operative temperatures of 22–24 °C, 

the predicted probabilities for ‘without change’ were much greater than all the others 

(from 80 % up to more than 90 %). Consequently, within this range, the calculated mean 

was greatly affected by these probabilities. The same behaviour can be observed for 

the population-averaged curve to a lesser extent. However, more considerable 

differences are visible at the tails of the curves, that is, the two extremities. Here, the 

beta model’s mean response curve has tails that are heavier than the mean of the 

estimated probabilities for the ordinal model. 

The predicted thermal preference votes were calculated from the two models using 

two different approaches: fixing the random effects at their mean of zero (cluster-

specific procedure) and using a simulation approach with 𝑁 = 1 ∙ 104 (population-
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averaged procedure). Regarding the ordinal model, from Fig. 21 the most evident 

difference between the cluster-specific and the population-averaged procedures are 

the predicted probabilities for an operative temperature of 23 °C. Here, the predictive 

probability for ‘without change’ is about 91 % for the cluster-specific approach, while it 

is only 55 % for the population-averaged one. The reason for the discrepancy lies in the 

fact that the variances are not close to zero. As the between-cluster variances in the 

random-intercepts model increase, the curves will be further apart. The advantage of 

having predictive probabilities as outcomes is that they are their own error measures. 

In Fig. 21, the predicted probability of ‘without change’ for the cluster-specific approach 

is 91 %; if one decided not to choose this category as the expected outcome, the 

probability of this being an error is, by definition, 91 %. Following the same reasoning, 

for the population-averaged approach, not selecting ‘without change’ as the expected 

outcome has a 55 % probability of being an error. As a standard practice, the ordinal 

model regards the category with the highest probability as the predicted outcome (i.e., 

thermal preference vote). However, utilising a hard threshold, such as the automatic 

selection of the category with the higher probability, does not fully use the information 

contained in the probabilities. For example, in Fig. 20.b, such a threshold would lead to 

‘slightly lower’ and ‘slightly higher’ never being selected. Here the necessity of defining 

a utility/cost function that, for example, maximises the expected utility or minimises the 

expected cost. Regarding the beta model, from Fig. 23 and Fig. 24 it can be seen that, 

for both the cluster-specific and population-averaged procedures, the distributions of 

the probability densities (and analogously, the categorised probabilities) for an operative 

temperature equal to 23 °C are the same. The predicted mean response of the beta 

model intersects the thermal preference vote at 0.5, at which the median equals the 

mean prediction (see Fig. 25). The median (i.e., cluster-specific) curve is lower than the 

population-averaged curve for a predicted thermal sensation vote lower than 0.5 but is 

higher for a predicted thermal sensation vote higher than 0.5. Consequently, the cluster-

specific probability densities (i.e., the median probabilities) become skewed faster than 

the population-averaged ones (i.e., the mean probabilities) at operative temperatures 

higher or lower than 23 °C. 
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Chapter 5 

Discussion 

This thesis investigated how to enhance user comfort in (dynamic) thermal indoor 

environments and how occupant feedback may help improve the design and control 

strategies of both new and existing buildings’ indoor environments. 

The first research question (RQ1), ‘To what extent can the indoor thermal condition 

be modulated without compromising occupants’ thermal comfort?’, was addressed in 

Section 4.1. The central answer to this question was provided with a 4-months 

experiment carried out in the ZEB Test Cell Laboratory at NTNU. Three key results 

concerning thermal comfort in a dynamic environment were identified. The first one 

implied that the limits for drifts and ramps are not symmetric in winter conditions. The 

limits on temperature cycles, drifts and ramps defined in ASHRAE 55-2020 [9] are loose 

for cold temperature variations and conservative for warm ones. The second one 

concerned the discomfort mechanism for space heating and cooling processes. For 

warm discomfort, the operative temperature level is a significant predictor, while for cold 

discomfort, the relative change in operative temperature is the trigger. Finally, the 

distributions of participants’ thermal comfort ratings during warm and cold discomfort 

events were remarkably similar, despite different temperature changes. This suggests 

that, indeed, thermal comfort is the driver of thermal behaviour. In addition, some 

important methodological issues concerning the semantic equivalence of different 

rating scales were overcome. For instance, a classic hypothesis (rule-of-thumb) is to 

consider an environment ‘satisfactory’ when the thermal sensation vote is between 

‘slightly cold’ (–1) and ‘slightly warm’ (+1). In this study, this conversion is well suited for 

warmer variations. Still, it is utterly misleading for colder ones. Fig. 11 showed that most 

of the discomfort events were experienced when the environment was perceived as 

‘slightly cold’. In the context of multi-domain comfort, the methodology applied here 
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could be used to analyse the relation between perception and action. It would also be 

possible to evaluate which contextual and personal factors affecting behaviour influence 

perception and vice versa.  

The second research question (RQ2) highlighted the implication of the choice of 

the statistical method used to analyse subjective thermal comfort data. The question 

was posed as ‘How are the rating scales analysed for the subjective assessment of 

thermal environments?’. The main answers to this question are presented in Section 4.2 

as an evaluation of the impact of statistical analysis. The first takeaway from this study 

is that statistical modelling is a highly sophisticated topic. However, some of these 

complexities are overlooked when applied to thermal comfort research, specifically the 

check that some assumptions of the methods used in analysing subjective data are not 

violated. In a statistical setting, but more generally in science, the veracity of the 

conclusions is exactly the veracity of the assumptions; that is, the conclusions are 

contingent upon those assumptions. A critical thinker is aware of these assumptions 

since they might be wrong or misinformed. The work presented in this section of the 

thesis sought to address this lack of critical thinking by analysing in detail, in an 

illustrative example, the modelling steps. The method used to assess the reliability of 

the models is the so-called posterior predictive checks, a commonly used technique in 

Bayesian analysis. In essence, after computing the posterior distribution of the 

parameters, many simulated data are generated and compared with the observed ones. 

This approach has the evident drawback of evaluating a model against the same data 

used to estimate its parameters. Unsurprisingly, the model predicts the data used to fit 

the parameters, but even this simple test fails when the model’s assumptions are 

severely violated. These systematic discrepancies were clearly established: the 

posterior predictive distributions for the cumulative probit model accurately describes 

the distribution of the TSV, while the ones of the gaussian (ordinal-as-metric) have 

impossible predictive outcomes. Furthermore, the two models convey different 

conclusion regarding the significance of the variables gender and the magnitude of the 

estimated coefficient for air temperature. In addition, it was shown that the estimated 

thresholds for the cumulative probit model should not be approximated as equidistant, 

suggesting that, in this sample, the TSV is not interval-scaled. Nonetheless, it is 

important to point out that we cannot claim that treating ordinal data as continuous 
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always yields a different result or conclusion than treating them as ordinal. However, 

knowing in advance that a difference exists is impossible; a different result can be 

detected only if an ordinal analysis is also performed. Therefore, we strongly discourage 

the use of linear regression for analysing thermal comfort data measured on an ordinal 

scale. To improve the reliability of the results, we encourage researchers to use ordinal 

models. 

The outcomes from RQ1 and RQ2 were combined to develop a model to predict 

the thermal preference vote of human subjects exposed to a dynamic thermal 

environment. This topic was the subject of the third research question (RQ3) ‘How can 

the description of occupants’ thermal preferences be used to provide more satisfying 

control strategies?’. Section 4.3 dealt with this question and also proposed two different 

procedures to facilitate the integration of the occupants and their actual needs into 

buildings. This section’s main findings were that the two models (ordinal and beta 

model) used were both valid strategies for modelling thermal preference votes. On the 

one hand, the ordinal model is more flexible in the sense that it can handle different 

probability distributions (virtually any probability distribution). On the other hand, the 

beta model is more detailed because it provides a probability density function. However, 

the choice between the ordinal and the beta models should be made based on how the 

response variable is measured. The beta model is a suitable choice when the thermal 

preference votes are measured on a continuous, but bounded, scale. In contrast, the 

ordinal model is appropriate when a categorical scale is used. Concerning the 

integration of the occupants and their actual needs into buildings the two distinct 

procedures used were the cluster-specific and the population-averaged procedures. 

The population-averaged approach is suitable for the occupant-centric building design 

phase, where the target is the ‘general’ occupant characterised by features 

representing a larger population. On the other hand, during the building operation 

phase, the notion of a ‘general’ occupant is pointless, and the focus should be on 

satisfying the needs of the specific occupant or a homogenous group of people with 

respect to the parameters used during the model development. In this case, a cluster-

specific procedure is appropriate. Operationally, this procedure can be carried out by 

collecting and assessing the specific occupant responses to the environment, and 

consequently updating the probabilities of the population-averaged procedure that is, 



Chapter 5 Discussion 

66 

therefore, adjusted to match the specific pattern of preferences of the specific 

occupant/cluster. 

5.1 Limitations 

The reader is referred to each individual articles for a more detailed discussion about 

the limitations (see Appendix A). In the following the limitations are presented in 

subsections, arranged by each study. 

5.1.1 Regarding the experimental analysis 

This study’s limitations arise from the relative homogeneity of age and the unbalanced 

number of male and female participants. Since most of the participants were between 

23 and 31 years old, the results are not completely representative of the office worker 

population. The gender imbalance among participants might be the main cause of non-

statistically significant differences between males and females in terms of thermal 

discomfort (actions). To reduce the effect of the generally heterogeneous initial 

metabolic rate, participants spent the first half-hour before starting the session in a 

constant temperature environment. However, previous studies on thermal comfort in 

climatic chambers have shown that subjects’ average thermal sensation decreases 

during the first two hours, even during exposure to constant temperatures [38]. On the 

other hand, time and organisational constraints did not allow for such an extension of 

this study’s acclimation period. Therefore, it is possible that the potential carry-over 

effects influenced the participants’ thermal sensation even after the 30-minute 

acclimation phase.  

Even with some constraints (e.g., clothing adjustment), this study aimed to 

reproduce a typical office environment and, consequently, simulate a typical office 

activity pattern. Nevertheless, participants were prone to the Hawthorne effect. 

Typically, the Hawthorne effect is described as a change in research participants’ 

behaviour in response to their awareness of being observed [87,88]. In this study, to 

avoid potential bias, participants were blinded to the environmental changes; that is, 

they were not informed about the change in the room temperature. However, if the 

participants changed their behaviour during the experiment ― for example, by 
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increasing their awareness and, therefore, sensitivity to change in the indoor 

environmental condition ― the Hawthorne effect would have occurred. 

Also, the use of the digital button could have introduced a behavioural change. 

There is a difference in the intention to perform an action and the action itself. It is 

undeniable that performing an actual action, for example, adjusting the thermostat, 

would have required more effort than pressing the digital button. On the other hand, the 

opposite is also true. A specific human-building interface affects the level of interaction 

that a person has with it, and therefore its usability, which could lead to a different 

behavioural choice. Furthermore, it would be unfeasible to provide all the real means of 

possible interaction with the indoor environment (e.g., for the thermal environment 

alone, these include open/close window, thermostat adjustment, beverage intake, 

personalised/local cooler/heater, and ceiling/desk fans). Therefore, even with the 

aforementioned limitations, the discomfort button was adopted. 

5.1.2 Regarding the data analysis 

Subjective assessment of thermal environments 

A fundamental aspect that is usually overlooked is the assumption of independence: 

residuals, and thus observations, are assumed to be independent. Non-independence 

can arise, for example, from temporal and spatial autocorrelation. When underlying 

spatial or temporal processes have the potential to impact a response, the data are 

autocorrelated – the closer the observations are in space or time, the more highly 

correlated they are. These sources of non-independence can be apparent or far less 

so. The response of one sampling unit influencing the response of other sampling units 

is an example of evident non-independence. The non-independence caused by non-

measured confounding influences that vary spatially or temporally is less obvious to 

detect. Dealing with temporal (or spatial) autocorrelation or analysing temporal (or 

spatial) trends is different. The former endeavours to deal with the lack of independence 

associated with temporal (or spatial) data, while the latter tries to model the effect of 

temporal (or spatial) patterns. During the data analysis stage, it was impossible to 

identify either spatial or temporal autocorrelation to test the assumption of 

independence because there was no temporal (e.g., subject ID and timestamp) or 

spatial (e.g., building ID) information available. Consequently, this assumption was not 
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checked. Given that the analysis was carried out for illustrative purposes only, this issue 

can be overlooked. However, in a real-world analysis, the assumption of independence 

needs to be verified.  

Furthermore, other issues, such as functional form misspecification, 

multicollinearity and omitted variable, were not considered during the analysis because 

they were outside the scope of this article. Nevertheless, when developing a model, 

depending on the aim of the study, these issues can play an important role and need to 

be considered. 

Human-in-the-loop 

This study’s limitations arise from some simplifications introduced during the statistical 

modelling. For both models, the functional form was assumed to be linear for simplicity. 

Consequently, the models do not account for potential nonlinearities. However, 

nonlinearities could be considered, for example, by using smoothing splines. Another 

simplification derives from assuming that all the independent variables were measured 

exactly, that is, ‘error-free’. When covariates are measured with errors, the parameter 

estimates do not tend to the true values, even in extensive samples. For simple linear 

regression, this effect is known as the attenuation bias and leads to an underestimation 

of the coefficient. For more complex methods, such as multilevel models, this issue 

deserves a proper treatise and is beyond the scope of this study.  

For a beta model, the conditional variance is a function of both the mean 𝜇𝑖 , and 

the precision parameter 𝜙. The parameter 𝜙 is known as the precision parameter 

because for fixed 𝜇𝑖 , the larger the 𝜙, the smaller the variance of 𝑌𝑖. Therefore, the 

variance is not constant but rather a function of the mean and the precision parameter, 

here assumed to be constant. However, the precision parameter can be modelled as a 

function of some predictors, for example, the operative temperature. In this study, this 

possibility was not explored and should examined in future studies.  

To apply an ordinal model, the dependent variable must be categorical. For this 

reason, the dependent variable was binned into five categories according to the 

thresholds – 0.6, – 0.2, + 0.2, and + 0.6. However, these cut-off points were arbitrary and 

indirectly assumed to be the same for all participants. When a categorical scale is used 

to measure the dependent variable, this choice is made directly by single responders. 

Consequently, it is unlikely to be the same for all responders. While this study used 
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categorisation to apply the ordinal model, we do not encourage this practice in ‘normal’ 

circumstances. It is more appropriate to measure the variable directly with a categorical 

scale. As stated earlier, cut-off points are arbitrary and generally do not have 

practical/scientific meaning. 
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Chapter 6 

Conclusions 

The work presented in this thesis aimed to enhance user comfort in (dynamic) thermal 

indoor environments, starting from a technical/methodological point of view (i.e., 

‘experimental aspect’), continuing with the subsequent data analysis (i.e., ‘modelling 

and statistical aspect’) and ending providing occupant-centric design and control 

strategies for the buildings’ indoor environment (i.e., ‘application aspect’). In the next 

paragraphs, the main conclusions are drafted. 

6.1 Concluding remarks 

From a scientific perspective, the main research activities presented in this thesis have 

potential scientific impacts in diverse aspects. The characterisation of the human 

response to changing thermal environments is derived from critical literature analysis 

and formally includes ‘time’ in the analysis (Article I). The new knowledge developed 

from the experimental work encompasses both the limits of temperature drifts and 

ramps and the warm and cold discomfort mechanism. However, this work’s potential 

impact goes beyond this particular application. The methodology applied here could be 

extended to analyse the relation between perception and action in a multi-domain 

comfort context. It would also be possible to evaluate which contextual and personal 

factors affecting behaviour influence perception and vice versa. However, further 

experiments should be performed using the same experimental method to increase the 

reliability of the results. Moreover, conducting the investigation in real settings (i.e., in 

field studies) would be beneficial to avoid some limitations that generally affect 

experimental studies carried out in climatic chambers (e.g., the Hawthorne effect). 

One of the aims of thermal comfort research is to establish the relationship between 

the thermal environment and the human sensation of warmth. This is usually achieved 
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by measuring the subjective human thermal response to different thermal environments. 

Diverse rating scales are generally used to measure different aspects of thermal 

comfort, such as thermal sensation, thermal comfort, thermal preference, and thermal 

acceptability. In this thesis, the focus was on analysing the data once they were collected 

and not on the correctness of the level of measurement utilised to measure them. The 

statistical issues highlighted in this thesis (Article II) are not usually mentioned because 

the modelling steps are rarely presented, and only the final model is described. 

However, this is a limitation because researchers can neither assess the reliability of the 

model nor completely understand the limits of its applicability. Hopefully, this thesis will 

spur researchers to analyse these kinds of data more critically. Nevertheless, to our 

knowledge, the thermal comfort scales have not yet been tested for validity and 

reliability. While this verification is of fundamental importance, we believe this issue 

should be addressed with a collaborative effort among researchers within the thermal 

comfort community. Moreover, more emphasis should be given to the choice of the 

different type of rating scales employed (e.g., categorical scale, visual analogue scale, 

and graphic categorical scale), the number of anchors utilised, and the assumptions 

underlying their usage. In addition, while not of primary interest in this thesis, it emerged 

that there is a lack of homogeneity in the collection of common variables within the 

ASHRAE Global Thermal Comfort Database II. Furthermore, the Database II does not 

distinguish between scales, and ordinal and continuous measurements are mixed. We 

recommend that guidelines be developed for defining specific variables to measure. 

Although there is generally no ‘one-size-fits-all’ method (e.g., questionnaire) valid for all 

purposes, agreeing a ‘minimum set’ of variables to be consistently measured, possibly 

with a standardised protocol, would undoubtedly benefit the thermal comfort research 

community. Notably, some of the issues encountered during the analysis of the ASHRAE 

Global Thermal Comfort Database II have contributed to its improvement. An updated 

version of Database II released in June 2022 (Ref. [89]) addresses some of the issues 

found during this PhD (the change log with all updates is available at 

https://github.com/CenterForTheBuiltEnvironment/ashrae-db-II). 

A comfortable indoor climate is a highly subjective matter assessed individually by 

each occupant. Therefore, subjective data from occupants is critical for understanding 

buildings’ indoor environment, and may be valuable for several applications, including 

https://github.com/CenterForTheBuiltEnvironment/ashrae-db-II
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building design and operation. Perhaps, even help bridge the performance gap in 

present and future buildings. In the literature, there are numerous methods for 

predicting individual thermal comfort responses. Specifically, machine learning/data-

driven algorithms have exploded in popularity recently for this purpose. Although these 

techniques appear to have the potential to improve prediction ability at the level of a 

single building occupant, their inherent character as ‘black box’ models render them 

fundamentally unfit to explain their outputs. In predictive modelling, direct 

interpretability regarding the relationship between the predictors and the outcome of 

interest is not required; however, transparency is desirable. One of the main 

contributions of this thesis (Article III) is the development of a model aimed at predicting 

the thermal preference vote of human subjects exposed to a dynamic thermal 

environment. Here, the data-generation process is viewed as a ‘transparent’ tool for 

developing good predictions. However, the modelling strategy does not aim to model 

the effect of temporal patterns directly but rather to account for them. Two different 

procedures were proposed to facilitate the integration of the occupants and their actual 

needs into buildings: the cluster-specific and the population-averaged procedures. The 

population-averaged approach is suitable for the occupant-centric building design 

phase, where the target is the ‘general’ occupant. On the other hand, during the building 

operation phase, the notion of a ‘general’ occupant is pointless, and the focus should 

be on satisfying the needs of the specific occupant. In this case, a cluster-specific 

procedure is appropriate. This procedure can be carried out by measuring the specific 

occupant response to the environment and consequently updating the probabilities of 

the population-averaged procedure. It is hoped that the knowledge generated in this 

doctoral research will contribute to a transformation in how we design and manage 

buildings. Buildings should be designed and operated to allow occupants to interact 

with them, engaging the occupants in maintaining, for instance, a comfortable 

environment rather than relying on physical metrics alone. 

6.1.1 Further conclusions 

Building occupants are subjected to a variety of environmental stimuli, the combination 

and interplay of which influence human perception, physiology, behaviour, and 

performance. To begin with, a review of multi-domain research was carried out with the 

goal of emphasising motivating origins, essential methodology, and primary findings of 
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multi-domain investigations of human perception and behaviour in indoor environments 

(Article a). Subsequently, a review paper about laboratory experiments with humans in 

controlled environments was conducted (Article b). The aim was to identify common 

features of the different climatic chambers so that, in the future, it would be possible to 

have standardising test procedures, allowing the reproduction of the same experiments 

in different contexts. To conclude, a paper that aims to define a framework for designing, 

conducting, and reporting future multi-domain studies was presented (Article c). 

Hopefully, this would facilitate the integration of our understanding of multi-domain 

impacts on human reactions into standards and guidelines. 

Understanding how people use a space and how their behaviour impacts on a 

building’s energy performance are of fundamental importance. However, 

comprehending how occupant behaviour is modelled according to different purposes, 

available computational power, and technical solutions is critical. To this aim, a study 

that reviews approaches, methods and key findings related to occupant modelling in 

buildings was carried out (Article d). Numbers of models developed for occupancy and 

occupant behaviour have been included in building performance simulation (BPS) tools, 

especially in the last decades. However, their use, in reality, is still restricted. This may 

be attributable, in part, to the difficulty in comprehending their utility and the obstacles 

associated with their adoption into BPS. Both issues are caused by a lack of a framework 

for their definition and communication. To this end, a paper proposing a framework for 

documenting occupant models was introduced (Article e). Importantly, this approach 

might be viewed as a guideline to assist researchers in communicating their models in 

a straightforward manner. Moreover, occupant behaviour models have been developed 

to include people in the building control loop. Furthermore, depending on the extent of 

building automation, including occupant-behaviour modelling into building controls may 

result in improved building operation and lower energy use. Additionally, this may result 

in increased thermal comfort and occupant satisfaction with the indoor environment. 

However, occupant behaviour models are rarely included in building controls. To this 

end, a paper that offered a guideline for complete and harmonised occupant-behaviour 

model documentation was presented (Article f).  
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6.2 Suggested directions for future research 

The research in this doctoral thesis is a first step in enhancing the understanding of user 

comfort in dynamic thermal indoor environments. The research methodologies 

introduced open the door for new investigations, and the findings generate new 

research questions. In the following paragraphs, some avenues for further research are 

described. 

Controlling the indoor temperature of grid-interacting buildings within a thermal 

comfort range is a way to provide energy flexibility to the grid, exploiting the slow 

thermal inertia of a building’s envelope in combination with the users’ thermal comfort 

band. The findings presented in this thesis (Article I) have the potential to improve the 

performance of such controllers by providing a more accurate description of the human 

thermal response under dynamic conditions. For example, a model predictive control 

(MPC) with dynamic temperature constraints can be developed where these constraints 

are given by applying survival analysis. This would allow dynamic set-point modulations 

without jeopardising the occupant’s thermal comfort. In addition, survival analysis could 

be used to model recurrent events (time-to-event data), such as discomfort events 

under cyclical variation of temperature, induced by, for instance, demand response (DR) 

strategies (e.g., DR-activated smart thermostats). 

This thesis focuses on analysing subjective thermal comfort data once they were 

collected (Article II). However, how to measure them deserves a specific treatment. 

Psychometrics is a field of study concerned with the objective measurement of latent 

constructs that cannot be directly observed (e.g., intelligence). A psychometric scale 

(usually) comprises multiple questions or statements, each with its own rating scale, 

used to measure the construct of interest reliably and validly. However, thermal comfort 

scales use only one item (i.e., one question with an associated rating scale) to measure 

the construct of interest. For example, only one item is used to measure thermal 

sensation, thermal comfort, thermal preference and thermal acceptability. Although 

using single-item scales may be sufficient to measure the construct of interest, to our 

knowledge, thermal comfort scales have not yet been tested for validity and reliability. 

Also, the interplay among the different aspects of thermal comfort, such as thermal 

sensation, thermal comfort, thermal preference, and thermal acceptability, should be 

further explored and examined. 
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The two different procedures proposed to facilitate the integration of the occupants 

and their actual needs into the design and operation of buildings (Article III) should be 

applied in other contexts (e.g., other climatic chamber experiments or real building 

settings). However, the specific model and the variables should depend on the particular 

research aim. For instance, if the objective is to predict thermal discomfort, it is sufficient 

to use the variables associated with this outcome in the model. On the contrary, the 

association is insufficient if the aim is to prevent thermal discomfort; for this purpose, 

causality is required. Therefore, it is essential to understand that the modelling process, 

and consequently the resulting model, is only a means to an end, and the same model 

should not be used ‘indiscriminately’ for all purposes. 
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Human thermal comfort under dynamic conditions: An experimental study 
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A B S T R A C T   

Although thermal comfort has been a research topic since the 1960s, some knowledge gaps still affect under-
standing of the human response to changing thermal environments. To enhance knowledge in this regard, an 
exploratory study is presented, which aims to understand human response to monotonic thermal variations by 
describing its relationship with covariates of interest. Thirty-eight participants (29 females, 9 males) worked in 
an office-like climate chamber and were exposed to dynamic and controlled heating and cooling ramps of the 
operative temperature with different speeds. Participants’ perception, evaluation, preference and acceptability of 
the indoor thermal environment were recorded by filling in dedicated questionnaires. Additionally, participants 
could indicate when an uncomfortable event occurred during these temperature ramps by clicking a digital 
button on a dedicated app. This discomfort event was defined in behavioural terms as the decision to “take action 
to restore a comfort condition”. Survival analysis was used to study participants’ reactions to the dynamic 
thermal stimuli. It showed that two distinct mechanisms caused discomfort events due to overheating and 
undercooling: warm discomfort is driven by the absolute value of the achieved operative temperature, while the 
relative change in operative temperature mainly causes cold discomfort. Compared to the current recommen-
dations regarding temperature cycles, drifts and ramps, this result shows that current standard recommendations 
underestimate the risk of thermal discomfort during a cooling process while overestimating it during a heating 
one. The new knowledge of human reaction to a dynamic thermal environment can lead to more energy-efficient 
and satisfactory building control strategies.   

1. Introduction 

Thermal comfort is a consolidated research subject, first incorpo-
rated into standardisation in 1966 [1]. After that, standardisation bodies 
produced standards dedicated to thermal comfort in moderate and se-
vere thermal environments and indoor environmental quality. Nowa-
days, all thermal comfort standards include definitions of the 
requirements for indoor thermal conditions in buildings both for design 
and operational assessment. However, current standards only indicate 
the maximum variations in operative temperature for non-steady-state 
thermal environments. ASHRAE 55-2017 [2] and ISO 7730-2005 [3] 
classify temperature variations as either temperature drifts and ramps or 
temperature cycles. Drifts and ramps are defined as “monotonic, 
non-cyclic changes in operative temperature” [2], and their limits dur-
ing a period are shown in Table 1. Drifts refer to passive temperature 
changes in an enclosed space, while ramps denote actively controlled 
ones. In contrast, cycles refer to “those situations where the operative 

temperature repeatedly rises and falls, and the period of these variations 
is not greater than 15 min” [2]. For these changes, ASHRAE 55 allows a 
maximum peak-to-peak cyclic variation in operative temperature of 1.1 
K and recommends treating cyclic variations with a period greater than 
15 min as drifts or ramps. 

ISO 7730-2005 [3] provides less detailed indications. For tempera-
ture cycles, it sets a maximum peak-to-peak variation of 1 K, whereas, 
for drifts and ramps with a rate of change lower than 2.0 K/h, it pre-
scribes steady-state methods. These standards also include step-changes, 
which involve changing the environment (i.e., moving to/from another 
space) rather than a change within the environment. Consequently, they 
are not described here because out of the scope of this study. 

The limiting criteria in Table 1 are probably based on early labora-
tory studies of thermal comfort under transient exposure [4–6]. During 
the same period (the 1970s and 1980s), other studies were conducted on 
both cyclical [7,8] and monotonic temperature variations [9–13]. 
Hensen [14] reviewed these studies meticulously and found inconsistent 
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results. He offered several possible explanations for these dissimilarities, 
including the different voting scales and acceptability criteria and the 
distinct experimental conditions, among others. Despite these discrep-
ancies, Hensen argued that the experimental results support a 2.2 K/h 
constraint for cyclical variations in operative temperature. As no evi-
dence had been found to the contrary, he also concluded that this limit 
could also apply to temperature drifts and ramps. Since this review, only 
a handful of studies have been conducted on cyclical [15–17] and 
monotonic variations [18]. Under cyclical variations, these recent 
studies indicate a positive effect on occupants’ thermal comfort. In 
contrast, for monotonic variations, different rates of temperature change 
result in inconsistent effects. As mentioned earlier, different accept-
ability criteria and voting scales could plausibly be a main source of the 
discrepant findings. Another factor that might be responsible for these 
differences involves human thermal perception and thermoregulation, 
described in the following sections. 

1.1. Thermal perception and thermoregulation 

The skin, the largest organ in the human body, is an interface that 
separates the body from the rest of the world. On a daily basis, its surface 
processes at least hundreds of physical sensations, among them envi-
ronmental thermal stimuli. These stimuli are detected by the free nerve 
endings of the primary sensory neurons in the skin. These neurones, 
located in the dorsal root ganglia, convert the external stimuli into 
electrical signals that are then transmitted to second-order neurons 
(namely dorsal horn neurons), which are located in the spinal cord [19]. 
At this first relay centre, thermal information is further processed before 
being sent to the brain. 

In neurophysiology, significant progress has been made in identi-
fying primary sensory neurons’ thermal response profiles [19–21]. Re-
searchers have ascertained that the principal detectors of the thermal 
stimuli in the peripheral nervous system are the ion channels of the 
transient receptor potential (TRP) family [19]. These thermosensitive 
TRPs are triggered at specific threshold temperatures and function as 
dedicated transducers of distinct thermal modes. Among them, TRPV1 
and TRPM8 are the primary sensors of hot and cold temperatures, 
respectively. Conversely, the understanding of spinal cord temperature 
encoding remained limited until recently, when Ran et al. [22] showed 
that the representation of heat and cold in the dorsal horn is substan-
tially different from the operation of TRPs. They observed that 
heat-responding neurons are activated gradually with incremental in-
creases in temperature, where higher temperatures activate more neu-
rons. Therefore, higher absolute temperatures induce stronger neuron 
responses. Furthermore, if a steady heat stimulus persists, these neurons 
are not able to adapt and thus persistently respond to it. These results 
combined suggest that heat-responding spinal neurons encode the ab-
solute temperature. Conversely, cold-responding neurons’ reaction 
reaches its highest point during the cooling phase but rapidly adapts to 
steady cold stimuli. This behaviour allows these neurons to signal 
changes over a wide range of environmental temperatures. Therefore, 
they communicate a relative drop in absolute skin temperature rather 
than absolute skin temperature. As a result, from a neurophysiological 
point of view [22], the response to heat (i.e., an increase in temperature) 
in the spinal cord is encoded in absolute terms (i.e., a certain tempera-
ture level), whereas the response to cold (i.e., a decrease in temperature) 

is coded in relative terms (i.e., a certain temperature difference). 

1.2. Thermal alliesthesia 

Skin receptors (thermoreceptors), although ideal for sensing changes 
in the environmental temperature, do not perform well in detecting 
increases in core temperature, for example, during exercise. This is 
because the body’s internal temperature would increase to an unbear-
ably high level before the skin thermoreceptors could detect it. Not 
surprisingly, the body is provided with other temperature-sensitive 
neurons, located throughout the body core (e.g., in the liver, kidneys, 
and stomach) and in the brain (i.e., the preoptic hypothalamus), that 
play a major role in detecting changes in deep-body temperature. 
Nevertheless, given the body’s thermal inertia, these neurons are not 
suitable for detecting changes in the environment. The lag time of using 
body core temperature-sensitive neurons would be too large to perform 
effective regulation. Therefore, if the body’s core temperature falls 
within the thermoneutral zone (TNZ), peripheral inputs play the most 
significant role in thermoregulation. Inside the TNZ, body temperature 
regulation is accomplished only through the control of sensible heat loss 
[23] and therefore involves only autonomic thermoregulatory mecha-
nisms. Anticipating this line of reasoning, Marks and Gonzales [24] 
predicted “that pleasantness and unpleasantness of thermal stimuli 
depend on the temperature of the skin before stimulation – which itself 
reflects environmental conditions – given constant internal body tem-
peratures”. Only after 40 years, Parkinson and De Dear [25] formalised 
this concept as “spatial alliesthesia”, where the term alliesthesia, first 
introduced by Cabanac, is “the property of a given stimulus to arouse 
pleasure or displeasure according to the internal state of the subject” 
[26]. In spatial alliesthesia in particular, the perceptual changes are 
detected by cutaneous thermoreceptors, not the body core, which drive 
pleasure sensations. This notion becomes more relevant when consid-
ering that thermal behaviour is driven by thermal comfort [27] and is 
regarded as the primary influencing factor in body temperature ho-
meostasis [28]. Also, it is essential to notice that the indoor environ-
ment’s transient conditions are commonly within the TNZ, where the 
influence of thermal behaviour is omitted. Kingma et al. [29] analysed 
the relationship between the TNZ and the thermal comfort zone (TCZ). 
They concluded that the ambient temperature associated with the 
thermoneutral zone is greater than that of thermal comfort. This finding 
implies that thermal behaviour could be initiated even before the ther-
moneutral zone boundaries are reached. In terms of spatial alliesthesia, 
negative alliesthesia (i.e., thermal displeasure) can be viewed as thermal 
discomfort [25], which in turn prompts human beings to counter the 
thermal environment accordingly. 

Following this logic, Vellei and Le Dréau [30] proposed a modified 
version of Fanger’s predicted percentage of dissatisfied (PPD) index that 
considers both a static and a dynamic component. The former is based 
on thermal sensation derived from the predicted mean vote (PMV), 
while the latter includes thermal alliesthesia and thermal habitu-
ation/adaptation. Utilising the data from Zhang’s experiment on cyclical 
temperature variations induced by demand response events [16], the 
authors showed the impact of these psycho-physiological phenomena on 
dynamic thermal perception. 

1.3. Research aims 

Despite the existence of previous studies on temperature cycles, 
drifts and ramps, their inconsistent results limit the knowledge of dy-
namic thermal comfort limits. Regarding the processes driving dynamic 
thermal perception in temperature cycles, the previously mentioned 
study by Vellei and Le Dréau is noteworthy. However, the dynamics of 
temperature cycles differ from the dynamics of temperature drifts and 
ramps. The latter, being monotonic changes, do not have the same 
stimulus repeated over time. Furthermore, this study has some potential 
issues related to the use of different scales to assess satisfaction. In 

Table 1 
Limits on temperature drifts and ramps by ASHRAE 55-2017 [2].  

Time period (h) Maximum operative temperature to change allowed (K) 

0.25 1.1 
0.5 1.7 
1 2.2 
2 2.8 
4 3.3  
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Zhang’s experiment, the percentage of dissatisfied is calculated from 
actual observed data, measured using a binary acceptability scale. In 
contrast, Fanger’s PPD index is inferred from the 7-point ASHRAE 
thermal sensation scale (assumed to be ≥ 2 or ≤ − 2; see page 130 of 
[31]). Therefore, there is a problem with the semantic equivalence of 
these scales. In truth, this is a problem that extends to other psycho-
metric scales (e.g., thermal comfort and thermal preference), and that 
the thermal comfort research community has yet to address adequately. 

The present research is an exploratory study whose goal is to un-
derstand human reaction to monotonic thermal variations by describing 
the relationship between their response and the covariates of interest. 
Therefore, the emphasis of this work is to derive some insight into the 
relationships that exist rather than to test hypotheses that certain re-
lationships hold. This is achieved through a laboratory experiment with 
“office-like subjects”, simulating office settings in a ramp-induced 
thermal environment. In this configuration, the relationship between 
environmental and demographic factors (with their potential in-
teractions) to participants’ thermal discomfort event was analysed. We 
considered the actual thermal behaviour as the thermal comfort limit, 
that is, the action prompt from the discomfort event. By doing so, we 
avoid the issue of semantic equivalence between different psychometric 
scales. Nevertheless, participants’ perception, evaluation, preference 
and acceptability of the environment were collected. 

2. Methods 

2.1. Participants 

Participants were recruited from the university campus with a tar-
geted age between 20 and 67. A summary of the main demographic and 
anthropometric characteristics of the subjects is listed in Table 2. 
Participation in the experiment was voluntary, and participants were 
informed about the possibility of withdrawing their consent at any time, 
without giving a reason in agreement with the principles and in-
structions of the European General Data Protection Regulation (GDPR). 
A printed information letter was distributed, and the participants signed 
a consent form prior to participation. The letter included information on 
data protection measures and general information about questionnaires 
and measurements. However, it did not inform the subjects about spe-
cific changes in environmental variables, such as changes in tempera-
ture. To comply with the GDPR, the experiment description was 
submitted to the Norwegian Centre for Research Data (NSD) and 
approved with reference code 525790. 

2.2. Experimental set-up 

The experiment was conducted in the ZEB Test Cell Laboratory on 
the Norwegian University of Science and Technology (NTNU) premises 
(Trondheim campus) between September 2019 and January 2020 (see 
Appendix A for a summary of the outdoor climatic conditions). Two 
identical climatic chambers (2.4 m × 4.2 m x 3.3 m in height, sur-
rounded by two guard rooms kept at 22 ◦C) (Fig. 1), furnished like a 
typical single office, were used to recreate a change in the environment 
induced by thermal ramps. Space heating and cooling were provided 
from a constant air-volume system that supplied 100% fresh air from 
outside, distributed by a 2 m long perforated fabric tube installed at the 

ceiling. The temperature of the supplied air was controlled through a 
PID controller (implemented in LabVIEW) utilising a Class A Pt100 
temperature sensor located in the extraction air duct. Chamber’s walls, 
ceiling, and floor consist of prefabricated sandwich panels with a low 
thermal mass; therefore, the surface temperatures almost instantly 
follow the air temperature. The climatic chambers were illuminated 
with office pendant and task lighting, as well as natural lighting through 
a south-facing window with a window-to-wall ratio of 0.56. The shading 
configuration was composed of 13 louvres tilted at 15◦ mounted on the 
external side of the window. Further details on the facility’s experi-
mental equipment, as well as the properties of the ZEB laboratory, can 
be found in Goia et al. [32]. 

During the experiments, the indoor environment was monitored by 
measuring air temperatures (at 0.10, 0.60 and 1.10 m), surface tem-
peratures (five on the two side walls, three on the floor and the ceiling, 
four on the window and one above the door), globe temperature (at 1.70 
m), relative humidity (at 1.75 m), airspeed (at 0.10, 0.60, 1.10 and 1.70 
m), CO2 concentration (at 1.75 m), horizontal and vertical illuminance 
(on the work-plane and at eye levels, respectively) every minute 
throughout every session. In addition, a weather station installed in 
proximity to the southern façade of the ZEB Test Cell measured ambient 
air temperature, relative humidity, wind speed and direction, global 
solar irradiance on the horizontal plane and precipitation in 10-min 
intervals. The accuracy of the sensors used, both for indoor and out-
door measurements, are shown in Table 3. 

2.3. Experimental conditions and procedure 

The operative temperature set-point of 22.0 ± 1.0 ◦C was defined in 
accordance with the thermal comfort limit for winter according to 
Category A of ISO 7730-2005 [3]. Both space heating and cooling var-
iations were tested within winter conditions. The rates of temperature 
changes were derived from the limit in ASHRAE 55-2017 (Table 1) [2]. 
Given the limit of 3 h for each experimental session (Fig. 2) and 
compatible with a typical office occupancy schedule, only the following 
thermal ramps were implemented: (i) ±4.4 K/h, (ii) ±3.4 K/h, (iii) ±
2.2 K/h and (iv) ±1.4 K/h. 

The study’s design was a randomised crossover trial; a longitudinal 
study in which participants received a randomised sequence of different 
exposure (i.e., thermal ramps). The schematic of the experimental ses-
sion, illustrated in Fig. 2, was composed of seven and a half hours with a 
half-hour lunch break included (as a typical standard Norwegian 
workday). To increase participation, the day could be split into half 
days, meaning one morning session (8:00–11:30) and one afternoon 
session (12:00–15:30). However, participants were required to attend an 
even number of morning and afternoon sessions. Subjects could choose 
to join the experiment for two or four days and were offered compen-
sation, upon completion of the agreed days, of 200 or 600 NOK, 
respectively. In addition, a lottery was set up: one lucky participant, 
selected from among those who successfully completed the agreed-upon 
days, received an Apple iPad. 

After arrival, participants were asked to take a seat at the workplace 
assigned beforehand by the researchers. At this time, they were asked to 
fill out a first questionnaire consisting of questions related to de-
mographic and anthropometric characteristics, current clothing level 
and satisfaction with the workplace (q1 in Fig. 2). During the first 30 

Table 2 
Demographic and anthropometric characteristics of participants.  

Gender Number Age (year) Height (cm) Weight (kg) BMI (kg/m2) 

Median (IQR*) Median (IQR*) Median (IQR*) Median (IQR*) 

Male 9 28.0 (30.0–25.0) 174.0 (184.0–170.0) 70.0 (85.0–67.0) 24.2 (26.3–22.1) 
Female 29 26.0 (31.0–22.0) 170.0 (172.0–165.0) 63.0 (70.0–53.0) 21.6 (23.4–20.7) 
Total 38 26.5 (30.8–23.0) 170.5 (173.0–165.0) 65.0 (70.0–58.3) 21.8 (24.2. – 20.8) 

*IQR is the interquartile range, that is, the difference between upper and lower quartiles. 
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min, participants acclimatised to the constant set-point temperature and 
were free to adjust their clothing ensemble. After this period, the 
experimental session started. At this time, the subjects were instructed to 
report the final clothing level (i.e., if any change in the initial clothing 
level occurred during the acclimation period) and to maintain the 
adopted garment level throughout the experimental session. 

Furthermore, participants were not allowed to interact with the envi-
ronment (e.g., open the window/door, regulate the thermostat). How-
ever, due to the long sessions, participants were allowed to stand up and 
move around the climate chamber, leave it for a short period (to visit the 
restroom), and consume refreshments. No specific tasks or tests were 
carried out during the experiment, and participants were asked to carry 
out their typical office activity. This contributed to the simulation of a 
typical office activity pattern. Nevertheless, subjects had to fill out 
computer-based questionnaires at different scheduled intervals (q2 in 
Fig. 2). By means of graphic categorical scales, these questionnaires 
were used to assess perception, evaluation, preference, and acceptability 
of the thermal, visual, acoustic and air quality of the environment. These 
scales, derived from the standard ISO 10551-2019 [33], are shown in 
Appendix B. 

During the experimental session, the participants were instructed to 
press a digital button (available on a dedicated laptop situated on the 
desk, see Fig. 3) as soon as they felt uncomfortable. Here uncomfortable 
was defined as the decision to “take action to restore a comfort condi-
tion” (e.g., if the environment is too warm, then regulate the thermostat 
or open the window). It is important to point out that participants could 
press the button for any source of discomfort related to the indoor 
environment (e.g., stuffy air, noise from the ventilation system, lack of 
daylight) and not only for temperature-related discomfort. After press-
ing the digital button, a computer-based questionnaire appeared on the 
dedicated laptop (q3 in Fig. 2). This questionnaire was used to assess the 
environment (in the same manner as q2) and record the source(s) of 
discomfort through multiple-choice answers (shown in Appendix C). 
Participants were also requested to rank, from 1 to 3 (with one being the 
most important), the strategies (among a predefined set of listed op-
tions) that they would use to restore comfort. These strategies varied 
from simple actions (such as adding/removing a clothing layer and 
opening/closing the window) to more complex ones (such as adjusting 
the cooling/heating set-point temperature and plugging-in a local/per-
sonal cooler/heater). 

The thermal ramp was interrupted when one of the two following 
conditions was met: (i) the session ended (i.e., at 11:30 and 15:30); (ii) 

Fig. 1. Floor plan of the facility.  

Table 3 
Characteristics of the sensors for the measurement of indoor and outdoor 
conditions.  

Physical variable Type of sensor Accuracy 

Indoor 
Air temperature Pt100 ±0.3 ◦C 
Surface temperature T-type thermocouple ±0.5 ◦C 
Globe temperature Pt100 ±0.3 ◦C 
Relative humidity Capacitive ±5% 
Airspeed Hot wire 0 ÷ 0.1 m/s = NA 

0.1 ÷ 0.5 m/s = ±0.083 m/s 
0.5 ÷ 1 m/s = ±(0.05 + 0.05 
va*) m/s 
>1 m/s = ±(0.1 + 0.05 va*) 
m/s 

CO2 concentration Non-dispersive infrared ±70 ppm +5 %measured 

Horizontal 
illuminance 

Photodiode ±5% 

Vertical illuminance Photodiode ±3% 
Outdoor 
Air temperature Pt100** ±0.1 ◦C 
Relative humidity Capacitive** ±1.5% 
Wind speed N.32 step optoelectronic 

disk 
0 ÷ 3 m/s = 1.5% 
>3 m/s = 1% 

Wind direction See above 1% 
Global solar 

irradiance 
Thermopile pyranometer 10% 

Precipitation Tipping bucket*** 0 ÷ 20 mm/h = ± 0.2 mm 
20 ÷ 240 mm/h = 1% 

*va is mean airspeed. 
**Thermohygrometer with multi-plate natural ventilation radiant screen. 
***Rain gauge equipped with heater and siphon. 
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the participant pressed the digital button. In the latter case, the thermal 
ramp was stopped only if the discomfort event was related to the tem-
perature level, that is, the participant selected “temperature too high” or 
“temperature too low”. At the end of every session, subjects were asked 
to fill out a questionnaire (q4 in Fig. 2) about their satisfaction with the 
workplace as a whole, expressed on a Likert scale. 

3. Statistical analysis 

Environmental, demographic and anthropometric data were studied 
using a survival analysis. Survival analysis comprises a family of 

methods that examine and model the time it takes for events to occur. 
However, its goal is not limited to investigating the effects on the time 
until the event occurs, but also to evaluate the relationship of survival 
time to covariates. Covariates (often referred to interchangeably as 
predictors or independent/explanatory variables) assess the impact of 
certain features on the dependent variable. 

The prototype event is death – hence the name “survival analysis” 
and much of its terminology – but the range of applications of survival 
analysis is much broader. For example, the same methods are known as 
“failure-time analysis” in engineering and “event-history analysis” in 
sociology. 

Fig. 2. Schematic of the experimental procedure (bottom) with an example of a possible scenario (top).  

Fig. 3. View of the workstation in one of the two single offices.  
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3.1. Survival analysis 

In survival analysis, there are two crucial quantities that need to be 
introduced, namely the survivor function, denoted by S(t), and the 
hazard function, denoted by λ(t). Let T be a non-negative random var-
iable representing the waiting time until the occurrence of an event. The 
survival function S(t) can be written as the probability that the random 
variable T is larger than a specified time t, that is 

S(t)=Pr(T ≥ t) Eq. (1) 

More generally, it is the probability that the event of interest has not 
occurred by duration t. 

An alternative characterisation of the distribution of T is given by the 
hazard function, defined as 

λ(t)= lim
dt→0

Pr(t ≤ T < t + dt|T ≥ t)
dt

Eq. (2)  

which gives the instantaneous rate of occurrence of the event at time t, 
given survival up to time t. 

The two functions in Eq. (1) and Eq. (2) express, in essence, opposing 
concepts: while the survivor function focuses on surviving, the hazard 
function focuses on failing, given survival up to a certain point in time. 
Moreover, there is a clear relationship between these two quantities. 
Knowing the form of S(t), the corresponding λ(t) can be derived, and 
vice versa. More generally, this relationship can be expressed equiva-
lently in either of the two formulae: 

S(t)= exp

⎛

⎝ −

∫t

0

λ(u)du

⎞

⎠ Eq. (3)  

λ(t)= −
d
dt

log S(t) Eq. (4) 

The integral in the round brackets in Eq. (3) is called the cumulative 
hazard (or cumulative risk) and is denoted as 

Λ(t)=
∫t

0

λ(u)du Eq. (5) 

Furthermore, censoring and its assumptions need to be mentioned as 
well. Censoring is a form of missing data problem in which the time-to- 
event is not observed. Therefore, there is only partial information about 
individual survival time. There are three different types of censoring, as 
graphically illustrated in Fig. 4:  

− Left-censored: the event occurs between tstart and t3, but the exact 
time is unknown.  

− Interval-censored: the event occurs within t1 and t4, a specified time 
interval, but the exact time is unknown.  

− Right-censored: the event does not occur before the end of the study, 
tend. 

There are three assumptions about censoring for survival data: in-
dependent censoring, random censoring, and non-informative 
censoring. These assumptions, even though they have similarities, are 
different and should not be used interchangeably. Among the three, 
independent censoring is the most relevant since it affects validity.1 

Many of the analytical techniques discussed in the next paragraph rely 
on this assumption for valid inference in the presence of right-censored 
data. For mathematical definitions of these three assumptions, the 
reader is referred to Kalbfleisch and Prentice [34] and Klein and 
Moeschberger [35], and for more intuitive definitions and examples to 

Kleinbaum and Klein [36]. 
As mentioned before, survival analysis is the name for a collection of 

statistical techniques. These techniques can be summarised into three 
categories: (i) non-parametric models, (ii) parametric models, and (iii) 
semi-parametric models. The main difference between the three cate-
gories is whether the outcome, namely the survival time, is assumed to 
follow a specific distribution. Non-parametric methods are used when 
no theoretical distribution adequately fits the data; therefore, they are 
distribution free. The Kaplan-Meier method is an example from this 
category. Conversely, in the parametric model, the underlying distri-
bution of the outcome is specified. Typical examples of parametric 
models in a regression-type framework are linear regression, logistic 
regression, and Poisson regression. The outcome is assumed to follow 
some distribution with these models, such as the normal, binomial, or 
Poisson distribution. For survival analysis, several parametric distribu-
tions can be used to describe time to event data, such as exponential, 
Weibull and log-normal distribution, each of which is defined by a 
different hazard function. Semi-parametric models are a combination of 
the two previously mentioned categories. Even if the regression pa-
rameters (the betas) are known in these models, the outcome’s distri-
bution remains unknown. The Cox proportional hazards (PH) model 
belongs to this category. 

In this investigation, since the outcome distribution (i.e., the survival 
time distribution) is unknown, non-parametric and semi-parametric 
models were utilised, more specifically, the Kaplan-Meier method and 
Cox regression. The former has been used in this study only to describe 
and visualise the survival curves at a preliminary stage, while the latter 
evaluates the relationship of survival time to covariates. 

3.1.1. Kaplan-Meier method 
The Kaplan-Meier (KM) estimator of a survival function at time t, 

Ŝ(t), is given by [37]. 

Ŝ(t)=
∏

i: ti≤t

(

1 −
di

ni

)

Eq. (6)  

where di is the number of events at time ti and ni is the number at risk at 
time ti. This method is based on individual survival times and assumes 
independence between censoring and survival, that is, the reason an 
observation is censored is unrelated to the cause of failure. From Eq. (6), 
it can be seen that Kaplan-Meier requires a minimal feature set. Kaplan- 
Meier only needs the time when the event (or censorship) occurred and 
the duration between the onset and the event. Also, as mentioned before, 
it is distribution-free. However, it cannot estimate the magnitude of the 
survival-predictor relationship of interest, nor control for multiple 
covariates. Therefore, it has been used only to describe and visualise the 
survival curves at a preliminary stage. 

3.1.2. Cox proportional hazards model 
The Cox proportional hazards (PH) model is the most used procedure 

for modelling covariates’ relationship to survival or other censored 
outcomes. It is mainly popular because it does not require any as-
sumptions about the shape of the hazard function (that is, the specific 
way that risk changes over time); however, it allows for estimating the 
regression coefficients. 

The Cox PH model is usually written in terms of the hazard model 
formula 

λ(t)= λ0(t)eXβ Eq. (7)  

where λ0(t), is an unspecified non-negative function of time called the 
baseline hazard, while eXβ, is the time-independent exponential 
expression that involves the covariates X. 

A fundamental assumption of the Cox model is proportional hazards, 
which implies that the hazard ratio for any two subjects i and j is con-
stant over time. 

1 Validity is meant as lack of bias. The presence of non-independent censoring 
will result in a biased estimated effect. 
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λ0(t)eXiβ

λ0(t)eXjβ
=

eXiβ

eXjβ
Eq. (8) 

If this assumption holds, each covariate’s effect can be summarised 
with a single number. Since in practice this assumption is never 100% 
confirmed (for example, this is the case for any Cox model that include 
time-dependent variables), there are various strategies to deal with this. 
Models that rely upon this strategy are called “extended Cox models” 
and can be generally written as 

λ(t)= λ0(t)eX(t)β Eq. (9)  

λ(t)= λ0(t)eXβ(t) Eq. (10)  

where Eq. (9) is a time-dependent covariate, and Eq. (10) has a time- 
dependent coefficient. Note that the PH assumption presumes that the 
coefficient does not change over time: β(t) = c. 

In the literature, there is another approach called the “stratified Cox 
procedure”, in which the variable that does not meet the PH assumption 
is stratified. Stratification is suitable only for categorical variables and 
implies different baselines for each level of the variable being stratified. 
It can be written as 

λg(t)= λ0g(t)eXβ Eq. (11)  

where g denotes the levels of the variable. Note, however, that the 
stratified variable is not included in the model, and it is not possible to 
obtain a hazard ratio value for the stratified variable adjusted for the 
other variables. Nevertheless, the same coefficients (the βs) are assumed 
for each level of the stratified variable. 

The Cox model relies upon other assumptions that need to be veri-
fied, which derive from the fact that this model is a regression-type 
model. These assumptions state that the relationship between the co-
variate and the response (the logarithm of the hazard in this case) is 
additive and linear. The former means that the effect of changes in a 
covariate Xk on log λ(t) is independent of the values of the other cova-
riates, while the latter states that the change in the log λ(t) due to a one- 
unit change in Xk is constant, regardless of the value of Xk. For further 
detail, the reader is referred to Refs. [36,38]. 

3.1.3. Data preparation and analysis 
Data gathered during the acclimation2 period were excluded from 

the data analysis. The mean radiant temperature (MRT) was calculated 
according to ISO 7726-1998 [39] based on the surrounding surfaces’ 
measured temperature and the angular factor computed for a seated 
person in the specific climate chamber. Following the aforementioned 
standard, the calculated MRT was used, combined with the measured air 
temperature and air velocity, to calculate the operative temperature. 
Due to a technical problem with the air conditioning during space 
cooling processes, data from two female participants were excluded 
from the analysis. This led to a difference in the female sample size 
between space heating and cooling processes, from 29 to 27, 
respectively. 

All statistical analyses were performed using R [40] with the RStudio 
integrated development environment (RStudio Inc., Boston, MA, USA). 
Survival analyses, using both the Kaplan-Meier method and Cox 
regression, were performed with the survival package [41] and the 
respective graphs were created with the ggplot2 package [42] and the 
survminer package [43]. The significance level for all analyses was set at 
0.05. 

4. Results 

The results are grouped according to (i) general results and obser-
vations, (ii) descriptive analysis from the KM method, and (iii) model-
ling step and results obtained from the extended Cox model. 

4.1. General observations 

A total of 314 thermal ramps were performed, which led to 223 
thermal discomfort events. Specifically, 104 thermal discomfort events 
occurred during heating processes (with 155 thermal ramps), while 119 
thermal discomfort events occurred during cooling processes (with 159 
thermal ramps). Table 4 summarises the results for the different thermal 
ramps. 

Fig. 5 presents a time course of the discomfort events during expo-
sure to the different thermal ramps for both the space heating and 
cooling processes. In this figure, the right-censored observations are also 
represented (dots without the black outline). Right-censored 

Fig. 4. Different type of censoring.  

2 Acclimation and acclimatisation, although etymologically indistinguish-
able, define two distinct processes. The former describes “adaptive changes that 
occur within an organism in response to experimentally induced changes in 
particular climatic factors” (e.g., the ambient temperature in a controlled 
environment). The latter denotes “adaptive changes that occur within an or-
ganism in response to changes in the natural climate” [23]. 
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observations were observed when the experimental session was inter-
rupted because the time available for the session was over – condition (i) 
in section 2.3. For ease of interpretation, the ASHRAE 55-2017 [2] 
comfort limit (dark grey X-shaped cross) and a fitted line between this 
limit (grey dashed line) are also plotted in Fig. 5. It can be clearly seen 
that the thermal discomfort events are not symmetrical. Participants 
were more sensitive to a cold variation than a warm one. In fact, 83% of 
the discomfort events for cold are within the ASHRAE comfort limit, 
while on the warm side, only 30% are within the comfort limit. 

An overview of participants’ assessment of perception, evaluation, 
preference, and acceptability of the thermal environment during the 
discomfort event is presented in Fig. 6. In this figure, participants’ votes 
on the four previously mentioned psychometric scales are divided be-
tween heating and cooling mode. Particularly:  

a) Thermal sensation: Discomfort events are not symmetric. During 
space heating, thermal behaviours were undertaken mostly when the 
environment was sensed as “warm” (+2) with ΔT up to 5 K. On the 
other hand, during space cooling, actions were undertaken when the 
environment was perceived as “slightly cool” (− 1) and “cool” (− 2). 
Here the same range of operative temperature change (− 3 K) was 
perceived differently.  

b) Thermal comfort: The distribution of discomfort events for space 
heating and cooling is remarkably similar. Most of the thermal be-
haviours were undertaken when the environment was judged to be 
“slightly uncomfortable” (+1) or “uncomfortable” (+2) for both 
space heating and cooling processes. This suggests that, indeed, 
thermal comfort is the driver for thermal behaviour.  

c) Thermal preference: Most of the actions were undertaken with a 
thermal preference vote different from “without change” (0). 
Reasonably, a participant would initiate a thermal behaviour out of a 
desire for a higher or lower temperature.  

d) Thermal acceptability: For both space heating and cooling processes, 
discomfort events follow a skewed distribution, specifically a nega-
tive skew (or left-skewed) for acceptable environments and a positive 
skew (or right-skewed) for unacceptable ones. Consequently, most of 
the actions were undertaken at the boundary between an acceptable 
and unacceptable environment. 

Table 4 
Number of thermal discomfort events for each ramp and each process.  

Ramp description Total number of 
thermal ramps 

Thermal ramps with a thermal 
discomfort event 

Heating 
3.4 K/h < ramp ≤4.4 

K/h 
41 25 

2.2 K/h < ramp ≤3.4 
K/h 

36 28 

1.4 K/h < ramp ≤2.2 
K/h 

35 26 

0.0 K/h < ramp ≤1.4 
K/h 

43 25 

Cooling 
0.0 K/h > ramp ≥
− 1.4 K/h 

46 36 

− 1.4 K/h > ramp ≥
− 2.2 K/h 

40 34 

− 2.2 K/h > ramp ≥
− 3.4 K/h 

33 24 

− 3.4 K/h > ramp ≥
− 4.4 K/h 

40 25 

Total 314 223  

Fig. 5. Thermal ramps endpoint.  
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Fig. 6. Psychometric scales for thermal discomfort events. Please note that the data shown here represent the right-here right-now votes on the questionnaire at the 
moment of the thermal discomfort event (i.e., when the digital button was pressed). 

Fig. 7. KM (a) and log-log (b) survival curves for different rates of temperature change.  
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4.2. KM survival curves 

As mentioned in section 3.1.1, the KM method has the advantage of 
being distribution-free, but, at the same time, it cannot estimate the 
magnitude of the survival predictor relationship of interest nor control 
for multiple covariates. Therefore, this method has been used only to 
describe and visualise the survival curves at a preliminary stage. Fig. 7.a 
shows the KM curves for the various thermal ramps, where the plus 
symbol represents the right censoring. In this figure, it is noticeable that 
the survivability for warm variations was higher than for cold ones. Also, 
for both space heating and cooling processes, slower variations led to 
longer survival than faster variations. 

In Fig. 7.b, the eight thermal ramps are plotted on a log-log survival 
scale against time on the log scale. This plot, usually referred to as a log- 
log plot, is a graphical approach to evaluating the PH assumptions. If the 
hazards cross or are not parallel in some other way, the PH assumptions 
for the predictor of interest are not met. In this specific case, since the 
rates of temperature change for heating and cooling processes intersect, 
the PH assumptions for this predictor are not satisfied. On the other 
hand, when considering space heating and cooling separately (plot not 
shown), the curves for the different rates of change are roughly parallel. 
However, this is a necessary condition but not a sufficient condition. In 
fact, even if the hazards do not cross, it is still possible that the PH 
assumption is not met. Thus, checking for crossing hazards is not 

sufficient, and other approaches to evaluate the reasonableness of the 
PH assumption must be used. 

In Fig. 8, the log-log plot has been drawn with each slope (in absolute 
value) plotted separately to increase readability. From this plot, it can be 
noticed that there is some indication of non-parallelism after 70 min for 
slope 3.4 K/h (Fig. 8c) and before 15 min for slope 2.2 K/h (Fig. 8b). 
Also, the initial distance between the curves for space heating and 
cooling processes is greater for a ramp slope of 1.4 K/h than a ramp slope 
of 4.4 K/h, indicating an effect between the temperature change and the 
direction of the change (i.e., increase or decrease of the temperature). 
Moreover, on the whole, all the curves show a divergent-convergent 
shape:, that is the curves initially separate but eventually join up. 

In the context of monotonic temperature variations (thermal ramps), 
warm changes induce thermal discomfort with some delay compared to 
cold ones, but this delay progressively wears off. The underlying pro-
cess, that is, the discomfort from thermal ramps, is delayed on the warm 
side, or stated analogously, the survival is prolonged temporarily. 
However, it is important to point out that the number of participants still 
at risk decreased towards the curve’s end. Therefore, caution is gener-
ally required not to over-interpret the right side of this part of the plot. 

4.3. Cox-regression 

The descriptive analysis carried out in the previous section showed 

Fig. 8. Log-log survival chart for heating and cooling based on the rate of temperature changes.  
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that if heating and cooling are considered in the same model, the PH 
assumption is not met. Even though there are methods to deal with this 
(as mentioned in section 3.1.2), it was decided to develop separate 
models for the space heating and cooling processes. This choice also had 
the advantage of assessing the selected covariates’ significant predictors 
separately for the two models. Table 5 lists all the covariates used in the 
inference of the heating and cooling models. 

The rate of temperature change (i.e., ±4.4, ±3.4, ±2.2 and ± 1.4 K/ 
h) was only considered in the descriptive analysis (Figs. 7 and 8) and not 
incorporated directly into the Cox-regression model. In this model, the 
rate of temperature change (K/h) is indirectly implied in the operative 
temperature change (K), a time-dependent covariate. 

The variation of the operative temperature (Top.delta) and the initial 
operative temperature (Top.start) are the decomposition of the operative 
temperature. Top.start is defined as the operative temperature at time t 
= 0. In contrast, Top.delta is the difference between the operative tem-
perature at t > 0 and t = 0. This division aims to verify whether the 
operative temperature level affects dynamic thermal discomfort. 

The covariate ID.subj was used to account for correlated observations 
since the same subject appears in overlapping intervals. This variable 
was used in the analysis to create a robust variance, allowing the 
computation of an infinitesimal jackknife variance estimate [38]. 

The following modelling steps were undertaken:  

1. Purposeful selection of covariates: After performing a first fit of the 
initial multivariable model, the p values of the individual coefficient 
were used to ascertain covariates that might be deleted from the 
model. This procedure is commonly known as backwards elimina-
tions. The reduced model was evaluated to check if the elimination of 
a covariate produced a “relevant” change in the parameter estimates 
of the model’s remaining variables. A change of about 20% was used 

as an indicator of the relevant change. If an important confounder 
was removed, it was incorporated back into the model.  

2. Define the correct functional form (i.e., test the linearity assumption): 
With the previous model, the scale of the continuous variable was 
analysed to determine whether or not the effect of the covariates was 
linear in the log hazard (and therefore check if the data support this 
initial hypothesis). In this analysis, smoothing splines3 were utilised 
for this purpose.  

3. Check for interaction terms (i.e., test the additivity assumptions): In this 
step, it was determined whether interactions between predictors 
needed to be added to the model. Each individual interaction was 
introduced separately and assessed by comparing the model with the 
interaction term to the main effect model. This assessment was car-
ried out by examining any changes in the main effect’s coefficients 
and checking the partial likelihood ratio test. All significant in-
teractions were added jointly to the main effects model. 

4. Check the PH assumption: In this step, the model was carefully eval-
uated by performing model diagnostics. Also, to avoid overfitting, 
the number of variables that can be included in the model should be 
confined. It is not trivial to make a general statement about this, but 
an approximate criterion is to have one covariate per ten events [44]. 

4.3.1. Initial models 
In this section, both the initial multivariable models for heating and 

cooling are presented. In this step, the backwards elimination has not 
been yet applied. 

At this point in the analysis, four main significant predictors had 
been detected for space heating while only two had been detected for 
space cooling (Table 6). Between the two models, the only common 
significant predictor is the operative temperature variation. As expected, 
its coefficient is positive for heating processes and negative for cooling 
processes. The cooling coefficient is greater than that for heating in 
absolute value, suggesting that cooling variations are more threatening 
to thermal comfort. It is important to remember that this coefficient 
represents the overall effect of the corresponding time-dependent vari-
able, considering all times at which this variable has been measured in 
the study. Also, at this point, the linearity assumption between the risk 
and the covariate had yet to be verified. 

In the following two sections, only the main results of applying the 
modelling steps mentioned above are illustrated. 

4.3.2. Space heating process 
Table 7 summarises the results of the multivariable model for heating 

after applying backwards elimination. Four significant predictors were 
identified – BMI, time lived in Norway, operative temperature variation 
and initial operative temperature – all positively associated with 
increased risk of “warm discomfort”. Among them, three are continuous 
variables (and will be discussed later), while Time.Norway is categorical. 
This variable has been used as a proxy for inferring a long-term adap-
tation4 to the Norwegian environment. In a recent study, Luo et al. [45] 
investigated the long-term thermal adaptation of building occupants by 
conducting two comparative field studies on thermal comfort in China. 
They observed for some years two groups of people, one that moved 

Table 5 
List of covariates used in the model for both space heating and cooling processes.  

Variable Code Type Unit 

Thermal 
resistance of 
clothing 

Clothing Continuous, time- 
independent 

clo 

Gender Gender Categorical, time- 
independent 

Female (reference)/Male 

Age Age Continuous, time- 
independent 

Years 

Body Mass Index BMI Continuous, time- 
independent 

kg/m2 

Time lived in 
Norway 

Time. 
Norway 

Categorical, time- 
independent 

Less than or equal to 3 
years (reference)/More 
than 3 years 

Air velocity Air.vel Continuous, time- 
dependent 

m/s 

Time of day Time.day Categorical, time- 
independent 

Morning (reference)/ 
Afternoon 

Vapour pressure Vap.pre Continuous, time- 
dependent 

N/m2 

Operative 
temperature 
change 

Top.delta Continuous, time- 
dependent 

K 

Initial operative 
temperature 

Top.start Continuous, time- 
independent 

◦C 

Participant ID- 
code 

ID.subj Categorical, time- 
independent 

–  

3 Splines are mathematical constructs made up of polynomial functions 
joined together to form a smooth curve, where the joining points are called 
“knots”. An effective way to find a smoothing spline in survival analysis is with 
“penalised partial likelihood”. When this quantity is maximized, it balances the 
goodness of fit against complexity [38].  

4 According to the glossary of terms for thermal physiology [23], adaptation 
is defined as “changes that reduce the physiological strain produced by stressful 
components of the total environment”. It includes both genotypic (genetic se-
lection) and phenotypic adaptation (changes that may occur within the lifetime 
of an organism, such as changes in the thermoregulatory system). 
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from southern China (Shanghai) to northern China (Beijing) and one 
that moved in the opposite direction. The authors concluded that ther-
mal adaptation exhibits asymmetric trajectories: the southern origin 
groups accepted neutral and warm indoor temperatures in less than one 
year, while the northern origin groups took three years to adjust to 
colder indoor temperatures. Based on this result, it was assumed that 
participants who had lived in Norway for more than three years had 
adapted to different indoor temperatures and heating/cooling strategies. 
The estimated hazard ratio (HR) is exp(1.067) = 2.907 for participants 
living in Norway for more than 3 years (95% CI [1.564, 5.403], p <
.001). Therefore, individuals who had lived in Norway for more than 
three years were, at any given time during this study, 2.907 times as 
likely to experience “warm discomfort” as those who had lived in Nor-
way for less than three years. In other words, they had an increased risk 
of 190%. 

