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Abstract

Identifying and controlling the drivers of change in the quality of water within distribution systems requires a
comprehensive understanding of the individual and interactive effects of relevant factors. This article examines
the impact of water temperature, pipe characteristics, and hydraulic conditions on the microbiological, physical,
and chemical parameters of water quality in the distribution network using Bayesian Dirichlet process mixture of
linear models and random forest method. The study was based on a database of the distribution network for the
city of Ålesund in Norway and records of water quality data measured at seven different locations in the network
from 2013 to 2019. In both modelling approaches applied, temperature was identified as the main factor that
controls the microbiological stability of water in the network. From the minimum to the maximum values of
temperature in the pipes (3.35 °C–11.14 °C respectively), the probabilities of occurrence of bacteria in water
increased from 0.36 to 0.95. Temperature was also shown to be an important factor that affects the chemical
parameters of water quality (pH, alkalinity and electrical conductivity). Among the input parameters included
in this study, concentration of residual chlorine was shown to have the strongest growth-inhibiting effect on
Total Bacteria in the pipes. The results further showed that changes in the hydraulic conditions in the pipes (resi-
dence time and flow) were among the most important determinants of the physical, chemical and
microbiological quality of water in the distribution network. The random forest models assigned minimal impor-
tance to the pipe characteristics and conditions on changes in the water quality parameters. However, the
Bayesian models revealed that these parameters have significant impact on the quality of water in the pipes.

Key words: hydraulic conditions, pipe characteristics, temperature, Total Bacteria, water distribution network,
water quality

Highlights

• Drivers of change in the quality of water in distribution pipes were evaluated.

• Stability of water in pipes is mainly controlled by temperature and water age.

• Residual chlorine has the strongest growth-inhibiting impact on bacteria in pipes.

• There is a higher chance of bacteria occurrence in metal than in plastic pipes.

• Age of pipes mainly affects turbidity, electrical conductivity and Total Bacteria in water.
INTRODUCTION

The production and distribution of microbiologically safe drinking water to the public is the fundamen-
tal objective of drinking water supply systems. Water that reaches the taps of consumers is expected to
be of the same quality as when treated. However, whereas water is treated to ensure microbiological
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safety, be aesthetically appealing and devoid of any chemicals that may alter the overall safety of water,
the quality is not usually maintained after transmission through distribution networks.
Undesirable changes in the quality of treated water could occur during transmission in distribution

networks often as a result of several factors. For instance, while disinfectant residuals are meant to
inhibit the regrowth of bacteria in water distribution systems, the design of water distribution net-
works themselves could cause hydraulic instabilities, increased water age, and decay of residual
chlorine, which may influence the proliferation of bacterial communities in water (Mays 2011;
Mohamed & Ahmed 2011). As a result of sediment resuspension, scouring of biofilms from pipe
walls, as well as changes in mixing conditions, fluctuations in hydraulic conditions in water distri-
bution networks can influence not only the microbiological quality of water, but also important
physical parameters such as turbidity and color (Aisopou et al. 2012). Further, studies have shown
that the properties and conditions of the pipe materials are critical factors affecting failure in the
pipes and associated water quality problems (Yu et al. 2010; Wang et al. 2012; Rezaei et al. 2015).
For instance, pipe materials with rough inner surfaces have higher potential for regrowth of bacteria
compared to pipes with smoother pipe materials (Chowdhury 2012). In addition, many old drinking
water distribution systems are composed of metal pipes such as cast iron and steel, many of which are
subject to corrosion. This can lead to the release of chemicals into water, affecting the quality integrity
of the distribution system. Apart from corrosion in metal pipes, changes in the characteristics of trea-
ted water itself such as pH, alkalinity, hardness, temperature, and so on could affect the corrosivity of
water in pipes (Salvato et al. 2003).
To date, research has investigated the occurrence of bacteria, mainly heterotrophic plate count

(HPC) in water distribution pipes (LeChevallier 2003; Chen et al. 2013; Liu et al. 2014) and the effects
of certain pipe materials, hydraulic conditions, and chlorine on the regrowth potential (Wang et al.
2012, 2014; Prest et al. 2016). Although maintaining the biological stability of water in distribution
systems is the main priority for water supply systems, changes in chemical and/or physical parameters
such as pH, total iron, calcium carbonate, electrical conductivity, turbidity, color, and the occurrence
of corrosion in metal pipes may not only cause aesthetic or even health problems to consumers (Wang
& Chen 2018), but also serve as important surrogates of the microbiological quality of water in pipes
and could influence the regrowth of bacteria (Shi et al. 2018; Tchórzewska-Ciesĺak et al. 2019). Many
of these parameters are routinely monitored in water distribution systems, yet the main causes of
changes in these parameters are not widely investigated. Similarly, due to its diverse effect on the
physical, chemical and microbiological quality of water, temperature is recognized as one of the
most important controlling factors of water quality, including in distribution systems (Eck et al.
2016; Prest et al. 2016; Monteiro et al. 2017; Zlatanović et al. 2017). Water temperature can
change during transmission due to exchange of heat between pipe materials and the surroundings.
Yet, unlike at the raw water source and treatment stages, fluctuations in water temperature in
distribution networks are not regularly monitored. According to a recent review, the link between
water temperature and water quality issues in distribution networks is still being understood
(Agudelo-Vera et al. 2020).
Given the complexities in the interaction of different factors on the overall stability of water in dis-

