
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Amund Bertheussen

Relaxation process of Yukawa glassy
system

Master’s thesis in Applied Physics and Mathematics
Supervisor: Raffaela Cabriolu
Co-supervisor: Erika Eiser
June 2022

M
as

te
r’s

 th
es

is





Amund Bertheussen

Relaxation process of Yukawa glassy
system

Master’s thesis in Applied Physics and Mathematics
Supervisor: Raffaela Cabriolu
Co-supervisor: Erika Eiser
June 2022

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Abstract

The Relaxation-process of glassy systems is of great interest in pharmaceutical,
cosmetics, food, and engineering construction fields. As a general feature, when
a glass is forming, the viscosity is changing and the dynamics of the system is
slowing down greatly. In this Master’s thesis, the relaxation process of a Yukawa
binary system that is forming glass was investigated. The relaxation time of the
glassy sample was measured using common correlation functions and the time-
evolution of the typical heterogeneities was studied using a Molecular Dynamics
simulation technique. Additionally, a popular machine learning tool was used to
quantify the heterogeneity in the samples.

The results showed similar dynamics to related works and all the different
regimes known to occur for glassy states were characterized. Furthermore, the
machine-learning approach of k-means showed to agree with the heterogeneity
analysis done with traditional methods.
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Sammendrag

Relaksasjonsprosessen til et glass-system er av høy interesse i mange industrier,
blant annet farmasi, kosmetikk, mat og bygge bransjen. Når et glass formes øker
som regel viskositeten og dynamikken til systemet blir mye tregere. I denne mas-
ter oppgaven ble relaksasjon av et Yukawa binært kolloidalt system som danner
et glass, undersøkt. Relaksasjonstiden av glass systemet ble målt med korrelas-
jons funksjoner og tidsutviklingen av typisk heterogenitet ble studert ved hjelp av
Molekylær Dynamikk. I tillegg ble en populær maskinlæringsalgoritme brukt til å
kvantifisere heterogeniteten i systemene.

Resultatene viste seg å stemme med tidligere relatert arbeid og alle de for-
skjellige regimene som er er knyttet til glass systemer ble karakterisert. Videre,
viste k-means maskinlærings teknikken å stemme med tradisjonelle måter for å
analysere den dynamiske heterogeniteten i glass.
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Chapter 1

Introduction

The specific state of a material, solid, liquid or gas phase, is related to the amount
of internal energy in the system. Depending on the phase, the behavior of the
material is very different. The solid state is defined as the state with lower energy
with respect to the other two states. In this phase, the constituents of the material,
i.e. molecules or atoms, are bounded to equilibrium positions by interaction forces
in a highly ordered configuration characterized by fixed volume and shape. How-
ever, there exists temperatures different than zero, for which the internal energy
of the constituents is bigger than the interaction forces such that the constituents
can vibrate around their equilibrium points. This is why solids surrounding us
every day, are rigid and mostly non-compressible. Increasing the temperature of
a solid, determines an increase of the internal energy and the vibrations grow,
forcing the solid to expand [1].

By increasing the internal energy of the system even further, the energy of
some particles will eventually be sufficient to break the particle free from the
interaction forces, determining the loss of the solid order. This breakdown denotes
the phase transition from solid to liquid, and the particles are now able to flow.
Only short-range order is present in the system, but, unlike a gaseous state, this
system is more or less incompressible for most cases. The particle’s ability to move
around give rise to a phenomenon called diffusion. For an equilibrated state, this
diffusion is only driven by random motion of the particles and thereby called self-
diffusion. This property of liquids is one of the measurements that could be used
to distinguish the liquid from the solid state, tho which no diffusion of particles is
present.

An interesting phenomena occurs if the liquefied system undergoes a rapid
cooldown, also known as quenching. Because of the short timespan of the quench-
ing process, the energy suddenly decrease and most of the particles will not have
‘sufficient time’ to assume the order of a low energy state typical of the solid, i.e.
no crystallization of the sample. A rapid cooling of a liquid without the presence of
crystallization is often called a vitrification process. This results in a system with
only short-range ordering of the particles. However, because the particles have
low internal energy, they are locked into this almost frozen disordered configur-
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2 Bertheussen A.: Relaxation process of Yukawa-glass

ation characterized by a very limited motion without diffusion. This state shares
properties with both solid and liquid materials and is known as glass [2]. The
glass structure is often referred as an amorphous solid structure. Previously, this
state was also called a supercooled liquid because its structure being so similar to
a liquid state. [2, 3].

Glass formation through a sudden change in temperature, as introduced here,
is one of the most common ways to prepare a glass. However, it is important to
specify that beside the quenching method, it is possible to create systems with
typical glass behavior by increasing the pressure or density of the system [4].
In this computational study, a glassy state will only be referring to the the one
obtained by the process of cooling down the system. Figure 1.1 illustrates the
progression of a thought experiment that takes an exemplar material from a solid
to a liquid, and, finally to a glassy state reached by decreasing the Temperature.

Initial bcc

Te
m

p
e
ra

tu
re

Time

Solid

Liquid

Glass

Figure 1.1: Timeline for preparing a glass structure through the process of
quenching.

Natural glasses, e.g. obsidian and amber, have existed long before the emer-
gence of life on earth. Synthetic oxide glasses were discovered circa 6,000 years
ago and are now ubiquitous and essential for our lives and many technology ap-
plications. Despite the importance and the enormous implication in our life and
most scientific fields, there is still no consensus on which physical mechanisms
underlie the process of glass formation, and, associated to it, there are many un-
answered questions that pose challenges and attract the attention of numerous
studies [3–5].

The vitrification process is unlike any thermodynamic phase transition, since
the material exhibits a spectacular growth of viscosity upon cooling or compres-
sion, but only minute structural changes. The so-called supercooled regime– is
characterized by viscosity η so large that the material stops flowing on any prac-
tical time scale. A somehow arbitrary definition a glass is such that it is character-
ized by a viscosity value over 1012Pa · s or a structural relaxation time τ exceed-
ing 100 s [2, 3]. The gradual rearrangement of the structure towards, ideally, the
equilibrium represents the structural relaxation. The most detailed information of
the vitrification process is contained in the microscopic relaxation dynamics. Fur-
thermore, what makes this description ideal, is that it can be accessed by both,
molecular simulations and experiments [4, 6, 7].
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Strictly connected to the structural relaxation is another phenomena that makes
glasses very different from ordinary liquids, this is the appearance of Dynamic
Heterogeneity (DH). In glasses, the structural relaxation does not take place uni-
formly across the sample, but rather in clusters, domains or local regions that
collectively rearrange while the rest of the super-cooled liquid pertain in a tem-
porary frozen condition [6, 8].

The raising of the viscosity, relaxation times and the appearance of dynamical
heterogeneity are universal hallmark features for all glass-forming liquids. They
indicate general dynamical slow down around the glass transition of the material.
However, how those dynamical hallmark are changing in respect to the external
parameters, like temperature and pressure is not universal for all materials and
the physical reasons is not fully understood [4, 6, 9, 10].