It can be noticed that the covariate Gender, even though not statis-
tically significant, still remains in the model. This because its elimina-
tion caused a relevant change in the BMI variable. Therefore, in this 
study, gender is a confounder for BMI. This can be explained by looking 
at the participants’ anthropometric characteristics in Table 2. Female 
participants were, generally, shorter and lighter than their male 
counterparts. 

The next step is to verify whether the linearity assumption for 
continuous variables in the model has been met. Initially, for each 
continuous variable, a smoothing spline with four degrees of freedom 
was fitted, and the resulting plot was checked for significant non- 
linearity. If non-linearity was detected, the correct functional form 
was derived by refitting a smoothing spline but with an “optimal” degree 
of freedom based on the Akaike information criterion (AIC). Otherwise, 
a linear relationship was assumed. It is important to mention that this 
flexibility comes at a price. The interpretation of the estimated 

coefficients resulting from splines is, in fact, meaningless. However, the 
linear combinations of these coefficients can be used to obtain predicted 
values that can be plotted and interpreted. Fig. 9 shows this analysis for 
BMI, operative temperature change, and initial operative temperature. 

BMI, formerly called the Quetelet index, is a measure for indicating 
nutritional status in adults. For adults over 20 years old, the World 
Health Organization has divided the BMI into: (i) “Underweight” if BMI 
< 18.5 kg/m2; (ii) “Normal weight” if 18.5 kg/m2 ≤ BMI ≤ 24.9 kg/m2; 
(iii) “Pre-obesity” if 25.0 kg/m2 ≤ BMI ≤ 29.9 kg/m2; (iv) “Obesity class 
I” if 30.0 kg/m2 ≤ BMI ≤ 34.9 kg/m2; (iv) “Obesity class II” if 35.0 kg/ 
m2 ≤ BMI ≤ 39.9 kg/m2; and (vi) “Obesity class III” if BMI ≥ 40 kg/m2 

[46]. Fig. 9.a shows that the hazard increases from low BMI to around 
“normal weight” BMI levels, where it flattens out and then rises slightly 
in the pre-obesity category, but not significantly. This indicates that 
participants with lower BMI values have a lower hazard of experiencing 
“warm discomfort” than participants with normal and pre-obesity BMI 
values. However, there is no significant difference between the normal 
and pre-obesity category. This result is not completely in line with the 
literature. While it is true that the underweight population (BMI < 18.5 
kg/m2) is associated with a higher comfortable temperature, the over-
weight population (i.e., BMI > 25.0 kg/m2) is associated with a lower 
comfort temperature. For instance, Indraganti et al. [47]’s field inves-
tigation in India found this difference to be 0.7 K. However, BMI does 
not actually measure body fat nor the proportion of muscle-to-fat. 
Therefore, it is possible that some of the participants were incorrectly 
classified in the pre-obesity category. A smoothing spline with three 
degrees of freedom has been selected for the functional form (the purple 
line in Fig. 9a). 

Concerning the initial operative temperature, Fig. 9.b shows that a 
linear fit is within the confidence interval; therefore, a linear relation-
ship between the log(hazard) and the initial operative temperature is 
assumed (purple line). Interestingly, the hazard increases with a higher 
value of initial operative temperature even if these values are within 
22.0 ± 1.0 ◦C, which are the comfort limits for Category A from ISO 
7730-2005 [3]. This is in agreement with Ran’s neuroscience experi-
ment [22], discussed in section 1.1. Since heat-responding spinal neu-
rons encode absolute temperature, higher initial operative temperature 
values lead to higher absolute operative temperature values for the same 
increment in temperature. 

Fig. 9.c shows that the hazard increases linearly with the increment 
in operative temperature until about +4 K, where it flattens out. A 
smoothing spline with two degrees of freedom was selected for the 
functional form (the purple line in Fig. 9c). Nevertheless, conceptually, 
it is hard to believe that the hazard of thermal discomfort associated 
with a monotonous rise in operative temperature levels off as higher 
delta temperatures are reached. A more logical fit would be a continu-
ation of the linear relationship before the +4 K increment (the green line 

Table 6 
Regression coefficients for the predictors in the initial multivariable model (before applying backwards elimination).  

Predictor  Heating process Cooling process 

coeff se (coeff) z p-value coeff se (coeff) z p-value 

Clothing  0.693 0.677 1.023 .306 − 1.538 1.443 − 1.066 .287 
Gender female Reference Reference  

male − 0.507 0.459 − 1.103 .270 − 0.642 0.439 − 1.462 .144 
Age  − 0.006 0.026 − 0.242 .809 0.016 0.019 0.834 .404 
BMI  0.174 0.067 2.600 .009* 0.009 0.068 0.128 .898 
Time.Norway ≤3 years Reference Reference  

>3 years 1.142 0.325 3.511 <.001* 0.502 0.337 1.491 .136 
Air.vel  3.098 4.934 0.628 .530 − 4.470 6.048 − 0.739 .460 
Time.day morning Reference Reference  

afternoon 0.004 0.233 0.018 .986 − 0.668 0.260 − 2.572 .010* 
Vap.pre  − 0.001 0.001 − 0.626 .531 0.000 0.001 − 0.537 .591 
Top.delta  0.784 0.110 7.146 <.001* − 0.894 0.203 − 4.400 <.001* 
Top.start  0.906 0.333 2.721 .007* 0.340 0.294 1.157 .247   

Likelihood ratio test = 98.35 on 10 df, p ≤ 2.2E-16 Likelihood ratio test = 56.92 on 10 df, p = 1.378E-08 

* indicates a significant term. 

Table 7 
Regression coefficients for predictors in the multivariable heating model (after 
applying backwards elimination).  

Predictor Heating process 

coeff se (coeff) z p-value 

Gender female Reference  
male − 0.564 0.470 − 1.200 .230 

BMI  0.168 0.068 2.476 .013* 
Time.Norway ≤3 years Reference 

>3 years 1.067 0.316 3.373 <.001* 
Top.delta  0.756 0.101 7.476 <.001* 
Top.start  0.871 0.259 3.359 <.001* 
Likelihood ratio test = 96.78 on 5 df, p ≤ 2.2E-16 

*indicates a significant term. 
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in Fig. 9c). A possible explanation for the hazard’s flattening upon 
reaching higher delta temperatures is that different individuals have 
different frailty levels. More frail individuals are more likely to experi-
ence the discomfort event early. Consequently, over time, the “risk set” 
has an increasing proportion of less frail individuals, and the hazard 
flattens out. In addition, looking at Fig. 5, it can be noticed that around a 
+4 K increment, some participants do not experience the “warm 
discomfort event” before being censored. 

No significant interactions have been found, and the PH assumption 

for the time-independent variables has been met. It is important to 
remember that, implicitly, time-dependent predictors do not satisfy it. 
For these variables, the hazard ratio is a function of time. Consequently, 
the coefficient of the time-dependent variable represents the overall 
effect of that predictor, considering all times at which this predictor has 
been measured in the study (for more details, the reader is referred to 
section 3.1.2 of this article). 

4.3.3. Space cooling process 
Table 8 summarises the results of the multivariable model for space 

cooling processes after applying backwards elimination. Three signifi-
cant predictors were identified – time lived in Norway, time of day and 
operative temperature variation – one more compared with the initial 
model (see Table 6). Time.day and Top.delta are negatively associated 
with an increased risk of “cold discomfort”, while Time.Norway is posi-
tively associated with the same outcome. As with the heating model, 
Time.Norway is positively associated with an increased risk of discom-
fort, but this time the relationship is weaker (HR = 1.854, 95% CI 
[1.060, 3.241], p = .030). The Time.day predictor is a categorical vari-
able used to distinguish between the morning (8:00–11:30) and after-
noon (12:00–15:30) sessions’ thermal ramps. It was used to account for 
the circadian rhythm’s influence on the risk of discomfort induced by 
variation in operative temperature. A circadian rhythm is a natural, 
internal process that regulates the sleep-wake cycle. This system also 
modulates other physiological functions, such as the body’s core tem-
perature, with a periodic variability over the 24 h (with maximal values 
in the late afternoon and minimal in the early morning). During periods 
of decreasing core temperatures, the average skin temperature rises to 
promote heat loss, and the reverse occurs during periods of rising core 
temperatures [48]. A circadian rhythm of heat loss from the distal limbs 
has been observed in humans: skin temperature and blood flow rhythms 
in these regions show peaks in the late evening and minima in the 
morning [49,50]. Consequently, an individual is in a “heat gain” mode 
in the morning (a rise in core temperature) and in a “heat loss” mode in 
the evening (a decrease in core temperature). Previous studies by Fanger 
et al. [51,52] found that, although the mean skin and rectal tempera-
tures were slightly higher in the evening than in the morning, subjects 
did not prefer a different ambient temperature. They concluded that the 
same thermal comfort conditions can be used independently of the time 
of day or night. In this study, the hazard ratio for the time until “cold 
discomfort” for morning versus afternoon was 0.597 (95% CI [0.417, 
0.853], p = .005), showing a difference between the two parts of the day. 
However, this result does not necessarily disagree with Fanger’s previ-
ous findings. A lower risk of “cold discomfort” during the afternoon than 
in the morning does not inevitably imply a preferred lower temperature. 
It only suggests that, at any time during this study, participants during 
the afternoon were 0.597 times as likely to have a “cold discomfort” as 
during morning (that is, they experienced a reduction in risk of 40%). 

It can be noticed that the covariates Clothing and Gender, even though 
not statistically significant, are still maintained in the model. In this 

Fig. 9. Penalised spline fit of (a) BMI, (b) initial operative temperature and (c) 
operative temperature change for heating. 

Table 8 
Regression coefficients for predictors in the multivariable cooling model (after 
applying backwards elimination).  

Predictor Cooling process 

coeff se (coeff) z p value 

Clothing  − 1.535 1.422 − 1.079 .280 
Gender female Reference 

male − 0.666 0.361 − 1.844 .065 
Time.Norway ≤3 years Reference 

>3 years 0.617 0.285 2.164 .030* 
Time.day morning Reference  

afternoon − 0.517 0.183 − 2.828 .005* 
Top.delta  − 0.956 0.182 − 5.241 <.001* 
Likelihood ratio test = 54.17 on 5 df, p = 1.933E-10 

*indicates a significant term. 
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case, however, they remain not because they are confounders but 
because their presence improves the model’s overall fit compared to the 
model without them (χ2(2) = 8.438, p = .01471). 

The next step is to verify whether the linearity assumption for the 
continuous variables in the model is met. The same procedure as 
described previously was applied here, but only the statically significant 
continuous variable (i.e., operative temperature variation) is shown 
(Fig. 10). Here, the hazard decreases fairly linearly with the decrement 
in the operative temperature. Therefore, a linear relationship between 
the log(hazard) and the operative temperature variations was assumed 
(purple line). 

No significant interactions were found, and the PH assumption for 
the time-independent variables has been met. 

5. Discussion 

In this study, the results obtained from the observed thermal 
discomfort events were precautionary for both space heating and cool-
ing processes. The possibility of undertaking voluntary adaptation 
mechanisms or actions was precluded, including such simple actions as 
clothing adjustment. This approach agrees with the one used in the 
ASHARE standard 55 for temperature variation with time. The objective 
of ASHARE limits on temperature cycles, drifts and ramps (Table 1) is 
mainly to prevent occupants from experiencing discomfort due to tem-
perature variations. Its applicability is limited to temperature fluctua-
tions that are not under the individual occupant’s direct control. 
Moreover, an occupant’s clothing adaptation is implicitly considered 
only for occupant-controlled naturally conditioned spaces that meet 
specific criteria (see section 5.4.1 of [2]). Nevertheless, these limits 
seemed both loose and conservative compared with the results of this 
study. Cold temperature variations were perceived to be uncomfortable 
earlier than the standard prescribed. On the other hand, the limits for 

warm temperature variations were found to be excessively restrictive. 
This asymmetric behaviour is supported by neurophysiological findings. 

As mention in section 1.1, in the spinal cord, cold-responding neu-
rones react to temperature changes, while heat-responding ones react to 
the absolute temperature. Consequently, humans are more sensitive to 
cooling than heating, meaning that they react more quickly or more than 
usual to cooling than to heating. This neurophysiological interpretation 

can also be directly observed from this study’s results, from both a 
descriptive and analytical perspective. The KM method gave a descrip-
tive point of view. Fig. 7 showed that the survival probability is higher 
for heating processes compared with cooling ones, even for the same 
rate of temperature change (thermal ramp). Concerning cooling varia-
tions, it can be observed that different temperature change rates initially 
affected survivability similarly. The contrast between the different 
cooling ramps is more marked at a later time. This can also be explained 
using the findings of Ran’s neuroscience experiment [22]. In their study, 
the authors observed that a larger delta temperature produced greater 
responses than smaller delta temperature values. Nevertheless, they 
noted no observable cooling rate effects on either the percentage of 
cold-responding neurons or their response amplitudes. Of course, faster 
temperature variation results in a greater delta temperature, assuming 
the same amount of time. However, when the amount of time is small, 
the temperature difference with distinct temperature change rates is 
smaller. Therefore, some (perhaps more sensitive) participants experi-
enced a thermal discomfort event regardless of the rate of temperature 
change for cooling. In turn, this explains why, at an early phase, the 
survivability for a different rate of temperature change was similar. An 
analytical point of view was given by the Cox-regression. The model for 
cooling showed no statistically significant effect on the starting opera-
tive temperature. Conversely, in the heating model, the risk of experi-
encing a warm discomfort event increased with higher starting operative 
temperatures. 

Furthermore, if considering elevated air movement, it is reasonable 
to assume that the observed thermal discomfort events for warm tem-
perature variation could be postponed. Elevated air movement is a 
recognised factor that increases the acceptable range of operative tem-
peratures [2]. In this study, the air was kept practically still to avoid 
local discomfort (a draft) during cooling. This resulted in air movement 
being an insignificant predictor. 

5.1. Limitations 

This study’s limitations arise from the relative homogeneity of age 
and the unbalanced number of male and female participants. Since most 
of the participants were between 23 and 31 years old, the results are not 
completely representative of the office worker population. The gender 
imbalance among participants might be the main cause of non- 

Fig. 10. Penalised spline fit of operative temperature change for cooling.  
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statistically significant differences between males and females in terms 
of thermal discomfort. To reduce the effect of the generally heteroge-
neous initial metabolic rate, participants spent the first half-hour before 
starting the session in a constant temperature environment. However, 
previous studies on thermal comfort in climatic chambers have shown 
that subjects’ average thermal sensation decreases during the first 2 h, 
even during exposure to constant temperatures [13]. On the other hand, 
time and organisational constraints did not allow for such an extension 
of this study’s acclimation period. Therefore, it is possible that the po-
tential carry-over effects influenced the participants’ thermal sensation 
even after the 30-min acclimation phase. 

Even with some constraints (e.g., clothing adjustment), this study 
aimed to reproduce a typical office environment and, consequently, 
simulate a typical office activity pattern. Nevertheless, participants were 
prone to the Hawthorne effect.5 Typically, the Hawthorne effect is 
described as a change in research participants’ behaviour in experi-
mental or observational studies. In this study, to avoid potential bias, 
participants were blinded to the environmental changes; that is, they 
were not informed about the change in the temperature. However, if the 
participants changed their behaviour during the experiment – for 
example, by increasing their awareness and, therefore, sensitivity to 
change in the indoor environmental condition – the Hawthorne effect 
would have occurred. Also, the use of the digital button could have 
introduced a behavioural change. Schweiker et al. [53], in their review 
of multi-domain approaches to indoor environmental perception and 
behaviour, pointed out that there is a difference in the intention to 
perform an action and the action itself. It is undeniable that performing 
an actual action, for example, adjusting the thermostat, would have 
required more effort than pressing the digital button. On the other hand, 
the opposite is also true. A specific human-building interface affects the 
level of interaction that a person has with it, and therefore its usability, 
which could lead to a different behavioural choice [54]. For example, 
even in a more familiar context, such as a residential setting, a common 
usability barrier for a thermostat is its complexity or the buttons’ 
reduced size and comprehensibility [55]. Furthermore, it would be un-
feasible to provide all the real means of possible interaction with the 
indoor environment (e.g., for the thermal environment alone, these 
include open/close window, thermostat adjustment, beverage intake, 
personalised/local cooler/heater, and ceiling/desk fans). Therefore, 
even with the aforementioned limitations, the discomfort button was 
adopted. 

5.2. Conclusion and future perspectives 

An experimental study has been conducted to explore the effects of 
ramp-induced temperature variations in an office setting. The purpose 
was to understand human reaction to monotonic thermal variations by 
describing the relationship between human response and covariates of 
interest. The study’s design was a randomised crossover trial, a longi-
tudinal study in which participants received a randomised sequence of 
different exposure (i.e., thermal ramps). Based on the analysis carried 
out, the following conclusions can be drawn:  

− The distributions of participants’ thermal comfort ratings during 
warm and cold discomfort events were remarkably similar, despite 
different temperature changes. This suggests that, indeed, thermal 
comfort is the driver for thermal behaviour. Thermal sensation votes 
were found to be asymmetric during discomfort events, while most of 
the thermal acceptability votes were at the boundary between an 

acceptable and unacceptable environment. This could indicate that 
thermal acceptability has a broader meaning, which, in a general 
sense, might be interpreted as tolerance.  

− A distinct discomfort mechanism for space heating and cooling 
processes was observed in this experiment. For warm discomfort, the 
operative temperature level is a significant predictor, while for cold 
discomfort, the relative change in operative temperature is the 
trigger. This result agrees with the recent research evidence from 
neuroscience experiments [22].  

− During heating variations, in addition to operative temperature (that 
is, the operative temperature variation plus the initial operative 
temperature), BMI and time lived in Norway significantly predicted 
participants’ warm discomfort. For cooling processes, besides oper-
ative temperature variation, time lived in Norway and time of day 
were significant predictors of cold discomfort. For both space heating 
and cooling processes, gender and age did not significantly affect 
discomfort. Furthermore, no significant interaction has been 
identified.  

− The current experimental results imply that the limits for drifts and 
ramps are not symmetric in winter conditions. The limits on tem-
perature cycles, drifts and ramps defined in ASHRAE 55-2017 [2] are 
loose for cold temperature variations and conservative for warm 
ones. 

In addition, this paper overcomes some important methodological 
issues concerning the semantic equivalence of different psychometric 
scales, highlighting, at the same time, the practical implications. For 
instance, a classic hypothesis (rule-of-thumb) is to consider an envi-
ronment “satisfactory” when the thermal sensation vote is between 
“slightly cold” (− 1) and “slightly warm” (+1). In this study, this con-
version is well suited for warmer variations. Still, it is utterly misleading 
for colder ones. Fig. 6 shows that the majority of the discomfort events 
were experienced when the environment was perceived as “slightly 
cold”. 

In the context of multi-domain comfort, the methodology applied in 
this study could be used to analyse the relation between perception and 
action. It would also be possible to evaluate which contextual and per-
sonal factors affecting behaviour influence perception and vice versa. 

Furthermore, the new knowledge of human reaction to a dynamic 
thermal environment can be used to design more energy-efficient and 
satisfying control strategies to enable buildings’ thermal flexibility. 
Indeed, controlling the indoor temperature of buildings within a comfort 
range is a way to provide energy flexibility to the grid [56], exploiting 
the slow thermal inertia of a building’s envelope in combination with 
the users’ comfort band. However, the comfort band is usually assumed 
symmetric for space heating and cooling purposes and defined solely by 
absolute values of the indoor operative temperature, such as in the 
ASHRAE 55-2017 standard [57]. The findings presented in this paper 
have the potential to improve the performance of such controllers by 
providing a more accurate description of the human thermal response 
under dynamic conditions. 
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Abstract 

Thermal comfort research aims to determine the relationship between the thermal environment and the 

human sense of warmth. This is usually achieved by measuring the subjective human thermal response to 

different thermal environments. However, it is common practice to use simple linear regression to analyse 

data collected using ordinal scales. This practice may lead to severe errors in inference. This study first set 

the methodological foundations to analyse subjective thermal comfort data from a statistical perspective. 

Subsequently, we show the practical consequences of fallacious assumptions by utilising a Bayesian 

approach and show that, at least with one dataset, a linear regression model applied to ordinal data suggests 

results different from those obtained using ordinal regression. Specifically, given the specified dataset, linear 

regression found no difference in means and effect size between genders, while the ordinal regression model 

led to the opposite conclusion. In addition, compared to the ordinal model, the linear regression model distorts 

the estimated regression coefficient for air temperature. Finally, the ordinal model shows that the distance 

between adjacent response categories of the ASHRAE 7-point thermal sensation scale is not equidistant. 

Given the abovementioned issues, we advocate utilising ordinal models instead of metric models to analyse 

ordinal data. 

 

Keywords 

Subjective thermal comfort data; Rating scales; Level of measurement; Ordinal regression; Bayesian analysis; 

Statistical thinking.  

1 Introduction 

 One of the aims of thermal comfort research is to establish the relationship between the thermal environment 

and the human sensation of warmth. The sensation of warmth is quantified by rating scales, the most adopted 

of which is the ASHRAE 7-point thermal sensation scale, which consists of seven verbal anchors: ‘cold’, ‘cool’, 

‘slightly cool’, ‘neutral’, ‘slightly warm’, ‘warm’, and ‘hot’. This is a perceptual judgement scale [1] and is 

utilised to measure thermal sensation. Other rating scales are also employed in thermal comfort studies: the 
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most common ones being thermal evaluation, preference, and acceptability. ISO 10551:2019 [1], beyond 

those already mentioned, also introduces a ‘tolerance scale’, which is rarely used in the scientific literature. 

Each one of these scales can be presented in different formats (e.g., discontinuous versus continuous format) 

and methods (e.g., paper- versus computer-based). Independently of the format and method used, it is 

common practice to assign a numerical value to each level (i.e., the verbal anchors) of a scale. For instance, 

the ASHRAE 7-point thermal sensation scale generally varies from -3 (‘cold’) to +3 (‘hot’). However, different 

values can be assigned, such as 1 for ‘cold’ and 7 for ‘hot’. This interchangeability is possible because these 

numbers are merely placeholders without an underlying meaning. Nevertheless, it is common practice to 

calculate the mean of the thermal sensation votes of a group of people (e.g., [2,3]). The reasoning behind this 

method is that, while the variable is ordinal in nature, a vote created by averaging different responses is 

continuous. Furthermore, the averaged votes will result in a more normal-looking distribution and, therefore, 

statistical methods that assume normality (e.g., linear regression and analysis of variance) can be applied. 

The origin of this approach can be found in early works to measure attitudes, such as in Thurstone [4] and 

Likert [5]. However, there are two problems with this approach. Firstly, it is not appropriate to calculate the 

mean of an ordinal variable because its linearity (i.e., equally spaced divisions) is an arbitrary assumption 

imposed on the original scale values. This assumption was also recently questioned by Schweiker et al. [6,7]. 

Secondly, this approach conflates the problem of the level of measurement with that of the distribution of a 

variable. Averaging ordinal data may improve the degree to which the distribution of votes resembles a 

normal distribution, but it does not change the nature of the observations from ordinal to interval. 

Concerning the analyses of subjective thermal comfort data, ISO 10551:2019 [1] gives guidance to the 

analysis of ordinal data. Unfortunately, it uses disputed arguments, based on McIntyre’s work [8], to legitimise 

treating ordinal data from the ASHRAE 7-point thermal sensation scale as a continuous variable. In his paper 

published in 1978, McIntyre clearly stated that the 7-point warmth scale is ordinal and that, therefore, non-

parametric statistics are the appropriate method. However, McIntyre also said that non-parametric statistics 

are generally related to hypothesis testing and are quite limiting for thermal comfort analysis. Therefore, 

utilising the method of graded dichotomies, he investigates whether these scales can be treated as intervals 

(i.e., if the psychological width of the categories can be approximated to be of equal spacing). McIntyre 

concluded that there is ‘no reason to suppose that we are not dealing with an equal interval scale’, even if 

nothing can be said to the extreme categories, that is ‘cold’ and ‘hot’ [8]. In addition, performing a 

Kolmogorov–Smirnov test1 (K–S test), he found no significant deviation from normality and deduced that it is 

appropriate to use statistical methods that presuppose normality. However, checking whether an ordinal 

variable can be assumed to be interval for analytic purposes may work in some cases, but it does not 

constitute general proof. Nevertheless, this practice seemed reasonable at the time, considering that, until 

the 1960s, there was relatively little development of models for categorical responses (see page 1 of [9]). 

Furthermore, the K–S test can be applied only to continuous distributions, which is not the case analysed by 

McIntyre. In addition, the distribution used to compare the sample must be fully specified, that is, the location 

and scale parameters (i.e., mean and standard deviation) of the normal distribution must be known a priori 

and not estimated from the data. If these parameters are calculated from the data, the critical region of the 

K–S test is no longer valid and should be determined by simulation. 

 
1 The K–S test is used to test if a sample comes from a population with a specific distribution. 
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In the following two sections, the notion of ‘level of measurement’ is introduced (Section 1.1), and the issue 

of analysing ordinal data as metric is discussed (Section 1.2.3). Discussion regarding the different types of 

scales employed (e.g., categorical scale, visual analogue scale, and graphic categorical scale), the number 

of anchors utilised, and the assumptions underlying their usage are outside the scope of this study. The 

interested reader is referred to previous studies such as [6,7,10,11] for further discussions of these topics. 

1.1 Level of measurement 

A level of measurement is a classification that represents the nature of the information contained in the values 

assigned to the variables [12]. A widespread measurement classification is Stevens’s typology [13], which is 

divided into four classes: nominal, ordinal, interval, and ratio. The nominal scale identifies or categorises the 

values of the variables but cannot order the categories; the ordinal scale, in which the values of the variables 

are ranked or ordered, is used for this purpose. For the interval scale, the intervals between the values of the 

variables are equally spaced, and the zero on the scale is arbitrary (i.e., the zero on the scale is a matter of 

convention or convenience). Conversely, the ratio scale has a true zero point, which defines the  absence of 

the quantity being measured. As a consequence, ratios of magnitudes can be defined.  

In Stevens’s view, it is important to know which kind of scale one is dealing with because ‘to each of these 

types of scales certain statistics are appropriate and others are not’ [14], and a scale that retains meaning 

under a certain class of transformations should be limited to statistics whose meaning would not change if 

those transformations were applied to the data. Table 1 shows the different types of scales with their empirical 

operations, invariant mathematical transformations, and (permissible) measures of central tendency. 

 

Table 1 – Types of measurement scales (from [14]) 

Scale Empirical operations Permissible 

transformations 

Permissible 

measures of central 

tendency 

Nominal Determination of equality Any one-to-one 

substitution 

Mode 

Ordinal Determination of greater or 

lesser (rank-order) 

Any increasing monotonic 

transform 

Median 

Interval Determination of the equality 

of intervals or of differences 

Multiplication by and 

addition of a constant 

Arithmetic mean 

Ratio Determinations of the equality 

of ratios 

Multiplication by a 

constant 

Geometric mean 

Harmonic mean 

 

Stevens went beyond his simple typology and classified not just simple operations but also statistical 

procedures according to the scales for which they were permissible. The idea that a particular level of 

measurement prescribes or proscribes statistical methods has been strongly criticised by statisticians [15-

17], and alternative taxonomies have been proposed. Mosteller and Tukey’s typology [18] and Chrisman’s 

typology [19] introduced an expanded list of levels of measurement to account for various measurements 

that do not fit well into Stevens’s framework. The difference is that they do not prescribe statistical methods 

nor even suggest that statistical methods should depend on the levels of measurement. Statistical analyses 

make assumptions about the distributions of variables and/or errors, not about measurement levels. Of 

course, it is necessary to verify that these assumptions comply with the data at hand. However, to conclude 

that there is no value in the data types would be inaccurate. The notion of scale type is important, and 

Stevens’s nomenclature is frequently used. For example, any designed experiment must distinguish between 
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categorical factors (usually nominal or ordinal in Stevens’s terminology) and metric/continuous covariates 

(usually intervals or ratios) [15]. However, these scale types derive from how the data were measured rather 

than being fundamental characteristics of the data themselves. 

1.2 Statistical methods: a brief overview  

As stated previously, one of the goals of thermal comfort research is to establish a relationship between the 

thermal environment and the human response. In a statistical modelling framework, this is generally achieved 

through regression analysis. Regression analysis is ‘the blanket name for a family of data analysis techniques 

that examine relationships between variables’ [20], which are categorised into a dependent variable 

(‘outcome’ or ‘response’ variable), 𝑌, and one or more independent variables (‘explanatory variables’, 

‘predictors’, ‘covariates’ or ‘features’), 𝑋.  

The most common approach utilised in thermal comfort research for the analysis of subjective thermal 

comfort data is linear regression. Another approach, even if far less common, is ordinal regression (e.g., [21]). 

The main difference between the two is that linear regression requires the dependent variable to be 

continuous, while ordinal regression requires it to be ordinal. Even though different regression models have 

different mathematical underpinnings, they share a general form that can be expressed as the function of a 

random component, 𝑔(∙), which refers to the conditional probability distribution of the response variable, and 

a systematic component, ℎ(∙), which refers to the explanatory variables. The systematic component is used 

as the predicted tendency of 𝑌 given the predictors. Nevertheless, 𝑌 is not predicted to be exactly ℎ(∙), but 

near ℎ(∙). That is, the best that can be done is to predict the probability that 𝑌 will have any particular value, 

given 𝑥. This probability density function (PDF) is the random component 𝑔(∙). This is a more general notation 

that encompasses different models (i.e., it extends more easily to other models by focusing on the conditional 

distribution of the response rather than the distribution of the error term [22]). The following sections briefly 

describe two regression-type models utilised to model subjective thermal comfort data. 

1.2.1 General linear model 

The most common approach utilised in thermal comfort research for the analysis of subjective thermal 

comfort data is the general linear model (GLM), which usually refers to the linear regression model. In this 

model, the continuous response variable is modelled given some predictors, generally assuming a conditional 

normal distribution of the response: 

𝑌𝑖 ~ Normal(𝜇𝑖 , 𝜎2) 

𝜇𝑖 = 𝜂
𝑖
 

𝜂𝑖 = 𝐱𝑖
T𝜷 

Eq. (1) 

where 𝜇𝑖 is the mean, 𝜎 is the standard deviation, and 𝜂𝑖 is the predictor term function of some predictors 𝐱𝑖
T. 

The subscript 𝑖 is to stress the dependency on the 𝑖𝑡ℎ observation. 

1.2.2 Cumulative link model  

As mentioned previously, if the response variable is assumed to be ordinal (and therefore measured as 

ordinal), it is proper to analyse it with ordinal models. Cumulative link models (CLMs) belong to a broad class 
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of models known as ordinal regression models. Following the categorisation of Bürkner and Vuorre [23], in 

addition to the cumulative models, other two distinct model classes belong to the ordinal regression models: 

sequential and adjacent-category models. Each of these models has a different rationale behind it and, 

consequently, a different application. 

The rationale behind choosing a CLM lies in the fact that this model has a latent variable representation, 

which is in line with the general assumption underlying the rating scales. The idea is that the dependent 

variable 𝑌 is the categorisation of a latent (not observable) continuous variable �̃�. Fig. 1 illustrates this 

concept. The categorical outcome, 𝑌 (Fig. 1.a and 1.b) is a categorised version of an unobservable (latent) 

continuous variable, �̃� (Fig. 1.c and 1.d). The dotted lines in the bottom figures divide the continuous latent 

variable into 𝐾 + 1 bins according to the threshold parameters {𝜏𝑘}, with 𝑘 ∈ {1, … , 𝐾}. Consequently, the area 

under the curve in each bin represents the probability of the corresponding observed ordinal response (Fig. 

1.a and 1.b). In Fig. 1, the thresholds are shown as not equidistant and equidistant (Fig. 1.c and 1.d, 

respectively) for illustrative purposes only. In practice, the thresholds are determined by nature; they are 

parameters to be estimated. 

 

 
Fig. 1 – Representation of the latent variable interpretation: observed values ((a) and (b)) and underlying 

latent distribution ((c) and (d)).  

Note. The thresholds 𝜏𝑘 (the dotted lines in (c) and (d)) are defined here as being not equidistant (c) and 

equidistant (d). 

 

The conditional distribution of the response variable 𝑌 is assumed to follow a multinomial distribution where 

its probability vector is 𝝅 = {𝜋1, . . . , 𝜋𝑘} with 𝜋𝑘 = Pr(𝑌 =  𝑘). The cumulative probability corresponding to 𝜋𝑘 

is 𝛾𝑘 = Pr(𝑌 ≤  𝑘) so that 𝛾𝑘 = 𝜋1+. . . +𝜋𝑘. The cumulative probabilities are then mapped to the real numbers 

through a link function. In this study, the probit function was chosen as the link function. The reason is that 

the probit link assumes the latent variable to be normally distributed2 around the predicted central tendency 

(i.e., the mean of the latent scale) and is therefore comparable with linear regression. The mathematical form 

of the model can be written as: 

 
2 Technically, the distributional assumption should be made on the error term, not the response variable. However, in linear 

regression, to assume the error as normally distributed around zero is equivalent to assuming the response to be normally 

distributed around the regression line. 
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𝑌𝑖 ~ Multinomial(𝑛, 𝝅𝑖) 

Probit(𝛾𝑖𝑘) = 𝜏𝑘 − 𝜂
𝑖
 

𝜂𝑖 = 𝐱𝑖
T𝜷 

Eq. (2) 

where 𝜏𝑘 are the thresholds parameters and 𝜂𝑖 is the linear predictor term without an intercept3. The 

subscript 𝑖 is to stress the dependency on the 𝑖𝑡ℎ observation. 

For more explanations and practical guidelines for using this and other methods (i.e., sequential and adjacent-

category models), along with detailed mathematical derivations and discussions, the reader is referred to 

Bürkner and Vuorre [23]. 

1.2.3 Ordinal-as-metric 

While it is generally recognised that ordinal data are not metric, it is commonplace to analyse them with 

methods that assume metric responses. This is inappropriate for the following reasons. First and foremost, 

the ordinal variable’s categories may not be equidistant since it is unknown the psychological distance 

between adjacent categories and whether these distances are the same across subjects. In a survey 

respondent’s thinking, the difference between ‘neutral’ and ‘slightly warm’, for example, may be considerably 

smaller than the difference between ‘warm’ and ‘hot’, as demonstrated by Schweiker et al. [6,7]. Second, the 

distribution of ordinal categories can be nonnormal, especially if low (e.g., ‘cold’) or high (e.g., ‘hot’) values 

are commonly chosen. Third, the variances of the unobserved variables underlying the observed ordinal 

categories can vary, for example, between periods (e.g., seasons) and groups (e.g., gender). The ordinal-as-

metric method cannot account for such uneven variances.  

The issue of examining ordinal data as metrics was analysed in great detail by Liddell and Kruschke [24], 

whose arguments are summarised hereafter. To facilitate their understanding and explanation, Fig.3 and Fig.4 

in [24] have been adapted and reproduced here as Fig. 2. In this figure, the mean of the ordinal values (i.e., 

when the ordinal values are treated as metric) is plotted as a function of the latent mean, 𝜇, and standard 

deviation (SD), 𝜎. The four letter-labelled points represent a specific combination of 𝜇 and 𝜎 on the underlying 

latent scale that, if used as parameters in a cumulative probit model, would generate a particular pattern in 

the ordinal data. For instance, the point indicated by Ⓑ (i.e., group B) has a latent mean and standard 

deviation of 𝜇 = 2 and 𝜎 = 1, respectively (Fig. 2.c) and an ordinal mean of 1.93 (Fig. 2.b). 

 

 
3 Omitting the intercept term allows the full set of thresholds 𝜏1, … , 𝜏𝑘 to be identified.  
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Fig. 2 – Mean of the ordinal values as a function of latent mean, 𝜇, and SD, 𝜎 (a); ordinal level (b) and latent 

scale value (c) for group Ⓑ (adapted from [24]).  

Note. The thresholds 𝜏𝑘 (the dotted lines in (c)) are defined here as being equidistant. 

  

From Fig. 2.a, four different ‘effects’ can be observed:  

1 Points Ⓐ and Ⓑ illustrate a false-alarm rate (Type I error): these two groups have the same latent means, 

but the ordinal means are estimated as very different.  

2 Points Ⓑ and Ⓓ illustrate a low correct-detection rate (Type II error): for these two groups, the latent 

means are quite different, but the ordinal means are estimated as equal.  

3 Points Ⓐ and Ⓓ illustrate a distorted effect-size estimate: here, the two groups have identical latent 

variances, but the difference in means on the horizontal axis (i.e., on the underlying latent scale) is larger 

than the corresponding difference on the vertical axis (i.e., on the ordinal-as-metric scale). 

4 Points Ⓒ and Ⓓ illustrate a reversed effect-size estimate: here, the latent mean of group Ⓓ is greater 

than that of group Ⓒ, but the ordinal means for group Ⓒ are incorrectly estimated to be greater than 

those of group Ⓓ. 

Liddell and Kruschke [24] posited that there are infinite combinations of underlying parameter values (𝜇 and 

𝜎) that lead to inflated false-alarm rates, or low rates of correct detection, or distorted effect-size estimates, 

or inversions of differences between groups. Consequently, analysing ordinal data with metric methods (i.e., 

methods that assume continuous response variables), such as t-test, analysis of variance (ANOVA) and linear 

regression, could lead to the aforementioned issues. Furthermore, linear regression applied directly to ordinal 

values can misestimate regression coefficients, leading to incorrect inferences about differences or non-

differences in slopes across conditions, as well as the existence or absence of non-linear trends. For further 

discussion and examples, the reader is referred to Liddell and Kruschke [24]. 

1.3 Objective and relevance of this study 

Establishing the link between the thermal environment and the human sense of warmth is one of the goals of 

thermal comfort research. This is usually achieved by measuring the subjective human thermal response to 

different thermal environments. In this field, it is common practice to analyse subjective human thermal 

responses independently of how they have been measured. That is, the statistical analysis is unrelated to the 
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modalities of the data that have been acquired. For example, Zhang and de Dear [25] state that thermal 

sensation vote ‘although it is essentially an ordinal variable, the thermal comfort research community has 

usually regarded it as a continuous variable’. From this statement, the authors (i) highlight that there is a 

difference between ordinal and continuous variables but (ii) specify that, within the thermal comfort research 

community, there is the tendency to consider it as continuous. In other words, linear regression is widely 

used to analyse TSV measured on an ordinal scale. Liddell and Kruschke [24] showed that analysing ordinal 

data as if they were continuous could lead to misleading results. This is particularly relevant for thermal 

comfort research, since thermal comfort models are mainly based on ordinal data analysed as if they were 

continuous (e.g., Ref [25] citing [26-30]). This might be a concurrent factor to explain why conflicting results 

were found in previous research where, for example, gender was shown to be or not an influential factor in 

determining human responses to the thermal environment. Furthermore, these models are included in 

international standards, such as EN 15251:2007 [31], replaced by EN 16798-1:2019 [32], and 

ASHRAE 55:2020 [33], which are used in the design and operation of buildings all around the world. 

This paper focuses on analysing the data once they have been collected and not on the correctness of the 

level of measurement utilised to measure them (see Refs [6] and [7] for further discussions of this topic). For 

this purpose, this study leverages the largest global thermal comfort database to date. The aim of the paper 

is twofold. The first aim is to overview the methods commonly used to analyse subjective thermal comfort 

data from a statistical perspective. The second aim is to highlight the ordinal-as-metric issue that is often not 

considered and to spur researchers to analyse these kinds of data more critically. It is essential to emphasise 

that we are not advocating that the specific approach hereafter presented as the best way to analyse these 

kinds of data: the approach presented is merely one of the possible ways to do so. Statistics is a field that is 

an art as much as it is a science. Although statistical theory is founded on exact assumptions and conditions, 

the real world is seldom that straightforward. Consequently, the practice of statistics involves a tremendous 

number of choices, and the challenge is how to make those choices. 

2 Methodology 

2.1 A Bayesian approach to regression 

In this study, a Bayesian approach is used to analyse the data. This approach is not entirely new in thermal 

comfort studies (e.g., [34-36]); however, it is not an established practice either. Since statistical knowledge in 

this field generally tends towards ‘frequentist’ principles, it is essential to explain the Bayesian approach and 

compare it with the frequentist one. Nevertheless, the aim of this paper is neither to go into details about their 

differences, nor to be a full introduction to either approach. For a more complete treatment, see, for example, 

[37] and [38].  

Essentially, the divide between frequentists and Bayesians is in the definition of probability. For frequentists, 

probabilities are associated with frequencies of events. For Bayesian, probabilities are related to their own 

understanding (i.e., certainty or uncertainty) of events. This difference has important implications in the 

analysis of data. For instance, in a frequentist view, the parameter 𝜃 is considered a fixed (i.e., constant) but 

unknown quantity and only the information from the sampling data is relevant for the inference. On the 
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contrary, Bayesian statistics estimate the full (joint) posterior distribution of the parameters (i.e., the 

probability of the parameters given the observed set of data), which is generally calculated as: 

Pr(𝜃 | 𝑌) =
Pr(𝑌| 𝜃) Pr(𝜃)

Pr(𝑌)
 Eq. (3) 

where Pr(𝑌| 𝜃) is the likelihood, Pr(𝜃) is the prior distribution, and Pr(𝑌) is the marginal likelihood. Here the 

parameters are considered random variables and not constant, as in the frequentist approach. 

In Eq. (3), the Pr(𝜃) represent the prior ‘belief’ about the distribution of the parameters, and such a belief 

must be specified. Since there is no single method for choosing a prior (i.e., prior probability distribution), 

different priors can be introduced, leading to different posterior distributions and conclusions. This 

subjectivity is the main criticism of Bayesian inference. Furthermore, obtaining the posterior distribution 

analytically is rarely possible. Consequently, Bayesian statistics relies on Markov Chain Monte Carlo (MCMC) 

methods to estimate the posterior distributions of the parameters of interest. MCMC methods have a higher 

computational cost and fitting a model with Bayesian statistics is generally slower than the frequentist 

approach. However, Bayesian methods are usually more flexible and have more informative results (e.g., 

estimating a full posterior distribution, rather than a single point with a measure of uncertainty). Such 

advantages are often worth the increase in computational cost. Bayesian estimation does not have specific 

assumptions but relies on the model’s assumptions, since those are the assumptions about the likelihood 

function. The fundamental assumption is that the likelihood function chosen is a reasonable representation 

of the data. 

Generally, the assumptions behind a Bayesian model are not directly mentioned because they are stated 

when defining likelihood and priors. For example, Fig. 3 illustrates the formulation of a Bayesian model for 

simple linear regression. The corresponding mathematical formulations are added to the side for clarity. 

 

 
Fig. 3 – Dependency diagram for a simple linear regression model (adapted from [39]). 

  

This figure shows the assumptions about the random component (i.e., the conditional distribution 

assumptions for 𝑦) and the functional form of the systematic component (i.e., the expression for 𝜇). The 

distributions of the parameters 𝛽0, 𝛽1, and 𝜎 are the priors. Since the standard deviation cannot be less than 
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zero, a half-normal distribution was selected as its prior (however, other distributions could have been chosen, 

such as exponential and uniform). For an introduction to Bayesian analysis or more advanced treatment, 

see [40] and [39], respectively. 

2.2 Data preparation and software  

As mentioned in Section 1.3, this study leverages the largest global thermal comfort database to date. This 

database, called ASHRAE Global Thermal Comfort Database II (downloaded from the University of California's 

DASH repository [41]), is an open-source database that includes approximately 107,500 sets of paired 

subjective comfort votes and objective instrumental measurements of the thermal environment. These 

observations were derived from field studies conducted worldwide between 1995 and 2016. A quality 

assurance check was performed on each dataset before its inclusion in the final database (see [42] for more 

details). 

To achieve the aim of this study, the dependent variable needs to be measured on the ordinal scale. 

Unfortunately, the ASHRAE Global Thermal Comfort Database II does not distinguish between scales, and 

ordinal and continuous measurements are mixed. Additionally, even if all datasets composing the database 

went through a rigorous quality assurance process to harmonise their contents, it is reasonable to assume 

that each dataset has some unique peculiarities – different measurement protocols, questionnaires, or 

instruments. This aspect of the database would require that analysis of the entire database be carried out 

with an ‘appropriate’ method that considers these peculiarities (e.g., multilevel modelling) because, 

otherwise, the results may be unpredictably affected. For the purpose of this study, in order to reduce the 

uncertainty due to the unique peculiarities of different datasets, the following analysis was carried out on the 

data deriving from a single study. 

Among the subjective thermal comfort votes available in ASHRAE Global Thermal Comfort Database II, the 

highest number of observations are thermal sensation votes (TSV). For this reason, TSV was selected as the 

dependent variable. However, the same analysis could be applied to the other rating scales if measured on 

the ordinal scale. For simplicity, only the two variables presented in Table 2 were utilised as covariates during 

the analysis. Indeed, thermal sensation depends on other variables, such as clothing, metabolic rate, air 

movement, radiant temperature, and relative humidity, and perhaps on several variables not yet clearly 

identified. Also, it is likely that not accounting for possible confounders affects the estimation of the models’ 

coefficients. However, given that this study is an illustrative example, which aims to highlight the issue of 

analysing ordinal data as they were continuous, the issue of including/excluding important variables from the 

model can be overlooked. 

 

Table 2 – List of covariates used in the model. 

Variable Code Type  Unit 

Gender Gender Categorical female (reference) / male 

Air temperature Tair Continuous °C 

 

The analysis was carried out on Indraganti et al.’ study [43] dataset, included in the ASHRAE Global Thermal 

Comfort Database II. This dataset was selected because (i) it does not have missing values for thermal 
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sensation votes, gender and air temperature; (ii) the full range of thermal sensation responses, measured on 

an ordinal scale, makes the dataset particularly suitable for this analysis (see Fig. 4); (iii) furthermore, the data 

were collected under a wide range of indoor air temperatures (min = 20.80 °C; 1st quartile = 25.80 °C; median 

= 26.80 °C; mean = 27.06 °C; 3rd quartile = 28.30 °C; max = 36.50 °C). The selected dataset comprised 6048 

observations (~27 % female) collected during 14 months from 2787 individuals (all Indian nationals within the 

age group of 18-48 years). More details regarding the field survey can be found in Indraganti et al. [43]. 

 

 
Fig. 4 – Distribution of the thermal sensation vote. 

 

All statistical analyses were performed using R [44] with the RStudio integrated development 

environment [45]. Regression analyses, using both the cumulative probit and classical linear regression, were 

performed with the brms package [46], and the respective graphs were created with the ggplot2 package [47] 

via the tidybayes package [48]. 

2.3 Model parametrisation 

Before proceeding with the analysis, it is essential to briefly explain how brms parameterises the cumulative 

probit model because this has repercussions on its interpretation. The cumulative distribution function (CDF) 

of an ordinal model based on cumulative probabilities with probit link (i.e., cumulative probit model) can be 

stated as: 

Pr(𝑌𝑖 ≤ 𝑘 | {𝜏𝑘}, 𝜂𝑖 , 𝜎𝑖) = Φ (
𝜏𝑘 −  𝜂𝑖

𝜎𝑖

) 

𝜂𝑖 = 𝛽0 + ∑ 𝛽𝑙𝑥𝑙,𝑖

𝑙

1

 

Eq. (4) 
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log(𝜎𝑖) = 𝛿0 + ∑ 𝛿𝑚𝑥𝑚,𝑖

𝑚

1

 

where Φ indicates the cumulative normal distribution function, 𝜏𝑘 are the thresholds parameters, 𝜂𝑖 is the 

linear predictor term and 𝜎𝑖 is the standard deviation. The subscript 𝑖 is to stress the dependency on the 𝑖𝑡ℎ 

observation. With 𝐾 + 1 ordinal values, a model has (𝐾 + 1) + 1 parameters (𝜏1, … , 𝜏𝑘 , 𝜂𝑖 and 𝜎𝑖) and is 

undetermined. Therefore, two parameters need to be fixed. Brms parametrises the model by fixing 𝛽0 = 0 

and 𝛿0 = 0 and freely estimating all the thresholds, 𝜏1, … , 𝜏𝑘 . When there are no predictors for 𝜂𝑖 and 𝜎𝑖 in the 

model (i.e., unconditional model), 𝜂𝑖 = 𝛽0 = 0 and 𝜎𝑖 = exp(𝛿0) = 1. Therefore, instead of estimating 𝜂𝑖 and 

𝜎𝑖 from a normal cumulative distribution function, brms uses the standard normal cumulative distribution 

function Φ(𝑧). As a consequence, the parameters are expressed on the latent variable scale, that is, in units 

of ordered probit. Furthermore, since brms parametrise the model as: 

Probit(Pr(𝑌𝑖 ≤  𝑘 | {𝜏𝑘}, 𝜂𝑖 , 𝜎𝑖)) =
𝜏𝑘 − 𝜂𝑖

𝜎𝑖

=
𝜏𝑘 − (𝐱𝑖

T𝜷)

𝜎𝑖

 Eq. (5) 

a positive coefficient for 𝛽 indicates that an increase of 1-unit of the associated variable 𝑥𝑖 increases the 

thermal sensation vote. Stated analogously, voting in higher categories is more likely. The interpretation 

would have been the opposite if the model was parametrised differently (i.e., with a ‘+’ instead of a ‘−’). A 

positive coefficient for 𝛽 would have indicated that an increase of 1-unit of the associated variable 𝑥𝑖 would 

decrease the thermal sensation vote. 

For comparison, the CDF for the ordinary linear regression model can be stated as: 

Pr(𝑌𝑖 ≤ 𝑦 | 𝜂𝑖 , 𝜎𝑖) = Φ (
𝑦 −  𝜂𝑖

𝜎𝑖

) 

𝜂𝑖 = 𝛽0 + ∑ 𝛽𝑙𝑥𝑙,𝑖

𝑙

1

 

log(𝜎𝑖) = 𝛿0 + ∑ 𝛿𝑚𝑥𝑚,𝑖

𝑚

1

 

Eq. (6) 

where Φ indicates the cumulative normal, 𝜂𝑖 is the linear predictor term and 𝜎𝑖 is the standard deviation. The 

subscript 𝑖 is to stress the dependency on the 𝑖𝑡ℎ observation. Here the 𝛽0 and 𝛿0 are not fixed and therefore 

freely estimated by the model. 

The following analysis was carried out for the cumulative probit model and compared with an ordinary linear 

regression, referred to as gaussian (ordinal-as-metric) model. 

3 Results of the statistical analysis of subjective thermal comfort data 

3.1 Unconditional model 

The goal of a modelling strategy is to try to reproduce or predict an observable phenomenon via the lens of 

a model. Before incorporating a predictor, the unconditional model can be used to test the ‘goodness’ of the 

modelling technique. For example, if a model makes implausible predictions that are unobservable in reality, 
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perhaps a different technique should be adopted. The unconditional model for the cumulative probit and 

gaussian (ordinal-as-metric) models are the thresholds-only and intercept-only models, respectively. 

The unconditional model results are shown in Table 3, while Fig. 5 shows its posterior prediction. Here the 

data generated from the thresholds-only and intercept-only models are compared with the empirical data. 

 

Table 3 – Regression coefficients for the unconditional model. 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Threshold 1, 𝜏1 -2.54 0.06 -2.66 -2.42 

Threshold 2, 𝜏2 -1.25 0.02 -1.29 -1.21 

Threshold 3, 𝜏3 -0.35 0.02 -0.38 -0.32 

Threshold 4, 𝜏4 0.48 0.02 0.45 0.52 

Threshold 5, 𝜏5 0.96 0.02 0.92 1.00 

Threshold 6, 𝜏6 1.47 0.02 1.42 1.52 

Gaussian (ordinal-as-metric) model 
   

Intercept 4.08 0.02 4.04 4.11 

Sigma 1.37 0.01 1.35 1.39 

* CI stands for credible interval (based on quantiles). 

 



   

 

14 

 

  
 

Fig. 5 – Posterior prediction for (a) the thresholds-only and (b) intercept-only model. 

Note. The green and red histograms are obtained from 8 draws from the posterior predictive distribution 

of the thresholds-only and intercept-only models, respectively. 

 

The posterior predictive distribution for the cumulative probit model (Fig. 5.a) visually describes the 

distribution of the outcomes. Conversely, the posterior predictions for the gaussian (ordinal-as-metric) model 

(Fig. 5.b) are not a good fit, and they also have impossible predictive outcomes (i.e., value below the category 

‘1’ that is, ‘cold’ and above the category ‘7’, that is, ‘hot’). Fig. 6 shows the standard normal distribution 

underlying the ordinal data and the position of the estimated thresholds {𝜏𝑘} (see Table 3). The area under 

the curve in each bin represents the probability of the corresponding observed ordinal response (see Fig. 4). 
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Fig. 6 – Standard normal distribution underlying the ordinal data. 

 

A ‘pseudo’ CDF is plotted in Fig. 7 for illustrative purposes only 4 to inspect further and compare the two 

models. This direct contrast shows that the cumulative probit model better describes the data than the 

gaussian (ordinal-as-metric) model. 

 

 
Fig. 7 – Superimposition of the CDF for the (a) cumulative probit and (b) gaussian (ordinal-as-metric) 

model.  

Note. The green and red lines are obtained from 100 draws from the posterior predictive distribution of 

the thresholds-only and intercept-only models, respectively. 

3.2 Fitting a categorical variable  

In this section, the categorical variable Gender is added to the unconditional model. As described previously, 

brms parametrises the model by fixing 𝜂𝑖 = 𝛽0 = 0 and 𝜎𝑖 = 𝑒𝑥𝑝(𝛿0) = 1. Therefore, the underlying Gaussian 

for the reference category of Gender (i.e., female) will be Normal(0,1). Thus, the parameter value for the 

 
4 Strictly speaking, a cumulative distribution function is defined as a continuous function only for continuous variables. For discrete 

variables, it should be a step function.  
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other category of Gender (i.e., male) is the difference in means expressed on the latent variable scale for the 

reference category. The results of this model are shown in Table 4. 

 

Table 4 – Regression coefficients for the model with only a categorical variable (assuming constant 

standard deviation). 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Threshold 1, 𝜏1  -2.49 0.06 -2.62 -2.37 

Threshold 2, 𝜏2  -1.20 0.03 -1.26 -1.14 

Threshold 3, 𝜏3  -0.30 0.03 -0.35 -0.24 

Threshold 4, 𝜏4  0.53 0.03 0.48 0.59 

Threshold 5, 𝜏5  1.01 0.03 0.96 1.07 

Threshold 6, 𝜏6  1.52 0.03 1.46 1.58 

Gender female reference    

 male 0.07 0.03 0.01 0.13 

Gaussian (ordinal-as-metric) model    

Intercept  4.03 0.03 3.96 4.10 

Gender female reference    

 male 0.06 0.04 -0.02 0.14 

Sigma  1.37 0.01 1.35 1.39 

* CI stands for credible interval (based on quantiles). 

 

The model above presumes that the standard deviation of the latent variable is the same throughout the 

model (see Fig. 8 (top)). Unequal standard deviations can be included in the model by specifying an additional 

regression formula for the standard deviation component of the latent variable, �̃�. In the context of this 

example, allowing for unequal standard deviations implies inquiring whether the standard deviations for TSV 

differ across the two categories of Gender. 
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Table 5 – Regression coefficients for the model with only a categorical variable (allowing the standard 

deviation to vary by group). 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Threshold 1, 𝜏1  -2.28 0.07 -2.41 -2.14 

Threshold 2, 𝜏2  -1.09 0.03 -1.16 -1.02 

Threshold 3, 𝜏3  -0.27 0.03 -0.32 -0.21 

Threshold 4, 𝜏4  0.48 0.03 0.43 0.54 

Threshold 5, 𝜏5  0.92 0.03 0.85 0.98 

Threshold 6, 𝜏6  1.38 0.04 1.30 1.46 

Gender female reference    

 male 0.06 0.03 0.00 0.12 

Disc.Male  0.14** 0.02 0.09 0.18 

Gaussian (ordinal-as-metric) model    

Intercept  4.04 0.04 3.96 4.11 

Gender female reference    

 male 0.06 0.04 -0.02 0.14 

Sigma.Female  0.39** 0.02 0.36 0.42 

Sigma.Male  0.28** 0.01 0.26 0.31 

* CI stands for credible interval (based on quantiles). 

** Values expressed on the logarithmic scale. 

 

Table 5 shows the results of the fitted cumulative probit model with group-specific 𝜂𝑖 and 𝜎𝑖 values for the 

underlying normal distributions of the ordinal variable, 𝑌 (the results for the gaussian (ordinal-as-metric) 

model are added for comparison). There is a difference in the approach that brms uses to model unequal 

standard deviation for the cumulative probit and the conventional Gaussian model. The SD of both is modelled 

on the log scale to constrain its value to be 0 or larger. The parameter related to the latent standard deviations 

is called disc (a contraction of ‘discrimination’), following the conventions in item response theory. This 

parameter is not related to the standard deviation itself, but to the inverse of the SD, that is, 𝜎 = 1 𝑑𝑖𝑠𝑐⁄ . 

Consequently, the estimated SD for male is 𝜎 = 1 exp(0.14)⁄ = 0.87 and 𝜎 = exp(0.28) = 1.32 for the 

cumulative probit and gaussian (ordinal-as-metric) model, respectively (values from Table 5). 
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Fig. 8 – Density plot of the two underlying latent distributions for TSV with constant (top) and 

unconstraint (bottom) standard deviation for Gender. 

 

Fig. 8 shows the density plot of the two underlying latent distributions for TSV given Gender, expressed in 

terms of the posterior means of each parameter. The underlying distribution for the reference category (i.e., 

female) is the standard normal, while the mean and SD for the other category (i.e., male) are estimated from 

the model. In Fig. 8 (bottom), the parameter value for Male is still the difference in means expressed on the 

latent variable scale for the reference group, but this time in terms of the SD of the reference group’s latent 

variable (i.e., female). The SD for the two categories of Gender is not assumed to be the same, but it is allowed 

to vary. Also, the thresholds, {𝜏𝑘}, are on the scale of the reference category’s latent variable and are assumed 

to be the same for the two categories of Gender. 

Table 5 shows that the coefficient for Disc.Male is positive without zero overlapping the 95 %-CI. This indicates 

that the SD for male is smaller than the female (i.e., 𝜎𝑚𝑎𝑙𝑒 = 0.87 < 𝜎𝑓𝑒𝑚𝑎𝑙𝑒 = 1) and the evidence based on 

the data and the applied model is sufficient in terms of ‘standard decision rules’. As such, in this sample, the 

standard deviations for TSV differ across the two categories of Gender. 

 

Fig. 9 shows the marginal posterior distribution of the parameters (i.e., the means and standard deviations) 

and the effect sizes for the cumulative probit (green) and gaussian (ordinal-as-metric) (orange) models, 
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respectively. The cumulative probit model does not have a distribution for female because this is the 

reference category and its mean and standard deviation are fixed. 

 

  

 
Fig. 9 – Posterior distributions for the model that include the variable Gender: cumulative probit (green) 

and gaussian (ordinal-as-metric) model (orange). 
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Here, the effect size is computed by dividing the difference of the means of the two groups by the pooled 

standard deviation given in Eq. (7): 

σ𝑝 = √
(𝑛1 − 1)𝜎1

2 + (𝑛2 − 1)𝜎2
2

𝑛1 + 𝑛2 − 2
 Eq. (7) 

which is defined for two groups with unequal sample sizes (where 𝑛1 and 𝑛2 are the group-based sample 

sizes). In Fig. 9, the black line and dot at the bottom of each distribution represent the highest density interval 

(HDI) and the mode, respectively. The HDI is a way to summarise the distribution by defining an interval that 

spans over the distribution so that every point inside the interval has higher credibility than any point outside 

it. These intervals (i.e., the black lines) are defined here to span over 95 % of the distribution; therefore, they 

represent the 95 % HDIs. 

Focusing on effect sizes and differences in means and standard deviations, two different results can be 

observed from Fig. 9. For the cumulative probit model, it can be seen that zero is outside the 95 % HDI for 

the effect size and the difference in means and SD. However, in the gaussian (ordinal-as-metric) model, zero 

is included in the 95 % HDIs for the effect size and the difference in SD while it is outside the 95 % HDI for the 

difference in means. As a consequence, in terms of ‘standard decision rules’, the two models convey different 

conclusions. While the cumulative probit model conveys a difference in effects size and difference in means 

for Gender, the gaussian (ordinal-as-metric) model does not. 

3.3 Fitting a linear predictor 

In this section, the continuous variable Tair was added to the previous model, that is, the model with the 

variable Gender and unconstraint standard deviation (i.e., where the standard deviation is allowed to vary by 

Gender). However, Tair was standardised before entering the model. Standardisation (i.e., subtracting the 

mean and dividing by its standard deviation) is done to improve the efficiency of MCMC sampling, that is, to 

reduce autocorrelation in the chains. In principle, it is unnecessary to standardise, but it would take more 

time for the chains to produce a reasonable, effective sample size. Furthermore, standardising does not 

change the parameter estimates. The results of fitting this model are presented in Table 6. Here can be seen 

that after adding Tair.s as a predictor, the upper and lower 95 % CI (i.e., L-95 % CI and U-95 % CI) for the 

male coefficient of the gaussian (ordinal-as-metric) model does not include zero. Consequently, the two 

models now convey the same conclusions regarding Gender; both the Gaussian (ordinal-as-metric) and 

cumulative probit models show a difference between males and females. 
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Table 6 – Regression coefficients for the model with a categorical and continuous variable (allowing the 

standard deviation to vary by group). 

 Estimate Est. Error L-95 % CI* U-95 % CI* 

Cumulative probit model     

Threshold 1, 𝜏1  -2.39 0.07 -2.53 -2.25 

Threshold 2, 𝜏2  -1.15 0.04 -1.23 -1.08 

Threshold 3, 𝜏3  -0.28 0.03 -0.34 -0.23 

Threshold 4, 𝜏4  0.53 0.03 0.47 0.59 

Threshold 5, 𝜏5  1.01 0.03 0.94 1.08 

Threshold 6, 𝜏6  1.52 0.04 1.44 1.60 

Gender female reference    

 male 0.09 0.03 0.03 0.14 

Tair.s  0.34 0.01 0.31 0.37 

Disc.Male  0.12** 0.02 0.07 0.16 

Gaussian (ordinal-as-metric) model    

Intercept  4.01 0.03 3.95 4.08 

Gender female reference    

 male 0.09 0.04 0.01 0.16 

Tair.s  0.47 0.02 0.44 0.51 

Sigma.Female  0.32** 0.02 0.28 0.35 

Sigma.Male  0.22** 0.01 0.20 0.25 

* CI stands for credible interval (based on quantiles). 

** Values expressed on the logarithmic scale. 

 

The marginal distribution of the standardised regression coefficient for Tair.s is shown in Fig. 10. As explained 

before, this is a standardised regression coefficient and represents a sort of effect size for air temperature. 

The two models give a different distribution for the coefficient, with a distinct mode and 95 % HDIs. The 

coefficient of the cumulative probit model is expressed on the underlying latent scale, while the ordinal- 

gaussian (ordinal-as-metric) coefficient refers to the ordinal scale. As a consequence, the gaussian (ordinal-

as-metric) coefficient for air temperature is overestimated. 
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Fig. 10 – (a) Standardised and (b) ‘original’ regression coefficient for air temperature for the cumulative 

probit (green) and gaussian (ordinal-as-metric) (orange). 

3.4 Structured thresholds 

In all the previous cumulative probit models, the thresholds {𝜏𝑘} were defined as ‘flexible’ providing the 

standard unstructured thresholds. However, restrictions such as equidistance can be imposed on the 

thresholds, which restricts the distance between consecutive thresholds to be of the same size (i.e., equally 

spaced). This allows assessing the assumptions that the subjects used the response scale (i.e., TSV) in such 

a way that the distance between adjacent response categories is the same, that is, 𝜏𝑘 − 𝜏𝑘−1 = constant for 

𝑘 ∈ {1, … , 𝐾}. The spacing of the equidistant threshold is plotted in Fig. 11.a. Here, the average distance 

between consecutive unstructured thresholds (i.e., 
1

𝑘
∑ (𝜏𝑘 − 𝜏𝑘−1)𝑘

1 ) is also plotted (Fig. 11.b). It can be seen 

that zero is outside the 95 % HDI for the difference between the spacing for structured and unstructured 

thresholds (Fig. 11.c), suggesting that, in terms of ‘standard decision rules’, the thresholds should not be 

approximated as equidistant.  
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Fig. 11 – Spacing for (a) structured and (b) unstructured thresholds and (c) their difference. 

 

Furthermore, whether the restriction on the thresholds is warranted by the data can be assessed formally by 

comparing the relative fit of the computed models to the data. One method to assess relative fit is approximate 

leave-one-out cross-validation (LOOCV) [49], where smaller values indicate better fit. Table 7 shows the 

estimated LOO information criterion (LOOIC) for the two models and their differences. It can be seen that the 

cumulative probit model with unstructured thresholds has a significantly better fit (smaller LOOIC value) than 

the structured thresholds one since the difference in LOOIC (i.e., LOOIC.diff) is very large (more than 12 

times the corresponding standard error, SE.diff). In the context of model selection, a LOOIC difference higher 

than twice its associated standard error suggests that the model with the lower LOOIC value fits the data 

significantly better. 

 

Table 7 – Values of the Leave-One-Out Information Criterion (LOOIC) and their difference for the 

cumulative probit model with structured and unstructured thresholds. 

Model LOOIC SE LOOIC.diff* SE.diff** 

Cumulative probit model 

(unstructured thresholds) 
19,449.2 100.0 0.0 0.0 

Cumulative probit model 

(structured thresholds) 
20,014.0 97.2 564.81 44.39 

* LOOIC.diff is the difference between the two LOOIC scores. 

** SE.diff is the standard error of the LOOIC.diff. 

4 Discussion 

This study aimed to highlight the ordinal-as-metric issue during the subjective thermal comfort data analysis. 

Here, the method used to assess the reliability of the two models (i.e., the cumulative probit and gaussian 

(ordinal-as-metric) approach) is the so-called posterior predictive checks, a commonly used technique in 

Bayesian analysis. In essence, after computing the posterior distribution of the parameters, many simulated 

data are generated and compared with the observed ones. Therefore, the posterior predictive check is used 

to look for ‘systematic discrepancies that would be meaningful to address’ [39]. This approach has the evident 

drawback of evaluating a model against the same data used to estimate its parameters. Unsurprisingly, the 

model predicts the data used to fit the parameters, but even this simple test fails when the model’s 



   

 

24 

 

assumptions are severely violated. These systematic discrepancies are clearly shown in Section 3.1 when 

fitting the unconditional model for both the cumulative probit and gaussian (ordinal-as-metric) approach.  

The influence of the statistical analysis on the conclusions has also been shown by Schweiker et al. [50]. In 

this study, the same thermal sensation votes were analysed with both linear and ordinal regression. The 

authors showed that the two statistical methods led to differences in the thermal conditions perceived as 

‘optimal’ as well as between gender (i.e., female and male). However, compared with our study, important 

distinctions need to be made. To begin with, in Schweiker et al. [50], the analysis was carried out using mixed-

effect models (linear and ordinal mixed-effect regression, specifically). This modelling strategy (also known 

as multilevel modelling) was applied to account for repeated measures (i.e., multiple observations for each 

subject). Moreover, the analysis was carried out within a frequentist framework. In our study, results are 

obtained by utilising a cumulative probit model in a Bayesian framework instead of the ‘classic’ frequentist 

approach. However, we emphasise that we are neither advocating a Bayesian approach as better than the 

frequentist approach nor that the cumulative probit model is the correct model to analyse ordinal data. Ordinal 

models in a frequentist framework provide another valid solution for analysing ordinal data (see ordinal 

package [51]). Also, other link functions besides probit are possible (e.g., logit or cloglog) and can be used. 