tribution pipes, a comprehensive understanding of the impact of various interacting factors is
necessary for planning innovative control strategies that could ensure minimal changes to the quality
of water reaching consumer taps. While many external factors including weather conditions and rou-
tine maintenance/rehabilitation works could affect the quality of water in pipe networks, it is evident
from the literature that the internal conditions of the networks themselves are critical to ensuring the
stability of water quality in the networks. Many researchers have studied the effects of different
internal conditions in pipes on the quality of water in distribution systems mainly through
laboratory-scale experiments (Codony et al. 2005; Lehtola et al. 2007; Hammes et al. 2008; Aisopou
et al. 2012; Wasim et al. 2016; Zlatanović et al. 2017; Yoon et al. 2019; Cowle et al. 2020). Although
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significant insights have been gained through these studies, the controlled conditions under which
experiments are performed may be significantly different from real systems. Further, by relying on
operational data, models have been applied in studying relations between controlling factors of
instabilities in water distribution systems (Sadiq et al. 2008; Tabesh et al. 2009; Ramos-Martínez
et al. 2014; Husband & Boxall 2015; Kutyłowska 2019). However, classical linear regression-based
models that have been applied in many of these studies do not often consider the potentially stochas-
tic nature of the dependence of water quality on pipe characteristics, operating conditions, and
temperature. Owing to their probabilistic nature, Bayesian nonparametric (BNP) models can
handle limitations in datasets and are more capable of revealing and interpreting highly complex
relations that may not be identified by traditional statistical and/or machine learning models
(Grzenda 2015; Wagenmakers et al. 2018). Rather than focusing only on the mean of a target par-
ameter, BNP models draw inferences from how the distribution of the target parameter depends
on predictors. Moreover, by enabling uncertainties to be accounted for and integrated in all stages
of a model through Monte Carlo simulations with a given dataset, BNPs models could provide
more credible interpretations of the impacts of different factors on a target parameter (Moe 2010).
The objective of this paper is to apply a BNP modelling framework to evaluate how temperature,

characteristics and conditions of pipes, and hydraulic conditions, influence relevant parameters of
water quality in distribution networks. The modelling framework was applied to a typical urban
water distribution system to study how these input parameters could affect the distributions of rel-
evant water quality parameters in the network. In addition, due to its ability to estimate predictor
variable importance in a model, the random forest machine learning method was applied, and the
results compared with those achieved with the BNP models. Rather than measuring water quality
in distribution systems only to ensure regulatory requirements are met, data taken from these systems
could be used to understand the behavior of the systems through data-driven modelling. This could
provide vital information for ensuring the stability of water in distribution systems as well as improv-
ing customer perceptions and confidence in water supplies services.
MATERIALS AND METHODS

Data and source

The dataset used in this study was composed of seven-year (2013–2019) weekly records of water quality
variables measured in the water distribution network of the city of Ålesund in Norway. The water quality
and flow information in the pipes are measured using sensors and are used by the managers of the muni-
cipality’s water and wastewater infrastructure for monitoring water quality at different zones in the
network. The water quality parameters, which were used as targets in the models in this study were
Total Bacteria, pH, turbidity, color, alkalinity, and electrical conductivity. To determine the microbial
quality of water at each of the monitoring locations in the network, weekly water samples were analyzed
for the presence of specific faecal indicator bacteria (FIB) such as Escherichia coli and coliform bacteria.
However, no observation of these specific FIBs was made throughout the period for which data used in
this study was collected. Therefore, the counts of Total Bacteria were used in this study. These parameters
were measured at seven different locations in the network, as shown in Figure 1. The water treatment
plant draws water from Brusdalsvatnet Lake, which is the only drinking water source for the city.
Using each of the six water quality parameters as a target, two sets of six different Bayesian regression

models were constructed. In the first set of models, the input variables were pipe material type, length,
diameter, age, water flow, water age, and water temperature. In the case of the model for Total Bacteria,
residual chlorine was included as an additional input. In the second set of Bayesian regression models,
interactions among the input parameters were used. This was used to evaluate how interactions among
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf



Figure 1 | The water distribution network for the municipality used in this study, showing the location of the treated water
reservoir at the water treatment plant. The seven water quality measurement locations (S1 – S7) are shown in red spots.
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the various predictors affect changes in the water quality parameters. Measurements of residual chlor-
ine and temperature at each of the seven locations were not available at the time of this study; therefore,
measurements taken from the treated water reservoir outlet for the same period as the other water qual-
ity parameters were used. While these may be different across the seven locations in the network, the
measurements at the treated water reservoir outlet could be a useful representation of variations in the
entire network. To match the water quality data taken from each measurement location with the infor-
mation on the pipe characteristics within each measurement zone, the entire pipe network database
was separated based on the polygons that define each zone using the selection by location tool in
ArcGIS 10.6. For each zone, the length, diameter, and material type for individual pipes were recorded.
Averages of the lengths and diameters of the pipes for each zone were then calculated to match the
water quality data for each measurement location. The entire network is composed of 12 different
pipe materials mainly, from cast iron of varying densities and Miscibility Gap Alloys (MCU) (45.4%);
polyvinyl chloride (PVC) (17.3%); Polyethelyne (PE) and Polyethelyne low and high densities (PEL
and PEH) (32.8%); Polypropylene (PPP) ,1%, Low electrical resistivity pipes (LER) (,1%), Graphite
pipes (Atomic Absorption Spectroscopy – AAS) (,1%); and BET (,1%). To include this information in
the models, the two dominant material types for each zone were identified and assigned values from 1
to 3. The dominant pipe materials for each zone were identified based on the total length of each pipe
material within each zone. Therefore, pipe materials with lengths greater than 2% of the total pipe
length in the zone were used. This was used to match the water quality data at their respective locations.
In the case of the hydraulic information (flow and water age) in the pipe networks, an existing EPANET
model that has been calibrated for the network was used. Records of the water quality parameters were
provided by the Water and Wastewater Department of the Ålesund municipality. It must be noted that
owing to security issues, the authors of this study do not have permision to share the water quality data
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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from the distribution pipes used in this study. However, a summary of the datasets is presented in
Table S1 in the supplementary materials.
Bayesian Dirichlet process mixture of linear models

The Dirichlet Process (DP) mixture of generalized linear model takes the form (Hannah et al. 2011;
Fan & Bouguila 2012):

Si � GLM( � jXi, ui) for i ¼ 1, 2, 3, . . . , n

uijG � G,

Gja, G0 � DP(a, G0)

N(b0 þXT
i bj, a

2
i )

G ¼
X1
k¼1

(w�
kdu�k) � DP(a, G0), with

X1
k

(w�
k) ¼ 1

where Si is the speed observation, GLM is a generalized linear model that is conditioned on the cov-
ariate vector (Xi), ui is the bundle of parameters over Xi and Y jXi, G is the random distribution drawn
from the DP, G0 is the base distribution over the same space as G, and a is a positive scalar (concen-
tration parameter), N is the Gaussian distribution, b0 and bj are regression parameters, a2

i is the
variance of the predictors, #w�

k is the mixing proportion, k is the number of mixture components,
and du�k is a Dirac delta function.
The model is implemented using a stick-breaking process (SBP), which involves repeated breaking

of a unit length stick into disjoint categories (Fan & Bouguila 2013). The stick-breaking construction
process is performed using the following conditions:

w�
k ¼ vk

Yk�1

i¼1

1� vi

u�k � G0

vk � Beta(1, a)

In this study, the DP mixture of linear regression model was built using the BayesRegression tool
(Karabatsos 2015), which is a matlab-based tool that implements Bayesian nonparametric and para-
metric regression models. The characteristics of the water distribution pipes, namely, pipe material,
length, diameter, and age; the hydraulic conditions in the pipes (water flow and water age), as well
as water temperature were used as predictors for each of the six water quality parameters (Total Bac-
teria, pH, turbidity, color, alkalinity, and electrical conductivity). In the case of the Total Bacteria
model, residual chlorine concentrations were included in the predictors.
To estimate the posterior distribution of the model parameters, Markov Chain Monte Carlo

(MCMC) simulation was applied with 50,000 iterations. The convergence of the MCMC pos-
terior analysis was assessed using trace plots and 95% Monte Carlo credible intervals (MCCI)
for the model parameters. Posterior inferences from the MCMC results were made from 3,600
samples. The predictive fits of the models were further evaluated using the standardized
residuals (zi) of the response variables and the mean square predictive error criterion (D(m))
defined as follows:

zi ¼ {yi � En(Y jXi, m)}=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn(Y jXi, m)

p

aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf



Water Practice & Technology Vol 16 No 2
392 doi: 10.2166/wpt.2021.002

Downloaded from http://iw
by guest
on 13 September 2022
where yi is observed response, E is estimated response, and m is the number of models com-
pared. Generally, a response value yi is judged as an outlier when zi is greater than 2.