Scientist of glassy materials are actively searching for a origin that governs this
dynamical slowing down in the supercooled liquid, which occurs without any dis-
cernible change in structure [10]. Extensive experimental and specially modeling
research concluded that there should exist growing dynamic and static correlation
lengths associated respectively to the dynamical heterogeneity and to the raise of
the viscosity [9, 11, 12]. In particular, the concept of static length scale is associate
with the spatial "amorphous" order in glasses and it is considered a characteristic
static property that can be measured by equilibrium properties of the material.
The concept is based on the Random First Order Transition theory (ROFT) [9,
11, 13]. It is now well established experimentally and by simulation the existence
of the dynamic correlation length scale that are associated to the dynamical het-
erogeneity present in glassy materials [9, 11]. However, scientists are now more
concentrated on using DH to understand and predict glass transitions. The are a
limited number of experiments confirming the presence of DH, and this is due to
the difficulty to probe at such short spatial and temporal resolution [12, 14, 15].
On the other hand, molecular simulation techniques are the ideal method to ob-
tain the microscopical description of the sample dynamics around the vitrification
process[2, 4, 6, 9–11, 16]. Many tools have been combined with statistical results
by molecular simulations to infer information on the slow dynamics process with
the aim of understanding and predicting glass-forming properties from the sole
input of microscopical structural description [17–21]. Among those tools, many
recent molecular simulation studies involves Machine Learning [18, 19, 21] and
neural networks techniques [17, 20].

1.1 Motivation and objectives of the thesis

This section present a list of the topics that have been investigated with the com-
plementary objectives of this thesis.

• Different states of matter of a colloidal model have been generated and
characterized using MD simulations [22]. In this preliminary model-study,
Glass-properties have been reproduced in excellent agreement with previ-
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ous simulation studies [16].
• Structural information have been collected in order to characterize the dy-

namic relaxation of the model in the liquid and glassy state.
• Dynamical heterogeneity associated with a vitreous state have been studied

using standard methods, and, the description have been enriched using a
basic machine learning approach.

1.2 Thesis Description

In this thesis, the focus is directed towards the relaxation properties and dynamic
heterogeneity of a glass forming material using Molecular Dynamics (MD) simu-
lations [23]. Furthermore, a machine learning techniques, i.e. k-means clustering
[24], is used to infer physical interpretation from many statistical data. This thesis
is organized as following. Chapter 2 presents briefly the theory necessary to under-
stand the vitrification problem, Mode Coupling Theory, and, the previous works
related of the topics of this study. Chapter 3 focuses on the methods that have
been used to study the glass formation and the relaxation process. The chapter
explains the basic of the molecular simulations technique, the approach to study
the particles’ mobility and the machine learning tool used to complete the study
on the dynamic heterogeneity. In Chapter 4, all the results are presented, and,
finally in Chapter 5 conclusions and further works are discussed.



Chapter 2

Theory

In this chapter, several important concepts related to the investigation of the relax-
ation process and the dynamic heterogeneity analysis is presented. The principles
and equations in this chapter are vital for understanding many of the results which
will be discussed in chapter 4.

2.1 Phenomenology of glass formation

Despite the enormous implication, the understanding of the glass transition is still
lacking. In this subsection structural, dynamical and thermodynamics properties
will be considered in the context of vitrification, and, for our purposes, it is helpful
to enunciate some of the salient features of a glass-forming system [4]:

• Presence of disorder and/or frustration in the structure, and, very weak de-
pendence of structural properties on external parameters, like temperature
and pressure.
• Strong dependence of dynamical properties on external parameters.
• Non exponential time-decay of the relaxation at low temperature.
• Presence of ‘Dynamic Heterogeneity’ (DH), or spatially heterogeneous nature

of the local dynamic.

From a phenomenological point of view, the systems undergoing a glass trans-
ition, assume a disordered or "amorphous" structure in the long range, and, a short
range order that only involve local regions presenting very different heterogen-
eous features between them. Furthermore, a rapid slowing down of the dynamics,
the sudden rise of viscosity and the appearance of rigidity are all appearing dur-
ing the glass transition. The dynamics of glasses is known to be very sluggish and
heterogeneous, and it occurs in a wide variety of systems, i.g. Polymeric liquids,
granular material, such as powder and sand, gels, and foams and also metallic
alloys. Dynamical heterogeneity has also been found in biological systems, e.g. in
collective cell migration, cancer invasion, and wound healing. Structural and dy-
namical properties, as well, as evidence of dynamical heterogeneity can be meas-
ured by experiments as well as simulations [4, 9, 11]. For example, the temperat-

5
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ure dependence of dynamical quantities (e.g. viscosity, η, diffusion constant of the
atoms, D, and relaxation time, τ), or structural (e.g. arrangements and bonding
of atoms, patterns and boundaries) and thermodynamics properties (volume, en-
thalpy, heat capacity etc...) are routinely measured. The main conclusions of many
experiments and simulations [4, 6], show that most liquids can be ’supercooled’
in the meta-stable glassy-regime characterized by structural and thermodynamic
properties, that depend weakly on the temperature, and, by dynamic quantities,
like η,τ and D, that depend strongly on the temperature. As a consequence, vit-
rifying a material upon cooling (or compression) results into a sudden dramatic
increase of the viscosity but only minute structural changes.

Figure 2.1: Schematic pictures of the structure of a liquid (A) and a glass (B).
On the left panels, particles’ arrangement is shown for the two state, while on the
right panels, the corresponding radial distribution function g(r) are shown. Four
green particles distant a certain radius r from a reference red particle are shown
in the top left panel. Pictures from [6].

On left panels of Figure 2.1, it can bee seen that the particles’ arrangements
of the liquid, (A), and the glass, (B), states are very similar. It is also instructive
to calculate the radial distribution function g(r) that represents the average dis-
tribution of atoms around any given atom within the system. The right (B) panel
clearly shows the typical short range order and absence of long range order that is
characteristic of the corresponding structure in the liquid state (right (A) panel).

In Figure 2.2 a scheme of a typical ‘Angell-plot’ is shown. The plot shows the
temperature dependence of the viscosity for different glass-forming materials. Tg
represents the vitreous transition temperature. The sudden increase of viscosity
is evident for all the materials, and, it is also clear that there is not a universal
behavior close to the vitreous transition suggesting more than one underlining
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Figure 2.2: Schematic picture of a typical ‘Angell- plot’ taken from reference [6].
The logarithm of the viscosity is shown in function of the inverse of the Temperat-
ure, T, and normalized respect to the glass transition Temperature, Tg . The strong
and fragile materials are represented in the graph.

mechanism of vitrification. All the curves at high temperature in the diagram, can
be fitted with an Arrhenius-kind law:

η(T ) = η0 exp(E(t)/(kβT )). (2.1)

However, for certain systems, i.e. Strong glass-forming materials, the activa-
tion energy E(t) is constant for all range of temperature, while for other systems,
i.e. fragile glass-forming materials, only the local slope of the curve can be in-
terpreted as activation energy E(t), because this appears to change and increase
rapidly with the decreasing of the temperature T . In the fragile curves, in the re-
gion of intermediate values for Tg/T , it appears a bending that becomes more
and more pronounced at Tg/T ≈ 0.7. The differences between those two broad
classes of materials is not very clear at microscopic level. However, it is a fact
that strong glass-formers are characterized by open network, i.e. SiO2, whereas
the structure of fragile materials is more compact. Furthermore, there are many
empirical correlation between fragile materials and structural properties [4].