In addition, in Schweiker et al. [50], the linear mixed-effect regression model applied to ordinal data suggested 

a difference in means between genders. In contrast, the ordinal mixed-effect regression model led to the 

opposite conclusion. In our study, we obtained the opposite result: under given conditions (see Sections 3.2), 

the gaussian (ordinal-as-metric) approach inferred non-differences in gender, whereas the cumulative probit 

model showed a difference. Although these results contradict, they demonstrate the issue highlighted in this 

study: linear regression should not be used in place of ordinal regression to analyse ordinal data. It is essential 

to point out that we are not claiming that a difference between gender exists. In the literature (e.g., Refs [52] 

and [53]), many factors other than gender might lead to individual differences in thermal comfort ― for 

example, age, circadian rhythm, physical disabilities, and fitness [52]. Here, the claim is about the difference 

in inference obtained from the same data (measured on an ordinal scale) analysed with two different methods 

(i.e., linear and ordinal regression). As shown in great detail by Liddell and Kruschke [24] (see also Section 

1.2.3), analysing ordinal data with linear regression may, generally, lead to serious errors in inference. As 

such, it is not a problem concerning some specific variables (e.g., gender and air temperature in our 

illustrative example) but a more general issue. 

One of the objectives of this work was to highlight that analysing ordinal data as they were continuous may 

lead to serious errors in inference (i.e., testing theoretical hypotheses). However, regression-type models can 

address different substantive goals and are therefore well suited to handle distinct purposes. For instance, 

Shmueli [54] separates a model’s aim into descriptive, predictive, and causal explanations. Each of these 

distinct aims significantly impacts each step of the statistical modelling process and its consequences [54]. 

For instance, if the purpose is predictive modelling, the exact form of the data-generation process is not of 

interest, provided that it yields accurate predictions for the dependent variable. If the aim is inference (e.g., 

explanatory modelling), the estimate of the data-generation process is of interest, while making predictions 

of the dependent variable is not. In this study, it is not possible to draw specific conclusions regarding the 

accuracy of the prediction of TSVs. In this regard, Lai and Chen [55] analysed the predictive capability of 

linear regression compared with ordinal and multinomial regression. Using two separate datasets, the authors 
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demonstrated that ordinal and multinomial regression predicted around half of the individual TSVs, whereas 

the accuracy of the linear regression model was only around 20 to 40 %. Furthermore, chi-square statistics 

demonstrate that the ordinal and multinomial regression model outperformed the linear regression model in 

predicting TSV distributions. 

In Section 3.4, the assumption of equidistance between the categories of the ASHRAE 7-point thermal 

sensation scale was checked. Fig. 11 shows that in terms of ‘standard decision rules’, the estimated 

thresholds {𝜏𝑘} should not be approximated as equidistant, suggesting that, in this sample, the TSV is not 

interval-scaled. This result was corroborated by the formal analysis presented in Table 7. Here the cumulative 

probit model with flexible (i.e., unstructured) thresholds fitted the data significantly better than the one with 

equidistant (i.e., structured) thresholds. It has to be noted that the distances between the thresholds are 

affected by the form of the latent distribution, which is defined by the link function used. For instance, if the 

thresholds were found to be equidistant under a latent symmetric distribution (e.g., probit or logit link), under 

a latent skew distribution (e.g., clog-log link), they will generally not be equidistant. However, since an 

underlying normal distribution (i.e., probit link) was used in our example, this issue did not affect the results. 

The inappropriateness of the assumption of equidistance between the categories of the ASHRAE 7-point 

scale was also found in Schweiker et al. [6]. From a large international collaborative questionnaire study (8225 

questionnaires), the authors concluded that significant differences appeared between groups of participants 

in relation to the distances of the anchors of the thermal sensation scale (and other scales commonly used 

in thermal comfort studies). Nonetheless, we cannot claim that treating ordinal data as continuous always 

yields a different result or conclusion than treating them as ordinal. However, knowing in advance that a 

difference exists is impossible; a different result can be detected only if an ordinal analysis is also performed. 

Therefore, it is recommended to perform an ordinal analysis directly. Furthermore, since the arguments used 

by McIntyre [8], which are included in ISO 10551:2019 [1], to legitimise treating ordinal data from the 

ASHRAE 7-point scale as a continuous variable are disputable (see Section 1 for more detail), we strongly 

discourage the use of linear regression for analysing thermal comfort data measured on an ordinal 

scale. To improve the reliability of the results, we encourage researchers to use ordinal models. 

Moreover, ordinal models offer additional modelling possibilities that this paper has not discussed. For 

instance, the proportional odds assumptions can be relaxed, and the threshold parameters can depend on 

some regression variables. In the context of thermal comfort studies, this can be translated to having, for 

example, different threshold parameters for gender or season. 

4.1 Limitations  

A fundamental aspect that is usually overlooked is the assumption of independence: residuals, and thus 

observations, are assumed to be independent. Non-independence can arise, for example, from temporal and 

spatial autocorrelation. When underlying spatial or temporal processes have the potential to impact a 

response, the data are autocorrelated – the closer the observations are in space or time, the more highly 

correlated they are. These sources of non-independence can be apparent or far less so. The response of one 

sampling unit influencing the response of other sampling units is an example of evident non-independence. 

The non-independence caused by non-measured confounding influences that vary spatially or temporally is 

less obvious to detect. Dealing with temporal (or spatial) autocorrelation or analysing temporal (or spatial) 
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trends is different. The former endeavours to deal with the lack of independence associated with temporal 

(or spatial) data, while the latter tries to model the effect of temporal (or spatial) patterns. During the data 

analysis stage, it was impossible to identify either spatial or temporal autocorrelation to test the assumption 

of independence because there was no temporal (e.g., subject ID and timestamp) or spatial (e.g., building ID) 

information available. As a consequence, this assumption was not checked. Given that the analysis was 

carried out for illustrative purposes only, this issue can be overlooked. However, in a real-world analysis, 

the assumption of independence needs to be verified. Furthermore, other issues, such as functional form 

misspecification, multicollinearity and omitted variable, were not considered during the analysis because they 

were outside the scope of this article. Nevertheless, when developing a model, depending on the aim of the 

study, these issues can play an important role and need to be considered. In addition, as stated in Section 

2.2, the ASHRAE Global Thermal Comfort Database II does not distinguish between scales, and ordinal and 

continuous measurements are mixed. Consequently, there is a lack of homogeneity throughout the database 

that affects its integrity. Furthermore, there are conspicuous missing values in the ASHRAE Global Thermal 

Comfort Database II. This issue does not derive from the database itself but originates from the lack of explicit 

agreement on measuring the ‘essential’ variables in thermal comfort studies. If this lack of agreement 

continues, it could affect the future usefulness of the database because the information being added would 

continue to be non-homogeneous, thus limiting its usability and the new knowledge that could be extracted 

from it. 

5 Conclusions and future perspectives 

One of the aims of thermal comfort research is to establish the relationship between the thermal environment 

and the human sensation of warmth. Typically, this is accomplished by evaluating a subject’s subjective 

thermal reaction to various temperature settings. Diverse rating scales are generally used to measure 

different aspects of thermal comfort, such as thermal sensation, thermal comfort, thermal preference, and 

thermal acceptability. While the problem of comparison of different scales (i.e., semantic equivalence) is an 

issue the thermal comfort research community is aware of, the use of reliable statistical methods to analyse 

the latter appears to be less discussed. In the thermal comfort domain, it is common practice to analyse 

subjective human thermal responses independently of how they have been measured. That is, the statistical 

analysis is unrelated to the modalities of the data that have been acquired. For example, even if measured on 

an ordinal scale, thermal sensation vote is generally treated as continuous and analysed with linear regression 

or other statistical tests that assume (conditional) normality. This approximation might be a concurrent factor 

to explain different results found in previous studies where, for example, gender was found to be or not an 

influential factor in explaining human responses to the thermal environment. 

In this study, we first discussed why the arguments used in ISO 10551:2019 [1] to legitimise treating ordinal 

data from the ASHRAE 7-point thermal sensation scale as a continuous variable are disputable (see Section 

1 for more detail). Secondly, to highlight the ordinal-as-metric issue during the subjective thermal comfort 

data analysis, the results obtained by utilising a cumulative probit and linear regression model were 

compared. Based on the analysis carried out on the dataset, the following conclusions can be drawn: 

− Compared to the cumulative probit model, the linear regression model inferences non-differences in 

gender under given conditions. 
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− Compared to the cumulative probit model, the linear regression model distorts the estimate for the 

regression coefficient for the air temperature. 

− The cumulative probit model shows that subjects used the ASHRAE 7-point thermal sensation in such 

a way that the distance between adjacent response categories is not the same; that is, they are not 

equidistant. Consequently, the cumulative probit model with flexible thresholds fitted the data 

significantly better than the one with equidistant thresholds. 

As far as we know, in the field of thermal comfort research, the statistical issues highlighted in this paper are 

not usually mentioned because the modelling steps are rarely presented, and only the final model is 

described. However, this is a limitation because researchers can neither assess the reliability of the model 

nor completely understand the limits of its applicability. Furthermore, while not a primary output of this article, 

it emerged that there is a lack of homogeneity in the collection of common variables within the ASHRAE 

Global Thermal Comfort Database II. We recommend that guidelines be developed for defining specific 

variables to measure. Although there is generally no one-size-fits-all method (e.g., questionnaire) valid for all 

purposes, agreeing on a ‘minimum set’ of variables to be consistently measured, possibly with a standardised 

protocol, would undoubtedly benefit the thermal comfort research community.  
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H I G H L I G H T S  

• Multilevel modelling was applied to predict subjects’ thermal preference vote in a dynamic thermal environment. 
• The beta and ordinal mixed-effects models are both valid alternatives for modelling subjects’ thermal preference votes. 
• Two procedures were used to implement subjects’ feedback within the occupant-centric building design and operation paradigm. 
• The population-averaged procedure is suitable for the building design phase. 
• The cluster-specific procedure is appropriate for the building operation phase.  
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A B S T R A C T   

A comfortable indoor environment should be one of the main services buildings provide. However, technical 
building systems are typically designed and operated according to fixed set-point temperatures determined by 
the ‘one-size-fits-all’ principle assuming universal thermal comfort requirements, which has been questioned in 
the last fifty years. Designing and implementing comfortable set-point modulations that consider occupant 
feedback would be beneficial in terms of increasing comfort, potentially reduce energy consumption and 
significantly support the clean energy transition. An exploratory study aimed at predicting the thermal prefer-
ences of human subjects exposed to a dynamic thermal environment is presented. Using data acquired from a 
laboratory experiment where subjects were exposed to precisely controlled thermal ramps in an ‘office-like’ 
climatic chamber, cluster-specific and population-averaged methods are designed to handle the group-level re-
sidual during the prediction of the thermal preference votes. The results show that both approaches are valid 
strategies for modelling thermal preference votes and are effective in supporting a concrete occupant-centric 
building design and the building’s operation. Furthermore, the population-averaged approach is suitable for 
the occupant-centric building design phase, where the target is an ‘average’ occupant. The cluster-specific 
method is best suited to meet the needs of a specific occupant and is suitable for implementation in the oper-
ational phase of the building.   

1. Introduction 

A comfortable indoor environment should be one of the primary 
services buildings provide. Nowadays, all thermal comfort standards 
include recommendations concerning the indoor thermal conditions for 
both the design and operation phases of buildings. Currently, the most 
frequently cited thermal comfort standards, namely ASHRAE 55:2020 
[1], ISO 7730:2005 [2] and EN 16798–1:2019 [3], which was formerly 

EN 15251:2007 [4], propose requirements based on Fanger model 
(beyond also including other approaches), which solves the heat balance 
equations between the human body and its surroundings, represented as 
a uniform environment. Fanger defined the ‘Predicted Mean Vote’ 
(PMV) as an index that predicts the mean thermal sensation vote on a 
standard scale for a large group of persons exposed to a given combi-
nation of metabolic activity level, clothing insulation and four thermal 
environmental variables characterising the indoor space: dry-bulb air 
temperature, mean radiant temperature, air velocity and relative 
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humidity [5]. The PMV model is generally considered a static model 
because it is only suited for predicting thermal sensation under a steady 
state or slowly changing indoor conditions (i.e., rate of change lower 
than 2.0 K/h) [2]. Based on the PMV, Fanger introduced another index 
called the ‘Predicted Percentage of Dissatisfied’ (PPD) to establish a 
quantitative prediction of the percentage of thermally dissatisfied peo-
ple. Additionally, thermal dissatisfaction can be caused by other local 
factors (e.g., drafts) and is known as local discomfort. For naturally 
conditioned spaces, ASHRAE 55:2020 [1] prescribes the use of the 
adaptive model, while EN 16798–1:2019 [3] suggests it only as a 
possible alternative to the Fanger approach. In 1973, in the first adaptive 
comfort paper published, Nicol and Humphreys [6] hypothesised the 
presence of ‘control mechanisms’ (feedback loops) between the occu-
pants’ thermal comfort perception and their behaviour in buildings. 
After this, research activity on the topic remained muted until the turn of 
the century, when intensification of research interest occurred, and 
several papers were published (e.g., [7,8]). The hypothesis of adaptive 
thermal comfort predicts that contextual factors and past thermal his-
tory modify occupant’s thermal expectations and preferences [9]. As a 
result, people in warm climate zones would prefer higher indoor tem-
peratures than people living in cold climate zones, which contrasts with 
the assumptions underlying comfort standards based on the PMV/PPD 
model [9]. Before inclusion in the standard EN 15251, the adaptive 
approach was also used by McCartney and Nicol [10] to develop an 
adaptive control algorithm (ACA) that was intended to be ‘an alternative 
to fixed temperature setpoint controls within buildings’ and ‘was also 
tested in two air-conditioned buildings as part of the SCATs project’ with 
promising results consisting in energy saving without compromising 
occupants’ perceived thermal comfort [10]. In current standards, 
Fanger’s PMV/PPD model is the prerogative of mechanically heated 
and/or cooled buildings, while the adaptive thermal comfort model is 
reserved for free-running buildings. EN 16798–1:2019 [3], citing 
ISO 7730:2005 [2], defines different categories of indoor environments 
for mechanically heated and cooled buildings, namely I, II, III and IV, 
with category I being the most stringent in terms of the management of 
interior conditions. An upper PPD bound is associated with each of the 
four PMV ranges (and therefore each category level), varying from 6 % 
to 25 % (see Table 1). A similar schema is present in ASHRAE 55:2020 
[1], where the ‘acceptable thermal environment for general comfort’ is 
defined as − 0.5 < PMV < + 0.5, corresponding to category II in 

Table 1. 
The categories described in Table 1 are recommended for designing 

mechanically heated and cooled buildings. In practice, assuming the 
occupants’ clothing insulation and metabolic activity levels and the 
relative humidity and air velocity of the environment, the PMV ranges 
can be represented in terms of acceptable operative temperature ranges. 
Maintaining a tight PMV or temperature range demands more energy 
than allowing a wider operative temperature range. A large increase in 
energy consumption could only be justified if a tightly controlled ther-
mal environment were to be more comfortable than one under less 
control. Arens et al. [11] investigated this specific aspect by examining 
the acceptability of the temperature ranges associated with categories I, 
II and III of the EN 15251:2007 [4] standard via three databases on 
occupant satisfaction (specifically, the ASHRAE RP 884 [12], SCATs 
[10] and Berkeley City Center Project [13] databases). The authors 
found that in terms of satisfaction, building occupants do not benefit 
from an indoor environment that is tightly controlled (i.e., a category I 
environment). Furthermore, they identified only a small difference in 
satisfaction between categories II and III. Consequently, designing and 
controlling indoor environments, such as office buildings, following the 
strict specifications suggested, for example, for category I of 
EN 15251:2007 [4], is unreasonable [11]. However, the real issue can 
be traced back to using the PMV/PPD indexes as the theoretical basis for 
building control and operation in the first place. In a review paper, de 
Dear et al. [14] state that many rigorous field studies (e.g., [15–17]), 
founded by ASHRAE in the 1980 s and 90 s, have clearly found the ‘one- 
size-fits-all’ approach to achieving a universally comfortable environ-
ment ‘to be a failure’. The main issue is that the PMV index represents a 
steady-state thermal comfort model that predicts the mean thermal 
sensation for a large group of people. Therefore, it fails to account for 

Nomenclature 

I The identity matrix 
k The category of the dependent variable 
M The total number of the simulated random effect 
n The number of events 
u The vector of the random effects 
X The design matrix of the fixed effects 
x The vector of the fixed effects 
x Indicates a generic variable 
Y The vector or matrix of the response variable 
Y Indicates a random value of the response variable (usually 

accompanied by a subscript) 
Z The design matrix of the random effects 
β The vector of parameters of the fixed effects 
β A scalar indicating a parameter of the fixed effects (usually 

accompanied by a subscript) 
γ The vector of the cumulative probabilities 
γ A scalar indicating a cumalive probability (usually 

accompanied by a subscript) 
η The vector of the linear predictor term 
η A scalar indicating the linear predictor term (usually 

accompanied by a subscript) 
μ The vector of the expected values 
μ A scalar indicating the expectd value (usually accompanied 

by a subscript) 
π The vector of probabilities 
π A scalar indicating a probability (usually accompanied by a 

subscript) 
σ2 The variance 
σ The standard deviation 
Σ The variance–covariance matrix 
τ The latent threshold parameter 
ϕ The precision parameter 

Subscripts 
d Indicates the dth day 
i Indicates the ith observation 
k Indicates the kth category of the dependent variable 
n Indicates the dimension of a square matrix 
p Indicates the pth participant 
r Indicates the rth thermal ramp  

Table 1 
Default design categories for mechanically heated and cooled buildings.  

Category PMV PPD (%) 

I –0.2 < PMV < +0.2 <6 
II –0.5 < PMV < +0.5 <10 
III –0.7 < PMV < +0.7 <15 
IV –1.0 < PMV < +1.0 <25  
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dynamic and non-uniform thermal environments as well as individual 
differences. In practice, the indoor environment frequently changes 
abruptly across buildings or between various parts within a single 
building. For instance, manually- operated thermostats, windows and 
window shades can result in considerable and non-systematic changes 
across the indoor environment. Automatic controllers exhibit, to a lesser 
degree, a similar behaviour. Moreover, activity modifies an individual’s 
basal metabolic rate over time, and the addition or removal of clothes 
affects their heat balance. In other words, the steady-state assumption at 
the root of the Fanger comfort model is very often violated (Ref [18] 
citing [19]). Building temperature ranges should therefore be based on 
real-time empirical evidence regarding the needs of the occupants. 
Measures to improve occupant feedback capabilities should be included 
in the routine control and operation of the building as well as specified 
in building designs. For example, Park et al. [20] analyse occupant- 
centric control (OCC) research, focusing on field-implementation case 
studies in buildings under realistic conditions. The authors offer a 
methodological analysis focusing on the various strategies utilised to 
integrate OCC into existing building systems. Another example can be 
found in Jung and Jazizadeh [21]. In this review, the authors, dis-
tinguishing between simulations and field evaluations, proposed a tax-
onomy for human-in-the-loop HVAC operations and reviewed methods 
for integrating human dynamics to control HAVC. 

Furthermore, implementing dynamic modulations of the set-point 
temperature might help time-shift and/or reduce peak space heating 
and cooling needs, improving the energy flexibility of buildings. 

In this context, individual differences between people play an 
essential role. When it comes to thermal comfort, individual differences 
result in situations where distinct people perceive the same thermal 
environment in different ways (i.e., they have inter-individual differ-
ences) and/or when the same individual assesses the same environment 
differently at different times or in different situations (i.e., this indi-
vidual presents intra-individual differences). Humphreys and Nicol [22] 
suggested that inter-individual differences encompass both temperature 
differences to be considered neutral and differences in the interpretation 
of the semantic scale categories. In contrast, intra-individual differences 
refer to personal judgments that differ from time to time. Machine 
learning/data-driven algorithms used for predicting individual comfort 
responses have exploded in popularity recently and include the classi-
fication tree (e.g., [23]), random forest (e.g., [24]), gradient boosting 
method (e.g., [25]), support vector machine (e.g., [26]), Gaussian pro-
cess classification (e.g., [27]) and artificial neural networks (e.g., [28]). 
Although these techniques appear to have the potential to improve 
prediction ability at the level of a single building occupant, their 
inherent character as ‘black box’ models renders them fundamentally 
unfit to explain their outputs. In predictive modelling, direct interpret-
ability regarding the relationship between the predictors (Xs) and the 
outcome of interest (Y) is not required; however, transparency is 
desirable. 

In summary, there is a need for a reassessment of how buildings are 
designed and operated. Implementing comfortable set-point modula-
tions in buildings that consider occupant feedback would be beneficial 
to comfort, potentially reduce energy consumption and significantly 
support the clean energy transition. As a consequence, HVAC design and 
operation should consider both the inter- and intra-individual differ-
ences among and within the occupants, respectively. 

1.1. Research aim 

A paradigm shift from ‘set-point-based’ control to ‘perception-based’ 
human-in-the-loop control of buildings is necessary to increase comfort, 
reduce energy consumption, and support the transition to clean energy. 
However, considering these aspects in the building design phase would 
also be beneficial. 

The present research is an exploratory study aimed at predicting the 
thermal preference vote of human subjects exposed to a dynamic 

thermal environment. Therefore, the objective of this work is to develop 
a model for prediction (i.e., forecasting new data points), not for infer-
ence (i.e., testing theoretical hypotheses). Here, the data-generation 
process is viewed as a ‘transparent’ tool for developing good pre-
dictions. However, the modelling strategy does not aim to model the 
effect of temporal patterns directly but rather to account for them (i.e., 
account for the lack of independence associated with temporal data). 
The model is developed using data acquired from a laboratory experi-
ment, where subjects were exposed to precisely-controlled thermal 
ramps in an ‘office-like’ climatic chamber. 

2. Methodology 

2.1. Data acquisition 

The dataset used in this study comes from an experimental study 
conducted by Favero et al. [29] in the ZEB Test Cell Laboratory on the 
Norwegian University of Science and Technology (NTNU) premises 
(Trondheim campus) between September 2019 and January 2020. 
Thirty-eight participants (29 females and 9 males) were recruited from 
the university campus to participate in a randomised crossover trial, that 
is, a longitudinal study, in which they were subjected to a randomised 
sequence of thermal exposures (i.e., thermal ramps). Two identical cli-
matic chambers, furnished like typical single offices, were used to 
recreate the changes in the environment induced by thermal ramps. 
Space heating and cooling were provided by a constant air-volume 
system that supplied 100 % fresh air from outside that was distributed 
by a 2 m-long perforated fabric tube installed at the ceiling. The oper-
ative temperature set-point of 22.0 ± 1.0 ◦C was determined using the 
thermal comfort limit for winter established for Category A of ISO 
7730–2005 [2]. The rates of the temperature changes were: (i) ± 4.4 K/ 
h, (ii) ± 3.4 K/h, (iii) ± 2.2 K/h and (iv) ± 1.4 K/h, as recommended by 
ASHRAE 55:2017 [30]. 

During the experiment, participants were not asked to perform any 
specific tasks and were allowed to carry out their typical office activities. 
Nevertheless, the subjects were required to fill out computer-based 
questionnaires at scheduled intervals. By means of graphic categorical 
scales (see Fig. 1), these questionnaires were used to assess perception, 
evaluation, preference, and acceptability of the thermal environment. 
Further details on the experimental set-up, as well as the experimental 
conditions and procedure, can be found in Favero et al. [29]. 

2.2. Statical modelling 

Multilevel models (also commonly referred to as mixed or hierar-
chical models) are a regression-based approach to dealing with clustered 
and nested data [31]. When individuals form groups or clusters, it is 
reasonable to expect that two randomly selected individuals from the 
same group will tend to be more alike than two individuals selected from 
different groups. Following similar reasoning, measurements taken on 
the same individual on different occasions will be more highly corre-
lated than measurements taken from different individuals. Therefore, 
whenever data are clustered and/or nested, the assumption of inde-
pendent errors is violated. 

This experimental study examines a mixture of hierarchical and 
crossed relationships. As shown in Fig. 2, different measurements on the 
thermal environment (level 1) are nested within experiment conditions 
(level 2), which, in turn, are cross-classified by participant and day 
(level 3). It is essential to mention that the multilevel structure defined 
here is not the property of a model but rather the property of the 
experimental/study design, which is then reflected in the data, which 
the model then encapsulates. 

Within the multilevel framework, there are different modelling 
strategies that can be used. In this study, two different modelling stra-
tegies were applied, namely the beta mixed-effects model (a beta model 
including random effects) and the ordinal mixed-effects model (an 
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ordinal model including random effects). These two approaches are 
described in the following sections. 

2.2.1. Beta mixed-effects model 
Generalised linear models1 (GLMs) constitute a large class of models 

where the conditional distribution of the response variable Yi is assumed 
to follow an exponential family distribution with mean μi. The latter is 
assumed to be some function of ηi = xT

i β, where xi is the vector of 
covariates for the ith observation and β is the respective vector of pa-
rameters to be estimated. However, one of the assumptions behind the 
model is the independence of the errors, which cannot be assumed 
whenever data are clustered and/or nested (see Section 2.2). To deal 
with dependent errors, GLMs can be extended to generalised linear 
mixed models, in which the linear predictor η contains random effects (i. 
e., Zu) in addition to the fixed effects (i.e., Xβ). 

Fig. 1. Subjective scales used to assess perception, evaluation, preference, and acceptability of the thermal environment. Note. The numerical values of the scale 
were not shown to the participants during data collection. 

1 This class of models is not to be confused with general linear model which 
usually refers to linear regression models – generally assuming a normal con-
ditional distribution of the response. 
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In this study, the conditional distribution of the response variable Y 
is assumed to follow a beta distribution, where its mean μ is linked to 
linear predictor η through a logit function: 

Y ∼ Beta(μ,ϕ)
Logit(μ) = η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(1)  

where ϕ is the precision parameter, and X (whose row i is xT
i and con-

tains the ith observation of the covariates) and Z are the design matrices 
for the fixed and random effects, respectively. The reader is referred to 
Appendix A for more details about the mathematical notation and a 
practical example. For the sake of clarity and brevity, the beta mixed- 
effects model with the logit link will hereafter be referred to as simply 
the beta model. 

2.2.2. Ordinal mixed-effects model 
Cumulative link models (CLMs) belong to the ordinal regression 

model class and can be performed using GLMs. A cumulative model is 
used when latent variable representation is desired. Here, the dependent 
variable Y is the categorisation of a latent (unobservable) continuous 
variable Ỹ. Therefore, there are some latent thresholds parameters τk, 
with k ∈ {1, ...,K}, that divide the values of Ỹ into K+1 bins, that is, the 
observable ordered categories of Y. CLMs assume independence of er-
rors and are not suited for modelling clustered and/or nested data. Their 
extensions for dealing with the dependent errors are the cumulative link 
mixed models (CLMMs). 

In a CLMM, the conditional distribution of the response variable Yi 

for the ith observation is assumed to follow a multinomial distribution 
with probability vector πi = {πi1, ..., πik}, where πik = Pr(Yi = k). The 
cumulative probability corresponding to πik is γik = Pr(Yi ≤ k); hence, 
γik = πi1 + ... + πik. The cumulative probabilities are then mapped to the 
real numbers through a link function. In this study, the logit function 
was chosen as that link function. The mathematical formulation of the 
model can be written as: 

Y ∼ Multinomial(n, π)
Logit(γk) = 1τk − η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(2)  

where the τk are the thresholds parameters and η is the linear predictor 
term with a fixed effect component (i.e., Xβ) without an intercept2 and a 
random effect component (i.e., Zu). The reader is referred to Appendix A 
for more details about the mathematical notation and a practical 
example. For the sake of clarity and brevity, the ordinal mixed-effects 
model with the logit link will hereafter be referred to as simply the 
ordinal model. 

2.2.3. Computing predictions using a multilevel model 
Research setting aims to make predictions for certain values of x (e. 

g., adjusting the values of one x at a time or for combinations of x-values 
that reflect ‘typical’ persons) rather than calculating a probability for 
each individual in the sample. However, for a multilevel model, the 
treatment of the group-level residual u (i.e., group random effect) for 
these ‘out-of-sample’3 predictions must be considered. 

In this study, two different procedures were used to handle the 
group-level residual during prediction. For the ordinal model, the first 
procedure consisted of holding the group-level residual at its mean of 
zero and calculating the probabilities for some specific x-values. It 
should be noted that the calculated predictions are not the mean 
response probabilities for the specific x-value because γik is a nonlinear 
function of u(as is πi). However, since u is assumed to be normally 
distributed with mean = median = 0, the Logit(γik) for x = x* and u = 0 
is equal to the median γik for x = x* across groups. This is the case 
because the logit transformation does not affect the rank order of the 
observations. The response probabilities thus calculated have a cluster- 
specific interpretation. 

The second procedure outlined a simulation-based approach, which 
consisted of the following steps:  

i. Generate M values for the random effect u from the Normal(0,Σ)
distribution;  

ii. For each simulated value (m = 1, ...,M) calculate, for the given 
x-value, the cumulative response probabilities for each K+1 or-
dered categories of Y;  

iii. Compute the mean of the M cumulative response probabilities 
calculated in (ii) for each of the K+1 ordered categories of Y;  

iv. Repeat steps (i) – (iii) for a different x-value. 

The generated M values for the random effect should be a large 
number, here fixed at 1⋅104. This approach results in probabilities with a 
population-averaged interpretation (i.e., averaged across experimental 
conditions, participants and days). The same two procedures were 
applied to the beta model, with the difference that the prediction was 
not a vector (i.e., probabilities of voting in each category) but rather a 
single number (i.e., predicted mean). 

2.3. Data pre-processing and analysis 

A total of 314 thermal ramps were performed, for a total of 1522 
votes. There were three missing values for thermal perception and 
evaluation, six for thermal preference and 14 for thermal acceptability. 
However, since only thermal preference was of interest in this study, 
only the missing values for the latter were eliminated. As a result, the 
final sample size was reduced to 1516 observations. Fig. 3(a) illustrates 
the distribution of the thermal preference votes. 

As shown in Fig. 1, thermal preference ratings were measured using a 
graphical categorical scale. Participants could cast their vote by placing 
a diagonal line anywhere within the limits of the scale (i.e., within 
‘lower’ and ‘higher’). Consequently, the resulting distribution of votes is 
on a continuous, but bounded, scale (Fig. 3(a)). In this study, the con-
ditional distribution of the response (i.e., Y|μ) is assumed to follow a 
beta distribution. However, since any beta distribution’s probability 
density function (pdf) is defined only on the interval (0,1), the depen-
dent variable needs to be rescaled. Therefore, the thermal preference 
votes were scaled so that the values at the boundary of the scale, − 1 (i. 
e., ‘lower’) and +1 (i.e., ‘higher’), were mapped to + 0.001 and + 0.999, 
respectively. 

As an alternative approach to the beta model, the ordinal model was 

Fig. 2. Schematic of the three-level hierarchical study: repeated measures 
within experimental conditions cross-classified by participant and day. 

2 Omitting the intercept term allows the full set of thresholds τ1, ..., τk to be 
identified. 

3 The term ‘out-of-sample’ is used here to highlight that fixing variables at 
some values (e.g., their mean) may not reflect any actual person in the sample. 
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chosen. However, the ordinal model requires the dependent variable to 
be categorical, which entails categorising the thermal preference votes. 
Therefore, the votes were binned into five categories according to the 
thresholds − 0.6, − 0.2, + 0.2, and + 0.6:  

a) thermal preference votes < − 0.6 were defined as ‘lower’;  
b) − 0.6 ≤ thermal preference votes < − 0.2 were defined as ‘slightly 

lower’;  
c) − 0.2 ≤ thermal preference votes ≤+0.2 were defined as ‘without 

change’;  
d) +0.2 < thermal preference votes ≤+0.6 were defined as ‘slightly 

higher’;  
e) thermal preference votes >+0.6 were defined as ‘higher’. 

The frequency distribution of the resulting bins can be observed in 
Fig. 3(b). 

In a regression-type model, the shape of the distribution of a pre-
dictor has no direct impact on the model itself. Therefore, there is no real 
a priori need to transform or categorise a predictor based on its distri-
bution. Of greater importance is the correlation between predictors (i.e., 
whether or not there is collinearity4). There are two types of collinearity: 
structural and data-based collinearity. The former is a mathematical 
artefact originating from composing new predictors from other pre-
dictors, such as powers (higher-order terms) or products (interaction 
terms) of predictors. The latter is a ‘property’ of the data itself, which 
can be the result of, for example, a poorly designed experiment. To 
manage the first type of collinearity, predictors lacking a meaningful 
zero were centred by their grand mean; it should be noted that this 
standardisation procedure can facilitate the interpretation of the model 
[32]. Data-based collinearity is more challenging and regrettably, is the 
most common form of the two. It is typically dealt with via the removal 
of one or more of the collinear predictors from the regression model. 
Variable selection was performed with an automated backward elimi-
nation employing the Akaike information criterion (AIC) as the selection 
criterion. 

Table 2 presents the descriptive statistics of all the dependent vari-
ables used to infer the models. Detailed information concerning these 

variables can be found in Appendix B, while the instruments’ accuracy 
can be found in Favero et al. [29]. 

All statistical analyses were performed using R [33] with the RStudio 
integrated development environment [34]. The beta model and the 
ordinal model were determined with the glmmTMB package [35] and 
ordinal package [36], respectively. Automated backward elimination 
was performed with the buildmer package [37] and all the graphs were 

Fig. 3. Frequency distributions of (a) the thermal preference votes and (b) its categorisation. Note. The dotted lines represent the thresholds used for the catego-
risation, that is, − 0.6, − 0.2, + 0.2, and + 0.6. 

Table 2 
Descriptive statistics of the variables used in the models.  

Variable Code Unit Mean* Frequency* Median 
(1st, 25th, 
75th, 
99th)** 

Thermal 
resistance of 
clothing 

Clothing clo  0.86  – 0.87 (0.54, 
0.78, 0.97, 
1.11) 

Gender Gender female  –  0.78 – 
male  –  0.22 – 

Age Age years  27.11  – 25 (20, 22, 
30, 49) 

Body Mass 
Index 

BMI kg/m2  22.09  – 21.67 
(17.42, 
20.69, 
23.94, 
29.24) 

Time lived in 
Norway 

Time. 
Norway 

≤ 3 years  –  0.53 – 
greater 
than 3 
years  

–  0.47 – 

Air velocity Air.vel m/s  <0.10  – 0.00 (0.00, 
0.00, 0.00, 
0.06) 

Time of day Time. 
day 

morning  –  0.47 – 
afternoon  –  0.53 – 

Vapour 
pressure 

Vap.pre kPa  0.70  – 0.70 (0.39, 
0.58, 0.82, 
1.06) 

Operative 
temperature 

Top ◦C  22.39  – 22.10 
(18.79, 
21.08, 
23.72, 
27.33)  

* the mean refers to continuous variables, whereas the frequency refers to 
categorical variables 

** where 1st, 25th, 75th and 99th represent percentiles 

4 Collinearity is semantically equivalent to multicollinearity. In a general 
sense, collinearity refers to ‘the condition of being collinear’ and is a property of 
a set of explanatory variables, not just pairs of them. 
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created with the ggplot2 package [38]. The significance level for all an-
alyses was set at 0.05. 

3. Results 

In this section, the main results of the statical analysis are presented. 
Table 3 list all the variables used in the two models (i.e., the beta and 
ordinal models). 

3.1. Testing for cluster effects 

In Section 2.2, the experimental study was described as a mixture of 
hierarchical and crossed relationships. Nevertheless, before proceeding 
with the analysis, it was essential to establish that the three-level cross- 
classified model fit the data significantly better than the simpler three- 
levels models and the two-level model nested within it (see Fig. 4). 
The single-level model (i.e., the model without random effects) was also 
checked. The likelihood ratio (LR) test was used to perform this initial 
check. 

This preliminary analysis was carried out for both the beta and 
ordinal models, and its results are presented in Table 4. Here, the three- 
level cross-classified model is compared with the nested models. For 
both the beta and ordinal models, the three-level cross-classified model 
offers a better fit to the data. 

3.2. Initial model 

In this section, the initial full model is presented. The formulation of 

the linear predictor ηi is the same for the beta and ordinal models and 
can be written as: 

ηi = β1clothing ci + β2(genderi)+ β3age ci + β4BMI ci + β5(time.norwayi)

+ β6air.veli + β7(time.dayi) + β8vap.pre ci + β9top ci + u(2)
ramp ID(i)

+ u(3)
participant ID(i) + u(3)

day ID(i)

(3)  

where the subscript i is used to stress dependence on the ith observation. 
Since the three-level cross-classified model fits the data better (see 
Section 3.1), all three random components were added to the initial 
model. Only the main results of applying automated backward elimi-
nation are illustrated in the following sections. 

3.3. Ordinal model 

Table 5 summarises the results of the ordinal model after automated 
backward elimination has been applied. Here, the coefficient estimates 
are given in units of ordered logits (or ordered log-odds). Five significant 
predictors were identified – thermal resistance of clothing, Body Mass 
Index, air velocity, time of day and operative temperature – all nega-
tively associated with Logit(γk). The ordinal package [36] parametrises 
the model as: 

Logit(γk) = 1τk − η = 1τk − Xβ − Zu (4) 

so a negative coefficient for β indicates that an increase of the 
associated variable xi decreases the thermal preference vote. Stated 
analogously, votes for higher categories (e.g., prefer ‘higher’) are less 
likely. Nevertheless, the aim of this study is not inference but prediction; 
therefore, the specific values of the model’s coefficients are not of in-
terest. Furthermore, utilising any automated model selection procedure 
(e.g., automated forward selection, backward elimination or stepwise 
selection) should be avoided for inferential purposes. The parameter 
estimates are biased away from zero, the standard error and p values are 
too low and the confidence intervals are too narrow (page 68 of [39]), 
leading to misleading results. For prediction purposes, model selection 
can indeed provide a better bias-variance trade-off and improve the out- 
of-sample error [40,41]. 

The estimated coefficients for a multilevel model are referred to as 
cluster-specific effects. For instance, the coefficient of Top_c in Table 5 is 
interpreted as the effect of a one-unit change in Top_c on the log-odds 
that Pr(Y ≤ k) for a given cluster (i.e., while the unobserved character-
istics captured by the random effects are held constant). However, 
considering the effects in this manner implies that individuals are 
compared with the exact same value for fixed and random effects. For 
some variables (e.g., gender) or other specific purposes, a comparison 
averaging across unobserved characteristics in the population is often of 
interest. In such a situation, population-averaged probabilities should be 
derived (see Section 2.2.3). 

Fig. 5 shows the predicted probabilities as functions of the operative 
temperature for the cluster-specific and population-averaged proced-
ures. It can be seen that the probabilities calculated with the two 
methods are dissimilar. For example, the maximum predictive proba-
bility for ‘without change’ is about 91 % for the cluster-specific 
approach, while it is only 55 % for the population-averaged one. 
Fig. 6(a) shows the probability mass for the ordinal model and cluster- 
specific procedure. These probabilities are plotted as a function of 
three different operative temperatures while holding the other cova-
riates constant at their centred values and fixing the random effects at 
zero. Fig. 6(b) shows the population-averaged procedure’s results. 

3.4. Beta model 

Table 6 summarises the results for the beta model after automated 
backward elimination has been applied. Here, the estimated coefficients 

Table 3 
Covariates used in the models.  

Classification 
(level) 

Code Variable Type Unit 

Days (level 3) Day_ID    
Participants 

(level 3) 
Participant_ID    
Gender Gender Categorical, 

time- 
independent 

Female 
(reference)/ 
Male 

Age_c Age 
(centred) 

Continuous, 
time- 
independent 

Years 

BMI_c Body Mass 
Index 
(centred) 

Continuous, 
time- 
independent 

kg/m2 

Time.Norway Time lived in 
Norway 

Categorical, 
time- 
independent 

Less than or 
equal to 3 
years 
(reference)/ 
More than 3 
years 

Experimental 
conditions 
(level 2) 

Ramp_ID    
Time.day Time of day Categorical, 

time- 
independent 

Morning 
(reference)/ 
Afternoon 

Clothing_c Thermal 
resistance of 
clothing 

Continuous, 
time- 
independent 

clo 

Measurement 
occasions 
(level 1) 

Timepoint    
Top_c Operative 

temperature 
(centred) 

Continuous, 
time- 
dependent 

◦C 

Vap.pre_c Vapour 
pressure 
(centred) 

Continuous, 
time- 
dependent 

kPa 

Air.vel Air velocity Continuous, 
time- 
dependent 

m/s 

Therm.pref Thermal 
preference 

Continuous/ 
Categorical, 
time- 
dependent 

–  
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are given in units of logits. Four significant predictors were identified – 
thermal resistance of clothing, Body Mass Index, time of day and oper-
ative temperature – all negatively associated with Logit(μ) (the intercept 
was not considered). 

Fig. 7 shows the predicted responses as functions of the operative 
temperature using the cluster-specific and population-averaged pro-
cedures. The predicted response μ is the inverse of the link function, 
which in this study corresponds to the inverse of the logit: 

μ = Logit− 1(η) = Logistic(η) = 1
1 + e− η =

1
1 + e− (Xβ+Zu) (5) 

More details about the mathematical formulation can be found in the 

Appendix A. 
All the lines in Fig. 7 are plotted as a function of the operative 

temperature while the other covariates (i.e., the fixed effects) are held 
constant at their centred values. However, these lines differ in the 
random effects, specifically: 

- The solid black line (cluster-specific procedure) has the random ef-
fect fixed at zero;  

- The dashed black lines (cluster-specific procedure) have the random 
effect fixed at the 16th and 84th percentiles (which correspond 
roughly to ± 1 standard deviation above and below the mean);  

- The solid red line (population-averaged procedure) has the random 
effect derived from simulation (see Section 2.2.3). 

Fig. 4. Schematics of the (a) single-level model, (b) two-level model and (c and d) two simpler three-level models nested within the three-level cross-classified model.  

Table 4 
Preliminary check.  

Modelling 
strategy 

Model comparison LR test statistic 

Ordinal model  
Testing for multilevel model (see  
Fig. 4(a)) 

χ2(3) = 534.4, p < 0.
001  

Testing for participants and days (see  
Fig. 4(b)) 

χ2(2) = 59.271, p <

0.001  
Testing for participants (see Fig. 4(c)) χ2(1) = 12.854, p <

0.001  
Testing for days (see Fig. 4(d)) χ2(1) = 55.981, 

p < 0.001 
Beta model  

Testing for multilevel model (see  
Fig. 4(a)) 

χ2(3) = 675.77, p <

0.001  
Testing for participants and days (see  
Fig. 4(b)) 

χ2(2) = 49.328, p <

0.001  
Testing for participants (see Fig. 4(c)) χ2(1) = 10.946, p <

0.001  
Testing for days (see Fig. 4(d)) χ2(1) = 46.525, p <

0.001  

Table 5 
Regression coefficients for the predictors in the ordinal model (after applying 
automated backward elimination).  

Fixed Effects  coeff se (coeff) z p value 

Threshold 1,τ1  − 6.325 0.383  − 16.519 –– 
Threshold 2,τ2  − 4.245 0.345  − 12.307 –– 
Threshold 3,τ3  2.065 0.306  6.761 –– 
Threshold 4,τ4  4.070 0.327  12.441 –– 
Clothing_c  − 3.483 1.375  − 2.532 0.011* 
BMI_c  − 0.218 0.093  − 2.338 0.019* 
Air.vel  − 12.584 5.503  − 2.287 0.022* 
Time.day morning reference    

afternoon − 0.474 0.238  − 1.988 0.047* 
Top_c  − 1.519 0.077  − 19.719 < 0.001* 
Random effects  sd var   
Ramp_ID (Intercept) 1.585 2.512   
Day_ID (Intercept) 1.008 1.017   
Participant_ID (Intercept) 1.158 1.340   

Number of groups: Ramp_ID = 314, Day_ID = 68, Participant_ID = 38 
* indicates a significant term. 
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The points in Fig. 7 are the observed thermal preference votes. While 
the predicted central tendency follows the general trend of the data, the 
predictions do not agree well with the observations, particularly close to 
the upper (i.e., prefer ‘higher’) and lower (i.e., prefer ‘lower’) 
boundaries. 

Fig. 8(a) shows the pdfs generated from the beta model’s estimated 
parameters (i.e., μ and ϕ) using the cluster-specific procedure. Each pdf 
is plotted as a function of three different operative temperatures while 
the other covariates are held constant at their centred values and the 
random effects are fixed at zero. It can be observed that the dispersion of 
the probability densities is relatively high. For instance, for an operative 
temperature of 26 ◦C, the probability of voting equal or lower 0.50 (i.e., 
from ‘lower’ to ‘without change’ on the continuous scale) is about 93 %, 

implying a 7 % probability of voting higher than that. Fig. 8(b) shows 
the categorised probabilities of the predicted thermal preference votes. 
Fig. 9 presents the pdfs generated from the beta model with the 
population-averaged procedure. Here, as in Fig. 8, each pdf is plotted as 
a function of three different operative temperatures while the other 
covariates are held constant at their centred values, but the random 
effects are the results of simulations (see Section 2.2.3). 

4. Discussion 

Different approaches can be found in the literature for OCC for 
building (e.g., [42–44]). Futhrtmore, diverse modelling strategies have 
been developed to predict occupant’ thermal preferences, many of 

Fig. 5. Predicted probabilities of a thermal preference vote using the (a) cluster-specific and (b) population-averaged procedures.  
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which can be found in the review of Park et al. [20], Jung and Jazizadeh 

[21] and Ngarambe et al. [45]. Among them a large portion are machine 
learning/data-driven algorithms. Even though there is sometimes 
overlap in goals and algorithms, statistical modelling and machine 
learning are based on two different concepts. The basic goal of stochastic 
modelling is to understand which probabilistic model could have 
generated the data observed. The usual procedure can be synthesised in 
the following steps: (i) choose a potential model from a plausible model 
family, (ii) fit the model to the data (i.e., estimate its parameters), and 
(iii) contrast the fitted model with other models. After selecting a model, 
this is used to conduct investigations, such as hypothesis testing and 
predicting new values. The estimated model becomes the lens used to 
interpret the data. Usually, a model that reasonably approximates the 
underlying stochastic process that has generated the data predicts well. 
On the contrary, machine learning is a data-driven application that is 
inspired by pattern recognition and focuses on regression, classification, 
and clustering techniques. The underlying stochastic process is 
frequently of secondary importance. Of course, stochastic models and 
procedures may be used to frame many machine learning approaches. 
However, the data are not regarded as having been created by that 
model. Instead, the main objective is figuring out which method or 

Fig. 6. Predicted probabilities of a thermal preference vote using the (a) cluster-specific and (b) population-averaged procedures for three different operative 
temperatures. 

Table 6 
Regression coefficients for the predictors in the beta model (after applying 
automated backward elimination).  

Fixed Effects  coeff se (coeff) z p value 

(Intercept)  0.301 0.091  3.319 < 0.001* 
Clothing_c  − 1.291 0.456  − 2.829 0.005* 
BMI_c  − 0.077 0.029  − 2.634 0.008* 
Time.day morning Reference    

afternoon − 0.177 0.083  − 2.136 0.033* 
Vap.pre_c  − 0.627 0.340  − 1.845 0.065 
Top_c  − 0.413 0.018  –23.121 <0.001* 
Random effects  sd var   
Ramp_ID (Intercept) 0.565 0.320   
Day_ID (Intercept) 0.311 0.096   
Participant_ID (Intercept) 0.343 0.177   

Number of groups: Ramp_ID = 314, Day_ID = 68, Participant_ID = 38 
Dispersion parameter: 6.38 

* indicates a significant term. 
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approach performs the specific task. Although these techniques appear 
to have the potential to improve prediction ability at the level of a single 
building occupant, their inherent character as ‘black box’ models ren-
ders them fundamentally unfit to explain their outputs. Interpretability 
is one of the primary problems with machine learning and can be an 
issue in a specific setting. For instance, understanding why a model 
reached a particular conclusion is fundamental in a building design 
setting. In this study, the statistical modelling strategies applied are a 
transparent tool and, as such, can be easily used in contexts where 
interpretability is required. Moreover, while the data used to develop 
the model in this study derives from a laboratory experiment with a 
mechanically conditioned environment, the modelling strategies are 
independent of this aspect. As such, they could also be applied to a 
naturally conditioned space. 

In the literature, examples of statistical modelling can be found in the 
study of Daum et al. [46]. The authors create personalised thermal 
comfort profiles using multinomial logistic regression, a regression 
technique used to analyse a dependent variable measured on a cate-
gorical scale. The main difference with ordinal regression is that the 
categorical data are assumed to have no intrinsic ordering. Not taking an 
inherent order of the dependent variable makes the model more flexible 
than ordinal regression. However, it is essential to mention that this 
flexibility comes at a price. The number of parameters to estimate will 
drastically increase because k − 1 different linear predictor term (ηk) are 
needed for the k category of the dependent variable (only k − 1 because 
one category of the dependet variable is used as reference). In our study, 
since the dependent variable has five categories, this would have led to 
having, for example, four parameters for the operative temperature to 
estimate instead of only one. More parameters to estimate would require 
a larger sample size. The other difference compared with the study of 
Daum et al. [46] is that the diversity between subjects is directly 
accounted for in the model through the random effects term. Doing so 
makes it possible to model and predict the thermal preference of a 
specific (using the cluster-specific procedure) and a ‘general’ occupant 
(using the population-averaged procedure). In addition, the beta model 
allows doing the same when the thermal preference votes are measured 
on a continuous, but bounded, scale. 

In the next sections, the results previously illustrated are examined 

and interpreted. To begin with, the variables selected by the beta and 
ordinal model are contrasted and discussed. Subsequently, the beta and 
ordinal models are compared based on their predictive capabilities and 
the cluster-specific and population-averaged approaches are analysed. 
Finally, the limitations of the study are provided. 

4.1. Variables selection 

As explain in Section 1.1, the focus of the study is prediction and not 
inference; therefore, the specific value of the models’ coefficients is not 
of interest. However, it is useful to compare variables selection across 
the models and contrast the relative importance of these variables. 
Table 5 and Table 6 show that automated backward elimination selected 
different sets of predictors for the two models. Four out of five predictors 
are shared by the two models (Clothing_c, BMI_c, Time.day and Top_c), 
while the fifth variables differ. For the ordinal model, automated 
backward elimination selected Air.vel, whereas for the beta model, Vap. 
pre_c was selected. In any attempt to understand the relative importance 
of the parameters estimated for the models, a direct comparison between 
their absolute values would be meaningless because the variables are 
measured using different units. Furthermore, several units could be used 
to measure the same variable. For example, if the operative temperature 
had been measured in degrees Fahrenheit instead of degrees Celsius, its 
estimated regression coefficient would have been different. However, 
the importance of the variable would not have changed. The relative 
importance of the predictors could be obtained via standardisation (i.e., 
subtracting the mean from each observed variable and dividing by its 
standard deviation) before conducting the statistical analysis. The 
resulting parameters estimated by the model are on the same scale and 
can be directly compared. The results of this procedure are show in 
Table 7. Here, even though the two models have different predictors, the 
order of relative importance of the common predictors is the same. The 
variables that differ between the two models are of minor relative 
importance. However, this importance is purely statistical. To determine 
the practical importance of the variables, subject-area expertise is 
required. Note that p values cannot be used directly to assess the 
importance of the predictors. A predictor can have a small p value when 
it has a very precise estimate, low variability, or a large sample size. As a 
result, even effect sizes that are small in practice might have extremely 
low p values. Understanding the practical importance of the predictors is 
beyond the scope of this study and is not pursued further. However, for 
inferential purposes, it is of the utmost importance. 

As mentioned in Section 2.3, the Akaike information criterion (AIC) 
was used for variable selection. This metric is based on the maximised 
log-likelihood value with a penalty for including more parameters; it is a 
trade-off between goodness of fit (assessed by the likelihood function) 
and parsimony (the smaller the number of parameters, the lower the 
penalty). However, the AIC tends to over-parameterised, thus selecting 
models with a higher number of predictors, which could explain why the 
first four relatively important predictors were common to the two 
models, while their least relatively important predictors differed. 

4.2. Models’ comparison 

The Akaike information criterion is generally used to compare 
different possible models and determine which one best fits the data. 
However, it cannot be used to compare models with different likelihood 
functions.5 For example, for a discrete distribution (e.g., ordinal 
response), the likelihood refers to the joint probability mass of the data, 
whereas for a continuous distribution (e.g., continuous response), the 
likelihood refers to the joint probability density of the data. Therefore, 
models based on continuous and ordinal responses cannot be compared 
directly. For this reason, the two models are compered graphically in 

Fig. 7. Predicted responses using the cluster-specific (black line) and 
population-averaged (red line) procedures. Note. The points are the observed 
thermal preference votes. 

5 This is generally true for all probability-based statistics. 
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terms of predicted probabilities (see Fig. 6, Fig. 8 and Fig. 9). However, 
it is important to point out that this method poses a limitation: a 
different categorisation of the beta distribution would lead to different 
probabilities. The same applies for the categorisation of the thermal 
preference vote used to estimate the ordinal model (see Fig. 3). Never-
theless, by comparing the probabilities estimated by the two models, the 
following general observations can be made. On the one hand, the 
ordinal model is more flexible in the sense that it can handle different 
probability distributions (virtually any probability distribution). For 
example, in Fig. 6, it can handle the spike in the probabilities for the 
‘without change’ category for an operative temperature of 23 ◦C. On the 
other hand, the beta model is more detailed since it provides a pdf. For 
example, in Fig. 8(a), the predicted probability of observing a thermal 
preference vote between 0.45 and 0.55 for an operative temperature of 
23 ◦C is 19.2 %. An alternative approach to comparing the two models 
would be to calculate the mean of the estimated probabilities for the 
ordinal model and contrast it with the predicted mean response of the 
beta model. The mean of the probabilities can be written as: 

Mean Pr =
∑K

1
πkk (6)  

where πk is the probability of a specific category k, k ∈ {1, ...,K}. Here, 
the category prefer ‘lower’ was mapped to 1 and the category prefer 
‘higher’ was mapped to 5. The resulting mean probabilities were then 
rescaled between + 0.001 and + 0.999 to match the predicted mean 
response of the beta model. Fig. 10 shows this comparison. For the 
ordinal model, the cumulative probability γk is the inverse of the link 
function, which in this study corresponds to the inverse of the logit: 

γk = Logit− 1(1τk − η) = Logistic(1τk − η) = 1
1 + e− (1τk − η)

=
1

1 + e− (1τk − Xβ− Zu) (7) 

The probability of a specific category k is calculated as πk = γk − γk− 1. 
The probabilities of all the categories are then used to calculate the mean 
as in Eq. (6). More details about the mathematical formulation can be 
found in the Appendix A. 

Fig. 8. (a) Probability densities and (b) categorised probabilities of the predicted response using the cluster-specific procedure for three different operative tem-
peratures. Note. The dotted lines in (a) represent the thresholds used for categorisation. 
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As in Fig. 7, all the lines in Fig. 10 are plotted as a function of the 
operative temperature while the other covariates (i.e., the fixed effects) 

are held constant at their centred values, but they differ in the random 
effects. Specifically:  

- The solid black line (beta model, cluster-specific procedure) has the 
random effect fixed at zero (as in Fig. 7);  

- The solid red line (beta model, population-averaged procedure) has 
the random effect derived from simulation (as in Fig. 7);  

- The dashed black line (ordinal model, cluster-specific procedure) has 
the random effect fixed at zero;  

- The dashed red line (ordinal model, population-averaged procedure) 
has the random effect derived from simulation. 

It can be seen that the curve produced by using the cluster-specific 
procedure for the ordinal model has three inflexion points. This partic-
ular behaviour can be explained by looking at the predicted probabilities 
in Fig. 5(a). Between the operative temperatures of 22–24 ◦C, the pre-
dicted probabilities for ‘without change’ were much greater than all the 
others (from 80 % up to more than 90 %). Consequently, within this 
range, the calculated mean was greatly affected by these probabilities. 
The same behaviour can be observed for the population-averaged curve 

Fig. 9. (a) Probability densities and (b) categorised probabilities of the predicted response using the population-averaged procedure for three different operative 
temperatures. Note. The dotted lines in (a) represent the thresholds used for the categorisation. 

Table 7 
Predictors’ relative importance for both the beta and ordinal models.  

Modelling strategy Predictor  Standardise coeff Rank* 

Ordinal model Clothing  − 0.464 4 
BMI  − 0.567 2 
Air.vel  − 0.163 5 
Time.day morning Reference  

afternoon − 0.474 3 
Top  − 2.917 1 

Beta model Clothing  − 0.172 4 
BMI  − 0.199 2 
Time.day morning Reference  

afternoon − 0.177 3 
Vap.pre  − 0.102 5 
Top  − 0.793 1  

* the higher the absolute value of the standardise coefficient, the higher the 
rank. 
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to a lesser extent. However, more considerable differences are visible at 
the tails of the curves, that is, the two extremities. Here, the beta model’s 
mean response curve has tails that are heavier than the mean of the 
estimated probabilities for the ordinal model. Despite these differences, 
both the beta and ordinal models are both valid strategies for modelling 
thermal preference votes. However, the choice between the two models 
should be made based on how the response variable is measured. The 
beta model is a suitable choice when the thermal preference votes are 
measured on a continuous, but bounded, scale. In contrast, the ordinal 
model is appropriate when a categorical scale is used. Unfortunately, in 
the thermal comfort field, it is common practice to analyse subjective 
human thermal responses independently of how they were measured 
[47]. 

Furthermore, both models identified the largest random-effect 
component at the ‘experimental condition’ level, indicating that differ-
ences in conditions were the primary source of variability (see Table 5 
and Table 6). Therefore, the variability in how individuals react to 
different dynamic conditions is higher than the variability between in-
dividuals, which may indicate that there could be unmodeled informa-
tion in the variance at this level (i.e., the ‘experimental condition’). For 
instance, the different rates of temperature change could play a role both 
in terms of absolute magnitude (i.e., the specific value of the rate of 
change) and sign (i.e., heating or cooling). To this aim, modelling stra-
tegies that model the effect of temporal patterns directly should be used 
(e.g., time series). Furthermore, if the variability of the environmental 
condition were significantly reduced (i.e., a static environment created), 
the inter-individual differences (i.e., difference between individuals) 
would be dominant. 

4.3. Approaches’ comparison 

The predicted thermal preference votes were calculated from the two 
models using two different approaches: fixing the random effects at their 
mean of zero (cluster-specific procedure) and using a simulation 
approach with M = 1⋅104 (population-averaged procedure). Regarding 
the ordinal model, from Fig. 6 it can be seen that the most evident 

difference between the cluster-specific and the population-averaged 
procedures are the predicted probabilities for an operative tempera-
ture of 23 ◦C. Here, the predictive probability for ‘without change’ is 
about 91 % for the cluster-specific approach, while it is only 55 % for the 
population-averaged one. The reason for the discrepancy lies in the fact 
that the level 2 variance (σ̂2

ramp ID = 2.512) and the level 3 variances 

(σ̂2
day ID = 1.017 and σ̂2

participant ID = 1.340) are not close to zero. As the 

between-cluster variances σ̂2
ramp ID, σ̂2

day ID and σ̂2
participant ID in the 

random-intercepts model increase, the curves will be further apart. For 
an example the reader is referred to Appendix C. The advantage of 
having predictive probabilities as outcomes is that they are their own 
error measures. In Fig. 6, the predicted probability of ‘without change’ 
for the cluster-specific approach is 91 %; if one decided not to choose 
this category as the expected outcome, the probability of this being an 
error is, by definition, 91 %. Following the same reasoning, for the 
population-averaged approach, not selecting ‘without change’ as the 
expected outcome has a 55 % probability of being an error. As a standard 
practice, the ordinal model regards the category with the highest 
probability as the predicted outcome (i.e., thermal preference vote). 
However, utilising a hard threshold, such as the automatic selection of 
the category with the higher probability, does not fully use the infor-
mation contained in the probabilities. For example, in Fig. 5(b), such a 
threshold would lead to ‘slightly lower’ and ‘slightly higher’ never being 
selected. Here the necessity of defining a utility/cost function that, for 
example, maximises the expected utility or minimises the expected cost. 
With regard to the beta model, from Fig. 8 and Fig. 9 it can be seen that, 
for both the cluster-specific and population-averaged procedures, the 
distributions of the probability densities (and analogously, the cat-
egorised probabilities) for an operative temperature equal to 23 ◦C are 
the same. The predicted mean response of the beta model intersects the 
thermal preference vote at 0.5, at which the prediction at uramp ID =

uday ID = uparticipant ID = 0 (the median) equals the mean prediction (see 
Fig. 7). The median (i.e., cluster-specific) curve is lower than the 
population-averaged curve for a predicted thermal preference vote 
lower than 0.5 but is higher for a predicted thermal preference vote 
higher than 0.5. Consequently, the cluster-specific probability densities 
(i.e., the median probabilities) become skewed faster than the 
population-averaged ones (i.e., the mean probabilities) at operative 
temperatures higher or lower than 23 ◦C (see Fig. 8 and Fig. 9 for the 
operative temperatures of 20 ◦C and 26 ◦C). 

4.4. Limitations 

This study’s limitations arise from some simplifications introduced 
during the statistical modelling. For both models, the functional form 
was assumed to be linear for simplicity (see Eq. (3)). As a consequence, 
the models do not account for potential nonlinearities. However, non-
linearities could be considered, for example, by using smoothing splines. 
Another simplification derives from assuming that all the independent 
variables were measured exactly, that is, ‘error-free’. When covariates 
are measured with errors, the parameter estimates do not tend to the 
true values, even in extensive samples. For simple linear regression, this 
effect is known as the attenuation bias and leads to an underestimation 
of the coefficient. For more complex methods, such as multilevel models, 
this issue deserves a proper treatise and is beyond the scope of this study. 

For a beta model, the conditional variance is var(Yi|U = u) =

μi(1 − μi)/(1+ϕ), where μi is the mean and ϕ is the precision parameter. 
The parameter ϕ is known as the precision parameter because for fixed 
μi, the larger the ϕ, the smaller the variance of Yi. Therefore, the vari-
ance is not constant but rather a function of the mean and the precision 
parameter, here assumed to be constant. However, the precision 
parameter can be modelled as a function of some predictors, for 
example, the operative temperature. In this study, this possibility was 
not explored and should examined in future studies. 

To apply an ordinal model, the dependent variable must be cate-

Fig. 10. Predicted responses using the cluster-specific (black solid and dashed 
lines) and population-averaged (red solid and dashed lines) procedures for the 
beta and ordinal models, respectively. Note. The points are the observed ther-
mal preference votes. 
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gorical. For this reason, the dependent variable was binned into five 
categories according to the thresholds − 0.6, − 0.2, + 0.2, and + 0.6. 
However, these cut-off points were arbitrary and indirectly assumed to 
be the same for all participants. When a categorical scale is used to 
measure the dependent variable, this choice is made directly by single 
responders. Consequently, it is unlikely to be the same for all responders 
(see, for example, [48]). While this study used categorisation to apply 
the ordinal model, we do not encourage this practice in ‘normal’ cir-
cumstances. It is more appropriate to measure the variable directly with 
a categorical scale. As stated earlier, cut-off points are arbitrary and 
generally do not have practical/scientific meaning. Furthermore, the 
ordinal model has an additional assumption called ‘proportional odds’ 
(or equal slope assumptions). This assumption implies that the threshold 
parameters τk are independent of the regression variables or, equiva-
lently, that the regression parameters are not allowed to vary with k, a 
specific category of Y. This restriction derives from the fact that the 
thresholds are theoretically linked with the response measure (and 
therefore assumed to be part of the measurement procedure), not to the 
predictor’s value. However, the ordinal package [36], does not yet 
implement this feature when there is more than one random effect. 
Therefore, testing for partial and non-proportional odds (called ‘nominal 
effects’ in [36]) was not possible. 

Moreover, multilevel models offer additional modelling possibilities 
that this paper has not discussed. For instance, in both the models used 
in this study, the slope coefficients of the predictors added to the models 
were assumed to be fixed across higher-level units. However, it is 
possible that the relationships between the responses and the predictors 
vary across these higher classification units (e.g., between participants). 
In multilevel models, it is possible to allow the effects of the predictors to 
vary randomly across higher classification units by adding a random 
slope to the model, which can be translated into checking whether, for 
example, the effect of the temperature differs across different occupants 
and to what degree of magnitude. 

5. Conclusions and future perspectives 

This study aimed to predict the thermal preference votes of human 
subjects exposed to a dynamic thermal environment. To this aim, two 
different statistical models were proposed, namely the beta and ordinal 
models. Based on the analyses carried out, the following points can be 
made concerning the two models:  

- A three-level cross-classified model fit the data significantly better 
than the simpler three-levels models, the two-level model and the 
single-level model nested within it. Nevertheless, it is important to 
note that the multilevel structure described here is not a character-
istic of the model. It is a feature of the experimental/study design 
represented by the data and encapsulated in the model. Therefore, it 
is essential to know how, where and when the data were collected (i. 
e., the metadata) to model them appropriately.  

- In predictive modelling, direct interpretability regarding the model 
is not required; however, transparency is desirable. Multilevel 
models can model complex structures and at the same time, offer the 
advantage of having transparent outputs and modelling steps in 
contrast to machine learning/data-driven algorithms, which are 
basically ‘black box’ models.  

- While likelihood-based statistics (e.g., Akaike information criterion, 
Bayesian information criterion) cannot be used to contrast the two 
models’ performances directly, some qualitative observations can be 
made by comparing the probabilities estimated by the two models. 
On the one hand, the ordinal model is more flexible in the sense that 

it can handle different probability distributions (virtually any prob-
ability distribution). On the other hand, the beta model is more 
detailed because it provides a pdf. The two models used in this study 
are both valid strategies for modelling thermal preference votes. 
However, the choice between the ordinal and the beta models should 
be made based on how the response variable is measured. 

Furthermore, two distinct procedures were used in this study, 
namely the cluster-specific and the population-averaged procedures, to 
predict the thermal preference votes. These two methods apply directly 
to the concept of occupant-centric building design and operation. The 
population-averaged approach is suitable for the occupant-centric 
building design phase, where the target is the ‘general’ occupant. On 
the other hand, during the building operation phase, the notion of a 
‘general’ occupant is pointless, and the focus should be on satisfying the 
needs of the specific occupant. In this case, a cluster-specific procedure 
is appropriate. This procedure can be carried out by measuring the 
specific occupant response to the environment and consequently 
updating the probabilities of the population-averaged procedure. These 
procedures could be used to design more energy-efficient and satisfying 
control strategies according to occupants’ feedback(e.g., Ref [49]) in an 
occupant-centric [20] or human-in-the-loop [21] approach. 
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Appendix A. Mathematical background and examples 

In this study-two modelling strategies are used, specifically the beta mixed-effects model with the logit link (simply referred as beta model) and the 
ordinal mixed-effects model with the logit link (simply referred as ordinal model). Both these models belong to a broad class of models called 
generalized linear mixed models. 

There are four components that are common to any generalised linear mixed models:  

- Random component (of the response variable): Specifies the probability distribution of the response variable, such as the normal distribution for Y 
(i.e., Y ∼ Normal

(
μ, σ2)) in the (classical) linear regression model. In general, there is no separate error term. Classical linear regression is a special 

case in which the error term can be extract from the distributional assumption (i.e., Y = μ + ε, where μ = Xβ and ε ∼ Normal
(
0, σ2));  

- Link function: Specifies the link between the random and the systematic components. It denotes the relationship between the predicted response 
value (e.g., the mean) and the covariates;  

- Systematic component: Specifies the covariates in the model, more specifically, how they are combined (usually through a linear combination);  
- Random component (of the random effect): Specifies the probability distribution of the random effects, usually assuming a normal distribution 

with zero mean (i.e., u ∼ Normal(0,Σ)). 