D(m) ¼
Xn
i�1

{yi � En(Y jXi, m)}2 þ
Xn
i�1

Varn(Y jXi, m)

where the first term measures the goodness-of-fit to the data, and the second term is a penalty
for model complexity. For a set of m ¼ 1, . . . , M models compared, the model with the smallest
value of D(m) is selected as the one with the highest predictive accuracy.
Moreover, the proportion of variance in the response variables that were explained by the

regression models were determined using the R-squared statistic (R2), calculated using:

R2 ¼ 1�
Pn

i�1 {yi � En(Y jXi)}
2Pn

i�1 (yi � �y)2

 !
Random forest models

The random forest (RF) introduced by Breiman (2001) is a machine learning algorithm that is made
up of ensembles of decision trees. Each tree learns from a random sample of the training data points,
which are drawn through bootstrapping. Generally, splitting of each node or tree is performed using
random subsets of the input features in model training. Therefore, predictions are made by averaging
the prediction from each tree in the forest with the aim of improving robustness and precision in the
prediction. Typically, two thirds of the model training dataset are randomly sampled to formulate
each decision tree, while the remaining set (‘out-of-bag’ samples) are used to test the accuracy of
each decision tree. Due to its simplicity and diversity, the RF algorithm is widely used in both classi-
fication and regression problems. A major advantage of the RF algorithm is the ability to quantify the
relative importance of each predictor on the prediction. The algorithm automatically computes this
score after model training.
In this study, the RF classification algorithm was used to predict each of the six water quality par-

ameters measured in the distribution pipes using the characteristics of the pipes, hydraulic conditions
and water temperature as inputs. Before the model training, the time series data for each water quality
parameter (target) was organized into four groups based on percentiles; � 5th, � 50th, � 90th, and �
90th percentile respectively. The entire dataset was randomly divided into two sections, 70% for model
training and 30% for testing. For both training and testing sets, overall classification accuracies were eval-
uated together with their 95% confidence intervals. In addition, the Kohen’s kappa metric, which
measures the degree of agreement between the model predictions and actual observations for a classifi-
cation model (Ben-David 2008) was evaluated. For each model, the relative importance of the predictor
variables was used to assess their degrees of impact on each of the water quality variables predicted.
RESULTS AND DISCUSSION

Model accuracy measures

Convergence of the posterior estimates of the Dirichlet process mixture models were verified by
examining the trace plots generated for each model. The results generally indicated good mixing
and convergence of the MCMC samples. In addition, analysis of the 95% MCCI of the model par-
ameters showed that the MCMC samples provided sufficiently small half-widths (ranged between
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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0.001–0.178 for Total Bacteria model, 0.01–0.213 for the pH model, 0.002–0.288 for color model,
0.008–0.201 for turbidity model, 0.001–0.323 for alkalinity model, and 0.024–0.138 for electrical conduc-
tivity model). This implied that the samples from the 50,000 MCMC iterations used in this study
adequately converged to samples from the posterior distributions of the individual models. The good-
ness-of-fit statistics of the posterior estimates for each water quality parameter in the two sets of
Bayesian models are presented in Table 1 (together with their 95% MCCI values). For each water quality
parameter, the least D(m) statistic obtained from the MCMC iterations is shown in the table. Observation
of the standardized residuals indicated that the residuals were all within – 2 and 2, indicating the absence
of outliers. Further, the R2 values show that between 51 and 94% of variance in the water quality par-
ameters were explained by the first set of Bayesian regression models without parameter interactions.
Marginal improvements in the model fit statistics were achieved in the second set of Bayesian models
in which only the interaction terms were used as predictors. For instance, the R2 values in these sets
of models ranged from 0.57 in the model for pH to 0.96 in the model for Total Bacteria.
Table 1 | Posterior predictive model fit statistics of the Bayesian regression models for the various water quality parameters

Model

Posterior predictive
SSE – D(m) SSE fit to data – Gof(m)

Coefficient of
determination – (R2)

Value 95% MCCI Value 95% MCCI Value 95% MCCI

Model 1 (with individual predictor)

Total Bacteria 28.32 19.02 8.86 1.25 0.94 0.08

pH 46.54 25.21 11.39 3.40 0.51 0.27

Turbidity 14.64 12.47 12.45 3.07 0.59 0.32

Color 45.33 26.52 7.23 2.21 0.68 0.03

Alkalinity 32.81 21.31 6.83 1.90 0.63 0.13

Electrical conductivity 24.38 16.07 5.76 1.11 0.78 0.24

Model 2 (with only interactions)

Total Bacteria 18.41 12.34 6.37 1.14 0.96 0. 32

pH 38.48 23.21 9.83 3.15 0.57 0.23

Turbidity 11.62 8.56 7.96 2.47 0.63 0.28

Color 39.52 22.71 6.34 1.87 0.72 0.16

Alkalinity 27.93 18.44 5.03 1.21 0.68 0.22

Electrical conductivity 21.48 14.53 4.14 1.06 0.83 0.17

SSE¼ Sum of Squares due to Error.
The performance indices of the random forest models are shown in Table 2. In the testing datasets
for the various water quality parameters, the classification accuracy ranged between 0.63 in the Total
Table 2 | Performance indices of the random forest models for each of the water qaulity parameters