The viscosity response to the decrease of temperature is clearly an effect of the
slowing down of the dynamics, and many scientists have tried to understand if the
other typical time-scales of the systems, such as diffusion or relaxation times, have
the same temperature dependence. The super-Arrhenius Vogel-Fulcher-Tammann
law (VFT) 2.2, [25–27] is able to fit some experimental viscosity-temperature
data, but not all, at intermediate η. Although this formula is a good represent-
ation of certain data, it has not theoretical foundation, furthermore, there is ex-
perimental evidence that the VFT law does not hold exactly [28].
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η(T ) = η0 exp(A/(T − T0)). (2.2)

However, a nice feature of the VFT law is that all the mentioned timescales
can be represented by a similar formula:

X (T )∝ exp(CX T0/(T − T0)). (2.3)

In Equation 2.3, X represents η, D−1, or τ, while CX , T0 and A are empirical
material-dependent fitting parameters. It should be noted that Equation 2.3 can
be reduced easily to Equation 2.2 for the viscosity case. T0 is the so called "Vogel-
Temperature", and it is usually around 50◦ lower than the vitrification temperat-
ure.

On the other hand, the Mode Coupling Theory [29–31] has shown great suc-
cess in predicting the experimental data of certain materials at intermediate values
of η, i.e. 10−1P ⩽ η⩽ 102P.

η(T ) = η0(T − Tc)
−γ. (2.4)

The MCT is arguably the most successful theory of glass-transition and it is
based entirely on first principles [6, 30]. MCT aims to predict the microscopic
relaxation of glass-forming materials using the structure of the material as input,
i.e. static structure function. Both, scattering experiments and MD simulations [2,
4, 6, 8] provide a direct measure of the so called static scattering function, S(k⃗),
which is related to the intermediate scattering function, F(k⃗, t), through fourier
transform. Before giving a brief introduction of the MCT, the scattering functions
and their importance will be explained .

2.2 Static structure factor

An important tool used in soft matter physics to describe the structure of a system,
is the static structure factor. For a system with N particles confined in a volume
V , the density profile is given as ρ(r⃗) =

∑N
i=1δ(r⃗ − r⃗i). In the reciprocal space,

the density function is given as

ρ̂k⃗ =

∫

ρ(r⃗)eik⃗·r⃗ d r⃗ =
N
∑

i=1

eik⃗·r⃗i . (2.5)

Note that the wavevector k⃗ is defined through the physics convention, of which
the magnitude is the wave-number k =| k⃗ |= 2π

λ . The static structure factor is now
defined as the Fourier transform of the density-density correlation function[7]

S(k⃗)≡
1
N




ρ̂k⃗ρ̂−k⃗

�

. (2.6)

By inserting (2.5) into (2.6), we get
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S(k⃗) =
1
N

 N
∑

i=1

eik⃗·r⃗i

N
∑

j=1

e−ik⃗·r⃗ j

·

=
1
N

 N
∑

i=1

N
∑

j=1

eik⃗·(r⃗i−r⃗ j)
·

=
1
N

 N
∑

i=1

N
∑

j=1

cos
�

k⃗ · (r⃗i − r⃗ j)
�

+ i
N
∑

i=1

N
∑

j=1

sin
�

k⃗ · (r⃗i − r⃗ j)
�

·

, (2.7)

which is very useful in computer simulations because it requires only the position
of the particles in the system to be calculated. In most cases, the static structure
factor as a function of magnitude of the wave vector |k⃗| is of more importance.
S(k) is then calculated by averaging over a set of k-vectors with the same mag-
nitude and equally spaced in a spherical shell in reciprocal space.

Furthermore, if the system contains two types of particles, the static structure
factor will depend on which particle correlations is being considered. Thus, for a
binary system the partial static structure is given as

Sαβ(k⃗) =
1
N

 Nα
∑

i=1

Nβ
∑

j=1

cos
�

k⃗ · (r⃗i − r⃗ j)
�

+ i
Nα
∑

i=1

Nβ
∑

j=1

sin
�

k⃗ · (r⃗i − r⃗ j)
�

·

, (2.8)

with α,β = A, B as the two possible particle types.
A useful property of the static structure factor is its relation to the scatter-

ing patterns obtained in various diffraction experiments. Because the static struc-
ture factor describes how a system scatter incident radiation, one can do an X-ray
diffraction experiment on a real system to validate the configurations obtained
through molecular dynamics simulations.

2.3 Intermediate scattering function

The intermediate scattering function is a time-dependent correlation function that
can be obtained by statistical calculations using molecular dynamics simulation
[2, 4, 6], and, it reveals important information on the microscopic nature of the
vitrification and relaxation process.

In order to introduce the intermediate scattering function, the Van Hove func-
tion first needs to be defined. The Van Hove correlation function for a system of
N particles is given as

G(r⃗, t) =
1
N

 N
∑

i=1

N
∑

j=1

δ
�

r⃗ + r⃗ j(0)− r⃗i(t)
�

·

, (2.9)
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where r⃗i(t) is the time dependent position of particle i. It is often useful to separate
the sums into two parts by distinguishing between the sums where i = j and i ̸= j

G(r⃗, t) =
1
N

 N
∑

i=1

δ
�

r⃗ + r⃗i(0)− r⃗i(t)
�

·

+
1
N

 N
∑

i=1

N
∑

j ̸=i

δ
�

r⃗ + r⃗ j(0)− r⃗i(t)
�

·

≡ Gs(r⃗, t) + Gd(r⃗, t). (2.10)

Here Gs(r⃗, t) is conventionally known as the self-part of the Van Hove function
and describes the average motion of a particle starting at a given position. In
other words, Gs(r⃗, t) gives the probability for finding a particle at a position r⃗
away from its starting position after a time t. Gd(r⃗, t) is known as the distinct-
part of the correlation function and describe the average motion of the remain-
ing (N − 1) particles. Because the distinct-part is calculated relative to the ini-
tial position of particle i, Gd(r⃗, t) corresponds to the possibility of finding one of
the other particles at a distance r⃗ in relation to particle i. In the limit t → ∞,
both correlation functions become independent of r⃗ as Gs(r⃗, t →∞) ∼ 1/V and
Gd(r⃗, t →∞)∼ ρ.

The Van Hove function considers particle correlations in space. Similarly, the
correlations can be studied in the reciprocal space by analyzing the Fourier com-
ponents of the Van Hove function. The intermediate scattering function is defined
as the Fourier transform of the Van Hove function [7]

F(k⃗, t) =

∫

G(r⃗, t)e−ik⃗ r⃗ t dk⃗. (2.11)

Similarly to the Van Hove function, F(k⃗, t) can be separated into a self-part Fs(k⃗, t)
and a distinct-part Fd(k⃗, t),

Fs(k⃗, t) =

∫

Gs(r⃗, t)e−ik⃗ r⃗ t dk⃗, (2.12)

Fd(k⃗, t) =

∫

Gd(r⃗, t)e−ik⃗ r⃗ t dk⃗. (2.13)

By inserting the Van Hove functions from (2.10) into (2.12) and (2.13), the in-
termediate scattering functions can be calculated directly based on the particle
trajectories,

Fs(k⃗, t) =
1
N

 N
∑

i=1

exp[ik⃗(r⃗i(t)− r⃗i(0))]
·

, (2.14)

Fd(k⃗, t) =
1
N

 N
∑

i=1

N
∑

j=1

exp[ik⃗(r⃗ j(t)− r⃗i(0))]
·

. (2.15)

Similarly to the static structure factor, it is often more convenient to calculate
Fs(k⃗, t) for a specific magnitude of k⃗,

Fs(k, t) =
1
N

 N
∑

i=1

exp[ik|r⃗i(t)− r⃗i(0)|]
·

. (2.16)
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The intermediate scattering function considers the correlation between particles’
position in an initial configuration and the same particles’ position after a time t.
Thus, F(k⃗, t) can be used to investigate the relaxation time of the system. A sketch
of a typical behavior for Fs(k⃗, t) in a liquid state, high temperature, and a glassy
state, low temperature, is shown in figure 2.3. For both, liquid and glassy state, at
short timescales, the particles have not been given enough time to interact with
each other, and, as a consequence their displacements is very limited. This ini-
tial time period is often referred as ballistic regime and, the time dependence of
Fs(k⃗, t) is found to be quadratic in time [32].