Below, for both beta and ordinal model, the mathematical formulation and examples are provided. 

Beta model 

The beta model, as specified in Eq. (1), is: 

Y ∼ Beta(μ,ϕ)
Logit(μ) = η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(A1)  

where the conditional distribution of the response variable Y is assumed to follow a beta distribution. Here, its expected value (i.e., its mean μ) is linked 
to linear predictor η through a logit function. The logit function is defined as the inverse of the cumulative distribution function (cdf) of the standard6 

logistic distribution: 

Logit− 1(η) = Logistic(η) = 1
1 + e− η (A2) 

Eq. (A1) is expressed in matrix notation. For a specific case it can be written as: 

Ypdri ∼ Beta
(
μpdri,ϕ

)

Logit
(
μpdri

)
= ηpdri

ηpdri = xT
pdriβ + up + ud + ur

up ∼ Normal
(

0, σ2
p

)
; iid

ud ∼ Normal
(
0, σ2

d

)
; iid

ur ∼ Normal
(
0, σ2

r

)
; iid

(A3)  

where the subscript p indicates a participant, d a day, r a thermal ramp, and i is the ith obsevation. 
If for example, we consider:  

- two participants (no. 1 and 2), where participant 1 visited the lab on days 1 and 2 while participant 2 visited the lab on days 2 and 3,  
- each day has two ramps (named 1–6) and only two observation per ramp. 

We obtain: 
the 16 × 1 vector of the response variable 

Y = [Y1111,Y1112,Y1121,Y1122,Y1231,Y1232, Y1241, Y1242, Y2231,Y2232,Y2241,Y2242,Y2351,Y2352,Y2361, Y2362, ]
T 

the 11 × 1 vector of the random effects 

u =
[
up(1), up(2), ud(1), ud(2), ud(3), ur(1), ur(2), ur(3), ur(4), ur(5), ur(6)

]T 

with variance–covariance matrix equal to 

Σ =

⎡

⎢
⎢
⎢
⎣

σ2
pI2 0 0

0 σ2
dI3 0

0 0 σ2
r I6

⎤

⎥
⎥
⎥
⎦

where In is the identity matrix of dimension n 

6 The logistic distribution is defined by two parametes: a location parameter μ and a scale parameter s. When μ = 0 and s = 1, the logistic distribution is called 
standard logistic distribution, that is: Logistic(x; μ = 0, s = 1) = 1

1+e− (x− μ)/s = 1
1+e− x 
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the 16 × 11 design matrix of the random effects 

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ordinal model 

The ordinal model, as specified in Eq. (2), is: 

Y ∼ Multinomial(n, π)
Logit(γk) = 1τk − η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(A4)  

where the conditional distribution of the response variable Y is assumed to follow a multinomial distribution with probability vector π = {π1, ..., πk}, 
where πk = Pr(Y = k). The cumulative probability corresponding to πk is γk = Pr(Y ≤ k); hence, γk = π1 + ... + πk. Here the cumulative probabilities 
are then mapped to the real numbers through a logit function. In the ordinal model, the logit is function of the linear predictor η and 1τk, the vector of 
laten thresholds parameters τk, with k ∈ {1, ...,K}. That is: 

γk = Logit− 1(1τk − η) = Logistic(1τk − η) = 1
1 + e− (1τk − η) (A5) 

Eq. (A4) is expressed in matrix notation. For a specific case it can be written as: 

Pr
(
Ypdri = k

)
= πk

γpdri,k = Pr
(
Ypdri ≤ k

)
= π1 + ...+ πk

Logit
(
γpdri,k

)
= τk − ηpdri

ηpdri = xT
pdriβ + up + ud + ur

up ∼ Normal
(

0, σ2
p

)
; iid

ud ∼ Normal
(
0, σ2

d

)
; iid

ur ∼ Normal
(
0, σ2

r

)
; iid

(A6)  

where the subscript p indicates a participant, d a day, r a thermal ramp, i is the ith observation, and k is a category of the dependent variable. 
If for example, we consider:  

- two participants (no. 1 and 2), where participant 1 visited the lab on days 1 and 2 while participant 2 visited the lab on days 2 and 3,  
- each day has two ramps (named 1–6) and only two observation per ramp. 

We obtain, for a specific category k: 
the 16 × 1 vector of the response variable 

Y = [Y1111,Y1112,Y1121,Y1122,Y1231,Y1232, Y1241, Y1242, Y2231,Y2232,Y2241,Y2242,Y2351,Y2352,Y2361, Y2362, ]
T 

the 11 × 1 vector of the random effects 

u =
[
up(1), up(2), ud(1), ud(2), ud(3), ur(1), ur(2), ur(3), ur(4), ur(5), ur(6)

]T 

with variance–covariance matrix equal to 

Σ =

⎡

⎢
⎢
⎢
⎣

σ2
pI2 0 0

0 σ2
dI3 0

0 0 σ2
r I6

⎤

⎥
⎥
⎥
⎦

where In is the identity matrix of dimension n 

the 16 × 11 design matrix of the random effects 
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Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appendix B. Frequency distributions for the independent variables  

Fig. B1. Frequency distributions for the continuous variables: (a) thermal resistance of clothing, (b) age, (c) Body Mass Index, (d) air velocity, (e) vapour pressure 
and (f) operative temperature. Note. The vertical black marks at the bottom of each figure are the rug plots. 
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Appendix C. Population-averaged and cluster-specific predictions 

In Fig. 6, the differences between the predicted probabilities for the cluster-specific and the population-averaged procedures depend on the 
between-cluster variances. As the between-cluster variances σ̂2

ramp ID, σ̂2
day ID and σ̂2

participant ID in the random-intercepts model increase, the curves will 
be further apart. This situation can be observed in Fig. C1 for category k ≤ 3 (i.e., from the ‘lower’ to ‘without change’ category). 

The predicted cumulative response probabilities always intersect at p = 50%, the point at which the prediction at uramp ID = uday ID = uparticipant ID =

0 (the median) equals the mean prediction. The median (i.e., cluster-specific) curve is lower than the population-averaged curve for predicted 
probabilities lower than 50 %, while the median curve is higher for probabilities greater than 50 %. As a result, for a given range of Top values, the 
cluster-specific predicted probabilities will be greater than the population-averaged ones. In this case, for the category k = 3 (i.e., ‘without change’), 
for Top values between 20.8 ◦C and 25.4 ◦C, the cluster-specific predicted probabilities are higher than the population-averaged ones (see Fig. C2). The 
dashed black lines in both Fig. C1 and Fig. C2 are cluster-specific effects, where the random effects uramp ID, uday ID and uparticipant ID were set to their 16th 
and 84th percentiles (i.e., uramp ID = { − 1.11, 1.19}, uday ID = { − 0.56, 0.69} and uparticipant ID = { − 1.05, 0.93}) and then added (i.e., { − 2.71, 2.80}). 
The 16th and 84th percentiles were chosen because they correspond roughly to ± 1 standard deviation above and below the mean and encompass 
about 68 % of the observed random effects for Ramp_ID, Day_ID and Participant_ID. 

Fig. B2. Frequency distributions for the categorical variables: (a) gender, (b) time lived in Norway and (c) time of day.  

Fig. C1. Predicted cumulative response probabilities for category k ≤ 3 (i.e., from the ‘lower’ to ‘without change’ category) using the cluster-specific (black line) and 
population-averaged (red solid line) procedures. 
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1. Introduction 

1.1. Background and state-of-the-art 

Inhabitants of industrialized areas spend most of their time 
(85–96%) inside buildings [1,2]. Meanwhile, the human sensory system 
receives information regarding multiple indoor environmental expo-
sures. Building energy consumption is significantly influenced by 
occupant perception and behaviour; that is, occupants’ evaluation of 
thermal, visual, acoustic, and air quality stimuli and their reactions to 
any resulting discomfort [3]. As such, these four principal categories of 
environmental stimuli are integral to building design standards [4]. Not 
all interactions of occupants with their built environment result from 
dissatisfaction, but a close link between perception and behaviour exists 
[5]. 

While environmental stimuli occur simultaneously, the majority of 
scientific literature considers environmental influences on human 
perception and occupant behaviour in isolation. Literature reviews 
related to single-domain perceptions cover thermal [6–8], visual [9–12], 
indoor air quality (IAQ) [13], or acoustic [14–16] perception, as well as 
single-domain influences on occupants’ actions [5,17–19]. An under-
standing of multi-domain environmental effects is lacking. ASHRAE [4] 

states “current knowledge on interactions between and among factors that 
most affect occupants of indoor environments is limited”. Addressing this 
knowledge gap, Torresin et al. [20] proposed a multi-domain research 
framework that identifies interactions and crossed effects between do-
mains. Interactions are combined effects of two or more distinct domains 
(e.g., thermal and visual), on a third domain (e.g., overall environmental 
satisfaction). In contrast, crossed effects involve a main effect of one 
domain (e.g., thermal stimuli) on another domain (e.g., visual 
perception). 

Literature reviews on multi-domain approaches are less numerous. 
Recently, Torresin et al. [20] identified 45 laboratory studies published 
after 1990 dealing with the effects of two or more environmental do-
mains on perception and performance. Earlier reviews were based on 
smaller numbers of studies [21–23]. Frontczak et al. [23] reviewed nine 
studies focusing on the influence of individual domains on overall 
satisfaction. Candas et al. [21] discussed neurophysiological and 
behavioural findings on multisensory influences on thermal perception 
based on 25 publications. Centnerov�a et al. [22] reviewed eight papers 
with the same topic. The authors of this review could not identify earlier 
reviews addressing multi-domain approaches related to occupant 
behaviour. 

In addition to the four principal indoor environmental domains, 

Fig. 1. Contextual variables and their categorization.  
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contextual and personal variables influence occupants’ perception and 
behaviour and are summarized in Figs. 1 and 2. Schweiker et al. [5] 
reviewed drivers of occupant behaviour, including contextual and per-
sonal factors. However, they did not examine interactions between these 
factors. Frontczak et al. [23] reviewed personal and contextual in-
fluences on overall satisfaction with the indoor environment. Schweiker 
et al. [8] included personal (psychological) and contextual factors in 
their review on individual differences in thermal perception. O’Brien 
et al. [24] concluded that most approaches analysed aggregated average 
models and diversity is captured through statistical approaches, without 
extracting personal or contextual factors. 

This brief overview reveals a lack of reviews that considered multi- 
domain influences on occupants’ perception and behaviour. The cur-
rent review aims to fill this gap as described in the following. 

1.2. Objective, research questions, and scope 

The primary objective is to examine multi-domain approaches with a 
much broader scope compared to previous reviews in order to enter into 
a new phase of conceptual developments in the field. This review aimed 
to identify motivations, key methods, findings, and gaps in the field of 
multi-domain approaches to human perception and behaviour in indoor 
environments. 

The main research questions were (1) Why did researchers choose 
the domains and questions they considered?, (2) How did they approach 
multi-domain investigations?, (3) What were the key results?, and (4) 
What are limitations and gaps of their approaches? 

The scope of this review covers studies applying a multi-domain 
approach to people’s perception of the indoor environment and their 
resulting behavioural outcomes. The first categorization level made is 
between “perception” and “behaviour”, as shown in Figs. 3 and 4, 
respectively. Studies without any physical predictors or with perfor-
mance or health-related outcomes are beyond the scope. 

Physical-perceptual independent variables cover measurable phys-
ical properties of the indoor and outdoor environment, e.g. indoor and 
outdoor air temperature for the thermal environment. All the physical 
properties of the thermal, visual, acoustic, and air quality environment 
are considered. Physical multi-perceptual approaches are defined as those 
covering variables from more than one domain of perception (e.g., 
thermal and visual perception). Studies dealing with multiple variables 
covering one domain only (e.g., solely air temperature and relative 
humidity, which are both from the thermal domain, on thermal 
perception) are not considered unless they included either contextual or 

personal variables. All contextual and personal variables shown in Figs. 1 
and 2 are considered, except personal variables related to demographic 
factors (e.g. age, sex), or clothing if dealing with thermal perception. 

Other behaviour and additional variables are included to cover studies 
that consider the status of one behaviour in the analysis of another 
behaviour. For example, window opening behaviour as dependent and 
the status of the heating system as independent variable. 

This review covers laboratory studies, field studies, and question-
naire surveys. Studies related to perception or behaviour within the 
outdoor environment, virtual reality studies, or research based on sim-
ulations are out of scope. As such, this review provides a comprehensive 
overview of multi-domain approaches to understanding human 
perception and occupant behaviour indoors. 

2. Methods 

This review’s approach is visualized in Fig. 5. The visualization is 
based on the “Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses” (PRISMA) schema [25]. However, in contrast to a sys-
tematic review, first, we collected and reviewed known research, which 
returned 153 articles. This initial step included searches in author’s 
individual reference databases as well as in bibliographic search engines 
(Table 1). Second, the more than 1000 articles citing these 153 articles 
or being cited by this initial collection were assessed. Together with 
their evaluation, we categorize our work as critical review [26]. 

2.1. Selection process 

The units of analysis were the articles and their records. A record is 
defined as a dependent variable analysed within an article. As such, one 
article presenting analyses for two or more dependent variables (e.g. 
analyses of thermal and visual perception as dependent variable) has an 
equivalent number of records. 

The exclusion criteria were: (1) out of scope; (2) other than English 
language; (3) full text unavailable, and (4) not peer-reviewed. In addi-
tion, (5) duplicates such as conference and journal articles presenting 
the same research were considered once; and (6) review papers without 
additional analyses such as meta-analysis were not considered. 

2.2. Records’ structure 

The following data were extracted: dependent and independent 
variables; number (N) of participants, offices, and/or buildings; sex and 
age distributions; number of votes obtained or length of study; type of 
study (e.g. field or laboratory); type of building (e.g. residential or of-
fice); type of conditioning (e.g. naturally-ventilated (NV) or air- 
conditioned (AC)); region in which the study was conducted; data 
collected; statistical approach applied, and key findings. 

In addition, introduction and discussion sections were scanned for 
the study’s motivation and gaps/future research needs mentioned. 

3. Comparison between perceptual and behavioural multi- 
domain approaches 

Multi-domain approaches with perception as a dependent variable 
(244 records/163 articles) are three times more frequent than behav-
ioural multi-domain studies (97 records/64 articles). Note that eight 
articles report results from perceptual and behavioural dependent var-
iables (see the complete review table: https://osf.io/gnvp2/). The most 
frequent approach in perceptual and behavioural studies was a combi-
nation of one or more physical factors with contextual variables (Fig. 6). 

In both research areas, perception and behaviour, field studies are 
the most frequent methods used (Fig. 7). Laboratory studies only 
dominate in studies that examined multi-perceptual effects without 
contextual or personal variables. 

The sample size varies according to the type of sample analysed, i.e. Fig. 2. Personal variables and their categorization.  
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whether authors reported buildings, rooms, or participants (Table 2). 
The number of participants in laboratory studies ranged from 5 to 199 
with nearly half of the studies with less than 30 (mean 45.6, SD 42.2, 
median 30). In field studies, the largest number of participants (N ¼
52,980 and N ¼ 29,632) were observed in two studies combining 
physical and contextual variables (subsection 4.2) using existing data-
bases of online surveys [27,28] (mean of all field studies 824.1, SD 3178, 
median 138). Sample sizes below 10 participants were observed in 
several subsections. Arguments were for example an integral research 
approach triangulating between four qualitative and quantitative 
methods [29] or in-depth insights by gathering detailed information 
through interviews and discussions [30]. The number of buildings varies 
from 1 [31] to 351 [27]. 

4. Perceptual studies 

This section is divided into four subsections: physical; physical and 
contextual; physical and personal; and physical, personal, and contex-
tual. In each subsection, we reflect on the motivational background, the 
methods employed for data collection and analysis, and some of the key 
findings. We conclude each subsection with thoughts on the current 
state of the art, prevailing knowledge gaps, and future research needs. 

Fig. 8 summarizes the findings on crossed main effects on thermal, 
visual, IAQ, and acoustic perception referred to in the following. 

4.1. Physical multi-perceptual approaches 

A considerable number of studies addressed the effects of multiple 
environmental factors on occupant perception. While not all these 

Fig. 3. Schema of multi-variable approaches with perception as the outcome variable.  

Fig. 4. Schema of multi-variable approaches with behaviour as outcome variable. Note that the approach numbers at the bottom of this figure refer to the corre-
sponding subsection numbers within this review. 
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studies specifically address the combined effects of multiple indoor 
environmental variables, most acknowledge at least their concurrent 
presence [32–109]. In the following, we focus on a number of these 
papers and their contributions, directly relevant to the topic of 
multi-domain exposures. 

4.1.1. Motivational background 
The majority of the studies cite the need for better understanding of 

exposure situations involving multiple indoor environmental variables. 
Other studies observed effects of multiple environmental variables 
without a specific intent to examine their interactions [53,62]. Studies 
considered different combinations of environmental variables, most 
frequently thermal and visual [34,37–39,52,67,102–104]. A few studies 
investigated other combinations of variables, such as visual and acoustic 
[45], thermal and acoustic [56,57,66], visual and IAQ [59], acoustic and 
IAQ [83], visual, thermal, and acoustic [48,49,62,70], as well as IAQ, 
thermal, and acoustic [35,41]. Researchers were mostly interested in the 

effect on dependent variables such as occupants’ comfort, sensation, and 
preference [34,39,48,52,66,102–104]; and satisfaction [59,68]. 

4.1.2. Approaches 
The majority of papers involved short-term laboratory studies in 

office settings. Only in a few studies, participants were given the op-
portunity to adjust certain factors of their immediate surroundings [45, 
59] or exercise a choice upon experiencing different settings [40]. 

Experimental settings typically involved different properties of the 
physical environments such as air temperature (thermal environment), 
sound type and level (acoustic environment), illumination level, glare 
intensity, light colour (visual environment), and airflow rates (thermal 
and air quality environment). Laboratory studies typically lasted a few 
hours or up to a day. Typically, experiments tested one or more levels of 
a physical variable crossed with one or more levels of another physical 
variable (e.g., three levels of temperature crossed with two levels of 
illumination, as in Kulve et al. [104]), while holding other indoor 
environmental variables constant. 

The majority of experiments had within-subject designs, that is, all 
participants experienced all experimental conditions, typically coun-
terbalanced by randomising the order of conditions. Within-subject ex-
periments are more sensitive to the manipulation of independent 
variables, which is important for studies with smaller sample sizes. 

The occupancy-related implications of environmental factors were 
queried using techniques such as surveys and questionnaires (e.g. 
Ref. [48]), comfort and sensation scales (e.g. Ref. [66]), and visual ob-
servations (e.g. Ref. [70]). 

As expected, data analysis involved various well-established formats 
and techniques from descriptive and inferential statistics. The collection 
of statistical methods commonly referred to as ANOVA (Analysis of 
Variance) was frequently deployed for processing and interpretation of 
measurement results [40,45,52,66,68,70], as were mixed-effects models 
[37,39,49,67,104]. 

In the majority of the less frequent field studies, the setting was a 
university classroom and participants were students. However, field 

Fig. 5. Schema of the review process.  

Table 1 
Literature searches performed during the first phase of this review.  

Database/search engine Search terms (combinations of) 

Web of Science “thermal”, “visual”, “acoustic”, “comfort”, 
“satisfaction”, “perception”, “behaviour” 

Scopus “thermal”, “visual”, “acoustic”, “personal”, 
“contextual”, “multi-domain”, “comfort” 

Science Direct “occupant behaviour”, “multi-domain”, “model”, 
“combined effects” 

Google Scholar “thermal”, “visual”, “acoustic”, “comfort”, 
“satisfaction”, “perception”, “behaviour” 

Google Scholar “indoor factors”, “interaction”, “combination” 
Google Scholar “Occupant”, “thermal”, “comfort”, “satisfaction”, 

“visual”, “behaviour” 
Google scholar “occupant behaviour”, “multi-domain”, “model”, 

“combined effects” 
Deakin University library 

(linked to several databases) 
“thermal comfort”, “visual comfort”, “acoustics”  
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studies were also conducted in office, hospital (e.g. Ref. [34]), and 
residential settings [50]. Field studies typically lasted several months. 

Environmental physical conditions were monitored and participants 
were asked to rate their perceptions through questionnaires on comfort, 
sensation and satisfaction (e.g. Ref. [53,105]). Measurements of envi-
ronmental conditions were associated with participants’ subjective 

ratings, and the subjective ratings with each other, using measures such 
as correlation [105] or ANOVA [106]. Field studies enabled the varia-
tion of environmental conditions for large samples of subjects (e.g., 331 
students in 7 varied classrooms [105]). 

Fig. 6. Frequency of studies reviewed per approach.  

Fig. 7. Frequency of records separated by type of study.  
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4.1.3. Findings 
Studies described in the reviewed papers entail a host of valuable 

findings (Fig. 8). Tiller et al. [66] reported a slight effect of acoustic 
conditions on subjective ratings of thermal comfort, but no reverse ef-
fect. Nagano and Horikoshi [56] concluded that operative temperature 
has a slight effect on auditory comfort sensation votes and thus that the 
thermal environment must be taken into consideration in acoustic 
studies. On the other hand, they did not observe any effect of noise on 
reported thermal sensation. On the contrary, Pellerin et al. [107] indi-
cated a noise effect on thermal comfort in warm conditions, but not of 
temperature on acoustic sensation, comfort, and preference. Yang et al. 
[108,109] reported that thermal comfort decreased with increased noise 
level, and with the noise of a fan as compared to that of babble, and that 
water sounds increased cold sensation and decreased thermal comfort. 

The authors also observed the influence of the thermal environment on 
acoustic comfort and sensation, but with contrasting findings, as they 
report a decrease of annoyance and an increase of acoustic comfort at 
thermoneutrality [108] as well as an increase in acoustic perception and 
annoyance at thermoneutrality [77,109]. 

Nakamura et al. [58] reported that higher colour temperature is 
preferred in summer and vice versa in winter. Fanger et al. [45] 
observed slight lighting effects on thermal comfort: people preferred a 
slightly lower temperature under red light than under blue light. Similar 
results were reported by Albers et al. [32] and by Winzen et al. [69], 
with electric light colour affecting thermal sensation, comfort and 
temperature estimation. Chinazzo et al. [39] suggested that partici-
pants’ thermal sensation reports were influenced by the colour of the 
daylight. For instance, as compared to orange daylight exposure, a 
colder thermal sensation was reported in the case of blue daylight, even 
though the measured temperature remained the same. Daylight quantity 
was also reported to affect thermal perception, with increased thermal 
comfort under dim daylight conditions in a warm environment and 
under bright daylight conditions in a cold environment [103]. However, 
the authors indicate no effect of daylight illuminance levels on thermal 
sensation [103], similarly to what was reported by an earlier study with 
electric lighting [75]. Meanwhile, Azmoon et al. [34] observed 
improved thermal comfort responses because of increased light 
intensity. 

Unexpected effects were sometimes found on variables that were not 
the focus of the experimental study. For example, people reported IAQ 
differences across temperature settings [67], or across combinations of 
acoustic, lighting, and temperature settings [49]. In some cases, papers 
noted significant effects only under restricted conditions. For example, 
Geng et al. [47] observed that people were less satisfied with IAQ and 
lighting under certain temperature settings, but not others. In some 
cases, papers noted statistically non-significant interactions between 
environmental conditions. For example, Pan et al. [83] observed that 
adding noise to odour mitigated the effect of odour on 
air-quality-related measures. However, with a sample size of N ¼ 9, 
small interaction effects are unlikely detected. 

Many studies observed no interactions between environmental fac-
tors tested (e.g. Ref. [37,38]), or were not designed in a way to inves-
tigate these interactions (field studies). 

4.1.4. Identified gaps and future directions 
The review of multi-physical perceptual research shows the extent of 

valuable knowledge generated over the past five decades. However, the 

Table 2 
Number of participants, offices, or buildings by category. N ¼ number of records, Min ¼ minimum, SD ¼ standard deviation, Med ¼ median, Max ¼ maximum.  

Section Participants Rooms/offices Buildings/households 

N Min Mean SD Med Max N Min Mean SD Med Max N Min Mean SD Med Max 

4 Perception 
4.1 Physical multi- 

perceptual 
109 6 99.3 186.6 35 990 0      3 1 2 1 2 3 

4.2 Physical þ
contextual 

82 7 1525.9 6674.6 168 52980 10 1 6.3 5.3 4 18 34 2 38.6 84.2 14.5 351 

4.3 Physical þ personal 16 20 557.9 1852.4 93 7500 8 6 56.5 51.9 46 120 6 2 4.3 3.8 2 11 
4.4 Phys. þ cont. þ

pers. 
9 35 295.4 206.3 400 482 0      1 8 8  8 8 

5 Behaviour 
5.1 Physical multi- 

perceptual 
9 5 42.2 44.8 20 128 4 1 3.5 3.1 2.5 8 4 9 17.8 6.1 19.5 23 

5.2 Physical þ
contextual 

11 17 504.9 891.3 36 2787 18 3 83.6 159.2 14 555 20 1 30.5 28.9 16.5 70 

5.3 Physical þ personal 4 65 65 0 65 65 2 6 63 80.6 63 120 1 2 2  2 2 
5.4 Physical þ cont. þ

pers. 
6 32 1091.8 905.3 933 2787 2 4 4.5 0.7 4.5 5 4 13 35 14.7 42 43 

5.5 Physical þ multi- 
behavioural 

11 8 18.5 9.3 21 40 6 3 8.5 3.6 8 14 4 1 1 0 1 1 

The geographic distribution is presented in Table 3. Studies were predominantly conducted in Central Europe, North America, and Eastern Asia. 

Table 3 
Geographic distribution of records.  

Section Africa Asia Europe North- 
America 

Oceania South- 
America 

4 Perception 
4.1 Physical 

multi- 
perceptual 

1 44 38 9 0 0 

4.2 Physical þ
contextual 
variables 

0 22 34 28 2 1 

4.3 Physical þ
personal 
variables 

0 3 10 6 0 0 

4.4 Physical þ
contextual þ
personal 
variables 

0 2 2 0 1 0 

5 Behaviour 
5.1 Physical 

multi- 
perceptual 

0 8 1 2 0 0 

5.2 Physical þ
contextual 

0 3 13 3 0 0 

5.3 Physical þ
personal 

0 0 5 1 0 0 

5.4 Physical þ
contextual þ
personal 

0 3 2 0 2 0 

5.5 Physical þ
multi- 
behavioural 

0 0 16 2 1 0  
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Fig. 8. Overview of crossed main effects related to thermal, visual, air quality and acoustic perception based on studies including significance tests.  
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yield is less extensive and less conclusive if we specifically query for 
frequent, clear, and consistent instances of cross-modal influence. The 
results are in many instances inconclusive, and in certain cases even 
contradictory. It is thus of paramount importance to reflect upon some of 
the key shortcomings and limitations of past research, which correspond 
more or less directly to requirements for future research efforts. 

Given the difficulties of conducting research including real occu-
pants in realistic settings (involving, amongst others practical, ethical, 
and economic issues), it is not surprising that most studies are short- 
term. Moreover, the participants, often young students, are not neces-
sarily representative of pertinent populations, for instance, of office 
workers. Most studies were conducted in offices, yet other building ty-
pologies such as residential buildings are practically ignored by the 
literature. 

Researchers frequently try to establish some measure of realism in 
the experimental settings, but this is rarely effectual given the difficulty 
in concealing the inherent artificiality of the available testing facilities. 
As such, the reviewed studies do not truly succeed in addressing the 
implications of the Hawthorne effect, even though, scholars argue about 
its nature and suitable methods to account for it in research [110,111]. 

Studies often start with some reference to previous research 
(frequently to authors’ own previous publications), but there is very 
little evidence of actual carryover of past studies’ findings. As such, the 
majority of the studies appear to practically start from scratch. Perhaps 
consequently, different studies do not deploy standard research designs, 
data collection strategies, metrics, and statistical analysis techniques, 
making attempts toward conducting meta-analyses factually futile. 

There is arguably a paucity of collaborative, multi-institutional, in-
ternational, and interdisciplinary experimental studies. Specifically, few 
studies seem to have truly recognized the critical importance of con-
ceptual and methodological integration of engineering and human sci-
ence methods. 

One fundamental problem with most research efforts is the absence 
of foundational theories that would facilitate the processes of hypothesis 
formulation and testing. This may be of course in part due to the 
inherent complexity of the subject. However, the chances of obtaining 
scalable and generalizable results remain slim if research designs do not 
at least make an attempt to start from a provisional general theory of the 
nature of the perceptual and behavioural processes involved in multi- 
domain exposure situations. 

4.2. Physical þ contextual variables 

This subsection examines studies investigating the combined effects 
of physical and contextual variables on environmental perception. These 
studies examined how context may interplay with single- or multi- 
sensory domain perceptions by imposing unknown or indirect in-
fluences on the physical properties of the environment or by shaping the 
users’ perceptions and expectations in line with social or cultural ex-
periences [27–29,42,112–192]. 

4.2.1. Motivational background 
The drive for research varies greatly between the studies identified. 

Some researchers challenge the absence of an established single index 
for holistic comfort [124,129,167]. In other studies, the combined ef-
fects of physical and contextual variables were merely incidental rather 
than an intended outcome [124]. 

In four of the identified studies, the inclusion of contextual factors 
was thought to enrich environmental evaluation by factoring subjec-
tivity into assessments typically based on only physical criteria [112, 
114,132,149]. Similarly, some research aimed to improve 
post-occupancy evaluation techniques, from how data is collected or 
analysed [72,168], to examine the combined influence of suspected 
co-contributors to satisfaction in a single-sensory domain [169]. 

We identified three distinct research themes focusing on specific 
building attributes. One addressed the concurrent influence of 

environmental and spatial factors present in open-plan office space 
configurations [42,113,137,142,170], a second examined limitations of 
green building design and rating systems [125,127,136,171], and a 
third concerned the impact of the presence of control opportunities 
[115,116,172,173]. 

4.2.2. Approaches 
In contrast to the studies reviewed in section 4.1, the interest seems 

to be more in real settings, shown by the majority of studies applying 
field study approaches. Here, the influences of the contextual factors can 
be examined with limited cost and reduced difficulty in the experimental 
set-up. 

Subjective evaluation through surveys is a common approach for 
data collection of comfort or satisfaction based on the self-reporting of 
participants [27,28,174]. Several studies involve measurements of in-
door environmental quality metrics related to thermal, acoustic, and 
visual properties alongside with occupants’ subjective votes [42,74,124, 
129,136,137,142,144,145,169,170,175–177]. 

The most frequent building typologies were office buildings (e.g. 
Ref. [115,119,126,134,140,143,147,178–180]) and educational build-
ings (e.g. Ref. [116,120,123,181–183]), followed by residential build-
ings [122,153,175], hostels and student residences [42,121], 
restaurants and caf�es [132,142], factories [118,184], a healthcare fa-
cility [150], a shopping mall [141] and airport terminal [47]. 

The length of data collection differed depending on the methodology 
and the research focus. Longitudinal studies ranged from months to 
years [171,185]. Studies employing structured or semi-structured in-
terviews may span over several seasons [141,186,187]. Short survey or 
interview studies last usually no more than two months [148,150,153], 
but can be as short as a few days [124,125,140,143,174,181,188]. 

Summary statistics, including mean and variance, were used by 
nearly all studies. In addition, several types of correlational analysis, 
parametric and non-parametric tests are common approaches. 

Overall perception was the most frequently researched dependent 
variable, followed closely by thermal perception and then by visual 
perception, acoustics, and IAQ. Metrics for overall perception ranged 
from mainstream choices such as overall satisfaction, acceptability or 
comfort (and even ‘uncomfortableness’) to measures of ’psychic well- 
being”, preference for space and affective quality of space. The metrics 
used for thermal, visual, acoustic, and IAQ perceptions were more 
conventional, with higher variance for the visual domain, including 
satisfaction with lighting, glare perception, eye discomfort and 
appearance of the environment. 

4.2.3. Findings 
The influence of geographic location is not conclusive. With similar 

climate conditions, occupant responses to warm and cold weather tend 
not to differ greatly across countries [28]. Similarly, Sakellaris et al. 
[157] found minimal differences in multiple types of perception be-
tween two locations. In contrast, thermal and IAQ perception differed 
between occupants of the same country, especially for those countries 
with a large north-south spread [98]. 

The interior design and furniture in office and school settings 
correlated strongly with comfort [133,135,143,151,157]. Perception of 
illuminance level strongly depended on office layout and furniture type 
[123,183,189]. Furthermore, since daylight levels exhibit strong spatial 
dependence, visual comfort at workplaces varied greatly with proximity 
to the window [27,151]. 

The perceptual aspects of visibility in classrooms [183,189], privacy 
in offices [27,151], and available space in offices [27] are additional 
factors associated with room layout and furniture selection, which 
correlated with visual and overall comfort levels. Few studies recom-
mend optimal office layout or furniture selection for comfort. This is 
likely due to the subjective and non-quantifiable nature of these 
properties. 

One of the most important components of the building envelope is 
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the window [190]. Poor thermal comfort (e.g., cold or warm window) 
[175,191], daylight glare [191], and poor acoustic comfort [191] are 
reported by participants in large-windowed residential or office build-
ings. Additionally, the design of solar control devices and solar control 
techniques can affect occupant comfort, especially thermal and visual. 
For instance, Karlsen et al. [192] demonstrate that occupants prefer 
venetian blinds with adjustable slat angles to those with only on-off 
position. These handful of studies are among the few that made con-
clusions from surveys, while the majority of other studies use simulation 
approaches beyond the scope of this review. 

Perception and comfort in green buildings vs. conventional buildings 
varied greatly among studies. Two studies demonstrated that occupants’ 
overall comfort is higher for green buildings [127,144]. In contrast, Gou 
et al. [128] observed no significant difference in overall comfort be-
tween these building types. The contrasting results may be due to two 
reasons. First, overall comfort can be influenced by occupants’ attitude 
towards the “green” identity of the building [171]. Second, the term 
“green” building is not universally defined, and used for buildings that 
are certified by different standards (e.g. LEED [144], LEED and GBL 
[128], BREEAM [171]). These standards differ significantly in their 
assessment criteria. Consequently, the building performance can vary 
largely. 

NV and passively cooled buildings that allow occupants to control 
aspects of the indoor environment, resulted in positive thermal comfort 
perceptions outside the fixed temperature limits set in standards [120, 
130,148,180]. Moreover, controllability strongly increases occupants’ 
satisfaction with thermal indoor conditions in winter and summer [28, 
120,130,148]. 

4.2.4. Identified gaps and future directions 
The contextual variables discussed in this paper are those mentioned 

in the literature. Further research would be needed to evaluate whether 
the most researched dependent and independent variables are the most 
influential. 

Among the building related parameters, façade design and interior 
design are crucial. Few studies use a surveying approach to evaluate 
façade design options. Thus, further field surveys are needed to associate 
occupant multi-domain perception with design decisions. Simulations 
alone cannot substantiate the claims, as they may not truly reflect the 
actual indoor environment. Spatial information is merely described in 
the text. For future studies, publishing this information in a visual 
format is desirable, e.g., with photos and architectural drawings such as 
floor plans, sections, or elevations, which can convey the spatial situa-
tion better. Examples of appropriately published spatial architectural 
information exist [29,125,142]. In general, further research on spatial 
characteristics would be desirable, because spatial characteristics and 
typologies also depend on building types and the number of studies 
considering each building type is currently small. 

In most studies, the context was represented by one or a few vari-
ables. However, context is a complex system of multiple dynamically 
interacting variables. For example, visual perception varies with the 
location of a workplace within a floor plan [169], but the occupants’ 
perception is further influenced by other spatial parameters such as 
orientation and fenestration of the façade [175], climate related pa-
rameters such as season, sun path/latitude [126], and indoor surface 
materials [114]. Our review identified no study that investigated the 
complexity and interplay of multiple contextual variables, which is 
likely due to methodological challenges with required data types and the 
needed quantity of data. New methodological approaches might be 
needed for future studies to describe and understand the complexity and 
interplay of contextual variables. 

Most papers used statistics for data analysis, and these methodolo-
gies tend to require large sample sizes for higher validity. If context is 
evaluated at a high level of resolution, i.e. with in-depth analysis of the 
spatial geometric or architectural design characteristics, it is unlikely 
that large sample sizes exposed to identical characteristics can be 

obtained for all building types. Therefore, a broader variety of ap-
proaches and methodologies could expand the investigated contexts. 

4.3. Physical þ personal variables 

This subsection concerns thirteen studies that combine the impact 
and mutual influence of measured indoor environmental conditions and 
personal variables on occupants’ perception [52,168,193–203]. 

4.3.1. Motivational background 
In some studies, the analysis of personal variables is tangential and 

brief, while in other studies, the main purpose and motivation is to 
understand how personal variables influence occupants’ perception. The 
analysis of personal variables is important to understand the differences 
in perception observed among individuals or groups in similar envi-
ronmental conditions [196]. Nevertheless, all experimental studies 
aimed to evaluate the possible correlation between personal variables 
and the different domains of environmental perception. 

4.3.2. Approaches 
Studies include one or more dependent variables related to thermal, 

visual, acoustic, IAQ, or overall perception. Other studies considered 
comfort perception as a dependent variable together with productivity 
[202], which is out of scope here. 

Almost all studies were conducted in office or educational buildings 
or in controlled chambers that simulate a working environment. Only 
one study was set in a non-office commercial building, a shopping centre 
[193]. 

Field studies including physical measurements and questionnaires 
dominate in this subsection. To achieve higher control and a broader 
collection of physical variables, some studies used laboratories that 
reproduce commercial [193], educational [52,197], or office environ-
ments [194,196,198]. One study is based on questionnaires [168]. Yun 
[199], instead, applied a mixed methodology to evaluate the energy 
implications of personal variables, specifically of perceived control. 

The applied statistical analysis methods largely vary among the 
studies, ranging from ANOVA and MANOVA [197,198,203] to regres-
sion [196], correlation analysis [52,168,193,194], and non-parametric 
analysis [195]. 

4.3.3. Findings 
Overall, findings showed that personal variables significantly influ-

ence multi-domain comfort perception positively or negatively. 
Occupants’ perceived control and satisfaction with building man-

agement are among the key analysed personal variables significantly 
interacting with the overall perception. Robertson et al. [195] high-
lighted that workers’ visual comfort and personal wellbeing are influ-
enced by perceived control over lighting, especially in non-naturally 
ventilated buildings. Additionally, occupants’ reduced perceived control 
over the indoor environment has a significant negative effect on their 
thermal comfort [199] and general perception of a building [168]. On 
the contrary, the availability of choice over lighting control were 
demonstrated to decrease occupants’ perceived importance of lighting 
in offices [198] and their performance [197]. Focusing on the interac-
tion of thermal, acoustic, and visual domains, Dang et al. [193] showed 
that, although thermal and acoustic personal satisfaction are not directly 
correlated with lighting parameters, they interact with personal lighting 
satisfaction. On the other hand, a significant effect of thermal variables 
and clothing level on visual perception was obtained only in artificially 
illuminated buildings, while in daylight the influence of other parame-
ters, e.g. acoustics, became relevant [52]. Finally, Schweiker at al. [196] 
demonstrated that personality traits, i.e. neuroticism, extraversion, 
openness to new experiences, are moderating thermal perception. 
Focusing on physiological parameters, Pigliautile et al. [194] high-
lighted that a multi-domain approach is required to understand human 
comfort thoroughly. 
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4.3.4. Identified gaps and future directions 
Generally, very few studies were identified that deal with the inter-

action of multi-domain perception and personal variables beyond de-
mographics. Moreover, many of these studies concern the impact of 
perceived control on environmental conditions and less focus is given to 
other personal variables. In addition, many studies simply report the 
differences observed among occupants with different personal variables 
without attempting to understand their motivation, which limits their 
contribution to the factual understanding of the influence of personal 
variables. Another important gap is the small sample size and the lack of 
diversity of the samples. Although gender balance is generally fulfilled, 
many of the studies selected university students for their experiments. 
Finally, none of the reviewed papers focused on residential environ-
ments. While certain personal variables, such as perceived control and 
privacy, might be less significant in residential spaces compared to office 
buildings, other variables, such as the expectation of building perfor-
mance and energy/money saving might be significant, and thus worthy 
of exploration. 

4.4. Physical þ contextual þ personal variables 

While some of the studies discussed in the previous subsections 
explored physical, contextual, and personal predictors of perceptions, 
none aimed to understand the interactions of these independent vari-
ables. The current subsection covers eleven research efforts that 
addressed this gap by simultaneously examining at least one predictor 
variable from each category [30,72,125,204–211]. 

4.4.1. Motivational background 
All studies promote a multi-domain approach to perceptual evalua-

tion. For instance, Jin et al. [211] highlight the need to study physical (i. 
e., objective) and non-physical (i.e., subjective) drivers of occupants’ 
perceptions with their indoor environment. Pivac et al. [204] state the 
importance of physiological and social factors in the evaluation of per-
ceptions. Indraganti et al. [209] focus on the role of occupants’ de-
mographic and personal characteristics while assessing thermal comfort. 
Hitchings et al. [30] highlight the need to study cultural, geographic, 
and seasonal adaptation effects. Other studies aimed to understand 
overall environmental satisfaction levels [72,125]. Overall, a unified 
and explicit goal of proving that physical, contextual, and personal 
variables combine to explain perceptions is lacking. 

4.4.2. Approaches 
Ten of the reviewed articles are field studies conducted in non- 

controlled building environments, while one [206] took place in a lab-
oratory controlled office setting. The studied environments were office 
[125,204–208], residential [30,72,209,210], and retail buildings [211]. 
Dependent variables included domain-specific comfort metrics such as 
thermal comfort [30,204,209], neutral temperature [206], visual com-
fort [205,211], and acoustic comfort [210]. Two studies [72,125] 
considered domain-specific comfort metrics and overall perceived 
comfort levels of the respondents. 

Data collection was carried out through environmental sensing de-
vices, questionnaires, walkthroughs, inspections, interviews, and di-
aries. The data collection duration varies from one-time surveys (e.g. 
Ref. [210]) to data collected over an extended period of time (e.g., 40 
days in Sadeghi et al. [205]). 

The data analysis approaches include qualitative and quantitative 
assessments. Starting with the former, Hitchings et al. [30] used a 
qualitative analysis of the collected data. The other studies mostly 
applied statistical analysis methods to derive relationships between, on 
the one hand, the environmental, contextual, and personal data that 
were collected, and on the other, the respondents’ perceptions of com-
fort. The statistical methods include ANOVA [125,210], X2-tests [72], 
Mann-Whitney U test and the Kruskal-Wallis test [204], correlations 
[72,205,210,211], and linear regression [125,205,206,209–211]. 

4.4.3. Findings 
While this subsection covers a broader scope of predictor categories 

than previous sections, the results are not more diverse. The results do 
not explicitly confirm that physical, contextual, and personal predictors 
collectively drive the reported perceptions. The findings of the articles 
mostly identify single or dual types of interacting perception drivers, 
which is in line with the observations of previous subsections. 

Starting with thermal perception, Pivac et al. [204] found that 
environmental metrics, office type, and job type have a significant in-
fluence on the perceived thermal comfort. Indraganti and Rao [209] 
observed a strong correlation between the respondents’ economic group 
and their reported comfort levels, and weaker relationship with the 
other considered variables such as season and tenure. Schweiker and 
Wagner [206], on the other hand, highlight a significant influence of 
perceived control on neutral temperature, while office type affected 
perceived control. 

Related to visual perception, Jin et al. [211] found that the measured 
illuminance level is the dominant driver of visual comfort, while the 
existence of daylighting plays an essential role in subjective satisfaction. 
Sadeghi et al. [205] found a strong relationship between the occupants’ 
perception of control and their acceptability of a broader range of visual 
conditions. 

In Park et al. [210], the authors studied potential drivers of subjec-
tive responses to floor impact noise in residential buildings. They 
highlight a significant impact of noise sensitivity and floor slab thickness 
on the reported acoustic comfort levels. 

The main observation by Xue et al. [72] and Freihoefer et al. [125] is 
a significant difference in the reported overall comfort levels between 
workspace types (open and closed). Xue et al. [72] found that the 
combined effect of thermal comfort and IAQ significantly influences 
visual comfort, while the abundance of daylight hours and illuminance 
levels showed strong positive correlations with reported visual percep-
tions. More interestingly, the authors confirm strong dependencies be-
tween pairs of variables such as IAQ/thermal comfort and room 
orientation, adaptive behaviours of shading/lighting and visual comfort, 
and finally, mental stress and acoustic comfort. 

4.4.4. Identified gaps and future directions 
The findings presented above do not provide a clear understanding of 

the interactions nor fundamentals of the combined effect of physical, 
contextual, and personal predictors of perception. The findings cannot 
be generalized given the small sample of studies that met the criterion 
used for inclusion in this subsection. Furthermore, the data analysis 
methods applied were mostly constrained to studying relationships be-
tween a limited number of variables (in many cases two variables), 
falling short of providing a comprehensive understanding of the influ-
ence of multi-variable predictors and their interactions. More diverse 
predictors and complex analysis tools (e.g., Principal Component Anal-
ysis and Artificial Neural Networks) can be considered in future research 
to draw more diverse and comprehensive conclusions on the drivers of 
occupant perceptions. Finally, except for Schweiker and Wagner [206], 
none of the studies were conducted in controlled environments, which is 
another potential avenue for exploring multi-domain predictors of 
perception. 

5. Behaviour 

This section summarizes studies considering the relationship be-
tween measurable conditions of indoor environmental quality and 
occupant behaviour. 

Figs. 9 to 12 show the crossed main effects of multiple independent 
variables on different types of behaviour, which will be discussed in the 
following subsections. 
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5.1. Physical multi-perceptual approaches 

The nineteen studies analysed in this subsection attempt to relate 
occupant behaviour to multi-perceptual physical environmental condi-
tions [46,212–229]. 

5.1.1. Motivational background 
The motivation behind the majority of these studies was to evaluate 

the drivers of occupant behaviour in the context of multiple domains of 
occupant comfort. In general, all of the studies aimed at a better fore-
casting and simulation of occupant behaviour under multiple indoor 
environmental performance criteria. Specifically, all but a few studies 
were concerned with the effect of indoor and outdoor climatic condi-
tions on occupant control of windows, blinds, and/or lighting, as well as 
the derivative effect of such control on perceived thermal comfort, 
lighting comfort, and/or building energy use. 

The underlying objective was the characterization of the relationship 
between measurable physical parameters and occupant behaviour. 
Specific objectives include the evaluation of the effect of solar insolation 
on perceived thermal comfort, lighting comfort, and occupant controls 
of window blinds [215] and the development of a data-driven person-
alized thermal comfort model and minimum daylight requirement 
model to be used for model-predictive control of window blinds [213]. 

5.1.2. Approaches 
All reviewed papers relied to some extent on physical monitoring of 

indoor environmental conditions and direct monitoring or measurement 
of occupant control decisions (e.g., window opening behaviour). Most 
studies undertook some form of occupant comfort evaluation via ques-
tionnaires, and several papers undertook monitoring of outdoor climatic 
conditions (e.g., outdoor air temperature and air pollution 
concentrations). 

All but a few papers described field studies of offices or dwellings. 
The exceptions were laboratory studies [214,218,219]. All field studies 
took place in regions where there are discernible heating and cooling 
seasons, and no studies were undertaken in climatic regions such as the 
Tropics or Sub-Tropics. 

The duration of behavioural studies followed one of three trends: 

they undertook either a short duration of measurements in a manner of 
days [214,219], a medium-term measurement across a single climate 
season [212,221,227], or a much longer-term study across several sea-
sons up to an entire year or more [46,213,215,216,222,224–226,228, 
229]. Controlled laboratory studies had the shortest measurements. A 
notable example is Daum et al. [213], who collected over 6800 indi-
vidual survey responses over a period of 3 years. 

The studies’ methods of data analysis included, for example, corre-
lations between the probability of an action and environmental vari-
ables. For example, Inkarojit [215] evaluated the correlation between 
the probability of occupants’ opening or closing windows and received 
solar radiation on window surfaces. Similarly, Daum et al. [213] 
correlated the probability of window blinds opening/closing actions and 
indoor air temperature. Various forms of regression methods, such as 
linear regression, multiple linear regression, univariate and multivariate 
logistic regression, were used by all studies. 

5.1.3. Findings 
Given an underlying, often implied understanding across all studies 

that occupant behaviour is inherently stochastic, the main format of 
illustrated findings were probability density functions of occupant 
behaviour against one or more parameters. 

The findings from these papers defended widely-accepted principles 
of thermal and visual comfort in the built environment, as opposed to 
revolutionising them or putting them into question. For example, the 
studies which evaluated the extent to which window open/close 
behaviour would be driven by outdoor climatic conditions, IAQ, or other 
parameters, broadly concluded that indoor and outdoor air temperature, 
coupled with IAQ and/or solar radiation, are the primary drivers of 
window control by occupants [46,216,217,221,222,226,228]. Outdoor 
air quality was identified as a moderate parameter of influence, partic-
ularly when it is considerably poor [226]. While solar radiation should 
be deemed a quasi-thermal parameter with a direct effect on indoor and 
outdoor air temperature and indoor heat gains, IAQ is related to a 
different domain, so that window open/close behaviour can be under-
stood as a multi-domain problem. 

All studies that evaluated the physical drivers and indicators of 
window blind and lighting operation [212,213,215,225,229] observed 

Fig. 9. Effects of physical, contextual and personal variables on window opening behaviour.  
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the effect of multiple environmental conditions on blind and lighting 
controls, but still found parameters of solar insolation to be the primary 
driving force of control decisions. While window blinds are a form of 
solar and thermal control, and electric lighting is needed in the absence 
of daylight, it is surprising that all studies suggested that blind and 
lighting control are univariate problems determined by solar insolation 
alone. 

5.1.4. Identified gaps and future directions 
Overall, meteorological conditions were not usually measured 

adjacent to the buildings or sites under analysis, or at least were not 
reported. Differences in microclimatic conditions, from what is experi-
enced directly outside a building envelope to what is measured from a 
central weather station are non-negligible. This is a potential limitation 
of correlations made between weather and human behaviour [226]. 

Of the studies examining window opening/closing behaviour, works 
such as Jeong et al. [216] indicate that caution must be taken when data 
from only one or two seasons are used. In other words, drivers of 
behaviour in winter may not apply in summer conditions, and studies in 
either season may not apply to conditions under autumn and spring. The 
effort to observe occupant behaviour across multiple seasons was, if not 
a norm across the long-term works, an identified research gap across 
several of the medium-term studies. As observed by Naspi et al. [222], 
this may be the main research gap of studies in this subsection. 

Despite prior evidence that circadian lighting affects occupants’ 
perception, only the experimental studies evaluated the effect of 

circadian lighting conditions on occupant behaviour. The study of 
circadian lighting, both natural and artificial, and its effect on human 
physiology and psychology warrants further attention by field studies. 
None of the evaluated field studies explored whether light colours, or 
other indicators of circadian lighting, affected occupant behaviour. In 
addition, noise levels were not frequently measured across studies that 
evaluated window open/close behaviour, even though the relationship 
between noise and window operation is not trivial [230]. 

5.2. Physical þ contextual variables 

This section provides insights into thirty-one studies aimed at pre-
dicting or explaining behaviours that include at least one type of phys-
ical and one type of contextual predictor variable. 

5.2.1. Motivational background 
Similar to the studies identified in subsection 5.1, one of the key 

objectives behind the majority of these papers is to account for 
behaviour-related uncertainty in building energy simulation and to 
develop models, which are hence developed to help bridge the gap be-
tween measured and predicted energy consumption [31,167,203,229, 
231–243]. Some of the studies stated that their contribution was based 
on the need to develop models for specific geographic contexts or 
building types (e.g., hospital wards) [244]. Linked to this objective is the 
investigation of cause-effect relationships between the operation of the 
building by occupants and different technologies installed [245]. 

Fig. 10. Effects of physical, contextual and personal variables on different types of thermal behaviours.  
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Other studies investigated control interaction for providing 
enhanced input for building automation control [246] or the optimiza-
tion of peak electricity loads [175]. Furthermore, researchers stated that 
the key objectives were to gain better insights into occupants’ choices of 
adaptive opportunities for thermal comfort enhancement in specific 
climatic contexts [140,247–250], or into the effect of occupancy on 
perceived control and behavioural patterns [206]. Other papers 
modelled occupant interaction with certain controls to gain a better 
understanding on other environmental factors [251]. 

5.2.2. Approaches 
The majority of papers addressed window control (N ¼ 16), window 

blinds control (7), thermal adjustments (e.g. thermostat adjustment, 
switching on space heating and/or cooling systems)(7), lighting control 
(7), and adjustment of fan speed (2). Multi-domain independent vari-
ables were related to the thermal environment (36), the visual envi-
ronment (17), and IAQ (13). Only one record included information on 
acoustic variables [248]. Amongst these independent variables, the most 
common for window control behaviour models were those related to 
indoor and outdoor temperatures [18,167,203,206,231,233,235–238, 
240,241,244,248,252] and IAQ [18,231,235–237,241,244,248,252]. 
Blinds behaviour models mostly included thermal variables [167,175, 
206,229,233,239,253] and visual variables [206,229,233,239,253]. 
The papers investigating thermal adjustments only included thermal 
environmental variables in combination with contextual variables [167, 
206,232,238,245,249,250]. 

The contextual factors included the time of day or arriving/leaving 
times [31,203,231,233,236,237,239,240,242,246], the previous control 
state [203], geographical location [167,238], ventilation type [140,203, 
238], building system and envelope characteristics (e.g., installed 

technologies, building envelope efficiency, window opening size) [244, 
245], facade orientation [175,251], dress code [249], season or cloud 
cover [175], socio-economics [232], and occupancy levels [206]. 

Most of the 26 field studies used physical measurements (24) and 11 
of them also surveys. Two studies used a combination of measurements, 
surveys, and observations, and one field study used only observations. 
The duration of the data collection varied from a few days (laboratory 
studies such as [206]) up to several years [239]. 

Some of the studies combined field measurements with a 
questionnaire-based investigation [140,167,246], or used question-
naires [232] or interview techniques [245] independently. Most records 
refer to office environments (22), residential buildings (9), and hospital 
environments (1). 

The statistical methods used were logistic regression [236,237,240, 
242,244], probit analysis [167,203,238], neural networks [231], Mar-
kov processes [239], data mining approaches [237], and Bayesian net-
works [31,241]. Other statistical analysis included Generalized 
Estimation Equations [246], ANOVA analysis [115], weighted and 
linear trend lines [140]. 

5.2.3. Findings 
A wide range of studies found a strong dependency between the time 

of day and window control patterns in offices [203,236,237] and resi-
dential buildings [31,235,240,252]. Hansen et al. [232] found that 
window operation in Danish households was correlated with building 
characteristics, such as technical installations and energy efficiency of 
the building envelope, while it was not correlated with the building age. 
Shi et al. [244] found that windows with large adjustable opening sizes 
are more likely to be in an ajar state and the interaction frequency is 
much higher. Based on questionnaires, the indoor temperature at which 

Fig. 11. Effects of physical, contextual and personal variables on light switch on behaviour.  
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a substantial proportion of occupants start to open windows for venti-
lation was observed to be similar in all climates, but window use was 
more common in Europe than in Pakistan [167,238]. Rainfall was also 
found to have a significant effect on opening a window, along with the 
location of the office (and its relation to safety) [254]. 

In line with section 5.1.3, studies including physical and contextual 
variables found correlations between window operation and IAQ in-
dicators (e.g. CO2 and VOC concentrations) [31,231,235,236,252]. Stazi 
et al.’s review [18] found that window opening was mostly linked to 
CO2 concentration in residential buildings. According to Fabi et al. 
[255], all papers that measured IAQ indicators found correlations with 
window operation. 

Several studies found a strong relationship between window blind 
control operation and the time of day [233,239,246], while others did 
not [251]. Another important contextual factor influencing window 
blinds operation is the facade orientation [233,246,251]. Time of day 
and/or arrival/leaving times play an important role also for light switch 
behaviour [233,242]. 

5.2.4. Identified gaps and future directions 
Although all studies included at least one contextual variable, further 

work needs to create a comprehensive approach including a more 
extensive set of contextual and potentially personal factors. 

Regarding contextual physical environmental factors, further atten-
tion should be paid to the ease and convenience of using building system 
interfaces, the state of other devices (or controls) and the influence of 
building automation routines on behavioural patterns. Furthermore, 
contextual factors such as interior design and furniture layout, or the 
relation between the indoor and outdoor environments (e.g., view to the 
outside) need to be further investigated. Even various social factors, 
such as social constraints, group interactions, the presence of multiple 
occupants in open space versus private offices [206], and control 

behaviour due to safety reasons need to be further investigated. 
Although some studies compared a few different geographic locations, a 
more comprehensive approach is needed to understand the variability of 
occupant behaviour in different climatic zones and/or cultural 
backgrounds. 

Related to the research methodology, relationships between indoor 
variables and window transitions, based purely on survey responses (e.g. 
Ref. [167,238]), must be treated with caution. Since the window state 
affects indoor variables [235,255], conditions just prior to an event are 
needed to understand the relationship. 

5.3. Physical þ personal variables 

This subsection reviewed six studies looking at physical and personal 
predictors, which could explain some of the differences amongst adap-
tive behaviours. The personal predictors include clothing habits, socio- 
cultural expectations, personality traits, and occupancy preferences. 

5.3.1. Motivational background 
Most studies investigating physical and personal variables concur-

rently aimed to develop occupants’ behaviour models to control build-
ing systems. 

5.3.2. Approaches 
The studies consider thermal systems [256,257], lighting systems 

[198,258], or thermal and lighting systems [196]. These systems were 
generally operating in non-stressful conditions (i.e. acceptable envi-
ronmental conditions). One common dimension considered in study 
designs is their longitudinal aspect, with studies lasting from a day to 
many months. 

Research exploring physical and personal variables as predictors to 
behaviour analysed these two predictors independently or jointly. 

Fig. 12. Effects of physical, contextual and personal variables on blind closing behaviour.  
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Indraganti et al. [256] applied descriptive and inferential analyses to 
explore the relationships between occupants’ behaviours (14 control 
actions) and personal variables (dress habits). In parallel, the relation-
ship between occupants’ behaviours (air-conditioning and fan usage) 
and a physical variable (outdoor daily mean temperature) was explored 
through logistic regression. Schweiker et al. [196] applied mixed effect 
regression analysis to explore the effect of physical (thermal and visual) 
and personal (personality traits) variables on occupants’ behaviours 
(clothing adjustments, window opening, blind closing, and ceiling fan 
usage). Gunay et al. [258] applied discrete-time Markov logistic 
regression to explore the effect of physical (ceiling illuminance) and 
personal (occupant’s presence) variables on occupant’s behaviours 
(light switching and window blind actions). 

5.3.3. Findings 
Most studies highlight that occupants respond to environmental 

discomfort, but fail to revert the state once discomfort disappears. 
Gunay et al. [258] observed that occupants closed blinds upon glare and 
switched on lights upon low daylight; but they then often failed to open 
the blinds and to switch off the lights. Occupants’ locus of control is not a 
concern in non-stressful or acceptable good conditions [198]. Further-
more, occupants’ interactions with building environmental systems may 
be linked to daily routine and habits [257] and differences in behav-
ioural patterns between sub-populations based on personality traits are 
considerably high [196]. 

5.3.4. Identified gaps and future directions 
Most studies highlighted a lack of the contextual dimension, 

including climate, seasonal effects, building types, building orientations, 
complexity of controls, interior layout, single/shared spaces, and 
organisational policies [196,198,257,258]. In addition, multi-domain 
physical predictors are missing except for one study including IAQ 
[196]. Finally, studies should consider the Hawthorne effect already 
discussed in section 4.1.4 and by Schweiker et al. [196]. In general, very 
few studies have systematically assessed the effect of personal variables 
other than age and gender on behaviour. 

5.4. Physical þ contextual þ personal variables 

This subsection summarizes eleven studies looking at the influence of 
physical environmental conditions and their interactions with contex-
tual and personal factors on occupant behaviour [256,259–268]. 

5.4.1. Motivational background 
As in previous subsections, modelling of occupants’ behaviour for 

use in building performance simulations for office buildings is the main 
motivation common in studies across the world. Thereby, the main 
research focus is on window control behaviour, and its impact on the 
energy consumption. 

5.4.2. Approaches 
The majority of the publications were field studies, often based on or 

involving questionnaire surveys [256,257,262,264]. Almost all the 
studies used logistic regression to evaluate the crossed main effects of 
environmental and non-environmental factors on the occupants’ 
behaviour. The analysis of the interactions between different predictors 
has not been established yet, but there is a growing body of literature 
with results that point out its importance [267,268]. 

The four commonly studied behaviours are interactions with win-
dows, use of heating controls, electric lighting use, and interaction with 
shades. 

The physical variables were the internal and outdoor air tempera-
ture, globe temperature and air velocity. Some studies collected addi-
tional measurements of carbon dioxide concentration, particulate 
matter [266], and solar radiation [267]. Contextual factors included 
building features and maintenance, the orientation of windows, floor 

level (security), the type of office, and socio-cultural aspects such as 
habits and dress code. Personal factors included perceived control. 

The number of residential and office building studies was similar, but 
residential longitudinal studies usually had a longer duration. Office 
studies benefit mainly from a large number of respondents albeit often 
using cross-sectional surveys for shorter periods. 

5.4.3. Findings 
While all studies observed physical, contextual, and personal vari-

ables, window use was mainly analysed as a function of outdoor tem-
perature [256,264], indoor temperature, and IAQ [268]. Often, the 
probability of an opened window is positively correlated with outdoor 
temperature, but Kim et al. [262] showed a bell-shaped relationship 
were above a certain ambient temperature this positive correlation is 
reversed and the number of closed windows increases again. This effect 
was observed in previous single-domain studies [269] and shows the 
importance of local context in the interpretation of the observed 
behaviours. 

In an office building in the hot and humid climate region of India, 
window use was mostly defined by contextual factors such as the time of 
day, while the occupants did not interact with other building controls 
[256]. A study in China [266] concluded that the window use in the 
studied offices was affected by a combination of physical and contextual 
factors such as the number of sunshine hours. Wei et al. [265] revealed a 
seasonal effect and a significant influence of the location of the window 
(ground floor or not) and personal preference (habitual or not) on the 
“end-of-day” window state. Absence in subsequent days and contextual 
factors such as daylight saving time and façade orientation did not have 
a significant effect. Seasonal effects were also evident in a South Korean 
study [268]. In spring, window use was affected by the CO2-concen-
tration, whereas in summer the indoor temperature was a significant 
driver. In winter, indoor temperature and CO2-concentration did not 
have a statistically significant effect on window use. Yun et al. [257] 
showed a significant relationship between comfort and perceived con-
trol over temperature in NV buildings and highlighted that a change of 
the windows’ state is more likely with high compared to low perceived 
control [257]. 

The lighting behaviour in households was found to be influenced by 
the solar radiation, perceived illumination, outdoor temperature, ther-
mal sensation and IAQ [264] showing the complexity of the in-
terrelationships between multiple physical and personal variables. 

The interaction of household occupants with the radiator thermostat 
set-points showed that the occupants could be classified into different 
behaviour categories according to the number of interactions with the 
heating controls [267]. The set-point changes were significantly influ-
enced by the indoor relative humidity, outdoor ambient temperature, 
solar radiation, wind speed and time of day. 

5.4.4. Identified gaps and future directions 
The findings show the importance of contextual factors and how 

these non-physical factors affect occupants’ perception and behaviour. 
They emphasize the need for systematic analysis of contextual factors 
and for the study of their interactions with physical and personal vari-
ables. However, there is a lack of research into the relationships and 
interactions amongst multi-perceptual, contextual, and personal factors 
and their combined influence on occupant behaviours. While there 
seems to be a consensus on the physical variables measured, there are 
still differences in the selection of contextual and personal variables and 
their reporting. The type of building system varied with the particular-
ities of the location (e.g. climate, prevailing architecture and construc-
tion typologies) and seemed biased by what the sites permitted and the 
studies’ aims. The main reason could be that these parameters are often 
“fixed”, defined by the building and location and not directly controlled 
by the researchers. 

Contextual factors are mainly referred to generically without sys-
tematically assessing their interactions and their impact on other 
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predictors. Noted missing relationships include the effect of different 
climatic and cultural background factors on window use behaviour 
[257]. 

In relation to lighting studies, research is required to assess the effect 
of light on psychological factors and investigate the duration of the ef-
fects on comfort [260]. 

5.5. Physical þ multi-behavioural approaches 

The focus of the 13 studies in this subsection is on the interrelations 
between the indoor environmental conditions with a combination of 
different behavioural responses [212,225,254,258,270–278]. 

5.5.1. Motivational background 
The aim of these studies is related again to energy savings through 

more realistic modelling of occupancy behaviour in simulations. The 
underlying objective was to characterise the relationship between 
physical environmental parameters and occupant behaviour including 
the assessment of the interactions and combined effect of multiple 
behaviours. 

5.5.2. Approaches 
Similarly to the previous subsection, the behaviours investigated 

were interactions with windows, heating and lighting controls including 
electric lights and shading. 

In contrast to the previous subsection, the research in this field is 
focused on office buildings. Window use remains the most prominent 
behaviour and is studied in combination with personal adaptation be-
haviours (e.g. physiological responses [278], clothing adjustments, and 
interactions with the heating and cooling systems [274]). Responses to 
changes in visual conditions are discussed in light of interactions with 
shades and electric lighting [212]. 

The physical variables commonly considered were the indoor and 
outdoor air temperature, relative humidity, wind speed, illuminance, 
and the level of CO2-concentration as an indicator of IAQ. The non- 
physical variables differed again with the building characteristics and 
the researchers’ objectives and included season, period of day, type of 
room and current state of controls. However, the analysis of the signif-
icance and impact of different variables followed mostly again a cross- 
main effects approach. 

Data collection occurred through surveys with concurrent field 
measurements, except for one study in a controlled office-like environ-
ment [278]. 

5.5.3. Findings 
Despite the influence of indoor and outdoor physical variables, 

confirming observations of previous subsections, occupancy state 
(arrival/departure) was the most often studied other behaviour. Lan-
gevin et al. [274] found a significant influence of indoor/outdoor tem-
perature and arrival time on clothing, fan, heater, and window use 
behaviours. While the occupancy state interacted with window opening 
[236], the previous or next absence for more than 8 h did not have a 
significant effect on the opening behaviour during departure or the 
closing behaviour upon arrival [275]. In contrast, the closing behaviour 
during departure and the opening behaviour upon arrival were influ-
enced by the absence duration. Fabi’s review of the physical predictors 
that influence light switching behaviour identified the key drivers to be 
absence duration and daylight [273]. Season, light sensor control, and 
time spent with the light off were not significant predictors. Similarly, 
lighting use is a function of the daylight availability and the duration of 
absence before switching the lights on or after switching the lights off 
[212]. In the intermediate period, the only significant variable is the 
worktop daylight illuminance level. The same study concluded that the 
majority of shade adjustments take place during the first arrival or last 
departure of the day. 

Schweiker et al.’s analysis of the interactions between behaviours 

indicates a significant impact of fan operation and clothing level on 
window behaviour but no significant effect of sun shading [278]. In 
addition, the window state significantly affects fan and sun shading use. 
Sanati et al. [271] found no significant relationship between sunlight 
availability, window occlusion, and electric light usage in a single uni-
versity building. 

5.5.4. Identified gaps and future directions 
The low number of studies in this subsection showed that the influ-

ence amongst the studied behaviours themselves is seldom thoroughly 
assessed. Fabi et al. [236] suggested that there is a need to investigate 
the correlation of behaviour responses to multiple, instantaneous 
factors. 

6. Discussion and conclusion 

Overall, this review reveals the diversity of approaches and findings 
of multi-domain analysis. This section compares and discusses the 
findings and identified gaps from individual subsections above. 

6.1. Motivational background 

In perceptual studies, the main motivation is a better understanding 
of the phenomena involved. In behavioural studies, the aim is mostly 
model development for predictive purposes. This does not mean that 
perceptual studies do not involve any aspects of prediction, but, the 
authors stated the focus is on understanding, rather than modelling. 