Model
Accuracy (95% CI) Kappa

Training (95% CI) Testing (95% CI) Training Testing

Total Bacteria 0.75 (0.03) 0.63 (0.02) 0.77 0.61

pH 0.83 (0.02) 0.77 (0.13) 0.62 0.49

Turbidity 0.96 (0.03) 0.74 (0.22) 0.94 0.71

Color 0.83 (0.11) 0.65 (0.04) 0.88 0.68

Alkalinity 0.87 (0.04) 0.63 (0.30) 0.71 0.64

Electrical conductivity 0.77 (0.12) 0.67 (0.11) 0.66 0.55
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Bacteria model and 0.77 in the pH model, indicating an averagely good performance. The perform-
ances of the random forest models were also evident from the Kappa statistics, which ranged
between 0.49 in the model for pH and 0.71 in the model for turbidity. This statistic essentially
measures how close the classification results matched the actual datasets and ranges from –1 (total
disagreement) to 1 (total agreement).
Predictor significance: Bayesian regression models

Significance based on marginal posterior distributions

In typical Bayesian regression modelling, a predictor variable can be interpreted as significant when
its 50% posterior credible interval excludes zero. This interval is bounded by the 25 and 75% of the
posterior estimates. The 50% posterior intervals for the various predictors of the water quality par-
ameters are shown in Figure 2.
Figure 2 | Love plots of marginal posterior distributions models showing the posterior means and significance of the predictors
for each water quality parameter. PL¼ pipe length, PD¼ pipe diameter, PA¼ pipe age, PM¼ pipe material, WA¼water age,
WF¼water flow, WT¼water temperature, ResChl¼ residual chlorine.
The results of the first group of models without interactions among the predictor variables (Figure 2)
suggest that temperature, residual chlorine, water age, water flow, pipe age, diameter and length are
significant predictors for Total Bacteria in the water distribution pipes. It must be noted that the
values of temperature and residual chlorine were not directly taken from the seven measurement
locations. Nonetheless, as temperature is one of the most critical factors that directly or indirectly con-
trol the microbiological quality of water (Ndiongue et al. 2005; Prest et al. 2016), maintaining
disinfectant residual in water distribution pipes is a primary disinfection goal in many water distri-
bution systems since it inhibits the regrowth of some microbial organisms. Studies have shown that
the decay of residual disinfectant can be affected by several factors, including the type of pipe
materials and age, water age, biofilm characteristics, constituents of treated water, as well as tempera-
ture (Lehtola et al. 2005; Berry et al. 2006; Al-Jasser 2007; Fisher et al. 2011; Chowdhury 2012; Zhang
& Andrews 2012; Eck et al. 2016). In the case of pH, only temperature and water age were shown to
be important predictors. Flow, water age, and pipe diameter were shown to be important predictors of
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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color while turbidity of water was mainly associated with changes in flow conditions as well as ages of
water and the pipes. Except for pipe diameter and age (in the alkalinity model) and pipe material (in
the model for electrical conductivity), all the input variables were shown to be significant predictors of
these water quality parameters.
The results of the second set of Bayesian regression models generally revealed that the effects of

pipe characteristics, hydraulic conditions, and water temperature on changes in the quality of
water in distribution systems could be better understood by evaluating the effects of their interactions
rather than considering each parameter in isolation. For instance, in the model for Total Bacteria
(Figure 3(a)), many of the interactions were shown to be significant predictors, except for the inter-
actions of pipe diameter with almost all the other parameters as well as pipe length with pipe age,
pipe material with water age, and flow with temperature. Although parameters such as pipe charac-
teristics and flow were individually shown to be insignificant predictors of pH (Figure 2(b)),
interactions of these parameters were shown to be significant in the second set of models. Similar
interactive effects were noted in the models for the other water quality parameters. It can also be
observed in Figure 3(c) and 3(d) that most of the interactions that were found to be significant predic-
tors of color were also shown to be significant for turbidity. Except for the effects of pipe diameter and
age, similar parameter significance was found for these two water quality variables in the model with-
out interactions (Figure 2). This demonstrates the link between these water quality variables. Similar
interactive effects of the predictor variables could also be observed in the models for alkalinity and
electrical conductivity in Figure 2.
Figure 3 | Love plots of marginal posterior distributions models showing the posterior means and significance of the inter-
actions among the predictors for the six water quality parameters.
Conditional probabilities of posterior predictions

A summary of the conditional probabilities used to evaluate the impacts of the various predictors on
the water quality parameters is further presented in Table 3. The probabilities that the value of a water
quality parameter being greater than zero at minimum and at maximum values of each predictor and
conditional upon mean values of all other predictors were estimated. The conditional probabilities of
the posterior predictions were calculated only for the first set of Bayesian models (without inter-
actions). The results presented in Table 3 are based on 3,600 Monte Carlo samples drawn from a
total of 50,000 samples that were generated in each model. In the table, values shown in grey color
represent increasing probabilities from minimum values of the predictors to their maximums.
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf



Table 3 | Posterior predictive summary statistics showing the conditional probabilities

P(Y. 0) (2.5%, 97.5%) MCCI – at minimum parameter value

Water quality parameter (Y) Pipe length Pipe diameter Pipe age Pipe materiala

pH 0.52 (0.01, 0.91)
0.51 (0.01, 0.96)

0.48 (0.09, 0.93)
0.53 (0.01, 0.97)

0.52 (0.01, 0.99)
0.50 (0.01, 0.99)

0.41 (0.01, 0.91)
0.56 (0.01, 0.99)