Fs(k,t)

log(time)

ballistic
regime

β-relaxation

α-relaxation

low T

high T

Figure 2.3: Sketch of the self-part of intermediate scattering function for a liquid
state (red) and a glassy state (blue).

After this initial regime, at high temperatures, the particles in the system are
expected to have a diffusive motion and collide rather freely. Thus, the correlation
with respect to the initial configuration breaks down fast, meaning that the system
lose the “memory” of the previous configuration. This phenomena appears in the
time-dependence of Fs(k⃗, t) as a fast time-exponential decay described as Debye
relaxation, also called short relaxation regime.

The Kohlrausch-Williams-Watts function (KWW) below is well able to fit the
Fs(k⃗, t) [2, 4].

Fs(t) = Aexp
�

− (t/τ)β
�

, (2.17)

In equation 2.17, A is a fitting parameter called amplitude, τ is the parameter that
can describe the relaxation time, and β is defined as the KWW-exponent. β > 1 in
a typical Debye-relaxation indicates a diffusive, Gaussian motion of the particles.

For the glassy state, lower temperature in the sketch, the evolution of the
Fs(k⃗, t) is different. After a ballistic regime, at intermediate times, the particles
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start to influence each other and the dynamic of the system is said to be sluggish
or slow. This is represented in Fs(k⃗, t) as the plateau regime, where some of the
“memory” from the initial configuration is conserved, resulting in what is known
as cage-effect [2, 4]. Many of the particles are nearly frozen and the surround-
ing particles can effectively act like a cage. The cage-effect is illustrated in figure
2.4. With most of the particles trapped and unable to diffuse, the correlation to
the initial configuration is partially conserved, and, a particular slow relaxation
process, i.e. β-relaxation, occurs. Eventually, a complete relaxation is reached at
much longer times. In this regime the particles "escape" the cage and eventually a
fast relaxation regime take place. The α-relaxation regime is related to the com-
plete breakdown of the correlation. This regime is characterized by a non-Debye
time-exponential decay of the Fs(k⃗, t) also called stretched-exponential regime.
Equation 2.17 can be used to fit the α-relaxation regime, and, it is characterized
by a longer relaxation times (τ ≈ µs) and a β exponent smaller respect to the
liquid counterpart. In particular, a typical β < 1 exponent in the glassy state in-
dicates a non-Gaussian motion.

Ballisitc regime Cage effects Diffusive regime

Figure 2.4: Illustration of particle movements for different regimes occurring
during simulation of a glassy state.

The origins and cause of the stretched-exponential decay are not well known
yet [4]. Among many hypothesis, the cause of this behavior is connected to the
spatial heterogeneity that appears during the β- relaxation of the glassy system.
This heterogeneity or spatial local variation, is such that each particle experiences
a different decay process, and in turn, in different relaxation times, that all com-
bined, give raise to the stretched-exponential time-dependence [2]. The Mode
Coupling Theory is able to predict the features of the intermediate scattering func-
tion and the glass transition taking as input the sole structure function.

2.4 Mode coupling theory

As already stated, the Mode Coupling Theory is based on first principle, i.e. it
does not rely on any phenomenological assumption, and, successfully predicts
the full microscopic dynamics of the glass transition starting solely from the time-
independent structural information defined by the static structure function.

The mode-coupling theory (MCT) was developed in the seventies and evolved
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along the years [29, 30], and includes complex equations to describe the dynam-
ics of simple fluids. The equations proved a semi-quantitative description of the
dynamics at the glass transition, and, importantly it predicts a glass transition
sometime in good agreement with experiments and simulation results [33, 34].

In particular, MCT provides a equation for the intermediate scattering func-
tion that can be solved numerically giving the static structure function as input.
From that information, MCT manages to successfully predict all the microscopic
relaxation dynamics for the glass-forming material as a function of wave-vector,
temperature, and, density.

The most prominent successes are the qualitative prediction of the glass trans-
ition, the cage effect, and, in general, all the scaling behaviour of the intermediate
scattering function. The MCT is not quantitatively accurate, and does not include
the concept of fragility, nor the Dynamical heterogeneity, nor the violation of the
Stokes-Einstein equation. There are different extension of the theory (Generalized
MCT and Inomogeneous MCT) that indeed offer a more quantitative prediction
of the intermediate structure function and a general framework for the DH using
some approximation [6, 9].

MCT is not directly used in this thesis, but the theory provides the glass trans-
ition temperature for the simulation model which is a reference in all my discus-
sions.

2.5 Dynamic heterogeneity

The occurrence of spatially heterogeneity in glassy dynamics, commonly referred
to as dynamic heterogeneity, is well established in both experimental and numer-
ical studies [35, 36]. The appearance of those local heterogeneous regions hap-
pens in the cage-regime, when some particles are undergoing a rattling motion
inside the ‘cage’ formed by the surrounding particles. Those local regions are cor-
related into clusters that have their own non-exponential decay resulting into a
non Gaussian motion or distribution of displacements the we have described in
the previous section [2]. The common way of describing this heterogeneity is to
consider the displacements of the particles in time, i.e., the Van Hove function,
and compare it to a Gaussian distribution. In the glassy state and at intermediate
times, the distribution of displacements shows a large tail indicating the presence
of highly mobile particles. At his stage, the displacement distribution deviate from
the Gaussian, diffusive form. Technical aspect of the method to reveal DH will be
described in section 3.3.1.

The parameter that measure the presence of dynamic heterogeneity, i.e. the
deviation of the displacements’ distribution from the Gaussian distribution is the
non-Gaussian parameter α2 [9], which is defined as

α2(t) =
2〈|r⃗(t)|4〉
5〈|r⃗(t)|2〉2

− 1. (2.18)

Here |r⃗(t)| is the magnitude of the displacement of a particle in the system. The
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α2 parameter indicates which temperatures and times give presence of DH. In
particular, the α2 parameter peak measure the time at which the degree of het-
erogeneity reaches a maximum [9].

Another popular instrument used to measure the dynamic heterogeneity in
the systems, is the four-point susceptibility χ4 that is calculated from the fluc-
tuations of the intermediate scattering function Fs(k, t). Spatial heterogeneity in
the samples give rise to inconsistencies in the function Fs(k, t), and, this function
reveal the variance of these fluctuations [37, 38],

χ4(t) = N
�

〈Fs(k, t)2〉 − 〈Fs(k, t)〉2
�

. (2.19)

N is the total number of particles and the wave number k is chosen by the peak
of the static structure factor. Further, 〈...〉 determines a thermal average.

The area and the peak of this function is also a measure of the size of the
DH that are cooperatively rearranging in time. The increase of this peak value
corresponds to a growing correlation length or clusters size of this heterogeneous
local regions. In addition, the position of its maximum is proportional to the α-
relaxation time τ found for the same system. Analyzing how the susceptibility χ4
evolves over time can accordingly indicate how the heterogeneity grows as the
temperature is lowered. Typical behavior of χ4 in colloidal systems has shown an
increase of the peak value as the temperature is lowered down below the transition
temperature [9].
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Methods

The content of the following sections is devoted to introducing the methods used
to analyze the binary colloidal Yukawa system of this thesis. The first part is a
general introduction to the field of molecular dynamics simulations in order to
familiarize the reader to the different concepts and ideas regarding this method
for simulating materials. Additionally, the exact system and dimensions used for
the system is described in more detail here. The second part of this chapter de-
scribes the method used to study the dynamical heterogeneities and includes an
introduction to k-means and the capabilities of this tool.