6.2. Approaches 

A variety of methodological approaches for research design and 
assessment are presented in the literature. Whereas laboratory studies 
are the most frequent type of perceptual multi-physical studies (sub-
section 4.1), field studies dominate in all other categories. New ap-
proaches using virtual environment (e.g. Ref. [272]) published 
promising results, but still lack sufficient evidence that they permit the 
reproduction of effects observed in reality. 

Geographical contexts are mainly from developed countries (http 
s://www.un.org/en/development/desa/policy/wesp/wesp_curre 
nt/2014wesp_country_classification.pdf), which likely represents the 
availability of research funding, rather than the contextual diversity or 
the population size in a particular context. Therefore, the findings pre-
sented are not necessarily representative of buildings, lifestyles, climate 
zones or cultural regions in developing countries. 

Context is more likely considered in studies of human behaviour than 
perception. This may be due to the advantages of laboratory studies to 
control multi-physical influences on perception without contextual 
considerations. For example, the experimental design by Kulve et al. 
[104] enabled researchers to avoid natural correlations among envi-
ronmental variables and to causally test the effect of variables on out-
comes of interest. In addition, it allowed testing if cross-modal effects 
occurred at a specific level of one variable (e.g., only in comfortable 
thermal conditions) or were independent of the level of the other vari-
able (i.e. the same cross-modal effect occurred at all the levels of the 
other variable). 

Few studies considered personal variables beyond demographics 
despite their inclusion by means of questionnaires being an easy 
extension in laboratory studies. Participants in laboratory studies are not 
otherwise distracted from their work or leisure activities as would be the 
case in field studies. Still, the application of findings relating to personal 
factors in the building design process with generally unknown user 
profiles is less clear, but potentially beneficial for specific buildings (e.g. 
retirement homes) or individualized operation strategies. 

Contextual influences and occupant behaviour are more difficult to 
study in an artificial setting of a laboratory environment. The low fre-
quency of interactions (i.e., 1 to 4 actions per day) would require very 
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long and expensive study periods uncommon in laboratory settings. Still, 
more attempts would be beneficial to reveal true causalities, because 
field studies also have drawbacks. The lack of experimental control over 
environmental conditions means that the conditions cannot be causally 
related to human outcomes, and that environmental conditions are 
likely to naturally co-occur in predictable ways (e.g., a position near a 
window in the summer is likely warmer and brighter than one on the 
interior of a room). 

The question of causality is also relevant to several papers addressing 
contextual factors, such as green vs. conventional buildings or NV vs. AC 
buildings in field studies with a limited number of buildings. These 
studies assign observed differences in perception or behavioural pat-
terns to the type of building, while neglecting the multitude of other 
potential influences (e.g., non-documented contextual or personal dif-
ferences). Without addressing, discussing, or eliminating potential 
confounding variables, assigned causalities could be mistaken. For po-
tential meta-analyses and other comparisons, well-documented 
contextual elements of the environment under investigation are 
crucial. Unfortunately, contextual elements and spatial characteristics 
such as relative position to control devices are often poorly documented 
– if at all – in the text. Therefore, we recommend using the categories 
presented in Fig. 1 together with aspects mentioned in previously pub-
lished ontologies [279] to describe the contextual aspects. 

The assessment of the dependent variables varies largely. While 
there are meaningful differences in behavioural studies, the perceptual 
studies vary in the dimension assessed (e.g., thermal sensation, prefer-
ence, or acceptability), and the type of scale (e.g., categorical, contin-
uous). There is a tendency to ignore previous approaches and develop 
one’s own instruments, without benchmarking them against existing 
ones (see also subsection 4.1.4). As discussed earlier [20], this variety 
impedes comparing results across studies, and understanding whether 
differences between outcomes of two studies are a result of the instru-
ment or differences in (unreported) contextual or personal aspects. 

In addition to the diversity in data collection approaches, the anal-
ysis approaches taken are at different levels. Studies, most often in 
laboratories, exist, which apply multi-domain approaches from study 
design to analysis. At the same time, the number of field studies 
reporting the collection of multi-perceptual data is increasing. However, 
their potential is poorly utilized, because the multi-perceptual nature of 
the data is not considered during analysis. The reasons for such omission 
can be manifold. First, limits in word counts in combination with the 
complexity of describing multi-physical data and their analysis might 
lessen the potential to report multi-domain analysis approaches first, but 
cannot be an argument for missing subsequent publications. Second, 
multi-domain interaction or cross-over statistical analyses might have 
been conducted, but not reported due to non-significant results; a 
common issue leading to scientific bias as reported earlier [5]. Third, a 
lack of statistical skills might have impeded the integration of interac-
tion terms in statistical analysis. 

To overcome these shortcomings, all researchers, reviewers, and 
editors are encouraged to demand extensive descriptions and analysis 
methods for multi-domain studies until there is a substantial body of 
evidence that certain aspects are not relevant for a specific perception or 
behaviour. 

Further research shortcomings in all categories are small sample 
sizes, low diversity in participants, representativeness of samples, and 
environment. In contrast to previous reviews’ discussions [20], which 
emphasize the general need for larger sample sizes, we argue that the 
actual number of cases is not the main problem. Examples exist 
throughout scientific literature in a variety of disciplines, which show 
the benefits of studies with small sample sizes that still increase the 
existing knowledge (see Flyvbjerg [280] for an extended discussion). 
Small sample sizes are to be criticized when lacking a clear strategy for 
sample selection and being based on so-called convenience samples, i.e. 
those at hand of the researcher. In contrast, Flyvbjerg [280] discusses 
information-oriented sampling strategies including the selection of 

critical cases or maximum variation cases, which enable the extraction 
of new knowledge even with small sample sizes. At the same time, he 
emphasizes that small sample sizes are very suitable for falsification of 
theories – sometimes a single case is sufficient – but less for generalizing. 

6.3. Findings 

Overall, results are often inconclusive and in part contradictory (see 
Figs. 8–12). Few observations are repeatedly shown: significant effects 
of visual properties on thermal perception exist, though they are 
partially contradictory and a comparable number of studies found no 
significant interactions. A general statement seems impossible due to 
findings, that warm light colours are perceived as satisfactory in cold 
environments and vice-versa. Thermal properties have been shown to 
influence acoustic perception, while the number of non-significant 
findings is again of the same magnitude. Related to occupant behav-
iour, most evidence was observed for the interaction of thermal and IAQ 
related variables on window opening behaviour. Such a finding is not 
surprising given that windows enable occupants to control IAQ and 
thermal conditions except for reasons of outdoor conditions such as high 
air pollution. Contradictory results are apparent in all categories of 
multi-domain studies. While such observation can be attributed to the 
low number of studies in subsections 4.4 and 5.4 and 5.5, it is more 
surprising for subsections 4.1, 4.2, 5.1, and 5.2, which are based on a 
much larger number of items. 

Despite the large variety of independent variables assessed, there is a 
need to clarify whether those variables are the most influential ones to 
explain variances observed in perception or behaviour, or solely the 
most accessible ones. This necessity is linked to the next gap in the 
reviewed literature: a missing theoretical foundation. One could assume 
that many, if not all studies, are based on underlying theories of human 
physiology and perception. However, very few articles mention theories 
when describing their study design or discussing their findings. Not all 
studies need to be designed to falsify an existing theory; case studies, 
especially very detailed ones looking at individual cases, are also very 
suitable to develop new theories inductively. Nevertheless, a theoretical 
foundation is meaningful to link and explain potentially diverse findings 
and to justify the selection or exclusion of specific physical, contextual, 
or personal variables. Theories relevant for multi-domain approaches 
may originate from disciplines like psychology, sociology, but also from 
neurology or physiology. One of the few research items mentioning 
theoretical foundations is Candas et al. [21], who mention neurophys-
iological aspects related to multisensory integration in their introduc-
tion. However, they do not relate their review findings to such 
approaches. The literature on multisensory integration [281–283] out-
lines first explanations to what extent interactions can be additive, 
antagonistic, or synergetic. For example, Talsma et al. [283] propose a 
framework that shows the interaction between multi-physical percep-
tion and attention. 

There are few studies linking perception and action. In behavioural 
studies, physical quantities are assessed which relate to perceptual do-
mains. For example, the assessed indoor air temperature can be related 
to thermal perception. As such, the perception of such physical indoor 
environmental qualities is an assumed prerequisite for the action. Given 
the low observed correlations between observed physical variables and 
behavioural actions (R2 are frequently below 0.2), it might be necessary 
to include additional variables or to consider different approaches to 
understand occupant behaviour. Thereby, several aspects are to be 
considered. First, perceptual studies show a large variance between and 
within individuals in the perception of the same physical stimuli. Sec-
ond, theories in the field of psychology together with empirical findings 
suggest a difference between the intention to perform an action and the 
action itself [284–286]. Not surprisingly, previous research has revealed 
a multitude of factors influencing occupant behaviour [5], which 
potentially affect the relationship between intention and action (e.g., the 
level of perceived control, the distance to means of control, or other 
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work tasks that require full attention). Therefore, we recommend 
looking further at the relationship between perception and action and 
evaluating whether those contextual and personal factors affecting 
behaviour effect perception and vice versa. 

6.4. Future directions 

Based on the results and discussion presented in this review, we 
propose the following points to be considered by authors and reviewers 
of future multi-domain approaches. 

The first point is easily applicable and points to a limitation of this 
review: keywords for multi-domain studies. Commonly, an a priori 
defined set of search terms is used for a systematic review. However, an 
initial review of keywords used by a selection of relevant multi-domain 
articles revealed that the keywords for the individual domains investi-
gated are used, but that there is no specific keyword to clarify the multi- 
domain approach. Therefore, a systematic search through a set of key-
words would have required searching for all possible combinations of 
individual domain keywords. Given the number of authors involved and 
their diverse backgrounds from different domains, we decided to start 
with the collection of articles known to us in combination with a 
backward and forward search of cited or citing articles. This strategy 
might have failed to find all relevant research items. However, articles, 
which have not been cited or do not cite any of the 200þ articles 
considered for this review might be of minor relevance and likely not 
adding much to our general conclusions. Still, we suggest future studies 
to use a unique keyword such as “multi-domain” or “combined effects” 
in order to facilitate future review efforts. 

Second, researchers should clarify whether their research is intended 
to explore new influences, i.e. supporting the development of new the-
ories or the extension of existing ones, or test an existing theory. In 
addition, researchers should clearly state the limitations of their studies, 
especially when dealing with small samples, discuss the applicability 
and comparability of results in the context of existing knowledge, and be 
careful with false causalities arising from unobserved confounding fac-
tors. Thereby, generalization is relevant to find common patterns. 
However, addressing individual differences and revealing factors lead-
ing to such differences, even for single cases, is of high importance in 
order to consider outliers as valuable points of information. The latter 
assertion is valid either because these points are true outliers and ex-
planations are available (see e.g. O’Brien et al. [287] for a qualitative 
approach to explain outliers). Or, because they point to methodological 
issues (e.g., the question asked is prone to misinterpretation under 
specific circumstances). 

Third, advanced statistical analysis methods for capturing in-
teractions and their complexity are recommended. Aside from the 
application of multiple regression including interaction terms, hierar-
chical modelling or structural equation modelling, which permit un-
derstanding of interdependent relationships, are appropriate methods 
for this task. Additionally, analysis methods derived from machine 
learning approaches may be useful to detect underlying patterns in large 
and rich datasets. When reporting statistical results, significant levels 
together with effect sizes are crucial information for later meta-analysis. 

Fourth, missing agreement on classification of contextual and per-
sonal variables leads to the same terms being used for different aspects. 
Therefore, general classifications (e.g., “green buildings”) should be 
avoided in favour of explicit descriptions (e.g., LEED Platinum certified 
buildings). 

Fifth, interactions are complex by nature. Given the large variety of 
potential interactions between physical, contextual and personal vari-
ables, collective approaches, which build upon the knowledge gener-
ated, are necessary. We thus encourage researchers to join or establish 
collaborative activities such as those developed within international 
research groups like the IEA EBC Annex 79 “Occupant-Centric Building 
Design and Operation” (http://annex79.iea-ebc.org/), which is the basis 
for this review. Moreover, a common framework is necessary, which 

facilitates meta-analysis efforts in the future and allows aligning one’s 
own research with previous research. As a start, our review table is 
available as a dynamic open-access document permitting others to add 
their research related to multi-domain approaches (https://osf. 
io/gnvp2/). We hope that this document will serve as a growing 
knowledge base to increase collectively our knowledge related to multi- 
domain influences on perception and behaviour. 

Sixth is the balance between the benefit and the risk of increasing the 
complexity of perceptual or behavioural models partly addressed in 
behavioural studies by means of statistical measures such as Akaikes 
Information Criterion [288]. Future studies need to investigate under 
which circumstances additional factors are meaningful, given issues 
such as over-fitting and error propagation. This question is best 
answered based on a solid theoretical foundation together with a clear 
description of the potential application of the results. 

Combining all these conclusions necessitates designing studies 
within a framework of occupant perception and behaviour that accounts 
for the complexity of the physiological-perception-cognition-decision- 
action-automation-building system. First examples for such frame-
works have been proposed [289,290] and attempts to challenge them by 
means of field or laboratory studies are highly recommended. In addi-
tion, the development of guidelines on this topic is an expected future 
development of this work. 
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A B S T R A C T   

Occupants’ comfort perception affects building energy consumptions. To improve the understanding of human 
comfort, which is crucial to reduce energy demand, laboratory experiments with humans in controlled envi-
ronments (test rooms) are fundamental, but their potential also depends on the characteristic of each research 
facility. Nowadays, there is no common understanding for definitions, concepts, and procedures related to 
human comfort studies performed in test rooms. Identifying common features would allow standardising test 
procedures, reproducing the same experiments in different contexts, and sharing knowledge and test possibilities. 
This review identifies 187 existing test rooms worldwide: 396 papers were systematically selected, thoroughly 
reviewed, and analysed in terms of performed experiments and related test room details. The review highlights a 
rising interest in the topic during the last years, since 46% of related papers has been published between 2016 
and 2020. A growing interest in non-thermal sensory domains (such as visual and air quality) and multi-domain 
studies about occupant’s whole comfort emerged from the results. These research trends have entailed a change 
in the way test rooms are designed, equipped and controlled, progressively becoming more realistic inhabitable 
environments. Nevertheless, some lacks in comfort investigation are highlighted: some continents (like Africa 
and South America) and climate zones are found to be underrepresented, while involved subjects are mainly 
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students performing office tasks. This review aspires to guide scientists and professionals toward the improved 
design or the audit of test room experimental facilities, especially in countries and climate zones where human 
comfort indoors is under-studied.   

1. Introduction 

People in developed countries spend 85–90% of their time indoors 
[1]. Notwithstanding undeniable improvements in the quality of 
building interiors in the past decades, a range of health risks and 
discomfort issues associated with exposure to the indoor environment 
persists. Researchers have demonstrated the strong connection between 
the indoor environmental quality (IEQ) of a building and occupants’ 
comfort, health, and productivity [2,3]. Moreover, buildings’ energy 
consumption is largely affected by occupants’ behaviour [4], triggered 
by their perception of the surrounding environment [5]. Therefore, 
decoding human comfort is a crucial issue in building science for 
enhancing building design and operation from a sustainable perspective 
and through a human-centric approach [6]. 

The scientific community approaches human indoor comfort by 
coupling measurements of the physical environment (e.g., air temper-
ature, sound pressure level, air pollutant concentrations, illuminance) 
and occupants’ feedback collected via surveys, behavioural and/or 
physiological monitoring. Applied experimental protocols can be 
broadly categorized into (i) in-field monitoring and (ii) laboratory 
experiments. 

In-field experiments allow researchers to observe subjects in a real 
environment such as workplaces [7,8], residential [9] or educational 
[10] buildings, or even semi-open transitional urban spaces [11]. This 
approach provides essential outcomes, especially for assessing the 
impact of real-space configurations on occupants’ perception [12], the 
effects of building characteristics on occupants’ wellbeing [13], or the 
impact of occupants’ behaviour on buildings’ energy consumption [14, 
15]. However, it does not allow to directly control the environmental 
parameters of the investigated spaces. Indeed, it is not feasible to isolate 
the contribution of a single environmental factor or a specific combi-
nation of multiple environmental stimuli on subjective responses, for 
example, overall comfort perception or productivity [16] in in-field 
research, while this is fundamental to establish a cause-effect relation-
ship related to the comprehension of human comfort and the related 
occupancy behaviour [17]. These issues can be solved through experi-
ments in controlled environments where desired physical boundaries 
can be determined and replicated, so different subjects can be exposed to 
the same stimuli and the influence of subjective factors elucidated [18]. 
Moreover, laboratory experiments generally allow researchers to 
perform a more detailed investigation of human subjects and collect 
physiological signals less commonly monitored in-field. 

Many research institutions have built their own environmentally 
controlled experimental facilities to perform human comfort-related 
experiments worldwide and throughout the years. Each facility is 
designed to achieve specific research goals, thus presenting different 
dimensions, internal layouts, envelope characteristics, energy systems, 
and monitoring setup. Different equipment types are also included 
depending on the final aim of an experimental campaign targeting a 
specific comfort domain. Examples include thermal manikins, 
commonly simulating human thermal comfort [19] or inhalation 
exposure [20], or different apparatus for studying the human reaction to 
specific environmental input such as glare discomfort [21,22]. The test 
room design influences the experimental design and the accuracy of 
related modelling. The construction and technological details of the test 
room decide on the extent and scope of the different stimuli that can be 
provided as well as the different spatial layouts that can be generated. 
Being an essential determinant of experimental methodology, a careful 
design process of these facilities is of primary importance. 

Due to the rising interest in better understanding human comfort, 
many reviews shed light on different perspectives of the topic. Several 
reviews summarise visual-related studies, reporting both lab and field 
investigations, as well as simulation studies [24–27]. Others focus on 
thermal comfort and different modelling approaches [28], main exper-
imental procedures [29,30], or its energy-related implications [31]. 
Nevertheless, none addresses the diversity of laboratory facilities, which 
is a key component in the design of human-centred comfort 
experiments. 

The identification of standard tools for advancing knowledge in the 
field would be helpful for the scientific community. An accepted glos-
sary for identifying such facilities is still missing. Many papers refer to 
these facilities as test rooms or chambers or test-cells or simply labora-
tories. Here, “test room” was chosen as the most representative defini-
tion, highlighting the differences between facilities designed for human 
comfort studies and laboratory equipment devoted to material testing. 
Moreover, we define a “test room” as an enclosed space, environmen-
tally controlled and properly instrumented, in which human-centric 
comfort studies can be performed through actual occupants’ presence 
and monitoring. 

This review aims at describing existing test rooms worldwide and at 
summarizing experimental studies on human comfort performed in such 
facilities to outline trends in the field, common components, and define 
new research perspectives. Precise selection criteria of the papers have 
been identified and used for the critical review (Section 2), and common 
technical features and trends in construction have been taken into ac-
count (Section 3), while Section 4 focuses on the specific experiments 
conducted in these facilities to deepen human comfort theory. Each 
experiment was categorized based on the type of domain(s) of human 
perception involved (thermal, visual, olfactory, and aural). In this 
context, a distinction was made between single-domain studies, which 
describe experiments focusing on thermal, visual, indoor air quality or 
acoustical stimuli only, and multi-domain studies [18,32], which 
simultaneously address two or more domains; for instance, the analysis 
of thermal and acoustic stimuli on overall comfort perception, or the 
analysis of thermal perception as influenced by lighting or air quality 
conditions. The key findings and conclusions, including suggestions for 
future research agenda, are summarised and critically discussed in 
Sections 5 and 6, respectively. 

2. Materials and methods 

A systematic bibliographic search was planned and conducted to 
establish a database as comprehensive as possible, looking at existing 

List of abbreviations 

IEQ Indoor Environmental Quality 
WWR Window-to-wall ratio (expressed in %) 
HVAC Heating, Ventilating and Air Conditioning 
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test rooms for human comfort experiments according to available sci-
entific literature and not to miss any test rooms that the authors are 
aware of. The final database is thus the result of two main steps: an 
automatic search and a supplementary hand search (Fig. 1). 

The automatic search was systematically conducted through Scopus 
and Web of Science scientific databases to identify papers concerning 
human comfort investigation in test rooms, as available up to June 2020. 
The search was limited to journal papers written in English after 1985 to 
keep the search consistent between the two scientific databases due to 
the temporal limitation of Web of Science. To cover the scientific liter-
ature on the theme published before 1985, a further search was con-
ducted in Google Scholar. Different typologies of documents such as 
books, book chapters, reviews, or conference proceedings were thus 
excluded from the search to improve consistency and avoid repetitions 
of the same study that may have been presented in different document 
types. Five queries were designed within these boundaries, corre-
sponding to each aspect of indoor human comfort. The queries were 
structured in three parts, progressively focusing on the purpose of the 
review:  

(i) on the laboratory facility where human comfort experiments took 
place,  

(ii) on the main aim of the studies, i.e., human comfort, and  
(iii) on the specific comfort domain of interest (e.g., thermal, visual, 

acoustic, air-quality related). 

Each part of the query was detailed after a discussion among the 
authors that are experts in human comfort studies and come from 
different countries and cultural backgrounds. These cultural differences 
provide a comprehensive definition of the facilities object of the review. 
The first two parts of the query were used for all the five queries and 
consisted of the following keywords: (testroom OR test-room OR 
chamber OR laborator* OR “test cell”) AND comfort. The term “human” 
was not included for not missing any contributions that may fit the scope 
but did not explicitly mention humans’ involvement. The publications 
not dealing with human comfort were excluded through the double- 
screening procedure, as specified in the following. In addition to these 
keywords, the five queries were distinguished by including the following 
specific keywords:  

1. Thermal  
2. Visual OR Lighting  
3. Acoustic  
4. Air quality OR Pollution  
5. Energy 

Each specific query focused on a single comfort aspect addressed 
from the perspective of the provided physical stimulus, as associated 
with thermal, visual, aural and olfactory human perception. In contrast, 
the fifth query focused on the theme of energy that is commonly asso-
ciated with human comfort studies aimed at improving indoor envi-
ronmental quality while reducing building energy consumption. 

The automatic bibliographic search resulted in 1776 papers. A 
cleaning procedure of the database was performed by focusing only on 
experiments both carried out in a controlled environment and address-
ing human perception and exposure. This procedure accounts for two 
main steps. The first screening was conducted through a specifically 
developed script in Python language for automatic abstract screening by 
excluding papers presenting specific words referred to out-of-scope 
disciplines such as medicine or veterinary medicine. After this first 
screening, 598 papers were still included in the review process. and went 
through the second screening phase: the papers were carefully read and 
selected according to the primary purpose of the review. Only papers 
describing experiments performed in the controlled environments (test 
rooms) whose internal dimensions and conditions were suitable for 
human experiments were considered for this review. 

The hand search was carried out for reducing the automatic search 
biases and limiting the number of existing test rooms not covered by this 
review. Additional papers were included according to the previous 
knowledge of the authors and the selection criteria that is the usage of a 
controlled environment for conducting experimental research on human 
perception and exposure. More than half of the additional papers (49 out 
of the 92) concern the visual comfort domain, meaning that common 
keywords coming from the other domains were not suitable to catch all 
the visual comfort studies. The final number of analysed papers was 396. 

Table 1 summarises the number of analysed papers per topic and 
year of publication, considering four time periods: (i) up to 2000, (ii) 
2001–2010, (iii) 2011–2015, and (iv) 2016–2020. Defined time periods 
highlight the considerable increase in published papers on controlled 
test room experiments on human comfort. Indeed, the increase ratio 
observed during the first decade of the 21st century (1.9) is comparable 
to the one observed for the first (1.5) and second (1.7) part of the 
following decade. 

The table depicts a predominant interest of the scientific community 
in thermal comfort investigations (conducted either in isolation or in 
combination with other factors) followed by energy-related studies 
(total of 85 papers) and visual comfort assessments. Air quality studies 
are less common, especially as a single stimulus for the participants 
involved in test room experiments. Indeed, the total amount of reviewed 
papers related to air quality assessment is 84. Only 18 of them were 
found to focus on air quality only as a single stimulus, disabling the 
olfactory from the thermal perception and all the other spheres of 
comfort. More detailed presentation of the aims and procedures of the 
air-quality-only studies is provided in Subsection 4.4. 

Fig. 2 shows trends of publication for each specific domain of com-
fort, without distinguishing between single and multi-domains experi-
ments, with respect to studies published before 2000. Thermal comfort- 
related experiments present the slowest increasing ratio from the 
reference scenario. Air quality-related experiments show the greatest 
increase in the number of published papers, with a slight decrease in the 
last five years. A similar trend can be observed for energy-related 
studies. Visual comfort-related studies are gaining more attention with 
currently seven times more papers compared to available publications 
before 2000. Aural comfort is the least investigated domain in controlled 
environments. Reviewed papers including a focus on acoustic comfort 
are 32 in total, half of which published in the last five years. 

3. The test rooms around the world 

From the 396 papers selected according to the systematic review 
process, 187 different test rooms located in 126 research institutes 
around the world have been identified based on the descriptions Fig. 1. Papers selection workflow.  
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provided in the papers. 
Fig. 3 summarises the test rooms distribution across continents (a,b) 

and different climate conditions (c), referring to the Köppen-Geiger 
climate classification [33]. Nowadays, the great majority of test rooms 
are located in Europe and Asia (82%), and in a temperate climate, 
without dry seasons, characterized by hot (Cfa) and warm (Cfb) summer. 
29 out of the 44 test rooms located in the Cfa climate zone are in Asia 
(South and coastal area of Japan and South-Eastern China mainly), 
while 54 out of the 57 test rooms located in Cfb zones are in Europe 
(North-Western countries mostly). Fig. 3b presents how the worldwide 
distribution of these facilities varied across time (all the test rooms were 
dated per the oldest related paper available in the review dataset). Eu-
ropean countries have the oldest tradition in human-related experiments 
conducted in controlled test room settings: 50% of the facilities already 
existing before 2000 were located in Europe. The number of facilities in 
Asia has grown over the last 20 years from 18 to 41% of the total number 
worldwide in 2020, overcoming the number of facilities located in North 
America (13%). 

The following subsections are intended to provide helpful informa-
tion for researchers evaluating whether to create or buy a test room for 
human comfort studies. These illustrate the range of test room charac-
teristics that enable the researcher to perform different experiments and 
investigate specific aspects of human comfort. An overview of con-
struction and technical details is provided in section 3.1 and 3.2, in 
accordance with the available information from the reviewed papers. 

Then, sections 3.3 and 3.4 provide insights into the economic invest-
ment required to set up these kinds of facilities, either if these are 
customized or commercially available. Since none of the reviewed pa-
pers provides information on test room costs and related economic in-
vestment, data provided in sections 3.3 and 3.4 come from an additional 
search: an online survey was submitted to authors of the identified 
significant and recent literature, seeking details on key aspects of the 
needed economic investment (including design, construction, operation 
and maintenance costs). Finally, commercial test room producers (eight 
institutions from the U.S. and five institutions from Europe) were 
directly contacted to provide dedicated insights for the readers, reported 
in section 3.4. 

3.1. Construction details 

The construction details were specifically examined to determine 
how passive elements of the test room, including windows, shades, 
layout, size, and position within or external to an existing building, may 
allow or hinder different types of investigations. Unfortunately, 
comprehensive descriptions of the test rooms construction details are 
not always available. It was not possible to assess whether the test rooms 
are located inside a building or are entirely independent buildings for 
10% of the 187 test rooms identified. According to the available infor-
mation, only 7% of the facilities are independent buildings, external to 
any other building [34–47]. Five of these independent test rooms are 
located on a platform that allows the whole structure to rotate [34–37, 
41]. The great majority are situated inside the related research institute. 
Among these, it is possible to distinguish between facilities completely 
detached from the surrounding structure (43%) and test rooms that are 
specifically equipped rooms within the hosting building (32%). 

Some test rooms include more than one room. These rooms could be 
adjacent, but with independent entrances, or connected through an in-
termediate door. The latter configuration allows researchers to contin-
uously monitor participants’ reactions when exposed to different 
controlled environmental conditions [48]. Eight of the external facilities 
have just one room, but the possibility to work with movable internal 
partitions is mentioned for four of them [38,41,43,44]. The other six 
outdoor test rooms present two rooms, and four out of the six have 
movable partitions for changing the interior space layout [34,35,40,45]. 
For the inside test rooms, single room configurations are most common 
(79%), some of which can be modified through movable interior parti-
tions (19%). More information about the number of rooms embedded in 
the test rooms and their dimensions are summarised in Table 2. 

Table 1 
Number of journals papers published throughout years (up to June 2020) and concerning each analysed topic.  

Domain(s) Time periods 

≤2000 2001–10 2011–15 2016–20b Total 

1 domain Thermal 26 39 50 89 204 
Air quality 3 3 4 8 18 
Acoustic 0 2 2 7 11 
Visual 5 10 23 32 70 

2 domains Thermal  +  Air quality 0 10 22 19 51 
Thermal  +  Acoustic 0 3 0 3 6 
Thermal  +  Visual 1 0 1 17 19 
Air quality  +  Acoustic 0 1 0 1 2 
Air quality  +  Visual 0 0 0 0 0 
Acoustic  +  Visual 0 0 1 1 2 

3 domains Thermal  +  Air quality  +  Acoustic 1 0 1 1 3 
Thermal  +  Air quality  +  Visual 0 1 1 0 2 
Thermal  +  Acoustic  +  Visual 1 0 0 1 2 
Air quality  +  Acoustic  +  Visual 0 0 0 0 0 

4 domains Thermal  +  Air quality  +  Acoustic  +  Visual 0 0 1 5 6 
Total 37 69 106 181 396  

energy relateda 5 15 29 36 85  

a The energy-related topic is transversal to the others. 
b The count for 2020 considers only those documents indexed until June 2020. 

Fig. 2. Publication increase ratio with respect to the number of published pa-
pers before 2000 for each query. 
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It was not possible to define whether the described test rooms present 
any type of openings for 41% of the recognized facilities, 25% of the test 
rooms located inside have no openings, 18% have windows facing the 
outside, 16% have windows to interior spaces, and just 2% have both 
windows to the outdoors and the indoors (Fig. 4). Among the 14 
experimental facilities built outside, only one does not have windows 
[46]. At the same time, five include an adjustable envelope to vary the 
window-to-wall ratio (WWR) [35,37,41,43,45], five have a WWR lower 
than 0.5 [38,39,42,44,47], and three have a WWR in between 0.6 and 
0.8 [34,36,40]. Concerning the shading system, it is clearly stated that 
there are external blinds in three test rooms [34,36,47], four present 
internal shading systems [38,40,42,44], while just one has both [39]. 

Half of the test rooms have no specific internal layout, meaning that 
there is no intention to simulate a real space but only to expose subjects 
to controlled environmental stimuli. Equipment for performing physical 
exercises are included in 10% of these test rooms [49–64]. All the others 

have no specific furniture, even if 49% are larger than 20  m3. Finally, 
12% of the analysed test rooms are presented in different papers with 
different internal layouts, 32% are equipped as offices, 3% as classrooms 
[65–69], and less than 1% present other configurations [70–73]. 

The above presented physical characteristics of the reviewed test 
rooms can be associated with their capability of performing different 
types of experiments, focusing on different domains of human comfort. 
The external test rooms are more commonly devoted to visual-related 
experiments. Indeed, six out of the 14 exterior test rooms are associ-
ated with visual-only experiments, while only one was used for testing 
human comfort conditions due only to thermal boundaries. When more 
than one domain is explored, four test rooms hosted experiments 
providing combinations of thermal and visual stimuli; the air quality 
influence was additionally explored in one test room while all the four 
domains of comfort were explored in only two of the 14 external test 
rooms. 

With respect to performed experiments, it is more complicated to 
deduce the most common combination of construction details for the 
test rooms located inside other facilities due to a lack of information on 
all the analysed features. Only 82 out of 155 reviewed test rooms are 
described in terms of both (i) their position in the hosting facility (de-
tached or integrated) and (ii) windows availability facing the inside or 
the outside. Accounting for these two aspects, detached test rooms 
generally have no window (56%) and are more commonly adopted for 
investigating human comfort under thermal stimuli only (46%). Those 
test rooms that are integrated into the main structure, as specially 

Fig. 3. (a) Number of test room facilities located in the seven continents; (b) amount of test rooms located in each continent for each defined time period; (c) 
frequency distribution of test rooms with respect to Köppen-Geiger climate classes [33]. 

Table 2 
Test rooms composition and dimensions with respect to their position (inside or outside another building).  

Test rooms position Number of rooms Dimensions [m3] Total 

1 2 >2 N/A <9 9–20 >20 N/A 

Inside Detacheda 53 8 1 4 5 16 36 9 66 
Integrateda 37 8 2 2 0 4 43 2 49 
N/A 32 2 0 6 1 5 20 14 40 

Outside 8 6 0 0 0 4 10 0 14 
N/A 7 1 0 10 0 1 4 13 18 
Total 137 25 3 22 6 30 113 38 187  

a With respect to the building structure of the related research centre. 

Fig. 4. Overview of the most common combination of characteristics for inside 
test rooms, in terms of its position with respect to the main structure and the 
windows availability. 
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equipped rooms, commonly have windows facing the outside (68%) and 
are mainly used for experiments on visual domain only (54%). 

3.2. Technical details 

Similar to the presentation of construction details, the technical ca-
pabilities of the test rooms directly inform what types of experiments 
can be conducted. Specifically, this subsection outlines which parame-
ters are controllable and to what degree. As a first step, an analysis of the 
most common parameters that could be controlled by the test room 
systems was conducted. For this purpose, the relevant information was 
extracted from the corresponding papers for each test room and cate-
gorized as presented in Table 3. 

This categorization is more granular than the multi-physics domains 
introduced in Section 2 (thermal, visual, air quality and acoustic com-
fort) to better characterize the specific system types used to influence 
each domain parameter.  Indeed, in some cases, multiple controlled 
parameters will impact a single domain such as air temperature, mean 
radiant temperature and incoming solar radiation, all impacting thermal 
comfort. Additionally, the controlled parameters were subdivided into 
centralized and personalized systems (generally located at a desktop or 
at a participant/manikin). In the process of this categorization, 91 test 
rooms were selected for further analysis because related publications 
provided relevant and sufficient information. Fig. 5 summarises the 
number of test rooms which can control each of the listed parameters.  In 
some cases, one test room is counted multiple times in this plot, once for 
each parameter its system controls. 

The most common centrally controlled parameter is air temperature, 
followed by humidity and air quality control. All these three parameters 
can potentially be controlled by HVAC (Heating, Ventilation and Air 
Conditioning) systems with a humidifier and/or dehumidifier equip-
ment, heating and/or cooling coils, and air filtering. The common 
practice of controlling thermal conditions in actual buildings, together 
with the predominant focus on thermal comfort studies (highlighted in 
Section 2), is likely why these controlled parameters are found to be so 
common. Fig. 6 summarises the ranges for each of these three controlled 
parameters for all of the test rooms where ranges were reported. As 
shown, nearly all the test rooms can control air temperature between 15 
and 30 ◦C, and relative humidity between 30 and 70%, but air-speed 
control was more variable. Almost all test rooms were able to control 
these parameters at least in the ranges covered by indoor comfort 
standards such as ISO 7730 [74] and, in many cases, well beyond this 
range, particularly with respect to the seven low-temperature chambers. 

Only a few papers included details of the other parameter ranges. 
Control of air change rates in the test rooms, which is accomplished 
through multi- or variable speed fans, ranged from 0 to 36 air changes 
per hour (ACH) but generally allowed for control within the minimums 
required by the EN 12931 (0.5–3.6 ACH for residential buildings) [75] 

and by EN 16798 part 3 for offices (1–8 ACH) [76]. Only five test rooms 
reported the temperature range at which their radiant wall systems 
(either electric or hydronic panels) could be controlled (generally be-
tween 10 and 40 ◦C). For rooms with reported artificial lighting, the 
range 100–800 lx covered and exceeded the requirements (e.g., EN 
12464) [77]. A few publications also reported the ability to vary the 
correlated colour temperature of the artificial light (2000  K to 10, 
000  K). There was insufficient information about artificial solar radia-
tion and acoustic systems to report ranges here. 

Only 11 of the reviewed test rooms included parameters that could 
be controlled at a personal level. Furthermore, most of these personal-
ized systems were only temporary for specific experiments and not a 
fixed part of the test room. Typical setups would be ventilation tubes 
aimed at a desktop, heated/cooled clothing and chairs, electrical heated 
mats or computer equipment (mouse, keyboard), and electrical 
radiators. 

The parameters controlled by the test rooms were also examined 
based on the estimated date of construction of the test room to identify 
trends or most prevalent innovative technologies, as shown in Fig. 7. It is 
also unknown if or when test rooms have been upgraded, nor do we have 
insight about the upgrades made. Thus, the results in Fig. 7 represent the 
latest built stage of the test rooms according to the publications and may 
differ from their technologies at the given date of construction. The 
graph suggests a trend towards incorporating the control of acoustic 
sources, artificial and natural solar radiation, illumination, and radiant 
heat sources, including radiators and radiant wall panels. 

Furthermore, the analysis revealed that personalized control systems 
are becoming popular in newer test rooms constructed after 2000. 
Finally, in the latest test rooms built between 2011 and 2020, there also 
seems to be a trend for controlled multi-domain installations with six 
test rooms since 2013, controlling at least three domains. 

3.3. Economic investment 

The economics of test rooms is rarely reported. Therefore, a survey to 
assess key elements related to this topic was designed. All co-authors of 
this manuscript and authors of identified literature were invited to 
complete it. In total, 18 responses related to separate test rooms were 

Table 3 
Categorization of technological systems and related controlled parameters.  

Technological control 
system for comfort 

Controlled parameters 

Ventilation and space 
conditioning 

Air temperature 
Air velocity 
Air humidity 
Air quality (gas concentration, air changes per hour) 

Heating/cooling surfaces Envelope superficial temperature 
Radiator or other element temperature (e.g., clothes, 
furniture) 

Light sources Illuminance 
Solar radiation (artificial, e.g., solar simulator) 
Solar radiation (natural, e.g., actively controlled 
blinds and shades, electrochromic glass) 

Acoustic systems Background noise level (sound intensity, sound 
pressure level) 
Sound typology (soundscape)  

Fig. 5. Frequency distribution of reviewed test rooms which can control the 
listed parameters. 
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obtained, of which 14 have been completed, and four are still under 
construction. Except for one completed in 1990, all others have been 
built within the last ten years. The majority of the test rooms is either a 
test room constructed within an existing building (N  =  8) or a building 
itself (6). Three test rooms are newly built test rooms within a new 
building, and one test room is an existing room refurbished and 
upgraded to serve as a test room. The vast majority is located in Europe 
(13), followed by Asia (3) and North America (2). 

Local currencies have been converted to EURO based on currency 
rates from September 4th, 2020. The total budget ranges from EUR 
45,500 to EUR 943,000 (mean  =  EUR 347,000  ±  299,000, 
median  =  EUR 240,000). For eight test rooms, information was pro-
vided in more detail. On average, shell construction costs (especially for 
those test rooms built as stand-alone test rooms within new buildings) 
are highest (mean  =  EUR 175,000), followed by costs for design, 
contracting, and commission (EUR 91,000), heating and cooling system 
(EUR 31,000 and 34,000), and in-built sensors and the Building Man-
agement System (EUR 33,000 and 19,000). This large variety can be 
explained partly by the variety in the type of construction, controlled 
and monitored variables and the ranges within which these variables 
can be controlled. In addition, it can be expected that prices vary locally 
and between countries. Seven out of 18 test rooms were fully funded by 
governmental sources, either from basic funding (N  =  3) or project 

funding (4). In addition to public and project funding, five test rooms 
were partially funded by the industry (min 5%, mean 24%, max 70%). 

In addition to initial construction and installation costs, running 
costs (e.g., electricity, gas, water) and/or maintenance costs were 
assessed. Running costs were reported solely for three test rooms, but 
differed largely (EUR 2500 to 17,500 per year). Interestingly, the source 
of funding for running costs was provided for 14 test rooms, of which 
nine responded that the university pays for running costs, three state 
project funding, and the other shared funding either between the uni-
versity and the lab (10/90%) or the university and project funding (20/ 
80%). The large discrepancy in response numbers between actual costs 
and funding source may signify that researchers are not aware of the 
running costs. Maintenance costs were provided for eight test rooms and 
range between EUR 930 to EUR 10,000 per year (EUR 5100  ±  3500). 
Funding sources for maintenance costs vary more than running costs for 
12 out of 14 facilities, for which such information was provided. In three 
cases each, maintenance is paid fully from the laboratories’ basic 
funding or project funding. In two cases, the university covers all 
maintenance costs. In the other cases, maintenance costs were shared 
between the university, basic funding of laboratory and project funding 
with varying degrees. Only in one case, 25% of maintenance costs are 
provided by industrial partners. 

3.4. Commercial test rooms 

Commercial test rooms are available on the market to provide re-
searchers who want to use an already existing and tested product with 
an off-the-shelf option. These test rooms tend to use a similar structure 
and envelope materials as prefabricated foam-insulation panels with 
stainless steel, galvanized or coated aluminium (usually white) interior 
surfaces for fast and easy installation. This is for protecting the test room 
surface from being damaged or corroded by moisture and chemicals. 
The stainless-steel chamber can also help minimize the adsorption of 
VOCs by the surfaces, which is critical to some indoor air quality studies. 
However, for human-centred thermal studies, the reflective properties of 
the interior surfaces also determine the radiative heat exchange in the 
space, thus additional materials or painting are needed to simulate a 
‘real-life’ condition. The test room usually has at least one hinged door 
made of the same material and optional windows of different sizes. 
Important differences between offerings tend to be in the type of airflow 
achieved in the test room. Cheaper and smaller systems tend to have the 
heat exchangers inside the room and achieve spatial stability by 

Fig. 6. Ranges of controlled air temperature, relative humidity and air velocity in the reviewed test rooms.  

Fig. 7. Time distribution of implemented technologies for controlling specific 
parameters (see the legend) identifying trends in test room construction. 
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producing turbulent flows. More laminar flows are achieved with wall- 
to-wall or floor-to-ceiling air flows across the whole wall/floor, which 
requires a plenum space inside the test room, thereby increasing the 
external size. Most of the rooms come with predesigned and pre- 
packaged conditioning systems that can provide space heating and 
cooling, ventilation, humidification, and dehumidification to the room. 
Air temperature, relative humidity, and ventilation rate are under con-
trol and monitored. Some test rooms are even equipped with pressure, 
CO2, and O2 sensors. 

The operating condition of commercial test rooms depends on their 
application that can be testing equipment, storing experimental mate-
rials, and also human-centric tests. Here, since we only focus on the test 
rooms for the human-centric test, the surveyed test rooms only include 
those capable of providing conditions indicated by the green box in 
Fig. 8. 

These commercial test rooms can be as small as 1.5  m2 and as large 
as up to 10  m2 with a height in between 2.4 and 2.6  m. The price of the 
test rooms (N  =  13 units personally contacted by the authors) ranges 
from EUR 54,600 to 210,000. The average quote from U.S. companies is 

around EUR 128,100 with a standard deviation of EUR 44,000, while the 
average quotation from Europe is around EUR 99,800 with a standard 
deviation of EUR 27,400. On average, the test rooms from the U.S. (8) 
are a little more expensive than in Europe (5). The explanation may 
include regional reasons such as shipping and labour, material and 
sensors cost, and size difference. One should note that the size and 
quotes obtained in this study are based on the smallest test room with 
the basic features of temperature, relative humidity, and ventilation 
control with at least one occupant. The quotes were obtained in August 
2020, and for the commercial test rooms made in the U.S., the quote was 
converted to EUR based on the exchange rate on September 4th, 2020 [1 
USD  =  0.84 EUR]. 

4. Test room experiments on human-environmental comfort 

This section focuses on the experiments conducted in the test room 
above presented in terms of their structure and main functionalities. 
Each subsection presents an overview of the main aims and procedures 
of test room experiments answering the question, what is the scientific 

Fig. 8. Required operating conditions of the surveyed commercial test rooms.  
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community looking for through test room experiments? Scopes of the 
experiments are broadly clustered in the presented subsections with 
respect to (i) the comfort domain of interest (sections 4.1-4.5), (ii) the 
subjects’ involvement (possibility to interact with the test room during 
an experiment, section 4.6), and (iii) the investigation of the energy 
related aspects (section 4.7), which are all relevant aspects for human 
comfort studies. Concerning the applied procedures, the main distinc-
tion is adopted between stationary and dynamic conditions. 

4.1. Thermal-only experiments 

This subsection reviews 204 papers on test room studies that 
explored the effects of thermal conditions on participants. The scope of 
the reviewed thermal experiments can be broadly classified into three 
categories: (i) fundamental research aiming at providing a better un-
derstanding of human thermal comfort; (ii) technology-oriented exper-
iments, whose purpose is to test the thermal comfort performances of 
specific types of heating and/or cooling systems or newly developed 
clothing; (iii) predictive studies with the purpose of data collection to 
test and train novel predictive models. Fundamental studies are more 
common than technology-oriented and predictive studies, respectively 
57%, 36% and 7%, and their distribution over the last four decades is 
shown in Fig. 9a. Fundamental studies include research focusing on a 
variety of different aspects influencing human thermal comfort such as 
thermal adaptation [78–82], thermal acclimatization [83–86], 
increased air velocity [87–90], relative humidity [60,91–94], gender 
[95–98], age [52,99–102], transient thermal conditions [93,103–107], 
perceived control [108], and the influence of emotional states [109, 
110]. About 30% of the thermal experiments are dedicated to the study 
of non-uniform thermal conditions. Non-uniformities and thermal 
asymmetries are not seen only as a cause of discomfort; indeed, many 
recent studies aim to understand how comfort can be enhanced with 
local thermal stimuli [111–120]. 

The technology-oriented experiments mainly look at the thermal 
comfort performances of specific types of equipment, such as innovative 
heating and/or cooling systems (thermo-electric air cooling systems [38, 
121], stratum, mixing and displacement ventilation [122–124], 

underfloor air distribution systems [122,125], radiant cooling/heating 
panels, floors and ceilings [126–129], ceiling fans [130], etc.). In 
particular, the last 20 years have seen a progressive increase in the 
number of experiments dedicated to local heating and/or cooling sys-
tems (personal cooling with phase change materials [112,113], hea-
ted/cooled chairs [114–116], seats heated with encapsulated 
carbonized fabric [120], feet heaters [117,118], etc.). About 40% of the 
technology-oriented experiments aim to test new clothing (uniforms for 
heat strain or cold thermal stress attenuation in the construction in-
dustry [50,51,131,132], sports clothing [53,133–135], protective 
clothing systems [136,137], cooled/heated garments [138,139], etc.). 
The distribution of the technology-oriented experiments based on the 
type of system studied (heating or cooling, local heating and/or cooling, 
clothing) over the four different climate groups is shown in Fig. 8b. As 
expected, in tropical climates there is a prevalence of experiments 
studying cooling systems, while in continental climates, the focus is on 
new clothing systems. 

The predictive studies provide experimental data to either develop, 
test and train novel data-driven predictive models. Many of them aim to 
predict either thermal comfort or thermal stress (e.g., heat strain indexes 
[140,141]). Instead, others are attempting to build models for predicting 
metabolic rate and clothing insulation levels [64,142]. 

A majority (46%) of the reviewed thermal experiments deal with 
both warm and cold thermal conditions, 39% of them only focus on 
warm conditions and the remaining 15% on cold conditions. They 
mainly consider sedentary activity levels (77%), only a few of them 
focus on high metabolic rate activities (21%) and a minority on sleeping 
(2%). Furthermore, most of them consider stationary thermal environ-
ments, while the experiments dealing with dynamic conditions mainly 
study step-change transients [93,103–107]. In the last 20 years, female 
and male participants have been equally represented in the thermal 
experiments; nevertheless, elderly and children continue to be under-
represented groups (in only 3% of the experiments). Concerning the 
sample size, a majority of the experiments (57%) employ between 10 
and 50 participants, 31% of them recruit less than 10 participants, and 
only 12% more than 50 participants. In most of the experiments (about 
70%), participants are passive recipients of thermal stimuli without any 

Fig. 9. (a) Thermal studies aim distribution over time periods; (b) thermal technology-oriented studies, studied system over climate classification.  
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possibility of adaptation/control. 
The ASHRAE 7-point thermal sensation scale is the most used metric 

of thermal perception, followed by thermal comfort, thermal accept-
ability, thermal preferences, and cognitive performances. Air tempera-
ture is the most frequently monitored environmental variable (in 90% of 
the experiments), followed by relative humidity (75%), air velocity 
(63%), globe temperature (36%), and wall surface temperatures (9%). 
Air turbulence intensity, luminance, and solar irradiation (artificially 
provided) are more rarely monitored. Oxygen and carbon dioxide 
measurements are mainly used to estimate the metabolic rate, less often 
as a proxy of air quality. Skin temperature is the most common personal 
measurement (60% of the experiments), followed by heart rate/heart 
rate variability (27%), rectal/body core temperature (18%), body 
weight for sweat rate determination (7%), skin wetness (6%), ear/oral 
temperature (5%), skin surface blood flow (4%), blood pressure (3%), 
and skin heat flux (2%). Some very recently emerging topics are the use 
of immersive virtual reality [143–145] and the monitoring of brain 
electrical activity patterns [109,146]. 

4.2. Acoustic-only experiments 

This subsection looks at 11 test room studies exploring the effects of 
acoustic conditions on participants by investigating different human 
responses and developing or evaluating new metrics for soundscapes 
description (Fig. 10). The test room experiments’ aims include investi-
gating maximum heavy-weight impact sound levels for perceived com-
fort [147], effects of sound pressure levels (SPL) and sound types on 
children’s task performance [148], factors that contribute to sound 
complexity [149], effects of speech noise and speech transmission index 
(STI) in offices on cognitive performance [150,151], suitable masking 
sound frequency distribution for offices [152], effects of low-frequency 
noise in offices [153], effects of various noise sources on occupants in 
multi-family buildings [154], useful acoustic parameters that effectively 
describe to perceived sensations of urban sounds [155,156], and effects 
of introducing natural sounds to urban noise [157]. 

Many of the studies followed the general procedure of exposing 
participants to stimuli (recordings of sounds at various SPLs, fre-
quencies, or decay rates) while performing cognitive tests and/or 
completed subjective assessments of the acoustic environments. 

Test room setups and specific data collection procedures varied 
considerably among the studies. For instance, the provided stimuli 
length ranged from 10  s to 45  min, and the time that participants were 
given to respond to objective and subjective assessments ranged from 
5  s to as long as the participants wanted to take. Most of the studies used 
loudspeakers to play the studied sounds, except Hermida and Pavón 

[156] and Hong et al. [157], who used headphones, and Jeon et al. 
[147], who used both loudspeakers and headphones. Only three studies 
[150–152] had test room setups that mimicked the type of real-world 
environment that they were investigating. Concerning the overall 
environmental control, three studies [150,152,153] mentioned that 
other indoor environmental conditions (such as temperature and light-
ing level) were kept constant in the test rooms. In contrast, others did not 
give any description of non-acoustic environmental conditions in the 
test rooms that could potentially affect the study outcomes. 

For acoustic experiments involving human participants, it is common 
practice to screen participants’ hearing abilities before conducting 
listening tests to avoid bias in the perception analysis. However, only 
four studies [147,149,153,157] screened their participants’ hearing 
abilities using audiometers and other devices, and three studies [148, 
152,155] used subjective assessments to determine hearing abilities. 
Other studies either did not do similar screening or did not specify how 
they determined participants’ hearing abilities. In addition, only three 
studies included evaluation of the effects of demographics, for example, 
age [147,148,150] and gender, and personal factors, such as personality 
traits [150], on participants’ responses. Finally, just one study [153] 
monitored the physiological responses of participants (including the 
electrical activity of the brain, eye activity, heart rate, and heart rate 
variability) to low-frequency sound exposure using electroencephalog-
raphy (EEG), electrocardiogram (ECG), electromyography (EMG), and 
electrooculography (EOG) signals. 

Regarding sample size, six out of the 11 reviewed studies involved 
between 10 and 50 participants, with a minimum of 23 [152], while all 
the others involved more than 50 participants up to a maximum of 290 
[148]. 

4.3. Visual – lighting-only experiments 

The following overview focuses on visual-related experiments aim-
ing at studying subjective evaluations of the visual environment per-
formed in controlled environments. Studies conducted with the use of a 
scale model (e.g. Refs. [158–160]), with a small apparatus (e.g. Refs. 
[161–163]), in a booth (e.g. Ref. [164]) or in virtual reality (e.g. Refs. 
[165,166]) were excluded from the analysis as they were not performed 
in real-scale controlled environments. Investigations on electric lighting 
evaluations primarily aiming at testing lamp brightness and colour 
rendition based on lamp characteristics (e.g. Refs. [167–170]) were also 
not included. The resulting sample analysed consisted of 70 papers. 

As introduced in Section 2, visual-related studies in controlled ex-
periments have increased over the last decade, with more than 77% of 

Fig. 10. Distribution of acoustic studies’ aim over time.  
Fig. 11. (a) Distribution of visual studies’ aim over time; (b) investigated light 
source distribution over time periods. 
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the considered studies conducted between 2010 and 2020 (Fig. 11). The 
type of light source investigated has been relatively constant throughout 
the years, with an equal number of studies focusing on electric light and 
daylight (Fig. 11b). The majority of studies focused on glare (more than 
50%), either to evaluate subjective perceptions due to variations of 
lighting conditions or other factors’ influences (such as time of the day 
or openings and blinds features) [21,22,37,39,42,66,171–182], develop, 
evaluate or validate metrics, thresholds or indexes [35,68,183–193], 
investigate glare influence on performance and physiology [187, 
194–196] or study a combination of such objectives (Fig. 11a). Other 
studies investigated visual perceptions of the visual environment, sur-
face finishing preference, physiological responses, performance, sleepi-
ness, vitality, arousal, tension, mood, self-control and 
cognitive-biological processes (light-reactive hormones of melatonin 
and cortisol) mainly related to the light quantity and correlated colour 
temperature (CCT), but also in relation to light uniformity, wall lumi-
nance, light source type, flicker rate, view and chromatic glazing [164, 
197–216]. The majority of the studies did not allow for personal control 
of the environment, testing pre-defined conditions, and were conducted 
with 10–50 participants. Only in a few studies participants were 
requested or simply allowed to vary their visual environment through 
the operation of blinds and electric lights, either to evaluate glare con-
ditions or to assess how occupants perceived their visual environments 
associated with diverse luminous ambiences created by daylight in 
apartment buildings [73,189,191]. 

Most of the investigations were conducted in re-configured office 
spaces located in existing buildings, transformed into experimental test 
rooms in which it was possible to control or at least measure visual 
parameters. The traditional configuration was a side-lit single office, 
generally bigger than 20  m3. Still, some investigations used a corner 
office [193], a mock-up of an open-plan office with multiple workplaces 
[209], a re-configured classroom [66], a full-scale mock-up conference 
room [208], or divided an existing office room with internal vertical 
partitions, resulting in smaller experimental spaces [217,218]. Some 
glare experiments used full-size apparatuses consisting of a semi hex-
agonal lighting chamber equipped with a chin rest [22,172,173,176] or 
of a semi-spherical screen with two halogen lamps mounted on a 1-m 
radius round boom [21,185]. Only fewer studies were conducted in a 
stand-alone test room, either located indoor [197,198,200–204, 
210–213,219] or outdoor [35,42,179,188,192,194,220,221]. Some of 
the outdoor facilities were rotating structures [35,179,192,195,220], 
allowing daylight conditions to be tested with a reduced impact of the 
daylight variations due to the season and time of the day. Very few test 
spaces were designed to have a side-by-side configuration with two 
identical spaces, one for participants and the other for measurements 
[35,171,183,187,189,190,194,220]. This particular setting, aiming at 
decreasing interventions in lab experiments, is particularly suitable for 
visual-related investigations as photometric data are relatively affected 
by the presence of people, contrary to the other indoor factors that have 
to be measured close to participants. The presence of a window to the 
outdoors was linked to the type of experiment investigated. Almost all 
experimental spaces provided with a window investigated daylight, 
except for those studies that performed the experiments at night [222] 
or in which windows were shaded with a black-out fabric or blocked 
[164,180,199,207,217]. The studies investigating a mix of daylight and 
electric light were provided with shading devices [189,190,205,220, 
223]. On the other hand, not all the studies on daylight were provided 
with a real window to the outdoor (intended as an opening with a view), 
but used artificial windows [37,177,181,192,204] or anidolic systems 
on the southern façade [224]. Non-visual factors were measured, 
controlled, or balanced across experimental conditions in almost all 
stand-alone test room experiments, and only in fewer re-configured of-
fices [199,205,217,218,223,225]. The factors considered were primar-
ily air temperature and humidity, but also noise [217,218] and air 
quality [37,197,198]. 

4.4. Air quality-only experiments 

This subsection describes the controlled air quality-only experiments 
in test rooms summarised in 18 papers according to the reviewed 
database. Additional four papers that fall under two-domain experi-
ments are included in the analysis since thermal and air quality aspects 
are hard to disentangle as the thermal analysis is ancillary to the air 
quality assessment [72,226–228]. Among the representative selections 
of 22 air quality studies in test rooms, researchers have focused on the 
three main topics: (i) understanding perceived air quality, productivity 
and health under a range of environmental parameters [71,72, 
229–235]; (ii) human inhalation exposure and spatio-temporal variation 
of air pollution in a space [20,228,236–241]; and (iii) airflow distribu-
tion in occupied spaces and ventilation effectiveness [226,227, 
242–244] (Fig. 12). These topics were pursued through a combination of 
questionnaire surveys, environmental measurements (near a study 
participant, in bulk air or ventilation ducts), and physiological mea-
sures. Discrepancies in facilities among the selected studies include test 
room layouts (office space, classroom, aircraft cabin, hospital room), 
test room volumes (small below 10  m3, medium 10–50  m3, or larger 
than 50  m3), surface materials (stainless steel, polytetrafluoroethylene, 
aluminium, glass or their combination), type of air pollutant generation 
(continuous or episodic), ventilation type (mechanical or mix-mode 
ventilation), ventilation strategy (mixing, displacement, underfloor or 
personalized ventilation), degree of air mixing (ventilation only or 
additional use of mechanical fans), operating procedure (dynamic or 
stationary conditions), and participant type (real occupancy or use of 
breathing thermal manikins). 

In the reviewed air quality papers, all test rooms were located inside 
of the building and had control over the ventilation rate, air temperature 
and relative humidity. While nearly all studies reported air temperature 
and relative humidity values and associated uncertainties, only 12 out of 
22 studies reported air change rate values (mean  =  3.89 h− 1), out of 
which only three described the method of estimation [237–239]. These 
studies used the tracer gas decay method by means of low adsorption 
tracer gases such as CO2. The majority of the selected studies were 
performed in test rooms larger than 20  m3 (mean floor 
area  =  30  ±  27  m2), which is important for mimicking various indoor 
layouts occupied with people and for studying air contaminant distri-
bution in the space. Twelve studies focused on mimicking office envi-
ronments, whereas other studies focused on aircraft (2), classroom (1), 
hospital (1) and other unspecified environments (6). Studies involving 
perceived air quality, Sick Building Syndrome (SBS) symptoms and 
productivity under variable levels of gas-phase pollutants [71,72, 
229–235] had a significantly higher number of study participants 
(76  ±  9.3) compared to studies focusing on human inhalation exposure 
and spatio-temporal variation of indoor air pollutants (8.2  ±  13.6) [20, 

Fig. 12. Distribution of air quality studies’ main topic over time.  
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228,236–241] and airflow distribution in occupied spaces and ventila-
tion effectiveness (2.3  ±  2.1) [226,227,242–244]. The majority of 
studies focused on measurements of CO2 (9), followed by VOCs (7), 
particulate matter (4), and other inorganic gasses such as NO2, N2O, O3, 
and CO. Measurements of these air pollutants were performed with 
scientific instruments, which were not an integral part of the test rooms. 
None of those studies reported the adoption of the optimal inner coating 
of the test room surfaces, which is essential to determine how these 
coatings influence heterogeneous reactions with volatile organic com-
pounds and other gaseous pollutants. Among the selected papers, only a 
fraction (2) reported issues that could arise due to pollutant uptake or 
emissions in the test rooms. Furthermore, in all studies, there was a lack 
of integration between advanced online and offline instrumentation and 
analytical techniques within the test rooms. 

4.5. Multi-domain and whole comfort experiments 

The goals of a multi-domain experiment can be categorized into (i) 
evaluate the effect of specific building technologies or control strategies 
on occupant multi-domain comfort [119,245–250]; (ii) understand 
cross-modal and interaction between different domains [46,72, 
251–268]; (iii) model the physiological [97,100,228,269,270] or 
behavioural [271–273] response of occupant to combined multi-domain 
stimuli and to understand the effect of IEQ on stress [274,275]; (iv) 
identifying new multi-domain metrics such as air enthalpy [251], air 
distribution index [276] and bio-signals such as skin temperature [277] 
for the whole comfort. In some cases, the energy consequences of such 
multi-domain interactions are also captured, as for the studies investi-
gating novel personalized thermostats [272,278,279] or novel visual 
comfort systems [39,45] to improve energy efficiency and comfort. 
Among the studies focusing on the effect of specific building technolo-
gies or control strategies on occupant multi-domain comfort, the 
development of novel personal comfort systems in buildings [113,116, 
245,246,248,280–286] and vehicles [118] has received particular 
attention. 

The interest in studying occupant response to multi-domain stimuli 
has increasingly grown since 2000, especially after 2010. Multi-domain 
experiments constitute 23% of the overall 396 occupant comfort ex-
periments in test rooms, as given by the review database. Most of these 
studies investigated the relationship between two physical domains, 
while studies focusing on three or more physical domains were just 4% 
of the whole database. In terms of investigated combinations of do-
mains, thermal and air quality represent the most studied one, followed 
by thermal with visual and thermal with acoustic (Fig. 13). 

The majority of the studies were conducted under stationary condi-
tions, while only a third of the studies exposed occupants to changing 

environmental or dynamic conditions. Dynamic conditions were ach-
ieved either by step changes in indoor conditions [246,248,251,257, 
274,287–289] or, especially concerning thermal-related studies, by fast 
and long changes [79,265,275,290], meaning that a rate of change 
greater than 2  K per hour is provided for more than 1  h of exposure. 
Only a few studies investigated multi-domain effects under high-speed 
conditions [91,250,291] or slow and long dynamical changes [263, 
271,292]. 

In addition to highly accurate monitoring of environmental param-
eters, most studies capture occupants’ responses as a combination of 
subjective and physiological parameters. Nearly half of the studies 
(53%) relied only on subjective occupants’ responses. Table 4 shows the 
subjective metrics and physiological parameters monitored in the ex-
periments. In terms of subjective measurements, based on survey or 
behavioural observations, environmental sensations are the most 
employed, followed by environmental preference and acceptability. In 
terms of physiological parameters, skin temperature and heart rate are 
the most monitored ones, also due to the thermal domain being inves-
tigated at least in 94% of the overall multi-domain experiments. Lastly, 
the use of EEG, ECG, and EDA has just recently started to be adopted, 
mostly after 2015, to understand multi-physical occupants’ responses in 
test rooms, especially when investigating interactions between different 
comfort domains. 

Fig. 13. Multi-domain experiments by combination of each domain.  

Table 4 
Different approaches for capturing occupants’ responses in multi-domain ex-
periments in test rooms.  

Occupant response References 

Subjective (survey 
based or from 
behavioural 
observations) 

Environmental sensation [44,46,47,60,67,78,79, 
85,86,89–91,99–101,118, 
120,122,124–126,245, 
250,253,256,257,264, 
267–269,273,275–277, 
290–297] 

Environmental comfort [44,47,60,72,85,89,91, 
99,100,118,120,122,125, 
245,252,253,267–269, 
291,294,296–299] 

Environmental preference [44,47,79,86,99,102,122, 
248,252,253,257,267, 
268,291,295,297] 

Acceptability [47,85,86,91,122,124, 
248,249,253,275,294, 
295,297] 

Environmental satisfaction [46,78,252] 
Emotion response [46,264,289] 
Alertness [50] 
Stress level [274] 
Work performance [90,268,273,275,289, 

294,295] 
Clothing level [125,249,261,269,277] 

Physiological 
parameters (sensing 
device based) 

Skin temperature [44,46,79,86,99–102,117, 
120,125,253,258,259, 
292,300] 

Skin moisture [301] 
Core temperature [86,102,258,259] 
Electrodermal activity 
(EDA) 

[44,46] 

Electrocardiogram (ECG) [47,100,294] 
Electrooculography (EOG) [297] 
Electroencephalogram 
(EEG) 

[47,274,289,294,297] 

Acceleration [46,302] 
Heart rate [44,46,266,289,292,303] 
Nasal dimension by 
acoustic rhinometry 

[301] 

Photoplethysmography [302] 
Metabolic rate [277] 
Frequency of blinking [303] 
Mucociliary transport [303] 
Saliva and tear mucus film 
samples 

[295]  
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4.6. Participants interacting with the environment 

This section focuses on those experiments whose protocol allowed 
participants to freely interact with the test room components and sys-
tems. The interactions taken into account for this further classification 
include adjusting settings of the test room conditioning system, 
dimming/switching lights, opening/closing windows and shading sys-
tems, adjusting personal comfort devices. According to the reviewed 
scientific publications, this section is based on 21 papers (see Table 5). 
Nine of those 21 have been published in 2018–2020, and ten originate 
from European universities or institutes. 

Two papers describe a test room facility developed and constructed 
to test all environmental factors (lighting, acoustics, air, and thermal 
quality) [43,304], including interactions with the environment through 
design and systems, making it possible to provide both input data to and 
output data from the occupants. Most of the publications were con-
cerned with thermal quality in relation to thermal comfort, sensations 
and/or preferences [102,124,305–307], in combination with (personal) 
control [36,111,281–283,308,309], together with air quality [232] or 
visual quality [45,310]. The latter was studied in three reported studies 
[73,189,191], of which one was concerned with daylight, glare, shading 
and control [73]. Only one study included all the IEQ aspects [311]. 

The participants involved in the different studies mostly comprise of 
students and healthy young adults. Only one study was concerned with 
children (primary school children with an average age of 10 years) 
[311]. One study included a comparison between young (average23 
years) and older males (average 67 years) [102], and one study looked at 
the impact of ethnicity [309]. In most publications, the responses or 
interactions of a participant with an object or variable/parameter in the 
environment are reported. The studied controlling devices varied from 
(local) heating or ventilation devices [283], light dimmers [310] or 
blind/solar shading control device [73], wearable conditioning devices 
[111], and furniture [281]. Table 5 summarises the 21 papers con-
cerning those experiments where the building occupant is able to 
interact with the test room in the form of personal judgments or specific 
actuator-to-reaction. 

4.7. Energy-related human comfort experiments 

Out of 396 reviewed papers, 85 considered energy-related issues 
while carrying out thermal-, visual-, indoor air quality-, and acoustic- 
related experiments. Of these, 28 papers had a multi-domain focus 
with 22 papers considering both thermal and air quality-related exper-
iments, five papers presenting thermal- and visual-related experiments 
[97,232,281,312–314], and only one paper discussing the effect of 
personal control on thermal, visual, and air quality perceived by 
building occupants [310]. Among the single comfort domain studies, 
thermal investigations are by far the most widely carried out (50), fol-
lowed by visual investigation (5). Olfactory and aural comfort were 
studied together with energy considerations in just one article each 
[156,232]. 

The first document of the database was published in 1978. For the 
following 30 years, much slower growth was observed in the number of 
publications on energy-related human comfort experiments. After 2008, 
the scientific interest in this topic has progressively increased because of 
the increasing research interest in human-centric building design [315], 
personalized control strategies [316], and perceptual and behavioural 
environmental studies [32] (Fig. 14). 