Turbidity 0.52 (0.04, 0.98)
0.57 (0.03, 0.93)

0.57 (0.09, 0.98)
0.52 (0.02, 0.91)

0.43 (0.05, 0.91)
0.62 (0.02, 0.98)

0.57 (0.02, 0.98)
0.52 (0.08, 0.91)

Color 0.46 (0, 0.97)
0.53 (0.04, 0.98)

0.62 (0.21, 0.99)
0.38 (0.01, 0.82)

0.41 (0, 0.78)
0.58 (0.17, 0.97)

0.53 (0.04, 0.95)
0.44 (0.07, 0.84)

Alkalinity 0.69 (0.28, 0.87)
0.23 (0.10, 0.85)

0.29 (0.05, 0.74)
0.59 (0.07, 0.82)

0.29 (0.16, 0.68)
0.58 (0.19, 0.75)

0.45 (0.37, 0.68)
0.33 (0.13, 0.67)

Electrical conductivity 0.43 (0.12, 0.98)
0.52 (0.06, 0.99)

0.14 (0, 0.51)
0.78 (0.46, 1.00)

0.32 (0.04, 0.85)
0.76 (0.44, 1.00)

0.37 (0.13, 0.94)
0.58 (0.20, 1.00)

Total Bacteria 0.86 (0.36, 1.00)
0.66 (0.14, 0.90)

0.67 (0.15, 1.00)
0.87 (0.37, 1.00)

0.68 (0.22, 0.90)
0.85 (0.35, 1.00)

0.82 (0.38, 1.00)
0.70 (0.18, 0.90)

Water Flow Water Age Water Temperature Residual Chlorine

pH 0.51 (0.01, 0.99)
0.59 (0, 1.00)

0.45 (0.01, 0.94)
0.55 (0.01, 0.98)

0.48 (0, 0.91)
0.56 (0.01, 1.00)

Turbidity 0.57 (0.05, 0.93)
0.46 (0, 0.95)

0.46 (0.06, 0.95)
0.57 (0.01, 0.91)

0.55 (0.26, 0.94)
0.45 (0.01, 0.85)

Color 0.42 (0.09, 0.87)
0.56 (0.01, 1.00)

0.41 (0.03, 0.95)
0.52 (0.27, 0.73)

0.42 (0.02, 0.93)
0.59 (0.01, 1.00)

Alkalinity 0.34 (0.28, 0.69)
0.67 (0.15, 0.92)

0.63 (0.36, 0.98)
0.31 (0.19, 0.50)

0.42 (0.13, 0.81)
0.18 (0.01, 0.90)

Electrical conductivity 0.46 (0.21, 0.94)
0.69 (0.02, 0.99)

0.48 (0.01, 1.00)
0.51 (0.13, 0.83)

0.44 (0.06, 0.98)
0.63 (0.04, 0.99)

Total Bacteria 0.81 (0.40, 1.00)
0.70 (0.12, 0.94)

0.77 (0.36, 0.93)
0.83 (0.25, 1.00)

0.36 (0.08, 0.97)
0.95 (0.41, 1.00)

0.80 (0.38, 1.00)
0.50 (0.08, 0.73)

Probability increases with increasing value of parameter are shown in grey color.
aGrouped based on two dominant pipe materials at the location. 1¼ (PVC, PE), 2¼ (PVC, BET), and 3¼ (PVC, MCU).
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The characteristics of the pipes, hydraulic conditions and water temperature, which were used as
inputs in the models, showed varying effects on the water quality parameters. Although the increases
were marginal, the results indicate that the probability that the pH of water in the pipes increases were
dependent on the type of pipe material and increases in diameter. For instance, at minimum and maxi-
mum pipe diameters respectively, the probabilities of increase in the pH were estimated as 0.48 (0.09,
0.93) and 0.53 (0.01, 0.97). In the case of the pipe materials, the model indicates that water pH is more
likely to increase in areas with metal pipes (such as MCU) than in plastic pipes (PE). It is worth noting
that PVC pipes were dominant in all the three groups used as inputs in this study; therefore, the main
differences in the material groups were based on either MCU, BET and PE. In addition, the longer the
water age, the higher the likelihood of increases in the water pH. Similar effects were predicted by the
model for flow and water temperature.
The posterior predictive summary for the model also indicates that older and wider pipes may be

more prone to higher levels of alkalinity and electrical conductivity, the effects being larger on the
latter. Old metal pipe materials may be more prone to the release of ions into water as a result of cor-
rosion, potentially affecting the levels of alkalinity and electrical conductivity. While the size of water
distribution pipes does not have direct relations with the ionic concentrations in water, wider pipes
could provide larger surface area where corrosion may occur, thus increasing the probability of release
of chemicals into water. In addition, low pressure conditions in wider pipes may reduce flow velocity,
increase residence time, and potentially higher ion concentrations. Moreover, the probability of
increases in electrical conductivity in the pipes was predicted to be higher in areas with metal pipes
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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(including MCU) than those with plastics. In addition, both the hydraulic conditions and water temp-
erature were positively associated with this water quality parameter. The pipe characteristics that were
predicted to increase the probability of increases in the turbidity and color of water were the length of
the pipe sections and their ages.While disparities in pipematerials and increases in their diameter were
shown to have marginal effect on changes in water turbidity, these changes were predicted to cause
considerable reductions in color of water. In relation to the hydraulic conditions, the results indicate
that higher turbidity and color are more likely to occur in areas with longer water age. Increases in
color were also found to be affected by increases in flow and water temperature.
With respect to Total Bacteria in the distribution network, the results indicate that metal pipe