3.1 Molecular Dynamics simulations

Molecular dynamics (MD) is a numerical simulation method used to analyze the
structure and trajectories of particles in systems with sizes ranging from only a
few particles to billions of particles. As a scientific tool, MD has had huge success
in the last decades in fields like soft matter physics and fluid dynamics due to its
simplicity, low cost and an exponential increase of hardware speed-ups offered by
Moore’s Law and large-scale parallelism. The dramatic power increase for compu-
tations has allowed for bigger and more accurate simulations which has increased
the relevance of results gathered through MD. Additionally, a pure digital exper-
imentation method allows for analysis on specific or abstract systems which can
be impossible to replicate in physical experiments. With all the trajectories in the
system directly accessible, measurements like energy, pressure, temperature, etc.
can easily be calculated and controlled without being dependent on expensive
and complex experimental equipment. Although the advantages are many, nu-
merical MD inherently rely on approximations. Thus, any results originated from
this field have some limitiations and should be viewed as preliminary experiments
performed with computers.

The main task in molecular dynamics is to numerically integrate a set of
coupled differential equations based on Newton’s equations of motion [39]. For a
system containing N particles, these are given by

15
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F⃗i = mi ·
du⃗i

d t

u⃗i =
d r⃗i

d t
,

i = (1, 2, ..., N) (3.1)

where r⃗i and u⃗i are the position and velocity of a particle i respectively. mi is its
mass and F⃗i is the net force acting on the particle. The forces acting on a particle
can be pairwise interactions, many-body interactions or external forces acting on
the system, e.g. electromagnetic forces.

3.1.1 The numerical integration method

To perform a molecular dynamics simulation, an initial configuration is needed.
This initial configuration of particles could be critical to the behavior of the sys-
tem that the user would want to investigate. For instance, the initial configuration
defines the packing density of particles and the mobility at low temperatures. Fur-
ther it can be important to ensure a sufficient initial distance between the particles,
especially for repulsive interactions. It is thereby common to arrange the system
on a lattice instead of choosing the positions at random. Next, all particles are
given a velocity which is shifted such that the total momentum over the system
is zero. Sometimes, in order to enforce a specific temperature T in the system,
the velocities are scaled such that the mean kinetic energy of the system matches
the desired temperature T through the equipartition theorem. Another simpler
method is however to initialize the system at zero temperature and gradually in-
crease the temperature during the equilibration simulation, which then will have
a slightly longer duration.

A crucial part of molecular dynamics is to determine the forces acting on all the
particles in the system. In some cases, only pairwise additive interactions between
the particles are modeled. Thus, it is possible to describe the forces through a pair-
potential, φ(r⃗). With a system of N particles, this computation over the forces of
the system is O(N2), which makes it one of the most computational heavy parts
in MD. There are many common ways to reduce this computation. In general,
for a decaying pair-potential, the contributions from particles that are relatively
far away can be neglected compared to the interactions from nearby particles. By
first evaluating all the pairwise distances in the system, one can introduce a cut-off
at rcut , where all interactions operating further apart than this distance, is neg-
lected [40]. The cut-off distance rcut should be chosen with respect to the given
pair-potential and particle density of the system. Conveniently, this approxima-
tion allows for a further speed increase in the calculations as one can introduce
a neighbor list to each particle. (cite Lammps article) These lists will contain in-
formation on which pairs to evaluate on each step to avoid calculating distances
between particles that is expected to be too far apart, |r⃗| ≫ rcut . Unless the tem-
perature is high, these neighbor lists don’t need to be updated too often and a
significant reduction in computational cost is attained for large systems.
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With the pairwise forces in the system determined, the next part is to integrate
the Newton’s equation of motion (3.1). There are several ways to do this and in
this study one of the most common ways was used, namely the velocity-Verlet
scheme. The velocity-Verlet is based on a Taylor expansion of the position of a
given particle i at a time t ±∆t,

r⃗i(t ±∆t) = r⃗i(t)±
∂ r⃗i(t)
∂ t

∆t +
1
2
∂ 2 r⃗i(t)
∂ t2

∆t2 ±
1
6
∂ 3 r⃗i(t)
∂ t3

∆t3 +O(∆t4). (3.2)

By adding the forward and backward form of equation (3.2) and substituting in
the force F⃗i(t) for the acceleration, the basic Verlet scheme is given as

r⃗i(t +∆t) = 2r⃗i(t)− r⃗i(t −∆t) +
F⃗i(t)
mi
∆t2 +O(∆t4). (3.3)

Similarly, by subtracting the two forms of the equation, some rearranging gives
us the velocity u⃗i(t),

u⃗i(t) =
r⃗i(t +∆t)− r⃗i(t −∆t)

2∆t
+O(∆t2). (3.4)

Equations (3.3) and (3.4) form what is known as the basic Verlet algorithm. Be-
cause the equations include r⃗i(t−∆t), the algorithm is not self-starting. A solution
is to solve (3.4) with respect to r⃗i(t −∆t) and then inserting it into (3.3), which
yields

r⃗i(t +∆t) = r⃗i(t) + u⃗i(t)∆t +
F⃗i(t)
2mi

∆t2 +O(∆t3). (3.5)

An expression for the velocity is given by using (3.4) to define u⃗i(t +∆t) and
then substituting r⃗i(t + 2∆t) by using (3.3). Some rearranging then gives a new
expression for the velocity of a particle i,

u⃗i(t +∆t) =
r⃗i(t +∆t)− r⃗i(t)

∆t
+

F⃗i(t +∆t)
2mi

∆t +O(∆t2). (3.6)

Inserting (3.5) into (3.6) finally gives a simple expression for updating the velocity,

u⃗i(t +∆t) = u⃗i(t) +
1

2mi

�

F⃗i(t +∆t) + F⃗i(t)
�

∆t +O(∆t2). (3.7)

Equation (3.5) and (3.7) represent the algorithm known as the velocity-Verlet and
is used on all the particles in the system to update their position and velocity for
each iteration. From the equations one can see that the global error associated
with the velocity-Verlet scheme is of the third order in the position and second-
order in the velocity.

A canonical ensemble was used in this study to ensure a system environment
with a controlled temperature. This means that the number of particles, N , the
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volume, V , and temperature, T , of the system was conserved during a whole sim-
ulation run. A simulation like this is usually referred to as an NVT simulation
because of the constraints set on three of its parameters. A micro canonical en-
semble, NVE, could also have been chosen for this study, but NVT-simulations
controls the sample’s temperature making it comparable with a real experiment
situation. To ensure the constant temperature, the system was coupled to a ther-
mostat. The thermostat exchange energy with the system to, among other things,
prevent viscous heat to change the environment of the simulations. The exact
thermostat used in this thesis is described in the next subsection.

A software called LAMMPS [41] was used to do the MD simulations in this
project. LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Sim-
ulator and is designed to run efficiently on parallel computers. It’s possibility to
customize the simulation system with specific atom types, force fields and bound-
ary conditions, made it easy to incorporate the colloidal system to be studied in
this project. An example of the input files used in the software is shown in Ap-
pendix A for the initial configuration of the system simulating at a temperature of
T = 0.14.