The majority of experiments have been conducted in test rooms 
located inside buildings with controlled environmental conditions, and 
only three experiments were run considering the actual outdoor weather 
[46,97,312]. Furthermore, 45 experimental procedures employed dy-
namic conditions and 32 studies used steady-state conditions. Dynamic 
studies are generally more recent (the average publication year is 2013), 
while steady-state conditions are more common in older studies (the 
average publication year is 2011); this can be explained by the recent 

Table 5 
List of reviewed studies concerning human comfort experiments in test rooms 
where the participants could directly interact with the facility.  

Year 
pub. 

Investigated 
domain 

Studied 
parameters/object 

Interaction 
between the 
participant and 
the test room 

Reference 

1991 Thermal Adjust ambient 
temperature 

Adjustment of test 
room temperature 

[307] 

1995 Thermal Two age groups Adjustment of test 
room temperature 

[102] 

2000 Thermal Adjusting air 
movement 
(supplied via 
ceiling) 

Adjustment of the 
Personal Comfort 
System (PCS) 

[308] 

2007 Thermal 3 task air- 
conditioning 
systems 

Adjustment of the 
Personal Comfort 
System (PCS) 

[306] 

2009 Thermal Control of 2 fans at 
chair (under seat, 
behind backrest) 

Adjustment of the 
Personal Comfort 
System (PCS) 

[282] 

2009 Visual Dimming of light; 
airflow from 
ceiling-based 
nozzle 

Adjustment of the 
Personal Comfort 
System (PCS) 

[310] 

2012 Thermal 4 fans at corners 
chair to enhance 
displacement vent 

Adjustment of the 
Personal Comfort 
System (PCS) 

[124] 

2012 Thermal & Air 
quality 

Air movement (air 
terminal device), 
air pollution, 
temperature and 
RH 

Adjustment of the 
Personal Comfort 
System (PCS) 

[232] 

2012 Visual Artificial lighting 
and blinds control, 
daylight 

Adjustments of 
shading system 

[73] 

2014 Thermal Ceiling fan Adjustment of 
shading system, 
ceiling fan, 
operable windows 

[36] 

2014 Visual Daylight Adjustment of 
shading system 

[189] 

2015 Thermal Heated/cooled 
chair 

Adjustment of the 
Personal Comfort 
System (PCS) 

[281] 

2018 Thermal Control of 
personalized 
heating system 

Adjustment of the 
Personal Comfort 
System (PCS) 

[283] 

2018 Visual & 
Thermal & Air 
quality & 
Acoustics 

Facades, controls, 
interior, etc. 

Adjustment of 
shading system, 
façade properties, 
thermal settings 

[43] 

2018 Visual & 
Thermal & Air 
quality & 
Acoustics 

Walls, lighting, 
sound, thermal, air, 
interior, etc. 

Control of HVAC 
and lighting 
system 

[304] 

2019 Thermal & 
Visual 

Windows, blinds 
and ceiling lights 

Adjustment of 
desk light, ceiling 
light, solar 
shading, operable 
windows 

[45] 

2019 Visual & 
Thermal & Air 
quality & 
Acoustics 

IEQ in their own 
classroom 

IEQ problems in 
classrooms and 
solutions for those 
problems 

[311] 

2020 Visual Daylight, glare, 
shading 

Adjustment of 
shading system 

[191] 

2020 Thermal Thermal sensation, 
thermal preference 

Adjustment of the 
Personal Comfort 
System (PCS) 

[305] 

2020 Thermal Wearable wrist 
devices for 
warming or cooling 

Adjustment of the 
Personal Comfort 
System (PCS) 

[111] 

2020 Thermal Self-selected air 
temperature, 
thermal sensation, 
comfort and 
preferences; skin 
temperature 

Adjustment of the 
personal comfort 
system 

[309]  

A.L. Pisello et al.                                                                                                                                                                                                                                



Renewable and Sustainable Energy Reviews 149 (2021) 111359

14

availability of easier and user-friendly control interfaces and power 
modulation for electric motors and pumps. 

Regarding the technical systems used during the experiments, only 
considering the documents where this information was expressed, most 
of the investigations used air-conditioning systems and only a few tested 
hypotheses under radiant systems (9 papers), controlled mechanical 
ventilation (8), artificial lighting (10), and sound equipment (1) [156]. 
Additionally, 38 papers reported experiments, which adopted personal 
environmental control systems, which are effective means of testing 
energy-saving control strategies and are well received by the occupants. 

5. Summary of key findings 

This review analysed a wide range of test rooms for the experimental 
investigation of human comfort indoors and provided an overview of 
scientific experiments that are conducted in such facilities and that were 
published in scientific papers. All reported information was deducted 
from reviewed papers. According to such an approach, it has to be 
mentioned that experimental facilities may exist which have not (yet) 
published any results in peer-reviewed journal articles. The reason may 
be because (i) it is too new to present results, or (ii) the facility is 
dedicated to industrial or other research not meant for public sharing of 
results. This limitation may affect some of our conclusions. Nevertheless, 
while accepting this limitation, we believe that the number of facilities 
not included in our review is small due to the two search strategies 
applied and that the knowledge generated in those facilities not pub-
lishing their work, for one reason or the other, is in any case not directly 
available for the scientific community and less suitable to enhance 
human comfort theories. 

A general observation pertains to the growing number of such fa-
cilities. The total number of 187, specifically referred to in the present 
contribution, is about eight times higher than the number of comparable 
facilities before 2000. However, the geographic distribution of these 
facilities does not reflect the variance of climatic regions around the 
world: 82% are located in moderate climatic regions. Notwithstanding, 
the increasing number of test rooms may reflect the growing realization 
of the influence of indoor environments on human health, comfort, and 
productivity. This trend is reflected in the increasing number of publi-
cations reporting research conducted in these facilities. In this review, a 
total number of 396 publications were considered. 

Looking at the publications from a topical standpoint reveals the 
scientific community’s primary interest in human thermal comfort (204 
papers), followed by energy-related studies (85), visual comfort (70), air 
quality (18), and acoustic comfort (11). Roughly a quarter of the 
reviewed publications explored indoor-environmental exposure situa-
tions involving more than one domain. Only a small number of publi-
cations (21) investigated circumstances in which participants could 
assume an active role and had the opportunity to interact with relevant 
features of the indoor environment. 

Our findings suggest that about 92% of the test rooms were built 
inside of a building. This is interesting: while the performance 

characterization of building components has mainly been tested in 
outdoor testing facilities [317], the investigation of indoor comfort has 
been conducted either in actual occupied buildings or in dedicated test 
rooms located indoors with potential better controlled experimental 
procedures and microclimate conditions. However, based on the 
reviewed publications alone, it is not possible to draw up a more detailed 
picture of the test rooms’ design and construction. For instance, in 47% 
of the reviewed publications, it was not possible to ascertain whether the 
test room envelope entailed any type of openings. Lack of such details 
makes it difficult to independently replicate and subsequently validate 
the results coming from experiments in test rooms. Our review also 
addresses another critical point: there is a lack of information regarding 
investment, operation, and maintenance costs associated with the fa-
cilities. A dedicated survey designed and distributed on our side 
received responses only from 18 facility owners or operators, pointing to 
the need for further efforts in the transferability of know-how with the 
test rooms. 

Certain observations apply to studies that focused exclusively on 
thermal comfort: studies on fundamental issues dominate in this area 
(57%) versus technology-oriented (36%) and predictive studies (7%). 
An increasing number of experiments in the last 20 years focus on local 
heating/cooling systems. A large share of technology-oriented studies 
(40%) focuses on developing new, insulating, and thermally active 
clothing. This may indicate a shift in the industry from the traditional 
room-air-conditioning design perspective to a more personalized ther-
mal comfort approach. The majority of the reviewed studies were con-
ducted in office-like environments with small samples (10–50 people) 
engaging in sedentary activities. Few papers focused on the elderly or 
children (3%), and in 70% of the studies, participants were passive re-
cipients only. Some studies introduced new, recently emerging methods 
such as immersive virtual reality and monitoring of brain activity 
patterns. 

Studies related to acoustic comfort mostly followed a general pro-
cedure where participants were exposed, on a short-term basis, to 
stimuli while performing cognitive tasks or completed subjective tests. 
Interestingly, only four studies (less than 40%) screened the hearing 
abilities of the participants. This may have introduced bias in their 
results. 

Studies on lighting and visual comfort significantly increased in the 
last decade, addressing both daylight and electric light: their bulk is 
concerned with glare problems in the workplace, primarily deal with 
glare perception and entail the development and evaluation of related 
metrics, thresholds or indexes. The investigations also pertain to various 
human responses related to light quantity and CCT. Most of these latter 
investigations focused on the non-image-forming effects of light. Only a 
few studies allowed participants to change the visual conditions by 
interacting with blinds and electric lights. 

IAQ-related studies mostly addressed three topics, namely the 
perceived air quality’s impact on productivity and health, the spatio- 
temporal variation of air pollution and inhalation exposure, and the 
airflow distribution and ventilation effectiveness. Some reviewed pub-
lications did not report the experimental conditions (e.g., ventilation 
rates) in detail. In contrast, none of the studies reported surface mate-
rials, which is essential concerning how they influence heterogeneous 
reactions with volatile organic compounds and other gaseous pollutants. 
The majority of the studies were conducted in sufficiently large test 
rooms, hence allowing for the consideration of realistic room layouts 
and air contaminant distribution patterns. 

About investigations of multi-domain exposure situations, thermal 
and indoor air quality represent the most frequently studied combina-
tion, followed by thermal-visual and thermal-acoustic combinations. 
Only one-third of the studies exposed participants to dynamic environ-
mental conditions. 53% of the studies relied solely on subjective re-
sponses. In the last few years, a new trend can be seen in the related 
scientific literature, whereby diagnostic methods from neurophysiology 
(such as EEG, ECG and EDA) have been applied to explore multi-domain 

Fig. 14. Cumulative number of publications describing energy-related issues in 
human comfort experiments in test rooms. 
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exposure situations. 

6. Research gaps and future trends in test room experiments for 
human comfort 

Despite a growing interest in multi-domain studies, we still do not 
have an agreed-upon conceptual framework and a systematic method-
ology for a mature and holistic science of human-centric indoor envi-
ronments. Common design guidelines and a shared terminology for 
innovative test rooms and experimental procedures would allow estab-
lishing a shared understanding of the driving phenomena and the in-
clusion of the non-physical (psychological and contextual factors) 
dimensions. This can be further supported by the deployment of low- 
invasive physiological sensing techniques. A better understanding of 
the visual, IAQ and acoustic factors and their mutual influence on 
human comfort and occupants’ perception requires further investiga-
tion. Future trends in test room experiments (and thus facility design) 
must account for a multi-domain and multi-disciplinary approach. 

On a geographical and demographic basis, despite the increased in-
terest in human comfort and the large availability of test room setups, 
these facilities are limited to specific climatic regions, while concerning 
tested subjects’ composition, these are mainly students and faculty 
members. These sociological and geographical weak points may cause a 
non-negligible bias in the interpretations of experimental results and 
knowledge generation. We see the need for dedicated studies in those 
climatic and demographic contexts where experimental data are still not 
available to increase diversity and cross-validation. 

In terms of test room design: test rooms mostly emulate office spaces 
with a limited number of occupants. Therefore, another research gap to 
close is the analysis of other settings and contexts, such as realistic open- 
plan offices and different building typologies (educational, residential, 
hospitals, etc.). This factor may affect the quality of the collected data 
and limit the research findings to office-only investigations (difficult to 
replicate and extend). 

Concerning experiments, increased attention is being paid to occu-
pants, also driven by the recent trends toward human-centric building 
design and operation. This is also reflected in the fast growth of multi- 
domain studies in the last decade, where the focus is the whole com-
fort perception analysis. Additionally, even technology-oriented studies 
are focused on human applications. About 40% of the technology- 
oriented studies aimed at developing and testing wearable systems for 
improved personal comfort, such as smart clothing and sensing tech-
niques. This observation shows the necessity for a more systematic 
collaborative research framework whereby the environmental comfort 
is not handled exclusively by building physicists or engineers and ar-
chitects. The topic requires a significant and proactive interaction with 
researchers in human factors, human-machine interaction, big data 
analytics, and social science, as we see more studies are focusing on 
psycho-physiological factors alongside IEQ and human-centric 
approaches. 

From the operation perspective, the economic analysis showed the 
necessity for a better common understanding of the economic model 
behind test room design and construction. This may be helpful to foster 
local and global collaboration and connection to industry, taking 
advantage of the unique resources that each location provides. For this 
purpose, a higher transparency of existing business/economic models is 
recommended. Private-public partnerships may also be established with 
shared economic models allowing both researchers and industry part-
ners to use these facilities to conduct controlled experimental studies, e. 
g., for technology development. Such models can also help sustain and 
expand the test rooms’ role in underlining the importance of whole 
comfort experiments. Toward this end, funding agencies/industry 
partners should be informed and engaged in providing funding support 
to maintain/sustain and expand existing testbeds dedicated to a better 
understanding of human comfort in buildings. 

In this context, standardization in the design and experimental 

validation procedures is still missing, with the consequent limitations in 
error and uncertainty analysis, quality control and replicability poten-
tial. Therefore, the creation of a unified framework for keeping track of 
the functionality of the test room facilities is expected to establish a 
common ground for collaboration and cross-validation and would help 
to identify cultural and geographical differences and biases. 

This cannot be done without a joint effort in terms of open-source 
research in and for society, where the resources of test room facilities 
and collected data are freely available for fostering the impact of these 
multi-domain and multi-disciplinary investigations. In this scenario, 
future efforts by the authors and their institutions would support 
research via a systematic data sharing process and a publicly available 
and continuously updated test room portfolio. Finally, a first Round- 
Robin test in test room facilities worldwide is expected to emerge as a 
follow up to this review. 
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Abstract 

The perception, physiology, behavior, and performance of building occupants are influenced by multi-domain 

exposures: the simultaneous presence of multiple environmental stimuli, i.e., visual, thermal, acoustic, and air 

quality. Despite being extensive, the literature on multi-domain exposures presents heterogeneous 

methodological approaches and inconsistent study reporting, which hinders direct comparison between 

studies and meta-analyses. Therefore, in addition to carrying out more multi-domain studies, such 

investigations need to be designed, conducted, and documented in a systematic and transparent way. With 

the goal to facilitate and support future multi-domain studies and their meta-analyses, this work provides (1) 

a range of  criteria for multi-domain study design and reporting (i.e., defined as quality criteria), and (2) a 

critical review of the multi-domain literature based on the described criteria, which can serve as guidelines 

and recommendations for future studies on the topic. The identified quality criteria encompass study set-up, 

study deployment and analysis, and study outcome, stressing the importance of adopting a consistent 

terminology and result reporting style. The developed critical review highlights several shortcomings in the 

design, deployment, and documentation of multi-domain studies, emphasizing the need for quality 

improvements of future multi-domain research. The ultimate goal of this work is to consolidate our knowledge 

on multi-domain exposures for its integration into regulatory resources and guidelines, which are currently 

dominated by single-domain knowledge.  

 

Keywords: IEQ; Human Comfort; Combined effects; Cross-modal effects; Transparent reporting; Research 

quality assurance 

1 Introduction 

In industrialized areas, people spend about 90% of their time indoors [1], where they are simultaneously 

exposed to multiple indoor environmental stimuli, i.e., thermal, visual, acoustic, and air quality variables. It is 

well known that indoor environmental stimuli affect how people perceive the indoor environment [2], their 

behaviors [3], health [4], [5], and work-related matters such as real and self-estimated performance [6]–[8], 

job absenteeism [9], and job satisfaction [10]–[12]. Consequently, indoor environmental stimuli have indirect 

implications on energy consumption linked to changes in human behavior (e.g., openings/closing windows 

when mechanical systems are operating) [13]–[15] and on companies’ financial revenues, due to the 

mailto:giorgia.chinazzo@northwestern.edu
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aforementioned work-related issues [16] and health effects [17]. Therefore, it is paramount to understand 

occupants’ responses to indoor environmental stimuli to design and operate comfortable, healthy, and 

productive spaces. 

Over the past years, many efforts have been devoted to studying human responses to indoor environmental 

stimuli. Investigations were predominantly carried out for each stimulus, considering visual, thermal, acoustic, 

and air quality separately. These studies resulted in comfort models and metrics (e.g., Fanger’s predicted 

mean vote model [18], daylight glare probability model [19]), which are included in technical standards and 

design guidelines (e.g., [20], [21]), and provide comfort requirements for temperature, light, noise and air 

quality separately. Consequently, buildings and current technologies devoted to controlling the indoor 

environment are designed on the supposedly independent effects of indoor environmental stimuli [22], [23].  

From a cognitive perspective, this approach implies that human perception is a modular function, composed 

of independent sensory modalities processing sensory stimuli independently of each other as separate 

modules. For example, the underlying assumption of this mono-sensory approach is that light does not 

influence thermal perception, and temperature does not affect how the visual environment is perceived. 

However, it has been shown that human perceptual experience is not modular but is shaped by the 

combination and integration of a multitude of stimuli experienced simultaneously [24]–[27]. The integration of 

different sensory modalities is called multisensory integration and results in more robust estimates of 

occupants’ perception [28]–[30]. Examples of multisensory integration relevant to the indoor environment can 

be found in Calvert et al. [29] and Bertelson & Gelder [31], while anthropological and architectural approaches 

in Hall [32] and Rapoport [33]. 

As sensory perception is inherently multimodal, so is people’s perception of the indoor environment. While 

synesthesia (e.g., music excites the perception of color [34]) seems to be a widely known example of the 

underlying topic, it understates and occasionally misrepresents the nature and importance of integration and 

binding problems in human perception. Not always human senses are equally involved (think of a visual acuity 

test such as Snellen Chart), and oftentimes a specific quality of an indoor environment stands out and annoys 

or satisfies people predominantly. Yet, the overall impression and the effects of an indoor environment remain 

interwoven and holistic, which is why a multimodal and integrative approach to the investigation of indoor 

environments appears more valid and representative. Multisensory integration might be one of the factors 

explaining discrepancies observed between predicted and reported occupant satisfaction [35]–[37], as 

people are often not satisfied with their indoor environment although threshold values indicated by standards 

are met. A recent analysis of an extensive survey database shows that only two-thirds of building occupants 

are satisfied with their environment and multiple environmental stimuli contribute to dissatisfaction, including 

sound privacy, temperature, and noise level [38]. 

Although the explanation of how our brains integrate various sensory information is yet to be solved by 

neuroscience and related fields, it is a good starting point for researchers in the Indoor Environmental Quality 

(IEQ) domain to expand research in a multimodal manner. Research in this field is necessary considering that 

“current knowledge on interactions between and among factors that most affect occupants of indoor 

environments is limited” [39, p. 2]. Since each IEQ stimulus includes several variables, such as (relative) 

humidity and (air, mean radiant or operative) temperature for the thermal environment, considering all the 

potential interactions in a single study is unfeasible, even more, if several human responses are considered. 
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For this reason, existing studies focus on the interaction of a few stimuli with selected human responses. To 

gain a comprehensive understanding of the effect of all the stimuli that can be found in the built environment 

on all human responses, it is, therefore, necessary to conduct reviews and meta-analyses to combine the 

results from several studies. This collective approach builds upon the knowledge generated as suggested in 

Schweiker et al. [40]. 

In recent years, some studies have analyzed the existing literature to understand human responses to multiple 

indoor environmental stimuli. Torresin et al. [41] reviewed 45 laboratory studies that examined the effects of 

two or more environmental stimuli on human perception and performance. Wu et al. [42] expanded their 

review to include field studies and identified multi-domain effects (thermal, acoustic, and illumination) on 

human perception. Schweiker et al. [40] recognized the link between human perception and behavior and 

conducted a comprehensive review of multi-domain influences on occupant perception and behavior based 

on field and laboratory studies. By identifying motivations, theoretical foundations, key methods, findings, and 

gaps in the field of multi-domain approaches, the authors conclude that “results were often inconclusive and 

in part contradictory” and emphasize the need to establish a common framework to analyze diverse results, 

design future studies, and develop standards and guidelines. The incomplete knowledge of multi-domain 

effects and the inconsistencies across results have been also highlighted in other studies [43], [44]. According 

to Rupp et al. [45], this outcome is the result of a lack of interdisciplinary research between different disciplines 

within building science (i.e., visual, thermal, acoustic, and air quality), and between research fields such as 

psychology, physiology, engineering, and architecture. In addition, the direct comparison of the results of 

studies can be misleading as the great majority of them differ in terms of objectives, magnitude of considered 

stimuli, experimental design and setting, studied population, analysis conducted and reporting of the results. 

Without a common way of designing, conducting, and reporting multi-domain studies, comparisons are 

difficult to conduct. This is not the first field to recognize and call for the development of more rigorous study 

designs, transparent reporting, and quality assurance checklists (e.g., [46]). 

To address this need, the present work identifies criteria covering the key research aspects that should be 

considered when designing, conducting, and reporting multi-domain studies and critically reviews the 

published studies on the basis of these criteria. It is necessary to highlight that this work does not review 

existing multi-domain investigations for conducting a meta-analysis of their results. In other words, this study 

does not focus on the questions: “is factor x affecting the perception of factor y?” or “are interactions between 

factors x and y affecting human response z?”, but rather on the methodological aspects and characteristics 

of the reported information for addressing these questions. The described criteria are defined as “quality 

criteria” as their presence and accurate description in the literature can determine the degree of excellence 

of a study, which in turn allows its replicability and comparability. The quality criteria can thus be considered 

as research guidelines and recommendations that aim to establish a solid foundation for future multi-domain 

studies as a unified approach to facilitate meta-analyses on this topic, helping to untangle the complex effects 

of multi-domain stimuli on different human responses.  

First, the methods applied in this paper are described. Then, the quality criteria are outlined in terms of (1) 

study set-up (dependent and independent variables, hypothesis, setting features, exposure features, 

experimental design quality), (2) study deployment and analysis (data collection and processing, participants, 

data analysis), and (3) study outcome (reporting results, study discussion and conclusion) (see details in 
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Figure 2). Next, the critical review of the multi-domain literature is performed based on the quality criteria. 

Finally, the key findings of the critical review are summarized, and future directions are highlighted. 

2 Methods 

Three steps were followed to define the quality criteria and carry out the critical review of existing multi-

domain studies: (i) selection of multi-domain studies, (ii) categorization of the studies based on the type of 

multi-domain effect (i.e., cross-modal or combined) and study type (i.e., laboratory or field study), (iii) 

definition of the quality criteria. 

2.1 Multi-domain studies selection 

The selection of research studies analyzed in this work is based on three recent literature reviews reporting 

studies on the effect of multiple indoor environmental stimuli on different human responses: Schweiker et al. 

[40], Torresin et al. [41], and Wu et al. [42]. Furthermore, the list of papers analyzed in the reviews was 

expanded to include additional studies based on forward reference searching and authors’ knowledge. The 

list of considered papers is reported in Appendix A. 

Not all studies reported in the three reviews were included in the analysis. Three main selection criteria  were 

applied to meet the aim of the research, described as follows: (i)  the study had to involve the response of 

people (i.e., no simulations, no physical measurements only); (ii)  the study had to focus on perception, 

behavior, and/or performance (i.e., not on physiology only); and (iii)  the study had to have as independent 

variables the physical measurements of two or more of the four IEQ stimuli (i.e., visual, thermal, indoor air 

quality, and acoustic). Papers in languages other than in English, with an unavailable full text, or not peer-

reviewed are also excluded. The excluded papers are reported in Appendix B. 

2.2 Multi-domain studies’ categorization 

The existing literature is reviewed and analyzed by distinguishing the papers according to two study features: 

type of effect investigated and study type.  

Two types of effects are considered in this research (see Figure 1), described as follows:  

● Cross-modal effect is when one stimulus influences a non-related response, which is usually 

triggered by another stimulus (e.g., when light influences thermal responses). 

● Combined effect is when multiple stimuli, in combination, affect a response not directly related to a 

specific indoor stimulus (i.e., individual perception such as overall comfort perception and physical 

status, behavior, physiology, and performance). The stimulus can be environmental or belong to 

other domains (e.g., personal, and contextual). 

A cross-modal effect can be further categorized into (i) Cross-modal main effect; and (ii) Cross-modal 

interaction effect. The difference between the two types of cross-modal effects depends on the levels of the 

considered stimuli (e.g., dim, and bright are two levels for the visual stimulus, and hot and cold are two levels 

for the thermal stimulus). Cross-modal main effects occur when the response to stimulus A is influenced by 

the presence of stimulus B, independently of the levels that they have. Cross-modal interaction effects occur 

when the effect of different levels of stimulus B on the response to stimulus A differs according to stimulus 
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A’s level. See Figure 1 for a graphical representation of the cross-modal effects. The sub-categorization into 

main and interaction effects is reported to provide a complete description of multi-domain effects, but it is not 

used to analyze the reviewed literature in Section 4. However, the authors believe that a comprehensive 

description of the type of effects could benefit the reporting and interpretation of future multi-domain studies. 

Figure 1 schematizes cross-modal and combined effects (multi-domain studies), distinguishing them from the 

same-modality effects (single-domain studies), which are not considered in this research. 
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Figure 1: Top: Schematic description of the type of effect: cross-modal, combined and same-modality effects. 

The light gray dashed lines in the cross-modality effect refer to the influence of one domain (e.g., temperature) 

on the same-modality response (e.g., thermal comfort) when another domain is considered in the 

investigation (e.g., illuminance). In a multi-domain study, such effect does not have to be included (e.g., a 

study could look solely at visual influences on thermal perception without observing the effects of thermal 

properties (or their interactions with the visual properties) but only controlling for them). Bottom: Graphic 

representation of the types of cross-modal effects between two stimuli. a) Cross-modal main effect of stimulus 

B and no effect of stimulus A; b) cross-modal main effect of stimulus B and the main effect of stimulus A; c) 
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cross-modal interaction effect of stimuli A and B; d) the main effect of stimulus A, no effect of stimulus B. 

Adapted and expanded from Coolican [47]. 

 

The study types considered in the analysis are: (i) lab study (including test room, climate chamber, and 

airplane simulator) [48], and (ii) field study [49]. The living lab (i.e., a conventional space equipped with 

measurement tools in which occupants conduct their normal lives or work [50] is a study type not used in the 

considered papers and hence it is not used to categorize the papers in the following analysis. 

Table 1 summarizes the distribution of the considered studies according to the effect type and study type. 

Lab studies outnumbered field studies, while cross-modal and combined effects were equally investigated 

across studies. Most of the cross-modal effects were investigated in lab studies, while an equal number of 

combined effects were tested in both lab and field studies. Sometimes, cross-modal and combined effect 

types were investigated in the same study, in the great majority of the cases in lab studies.  

 

Table 1: Distribution of the considered studies according to the effect type and study type. 

  Effect type 

Total   Cross-modal Combined Combined and 

cross-modal 

Study type 
Lab 36% 17% 23% 76% 

Field 4% 19% 1% 24% 

Total 40% 36% 24% 100% 

 

2.3 Research quality criteria 

The research quality criteria (Figure 2) were used to critically analyze the published studies and can serve as 

research guidelines and recommendations for future studies. These criteria are categorized into three groups, 

defined as (1) study set-up, (2) study deployment and analysis, and (3) study outcome (Figure 2). The 

collection of quality criteria was determined first on the basis of the authors' experience with multi-domain 

studies, previous review efforts, and intensive online meetings within and beyond IEA EBC Annex-79 

meetings1. Such basis was constantly reviewed during the analysis of the studies considered for this work 

and augmented upon necessity. The selected criteria focused on methodological and reporting features. The 

introductory sections with the related analysis of previous literature and reference to validated theoretical 

models and theoretical assumptions are not considered in the analysis as multi-domain studies have been 

reported to rarely carryover previous studies’ findings and to lack foundational theories to formulate and test 

research hypothesis [40].  

Some of the considered research quality criteria are common to all experimental investigations, while others 

are specific to multi-domain studies. However, to guide future researchers on what to consider while 

designing, deploying, and reporting multi-domain investigations, all quality criteria are described in the same 

depth in the next section followed by their application in a critical review of published literature. 

 
1 “Occupant-centric building design and operation” (http://annex79.iea-ebc.org/) 
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Figure 2: Research quality criteria considered in the critical review of existing multi-domain studies and that 

can serve as guidelines and recommendations for future multi-domain research. 

3 Description of research quality criteria for multi-domain studies 

The quality criteria shown in Figure 2 are described in the following. 

3.1 Study set-up 

3.1.1 Dependent variables 

A clear description of the investigated dependent variable(s) is of primary importance since they express the 

human responses to variations of the independent variables (i.e., the investigated stimuli).  
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The dependent variables in multi-domain studies refer to the different human responses that can be 

captured in experimental or observational settings. Figure 3 illustrates the type of human responses that can 

be collected and the associated methods of assessment in both field and laboratory investigations, and in 

relation to the type of effect considered (combined or cross-modal). Responses can be described according 

to the nature of the data collection approach, i.e., subjective or objective. Subjective data from occupants is 

collected by interviews or survey methods querying self-reported perceptions or opinions. Objective 

responses include physiological signals, test grades and other quantitative observations (e.g., number of 

interactions between occupants and building components).  

 

Figure 3: Schematic representation of the type of human responses that can be collected in studies 

investigating cross-modal or combined effects. 

In addition to a clear description of the human response type under consideration, studies should clearly 

report how these responses were gathered by specifying the method(s) of assessment and the adopted tools 

used (e.g., questionnaire for perception responses, test type for performance responses, sensing technology 

for behavioral and physiological responses). Such tools must be described in detail to allow reproducibility 

and a comprehensive understanding of the followed methodology. In addition to the details of the assessment 

method, the time and frequency of assessment must also be reported. Special attention must be given to the 

description of the questionnaires and the related responses when subjective evaluations are sought. 

Questionnaire responses, if not in an open-ended format, refer to scales that can be categorical (CS), visual 

analogue (VAS), categorical scale combined with VAS (graphic CS), semantic differential, or dichotomous. 

To get comparable data and results, agreement on specific aspects of the subjective assessment scales is of 

primary importance. These can be summarized in (i) adopted terminology in the questions and responses, 

(ii) type of scale used, and (iii) (only in case of CS) number of provided response categories. From this point 

of view, it is essential to report the original text of the adopted questionnaire, preferably in both the original 

language and English.  

3.1.2 Independent variables 
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Multi-domain studies are characterized by the presence of more than one environmental stimulus, presented 

in combination. Such environmental stimuli are the independent variables of the study. Reporting the type of 

combination of the environmental stimuli is taken for granted as it represents the essence of each multi-

domain investigation. However, the detailed description of the independent variables needs further attention. 

Correctly describing independent variables in multi-domain investigations is crucial for conducting replication 

studies and facilitating meta-analysis and comparison across studies. The way of reporting independent 

variables depends on the study approach, either experimental or observational. In experimental 

investigations, usually carried out in a climate chamber or an environmentally controlled space, the 

experimenter manipulates the independent variables to measure their effect on the dependent variable. In 

contrast, in observational studies conducted in field setups, the experimenter cannot usually control the 

independent variables, which are measured to observe correlations between independent and dependent 

variables.  

In multi-domain papers reporting experimental studies, researchers should always clearly indicate the 

independent environmental variables in terms of type (e.g., air temperature), the number of levels (e.g., 3), 

and design values (e.g., 22 °C, 25 °C, and 28 °C). In experimental cross-modal studies, both same-modality 

and cross-modal independent variables must be clearly described. For example, in a study investigating the 

effect of Correlated Color Temperature (CCT) of light on thermal perception, the cross-modal independent 

variable CCT must be reported together with the air temperature, representing the same-modality variable.  

In multi-domain papers reporting observational studies, as the independent variables are usually not 

controlled but measured, researchers must clearly report the measured variables’ descriptive statistics, i.e., 

measures of central tendency and variability. This information is critical for evaluating the external validity of 

the study’s findings, and whether the findings are generalizable to the study’s source population of people 

and buildings.  If the researchers cut the independent variables’ continuous values into bins for analysis (e.g., 

[51]), then each bin must be described in terms of value counts and mean or median. Such description is 

necessary as the choice of bin number and position is arbitrary and generally do not have practical/scientific 

meaning and could influence the results. Analyzing solely with the described bin method may lead to some 

loss of information. Therefore, it must be complementary to other descriptions of the independent variables. 

It is recommended to opt for continuous and numerical design values (rather than categorical ones such as 

“blue” and “red” when colors are assessed) that enable replication studies and facilitate meta-analysis. When 

several levels of the same independent variable are considered, it is a good practice to assign different labels 

to the different levels, facilitating the comprehension of both the experimental design and the results. Another 

good practice is the consideration of possible covariates (e.g., summarized for thermal comfort by Wang et 

al. [52] or Schweiker et al. [53]) that are not environmental, for example, gender, age, and body mass index. 

Refer to 3.1.4 and  3.2.2 for further discussion on the topic. 

3.1.3 Research hypothesis 

Stating and describing the research hypotheses of a study leads to a better comprehension of the work, even 

if it consists of an exploratory study searching for discoveries, trends, correlations, or relationships between 

the measurements in which outcomes would generate new ideas or hypotheses (that need to be confirmed 

in follow-up studies). When conducting a causal research based on a pre-existing theory and aimed to 

determine what occurs to one measurement on average when another measurement is changed, it is possible 
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to state causal hypotheses. The causal hypothesis should be stated in all cases where the scientific literature 

reasonably sounds or where the current state of knowledge on the topic makes it possible. This makes it 

easier to determine the research scope and establish a correlation between the initial assumptions and the 

results. 

Research hypotheses should be described in terms of “directions.” A hypothesis with direction expresses a 

direct or inverse relationship between dependent and independent variables: if the independent variables 

increase (or decrease), the dependent variable increases (or decreases). An example is the Hue-Heat 

Hypothesis, posing that warm-appearing colors, such as red or yellow, make people feel warmer, while the 

opposite effect is obtained with cold-appearing colors [54], [55]. A hypothesis “without direction” expresses 

a general relationship between dependent and independent variables regarding the influence one may have 

on the other (e.g., thermal conditions influence acoustic sensation and perception [56]).  

3.1.4 Setting feature 

Experimental setting features play a fundamental role in the combination and interaction of the variables 

investigated in multi-domain studies. The following paragraphs summarize the importance of collecting and 

reporting information regarding: the environmental conditions not varied as independent variables, the 

building and space type, the space layout, equipment, ventilation, and lighting, the control opportunity, and 

the experimental location. 

Along with a detailed description of the environmental stimuli investigated as independent variables, it is 

necessary to include a comprehensive description of all the environmental features, considering as well those 

that were not included as independent variables. Such a comprehensive description of the indoor 

environment might help to understand potential differences across studies and detect confounding factors. 

The type of building or space (i.e., office, educational, residential, or others) determines several aspects of 

the experimental setting, e.g., indoor space layout, furniture, occupants’ activity, or interaction with other 

people. Specifying the building or space type in a field study but also the “emulated” space in an experimental 

lab setting is crucial. 

Besides indicating building and space typology, a description of the space layout, equipment, ventilation, and 

lighting gives a comprehensive and immediate overview of the space. Layout description should include 

dimensions and photos for furniture type and disposition, for instance, the distance between the seats and 

relevant building elements (e.g., windows). Describing relevant equipment (such as HVAC, artificial lighting 

etc.) and building elements (windows, shadings etc.) is also important, as these influence indoor 

environmental conditions and occupants’ interaction with available interfaces [57]. Lighting type and related 

details should be described, that is, electric, natural, or a combination of the previous, and possibly specifying 

if electric lighting was designed to obtain extreme conditions (e.g., a poorly lit environment). Related to 

lighting, fenestration systems should be detailed with reference to shadings (internal or external) or, if present, 

advanced technologies (e.g., smart windows, low-emissivity coatings etc.). 

Another relevant feature involves the interactions that occupants can have with building interfaces (i.e., 

occupant control). Occupant control can influence not only human interactions but also the satisfaction and 

behavior of users in different domains [58], [59]. Thus, reporting exhaustive information on control 

opportunities within the indoor space is highly recommended. 
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Despite not being directly related to the experimental indoor space, knowing the location brings insights into 

the climatic conditions and indicates participants’ cultural approach, including their habits, perception, and 

reporting attitudes. 

3.1.5 Exposure feature 

This section covers the conditions to which subjects are exposed (i.e., exposure features). Such information 

is essential when analyzing the results and ease the replicability of the experiments. The first aspect to 

consider when defining and describing the exposure features is whether the experimenter measures human 

responses to different exposures within-subjects (i.e., all participants are exposed to all conditions), between-

subjects (i.e., each participant is exposed to some of the conditions), or a mix of the two (i.e., participants are 

exposed to all conditions of one experimental variable and to some of the conditions of another experimental 

variable). An important aspect to provide clearly in this latter case is the number and combination of tested 

experimental conditions (e.g., mixed design with one between-subjects condition and two within-subjects 

conditions). 

Each study must then define and report the characteristics of exposure, which we can divide into (i) the 

“exposure type” (i.e., steady-state, dynamic, or combined), (ii) the length of exposure for each experimental 

condition (e.g., exposure to warm temperature for 30 minutes and to each light condition for 10 minutes), (iii) 

the number (and demographic information) of participants per experimental condition, and (iv) the timing of 

the exposure (during the day and the year). For example, seasonal variations are important to be recorded 

given their impact on several human responses [60]. In addition, publications suggest the potential variations 

of human responses during the day [61]–[63], highlighting the importance of recording and reporting the 

exact time of the day during which the experiment is conducted. In the case of within-subjects design, it is 

also necessary to report the number of experimental conditions experienced in a day by the same participant 

and their potential distribution over several days. It is also good practice to report the total length of the 

experiment for each participant, especially in the presence of within-subjects design when each participant 

is exposed to a series of experimental conditions.  

The adaptation time (or acclimation time, i.e., is the time given to the participants to adapt to the experimental 

conditions) is another exposure feature that should be considered and reported in all studies. The 

consideration of the adaptation time is more relevant in studies involving the thermal domain since the human 

body requires longer time to reach a steady-state thermal response in a new thermal condition and/or at a 

different activity level [64] and strongly depends on the temperature difference between experimental and 

pre-experimental conditions. 

3.1.6 Experimental design quality 

Recently, a replication crisis has been in the spotlight of the scientific community [65], [66]. This crisis is 

mainly attributed to selective reporting bias (i.e., reporting only significant results and omitting non-significant 

results) and poor experimental design quality (e.g., lack of a random assignment of subjects). A quality 

experimental design should follow several principles commonly reported in statistics books (e.g., [47], [67], 

[68]): (i) randomly assigned or counterbalanced experimental conditions; (ii) blinded (single- or double-blind) 

experimental procedure; (iii) controlled confounding variables (experimentally or statistically); (iv) reported 

study null condition; and (v) repeated one or more experimental conditions. 
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Besides the recommendations above for specific experimental design elements, a pre-design step for 

countering the replication crisis trend of underreporting results that did not reach significance is pre-

registration. In pre-registration, before beginning to run an experiment or study, the authors outline their 

hypotheses, methods, and analyses in a public registry (e.g., https://aspredicted.org/). If this step had been 

taken, the reporting of randomization, blinding, controls, and hypotheses in the analyzed multi-domain studies 

would have also been accomplished. None of the reviewed studies were pre-registered, as far as could be 

determined. The lack of pre-registration is a common feature of all the experiments conducted in the Building 

Science field and not only for multi-domain experiments. A noteworthy exception in this field is the study by 

Schweiker et al. [69], which had been registered on osf.io. 

3.2 Study deployment and analysis 

3.2.1 Data collection and processing 

A comprehensive reporting of the data collected and the way such data is processed before the statistical 

analysis is essential as it facilitates comparison, meta-analysis, and the reproduction of an experiment. 

In multi-domain studies, it is important to measure and report all the environmental stimuli – not only the 

investigated independent variables but additional factors that are hypothesized to be relevant. For example, 

in a study on the cross-modal effect of light on thermal perception, the air quality, and acoustic conditions 

should be reported as well (at the best of the researcher’s knowledge). Without measuring the possible 

confounders, the analysis necessarily excludes them, and therefore the results of the analysis are less valid. 

Besides the type of environmental stimuli collected, it is important to report how the measurements were 

performed and the data processed before the statistical analysis. More specifically, the measurements’ 

location, frequency, processing (e.g., “is data averaged over a specific period of time? How is missing data 

treated?”), and differences from the design conditions should always be reported or discussed. Regarding 

the measurement location, it is important to highlight that measurements, whenever possible, should be taken 

in proximity to the occupant, based on the recommendations of the domain-specific guidelines, to correctly 

evaluate the effect of one environmental stimulus on another domain perception or behavior since those are 

the actual environmental conditions that affect the occupant. 

3.2.2 Participants 

Like all studies involving human subjects, multi-domain studies should include a concise but exhaustive 

description of participants’ characteristics to (i) demonstrate the representativeness of the research findings 

(sample size and confidence interval), (ii) provide insights on the generalizability of the findings as well as 

possible limitations of the study (external and internal validity), and (iii) test the impact of these confounding 

factors on the hypothesis testing and provide confidence of the results. Sufficiently detailed information, as 

far as possible by obeying privacy issues (e.g. following the General Data protection regulation, GDPR [70]) 

on the distribution of participants (e.g., total number, number of males/females/not disclosed gender), the 

personal characteristics of the subjects (e.g., culture/origin, age/height/weight, health status, and verification 

of physical conditions before the experiment), as well as information related to their experimental involvement 

(e.g., direct observation, described task, participation payment, detail on the ethical approval and consent), 

is required for reviewing research findings and aid future replication studies.  
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3.2.3 Statistical analysis 

Statistical methods are fundamental instruments in experimental studies to support the interpretation of the 

results and develop accurate, reliable, and representative experimental designs. To this end, statistical tools 

are used for characterizing the recorded observations, testing for differences among data series, quantifying 

the effect size, developing, and validating models, and identifying the sample size required to detect an effect 

in an experiment given the desired significance level, effect size, and statistical power. The adoption of a 

specific statistical method should always be justified. Also, the studies should communicate clearly the 

hypotheses tested and the assumptions set together with the adopted statistical tests and significance levels. 

Although publication space is scarce, and journals often urge authors to draft their manuscripts as concise 

as possible, detailed reporting of statistical analyses is mandatory if authors wish to present their results in a 

replicable fashion and to make their findings amenable to meta-analytical efforts [71]. To rely on the results 

of statistical methods, to promote transparency and reproducibility of experiments, and to ensure robustness 

to systematic errors, it is essential that studies clearly state the sample size, identified through an a priori 

power analysis or justified by any other method (e.g., resource constraints, accuracy, heuristics) to provide 

evidence of representativity. Effect sizes are important as a measure of how meaningful the difference 

between different variables or groups is to demonstrate the actual real-life significance of the experimental 

outcomes. It not only indicates the strength of the statistical results, but also puts a study into perspective by 

facilitating the comparison across different studies and helping to determine sample sizes for future studies. 

Beyond the basic descriptive findings such as measures of central tendency, error, and dispersion as well as 

data distribution characteristics, a detailed summary of the statistical results also includes the reporting of 

non-significant results, degrees of freedom (related to sample size), missing data, and potential exclusions of 

data points as well as imputation methods, if applied. Lastly, any changes and adaptations applied to the 

statistical models and tests need to be stated [72].  

In case the full report of these figures is not possible in a paper’s results section or may appear redundant to 

the reviewers (indeed, some statistics can be reverse-engineered and checked for plausibility from reported 

results with tools such as G*Power or statcheck, see [73], [74]), authors are encouraged to seek online 

supplemental publication possibilities which are provided by a growing number of journals. Lastly, although 

the full extent of how strong various research fields are plagued by publication bias remains unknown, 

selective publication of only significant findings bears the threat of misrepresenting findings and puts the 

burden of detailed checks and evaluations on the researchers conducting the research synthesis [75], [76]. 

Finally, it is recommended that the statistical method is decided before the experimental design, guided by 

the aim of the study. In this way, the experiment is designed to get the data needed to support the data 

analysis and aim of the study.  

3.3 Study outcome 

3.3.1 Reporting results 

This section does not focus on the specific results obtained in the considered papers (e.g., “is temperature 

affecting visual sensation?”) but on the content that should be reported in the result section of each study 

and the way such content should be presented. In general, for reasons of transparency, comparability, and 

general advancements in a particular research area, the results must contain sufficient information regarding 
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each individual outcome to facilitate replication or metanalysis efforts. This is especially true for the case of 

multi-domain studies due to a large number of potentially dependent and independent variables, which 

cannot be addressed through a single study. Given the need to report on each permutation of possible 

interactions between variables, the number of reported outcomes increases exponentially when compared 

to single variable studies. As space is usually limited, documenting data alongside the paper – including a 

detailed description of the number of data points excluded and argument (statistical, thematic) for exclusion 

can be done in a separate document, such as data descriptors, e.g. [77], [78].  

While the section about results in general reports problem-specific findings intended to answer a specific 

research hypothesis, the following basic information needs to be provided2: (1) descriptive statistics for each 

individual variable collected (depending on data type, e.g. measures of central tendency and variability 

alongside with sample size); and (2) results from inferential statistics, disregarding whether they are 

statistically significant or not (see reporting bias in science and the potential of misrepresentation of scientific 

results [79]). From this perspective, it is of utmost importance to report all main and interaction effects, the 

exact level of significance (i.e., p = .04 and not p < .05) [80], and the effect size, whenever it is possible to 

determine it. The results should be in line with the type of the statistical test and its purpose described in the 

paper (most likely in the Methods section). The observed effects, but not stated as primary or secondary 

research hypotheses, need to be flagged as “explorative”.  

Specifically for multi-domain studies, a classification of the expected and observed effect is recommended, 

that is, whether it is a cross-modal effect, or a combined effect. In addition, further classification of the results 

should be reported according to the effect type. For cross-modal effects, it is necessary to indicate the 

“direction” (i.e., positive, negative or no effect) of the effect instead of merely reporting the presence of an 

interaction. The direction should be described according to the level(s) of the same-modality independent 

variable. For example, if temperature influences visual perception, the study should clarify if the effect of a 

specific visual level (e.g., dim illuminance) is positive or negative according to a specific thermal level (e.g., 

cold temperature).  

Figure 4 schematizes the possible cross-modal effects between two stimuli and the resulting directions. As 

illustrated, the presence of a stimulus B can result in a negative effect (i.e., strengthen a negative or weaken 

a positive response of stimulus A alone as in Figure 4a and Figure 4b), positive effect (i.e., weaken a 

negative or strengthen a positive response of stimulus A alone as in Figure 4d and Figure 4e) or no effect 

(i.e., response to stimulus A is not affected by the presence of stimulus B as in Figure 4c) on the response 

to stimulus A.  

 
2 For some readers, some of these points may appear as common knowledge. However, our review showed that there are still a 

substantial number of papers published without including even basic information such as measures of dispersion like standard 

deviations. 
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Figure 4: Schematic example of cross-modal effects of stimulus B on the response to stimulus A and the 

resulting effect directions. 

 

Table 2 illustrates a possible scheme for summarizing the results of a cross-modal effect between two stimuli, 

with three levels each. The number of columns and rows can be adapted to the number of levels tested for 

each stimulus. The following descriptions of the results are suggested as examples: 

• Significant negative effect: the presence of stimulus B at level x (e.g., illuminance, dimmer condition) 

strengthen the negative or weaken the positive or neutral response of stimulus A (e.g., thermal 

comfort) at y level (or all levels) of stimulus A (e.g., colder and warmer). In Table 2, this effect is 

shown in the first column of stimulus B. 

• Significant positive effect: the presence of stimulus B at level x (e.g., illuminance, brighter condition) 

weaken the negative or strengthen the positive response of stimulus A (e.g., thermal comfort) at y 

level (or all levels) of stimulus A (e.g., colder and warmer). Table 2, this effect is shown in the last 

column of stimulus B. 
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Contrary to the example described, note that the effects can be different according to the level of stimulus A 

(e.g., be positive at low level and negative at high level). Results could also be represented graphically as in 

Figure 1. 

Concerning combined effects, when not described as a combined index, they can be further specified into 

additive, synergistic, or antagonistic, with reference to the medical analogies described in the ASHRAE 

Guideline 10-2016 [39, p. 7]. Figure 5 describes the possible combined effect types, according to the following 

definitions reported in the standard:  

• Additive: when each of the stimuli affects the human response and their combined presence results in the 

sum of their separate effects (no effect of interactions); 

• Synergistic: when the combined presence of two or more stimuli results in a greater effect than the sum of 

their separate effects (enhancement effect of interactions); 

• Antagonistic: when the effect of the combined presence of two or more stimuli is less than the sum of their 

separate effects (diminishing effect of interactions). 

 

Figure 5: Schematic example of combined effects of stimuli A and B on human response and the resulting 

effect description. 

Also, in the case of combined effects, results could be described as illustrated in Table 3 according to the 

levels of the considered stimuli. 

 

Table 2: Template for results reporting for cross-modal effects of stimulus A + stimulus B on the response to 

stimulus A. 



 

19 

  
Original effect 

of stimulus A 

on the 

response to 

stimulus A 

(same-

modality) 

Effect of Stimulus A + Stimulus B on the response 

to stimulus A 

Stimulus B levels (e.g., visual – illuminance) 

Lower level 

(e.g., dimmer) 

Comfort level Higher level 

(e.g., brighter) 
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 (
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.g

.,
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) 

Lower level 

(e.g., colder) 

discomfort e.g., negative  e.g., positive 

Comfort level comfort e.g., negative 
 

e.g., positive 

Higher level 

(e.g., warmer) 

discomfort e.g., negative 
 

e.g., positive 

 

Table 3: Template for results reporting for combined effects of stimulus A and B on human responses. 

  
Effect of Stimulus A + Stimulus B on human response “x” 

Stimulus B level 

Lower level Comfort level Higher level 

S
ti
m

u
lu

s
 A

 

le
v
e
l 

Lower level e.g., additive   

Comfort level 
   

Higher level 
   

 

3.3.2 Study discussion and conclusion 

As for all research papers, it is obvious that multi-domain studies should present the discussion and 

conclusion sections. They should naturally follow and comment on the results of the study (hence being data-

informed and not speculative), with reference to the results of previous studies on the topic. These sections 

should also include future studies, study limitations, mechanism explanations, and practical implications. With 

the declaration of future studies and the identification of the limitations, authors provide food for thought for 

the scientific communities pointing out the direction of the research highlighting the way to create a shared 

opinion. The tentative explanation of the mechanisms related to the results can be used as the basis for future 

research. Finally, the identification of practical implications of the research creates a direct link between the 

experiment and the impact on human life and society. 

4 Critical review of existing multi-domain research  
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The following sections review existing multi-domain research based on the quality criteria defined in 

Section 3, presenting a transversal analysis of the percentage of studies reporting the aspects whenever a 

specific quality criterion is not present in all studies.  

4.1 Review of study set-up 

4.1.1 Dependent variables: human responses 

 

Figure 6: Distribution of human response types in multi-domain studies according to the type of effect 

(combined, cross-modal) and the study type (field or lab). 

Figure 6 summarizes the distribution of human response types investigated in the considered multi-domain 

studies and shows that most of the studies investigated perceptual responses. In most of the studies, 

perceptual responses were the only human responses considered, and only in a few studies  were human 

responses considered in combination with performance (e.g., [81]–[85]), physiology (e.g., [86]–[88]), or 

behavior [89]–[91]. Behavior and performance alone were investigated in fewer studies compared to 

perception. The limited number of studies reporting physiological responses may be due to the papers 

considered in this research, although it included studies with physiological responses in combination with 

other human responses only. Physiological responses were collected in lab studies only. This outcome may 

suggest that sensing techniques for collecting physiological signals are still too invasive or too expensive to 

be used in field studies. Similarly, performance studies were only conducted in lab environments. Behavioral 

responses were primarily collected in field studies, unless they were investigated with other human responses 

in lab studies [90]–[94]. Additionally, behavioral investigations in field studies were based on the collection of 

data on windows and blinds operations [95]–[102], thermostat setpoints [81] and ventilation speed settings 

[94]. Perception responses were equally collected in both lab and field studies.  

When observing the distribution of data collection approaches (objective and subjective) adopted for 

gathering human responses, performance, behavior, and physiological responses were primarily collected 

via objective approaches. Performance was objectively assessed  through dedicated performance tests while 

exploring different cognitive dimensions (e.g., proofreading, arithmetic, problem solving, creative thinking, 

etc.), which were generally quantified through the number of correct answers provided [103]–[106], the 
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associated response times [84], [107], or both [108]. The subjective assessment of the performance was 

conducted through questionnaires [81]–[83], [109]. Methods for the objective evaluation of human behavior 

were based on the experimenter’s observations of subjects’ clothing adaptation throughout the test (e.g., 

number of clothing items put on/off) [92], sensors to assess windows and blinds state [102], or equipment 

settings (e.g., selected fan speed level) [94]. Information on windows state was also commonly collected 

through physical measurements by means of sensors, especially in long-term field studies [95], [97], [101], 

[102]. The objective approach for physiological aspects relied upon the use of wearable sensing technologies. 

The most investigated signals were heart rate, skin temperature, and blood pressure, while other signals such 

as core temperature, electroencephalography (EEG), electrooculography (EOG), blink measurement, eye 

movement, respiration rate and skin conductance (also through the use of an algorithm for the detection of 

artifacts [110]) were rarely included in multi-domain studies [55], [108]. The subjective approach to collecting 

physiological observations focused on direct questions about subjects’ perception of health symptoms (e.g., 

eye irritation, throat irritation, and skin dryness) via questionnaires [87], [88], [111].  

When studying human perception through subjective assessment, the top five assessment categories were 

perception, comfort, satisfaction, acceptability, and preference. They were primarily assessed through 

categorical scales. Perception, satisfaction, and preference were most often expressed through a 7-points 

scale, while comfort was mainly investigated on a 5-points scale, and acceptance on a 3-points, 4-points, or 

dichotomous scale (acceptable, not acceptable).  Some trends can be identified, most likely as a result of 

questionnaires referencing standards pertaining to human perception research [21], [112], [113].  It must be 

noted that sometimes, despite evaluating the same assessment category (e.g., thermal sensation) and 

indicating the same number of response categories, the labels used can vary [114].  Similarly, visual analogue 

scales can have varying ranges (e.g., 0 to 100 or 0 to 60) [111], [115]. These differences may increase the 

difficulty of comparing results across studies. 

4.1.2 Independent variables: combined environmental stimuli 

Figure 7 reports the distribution of independent variable combinations in the considered papers. In general, 

thermal and visual stimuli were the most investigated combination of independent variables, mainly studied 

in cross-modal investigations. Thermal and IAQ, and thermal and acoustic, were the second and third most 

common combinations in cross-modal studies, highlighting the dominant interest in thermal studies. In 

contrast, combined effect papers tended to focus more on all four environmental stimuli and their effect on 

overall perception and performance. Behavior and physiological responses were primarily studied in 

response to thermal and visual, and thermal and IAQ combinations. The least studied combinations were 

visual and IAQ, and acoustic and IAQ, both in cross-modal and combined investigations. 
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Figure 7: Distribution of independent and dependent variables, according to the type of effect (combined, 

cross-modal), study type (lab, field) in the reviewed papers. Acu = Acoustics; IAQ = Indoor Air Quality; The = 

Thermal; Vis = Visual. 

All the reviewed studies reporting experimental investigations about cross-modal effects indicated the type 

of cross-modal independent variables. Only a few studies did not report the number of levels (3%) or the 

design values (6%). In contrast, the same-modality independent variable was sometimes not described in 

terms of type (12%) and design value (18%). Figure 8 summarizes the design values of the independent 

variables (facet headings) used in experimental cross-modal investigations. The sensory domains on which 

their effect was tested are indicated on the x-axis. For example, the first box on the top-left of the graph 

illustrates the values of indoor air temperature tested to assess their influence on acoustic, IAQ and visual 

responses. The “thermal” response is not indicated as it is a same-modality response. Each dot represents a 

tested condition, while the box-plots illustrate the overall ranges of values for each independent variable (i.e., 

mean and interquartile range). It can be observed that the thermal independent variables (air temperature, 

relative humidity, air velocity and Fanger’s Predicted Mean Vote - PMV) were the most considered 

independent variables, investigated to assess their influence on all the non-thermal domains. This outcome 

can be expected given the strong interest in thermal studies previously highlighted. For all independent 

variables, extreme values were commonly used in experimental investigations. The choice of extreme stimuli 

can be justified because if a cross-modal effect is not observed for extreme stimuli, it is unlikely that it will 

occur in normal conditions (if it assumed that the relationship between the dependent and independent 

variable is linear). Interestingly, when the same independent variable was tested on different sensory domains 

(e.g., air temperature effect on acoustic, IAQ and visual perception), the distribution and median of its values 

were consistent across domains.  
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Figure 8 highlights the least and more explored combinations or range of independent variables tested in 

cross-modal investigations, an information that can be used to guide future multi-domain studies. Ventilation 

rate was not represented, as only one value (30 l/s influence on thermal and acoustic responses) was present 

in the considered studies. 
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Figure 8: Number of cross-modal studies depending on the domain and reported value of the Independent 

variable (IV). Each dot represents the value of the independent variable investigated in the literature. Dots are 

randomly jittered to discern more values and their left or right position with respect to the vertical line in each 

boxplot has no additional meaning. 
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The great majority of the reviewed studies reporting experimental investigations about combined effects 

clearly indicated the type of independent environmental variables. Design values were specified in most of 

the studies as well (98% of studies reporting thermal stimuli, 88% visual, 95% IAQ and acoustic). Level values 

were less frequently reported for each environmental variable: 71% for thermal and 76% for visual, IAQ, and 

acoustic. Figure 9 shows the combination of the independent environmental variables reported in 

experimental studies investigating combined effects. It can be observed that air temperature and illuminance 

were the most studied variables. Figure 9 also indicates the dependent variables, confirming the 

overwhelming focus on overall comfort and performance as discussed before and highlighted in Figure 7. 

The range of considered values broadly varied between variables and the investigated human response. 

Figure 9, similarly as Figure 8 for cross-modal effects, highlights the least and most explored environmental 

stimuli combinations tested in combined effects research, a piece of information that could be used for future 

multi-domain studies. 

 

 

Figure 9: Combination of independent variable values employed in experimental investigations studying 

combined effects, considering the dependent variables (indicated with colors). Ventilation rate, air velocity, 

relative humidity, CCT, and VOC (Volatile Organic Compounds) are not represented as only a few data points 
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were present in the considered studies. Some outliers of the represented independent variables were 

excluded as well (i.e., 3000, 4000 lx). Each dot represents an investigated independent variable. 

Finally, in most of the reviewed multi-domain investigations, the independent variable values were continuous, 

only rarely categorical (e.g., natural versus electrical light, wall colors, good vs. bad light comfort conditions).  

4.1.3 Research hypothesis 

Only 53% of the considered articles reported the research hypothesis, divided into those where the 

hypothesis was “with direction” or “without direction” (Figure 10). Studies carried out in laboratories had the 

highest percentage of hypothesis statements (59%) with almost the same percentage for “with direction” 

(28%) and “without direction” (30%). In addition, most articles with a hypothesis statement belonged to 

“cross-modal” experiments, mainly carried out in laboratories. In research on the combined effect, only 26% 

of the papers stated the hypothesis. Among them, the study by Lin [116] can be considered as a best practice 

of the category “with direction” because the author clearly stated the hypothesis of the work: “higher noise 

intensity and either too low or too high illumination intensity will reduce visual performance”. The papers on 

the combined effect not reporting the hypothesis might be due to the lack of research and data on the topic 

[84], [107], [108], [117]–[119]. 

More than 60% of field studies did not state the hypothesis. This may be due to the number of uncontrolled 

variables that make it difficult to formulate a clear hypothesis. In this case, the research was based on generic 

assumptions that needed to be verified in the current conditions. 

 

Figure 10: Relative frequencies of hypothesis statements in the considered studies. 

4.1.4 Setting feature 

The considered setting features and their presence in the literature are summarized in Figure 11 and 

discussed in the following.  
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Figure 11: Relative frequencies of the experimental setting features in the considered studies. 

Despite the fundamental importance of a comprehensive description of all the environmental conditions 

(besides the ones varied as independent variables), most of the considered studies did not report them. Only 

about 20% reported a comprehensive overview (e.g., [54], [55], [120]) (i.e., with all environmental stimuli 

described), while an additional 37% included a partial description. The description was often present in lab 

studies, especially when it was comprehensive (Figure 11). Many studies described only the features that 

were relevant in the investigated domains, neglecting the potential cross-modal influence of other domain-

related features. 

The building or space type was not reported in 47% of all the studies. In laboratory studies, the “emulated” 

space type was not reported in 60% of cases. From the studies that did report the building or space type, it 

can be observed that multi-domain studies were mainly carried out in offices (34%), followed by educational 

(10%) and residential buildings (5%).  

In the investigated studies, 48% omitted space pictures and 35% reported it without participants (ethical 

issues may play a role in this case). A good reference for description can be found in several studies [83], 

[121]–[124].  Best practices of pictures can be found in [94], [105], [125]. 55% of studies did not report any 

information about the heating and cooling systems, and only 50% provided information on ventilation type. 

Examples of these systems descriptions can be found in Tiller et al. [84] and Yang and Moon [126]. Description 

of ventilation type can be found in Skwarczynski et al. [127]. Lighting information was provided in 55% of 

studies, with a large prevalence using electric lighting (37%). The reduced number of studies on daylight  

could be explained by the challenging experimental conditions that such an environmental variable entails. 

Winzen et al. [131] and Chinazzo et al. [55] described the lighting system.  Among the investigated studies, 

information about the fenestration system was only accounted for in 22% of papers. Reference descriptions 

can be found in Haldi and Robinson [124] and Garretón et al. [132].   

Among the studies considered in this work, 86% provided information on control opportunities, especially in 

laboratory experiments. Discrepancies between laboratory and field studies can also be recognized in terms 

of occupants’ level of control over the environment since lab experiments were largely characterized by the 

lack of control by occupants (92%). The same situation can be found in only 11% of field experiments. 
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Reporting exhaustive information on occupants’ possible interactions with all available interfaces was not 

common since studies usually provided insights solely about actions that affected the investigated variables. 

Most of the studies (88%) provided details on the experiment location (e.g., reporting the city and country), 

offering the possibility of interpreting results with a more accurate consideration of local climatic conditions 

as well as sociological attitudes of the population [54], [114], [133]. Europe and Asia hosted most of the studies 

(38% and 35%, respectively), followed by North America (11%), South America and Oceania (about 1%).  

4.1.5 Exposure feature  

In the analyzed studies, the most frequent design was within-subjects (40% of studies), particularly common 

in lab studies, followed by between-subjects (18%) and mixed designs (15%). However, many papers did not 

clearly report on their study design (27%), especially in field studies, which might be due to the fact that field 

studies normally work with between-subjects-design as they measure existing environmental conditions 

without modifying them. A within-subject design in a field study would be called an intervention study. It is 

challenging to summarize the number and combination of tested experimental conditions in a concise manner 

as they vary highly across studies. For example, Huebner et al. [92] reported several conditions tested within-

subjects, with all subjects experiencing dynamic temperature variations, and two conditions experienced 

between subjects (two CCTs). Laurentin et al. [134] tested six conditions within-subjects (two temperatures 

and three light types).  

What is important to notice was the lack of reporting of exposure characteristics in many studies. While some 

missing information can be justified by the study type (e.g., the length of exposure for each experimental 

condition was rarely reported in field studies due to the lack of clear exposures), others should be reported 

in all studies to increase replicability and better understand study results. It was the case of the total length 

of the experiment per participant, not reported in 82% of field studies and 15% of lab studies, which greatly 

influences the outcome of the experiment given the potential fatigue of longer experimental sessions, 

especially in laboratory settings. It is surprising to see that the timing of the experiment during both the day 

and the year was not reported in many field studies (40% and 25%, respectively), and even less in lab studies 

in which the time of the day was not reported in about 55% of the studies and the time of the year in 61% of 

them.  

The last analyzed aspect of the exposure feature is the adaptation time. More than half of the studies reported 

the adaptation time, especially in lab settings (Figure 12). There was a tendency in most of the laboratory 

studies to use 30 minutes as an adaptation time; however, the time ranged from 5 to 55 minutes among the 

experiments, indicating a lack of consensus regarding this parameter.  
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Figure 12: Adaptation time in minutes reported in the studies (y-axis) in laboratory experiments.  

4.1.6 Experimental design quality 

As shown in Figure 13, there were substantive gaps in reporting across all the elements of good experimental 

design analyzed here. Half of the reviewed papers did not report how the participants were assigned to the 

experimental conditions, especially in field studies where 82% did not indicate this information. The risk of 

bias due to participants’ expectations during the experimental sessions was reduced through single-blind and 

double-blind procedures in 34% and 2%, respectively. The rest, mostly field studies, did not mention blinding. 

In IEQ studies, a procedure can be considered blind when the experimental conditions are not directly 

explained to participants (i.e., another goal is introduced instead of presenting the study as “the effect of x 

conditions on y human response”). It must be highlighted that it is very challenging to make some conditions 

blinded (e.g., temperature or light conditions), especially in repeated measures. Hence, a truly blind 

procedure might be hard to achieve in IEQ studies, especially with extreme environmental conditions. 

To reach the internal validity of the results, the experimental design must account for confounding variables. 

The most common variables controlled during data collection involved thermal stimuli (clothing insulation, 

relative humidity, and air velocity), followed by illuminance. Such variables can be controlled during the 

experiments or in the subsequent statistical analysis. The number of studies that did not report this 

information is high, especially in field studies. This is a surprising result considering the more numerous 

confounding factors present in real buildings than those found while performing controlled experiments. A 

null condition was reported in 28% of the studies, all of them developed in a laboratory setting. Depending 

on the type of stimuli investigated, different null conditions were used, such as comfortable indoor 

temperature or daylight transmitted through uncolored filters [55]. In a repeated stimulus design, the 

consistency of the responses to the same stimuli can be tested, which is a good practice to verify the reliability 

of the results [47], [67]. Yet, this approach did not seem to be common in the considered studies.  
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Figure 13: Relative frequencies of information about the experimental design quality reported in the 

considered studies by effect type and study type. 

4.2 Review of study deployment and analysis 

4.2.1 Data collection and processing 

Table 4 shows the frequency of the studies reporting the measured environmental parameters. The thermal 

parameters (i.e., temperature and relative humidity) were the most frequently measured and reported for 

both field and lab studies. The predominance of thermal measurements is linked to the numerous 

experiments concerning thermal aspects. However, it must be noted that such measurement was also present 

in other studies (approximately in 71% of all the reviewed studies). This outcome is potentially due to the 

great influence that thermal conditions play on occupants’ experience of space and the relative ease of 
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measuring thermal parameters due to the availability of low-cost sensors [135]. The visual domain was the 

second most frequently measured aspect, with 47% of studies reporting illuminance values.  

 

 

Table 4: Number of reviewed studies reporting to measure the environmental parameters. 

 
Overall, general information for reproducibility was scarcely reported in the considered papers, as shown in 

Figure 14. For instance, most studies did not report the frequency with which measurements were taken 

(78% of studies), the processing method used after data collection (59%), or the comparison between 

measured and design conditions (83%). These results include both field and lab studies. This lack of 

information on environmental measurements is a severe limitation of existing multi-domain studies. The 

location of the measurements was the only information that was reported more often, presented in 66% of 

the studies. Environmental measurements at the proximity of each participant were more common in lab 

studies than in field experiments, where sensors were usually deployed to measure the average room 

condition.      
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Figure 14: Relative frequency of reviewed studies reporting information on environmental stimuli 

measurements. The label “other” includes, e.g., per desk row, and in the corner desk. 