materials may be associated with higher counts than plastic pipes. In areas with metal pipes, the prob-
ability of occurrence of positive counts was predicted as 0.82, whereas a value of 0.7 was predicted for
areas with plastic pipes. Longer pipes, higher flow rates, and higher concentrations of residual chlor-
ine in the pipes were predicted to reduce the likelihood of the occurrence of Total Bacteria in water.
However, increases in the counts of the bacteria were more likely to occur in larger and older pipes as
well as longer residence time (water age) and at high water temperature. A graphical overview of the
impacts of the various input parameters on the counts of Total Bacteria in the water distribution pipes
is further shown in Figure 3. Among the input parameters that showed positive relations with the bac-
teria counts, temperature showed the greatest impact. This is supported by the results of the marginal
posterior distributions presented in Section 3.2.1 of this study. At the minimum and maximum values
of temperature in the pipes, the probabilities of occurrence of bacteria in water were 0.36 and 0.95
respectively. Similarly, increases in the concentration of residual chlorine in the pipes were shown
to have the strongest negative effect on the occurrence of bacteria.

Predictor significance: random forest models

A summary of the impacts of the pipe characteristics, hydraulic conditions, and temperature on the
various water quality parameters, as predicted by the random forest model, is presented in Figure 4.
In this figure, the various predictors in the models are ranked in terms of the magnitude of impact in
the prediction of each water quality parameter.
Like the results of the Bayesian regression model, temperature was ranked as the most influential

parameter in the prediction of changes in Total Bacteria in the distribution pipes. In addition, the
hydraulic conditions in the pipes as well as the concentration of residual chlorine similarly showed
strong impact on the occurrence of the bacteria. Generally, temperature is known to be a major deter-
minant of water quality due to its influence on physical, chemical and biological processes. In relation
to the impact on the microbial quality of water in distribution systems, several studies have highlighted
the strength of its influence on their regrowth and survival (Bagh et al. 2004; Francisque et al. 2009;
Prest et al. 2016; Monteiro et al. 2017). Similarly, water age and disinfectant concentrations in pipes,
which can both be affected by flow conditions, have been shown to be strong factors in shaping bac-
terial populations in water distribution pipes (Williams et al. 2005; Gomez-Alvarez et al. 2012; Wang
et al. 2014). Therefore, since it may be difficult to control the temperature and water flow in the dis-
tribution network, ensuring low residence time and effective residual chlorine concentrations in the
pipes are highly important in controlling the proliferation of bacteria in distribution systems.
Although the results obtained in the Bayesian regression showed a higher chance of bacteria occur-

ring in areas with metal pipes than in plastic ones, the random forest model suggested that the type of
pipe material and its age have little impact on variations in the bacteria counts. This may be due to the
few categories of pipe materials used as inputs in training the model. Unlike the Bayesian regression, in
which probabilistic inferences were drawn using Monte Carlo simulations with the dataset, the random
forest model assigns each observation of Total Bacteria in the dataset to its corresponding material type
(either 1, 2 or 3 in this study). This probably made it difficult for the model to establish relationships
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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bacteria in water as a function of each predictor variable.
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between the types of pipe materials and the water quality parameters. Moreover, the Bayesian
regression computes credible intervals for the posterior predictions, whereas the random forest
model provides point estimates without probability-based uncertainty intervals. Not only can the type
of pipe material affect the formation of biofilms in the distribution network, but also the proliferation
and diversity of microbial populations (Yu et al. 2010; Chowdhury 2012; Wang et al. 2012). Results
of a study that measured bacterial biomass in different pipe materials showed that bacterial densities
in metal pipes (mainly iron) were between 10 and 45 times higher than in plastic-based materials
such as PVC and PE (Niquette et al. 2000). Similarly, heterotopic plate count (HPC) in biofilms
inside a model water distribution system were reported to be about 100 times higher on steel pipes
than other pipe materials including PVC (Jang et al. 2011). While the results achieved in this study
agree with those of these studies, diverse relationships between the type of pipe material and bacterial
populations have also been previously reported in the literature. For instance, copper ions in copper
pipes have been reported to decrease bacterial concentrations in water (Lehtola et al. 2004). Moreover,
higher bacterial concentrations have previously been observed in plastic pipes such as PEX (cross-
linked polyethylene) and PVC compared to copper and stainless-steel pipes (Schwartz et al. 1998;
Van der Kooij et al. 2005). Similarly, Zacheus et al. (2000) reported no significant differences in bac-
terial concentrations with different pipe materials including stainless steel, PE, and PVC. This
suggests that other site-specific conditions such as the quality of water could influence the relationships
that are established between pipe materials and changes in the microbial quality of water in pipes.
For the remaining water quality parameters, the results suggest that the hydraulic conditions in the