Although LAMMPS make molecular dynamics simulation efficient, the compu-
tational task is still cumbersome and require good hardware to simulate systems
of adequate size and time. Fortunately, access to the Swiss National Supercomput-
ing Centre (CSCS) was granted and all MD simulations performed for this thesis
was run on their HPC cluster named Piz Daint. Having one of the most power-
ful supercomputers in the world [42] and its GPU accelerated nodes, allowed for
gathering of MD data that capture the inherently slow dynamics of the glassy
systems studied in this work.

3.1.2 The system

The specific system used in this study was a binary colloidal system containing
a 50:50 mixture with a total of 2NA = 2NB = Ntot = 16000 particles of kind A
and B. The diameters of the colloids are given as d ≡ dAA = 1.0, dAB = 1.1d and
dBB = 1.2d, and their masses are given as m = mA = mB = 1.0. Hence the only
difference between the two types of particles, is their diameter. The particles are
arranged into a cubic sample of density ρ = 0.675mA/d

3. Note that all quantities
are defined to be unitless, which often is referred to as reduced units. In practice,
this is done by setting the fundamental quantities mass, σ, ε and the Boltzmann
constant kB equal to one. With this as a base, all other observables are constructed
using these fundamental quantities.

The reason for the choice of having a binary colloidal system instead of a
single type of colloids, is to prevent crystallization of the sample when quenched.
Preparing a glass in molecular dynamics simulation can be difficult, and glass-
forming liquids need to be engineered carefully. For systems with a single type of
particles, the configuration crystalizes when quenched below the melting point.
This is because the internal energy minima of the particles coincide at the same
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point. This is however not true for the binary case, and thus the crystal structure
is not as strong and harder to construct.

For the force field, a potential called the Yukawa potential was used to model
the interactions between the particles. The Yukawa potential is named after the
physicist Hideki Yukawa and is a pairwise potential used to simulate the inter-
actions in systems consisting of attracting or repelling particles. The potential is
given by

Vαβ(r) = εαβdαβ
exp(−καβ(r − dαβ))

r
, (3.8)

with α,β = A, B. The energy parameters εαβ was set to ε≡ εAA = 1.0, εAB = 1.4ε
and εBB = 2.0ε, and the screening parameters καβ was set equal with a value of
κAA = κAB = κBB = 6/d. A plot of the potential with the specific values are shown
in figure 3.1. From this plot and equation (3.8), one can see that the potential is
strictly positive and that the particles contained in the system are always repelling
each other.
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Figure 3.1: A plot of the specific Yukawa potential used in the simulations.

The potential is often referred to as the screened Coulomb potential as it can
be reduced to the Coulomb potential simply by letting the screening parameters
be zero. A predefined module for the Yukawa potential was used in the Lammps
simulation software.

In this study, the so called Dissipative Particle Dynamics (DPD) thermostat
was coupled to the system [43]. The DPD thermostat can be formulated by the
equations of motion given as

d r⃗i

d t
=

p⃗i

mi
,

d p⃗i

d t
= F⃗i + F⃗ D

i + F⃗R
i , (3.9)

where r⃗i is the position and p⃗i is the momentum of particle i. F⃗i is the conservative
net force on particle i given by the gradient of the Yukawa potential formulated
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in (3.8) for all particles pairs including this particle. The thermostat works by
adding a dissipative force, F⃗ D

i =
∑

j ̸=i F⃗ D
i j , and a random force, F⃗R

i =
∑

j ̸=i F⃗R
i j , to

the equation of motion.
The dissipative force is defined as

F⃗ D
i j = −ζω

d(ri j)(r̂i j u⃗i j)r̂i j , (3.10)

where u⃗i j = u⃗i − u⃗ j is the relative velocity between particle i and j. r̂i j is the unit
vector in the interatomic axis r⃗i j = r⃗i − r⃗ j . ω

D denotes a weight function which
vanishes for r ⩾ rc = 1.25d. The friction constant ζwas set to a value of ζ= 12 to
give the system microscopic properties close to that of pure Newtonian dynamics,
ζ = 0. This means that the term F⃗ D describes the frictional forces in the system
due to interactions between the particles and the use of relative velocities ensures
that the momentum is locally conserved. The random force is given in a similar
way by

F⃗R
i j = σω

R(ri j)θi j r̂i j , (3.11)

with σ as the noise strength, which was set equal to σ =
p

2kbTζ by using the
fluctuation-dissipation theorem. θi j is a Gaussian white noise variable and ωR is
another weight function simply given as [ωR(r)]2 = ωD(r). The described ther-
mostat was implemented using an internal LAMMPS command, which can be seen
in appendix A.

All parameters in this system are carefully chosen to allow for glass-formation
when the system is quenched down below the transition temperature, i.e., no crys-
tallization or phase separation of the sample. This has been showed for the same
model in previous studies [16], as well as the pre-study work of this thesis [22].
In the pre-study work, the exact same system was investigated by characterizing
the different states of matter through analyzing the structure and diffusivity of
the samples. Furthermore, the non-Newtonian behaviors of the glassy state was
reproduced with excellent agreement with previous studies.
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3.2 Initialization of the system

To initialize the system, the particles was placed into a body-centered cubic (bcc)
lattice configuration. The unit cell of the bcc structure hold two particles, this
makes it an inherent binary system if the two particles are differentiated. In this
case one was given a diameter of dAA and the other was given a slightly bigger
diameter of dBB. The lattice parameter was set to give the desired density and the
resulting colloidal system is visualized in figure 3.2.

Figure 3.2: Visualization of the initial body-centered cubic configuration of the
binary colloidal system.

The Yukawa potential used in this study easily forms a disordered or glass-like
state if the initial configuration of the particles is not well ordered, even without
the usually required quenching process. The bcc structure was therefore a good
choice for the initial configuration for this study because it give a high level of
order in the initial structure, which can be confirmed by the distinct peaks of the
radial distribution function given in figure 3.3.
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Figure 3.3: Radial distribution function of initial bcc structure.

The initial configuration of body centered particles was heated up and equilib-
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rated at a temperature of T = 2.0, which is well above the transition melting tem-
perature of around T ≈ 0.14. In order to generate the glassy samples, the liquified
system had to be cooled down. A baseline configuration was made by cooling the
sample down to T = 1.0. The reason for defining this as a baseline configuration,
is that all further samples was prepared by directly cooling the sample at T = 1.0,
in order to account for the effect of aging.

Aging is an important effect in so-called out-of-equilibrium systems like found
for glassy dynamics. Aging, as the name implies, mean that both the structure
and dynamics of a system can change as time progresses [44, 45]. Even though
the relaxation time for a glassy system, by definition, exceeds any practical times-
cale, a gradual move towards an equilibrium is always present. Thus, small effects
associated to aging is often observed after a quench of the system and must there-
fore be accounted for. In this work, all samples with temperature lower than the
baseline configuration was made by quenching the sample at T = 1.0 and letting
them equilibrate through a fixed number timesteps of one million.