 

4.2.2 Participants 

Figure 15 highlights the percentage of studies reporting the participant characteristics. Overall, field studies 

had a higher number of participants (mean = 141) compared to laboratory studies (mean = 35). Distribution 

by sex was reported in most laboratory studies (91%) and approximately half of the field studies (46%). As 

shown in Figure 15, age is reported more than most other single characteristics (73%). The origin of the 

participants was reported in only 18% of the analyzed papers. The verification of physical conditions before 

the experiment (e.g., sleep, vision, food/alcohol/caffeine intake) was reported in more than half of the 

laboratory papers (55%), but rarely in field studies (11%). Indications about the subjects’ health status, height, 

weight, and origin were reported in one-third or fewer of the papers. Finally, participants’ involvement in 

experiments was more frequently reported in laboratory studies than in field studies across all measures. Of 

the measures, the description of tasks/activities was the most commonly reported (77%). In the described 

tasks/activities, the predominant activities were office activity (29%) and class activity (7%), while in laboratory 

studies, the most reported activities were reading (17%), sitting (15%), and conducting performance tests 

(13%). Participants’ payment for taking part in the project is reported in 44% of the papers. None of the field 

studies foresaw a payment to the participants, while 47% of the laboratory studies remunerated the 

participants. Surprisingly, information on the ethical approval and whether a tailored information sheet was 

distributed to the participants was reported only in 21% of the analyzed studies (7% and 25% in field and 

laboratory studies, respectively).   
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Figure 15: Relative frequencies of information about participants reported in the considered studies. 

 

While most studies provided detailed information on the number of participants, most of the described 

participant-related aspects seem to be underreported or not clearly stated in the papers. This leads to the 

risk that readers will make assumptions about certain aspects (e.g., assume that all participants were nationals 

from the country where the study was conducted). In future studies, researchers should report participants’ 

characteristics in detail to clearly define to whom the study’s findings apply. As best practice references, the 

studies that, according to our review, reported most of the relevant aspects related to participants’ 

characteristics and their involvement were Kim and Tokura [93], Chinazzo et al. [128], Golasi et al. [136], and 

Wang et al. [137]. 

4.2.3 Statistical analysis 

Among the considered publications, 44 statistical methods were used to analyze the combined and cross-

modal effects. Figure 16 shows the main statistical methods used in the reviewed studies and the percentage 

of the studies adopting different methods. The most used statistical methods were the analysis of variance 

(ANOVA), linear regression, and t-test. The least used methods were categorized in the “other” group, which 

includes, for example, Mann-Whitney-U test [138], change-point regression [97], and permutation test [105]. 
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The methods were also analyzed and categorized based on their “appropriate” use. For example, the t-test 

was deemed as “not appropriate” if multiple t-tests were applied directly as the primary test and not as a 

follow-up test of a “higher-order” test such as ANOVA. In addition, the absence of a statistical analysis was 

categorized as “not appropriate”.  

In Figure 16, it can be seen that mixed-effect models (also commonly referred to as multilevel or hierarchical 

models), although used, are not applied often. However, these models are valuable tools developed to 

address the violation of the independence assumption (required by traditional statistical analyzes such as 

ANOVA and ordinary least-squares regression). This assumption is violated whenever the observations are 

nested and/or clustered. For example, nested and/or clustered observations can arise from temporal and 

spatial autocorrelation. In the context of multi-domain studies, an application of these methods can be found 

in  [55], [128]–[130], [139]. In this figure, it can also be observed that only 5.9% of the statistical methods used 

(14 out of 236) perform preliminary tests to assess the collected data (e.g., Shapiro-Wilk to check the data 

distribution). 

Adopting a specific statistical method was justified in only 40% of the papers. This result shows that the 

authors either assumed the readers could infer the statistical reasoning or considered it not an important 

aspect of the manuscript.  

 

 

Figure 16: The percentage of different statistical methods used (thereinto, ANOVA includes repeated 

measures ANOVA, one-way ANOVA, two-way ANOVA, three-way ANOVA, factorial ANOVA, mixed model 

ANOVA, Welch’s ANOVA, ANCOVA, MANOVA, MANCOVA; generalized estimating equations includes a 
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model assuming a binomial distribution with logistic link, a model assuming a normal distribution with identity 

link function; correlation includes partial correlation analysis, Pearson’s correlation coefficient, Spearman’s 

rank correlation coefficient). 

Only 4% of the studies reported a power analysis, both in field and lab studies. This aspect attracts a quite 

interesting outcome because, in most of the cases, either the experimental design was not entirely reported 

in the publication, or the minimum number of observations of an experiment was simply stated but not 

justified.  

Despite its importance, only 22% of the studies explicitly reported the effect size, both in field and lab studies. 

It means that most of the studies referred only to statistical significance testing to evaluate their results.  

While the domain outcomes of the reviewed studies are of paramount importance and contribute to the 

development of the field knowledge, unfortunately, the description of the statistical methodology was often 

approximate or missing. In most cases, statistical methods were applied without a dedicated description of 

data acquisition, analysis, curation, storage, and usage. In some cases, even validity and representativity of 

outcomes cannot be inferred due to missing information on data accuracy, completeness, consistency, 

relevance, and uniformity.  

4.3 Review of study outcome 

4.3.1 Reporting results  

To our knowledge, the definitions of the results and results reporting style are described for the first time in 

this study. Therefore, it is difficult to analyze the presence of such information in the considered papers. Most 

of the time, we observed that results were reported in an incomplete way (e.g., only statistically significant 

results were described, or not all the effects of all the considered stimuli were reported). In addition, the 

direction of the effect in cross-modal studies and the type of combined effect were rarely stated. Finally, a 

graphical representation of the cross-modal and combined effects was reported in only a few studies (e.g., 

[130], [140], [141]). 

4.3.2 Study discussion and conclusion 

Figure 17 shows the relative frequency of data-informed conclusions and frequency of reporting future 

studies, study limitations, mechanism explanations, and practical implications.  
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Figure 17: Relative frequencies of information about conclusions and discussions reported in the considered 

studies, according to the effect type and study type. 

Most of the articles (88%) presented conclusions based on data, while the remainder seems to be speculative. 

Such distribution was similar across effect types, but not across laboratory versus field studies: the 

percentage of conclusions based on data is higher in research carried out in laboratory than in-field, 90% 

against 82%, respectively. This difference can be related to the opportunity to control some potential 

confounding factors in laboratory that are not always detectable in a real case.  

Roughly half of the studies did not identify future studies, limitations or practical implications, although there 

were some differences within the sub-types. For instance, limitations were related to the study type, with 

some of them only relevant for field studies (e.g., limited control) and others for lab studies (e.g., limited 

exposure time). Also, in studies carried out in the field, the percentage of papers with mechanisms explanation 

was lower than those in a laboratory, 64% and 86%, respectively. The results of these studies can be 

influenced by variables that cannot be controlled, making it difficult to reach an unambiguous result [142]. 

However, in many cases, authors were able to provide a description of the mechanism [97], [121], even with 

a step forward from the initial hypothesis [143]. In research carried out in laboratory, the use of a wide range 

of sensors and the control of variables allowed some authors to explain the results while also considering a 

physiological point of view [90], [93], [127], [144], [145]. In other studies, authors deepened the effect of 

specific stimuli on the perception of comfort [146] or on performance [116].  

In the articles presenting future studies several authors propose further research in the form of new 

configurations of existing independent variables or expanding their ranges and identifying new parameters 
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of the same independent variables or new environmental factors. These future developments are more visible 

in cross-modal analysis where the interaction among the independent variables are often partials. Other 

future studies include the investigation of different size, age, and origins of the participant group, of new 

building typologies or settings, different exposure time and experimental length, and of new computational 

models. 

Practical implications were not reported in 43% of the analyzed papers. Examples of good descriptions of 

practical implications can be found in several papers [85], [116], [147].   

5 Conclusions and recommendations 

5.1 Key observations 

The premise of this paper, as well as that of most of the work it assesses, is that people’s experience of and 

response to indoor environmental conditions involve multiple domains. Nonetheless, the bulk of regulatory 

resources for building professionals is single-domain. This may be attributed to the complexity of multi-

domain exposures and the mechanisms by which they influence buildings’ occupants and implies a need for 

increased multi-domain research. Moreover, while additional studies are necessary, they are not sufficient 

for progress in this area. To achieve a deeper understanding of the nature of multi-domain exposure 

implications for occupants’ health, comfort, and productivity, the related research must also satisfy several 

qualitative requirements. Such research must be designed, conducted, and documented in a systematic and 

transparent manner, such that the results are reproducible and suitable for meta-analyses. This paper’s 

assessment of the past research efforts in this area identified several shortcomings, notwithstanding the 

studies’ general relevance, importance, and in some cases, pioneering significance. Therefore, as the 

following summary of the observed key challenges implies, necessary quality improvements of future multi-

domain research need to address both the studies’ design, deployment, and reporting. The key observations 

are divided into those related to each aspect of the critical review and those associated with a transversal 

analysis of the results. 

Key observations of the critical review: 

• Dependent variables: existing studies mainly focused on the investigation of subjective perceptual 

responses, most commonly through numeric scales (including 3-point, 5-point, and 7-point scales) to 

capture test participants’ responses regarding perception, comfort, satisfaction, and preference. At 

times, a different number of points and different labels were used, even though the same assessment 

category was involved. This, as well as the inconsistent use of dimensions in analogue scales, disables 

the comparison of results from different studies and poses a problem for conducting large-scale meta-

analyses. Performance, behavior, and physiology are still untapped research venues that could lead to 

new breakthroughs in multi-domain studies. 

• Independent variables: thorough documentation of the prevailing values of the independent variables is 

a basic requirement for doing multi-domain studies. Most reviewed research generally provided such 

documentation, even though the types and design values in some same-modality independent variables 

were not reported. Future comparative studies and meta-analyses could benefit from a more consistent 
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choice of the design values for independent variables. It is recommended to always adopt numerical 

design values which will enable future replication studies and meta-analyses. Moreover, documentation 

of non-environmental independent variables (e.g., relevant information on participants and outdoor 

conditions) could strengthen the interpretation scope of the studies’ findings.  

• Research hypothesis: the comprehension and utility of results from experimental research, would be 

arguably higher when research hypotheses are explicitly stated, including their “direction.” Surprisingly, 

about 40% of the laboratory studies and 60% of field studies did not state the research hypotheses. 

Whenever the hypothesis was stated, only a fraction indicated the direction – a very small one in field 

studies. 

• Setting features: the description of the settings is a key aspect, yet not sufficiently reported in most 

reviewed studies. Such information includes building location, type, space layout, HVAC, building 

elements (e.g., windows and shades), control interfaces, and lighting systems. Consequently, 

confounding factors and potential cross-modal effects of other features could be overlooked.  

• Exposure features: in many instances, characteristics of the exposure situation (e.g., type, timing, and 

length of exposure) were not reported in many studies. This represents a problem when trying to 

replicate a study or include its findings in an overarching meta-analysis of multiple investigations. The 

analysis of previous studies also shows a lack of consistency regarding the adaptation time, which might 

influence the results of the experiments. 

• Experimental design quality: the consideration of experimental design criteria/principles is of critical 

importance to assure high standards of scientific quality. The reviewed studies were analyzed regarding 

randomization, counterbalance, experimental procedure (single or double blind, at least when explaining 

the goal of the study), experimental and statistical confounding variables, reporting of null condition, and 

repetition of certain experimental conditions. The reviewed studies did not consistently report these 

aspects. For instance, 82% of the reviewed field studies did not include information on how participants 

were assigned to specific experimental conditions.  

• Data collection and processing: the measurement and data processing of environmental conditions (not 

only explicitly targeted independent variables, but other elements of the experiments’ boundary 

conditions) in the course of multi-domain studies is of high importance, especially in view of 

reproducibility criteria. A sufficient level of reporting on environmental measurements and their analysis 

was provided only in a small number of multi-domain studies. This implies the need for streamlined 

assessment and reporting procedures for both environmental conditions and human responses.  

• Participants: studies involving human participants should provide detailed information on their 

distribution, relevant personal characteristics, and their role/involvement in the experiments. The 

assessment of the reviewed studies regarding this criterion yields a rather unsatisfactory picture. Aside 

from their number (almost always reported), essential information regarding participants was either 

underreported or not clearly stated. This circumstance undermines the credibility of the studies 

concerning, among other things, their representativeness and generalizability. In addition, information 
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about the ethical approval and the related documentation (consent and information sheet) is lacking in 

almost 80% of the publications, raising concerns about the ethics of the performed studies. 

• Statistical analysis: a considerable number (N = 44) of different statistical methods were employed in 

the reviewed studies (mostly ANOVA). Among the formal tests of the distribution of the data, it is striking 

that the Shapiro-Wilk test, although recommended among the possible formal tests (e.g., Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling) [148], is only used in 5.9% of the cases, while the tests where 

the normality distribution should be verified are much more (more than 55% if we consider the sum of 

the papers where ANOVA, t-test and linear regression are used). Future studies should adopt a statistical 

approach that first checks the distribution of the sample and then applies tests where the normal 

distribution is an underlying assumption that corresponds to the main hypothesis. About 60% of the 

studies did not include any justification for the choice of the applied statistical method. A low fraction of 

the studies conducted a power analysis (4%) and reported effect sizes (22%). This hampers the 

reproducibility of experiments, feasibility of meta-analyses, and review of collective insights.  

• Reporting results: the reporting of the results in published studies is inconsistent and sometimes 

incomplete (e.g., not all the results are reported, graphical representations are missing). The use of the 

same terminology to describe the type of effect investigated (i.e., cross-modal or combined) and their 

results is paramount to conduct future meta-analyses on multi-domain studies. For cross-modal effects, 

the direction of the effect (i.e., positive, negative or no effect) must be reported for each of the levels of 

the considered stimuli. For combined effects, the results can be described following the terminology 

described in the ASHRAE Guideline 10-2016 [39]. In future studies, researchers are invited to describe 

the results comprehensively and adopt the suggested reporting style for both cross-modal and 

combined effects (including terminology and the suggested tabular representation). In addition, 

considering that understanding cross-modal and combined effects solely based on the outcome of 

statistical analysis (e.g., model coefficients) may be a complex task for those without a solid background 

in statistics, we advise the complimentary usage of as simple as possible graphical representations of 

the cross-modal and combined effects (as depicted in Figure 1).  

• Study discussion and conclusions: despite always presenting the conclusions (mostly based on the 

data), a large part of the considered papers does not include future studies (43%), limitations (55%), 

explanation of the mechanisms behind the results (69%), and practical implications (43%). The lack of 

such information reduces the possibility to advance the knowledge on the topic and understanding its 

relevance for people and society. 

Transversal key observations: 

• Multi-domain studies have been reported to rarely carryover previous studies’ findings and to lack 

foundational theories to formulate and test research hypothesis [40]. Therefore, introductory sections 

were not reviewed in this study. Future multi-domain investigations should build upon previous findings 

to generate theoretical assumptions or start from theory-based motivations based on human perceptual 

and behavioral processes to formulate their research hypotheses. 

• Field studies were less likely to report features (e.g., site, location, equipment etc.), hypotheses, 

assumptions, and variables. Laboratory and field experiments have intrinsic differences, but this is not a 
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justification for leaving out the information required for valid, generalizable, replicable, and reproducible 

studies. 

• The low fraction of the studies that conducted a power analysis, followed a good experimental design, 

described sufficient population characteristics, and effect sizes, suggests a possible replication crisis 

identified elsewhere [65], [66]. The adjacent field of psychology serves as a reservoir of a decade’s worth 

of scientific discussion and proposed methodological improvements (e.g., pre-registration prior to the 

start of the study, transparent data processing practices, and reporting effects sizes) [149] that should 

serve as example in future studies. It has been suggested that the social-structural factors that contribute 

to the replication crisis are not limited to psychology [150] and may apply to other fields [151].  

It can be concluded that multi-domain studies were often not thoroughly documented and reported in a 

systematic and detailed manner or did not adhere to paramount research quality criteria. These issues may 

be rooted in the lack of robust schemes for conceptualizing and reporting both cross-modal and combined 

effects. This study aimed to establish sound guidelines and recommendations for designing, deploying and 

reporting multi-domain studies for addressing this challenge and foster more structured and coherent future 

multi-domain studies. Standardizing methods and reporting formats for multi-domain studies will enhance the 

rigor in reviewing these studies and enable future meta-analyses. 

5.2 Future multi-domain studies 

Although the provided recommendations were developed for investigations about (indoor) environmental 

stimuli, their application can be extended to studies investigating personal (e.g., sex, age, culture) and 

contextual aspects (e.g., time of the day, season, building typology, control opportunities). These aspects can 

be considered as additional domains influencing human responses in multi-domain studies [40]. 

The publications and context covered by this work outline momentum towards characterizing the multi-

dimensional impact of the built environment on occupants. This foundation and the lessons learned provide 

the context for future work. Research in this area going forward could focus on filling the gaps of information 

about indoor environmental stimuli and human responses through innovative technologies and methods. For 

example, the use of continuous, field-based biosensing methods, like those being developed in mobile health 

research, can enable the detection of a broader range of human physiological responses [152]. The human 

response can be captured in a more scalable way using innovative interfaces that are integrated specifically 

into mobile devices and wearables [153]. There are, moreover, relatively new statistical techniques for testing 

causal claims relevant to multi-domain studies from a properly designed field study setup. For an overview of 

some of the recent developments in techniques, see [154]. Many of the proposed quality criteria are 

complementary to the rigorous study design required for a causal framework. The quality criteria summarized 

in Figure 2 and their description in section 3 can therefore serve as guidance for study design and reporting 

in future multi-domain studies.  

During the reviewing process, we uncovered a wide range of possible interdisciplinary research opportunities 

through collaboration with the research communities of machine learning, building controls, wellness, public 

health, and real estate communities, as well as between research fields such as psychology, physiology, 

engineering, and architecture. The methodological best quality criteria uncovered during the review process 

can be further enhanced by these interdisciplinary collaborations to create hybrid approaches that accelerate 
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the transfer of IEQ research results into actionable outputs, such as the amendment of building design and 

operation standards and guidelines. Future work may also consider the increasingly dynamic nature in which 

buildings are used, especially in office spaces where a larger diversity of activities can occur due to the 

enhanced workplace flexibility. 
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The described exclusion criteria lead to the exclusion of studies involving contextual, personal or other 

behavior (all sections besides 4.1 and 5.1 in Schweiker et al. [40]). In particular, the following studies were 

excluded from the analysis: 

• Studies focusing on the effect of personal control [209]; 
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• Studies focusing on physiological responses only3 (e.g., [210]); 

• Studies in which the independent variables are not physical measurements - such as those in 

which overall comfort/index or performance are evaluated on the basis of subjective evaluations of 

the indoor environmental stimuli (e.g., [211], [211]–[218]); 

• Studies reporting results of experts’ questionnaires [219]; 

• Studies where interactions are analyzed just looking at the correlation between human responses 

[220]; 

• Studies investigating the effect of the combined presence of multiple indoor stimuli on the 

measurements of another factor [123]; 

• Studies focusing neither on cross-modal nor on combined effects [133]; 

• Preliminary studies in which the quantitative results described are not the goal of the study [189]; 

• Proof-of-concept studies [221] 

• Experiments in Virtual Reality [222], [223]. 

 

 
3 Physiological responses are analyzed in papers where this type of response is reported together with other perceptual, 

behavioral, and cognitive responses. 
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A B S T R A C T   

In the last four decades several methods have been used to model occupants’ presence and actions (OPA) in 
buildings according to different purposes, available computational power, and technical solutions. This study 
reviews approaches, methods and key findings related to OPA modeling in buildings. An extensive database of 
related research documents is systematically constructed, and, using bibliometric analysis techniques, the sci-
entific production and landscape are described. The initial literature screening identified more than 750 studies, 
out of which 278 publications were selected. They provide an overarching view of the development of OPA 
modeling methods. The research field has evolved from longitudinal collaborative efforts since the late 1970s 
and, so far, covers diverse building typologies mostly concentrated in a few climate zones. The modeling ap-
proaches in the selected literature are grouped into three categories (rule-based models, stochastic OPA 
modeling, and data-driven methods) for modeling occupancy-related target functions and a set of occupants’ 
actions (window, solar shading, electric lighting, thermostat adjustment, clothing adjustment and appliance use). 
The explanatory modeling is conventionally based on the model-based paradigm where occupant behavior is 
assumed to be stochastic, while the data-driven paradigm has found wide applications for the predictive 
modeling of OPA, applicable to control systems. The lack of established standard evaluation protocols was 
identified as a scientifically important yet rarely addressed research question. In addition, machine learning and 
deep learning are emerging in recent years as promising methods to address OPA modeling in real-world 
applications.   

1. Introduction 

In the last four decades several methods have been used to model 
occupants’ presence and actions (OPA) in buildings to meet different 

research objectives given available computational power and technical 
solutions. Often the purpose has been to understand how people use a 
space and how their behavior impacts on a building’s energy perfor-
mance. Indeed, occupant behavior is also one of the main sources of 
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uncertainty in building’s energy modeling [1]. In particular, the over-
simplification of the OPA description can introduce a large discrepancy 
between the simulated and actual energy consumption of a building [2, 
3]. These and other issues have driven the exploitation of various ap-
proaches to explain and predict OPA in order to accurately model OPA in 
building energy simulation tools and to improve building management 
systems to decrease building’s energy consumption. In order to address 
these issues, the attention of the building research community on OPA 
modeling has increased in recent years [4]. One initiative approved by 
the International Energy Agency (IEA) in 2013 is the Energy in Buildings 
and Communities (EBC) Annex 66 [5] that aimed to study the impor-
tance of occupant behavior in buildings and its modeling techniques and 
to formalize simulation approaches regarding occupant behavior. 
Following this, in 2017 IEA approved the EBC Annex 79 “Occu-
pant-centric building design and operation”, which aims to explore open 
issues on the implementation and application of occupant modeling into 
practice [6]. In the context of IEA-EBC Annex 79, this review aims at 
providing a thorough and carefully-designed overview of the methods 
and techniques used for modeling OPA in buildings in order to create the 
current state-of-the-art and identify the latest trends in this research 
sector. Given these ambitious objectives, a systematic approach is used 
to review the scientific literature to reduce the risk of missing important 
contributions in the field, and bibliometric analysis tools are adopted to 
extract patterns and information from the identified database of docu-
ments. In the scope of this work, the existing OPA studies are grouped 
into three paradigms: rule-based models, stochastic OPA models, and 
data-driven methods. The first paradigm includes, but is not restricted 
to, the time-dependent users’ profiles as defined, for example, in the 
ASHRAE standard 90.1 [7]. The second paradigm considers the occu-
pant behavior to be stochastic since behavior varies between occupants 
and may evolve over time [8] and is the result of complex relationships 
between contextual factors, adaptive triggers, and non-adaptive triggers 
[9]. The third paradigm refers to data-driven methods where a black-box 
model is derived from relating input and output data [10] so that, the 
modeling is conducted without an explicit aim to understand the OPA 
[11] and/or only with the limited inclusion of the domain engineering 
knowledge [12]. Resultantly, the data-driven OPA modeling, for the 
scope of this study, can be defined as “an approach to modeling that 
focuses on using the computational intelligence and particularly ma-
chine learning (ML) methods in building models that would complement 
or replace the “knowledge-driven” models describing physical behavior” 
[12]. The present study aims at describing the features of methods used 
for OPA modeling in buildings rather than reporting their mathematical 
formulation that can be found in statistical and ML handbooks. A sum-
mary of a few modelling techniques is available in Ref. [13]. 

1.1. Related work 

Numerous reviews about OPA modeling have tried to categorize and 
formalize the different approaches to OPA modeling [9]. However, they 
are usually limited in the covered time span, in the building typology 
investigated or in the OPA under study. For example, Gunay et al. [14] 
have reviewed the modeling approaches developed for the simulation 
engine EnergyPlus regarding occupant presence, window and shading 
operations, lighting, and clothing adjustment developed since 2014. 
Yang et al. [15], focusing on institutional buildings, have studied the 
available estimation, detection and modeling methods to assess presence 
and movement of occupants. Gilani and O’Brien [16] have reviewed the 
estimation and detection methods to study OPA in office buildings. Chen 
et al. [17] have studied presence estimation and detection methods 
developed between 2005 and 2017. Zhang et al. [4] have reviewed the 
modeling methods for OPA regarding residential and commercial 
buildings. Balvedi et al. [18] focused on residential buildings in the 
temporal coverage from 2006 to 2017. Dong et al. [19] did an extensive 
literature review including all typologies of buildings, but without 
considering any modeling method regarding occupants’ movement and 

activity or their clothing adjustment. Li et al. [20] covered a large 
period, till 2018, and all typologies of buildings, however, clothing 
adjustment was not considered. Finally, Salimi and Hammad [21] 
covered all OPA aspects, considering a time coverage from 2008 till 
2018 and focusing on office buildings. Table 1 compares the main fea-
tures of analyzed literature reviews and identifies the main gaps that the 
present study aims to fill. 

1.2. Motivation and objectives 

The overview of the state-of-the-art presented in Table 1 reveals a 
lack of review studies that cover thoroughly the different aspects of OPA 
modeling and the different building typologies, as well as the latest 
developments in this field. Therefore, standing as an addition to the 
work done in the IEA-EBC Annex 66 and embracing the new proposi-
tions of the IEA-EBC Annex 79, the main purpose of this study is (1) 
building an updated biographical database of the studies that have 
developed models on OPA, (2) based on analysis of this database, 
providing an overview of the scientific production and the current sci-
entific landscape on OPA modeling, (3) identifying the key methods 
adopted in OPA modeling by considering different OPAs and by 
comparing documents that propose rule-base methods, data-driven 
methods, and a stochastic description of OPA, and (4) drawing a 
future outlook in OPA modeling. 

2. Methodology 

The purpose of this work is enabling a comprehensive analysis of the 
existing literature in the field of occupant behavioral modeling in 
building performance analysis. The presented systematic literature re-
view is conducted following the PRISMA methodology, and the research 
question and the related literature search are built according to the 
guidelines proposed by Denyer and Tranfield [22]. Although the 
PRISMA methodology is a useful guideline for a critical development of 
systematic reviews, it is not an instrument that can automatically 
guarantee their quality [23]; thus, a large pool of experts from the 
IEA-EBC Annex 79 community has been involved in the planning, 
development and execution of this study. As such, the authors are aware 
of the possibility of relevant articles that might be missing in the review 
but are confident that the identified bibliographic database represents 
the main tendencies and approaches adopted into the field so far. 

The PRISMA methodology considers four main phases: (1) identifi-
cation, (2) screening, (3) eligibility, and (4) inclusion of studies. The 
summary of the PRISMA methodology is presented with a flow chart that 
shows the number of bibliographic records initially identified by the 
search query and subsequently included in this study (Fig. 1). 

2.1. Identification of studies 

The first step consists in constructing the research question. In this 
work, the CIMO-logic [24] is adopted, where CIMO stands for Context, 
Intervention, Mechanism and Output, and the research question is: 
“How do we model (M) the occupant presence and actions (I) to simulate 
the performance (O) of buildings (C)?” (Table 2). 

Next, a comprehensive list of keywords is populated for each of the 
CIMO terms, and a research query is construct using the Boolean oper-
ators AND, OR and NOT and exploiting the list of keywords (1) to 
include all the keywords that have the same root but different declina-
tions (e.g., for considering both British and American spelling), (2) to 
consider precise technical wording, (3) to exclude some divergent terms. 
Afterwards, exclusion criteria are applied to limit the search to usable 
documents in order to limit the search only to journal articles, confer-
ence papers, reviews, books, book chapters and articles in press written 
in English. Old articles and conferences proceeding not available 
anymore were also excluded. Finally, the search query is executed in the 
Scopus, Web of Science and EI Compendex databases. However, due to 
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compatibility issues with the bibliometric tools, the file exported by EI 
Compendex could not be used. Furthermore, the files exported by Sco-
pus and Web of Science could not be merged and, given the wider 
coverage, the Scopus file was eventually used for the literature search. 

During the screening phase, the titles and abstracts of the identified 
documents were read, and several publications were excluded because 
not relevant. Afterwards, only studies with full-text were considered 
eligible for further analysis. Then, quality and consistency assessments 

were conducted by reading all the full-texts of the eligible documents. 
Those documents (i) not matching the research question, (ii) not rele-
vant, (iii) without sufficient data, and (iv) presenting overlaps were also 
removed from the final database. Also, a few studies were removed due 
to overlap (e.g., the same set of data or models presented in both journal 
articles and conference papers). Finally, the bibliographic database was 
consolidated, and the bibliometric analysis were executed in Bibliome-
trix [25] to identify relationships between topics, patterns in the 

Table 1 
Comparison of literature reviews on Occupant Presence and Actions since 2015.  

Authors Year Temporal 
coverage 

Typology of 
buildings 

Occupant presence and actions 

Presence Movement 
activity 

Window 
operation 

Shading 
operation 

Lighting 
operation 

Thermostat 
adjustment 

Appliance 
use 

Clothing 
adjustment 

Gunay, O’Brien, 
Beausoleil- 
Morrison 

2015 Up to 2014 All � � � � �

Yang, 
Santamouris, 
Lee 

2016 Up to 2016 Institutional � �

Gilani, O’Brien 2016 Up to 2015 Office � � � � � � �

Chen, Jiang, Xie 2018 2005–2017 All �

Zhang, Bai, 
Mills, Pezzey 

2018 Up to 2016 Residential 
and 
Commercial 

� � � � � � �

Balvedi, Ghisi, 
Lamberts 

2018 2006–2017 Residential � � � � � � �

Dong, Yan, Li, 
Jin, Feng, 
Fontenot 

2018 Up to 2017 All � � � � �

Li, Yu, 
Haghighat, 
Zhang 

2019 Up to 2018 All � � � � � � �

Salimi, 
Hammad 

2019 2008–2018 
þadding 

Office � � � � � � � �

Fig. 1. Literature screening process following the PRISMA framework (Moher et al., 2009).  
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metadata of publications and thematic evolution. 

2.2. Bibliometric analysis 

The bibliometric analysis provides information on the relevance of 
the identified bibliographic records and uses science mapping to extract 
knowledge at the nexus among conceptual, intellectual and social 
structures. 

2.2.1. Collaboration network 
A collaboration network involves the analysis of authors’ produc-

tivity, affiliations, and countries (of their affiliated organizations) and is 
represented on a map. It specifically deals with the scientific production 
disaggregated by country and the collaboration between authors with 
affiliations in each country. When a document is written by two authors 
whose affiliations belong to different countries, it is considered a 
collaboration. 

2.2.2. Co-word analysis 
A co-word analysis is a quantitative method for mapping the struc-

ture of a science field [26]. This technique analyzes the pattern of 
co-occurrence of pairs of words, which is the simultaneous occurrence of 
two words in a piece of text. The co-word analysis is performed by 
adopting clustering algorithms that identify the main themes charac-
terizing the work under study. Outcomes of the co-word analysis are 
typically displayed with a co-occurrence network. The dimension of the 
node representing a keyword is proportional to its frequency of 
appearance in the analyzed bibliographic database, while the thickness 
of the connecting lines is proportional to the equivalent index value. The 
equivalent index eij is defined as eij ¼ cij

2/(ci cj), where cij represents the 
number of the documents in which both the keywords co-occur, ci and cj 
are the numbers of the documents in which each keyword appears. 

3. Analysis of bibliographic metadata 

In recent years, the interest on OPA modeling and the related sci-
entific production have increased (Fig. 2) [5,27]. It should be noted that 
the literature search in this article was conducted in August 2019, 
therefore, the count for 2019 does not account for the documents pub-
lished in the second half of the year. 

The median of the publication year is 2015 and the average is 2013, 
in other words, a large share of the collected documents has mainly been 
published in the last four to six years. Specifically, there is a strong rise 
in published documents on OPA since 2010. By consequence, this review 
may be considered as an assessment of the current practice in OPA 
modeling in buildings. Looking at the temporal evolution of the pub-
lished documents by source, the journals that have published more 
documents regarding OPA modeling in the latest years are Building and 
Environment and Energy and Buildings, followed by the Journal of Building 
Performance Simulation (Fig. 3). 

Regarding the document production by country, the United States of 
America is the most productive country with 74 published documents 
from 1979 onwards. In addition, its collaborations are the most 
numerous (with 20 co-authored documents) and the most spread around 
the world (11 collaborations involve multiple countries) (Fig. 4). 
Europe, as a whole, is very productive with eight out of 16 countries 
having more than 10 publications (UK, Italy, Switzerland, Germany, 
Denmark, France, Belgium and Netherlands). European collaborations 

Table 2 
The CIMO-logic for studying modeling of Occupant Presence and Actions in 
buildings.  

Context (Where? 
In which context 
the intervention is 
embedded?) 

Intervention 
(What? Which is 
the main topic?) 

Mechanism 
(How? Which is 
the medium?) 

Outcome (To get 
what? What is the 
wanted 
information?) 

Buildings (all 
building types) 

Occupant 
presence and 
actions:  
� Presence and 

activity  
� Window 

operation  
� Shading 

operation  
� Lighting 

operation  
� Thermostat 

adjustment  
� Appliance use  
� Clothing 

adjustment 

Modeling 
techniques:  
� Rule-based 

models  
� Stochastic 

OPA 
modeling  

� Data-driven 
methods 

Outputs:  
� Energy 

performance  
� Indoor comfort  

Fig. 2. Annual scientific production of documents presenting Occupant Presence and Actions models. The count for 2019 considers only those documents indexed until 
August 2019. 
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are mostly internal, but there are also connections with countries from 
all continents. 

4. Analysis of the documents on OPA modeling 

The bibliographic collection is composed of 278 documents from 146 
sources published from 1979 to nowadays. On average, each document 
is cited 46.1 times. The documents were written by 809 authors who 
appeared 1003 times as co-authors within this document collection with 
an average of 3.54 co-authors per document. These figures show a 
consolidated and spread international collaboration on this topic. 

After the screening phase and having read all the full-texts, contex-
tual data was extracted from the 278 documents and used to charac-
terize the overall production of OPA models. Few documents propose 
more than one model and address more occupant actions; therefore, the 
number of models analyzed is up to 310. Fig. 5 displays aggregated 
figures on the number and percentage over the total number of collected 
models. 

For the OPA model development, measurements are the most 
frequent data source. They represent a reliable manner to gather data 
and control uncertainty, but privacy issues may be encountered during 
the execution of measurement campaigns [28,29], typically when data 
collection happens in large buildings with general visitors for 
people-count purpose. From the analysis of the building use, offices are 

the most studied building type followed by residential units. In partic-
ular, the number of documents related to offices is around 60% higher 
than for residential buildings. This imbalance may be due to a more 
predictable occupant behavior in offices, an easier experimental setting, 
and a more direct transferability of models and results. In addition, the 
experiments on occupant behavior in offices can be less affected by 
privacy concerns when compared to the residential buildings. Naturally 
ventilated buildings are the most commonly researched building type 
and control strategy. This could be a result of the wider availability of 
collected data and the high variability of people interacting with a 
building and its devices, resulting more interesting from a model 
developmental perspective. However, several documents do not report 
explicit contextual information on the above three aspects and, hence, 
these descriptive statistics must be read as indicative figures. 

All documents are also categorized on the base of the modeling 
approach used to develop the OPA models. It emerged that, in the last 
years, thanks to extended measurement campaigns and a higher wealth 
of available data, data-driven models are attracting increased interest 
for their capability to manage large data sources without missing the 
aleatory nature of OPA in buildings [30], followed by stochastic OPA 
modeling techniques, and rule-based methods. Next, the documents 
were grouped according to the K€oppen-Geiger’s climate classification 
system [31]. A high proportion of models are developed in temperate 
and continental climates identified respectively by the letters C and D 

Fig. 3. Chronological development of publication by sources.  

Fig. 4. The collaboration network map shows country collaborations and production.  
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with 50% and 21% out of the total number of models respectively. 
Follow tropical climates (A) with 5% and arid climates (B) with 2%. In 
about 22% of the models, the climate condition was not mentioned. 

The first five climatic zones by the number of developed OPA models 
represent almost the whole Europe, the USA and most populated portion 
of China (Fig. 6), which are also the most productive countries per 
number of publications. 

4.1. Scientific landscape 

Two main analyses are performed to describe the scientific landscape 
drawn by the bibliographic database: the three-field plot and the co- 

occurrence network map. These analyses help to understand the 
research trends and the connections among the themes rising from the 
state of the art. 

The three-field plot displayed in Fig. 7, shows the number of con-
nections (size of the boxes) and strength of the connection (size of the 
connection lines) between most frequent words in abstracts (left field), 
Authors’ Keywords (middle field) and scientific journals (right field). 

The most frequent words in the abstracts point out the main and 
general terms of the research questions (like ‘energy’, ‘building con-
trol’). In the middle field of the author’s keywords, the main concepts on 
which the domain is built (like ‘occupant behavior’, ‘thermal comfort’, 
‘windows opening’, ‘lighting control’, ‘machine learning’ and ‘office 

Fig. 5. Graphical description of the Occupant Presence and Actions models collected in the bibliographic database (number of OPA models; percentage).  
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building’) is presented. Finally, the main keywords as available in the 
journals are shown. For example, ‘occupant behavior’ is a very general 
term that is present in all the most representative journals, but ‘thermal 
comfort’ is mostly present in Building and Environment and Energy and 
Buildings, ‘lighting control’ is mostly related to Solar Energy and Energy 
and Buildings, and ‘machine learning’ is more present in Applied Energy 
and Building and Environment. This analysis provides insights to re-
searchers new to the field to aid identifying the most suitable journals 
for publishing their studies. 

The co-occurrence network in Fig. 8 shows the different clusters of 
Authors’ Keywords, which are identified by the Walktrap clustering 
algorithm assuming 50 nodes and normalizing the relationships by the 
association strength [25]. 

The largest cluster (in green) collects the most traditional keywords 
(e.g., ‘occupant behavior’, ‘office building’, ‘energy efficiency’, ‘thermal 
comfort’) and some satellite terms typical of stochastic modeling. The 
second cluster (in red) pivots on ‘neural network’ and includes several 
data-driven topics like ‘machine learning’, ‘data mining’, ‘prediction’ 
and other term referring to widely used application like ‘building 
management systems’ and ‘smart buildings’. The third cluster (in 
brown) is somewhat distant from the other terms and is very concen-
trated. It deals primarily with ‘occupant presence’ and includes terms 
like ‘presence detection’, ‘number estimation’, ‘building occupancy’ and 
‘cross-space modeling’. The orange cluster pivots on ‘building 

automation’ for ‘building energy efficiency’ together with ‘occupancy 
detection’ and ‘activity recognition’. The blue cluster vertex on ‘demand 
side management’ and includes the terms ‘demand response’ and ‘oc-
cupancy’. The purple cluster focusses on ‘intelligent lighting control’, 
with terms like ‘daylight harvesting’ and ‘smart lighting’. The keyword 
‘daylighting’ is isolated but connected with ‘lighting control’ while ‘vi-
sual comfort’ and ‘indoor positioning’ are isolated and not connected. 

5. Explanatory and predictive power for occupant presence and 
actions modeling 

In contrast to other scientific disciplines, the research on OPA re-
quires models with both explanatory and predictive power, which rep-
resents a particular challenge. Motivated by the latter need for dual 
modeling objective, this section provides a comparison of the existing 
modeling formalisms for both causal explanation and predictive 
modeling. 

OPA models were developed (1) to optimize the building design, (2) 
to represent the occupants in building performance simulation (BPS), 
and (3) to predict the human behavior for the inclusion in building 
control systems. The first two goals may be achieved by explaining the 
relationship between OPA and a set of objective measurements. For 
instance, by knowing the fixed working hours it may be understood the 
reason why an occupant was present at the workspace. Alternatively, the 

Fig. 6. Number of available OPA models by K€oppen-Geiger’s climate zones in the bibliographic database.  
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causal explanation of the intervention on sunshades may be visual 
discomfort that can be correlated with the solar radiation on the window 
surface. Here an important property of the chosen methods is to possess 
high exploratory power. 

Regarding the third goal, OPA models for the application in building 
control require predictive power, in order to forecast the events or states 
on the future time-steps with satisfactory accuracy. In this place, models 
that possess high explanatory power are often assumed to inherently 
possess predictive power [32]. However, the research on statistical 
modeling pointed out that the distinctive models are required for pre-
diction and causal explanation [32,33]. The need for non-identical 
methods for representing the impact of occupants in BPS and for pre-
dictive modeling has already been pointed out by Mahdavi and Tah-
masebi [34], hence, this distinction has sometimes been overlooked by 
the modeling studies. 

The causal explanation can be addressed using statistical and linear 
models [32]. The research on explaining occupant behavior has a longer 
tradition when compared to the predictive OPA in buildings modeling. 
Therefore, the set of statistical and linear models in use widely overlaps 
with the established general modeling formalisms that were reviewed by 
D’Oca et al. [35]. In addition to the methods proposed by the latter study 
(namely Bernoulli models, generalized linear models, and survival 
models), the generalized class of probabilistic graphical models, which 
also includes discrete Markov models, showed to be powerful tools for 
the research on human-building interaction. For instance, logistic 
regression and linear models have been applied to investigate the rela-
tionship between the thermal conditions and the resulting occupants’ 
actions [36,37]. Furthermore, the results of the past exploratory studies 
on the human-building interactions led to a better hypothesis formula-
tion regarding the drivers of occupant behavior as well as defining the 
baseline predictive OPA models. 

The prediction of OPA has been commonly addressed using ML- 

based methods. The literature screening has pointed out that the occu-
pants’ presence, activity recognition, and movement detection have 
been widely researched in the context of predictive modeling. For that 
purpose, the well-established modeling formalisms relied on probabi-
listic modeling, probabilistic graphical models, and conventional ML 
such as Support Vector Machine (SVM) and k-nearest neighbors (k-NN) 
algorithm. In the case of occupants’ action prediction, different NN ar-
chitectures have been investigated to model adaptive actions such as the 
use of lighting, solar shadings, windows, appliances, and clothing 
adjustment. The alternative widely explored methods include the con-
ventional ML methods, such as k-NN, SVMs for classification and 
regression, as well as the variations of decision trees and ensembles of 
decision trees. The application of probabilistic methods and probabi-
listic graphical models led to promising modeling results for the appli-
cation in the built environment. Hence, these classes of methods have 
not been comprehensively explored in the scope of existing OPA 
research. Moreover, stochastic models were also explored for their 
predictive capabilities for OPA. As a result, the logistic regression has 
been established as a baseline predictive model for window opening 
behavior, while in the scope of the recent study, the logistic regression 
showed promising results for learning the thermostat setpoints [38]. 

A first significant difference between the stochastic methods for the 
causality explanation and for the predictive modeling lies in the 
required data split. In the case of stochastic modeling, a set of data points 
is used to establish the hypothesis, while a set of distinct data points is 
eventually used to test the goodness of the hypothesis. Commonly, these 
two data sets were collected on the same occupant or on the same 
building, and the amount of available data is constrained by the design 
in terms of extent of the monitoring campaign [11]. Since these hy-
potheses widely address the relationship between the unique building 
design and the behavior, there are no strong requirements of the sample 
size. 

Fig. 7. Evolution of the most frequent words in the abstracts (left field) to the keywords (middle field) and to the journal sources (right field) for the papers in the biblio-
metric database. 
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An additional significant difference between the stochastic and ML 
modeling is the interpretability of models. Here, we refer to interpret-
ability as the description of the internal rules of a system in a way that is 
understandable to humans [39]. Commonly, the ML models are devel-
oped to maximize the prediction accuracy and the results are often not 
interpretable using domain knowledge. This lack of interpretability has 
been seen as a major drawback for considering the ML approaches in the 
building design phase. However, as already pointed out by existing 
research, the most accurate explanations are not easily interpretable to 
people; and conversely, the most interpretable descriptions often do not 
provide predictive power [39]. Therefore, human interpretability is not 
a crucial property of the OPA models for inclusion in building control 
systems. Rather, the strict evaluation protocols in terms of models’ 
effectiveness and the critical analysis of the predictive powers may be 
seen as the necessary components for the consideration of the ML 
methods in building control. 

6. Modeling occupant presence 

Human occupancy information is crucial for any modern building 
management system. The retrieved information can be utilized to un-
derstand both space utilization and building energy optimization, which 
enables informed decision making. Occupant presence is commonly 
declined in three sub-domains: occupancy detection, estimation and 
prediction; activity prediction and room occupation; and people move-
ment between zones. 

In this section, 53 documents published between 2004 and 2019 
were analyzed. According to the developed bibliographic database, the 
annual scientific production in occupant presence modeling research 
reaches its peak (11 documents) during the period 2016–2018. The 
documents with most impact (in terms of a total number of citations) 
were published in Energy and Buildings. Next, there are documents 
published in journals with diverse scopes that do not belong to the core 
sources identified by Bradford’s law, like Energy Conversion and Man-
agement and Geodesy and Cartography. These results point out that 
occupant presence modeling is a topic not exclusively related to energy 

Fig. 8. Co-occurrence network of Author Keywords from papers in the bibliographic database.  
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and indoor environmental research in buildings. 
The data-driven models represent 56% of the total, followed by 

stochastic OPA modeling techniques (30%) and the rule-based models 
(14%). In particular, 27% of the data-driven models use NN techniques, 
13% SVMs, and 11% Hidden Markov model (HMM). Regarding the 
stochastic OPA modeling techniques, 42% make use of Markov chain 
models, 17% of linear time series models, while 13% of the Monte Carlo 
method. 

Fig. 9 shows the percentage of documents using a typology of 
methods on the overall documents published in that year considered in 
this review. In the last years, data-driven models are emerging compared 
to the other two typologies. A cause for that could be the increase of data 
wealth due to the digitalization of the building lifecycle, large sensors 
installation campaigns, and availability of smart meters. 

6.1. Occupancy detection, estimation, and prediction 

Occupancy detection usually refers to the binary inference of occu-
pant presence and absence in different zones of an indoor or outdoor 
space while occupancy estimation usually refers to the occupancy count. 
Occupancy prediction is to forecast the in a future time window. Oc-
cupancy detection, estimation, and prediction are challenging tasks due 
to many reasons. For instance, there is a wide variety of sites of interest 
(such as individual and open plan workplaces, shopping malls, cinemas, 
etc.), which differ in size and operation mode. Hence, the appropriate 
contextual information must be considered for effective deployment of 
any system for occupancy detection, estimation, and prediction. Recent 
technological developments and the proliferation of pervasive technol-
ogies have opened up many opportunities to detect, estimate, and pre-
dict indoor occupancy leveraging various sensors and smart devices 
[40]. 

Many sensor-based technologies are available to detect and estimate 
occupancy in different types of sites [41]. A comprehensive review that 
compares the capabilities of different sensor types and their fusion for 
occupancy detection and estimation is presented in Ref. [17]. However, 
these technologies require extensive installation of hardware and 
continuous maintenance. Moreover, their accuracy can be influenced by 
specific physical orientation (i.e. seating, standing, walking styles) of 
occupants since the sensors are usually placed under the desk or over-
head. To reduce the cost of extensive sensor installation, a probabilistic 
method for room-level occupancy counting is presented in Ref. [42]. 
This model utilizes common sensors available at different rooms for 
disaggregating accurate building-level occupancy counts to room-level 
occupancy counts. Another probabilistic fusion technique to estimate 
indoor occupancy from 3D camera counts is presented in Ref. [43]. Data 
from smart electricity meters is also used to detect the occupant presence 
[44,45]. The basic idea is to conduct cluster analysis on continuous 
variables, like power load, carbon dioxide (CO2) concentration, and 
estimate occupant presence. Another research highlights the use of 
different sensing systems including radio frequency, infrared, ultra-
sound, video cameras, and wireless local area network in recent litera-
ture [15]. However, these technologies are susceptible to surrounding 
electromagnetic conditions, inconsistent connections and may raise 
privacy concerns [15]. 

From the analysis of the developed bibliographic database, many 
state-of-the-art ML tools have been deployed to develop smart building 
applications which include occupancy detection, estimation, and pre-
diction. Several classification models including Linear Discriminant 
Analysis, Classification and Regression Trees, and Random Forest 
models are evaluated for occupancy detection utilizing data from light, 
temperature, humidity and CO2 measurements. The data coming from 
various smart sensors are utilized to provide real-time as well as future 

Fig. 9. Yearly percentage of presence models with respect to the total number of published models belonging to the bibliographic database in each year.  
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predictions of occupancy status. However, it shall be mentioned that, 
since sensor data varies in dimensions and frequencies from one domain 
to another, a model trained for one domain cannot be applied effectively 
in another domain. To address this challenge, a semi-supervised domain 
adaptation method for CO2-based human occupancy counter is pre-
sented in Ref. [46]. 

Finally, several evaluation metrics are used to validate the occu-
pancy detection and estimation models including prediction accuracy, 
precision, recall, f-1 score, mean average error (MAE), mean average 
percentage error (MAPE), and root mean squared error (RMSE). How-
ever, it would not be fair to quantify the widespread use of a model and 
evaluation metric as the performance of a model generally depends on 
the specific application, size and quality of the data. For example, the 
deep learning-based models require a large dataset for better perfor-
mance while compromising the interpretability. If the purpose is casu-
alty analysis, it is possible that the statistical and ML models are a better 
choice over deep learning (DL). 

The models discussed above are mainly developed and deployed 
using data from a specific site. Given the variety application scenarios, 
one of the key challenges is to transfer such models build for one site to 
another site as it may require extensive parameter tuning. In the future, 
efficient transfer learning methods could be adapted to mitigate this gap 
and more research effort needs to be given towards the adaptation of 
explainable machine learning and DL techniques. This will allow the 
research community and beyond to better understand the outcomes of 
the deployed models. 

6.2. Occupant activity recognition 

To adjust and operate control systems based on indoor occupant 
behavior, it becomes crucial for a building management system to 
recognize the indoor occupants’ presence and its associated activities. 
The ability to identify or forecast a particular activity can minimize the 
exhaustion of unnecessary energy resources. Indeed, the difference in 
occupant activity might have a significant effect on the building’s en-
ergy performance. Conservative behavior by occupants has been shown 
to save up to 30% of the building’s energy consumption, while careless 
or reckless behavior can increase that amount by one-third [47]. Proper 
modeling of occupant activities is necessary to estimate building energy 
consumption and adjust the building’s energy demands to optimize it 
[48]. Other notable uses of activity recognition and prediction include 
their use in health monitoring, to provide automated assistance and 
detect uncommon situations [49]. 

Activity recognition constitutes the monitoring of OPA along with 
the change of state in their environment. It is based on two main types of 
approaches, vision-based activity recognition and physical 
measurement-based or maybe environmental sensor-based. The former 
uses surveillance-based systems such as cameras [50], 3D-stereo vision 
systems [42], infra-red or depth registration [51], while the latter uses 
wearable or deployed sensors or RFID tags [52]. The typical solution for 
the detection of the occupant’s activity involves a fusion of different 
environment monitoring techniques [53–56]. Most of the developed 
models are built on a foundation on quantity data but there are few 
examples that used quality-based data as the main development source 
[57]. Earlier works regarding the prediction of the occupant activities 
made use of probabilistic models and Bayesian belief networks [58]. 
Recent research efforts have also focused on Markov-chain models and 
HMM to estimate and forecast occupant activity levels [59,60]. Usually, 
most of the developed models are validated by ground truth data, ob-
tained from visual observation via video recordings or notebook 
reporting [61]. Another development in the field of activity recognition 
and prediction is the use of DL methods for human activity recognition, 
where models are making use of Convolutional Neural Networks (CNN) 
[62–64] SVM [65,66], and Recurrent Neural Networks [67,68]. 

The main gaps for activity recognition are having a wider range of 
activities, since most of the research efforts to date have targeted a 

selected number of pre-defined activities [58,62–67]. In addition, the 
interdependence between activities has to be recognized as well [69]. 
Future efforts can be outlined to incorporate the personalization 
perspective for accurate activity recognition, along with adaptation with 
evolving activities, and context aware recognition [70]. 

6.3. People movement between zones 

People’s movement between zones is intended as the transition of 
occupants from one room to another inside a building. Occupants with 
their movement change also the sensible and latent loads between zones 
and so influence the temperature and humidity in rooms. This topic is 
fundamental for detailed building models, in which the spaces are 
described at room-level and, on average, occupancy probability assigned 
to all the rooms are too simplistic. 

The bibliometric analysis suggests that the topic of detection and 
modeling of indoor movement of occupants is gaining momentum as it is 
strictly related to the topic of smart buildings. The indoor tracking of 
occupants is not a new field of research [71]. However, only in the last 
years, some descriptive and predictive models are emerging aiming 
specifically the better description of occupants for buildings energy 
modeling [72]. The description of the localization of occupants in 
real-time is fundamental for a large variety of smart buildings services; 
specifically, energy management and indoor environmental control 
[73]. For example, the proper load calculation due to occupants and 
their spatial distribution could avoid over-heating/cooling or 
under-heating/cooling of areas which is of a major importance espe-
cially for large public spaces [72,74]. Furthermore, these models could 
help to track and learn inhabitant’s daily routine unobtrusively with the 
aim to optimize energy usage without affecting occupants’ comfort [75]. 
Moreover, although satellite-based radio navigation systems are the 
common method that provides accurate track and modeling of move-
ments outside buildings [76] and their use for positioning inside 
buildings is theoretically possible [77], it is difficult with traditional 
Global Positioning System (GPS) receivers to locate occupants in 
buildings [71]. Firstly, because the signal must be unobstructed, indeed 
conservative models suggest that the attenuation in buildings can reach 
levels of 2.9 dB per meter of structure [76]. Secondly, because this ty-
pology of systems requires the user to carry a tag. 

Generalizing, the overall research process can be summarized into 
two consecutive tasks: people movement detection, identification, and 
localization, and people movement modeling for forecasting and 
simulation. 

The literature relates mainly to the first task, in which arrays of bi-
nary sensors [78], environmental sensors [79], cameras [80], pressure 
sensors [81], inertial and vibration sensors [82,83], radio-frequency 
identification sensors [84], Bluetooth [75,85] and Wireless Local Area 
Network (WLAN) [86–88] are used to detect occupants and track their 
movements [89]. Generally, environmental sensors are the cheapest 
solution, but they provide less information about human movement, 
unless densely spread in the indoor space. Cameras or infrared sensors 
provide good accuracy, but they are usually expensive sensors with high 
maintenance costs and privacy issues. Pressure sensors, inertial and vi-
bration sensors are usually employed under the floor, making the 
maintenance and the installation to be planned. Finally, the sensors like 
relying on Bluetooth or WLAN provide very detailed results, however, 
often they need that the occupant carries constantly a device. 

The second task is usually performed with machine-learning algo-
rithms that are able to learn representation from the data and use them 
to forecast, simulate and model the occupants’ presence in rooms and 
their movements [74,75,90,91]. Some studies solve the simulation and 
forecasting via stochastic models, due to the lack of surveys and statis-
tical information with proper detail [72,92]. 

To summarize, the topic of modeling people’s presence, movement 
between zones and activity is relatively new, and ML methods are 
emerging as a promising approach to forecast, simulate, and model the 
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occupants’ presence in rooms and their movements inside buildings. 

7. Modeling occupant actions 

People interact with a building and its devices in various manners to 
meet individual needs. Occupant actions have a role in modulating en-
ergy fluxes exchanged by a space and the outdoors and, hence, have an 
important impact on the actual energy use in buildings and perceived 
occupants’ comfort. In this study, considered occupant actions are 
windows operation, solar shading operation, electric lighting operation, 
thermostat adjustment, appliance use, and clothing adjustment. 

7.1. Window operation 

Window operation is an important control mechanism that, enabling 
physical connection with the outdoors, provides occupants with the 
ability to control the local indoor environment (i.e. regulate the indoor 
air quality and room air temperature). Moreover, since the ‘70s, building 
regulations are progressively increasing the energy conservation re-
quirements of the building envelope with a reduction of infiltrations and 
conductive heat losses. Thus, the share of the ventilation losses on a 
building’s overall energy balance is enlarging. In this context, window 
operations become even more important, and there is a high demand for 
window operation models that create realistic patterns for use in 
building energy simulations and for the predictive modeling for building 
control systems. 

In this section, 43 documents published since 1990 were analyzed. 
According to the analysis of the developed bibliographic database, the 
control mechanisms, even though clearly influenced by physical con-
ditions, tend to be governed by a stochastic rather than a deterministic 
relationship [93]. Stochastic models estimate an outcome by assuming a 
probabilistic relationship with one or more predictor variables. For 
modeling window opening behavior, the most common approach used 
so far are logit models and logistic regressions. These models can be used 
to predict the probability of a window’s state (i.e. open or closed) [36, 
94–104] or the probability that a certain action will occur (i.e. window 
opening or closing action) [105–108]. The former has been typically 
implemented with a Bernoulli process while the latter with a Markov 
process. A Bernoulli process [37] is a sequence of independent binary 
random variables where the current state has no impact on the future 
state; by definition, it ignores the actual dynamic processes leading oc-
cupants to perform actions. This limitation can be overcome using a 
Markov process [37,94,103,109–111], since it is a random process 
where future states are dependent only on a current state together with 
the probabilities of the state changing. However, to integrate these 
simulation approaches in a conventional BPS tool, since the time ad-
vances in fixed time steps, they have to be discrete (discrete-time 
random process). Therefore, the temporal resolution of predictions is 
limited (e.g., short duration openings could be ignored if they last less 
than the given time step). Furthermore, the time in which the active 
state (e.g., window closed) will be reversed is not predicted. To pose a 
solution, Haldi and Robinson [112] developed a hybrid approach: state 
transitions were predicted as Markov processes, while a continuous-time 
approach was employed through a survival analysis to estimate the time 
to reversal of the state. 

Several studies implement NN and also DL has been used so far 
[113]. NNs are capable of learning the relationship between input sig-
nals and capturing key information through the training process based 
on historical records. Furthermore, they also possess a number of other 
strengths such as fault tolerance, robustness, and noise immunity [114, 
115]. However, the architecture choice and hyperparameters optimi-
zation in the current NNs are still developed on an ad hoc basis. This 
implies that NNs applications are usually case dependent [116]. They 
have to be designed and validated each time for every different 
applications. 

From the analysis of the bibliographic database, it was observed that 

other ML techniques adopted to analyze window-opening behavior are 
based on a Gaussian distribution model (e.g. Ref. [95]), a Bayesian 
network (e.g. Ref. [117]), a cluster analysis and mining association rules 
(e.g. Ref. [118]). 

Researchers have adopted different indices to evaluate the perfor-
mance of their models, such as the true positive rate (TPR), true negative 
rate (TNR), the accuracy of the model (ACC), the mean absolute error 
(MAE), the mean signed deviation (MSD), and area under the curve 
(AUC). Consequently, there is a lack of horizontal comparison among 
these models. The motivation behind this difference is due to the fact 
that a convergence towards a systematic set of statistics for the predic-
tion of the performance of behavioral models is missing. In this regard, 
Mahdavi and Tahmasebi [34] suggest two categories of indicators: in-
dicators addressing aggregate aspects of models’ predictions, and in-
dicators addressing the interval-by-interval congruence between 
predictions and measurements. 

Following the K€oppen climate classification scheme, the majority of 
the analyzed window opening models were developed in temperate 
climate zones Cfb (43%), Cfa (23%), Csa (2%), while the remaining in 
continental climate Dwa (16%) and Dfb (16%). Furthermore, most 
published studies referring to occupant window behavior have been 
carried out in European countries [37,94,102,105–107,109–113,117, 
119–133]. Since window operation enables physical connection with 
the outdoor environment, it can be directly influenced by different 
conditions such as the atmospheric environment but also contextual 
factors such as routine/habits [134] and individual preferences [135]. It 
is therefore evident that in-depth research of window behavior in other 
climates and contexts is necessary. 

While statistical models are a quite consolidate approach to model 
window operation (Fig. 10), data-driven models still requires further 
exploration, although DL has been recently used to investigate window 
operation [113]. 

7.2. Solar shading operation 

Solar shading devices coupled with electric lighting are fundamental 
instruments to provide indoor thermal and visual comfort. The use of 
solar shading controls the internal daylight and influences the resulting 
solar heat gains. On one hand, solar shading can allow solar radiation to 
enter and passively heat the indoor environment, and on the other hand, 
it influences the operation of electric lighting that contributes to indoor 
sensible heat gains. Furthermore, solar shading is also used to provide 
privacy by blocking the view into a room from the outside. 

In this section, 20 documents published since 1979 were analyzed. 
Solar shading operation is mainly modeled by predicting a shading state 
(or its change) as a binary variable (i.e. open or closed) [122,123,132, 
136–142] or by estimating a shading device multi state [143–147]. 
Moreover, there are some specific models that predict the Venetian blind 
slat angle [148,149] and some others that couple the slat angle with the 
blind multi state [150,151]. 

The occupant-controlled shading devices has become of great inter-
est in building performance simulation for different reasons. 

A fundamental role in OPA models is played by the choice of the 
predictor variables. From the bibliometric analysis, it emerges that the 
most used predictors in shading control models are indoor and/or out-
door air temperatures [122,123,132,140,151], work plane daylight 
level [137,139,142,143], indoor illuminance [138,146,150], external 
radiation [146,150], and rainfall [122]. Since most of the models use 
external conditions as predictors, the climate in which the data for 
model construction are gathered is of great interest. In the analyzed 
bibliographic database, almost all models for shading operation come 
from temperate [123,137,139,140,146] and Continental [122,132,136, 
138,141–143,147–151] climates, except for Kurian et al. [145] that 
worked in the tropics. Next, except from Andersen et al. [140] that 
predict shading movements in residential building, all other models are 
built for offices [122,123,132,136–139,141–143,147,149–151]. 
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From the performed analysis came that the first shading control 
model was developed by Hunt in 1979 who used a stochastic method 
(Fig. 11). Since 2000, even data-driven methods have been used as ac-
curate tools to predict the occupant-driven use of solar shading, with 
fuzzy logic and regularized logistic regression as the most used methods. 
NNs have been used for controlling the slat angle of Venetian blinds to 
optimize the energy consumption for lighting, and space heating and 
cooling [143,148,149], and also reinforced learning has been adopted to 
develop a controller to adjust both electric lighting and blind position 
[150]. 

In summary, models reflecting the operation of solar shading on 
tropical and arid climates are missing. Furthermore, more investigations 
should address residential and other types of buildings, providing a 
wider support for building energy modeling. 

7.3. Lighting operation 

In this section, 77 documents published between 1994 and 2019 and 
focused on electric lighting operation were analyzed. The analysis of the 
collected bibliographic records shows that, in the last 20 years, smart 
lighting control systems have been proposed to simultaneously satisfy 
personalized lighting levels and harvest natural daylight reducing en-
ergy consumption [152–154]. The first lighting controls were created 
such as on/off switch control or dimming by using sensors’ outputs. 
Also, user-centric models based on occupants’ location and their activ-
ities were used to define optimal lighting intensity level as a balance 
between user satisfaction and energy cost [155–157]. Lighting models 
that use sensor input (mostly occupancy and illuminance level) were 
primarily applied in office buildings. These models aimed to optimize 
the lighting conditions with respect to the work satisfaction and pro-
ductivity [158,159]. NN technique was adopted in dwellings to 

implement programming schedules of lighting control in Ref. [160]. 
With regard to the climatic conditions, the majority of the analyzed 

investigations were developed in temperate climate zones Cfa (18%), 
Cfb (16%), Csa (12%), and some studies fall into the continental climate 
Dfb (12%). The main percentage of investigations (55%) was conducted 
in office buildings, followed by houses (17%) and laboratories (9%). The 
less analyzed building types are dormitories, hotels, and commercial 
buildings. Analyzing the type of data adopted for the models’ develop-
ment, it appears that the most common sources come from measure-
ments (42%) and simulations (26%). Some documents adopt both 
measurements and simulations (18%). Surveys are rarely adopted alone, 
but they are typically coupled with measurements (9%) or with both 
measurements and simulations (4%). Regarding the models’ categories, 
the highest percentage of identified documents belongs to the category 
of discriminative ML models (66%) followed by stochastic OPA 
modeling techniques and deterministic models that present similar ap-
plications. Some studies implement more than one model that falls into 
the same or into different typologies. 

The most frequent category is the data-driven models [121,144,148, 
149,152,155–158,160–194]], followed by the stochastic OPA modeling 
methods [153,159,161,184–190,195–212] and, then, the rule-based 
methods [139,157,160,206,213–223]. 

NNs allow forecasting multiple continuous variables based on design 
parameters because they are able to predict unique light use schedules 
for each design variant [172]. Furthermore, nonlinear transformation 
from input variables to output variables enables the designer to make 
predictions or classifications with regard to lighting controls [161,193]. 
However, their main drawbacks are that it takes too much time for the 
training phase [161] and needs to be trained again if the layout of any 
lamp is changed [163,165,166]. Regression models can help in pre-
dicting the lighting consumption of buildings [210] by providing an 

Fig. 10. Timeline of window operation models.  
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accurate estimation of the energy consumption compared to the results 
obtainable with extrapolation methods that use data from office lighting 
systems [191]. Furthermore, regression models were used to predict a 
state (i.e. on/off) (e.g. Ref. [212]), to estimate the probability of light 
switch actions (e.g. Ref. [207]), and the interactions with window 
shades (e.g. Ref. [206]). Rule-based models are a simpler manner to set a 
lighting control strategy and, in the case of large datasets, they provide 
acceptable results when compared with stochastic OPA models [206]. 

The historical overview shows an increasing development of models 
since 2004 (Fig. 12). Rule-based models like schedules and profiles were 
implemented for this intervention [215,216]. Logit model [224] was the 
first technique used to describe stochastically OPA behavior in European 
countries and Pakistan [195], but its application was time limited. 
Successively, there was the implementation of Markov chain model 
[159,205]. Since 2005, NNs [225] have become the most used 
data-driven method due to their abilities to learn from input data and 
the breakthroughs made in computing power at the beginning of the 
20th century. Other methods for lighting modeling, for example, SVMs 
and decision tree, have emerged since 2010, but are relatively less used 
than NNs. As a prediction method, linear regression is easy to use, and 
the historical use rate is similar to SVMs and decision trees. 

Researchers validated their models by means of different evaluation 
metrics: error or accuracy [149,155,164,166,170,177,179,180,186, 
201–204]; comparison between the performances of the proposed sys-
tem and the existing system in terms of energy saving or illumination 
level [139,153,173,174,181,191,192,194,199,206,221]; MSE 
[155–157,161,163,168,193,208]; RMSE [121,152,166,183,184,208, 
210,211]; statistical parameters such as standard deviation, kurtosis, 
and skewness [165,167,197,209]. 

The analysis of the existing literature showed that the research about 
electric lighting modeling was mainly conducted in locations 

characterized by temperate climatic conditions. Nevertheless, the user’s 
interaction with electric lighting is influenced by the daylight avail-
ability that depends on local sky conditions and latitude. This limitation 
can negatively affect model’s generalization and suggests future studies 
in diverse geographical contexts. 

Also, offices were the most investigated indoor environments due to 
the easiness to apply sensors and collect measured data. Thus, research 
should be dedicated to residential, educational, and commercial 
buildings. 

Discriminative ML models were widely developed and tested, sto-
chastic and deterministic models require more investigation in order to 
verify their efficacy. Generally, accurate analyses about user’s habits, 
preferences, and perceptions of indoor conditions are missing and so 
investigations could be improved by administrating targeted surveys 
during the monitoring phase. 

7.4. Thermostat adjustment 

Thermostat adjustment behavior is a key component of building 
performance modeling as it directly influences the amount of energy 
used for space Heating, Ventilation, and Air-Conditioning (HVAC) sys-
tems. Thermostats are used as control devices to determine when space 
heating, cooling, or ventilation should be applied to a building thermal 
zone. Thermostats typically include sensors that measure the air tem-
perature or humidity of the building thermal zone and will request space 
heating, cooling, or ventilation if the indoor climate is above or below a 
set-point value. The occupants within buildings interact with a ther-
mostat by adjusting the set-points for temperatures and humidity and by 
setting schedules for when the HVAC systems should be active and 
inactive. Thus, the occupant behavior (setting the set-points and the 
schedules) is one factor determining when an HVAC system switches on 

Fig. 11. Timeline of solar shading operation models.  
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and off; other factors include the many thermal processes which influ-
ence the indoor climate such as the thermal properties of the building 
envelope, the internal heat gains and the capacity of the HVAC. 