pipes as well as temperature are more important determinants of their variations. Increased retention
times in water distribution systems can cause problems such as sediment deposition, ineffective control
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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of corrosion, and regrowth of microbial organisms (American Water Works Association 2002), which
could all affect the physical, chemical, and biological quality of water in the network. In addition,
sudden changes in hydraulic conditions in pipes could enhance the mobilization of accumulated
materials at the walls of pipes, leading to increases in turbidity and color (Boxall & Saul 2005). After
water treatment, the presence of turbidity and color may be due to internal contamination from release
of ions into bulk water. For instance, changes in color of water in distribution networks could occur due
to the release of iron in iron-based pipes (Vreeburg & Boxall 2007), implying that the type of pipe
material in the network could influence water discoloration and associated chemical parameters. More-
over, studies have shown that changes in the concentrations of iron in water could induce changes in
pH, alkalinity, and electrical conductivity (Bergel et al. 2013; Jachimowski 2017). However, the results
of the random forest models suggest that pipe material has the least impact on the physical-chemical
parameters of water quality included in this study (Figure 5). Similar to the impact on the microbial
quality of water predicted by the random forest model in this study, this could be due to the limitations
of the pipe material dataset, as previously explained.
Figure 5 | Summary of the random forest model showing the relative importance of pipe characteristics, hydraulic conditions,
and temperature on the variations in the water quality parameters.
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Owing to complex physical, chemical, and biological processes that occur in typical water distri-
bution systems, the quality of treated water may change before reaching consumers’ taps. Several
internal and external factors could influence the stability of treated water in distribution systems,
resulting in violations in the standards of water quality and public health risks. As with many other
components of water supply systems, different types of data are routinely collected in water distri-
bution systems. The main contribution of this paper is to evaluate the degree of effects of relevant
factors on water quality at different locations in a typical water distribution network. By relying on
such datasets, the methodology applied in this study could be used to identify factors of greatest rel-
evance that can be prioritized in order to minimize changes in the quality of water in the network and
protect public health. Although this study focused primarily on the internal factors, the modelling fra-
mework can provide reliable information necessary for maintaining the physical, hydraulic, and water
quality integrity of distribution systems when different types of information about distribution systems
are available. Moreover, the methodology can be used to assess the impacts of different variables on
different parameters of water quality at other stages of water supply systems such as raw water
sources.
CONCLUSIONS

This paper applies a Bayesian nonparametric modelling framework and the random forest classifi-
cation algorithm to evaluate the impacts of temperature, pipe characteristics and conditions, as
well as hydraulic conditions on the quality of water in a typical urban distribution network. The
study was based on weekly records of six water quality parameters measured across the city of Åle-
sund in Norway from 2013 to 2019.
In both modelling approaches, water temperature was identified as a major factor that controls the

microbiological quality of water in the distribution network studied. From the minimum to the maxi-
mum values of temperature in the pipes (3.35 °C and 11.14 °C respectively), the probabilities of
occurrence of bacteria in water increased from 0.36 to 0.95. Temperature was also shown to be an
important factor that affects the chemical parameters of water quality (pH, alkalinity and electrical
conductivity). The Bayesian regression model for Total Bacteria also confirmed the important role
of residual chlorine in the control of the microbial quality of water in the distribution pipes, as it
was shown to have the strongest negative influence on the bacteria levels. Similarly, the results
from both modelling approaches showed that changes in the hydraulic conditions in the pipes (resi-
dence time and flow) are among the most important determinants of the physical, chemical and
microbiological quality of water in the distribution network. Although the results of the random
forest models indicated potentially minimal effect of pipe characteristics and conditions on the
water quality parameters, the Bayesian regression revealed that these parameters are improtant fac-
tors. The results of this study suggests that metal pipe materials may be more associated with the
occurrence of microbial organisms than plastic pipes. Different accounts on the association between
metal pipe materials and bacteria have been previously reported in the literature. Although the results
of this study agree with some of these accounts, the proportion of metal pipes relative to plastic pipes
analysed in this work could be a contributory factor. Moreover, compared to plastic pipes, metal pipes
have other advantages such as strength, durability, and temperature tolerance.
Information about which factors and to what extent they control the quality of water in distribution

networks is essential for maintaining the safety of water supplied to the public. While it may be diffi-
cult to control some important factors such as temperature, improving the hydraulic conditions in a
way that reduces residence times is key to ensuring the safety of water in distribution networks. In
addition, the replacement of some metal pipe materials such as in water distribution networks with
aponline.com/wpt/article-pdf/16/2/387/1102174/wpt0160387.pdf
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plastic pipes may not only improve the biological stability of treated water, but also minimize other
processes that could directly or indirectly alter the physical and chemical parameters of water quality.
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