3.3 Dynamic Heterogeneity analysis

3.3.1 Defining mobile particles

A simple way to investigate dynamic heterogeneity of the system is to consider
displacements of the particles over a given time interval. The distribution of the
displacement magnitudes of the particles is given by the self-part of the Van Hove
function described in section 2.3. For the homogeneous system, this distribution
is expected to be Gaussian with a mean described through the diffusion coeffi-
cient at the given temperature. Studies have however shown that the distribution
becomes non-Gaussian as the system transitions into a glassy state [46]. The dis-
tribution adopts a large tail, which grows longer as the temperature is lowered.
This indicates that some particles move a much greater distance than the bulk
of the particles. These are the particles which will be referenced to as mobile
particles. A straightforward method for differentiating between these mobile and
in-mobile particles is to compare the non-Gaussian Van Hove function to a Gaus-
sian reference distribution with the same mean and standard deviation. The cutoff
displacement distance r∗ can then be defined as the intersection point between
the two distributions, thus isolating out the particles that moved further than ex-
pected, r(t)≥ r∗(t).

The natural diffusion of particles makes the cutoff distance time-depended,
which means that it needs to be evaluated at each intermediate time step. This is
done by calculating a histogram for the displacements of the particles, and then
using a quadratic B-spline interpolation to convert the histogram data into a con-
tinuous curve. An intersection point to the interpolated curve and a reference
Gaussian curve is then numerically calculated to give the cutoff distance r∗. Figure
3.4 shows a sketch of the Van Hove function Gs, the linked Gaussian distribution
G0, and the cut-off distance r∗.
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Figure 3.4: Sketch of the distribution functions describing the dislocation of the
particles in the system. Gs(r) represent the self-part of the Van Hove function,
while G0(r) represent the Gaussian distribution with the same mean and standard
deviation as Gs(r).

3.3.2 K-means clustering

When the particles are split into mobile and in-mobile particles, heterogeneity in
the particle positions is expected to occur for the glassy state in the caging region.
This heterogeneity is visible through the forming of local clusters of the mobile
particles. Quantifying this phenomenon can be difficult as the size and form of
the clusters vary with time and they are often vaguely defined. One solution is
to use a machine learning algorithm to assign the mobile particles into different
clusters. One of the most common clustering algorithms is known as k-means. K-
means produce a fixed number of clusters which all have a corresponding center.
The number of clusters is usually given the symbol k, but to avoid confusion with
the wave vector, it is here referenced by the symbol κ. All particles in the system
are assigned to the cluster with the nearest center. The algorithm then adjust
the cluster centers according to the particles assigned to each cluster. Next, all
particles are again assigned to the nearest centers and the whole process is iterated
until no new assignments occur. For a system with N particles the algorithm is
designed to solve the optimization problem mathematically described as

min
µ⃗,z

N
∑

i=1

∥ r⃗i − µ⃗zi
∥2, (3.12)
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where µ⃗k is the center for the k-th cluster and zi is the index for the cluster as-
signed to particle i.

The optimization problem is nonconvex and thus sensitive to the initial “guess”
of cluster centers. Finding the optimal clustering is therefore not guaranteed for
a given set of initial centers and one should choose this initialization carefully.
Additionally, the worst-case convergence time for k-means is shown to be super-
polynomial to the input size [47], which in this study can include up to thousand
mobile particles. One of the most used methods for producing this initial “guess” in
order to minimize the related problems, is a method called k-means++ [48]. The
method starts by uniformly choosing a datapoint at random and letting this be the
first cluster center. Next, the distance between all the remaining datapoints and
the nearest cluster center, D(r⃗i), is calculated. The next center is then chosen at
random from a weighted probability distribution where the datapoint r⃗i is chosen
with probability proportional to D(r⃗i)2. These steps are then repeated until all κ
clusters are chosen. By considering the squared distance to the nearest cluster cen-
ter this method ensures a good spread of the centers, which is shown to improve
the performance of k-means clustering.

Note that even with the improved method for finding the initial “guess” of
the cluster centers, finding the global minima of the optimization problem is not
guaranteed. In order to further ensure that a good clustering solution is reached,
the k-means algorithm is applied to each configuration several times. The best
solution of all iterations is then extracted according to the silhouette score, which
is a metric that will be described later in this section.

One challenge with using k-means to find and quantify clusters of the mobile
particles is that the algorithm requires the number of clusters κ as an input. This
unknown for a system of particles and need to be estimated. There exist several
good solutions for this problem, whereas many of them consists of applying the
k-means algorithm on a range of values for κ. Then κ is chosen as the one which
resulted in best clustering of the data. This method requires a metric for evaluating
a cluster solution. The most used evaluation metric for this purpose is to look at
the within-cluster-sum of squared errors (WSS). WSS is in fact what the objective
function showed in (3.12) which k-means try to minimize. The method chooses
the κ at which the WSS first start to diminish in the WSS-κ plot, a so-called elbow
point. A problem occurs when the dataset consists of many non-distinctive clusters
as this will make the elbow point to be vaguely defined.

A metric better suited for the clustering problem found in this study, is the
silhouette score. The silhouette value for the i-th datapoint is given by

si =
bi − ai

max(ai , bi)
, (3.13)

where ai is defined as the average distance to the datapoints within the same
cluster. bi is defined as mink ̸=zi

bik, where bik is the average distance from particle
i to the particles in cluster k. By letting Ck be the set of particles assigned to the



Chapter 3: Methods 25

cluster indexed by k, ai and bi can be defined by

ai =
1

|Czi
| − 1

∑

j∈Czi
, j ̸=i

∥ r⃗i − r⃗ j ∥ (3.14)

bi =min
k ̸=zi

1
|Czk
|

∑

j∈Ck

∥ r⃗i − r⃗ j ∥, (3.15)

where |Ck| is the number of particles assigned to the cluster indexed by k.
Note that−1≤ si ≤ 1, where si = 1 indicate a perfect clustering of this particle

as it lies well inside the assigned cluster compared to the surrounding clusters.
Because of this, the average silhouette score 〈s〉 is a good metric for the clustering
quality for a given solution. By plotting the average silhouette score as a function
of cluster size, a maximum will occur at the optimal number of clusters for the
specific dataset. More importantly, the value of this best average silhouette score
itself is a good measure of how distinct the clusters appear in the system. Thus,
for a system with particles uniformly and homogeneously distributed, the average
silhouette score is expected to be low. An attempt to derive an analytic solution for
the expected silhouette score was conducted, but was instead estimated through a
Monte-Carlo process. For a system with N particles, the average of the top-scores
from a significant number of samples with uniformly distributed particles were
calculated and plotted against the number of clusters, κ, used in the k-means
analysis.

A heterogeneous system where the particles group together is however expec-
ted to give a high positive value for the average silhouette score. Utilizing this
principle gives a method for both approximating the best value for κ to use and
evaluating the level of heterogeneity in a system. Because the solution given by
the k-means algorithm is highly dependent on the initial “guess” of the cluster
centers, a significant number of runs must be conducted for every configuration
to ensure a good cluster solution. The method used to find the optimal κ for each
timestep in a system, was to do a scan over a range of different values for κ and
calculate the corresponding best silhouette score based on several runs with the
k-means algorithm. Through a convergence analysis, the adequate number of runs
at each value of κ can be estimated. Doing several thousands of runs for a wide
range of values for κ can be a tedious process. To speed up the calculations, an ini-
tial coarse scan over values for κ is done. Here a smaller number of k-means runs
are done to get an idea of where the optimal value can be. This narrows down the
search area for the more precise scan where the adequate number of runs with
the algorithm is done to find the optimal clustering solution and its corresponding
silhouette score.