The choice of thermostat set-points and operation schedules by the 
building simulation modeler will have a significant impact on the pre-
dictions of energy use and occupants’ thermal comfort. This is a key 
factor of the performance gap as international and national building 
performance standards and calculations often assume constant, 
simplistic occupant behavior for the thermostat control. In reality, many 
occupants will continually adjust the thermostat set-points and sched-
ules depending on when they are at home or at work, the external 
weather conditions and for occasions such as holidays. The difference 
between these assumptions and the actual occupant behavior may lead 
to significant uncertainty in the predictions of building energy use 
[226]. 

In this section, 44 documents published after 1989 are analyzed. The 
occupant behavior modeling methods have been identified in the 
developed bibliographic database (Fig. 13). The most used methods 
include General/generalized linear model (33%) [227,228], Markov 
chain models (23%) [229,230] and logit analysis (20%) [121,132]. The 
studies are based on a wide range of buildings such as residential 
buildings (54%), offices (26%), commercial buildings, educational 
buildings (7%), and commercial buildings (6%). Measurement cam-
paigns are used to collect training and calibration data for model 
development, including internal temperatures (set-point and indoor air 
temperature), occupancy/presence, heating/cooling/ventilation energy 
demand, and outdoor weather. For residential applications, it can be 
difficult to directly measure thermostat set-points and schedules (as this 
requires a direct interface with the control equipment) and often indi-
rect measurements are used as a proxy such as estimating thermostat 
settings using the zone air temperature [132,231,232]. This further adds 

to the uncertainty of the model predictions. In the numerous studies in 
this field, there is no agreement on the choice or amount of measure-
ment variables that are required to construct the occupant behavior 
models or the choice of evaluation metrics which should be employed to 
validate the models. 

In connection to the previously described thermostat set point ad-
justments, the occupants’ interactions with the HVAC systems have also 
been explored in residential [227,233–235] as well as in office and 
commercial contexts [236,237]. As a result, the use of the HVAC in 
residential buildings has been conducted using approaches such as 
Markov transfer probabilities [227] and descriptive statistics 
[233–235]. In the case of commercial buildings, the application of lo-
gistic regression and rule-based agent models have been identified as a 
suitable modeling approach [236]. This study pointed out that both 
logistic regression-based models and the agent-based framework could 
identify approximately 50% of the fan use or heater use events correctly, 
while the proportion of the false positive rate remained around 20%. In 
another study of office and commercial buildings, NN was evaluated for 
performance among four different machine-learning algorithms [237], 
which actively learned occupants’ interactions with thermostats under 
dynamic, time and space varied contexts. For a period of five months, 
the interaction model was conducted to an HVAC system in the case 
study building. The results reported 4%–25% energy consumption 
reduction as compared to static temperature set points at the low values 
of the preferred temperature range. 

Significant further work is required in this area. The field of OPA 
thermostat set-point modeling is underdeveloped in relation to other 
OPA areas because of the challenges in collecting thermostat data (in 
residential settings) and in modeling the complex interrelated effects of 
occupant thermal comfort, building thermal response and dynamic 
external conditions. A clear data collection methodology and 

Fig. 12. Timeline of models for operate electric lighting.  
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standardized model testing framework needs to be developed, with clear 
reporting criteria and evaluation metrics. To maximize the potential of 
existing and future datasets, a common data collection vocabulary or 
ontology should be created which would enable data reuse and ulti-
mately meta-analysis of multiple datasets across different building 
types, sample sizes and country of origin. 

7.5. Appliance use 

Appliance are electrical devices that support people’s daily life, 
ranging from small machines (like laptop computers, air purifiers, cof-
feemakers and microwaves) to large ones (like fridges, clothes washers 
and dryers). Especially in the residential sector, appliances become one 
type of key electricity consumers. The energy demand for household 
appliances is growing as rising living standards worldwide [238]. 
Human behavior has an impact on appliance operation and spurs the 
associated energy consumption within buildings. Better understanding 
such activities offers potentials to operate appliances and their energy 
supplies (including the power grid and renewable energy) in an efficient 
way. Measuring and modeling appliance usages triggered by occupants, 
if properly visualized and communicated to together with suggestions, 
can promote energy-saving awareness [239]. Yu et al. [240] proposed a 
data mining-based method for estimating the saving potentials related to 
standby energy use considering the occupant behavior. Meanwhile, 
energy/load management based on appliance operation minimizes the 
variation of power supply [241], shifts appliance operation from the 
peak electricity demand [242] and makes appliance adapt to changes in 
electricity price [243]. 

In this section, 36 documents published since 1994 were analyzed. 
They describe models for identifying and modeling appliance states that 
were based on measurements, simulation, and surveys. Overall, the 

majority of the data used is measured data from field studies and home 
applications (69%). The studies were undertaken mostly in temperate 
climates (Cfa 39%, Cfb 33%, Csb 6%) with some models in continental 
(Dfb 11%) and arid climates (Bsh 6%, Bwh 6%). Sensing infrastructure 
for the data collection differed for the individual studies. It included four 
distinct groups of sensing devices: energy-related measurement (power, 
voltage, and current meters); communications technology (barcode and 
Bluetooth); environmental sensing (temperature, carbon monoxide, and 
acoustic sensors); and activity-related sensing (triaxial accelerometer 
and gyroscope, motion, door, and ultrasonic positioning sensors). 
Among them, power meters installed at the main power inlet of house-
holds were widely used by the studies as predictors. 

Appliances are operated in on/off or multi states. Identifying their 
states was mainly described stochastically or predicted with data-driven 
methods. The former approaches use Bayesian networks [244,245] and 
hierarchical clustering models [246]. The latter use two different 
machine-learning-based algorithms: HMMs [239,247–249] and NNs 
[250–252]. To model occupants’ indoor behavior and activities in 
interaction with appliances, diverse algorithms were employed in the 
studies, such as pedestrian dead reckoning [253], Bayesian network 
mode and linear regression [254], k-means and Gaussian mixture [69], 
random forest [255], and SVMs [256]. According to power usage of 
appliances, Gaussian mixture [257], k-means [258], optimization based 
on defined objective function [243] were used to infer load distribution 
and scheduling for systems. Similarly, power data showed potentials to 
extract building occupancy using data-driven approaches, such as de-
cision trees [259] and NNs [260]. Two studies used both power data and 
occupant surveys [261,262]. Based on such data, the former study 
aimed to identify occupant behavioral predictors using a linear method, 
and the latter employed a Gaussian mixture method to model load 
patterns of the appliance in offices. For appliance controls in 

Fig. 13. Timeline of models for thermostat adjustment.  
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households, NNs [263] and stochastic sliding mode control [241] were 
utilized. As shown in Fig. 14, most of the studies were based on recog-
nition of appliance states and associated occupant activities using 
data-driven models. 

Evaluation metrics applied to verify the above behavior modeling for 
appliance uses included precision, recall, F-score, RMS, RMSE, NRMSE, 
MAE, distance and positioning accuracy, and variances of positioning 
errors. 

Most of the studies focused on one type of data (i.e. total electricity 
consumption of individual buildings or households) or one case study 
with several specified appliances. In actual buildings, diverse appliances 
are used by occupants which are affected by the purposes of the build-
ings (for example, residential and commercial buildings), and occu-
pants’ requirements. Meanwhile, occupant behavior interacting with 
appliances differs from device to device and person to person. In future 
research, one of the key research questions could be how to generalize 
methodologies for different appliance applications. 

7.6. Clothing adjustment 

Clothing has been considered as a critical interface between humans 
and their surrounding environmental settings [264–267] and is an 
influential input parameter in a few thermal comfort models. According 
to current knowledge, age, gender, and relative humidity have no sig-
nificant effect on the clothing insulation levels chosen by people [267]. 
However, Humphreys [267] stated that the outdoor daily mean 

temperature to be the most crucial parameter affecting clothing insu-
lation levels. Studies before this one had studied clothing insulation 
using conventional linear regression approaches. Deng and Chen [264] 
argued that the association between clothing and potential factors that 
affects clothing behavior might not be linear, hence, they developed 
clothing prediction models using ordinal logistic regression and NN 
using data collected in offices. The training accuracies of the NN model 
for three kinds of actions (lowering the set point or reducing the clothing 
level, no response, and raising the set point or adding clothing) were 
89.4%, 87.3%, and 91.2%, respectively, and its overall training accuracy 
in predicting all three kinds of behaviors was 87.5%, resulting in an 
accurate tool for predicting occupants’ behavior in the offices. 

The main predictors used for the clothing adaptation in the existing 
literature include indoor air and operative temperature, relative hu-
midity, CO2, air velocity, outdoor air temperature, skin temperature, 
human activities and time of the day [268]. 

The common evaluation metrics used in the existing literature are R2, 
RMSE, MAE, MAPE for the regression models, and accuracy, F1-score, 
precision, and recall for the classification models. 

Most of the existing methods in clothing insulation estimation as-
sume the values to be fixed by using in-situ clothing estimation methods, 
thermal models, or depending on the outdoor air and indoor operative 
temperatures [265–267,269,270]. Also, some data-driven methods (e. 
g., NNs, SVMs, and regression models) have been used to establish 
thermal comfort inside a built environment [264–267,269–271]. These 
data-driven models reflect the occupants’ responses and interactions 

Fig. 14. Timeline of models for appliance operation.  
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with the building utilities and management facilities. Recently, the focus 
has shifted toward applying ML and DL models for predicting indoor 
clothing levels [264,267]. 

From the literature, it is affirmative that the clothing adaptation to 
any given situation is associated to three influencing factors: occupant 
behavioral adjustment, physiological factors, and psychological factors 
[265–267]. Therefore, for future research directions, the interrelation-
ships and correlations between different influencing factors can be 
studied meticulously in those building types not already analyzed and 
under different individual conditions, like different metabolic activity 
levels. 

7.7. Combined occupant actions 

Researchers have also developed models that combine more than one 
user’s actions with the aim of analyzing the multiple aspects of comfort 
and energy consumption in buildings. Lighting operation is one of the 
most co-modeled aspects due to its impact on both visual comfort, 
thermal comfort, and electricity demand. For example, schedules/pro-
files, stochastic OPA modeling techniques, and data-driven models were 
implemented by combining lighting operation with shading control 
[139,141,144,148–151,154,192,272]. Regression models were also 
exploited for modeling different combined actions: light switching with 
window operation [121], window and solar shading operation [123], 
and light switching with both window and solar shading operations 
[122]. With the aim of analyzing visual discomfort, data-driven tech-
niques were used in Refs. [176,177] to model lighting switch in com-
bination with blinds operation and change of the space heating set-point 
temperature. Furthermore, light switching and window operation 
combined with space heating and cooling operation were also modeled 
by means of schedule/profile and stochastic OPA models [185,215]. 
Moreover, data-driven models [210] and stochastic OPA models [196] 
were implemented to predict the energy consumption of buildings by 
considering both lighting and appliances use. More recently, Haldi et al. 
[122] investigated the combined operation of windows, solar shading, 
and light switching and developed logit models for residential buildings 
and offices. These models included random effects for all predictors that 
account the inter-individual variability in behavior among different 
occupants. This attempt allows overcoming the issue of modeling an 
occupants’ average behavior and explicitly considering diversity and 
variability in occupant behavior. 

Modeling combined actions seems a more effective approach 
providing a wider view of human actions and their impact in terms of 
energy consumption and occupants’ comfort. The available literature 
still demonstrates gaps in this development and intersectional studies 
should be encouraged. 

8. Future outlook in OPA modeling 

Among the studies grouped under the data-driven models, there is a 
subset of studies recently published [54,62–64,67,113,252,264,267, 
273–275], which use DL techniques. DL is adopted for obtaining rich 
information about occupant behavior and is proven to be competent in 
extrapolating discriminatory features from raw sensor data accumulated 
from building management systems [273–276]. Traditional ML ap-
proaches perform tasks without exploiting the correlations between 
diverse input sensor data. For example, CNN tries to overcome this issue 
by implementing convolution across n-dimensional temporal sequence 
to apprehend the dependencies in the input sensor data. However, the 
size of the kernel is an important parameter that can restrict the range of 
captured dependencies in the input sensor data for the CNN model 
[276]. Other advances in embracing dDL methods are:  

1) ML classifiers rely heavily upon heuristic handcrafted features (i.e. 
the manual selection of features) and require expertise in domain 
knowledge. The manual selection of features could lead to inductive 

bias, because the algorithm uses inputs that it has not yet encoun-
tered to predict the target outputs. Typically, such bias is supplied by 
hand through the dexterity and insights of domain experts. Ad-
vancements in DL make it possible for automated feature extraction 
and selection, thus overcoming the inductive bias [273–276].  

2) Shallow features can be recognized well with ML but a difficulty in 
identifying context-aware activities of occupant behavior (e.g., 
cooking a meal) or extracting other dimensions of occupant behavior 
[20,277–279]. 

3) In traditional approaches, extensive training data and labeled an-
notations are mandatory for supervised learning, but in real-world 
applications, most of the data remain unlabeled (unsupervised). 
Due to this, typical models are unadaptable to a diverse range of 
context-aware occupant actions and model configurations [20,45, 
275–279].  

4) Another significant difference between DL and ML methods is the 
problem-solving capability and critical analysis approach. DL tends 
to solve the issue end-to-end, whereas ML needs the problem state-
ment to be broken into stages/parts and explained separately and 
combined at the final phase. 

In summary, unlike ML approaches, DL classifiers are trained 
through feature learning rather than distinct task-specific algorithms 
[276]. However, DL is applicable when the task indented has a large 
dataset to work with; for smaller datasets, ML algorithms performs well 
with high accuracy. In general, when there is a lack and inadequacy of 
domain knowledge for feature introspection, DL outperforms most of the 
existing ML techniques [20,275–278]. 

9. Conclusions 

In this study, the PRISMA methodology is exploited to conduct a 
systematic literature review on the topic of Occupant Presence and 
Actions (OPA) modeling in buildings. The identified documents were 
collected in a bibliographic database and analyzed. The analysis was 
supported by a data-driven bibliometric tool to provide an extended 
investigation of the methods and findings on the topic and to draw in-
sights into the current state and future prospects of OPA modeling. This 
work, in the context of IEA EBC Annex 79, aimed to systematically cover 
all aspects of OPA modeling in different typologies of buildings. 

The bibliometric analysis showed that the most productive 
geographic regions are North America, Europe, and China and that the 
intensity of the collaborations is large and well established between 
research groups in such regions. The documents analyzed in the data-
base mainly involved measurement data in office buildings located in 
temperate and continental climates. Therefore, there is a need to 
develop new research studies outside these consolidated domains to 
provide a wider coverage of the knowledge domain, specially, in those 
climate contexts where models are missing, and it is expected a sub-
stantial increase of population and the construction rate (e.g., Africa, 
Indo-China region, Latin America). Regarding the methods, data-driven 
models are emerging as the most used modeling methods in recent years, 
which may be due to the large wealth of data coming from sensors 
installation. In particular, there is a recent interest in adopting deep 
learning techniques to model some OPA aspects for both explaining and 
predicting purposes. Most of the studies on occupant presence and ac-
tivity detection aim at understanding occupant behavior, while the 
majority of studies on occupant actions are aiming at predicting occu-
pants’ interaction with given building devices for adaptive controls’ 
development. It is highly appreciated the development of combined 
occupant behavioral models that provide a wider and closer-to-reality 
description of occupant use of the building and its systems. This is a 
domain where newer research is needed to increase accuracy of 
behavioral modeling. 

In general, to maximize the potential of existing and future datasets, 
a common data collection vocabulary or ontology should be created 
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which would enable data reuse and ultimately meta-analysis of multiple 
datasets across different building types, sample sizes and country of 
origin. 

This review has to be intended as a work to be regularly updated and 
expanded with the rise in number and detail of the OPA modeling 
methods to provide information on developments and new tendencies in 
the field. To facilitate this task, this article provides a dynamic open- 
access review table as a supplementary material (https://osf. 
io/gnvp2/?view_only¼00b08233881f471795d1d8dee79e9828), which 
can be expanded by other researchers to include future studies in order 
to represent an updated overview on the scientific production on 
occupant presence and action modeling. 

Limitations of the current work are the possible and involuntary 
omission of OPA modeling documents not spotted by the literature 
search and not at the knowledge of the authors. However, the PRISMA 
methodology is designed to keep such oversights to a minimum. 
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1. Introduction 

Building energy consumption has been proven to be a systematic 
procedure comprehensively influenced by not only engineering tech-
nologies but also cultural concepts, occupant behavior, social equity, 
etc. Occupant behavior (OB), discussed in this paper, refers to occu-
pancy presence and the number of people in the spaces of a building, and 
human building interactions, such as window and blind operations, 
turning on/off lighting, as well as thermostat adjustment and use of 
electric appliances. As, occupants are one of the major factors that in-
fluence energy consumption [ [1], p. 79], depending on the level of 
building automation, the inclusion of the occupant-behavior modeling 
in building controls could lead to optimized building operation and 
reduced energy consumption [2,3]. Furthermore, the inclusion of 
human-building interaction [4] or OB in the control loop [5] could lead 
to a higher thermal comfort level and a general increase in occupants’ 
satisfaction with the indoor environment. 

However, OB models are rarely included in building controls, despite 
the vast scientific evidence that considering OB in building energy 
management could lead to optimized building performance [6]. Prior 
research studies show that the reason for the limited field applications of 
OB models could be the lack of OB model standardization and clear 
documentation [7,8], which results in models’ limited replicability. The 
development of OB model standardization can enable easy integration 
and compatibility with existing or new building automation system 
(BAS). For instance, the inputs and outputs of OB models can be mapped 
with sensors and objects in BAS to enable occupant-centric building 
controls. Additionally, this standardization will ensure that the func-
tionalities and requirements of an OB model are in alignment with 
building control requirement. 

1.1. Existing reviews 

The state-of-the-art, as well as an overview of related reviews that 
focus on OB modeling, are presented by Refs. [9–12], while the human 
dimension of energy consumption is reviewed by Ref. [13]. As 
concluded in the work by Carlucci et al. the predictive OB models are 
emerging, and this trend is evolving in parallel with the rise in the 
number of data-driven OB models. In this place, such predictive nature 
of data-driven OB models makes them promise for the application in 
advanced building controls such as model-based and model predictive 
controls. For the detailed revision of OB in the context of building 
control the reader is referred to Refs. [7,14–16]. Furthermore [17], 
reviewed occupant-centric control strategies, while the OB modeling 
was not in the particular focus of the latter work. 

Complementary to the reviews of general OB modeling, the OB in the 
context of building simulation and in the context of building control has 
also been the focus of several recent studies [18–22]. 

1.2. Contribution of this paper 

This work aims to fill the gaps required for the inclusion of OBs into 
building control, by proposing a guideline for model documentation and 
evaluation based on a comprehensive review of the scientific evidence 
and current state of technology. Since the building control and OB 
modeling were researched separately during the past years, the litera-
ture evidence did not provide a clear set of OB models that are developed 
and implemented in building control. For instance, OB models were 
commonly developed with a mentioned practical application for HVAC 
control, general building automation of smart buildings. However, the 
existing literature evidence does not provide clear recommendations, on 
which OB models can be used in building control and how to document 
these models for their real-world deployment. In order to bridge the gap 
between the two communities, we relied on our best domain expert 
knowledge and considered the OB models that are applicable to the 
building control. 

From the control side, we put the spotlight on the OB models for the 
application in rule-based and more advanced control such as model 
based predictive controls. Further adaptive control paradigms that could 
include, but are not restricted to reinforcement learning, are not 
considered in the scope of this work. In this place, comprehensive and 
unified model documentation is required for model standardization and 
wide applicability. This model documentation also includes the guide-
line for suitable model performance evaluation, which is of crucial 
importance for the realistic presentation of the model’s capabilities. In 
summary, this study aims to: (1) standardize OB model documentation 
to promote transparency through clear communication among re-
searchers, reproducibility of experiments, (2) help researchers to select 
and adopt suitable models to fit their research needs, and (3) help re-
searchers to understand the prerequisite, performance, application of 
the models they intend to use. In order to fulfill these goals, this work 
focus on the following research questions:  

(1) How are occupant models for real-time/predictive controls 
currently documented in the scientific literature?  

(2) How should occupant models be documented and implemented?  
(3) What are the evaluation metrics for different occupant behavior 

models? 
(4) What are the software platforms for future researchers to eval-

uate/validate their models? 

2. Methodology 

2.1. Guideline development 

This section documents the development of the proposed guideline. 
As Fig. 1 shows, four major parts are included in this guideline: 1) Model 
description and applications which describes information representa-
tion, model inputs and output, and domain of applicability; 2) Model 
development detailed out data preparation, modeling formalism, and 
gaps in current model development documentation; 3) Model evaluation 
provides guidelines of selecting performance metrics which include 
absolute metrics, domain metrics, and indirect performance metrics; 4) 
Finally, in model implementation, we discussed the computational 
environment, computational time, experiment setup, and integration 
into MPC. 

Fig. 1. Overview of the guideline development.  
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2.2. Review approaches and structure of the article 

Based on an in-depth literature review process, this article aims to 
provide a guideline for a thorough and standardized occupant-behavior 
model documentation. The review focuses on six different categories of 
OBs, including Appliance Use, Lighting Operation, Occupancy Estima-
tion and Prediction, Shading Operation, Thermostat Adjustment, and 
Window Operation. The literature search was conducted in Google 
Scholar with “Building” plus the aforementioned categories as key-
words. Following the pre-defined categories, all the related literature 
was selected. Among those literature, OB models were reviewed from 
different perspectives, such as model description and applications 
(Section 3), model development (Section 4), model evaluation (Section 
5), and model implementation (Section 6). We discussed our findings 
and future challenges in Section 7, and Section 8 concludes this paper. 

3. Model description and applications 

In order to answer the first research question, we have conducted a 
review on how current OB models are presented. The description of an 
occupant model typically includes three parts: information representa-
tion, model inputs, and model outputs. We will discuss those elements in 
the following sections. In addition, the domain of applicability is 
reviewed as well. 

3.1. Information representation 

Several ontologies and schemas, such as Industry Foundation Class 
(IFC), Green Building XML (gbXML), BPD Ontology, Brick, ASHRAE 
201,. Have been developed to organize knowledge and structure data by 
describing both static (e.g. building geometry) and dynamic building 
data (e.g. time series temperature data) about building technical system, 
equipment, sensors, and corresponding relationships [23]. Each 
ontology or schema has its own focus area. For example, gbXML has 
been used to represent mostly energy performance simulation models 
with detailed material properties and geometries. BPD Ontology and 
Brick focus more on building operation data, which is typically 
measured by physical sensors and has a relationship with its location 
and measurement type. All ontologies or schemas aim to describe data 
and their relationship with building’s devices. However, it is concluded 
that there is a lack of detailed documentation on existing data sets and 
models mostly due to the lack of guidelines as described in the discus-
sion section. In addition, there is no metadata schema or ontology that 
can represent the full spectrum of occupant behavior models. For 
example, the occupant presence potentially could be represented by IFC 
as the “Timeseries” and attached to the “IfcOccupant” Class. However, 
the description of other occupant behaviors is very limited. Another 
necessary part of the occupant behavior modeling is a systematic 
description of input variables and parameters, prediction horizon or 
time interval. According to the review done by Na [8], eight out of 24 
selected data tools can represent indoor and outdoor environmental 
data; however, none of the existing tools can store occupant behavior 
model parameters, unfortunately. 

Furthermore, the terminology is an essential part of information 
representation. Na [8] concludes that only three data tools have defined 
terminology for occupant behavior-related data, which are ADI [24], 
Brick [25], and Project Haystack [26]. Within those three different 
metadata schemas, they have different naming for the same building 
component. The current lack of standardization in the names of sensors 
in commercial buildings creates challenges not only for occupant 
behavior modeling but also for building data integration and interop-
erability in general. There is a need to adapt different naming from the 
schemas and ontologies to have a unified naming guideline when doc-
umenting occupant behavior models. 

3.2. Model inputs and outputs 

The current section details the inputs (independent variables) and 
outputs (dependent variables) used in the OB models reviewed in the 
current work. The information is presented for the six main categories of 
behaviors considered in the models: (1) Appliance use, (2) Lighting 
operation, (3) Occupancy estimation and prediction, (4) Thermostat 
adjustment, (5) Shading operation, and (6) Window operation. 

Fig. 2 presents a count of the inputs and outputs used when modeling 
appliance use (left side of the figure) and lighting operation (right side of 
the figure). Starting with the former, the most commonly studied out-
puts are predicting the multi-state of appliances, or their energy con-
sumption levels. The most frequent inputs used to predict the mentioned 
output are mostly the plug-load energy (i.e., historical data used to 
predict future use), followed by the space’s occupancy status (i.e., using 
occupancy presence/absence information to predict appliance usage). 
As for lighting operation (Fig. 2, right), the most frequent outputs are the 
state (either binary or multi-state) and the operation time. Illuminance 
levels, occupancy status, and power consumption of other systems (e.g., 
plug-loads) are the main inputs used to model lighting operation. 

Fig. 3 summarizes the inputs and outputs used in occupancy esti-
mation and prediction (left side) and thermostat adjustment (right side). 
Starting with occupancy models, the two most dominant outputs are the 
presence status (binary) and the number of occupants. Unlike the pre-
vious target behaviors, a wide variety of inputs is used to predict oc-
cupancy, including historical occupancy patterns, motion detection, 
power usage, and indoor environmental measures (e.g., illuminance, 
temperature, relative humidity, CO2, and VOC levels). As for thermostat 
adjustment (Fig. 3, right), the temperature setpoint setting is the most 
frequent target variable. Other outputs include indoor temperature, the 
probability of adjusting thermostat settings, and energy consumption. 
Here again, various parameters are used as predictors for these models, 
such as indoor/outdoor temperatures and humidity, solar radiation, 
CO2 levels, hour of the day, and electricity load and price. 

Fig. 4 presents the count of inputs and outputs used in models of 
shading operation (left side) and window operation (right side). For 
shading operation, the listed outputs are all well represented in the 
reviewed models. They include the shading state (binary or multi-state), 
the probability of having blinds up or down, and the portion of blinds up 
or down. The predictors of the stated outputs are primarily environ-
mental in this case, namely indoor/outdoor temperature, illuminance, 
and solar radiation. Moving to the right side of Fig. 4, the most 
considered output of window operation is the probability of window 
state, followed by the probability of taking action (e.g., opening/closing 
a window) and the portion of a window open, respectively. Here again, 
the inputs to such models are mostly environmental, namely indoor/ 
outdoor temperature and humidity, wind speed and direction, solar 
radiation, rainfall, and concentrations of CO2 and particulate matter. 

3.3. Domain of applicability 

This section details how the spatio-temporal domain is documented 
in the OB models reviewed in the current work. The temporal dimension 
is represented by time granularity, prediction horizon, and control ho-
rizon. While the spatial dimension is represented by the space (e.g., 
room, floor, building level) the OB model is addressing. 

The time granularity is the time-step or shortest time window 
operation from which the information regarding the occupant’s 
behavior is used for prediction (e.g., presence model in 15-min resolu-
tion). Fig. 5 shows the distribution of the availability of this information 
in the reviewed papers according to each target behavior. Models of 
lighting operation are the least documented in terms of time granularity. 
For the other target behaviors, about 30% of the papers do not report the 
used time discretization information. Sometimes, the time-step is not 
explicitly documented because the authors imply that the time granu-
larity of the model is the same as that of the sensed data. The 
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documented time granularities cover a broad range from less than 1 min 
to hours (Fig. 6). This depends on several factors, including the granu-
larity of the sensed data available, the temporal range in which the 
change of behavior in question occurs, and the envisaged predictive 
horizon. A time resolution between 10 and 19 min is the most frequently 
adopted. 

The predictive horizon is the time horizon over which the OB is 
modeled. The predictive horizon is much less documented than the time 

granularity (Fig. 7) and covers a wide range of values, from less than 
1–24 h (Fig. 8). This is to be expected since it is strongly dependent on 
the controlled variable. For example, the predictive horizon for building 
predictive HVAC control is related to the type of heating and cooling 
system and can be relatively long for radiant floor heating systems 
compared to air-based ones, the response time of which is very fast. 

The control horizon is the time horizon over which the control var-
iable is modeled. The control horizon is commonly equal to or longer 

Fig. 2. Count of inputs and outputs used in models of appliance use (left) and lighting operation (right) behaviors.  

Fig. 3. Count of inputs and outputs used in models of occupancy (left) and thermostat adjustment (right) behaviors.  
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than the predictive horizon. The control horizon is explicitly docu-
mented in only 5% of the reviewed papers. The lack of this information 
can be explained by the fact that the great majority of the reviewed 
papers propose OB models as an input for model predictive control 
(MPC) but do not actually apply it in predictive control. However, the 
practical implementation of these OB models in the field is currently 
lacking. 

Regarding the space granularity, i.e. the space (room, floor, building 
level) the OB model is addressing, a majority of occupancy, shading, and 
lighting models have been developed only at room level (Fig. 9). Instead, 
appliance use, window operation, and thermostat adjustment models 

have been mostly addressing the building level that, for the residential 
case, corresponds to an entire house. Only a minority of OB models have 
been addressing a lab-based installation, such as a test cubicle. 

4. Model development 

To develop an occupant model, one needs to prepare raw data into a 
format that can be used for modeling data (4.1) and identify a modeling 
method or algorithm that is applicable and practical for a particular 

Fig. 4. Count of inputs and outputs used in models of shading operation (left) and window operation (right) behaviors.  

Fig. 5. Availability of the time granularity according to the target behavior.  Fig. 6. Distribution of the time granularity in minutes according to the target 
behavior. (If a model was developed with more than one time-step; only the 
smallest was considered in the figure). 
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problem (4.2). In this section, we will review diverse approaches and 
techniques employed in occupant models and discuss gaps in current 
research and development in this field (4.3). 

4.1. Data preparation 

Data used in occupant modeling is often collected in different 

structures, granularities, and volumes as described in section 2. Hence, it 
is important to prepare or preprocess the raw data into a format that is 
suitable for intended analysis and modeling [27]. Preprocessing can 
include, but is not limited to, the following steps:  

1. Cleaning and imputing the missing and corrupt data, outliers by 
discarding or replacing them with inferenced values (e.g., moving 
average, mean, or median) to be easily parsed by machine;  

2. Reducing data dimensions using row-wise for data sample reduction 
or column-wise for data variable reduction and random sampling 
methods;  

3. Data scaling using min-max normalization [28], distribution-based 
standardization [29], or structure-based techniques [30] to scale 
the data into a consistent range;  

4. Feature creation to construct new variables of existing features for 
data analysis;  

5. Data partitioning using supervised (e.g., decision tree [31]) and 
unsupervised techniques (e.g., k-means [32], Gaussian Mixture 
Models [33]) to divide the dataset into the test and training subsets 
to evaluate the trained model based on the test set;  

6. Merging data from different sources with various time intervals 
within time-series data. 

Preparing data is often the most time-consuming portion of data- 
driven modeling. Yet, only a few studies in the reviewed literature 
describe the data preprocessing methods used for occupant models. The 
examples are as follows. Jin et al. [34] used the confusion matrix to 
evaluate the quality of PIR sensor data and remove inaccurate occu-
pancy states. Q-test was used to identify outliers [10]. To handle the 
missing values, Yu et al. [29] used the moving average method to fill in 
missing entries. Also, they calculated the SHapley Additive exPlanation 
(SHAP) values of each feature to reduce the HVAC operation data di-
mensions. Ashouri et al. [28] employed min-max normalization to 
standardize energy consumption data. K-means clustering was used to 
recognize distinct air handling unit operation patterns and group the 
BAS data accordingly [29]. In another study, hierarchical clustering was 
conducted to extract the occupancy patterns in the building and create 
new features for occupancy models [35]. Given that methods and as-
sumptions used in the preprocessing stage can affect data analysis and 
prediction outcome, there needs to be a concerted effort to document 
detailed preprocessing steps in future studies. 

4.2. Modeling formalism 

In this section, the models’ category distribution is presented for 
each target behavior. The modeling categories were defined based on 
the state of the research: deterministic rule-based models, statistical/ 
stochastic, and data-driven [36]. Rule-based models are the deductive 
models that use an a priori set of rules for describing occupant behaviors 
in building models, including deterministic models and schedules. The 
statistical/stochastic is stochastically modeled the OB to represent the 
various behaviors among the population [9], potential change over time 
[18], and complexity [10]. These models are commonly represented by 
statistical models such as a-priori probability density functions [37]. The 
third modeling formalism is the data-driven modeling, where the focus 
was put on computational intelligence or machine learning without an 
explicit aim to explain the relationship between the input variables and 
the OB [38]. It includes the ML models and ABM. 

The reviewed OB models for building control are screened for the 
used modeling formalism, and the results are presented in Fig. 10. 

The data-driven methods are the most used. The second most 
implemented category is represented by statistical models that have 
been applied especially to model windows operation (80%). Rule-based 
models’ category has been applied mainly for shading and has not been 
tested for appliance use and window operation behavior. Some docu-
ments did not provide information about the implemented models. It 

Fig. 7. Availability of the predictive horizon according to the target behavior.  

Fig. 8. Distribution of the predictive horizon in hours according to the target 
behavior. (If a model was developed with more than 1 predictive horizon; only 
the smallest value was considered in the figure). 

Fig. 9. Distribution of the space granularity for occupancy models.  
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happened for occupancy, lighting, and shading behavior in a percentage 
of 8%, 17%, and 8%, respectively. 

Fig. 11 deepens the most adopted models in the target behavior, 
considering those with a percentage higher than 10%. Regarding the 
rule-based category, most of the reviewed studies do not provide 
detailed information on the models used, merely defining their 
belonging category. Schedules have been implemented in around 40% of 
the cases related to lighting usage. 

About the statistical models, the Markov chain appeared the most 
adopted for occupancy and thermostat adjustment; Markov chain Monte 
Carlo models have been often implemented for modeling lighting use. 
Regression models have been mainly found in the case of window and 
shading operations with a percentage of around 74% and 100%, 
respectively. Often, information on the adopted model was not pro-
vided, as in the case of appliance usage (67%). 

Regarding the data-driven models, neural networks (NN) have been 
the most common. Control logic and fuzzy logic were utilized with the 
same percentage of neural networks (around 20%) for shading opera-
tion. Similarly, also in the case of appliance use, clustering and long 
short term memory (LSTM) were implemented with the same percentage 
of neural networks. 

Fig. 12 provides the distribution of models’ categories in six building 
types. Rule-based modeling has been mainly applied in commercial 
buildings for occupancy, lighting, and shading operation. Furthermore, 
they have been implemented in residential buildings for occupancy, in 
educational buildings for lighting, and in institutional edifices to model 
shading operation. The statistical approach has been principally used in 
residential buildings and prevailed in the case of thermostat, appliance 
use, and window operation; the application in commercial buildings was 
diffuse in case of occupancy, shading, and window behavior. In the case 
of lighting, the implementation of statistical models was equally 
distributed in residential and commercial buildings. Moreover, statisti-
cal models are diffuse to predict occupancy and window operation in 

Fig. 10. Distribution of the model categories according to the target behavior.  

Fig. 11. Most adopted models according to the target behavior and the model categories (rule-based, statistical/stochastic, and data-driven).  
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educational edifices, whereas appliances use in laboratories. 
The data-driven category found notable implementations in com-

mercial buildings for lighting, shading, and window operation in both 
residential and commercial buildings for thermostat adjustment and 
appliance use. Educational buildings prevail for occupancy modeling, 
and laboratory edifices for shading operation. Other buildings typol-
ogies, such as religious and institutional buildings, have been rarely 
investigated for occupancy, lighting, and appliance use. 

Fig. 13 presents the model categories distribution considering the 
space granularity. In general, shading and occupancy behavior have 
been investigated at room level and lighting in offices. 

On the other hand, thermostat adjustment and appliance use have 
been modeled in apartments as they are principally studied in residential 
buildings. 

Occupancy is also frequently detected in buildings, whereas lighting 
operation has been modeled considering more varied space typologies: 
controlled environments, such as laboratories and test chambers, 
classrooms, and offices. 

Fig. 14 presents the model categories distribution considering the 
time granularity. Generally, rule-based models were developed collect-
ing occupancy data with a time step minor than 10 min, whereas the 
temporal time step was prolonged and longer than 60 min in case of 
shading behavior. In statistical models, occupancy, thermostat, and 

window were commonly detected with a time step minor than 20 min. 
Lighting operation behavior was mainly modeled by data collected with 
a temporal step minor than 10 min. In the data-driven category, the time 
step used for appliances usage detection was generally equal to 45 min. 
For the other behaviors, brief time steps, less than 20 min, were also 
utilized. 

4.3. Gaps in model development documentation 

Scientific research should be ‘reproducible and replicable’. Repro-
ducibility ‘means obtaining consistent results using the same input data, 
code, computational steps, and conditions’ while replicability ‘means 
obtaining consistent results across studies aimed at answering the same 
scientific questions using different data (https://www.nap.edu/catalo 
g/25303/reproducibility-and-replicability-in-science). Reproducibility 
is challenging to attain because it involves sharing the data, which may 
be nowadays limited by, for instance, personal data protection needs 
and privacy issues. Replicability could be easily achievable compared 
with reproducibility. However, it demands documenting the steps un-
dertaken in the development of the model in a transparent and detailed 
way. Therefore, the critical aspect is to detail the entire process – the 
complete workflow – rather than a specific part of it (e.g., the results). 

With these premises, the model development should start with the 
explicit formulation of its problem; that is the modeling purpose. This 
implies that if a model is developed for control purposes, it should be 

Fig. 12. Model categories (rule-based, statistical/stochastic, and data-driven) 
according to the target behavior and building typology. 

Fig. 13. Spatial granularity in model categories (rule-based, statistical/sto-
chastic, and data-driven) according to the target behavior. 
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ready to be directly implemented in control logic. Consequently, this 
aspect should be already addressed in the model development. For 
example, for application in model based control or MPC, the control 
horizon depends on the kind of heating and cooling system used: it can 
be rather long for radiant floor heating systems compared to air-based 
systems. Subsequently, the modeling formalism that provides the OB 
sequence during the whole predictive horizon should be chosen and 
described. Reasons for the selection of a particular method should be 
given from both a practical and theoretical point of view. It should also 
explain how the predictors included in the model were chosen. This 
includes stating whether feature selection was used to reduce the data 
dimension and which approach was used. Also, it is important that the 
variables included in the model are commonly monitored in buildings. 
For instance, if RH is included in the model as a predictor but is not 
measured in the building, the model is not applicable in practice. 

From the reviewed literature, only 35% of the papers state that the 
aim was building/zone/HVAC control application, and only 19% offer a 
formal integration of the model into a control logic. Therefore, the 
majority of the available occupant models are not designed with control 
purposes in mind, which directly impacts the modeling formalism used. 
This kind of model aimed to represent what the behaviors were based on 
the data collected and not what the behavior will be. In models for 
control purposes, time becomes a critical factor that a model should 
directly account for. This translates to recognizing and considering the 
model’s input variables as a function of time. 

Another issue regards the integration of real-time data into the model 
to be updated when new information is collected. This would also 
require measures of the dependent variable, that is, the behavior that the 
model aims to predict. The ability to self-update and adapt to real-time 
data strongly affects the modeling strategy’s choice. 

Furthermore, most of the behaviors are modeled independently from 
each other. However, in reality, this is rarely the case. For instance, the 
shading operation can affect both lighting operation and thermostat 
adjustment behavior. Moreover, the necessary condition for most of the 
occupant behavior is occupancy estimation and prediction. This implies 
being able to measure it or predict it. In the latter case, this will result in 
ulterior uncertainty in predicting behavior. For example, if window 
operation behavior is the dependent variable to predict, its prediction 
will be affected by the model error plus the prediction error for the 
occupancy status. 

5. Model evaluation 

Mode evaluation is a logic and necessary next step after model 

development. This section focuses on the model evaluation and doc-
umenting the model’s performance. It consists of the reviewed literature 
evidence on the OB model evaluation and a proposed guideline for the 
standardized documentation of model performance. For that purpose, 
the performance metrics are structured into absolute, domain-specific, 
and indirect metrics, and their purpose is briefly elaborated. Finally, 
the sensitivity analysis is introduced, as an additional tool to quantify 
the model performance and document the uncertainties. 

5.1. Performance metrics 

The model evaluation [39] is structured into absolute evaluation, 
domain metrics, and indirect metrics as showing in Fig. 15. The absolute 
metrics relate to the performance indicators used for general statistical 
or data-driven modeling. Here, we quantify how often an OB model 
provides a correct prediction, or we use the absolute metrics to evaluate 
the performance in case of data imbalance. The domain metrics are 
defined using the OB and buildings physics knowledge. For instance, in 
the case of window operation modeling, we are not only interested in 
what percentage of window states is modeled correctly, but also how 
often a window operation occurs or what the median duration of se-
quences with open windows is. Lastly, the indirect metrics quantify the 
impact of the modeled OB on the data modeling objectives of building 
control: does the use of the window operation model lead to improved 
thermal comfort, or how does it affect the HVAC system, such as the 
resulting impact on energy consumption or thermal comfort. 

5.1.1. Absolute metrics 
The absolute metrics is based on the definition proposed by Ref. [40], 

namely “the metrics that are based on the absolute error calculation”. 
The main goal is to assess the goodness of the model for fulfilling a 
particular task, to compare alternative approaches, and to quantify if the 
design updates made on an OB model led to the model’s improvement. 
The initial step in the selection of the evaluation metrics is the assess-
ment of the nature of the modeling objective; for example, whether the 
target variable is categorical or continuous. 

Since the absolute metrics may result in bias in the interpretation of 
the results [41], these should be selected based on the nature of the 
modeled data and target function formulation. In this regard, the target 
function formulations considered for the OB modeling are continuous, 
categorical and the special case of binary categorical variables. The 
resulting absolute evaluation metrics should be defined based on the 
target function formulation and the particular challenge in each OB 
model. 

Fig. 14. Time granularity in model categories (rule-based, statistical/stochastic, and data-driven) according to the target behavior.  
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The literature screening showed that there is a significant portion of 
the modeling studies in which the validation and testing performance 
was not performed. Furthermore, the conducted literature review 
pointed out the lack of standardized model evaluation metrics. How-
ever, similarly to the generic data-driven or statistical modeling, the 
performance is commonly reported using mean average error (MAE), 
mean squared error (MSE). Additionally, the precision, recall, and F1 
scores were used by some of the existing studies that focused on clas-
sification tasks. 

Based on the empirical evidence on the target variable formulation 
and the nature of OB data, the minimal requirements on the set of ab-
solute metrics for each OB are summarized in Table 1. In summary, most 
of the OB modeling should be treated as classification problems. The 
multi-class categorical target functions include the shading operation, 
while the window operation, occupancy estimation and prediction, 
lighting operation, and appliance use should be modeled as the binary 
classification. At the same time, the occupancy count can be modeled as 
a regression problem. 

We use modeling window status as an example. The fundamental 
issue to be addressed is the imbalanced prior probabilities of the window 
states. Therefore, the model evaluation should include the MAE, 
confusion matrix, and F1 scores. Similar to the window states, the oc-
cupancy estimation and prediction, appliance use, and lighting opera-
tion are also commonly formulated as binary classification problems, 

and the model’s performance can be quantified using the same metrics. 
To this end, the model goodness quantified using confusion matrix and 
F1 score could also be reported using precision and recall. The models 
that represent shading operation can be evaluated using MAE, confusion 
matrix, and Fβ score. The reader is referred to Li et al. [42] for further 
elaboration on the choice of the evaluation metrics. 

In the case of the thermostat setpoint modeling, there are very 
limited studies on model validation. However, we argue that the set-
point modeling should be treated as a continuous problem since the 
setpoint changes could be treated as rare events. By treating the ther-
mostat set point modeling as a regression problem, the relative value of 
the thermostat set point is to be modeled, while the setpoint changes 
would be addressed in an implicit fashion. 

5.1.2. Domain metrics 
The domain metrics are defined as a fit-for-purpose metric that 

evaluates the competence of the model in representing a certain OB 
considering the stochasticity of results. The intention of developing 
these metrics is to provide comparable means for assessing how well do 
OB models represent particular forms of human behavior. Moreover, 
considering the main purpose of building as a comfortable and pro-
ductive space for people [43,44], these metrics standardize building 
performance from the perspective of its occupants. In the existing work, 
Tahmasebi and Mahdavi [45] presented domain metrics for comparing 

Fig. 15. Model evaluation metrics for OB in building control.  

Table 1 
Recommended target formulation and minimal set of evaluation metrics for each modeled OB.   

Data type Absolute metrics 

Continuous Categorical Binary ACC Balanced 
accuracy 

Confusion 
matrix 

F1 Fβ MAE MSE RMSE N- 
RMSE 

Window Operation  X X X  X X  X    
Thermostat Adjustment X        X X X X 
Occupancy Estimation and 

Prediction 
X X X X  X X  X X X  

Shading Operation  X  X  X  X X    
Lighting Operation  X X X  X X  X    
Appliance Use  X X X X X X  X     
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the performance of OB models in building simulation. However, the 
related literature in the context of building control is sparse and there is 
a need for developing consistent domain metrics [46–48]. 

The domain metrics are categorized based on types into aggregated 
and interval-by-interval groups as summarized in Table 2. The aggre-
gated domain metrics stand out as proper evaluation criteria when the 
tested OB model is used for long-term purposes such as (estimating total 
energy saving, benchmarking building performance, etc.). On the other 
hand, the interval-by-interval metrics are preferable for evaluating OB 
models in short-term applications such as (building control, MPC, de-
mand response studies, etc.). Table 1 summarizes the metrics defined for 
each distinct behavior, and it highlights the research gap in developing 
novel interval-to-interval metrics for thermostat domains. To fill this 

gap, we argue that some of the developed metrics could be transferred 
between different domains with minor adjustments. For example, the 
occupancy state matching error is the percentage of false state pre-
dictions which indicate the mismatch between actual and predicted 
occupancy; this metric could be adjusted for evaluating appliance use 
models. Chong et al. [46] used the coverage width-based criterion that 
comprehensively evaluates the quality of prediction interval to evaluate 
the performance of occupancy estimation and prediction models which 
can easily be adjusted to evaluate the performance of OB thermostat 
adjustment models. 

5.1.3. Indirect performance metrics 
Indirect performance metrics evaluate to which extent the OB model 

contributes to fulfilling the control goal, such as energy consumption 
reduction or improving thermal comfort. For example, the integration of 
occupancy estimation and prediction into temperature control can 
minimize the heating demand. In that case, the used energy could be 
defined as the control metric together with absolute and direct metrics 
in the comprehensive model evaluation. One of the examples of jointly 
used domain and indirect evaluation metrics is presented by Peng et al. 
[51] the occupancy model was evaluated using both domain metrics 
(probability and duration of room occupancy) and indirect metrics (total 
consumed energy consumption). 

A summary of literature about control metrics applied for the 
different OB models can be obtained from Appendix I. The literature 
screening pointed out that there is only limited evidence of the docu-
mented indirect control metrics for OB models, which could be a result 
of the rare availability of control use cases. When included, control 
metrics are frequently used to compare the performance of control 
including OB modeling versus one without it. The control metrics can be 
absolute or relative, for example, the energy consumption or saving in 
kWh (absolute) or the energy reduction in percent (relative). 

In the literature, where control metrics are available, the main focus 
of most control algorithms is to minimize energy consumption while 
maintaining comfort constraints. Naylor et al. [17] reviewed 
occupant-centric building control strategies in regard to their energy 
reduction and obtained between 20 and 50% reduction in most cases. 
Despite the energy reduction, the comfort should usually remain in a 
certain range, e.g. an indoor temperature between 20 and 23 ◦C. The 
most dominant comfort control metric obtained from literature is ther-
mal comfort, as most cases of including OB (occupancy, thermostat, 
windows, shading) into control are related to HVAC systems [52,53]. 
Shading operation is not only relevant for thermal but also visual 
comfort metrics. Indeed, previous work has combined parameters from 
both domains in an algorithm to control window blinds [54]. Lightning 
is only related to visual comfort, mainly by guaranteeing appropriate 
illuminance levels at workstations. By doing so, visual comfort and en-
ergy efficiency metrics may be combined - even during non-office hours, 
using algorithms able to minimize illuminance targets for unoccupied 
workstations [55]. For thermal comfort, most authors use the control 
metrics indoor air temperature, the predicted percentage of dissatisfied 
(PPD), or the predicted mean vote (PMV); for visual comfort, illumi-
nance, or false-off frequency are typically used. 

6. Model implementation 

This section aims to provide a guideline on the best practices for 
implementing OB models in a software environment. This part assumes 
that the creator has completed the model development phase for the OB 
models so that these models are in the form of a stand-alone application. 
In this context, we refer to a stand-alone application as “a set of a USER’s 
information processing requirements” [56]. In that context, this section 
provides recommendations regarding the model’s computational envi-
ronment, runtime analysis and scalability analysis for the real-time ca-
pabilities, and the experimental hardware settings. 

Primarily, we focus on the OB models’ implementation as the 

Table 2 
Domain metrics for each OB type.   

Purpose Domain Metric Refs 

Aggregated Long-term 
purposes (estimate 
energy saving, 
model building 
performance, etc.) 

Lighting 
Operation 

Typical lighting 
operation profile 

[48] 

Frequency of 
switching-on 
actions 

Window 
Operation 

Overall fraction of 
open state [%] 

[47] 

Mean number of 
actions per day 
averaged over the 
observation time 
Open state 
durations’ median 
and interquartile 
range [hour] 
Closed state 
durations’ median 
and interquartile 
range [hour]. 

Occupancy 
Estimation 
and 
Prediction 

Occupancy State 
Matching (SM) 
error 

[49] 

Occupancy 
Duration (OD) 
error [h] 
Number of 
Transitions (NT) 
error 

Appliance Use Appliance’s daily 
turn on times 

[50] 

Appliance’s 
average use 
duration 
Accumulated on- 
state duration 

Thermostat 
Adjustment 

N. A  

Interval-by- 
interval 

Short-term 
purposes (demand 
response, MPC, 
etc.) 

Lighting 
Operation 

The stepwise 
energy use 

[48] 

Window 
Operation 

N. A  

Occupancy 
Estimation 
and 
Prediction 

First Arrival time 
(FA) error [h] 

[49] 

Last Departure 
time (LD) error 
[h] 
Prediction 
interval (PI) 

[46] 

Coverage width- 
based criterion 
(CWC) 

Appliance Use N. A  
Thermostat 
Adjustment 

Prediction 
interval (PI)a 

[49] 

Coverage width- 
based criterion 
(CWC)a  

a Metrics are suitable to be shifted from different domain. 
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outcome of the academic or general research activities. The aim of this 
section is to propose the documentation that enables model’s repro-
ducibility in building control systems that may have different software 
architectures [57]. 

6.1. Computational environment 

The documentation on the computational environment in the sense 
of OB models in building control should include requirements for spe-
cific operating systems (OS), programming languages, and library or 
other software dependencies. Beyond this information, the used versions 
should also be reported. The details required are relevant both for the 
model’s reproducibility in form of the application and due to the 
copyright requirements of each dependency in case of the (potentially 
commercial) field deployment. Furthermore, the operating system and 
programming language should be documented in the context of the 
runtime evaluation that is a crucial component of the OB model docu-
mentation and that is a programming language and OS-specific. 

When selecting a suitable computational environment for model 
development, the evidence regarding the widely adopted environments 
could be beneficial, and this information is summarized in Table 3. 
Among others, R and Matlab/Simulink are the most commonly utilized 
programming language and software packages that can be employed for 
almost every type of OB. Oppositely, in terms of programming languages 
C/C++ and VBA and for software packages IBM SPSS and Weka are less 
used for developing already existing OB models. In practice, one can 
observe a large variability for different platforms and the computational 
efficiency of OB algorithms [57]. Nevertheless, information related to 
the utilized operating system is sparsely documented in existing studies. 

6.2. Computation time 

Commonly, the OB models are developed with the aim to be included 
in the end-systems such as building control that typically operates in 
real-time. Since the computation resources within building control and 
related end-systems are limited, an estimate of the required resources is 
required to assure the real-time operation. In this place, we refer to the 
computation resources of the OB models, which are defined as stand- 
alone modules that can be coupled with an end-system in various 
distributed manners. We focus on the runtime of the developed final 
models where the executed steps include the data-preprocessing and 
computing the value of the OB target variable. In the case of the machine 
learning-based models, this would correspond to a model test, while the 
model training and validation are considered to be previously 
completed. The hosting of these models is taking place within the 
building control, using a cloud-edge solution or on a remote cloud. In 
case of any of the listed computation settings, the following information 
should be provided:  

- In which computation environment is the runtime analysis 
conducted?  

- What is OB model inference runtime?  
- Inference memory requirements?  
- Optional: total required training runtime  

- How does the OB model scale in space and time with the number of 
modeled OB instances? 

The runtimes should be expressed either in core hours or the clock 
time, given the standard setting. The runtime should be documented 
together with the used hardware model. Since the majority of the OB 
models were created in the scope of academic research efforts, there is 
limited literature evidence on the runtime documentation. Among the 
others, the reader is referred to Refs. [57–59], and [60] for some best 
practices. 

Additionally, the model’s scalability is of particular importance and 
should be documented. Namely, OB models can be applied to a large 
number of occupants within a building and therefore the model’s scal-
ability in space and time (footnote: for further information regarding the 
space and time complexity, the reader is referred to Ref. [61] should be 
documented and expressed using “big O” notation with respect either to 
the number of occupants, rooms or buildings (further information about 
the “big O′′ notation is summarized by Ref. [62]. Additionally, in case an 
O model is intended to be used for varied temporal resolution and pre-
dictive horizon, the time complexity should also be documented with 
respect to these two parameters. 

6.3. Experiment setup 

With the computational environment guidelines discussed above, 
this section focuses on presenting the experiment setup by summarizing 
the findings from the literature review. Sensor choices and imple-
mentation location will be discussed in the following subsections. The 
discussions are based on six main categories of occupant behavior 
models, as followed throughout this paper. The sensor choices subsec-
tion offers information of sensors that have been deployed among 
different studies, implementation locations subsection presents different 
locations of deployed sensors in different research experiments. This 
section aims to provide guidelines for future occupant behavior re-
searchers to deploy sensors and set up experiments. 

6.3.1. Sensor choices 
From the reviewed literature, in total 85% of the studies have 

explicitly provided information about sensors that have been deployed. 
Table 4 summarizes the commonly used types of sensors and the 
aggregated frequency that they have been picked in the literature. The 
color scales in the table represent how often the specific sensors were 
adopted. It can be observed that, for “Appliance Use” studies, current/ 
power sensors and smart meters are very commonly used; for “Light 
Operation” studies, lighting sensors and PIR sensors are primarily 
adopted; for “Occupancy Estimation and Prediction” studies, PIR sensor 
and CO2 sensor are commonly used; for “Shading Operation” studies, 
lighting sensors and indoor temperature sensors are commonly used; for 
“Thermostat Adjustment”, indoor temperature sensors, sound sensors, 
and airspeed sensors are primarily used; for “Window Operation” 
studies, indoor temperature sensors and window state sensors are 
commonly used. Apart from the aforementioned most commonly used 
sensors, other sensors are also summarized in the table. 

Table 3 
The most common computational environments for each OB model.   

Domain 
Programming languages Software packages/tools 

R Python C/C++ Java VBA IBM SPSS Modelica/Dymola Matlab/Simulink Weka LabVIEW RapidMiner 

Window Operation X X    X X X   X 
Thermostat Adjustment X  X     X    
Occupancy Estimation and Prediction X X  X   X X  X  
Shading Operation X       X    
Lighting Operation X   X X   X    
Appliance Use        X X X X  
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6.3.2. Implementation location 
Table 5 summarized the common locations of sensors deployed from 

the literature. The locations are categorized into two levels: Space Level 
and Building Level. Under each level of locations, detailed locations and 
related sensor types are provided. Based on the review work, this table 
provides a guideline for future researchers to refer to when deploying 
sensors in an experimental set up. 

6.4. Integration into MPC 

OB models can be used in MPC for setpoint/reference scheduling or 
for including measurable and predictable disturbances and for shaping 
the constraints. An illustrative example for the consideration of OB in 
MPC is presented in Fig. 16. In terms of disturbances, the OB should be 
considered as a cause of thermal gains from people, thermal losses from 
appliances or ventilation gain, and losses during window operations. 
This includes information about the number of occupants, time of use, 
and possibly information about used equipment. As measuring a direct 
heat dissipation is difficult, the forecasted behavior has to be used to 

infer the information about internal heat gains. Additionally, the OB 
could be considered by the constraints, such as by setting different upper 
and lower indoor air temperature bounds during occupancy hours. In 
case a specific setpoint instead of bounds is desired, the setpoint can also 
be explicitly defined in the cost function. 

As reviewed in subsection 4.2.3, the indirect metrics evaluate the 
control outputs comfort and energy consumption. For the integration of 
OB models into MPC, we focus on the most relevant and most common 
use case in literature, HVAC control. The relevance results from the 
significant energy savings potential. Additionally, most OB models could 
be meaningfully coupled with HVAC control (such as Appliance Use, 
Lighting Operation, Occupancy Estimation and Prediction, Shading 
Operation, Thermostat Adjustment, Window Operation models). Most 
relevantly, the thermostat adjustment and attendance profiles shape the 
occupants’ demand for thermal satisfaction by HVAC. Knowledge about 
absences and reduced thermal demands can significantly reduce the 
energy demand. The other OB models, shading and windows operation, 
have an impact on the thermal energy balance. 

There are several requirements that need to be documented with OB 

Table 4 
Sensor Choices of the Reviewed Studies. 
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model to ensure the use in advanced optimal control methods such as 
MPC. Firstly, the models must provide a forecast of the occupancy 
behavior over the length of the prediction horizon of the optimization 
problem, which is typically between 1 and 24 h. The quality of the 
presence and OB forecasts also depends on the type of measurement 
sensors used to gather the occupancy data [63]. Most accurate pre-
dictions are obtained from occupancy dedicated-sensor data such as PIR 
and cameras. However, as pointed out in Ref. [64], other sensors such as 
CO2 [65] or plug power can also provide sufficiently accurate data for 
control-oriented occupancy models. 

7. Discussion and future challenges 

Based on the previous review, to define a standard guideline to 
document occupant behavior for building controls poses the following 
challenges: 

7.1. Model description and formal representation 

The current model description varies among different schemas and 
formalization methods in terms of naming schema, description 

structures, and presentation of OB models. In addition, neither the OB 
model nor the building control model lacks a standard representation for 
model inputs, outputs, and model description. Hence, it creates a gap 
between OB and building control models. This results in a customized 
working process for every OB-driven building control study in the 
literature. In addition, such a process is not consistent and creates a very 
different performance (e.g. energy savings) even using the same type of 
OB model. As a matter of fact, the various inputs for the same OB model 
reflect this inconsistency. Prior researchers were using different sensors 
and instruments to develop different mathematical models to model and 
simulate the same behavior over decades. There is a need to standardize 
the model description and representation based on one formal language. 
Recently, a review paper [8] on data tools for building information and 
performance also concludes that ontologies or schemas represent the 
need to be developed. An effort to extend the current Brick schema to 
represent the OB model is ongoing. 

7.2. Model development 

Currently, the model development is not fully described in the sci-
entific articles. Information is missing on preprocessing procedures and 
model selection limiting the reproducibility and even replicability of the 
results of the studies. To overcome these challenges in model develop-
ment documentation, the authors should clearly state the model pur-
pose, and the practical and theoretical arguments supporting the choice 
of a given modeling technique. Also, to foster transparency and clarity, 
they should explicitly document the adopted cleaning and imputing 
procedures for the missing and corrupt data, the outliers treatment 
chosen, the data dimensional reduction process implemented, the data 
scaling method used, the techniques used for feature creation, the 
approach adopted for partitioning the original dataset for the definition 
of the test and training subsets, and the anonymization techniques used, 
if any. Furthermore, an important challenge is to develop newer multi- 
domain models, which can consider the multi-exposure of occupants to 
indoor environmental conditions and a multitude of controlling oppor-
tunities for a better and tailored adjustment of the building devices. 

7.3. Model evaluation 

The standardized and comprehensive model evaluation is crucial for 
OB model deployment in real-world scenarios of building control 
products. Therefore, a standardized evaluation schema is proposed for 
each distinct form of OB. With the ambition to provide a comprehensive 
evaluation, this work proposes joint use of three sets of evaluation 
metrics, namely absolute metrics, domain metrics, and indirect metrics. 
The absolute metrics were derived based on the vast literature evidence 
on the evaluation of general data-driven methods and their existing 
applications for OB modeling. Furthermore, we argue that the OB model 
evaluation has to include specific domain metrics. These are based on 
domain expertise in OB modeling and are supported by the existing 
literature evidence. 

Table 5 
The locations of sensors deployed from the reviewed studies.  

Level of Locations Locations Sensor Type 

Space Level Ceiling  ● CO2 Sensor  
● CO Sensor  
● Light Sensor 

Chair  ● Chair Sensor 
Desk  ● Keyboard & Mouse  

● Telephone (State) 
Door Frame  ● Door State Sensor 
Wall  ● Air Pressure Sensor  

● Air Speed Sensor  
● Bluetooth Beacon  
● GPS Location  
● LED Sensor  
● Light Switch  
● Motion (Unspecified)  
● Smart Plug  
● Sound Sensor (Acoustic)  
● Sound Sensor (Echo-Based)  
● Sound Recording Device  
● PIR Sensor  
● RF Sensor  
● RH Sensor  
● Temperature Sensor (Indoor)  
● VOC Sensor  
● WiFi Connection/Probe 

Window Frame  ● Window State Sensor 
Building Level Electrical Panel  ● Current/Power Sensor  

● Smart Meter 
HVAC Equipment  ● AC State Sensor  

● Airflow Rate Sensor 
Main Entrance  ● Camera 
Rooftop  ● Solar Irradiance Sensor  

Fig. 16. An overview of the MPC structure with the proposed inclusions of the OB.  
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As human behavior is highly diverse and sensitive to unpredictable 
events, sensitivity analysis could be used as a supportive tool to assess 
the uncertainties related to the used OB model. Sensitivity analysis (SA) 
is a statistical technique that assesses the effects that changes in input or 
design variables have on the model output variables [16,66]. There are 
two approaches to SA that could be applied when a model can be also 
used for building control purposes. The simpler is the local sensitivity 
analysis, where the impact of an input variable’s variation on a model 
response is estimated while keeping the values of the other input factors 
constant. The global sensitivity analysis, on the opposite, tests simulta-
neously all the input variables and enables assessing the impact of both 
individual input variables and their interactions on the model output. 
However, the existing applications of the sensitivity analysis for OB in 
building control are sparse, further adoption would provide useful in-
sights on testing control algorithm robustness against noise or uncer-
tainty in input variables and parameters. 

7.4. Benefits of the inclusion of OB models in building control 

Finally, the indirect metrics quantify how well the model contributes 
to fulfilling the higher goal of building control, such as maintaining 
comfort or optimizing energy consumption. Up to date, the impact of the 
OB model on the end-system has been limitedly explored. Namely, most 
of the existing OB models were not tested in field studies, and therefore, 
the relationship between whole system performance and the OB model is 
rarely analyzed. In order to come one step closer to filling this gap, this 
work proposed a set of indirect metrics for evaluating the impact of OB 
models for inclusion in HVAC control. The future challenge includes 
assessing the suitability of proposed metrics in field studies. Further-
more, the indirect metrics for alternative systems, such as shadings 
should be explored. 

7.5. Model implementation 

The documented model implementation should include the infor-
mation about the used computational environment in which the OB 
model is tested, the experimental setting, and the recommendations for 
the intended application in the building control. Here, a particular 
challenge is that the buildings are commonly a one-time product. As 
there is limited literature evidence on documenting the model imple-
mentation, future research should focus on how to standardize infor-
mation related to implementation in different buildings or HVAC 
systems. 

Furthermore, the future model documentation should include the 
estimated OB model inference time. As highlighted in Ref. [67], 
state-of-the-art OB models are too computationally expensive to be 
included in real-time control applications, such as MPC. In order to 
obtain stable and reliable results, the computation of the next control 
signal should be indeed completed before the start of the actual period of 
observation. Based on the previous literature review, the time related to 
a single forward pass of the proposed data-driven models, i.e. inference 
time, is however rarely documented. 

7.6. Model integration into advanced building control 

One of the challenges of leveraging occupancy estimation and pre-
diction models is their integration into advanced building control al-
gorithms, e.g. MPC. These controllers are typically based on HVAC and 
building envelope thermal dynamics models and consider future system 
dynamics and future control inputs or constraints. Special care needs to 
be given to properly couple the occupancy estimation and prediction 
models into these dynamic equations. The OB models can serve as 
additional control variables (setpoint, constraint, or disturbances) for 
the building dynamics equations. These dynamic equations are usually 
represented by a set of first-order differential equations. As a common 
practice in the control engineering field, these equations can be 

reformulated into a state space model and into discrete time [68,69]. 

8. Conclusion 

In this paper, we evaluated current documentation of OB models for 
advanced building controls from four different perspectives: model 
description and formal representation, model development and evalu-
ation, inclusion of OB model into building controls, and modeling 
implementation. During the literature review, we found that the build-
ing control and OB modeling were mostly researched distinctly. Most of 
the OB models were developed as stand-alone models. In that context, 
there is only a spoonful of publications that proposed a formal integra-
tion of the OB models into building control (e.g. Refs. [70,71]). Based on 
a comprehensive review and analysis on current documentation of OB 
model for advanced building controls, it can be concluded that: 1) There 
is no standard representation of various OB models; 2) no unified 
guidelines of OB model development; 3) a standardized evaluation 
schema is proposed for each distinct form of OB models; 4) a set of in-
direct metrics for evaluating the impact of OB models for the inclusion in 
HVAC control is defined; and 5) a systematic documentation of indented 
model implementation is proposed; and 6) OB models can be integrated 
into MPC for HVAC as predicted setpoints, constraints, or disturbances. 

Given the current review and discussions, this paper also provides 
following future research opportunities: a) A formal representation of 
OB models based on the same schema and semantics. While there is an 
on-going effort in the Brick schema [25], such presentation can be 
further enriched with more common data sets [72]; b) open sourcing a 
library with OB model documentation that follows this guideline, c) 
deployment of existing OB models in building control studies. 

Limitation of the study: 1) In this paper, the “occupant” is referred to 
as office workers in general. The review does not cover other occupant 
types such as elderly, who has different interactions in response to 
thermal stimuli; 2) The review study found very limited or no papers 
considering how to integrate sensor drifting into controls. Although it is 
an important issue for the control implementation, the paper focuses 
mainly on documenting occupant behavior. Future studies could further 
explore this topic; and 3) The guideline paper does not cover occupant 
behavior of personalized cooling and heating systems. This could be 
included in the future studies. 
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Appendix 

Appendix I. Summary of the indirect metrics for each OB modeling objective  

Model Comfort-related metrics Energy-related metrics 

Occupancy Estimation 
and Prediction 

Thermal comfort and indoor air quality: 
hours of setpoints not met 

energy consumption/saving, start/stop time, in most cases related to HVAC 

Thermostat Adjustment Thermal comfort: indoor temperature, PMV, 
PPD 

energy consumption/saving, monetary savings, related to HVAC, duration of unnecessary heating [h], 
peak load change (energy shifting for DR), energy use during peak, setpoint reduction, HVAC 
coefficient of performance 

Window Operation – energy consumption/saving, related to HVAC 
Shading Operation Thermal comfort: air temperature, PPD, 

overheated hours; 
Visual comfort: illuminance 

energy consumption/saving, related to HVAC and lighting, optimal dimming 

Lighting Operation Visual comfort: illuminance, false off 
frequency, discomfort probability 

energy consumption/saving, optimal dimming (% of lighting power used needed on daylight 
availability), peak power, illuminance reduction in unoccupied workstations 

Appliance Use – energy consumption/saving, related to HVAC and the appliances  
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