To further investigate the clustering of the mobile particles, the average cluster
diameter for a solution can be calculated. A simple method for approximating the
diameter of a set of points in space, is to calculate all the point-to-point distances
within the set. The cluster diameter can then be set to be the maximum of these
intra-cluster distances. Thus, or a the cluster indexed by k, the diameter dk can
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be defined as
dk = max

i, j∈Ck

∥ r⃗i − r⃗ j ∥ . (3.16)

Note that calculating all intra-cluster distances is a so-called brute force method.
There exist much faster ways to estimate the diameter of a set of points, whereas
many of these reduce the problem down to the convex hull of the point set. In this
thesis, the number of particles assigned to each cluster was not immense, and thus
calculating the cluster diameter proved to be fast with the brute force method. For
systems of larger size, bigger fraction of mobile particles or bigger clusters, a faster
algorithm to calculate the cluster diameters should be considered. An efficient
alternative algorithm is described in [49].
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Results And Discussion

In this chapter, results from the static structure factor, intermediate scattering
function and the heterogeneity analysis is presented. All results were calculated
using trajectories from the molecular dynamics simulations as described in sec-
tion 3.1 and appendix A, for the binary colloidal Yukawa model discussed in this
thesis. In order to have a better statistical significance, a big number of data should
be considered in a field like molecular dynamics, however, due to time limits, an
average on ten samples maximum for each temperature was obtained and used
for the calculations. Note that all measurements are given in reduced units, as
mentioned in section 3.1.2.

4.1 The static structure factor

The static structure factor was calculated with trajectories of the binary Yukawa
system in a glassy state at the MCT glass transition, i.e. T = 0.14. All particle
type correlations were considered using the partial static structure factor given in
equation (2.8) and averaged over a set of wave vectors with magnitudes in the
shell k+ dk. The resulting curves are shown in figure 4.1. For a finite simulation
volume with periodic boundary conditions, the maximum possible period in the
system is constrained by L. The cubic simulation box used in the simulations have
side lengths of L = 24.724. Thus, any wave vector k⃗ shorter than ∆k = 2π/L ≃
0.2187 was not considered. The set of wave vectors used in the calculation was
therefore chosen according to the following:

k⃗ = (nx êx , ny êy , nz êz)∆k, (4.1)

nx , ny , nz =
�

Z≥ 0
�

�

Ç

n2
x + n2

y + n2
z ≤

kmax

∆k

	

, (4.2)

where kmax is the maximum magnitude of k⃗ for which the static structure
factor was calculated. Due to the direct calculation of the static structure factor
being O(N2) for each wave vector, this bound was set to kmax = 15.0 to reduce
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the computational cost. More details on the optimization process for the static
structure factor calculation is described in appendix B.

Figure 4.1: Static structure factor for the glassy-state Yukawa colloidal system at
T = 0.14. The blue, orange and yellow lines represent the correlations for A-A,
A-B and B-B particles respectively. The red dots represents a calculation of the
A-A correlation obtained with the diffraction module of the freud Python library
[50].

The static structure factor for A-A correlation calculated with the diffraction
module of the freud.py Python package [50] was also plotted as red points in the
same figure. As one can see, the results coincide perfectly with the one written
in this thesis, this validates the codes for calculating the static structure factor.
From the figure, it comes clear that the most significant wavenumber appears at
|k⃗| ≈ 6. Additionally, the correlation between the smallest type-A particles gives a
main peak at slightly higher k value. This is expected, since to smaller particles it
corresponds smaller periods, which result into higher wave vector because of the
inverse proportionality to the period.

The sudden increase around k = 0 is a property of the static structure factor,
limk→0 S(k) = N . A k-vector shorter than∆k is however not physical and thus the
peak around k = 0 can be ignored. Also note that the plots of A-A and A-B is shifted
by 0.5 downwards in order to better visualize all three curves. As the location of
the peak, and not its actual value, is of importance, the downward shift will not
have any effect on the following results. To conclude, k = 6.1 corresponds to the
first Bragg peak in the static structure factor for our B-B correlations, and this
number has been used as reference value to calculate the intermediate scattering
function in the following parts.
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4.2 The intermediate scattering function

The self part of the intermediate scattering function for the Yukawa binary col-
loidal system was calculated using equation (2.16). Figure 4.2 shows the resulting
curves for temperatures ranging from T = 2.0 to T = 0.005. With a phase trans-
ition temperature around T = 0.14, this means that the figure include results from
both liquid states and states transitioned into a glassy state. The magnitude of the
wave vector was set to k = 6.1 as this corresponds to the main peak of the static
structure factor.

Figure 4.2: Intermediate scattering function of type-B particles in the Yukawa
binary-colloidal system at different temperatures T . The magnitude of the wave
vector was set to |k⃗| = 6.1 as this correspond to the main peak of the static
structure factor.

At high temperatures, the system is in a liquid state and thus the particles are
highly diffusive. As expected, the intermediate scattering function decrease down
to zero after the system has passed through the initial ballistic region. Because of
the high diffusivity in this liquid state, the spatial correlation to the initial con-
figuration is lost early as the configuration changes fast. With a decrease in tem-
perature for the system, this sudden drop in the intermediate scattering function
appears to occur later. The delay of the drop can be explained by the temperat-
ure dependence of the diffusivity. With a lower temperature, the particles move
slower and the correlation to the initial system is preserved for longer, i.e. a longer
relaxation time.

At around T = 0.2, the dynamics however start to change. The sudden drop
looks to be less steep and, as the temperature is lowered towards the phase trans-
ition, around T = 0.14, the plateau described in section 2.3 is starting to form.
This plateau region is a result of the cage-effect which is characteristic for glassy
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systems. The cage-effect means that most of the particles are trapped between
slow and immobile particles, unable to break most of the correlation to the initial
configuration. For systems around the phase transition temperature and lower,
this plateau region is clearly visible and appearing with higher values for Fs. The
duration of this period also looks to increase as the temperature is decreased and
the period is a measure of the so-called β-relaxation. For the system used in this
experiment, this β-relaxation time persists between the time 1×103 and 1×104,
depending on the system temperature. Thus, with a lower temperature, particles
of the glassy system tend to preserve the correlation, or “memory”, of the initial
system for longer as slower particles will use longer time to escape the cage-effect.

At even lower temperatures the particles of the system are almost completely
frozen, and the configuration will not change considerable until large timescales
are met. Because of this, Fs is held around one and the plateau is not evident.

The α-relaxation is related to the timescale at which the intermediate scat-
tering function breaks down to zero and all “memory” of the initial configura-
tion is lost. For liquid states, the relaxation times is easy to quantify because of
its rapid breakdown. The relaxation times is however harder to quantify for the
glassy states because of the low diffusivity and caging-effects. Mode coupling the-
ory predicts curves for both the α- and β-relaxations, as described in section 2.4,
with the stretched exponential. The curves of the intermediate scattering function
results for the Yukawa colloidal system were fitted using equation 2.17. The fit-
ted curves are presented as dashed lines in figure 4.3, with their respective fitted
parameters for β and τ.

For the liquid system at T = 1.0, only the α-relaxation is relevant. The fitting
function was optimized to fit the drop of Fs(k, t) in order to predict this relaxation
process. The curve looks to fit the intermediate scattering function up to the in-
flection point with the parameters β = 1.7 and τ = 0.29, where the latter reflect
the relaxation time. This is what is expected for a liquid state, i.e. the parameters
are consistent with the typical time-decay Debye-relaxation described in Section
2.3, consistent with many experiments and previous simulations on very similar
colloidal systems [2, 4, 51] For T = 0.14, the dynamics of the glassy states delays
the relaxation. The drop in Fs(k, t), subsequent to the ballistic regime, now repres-
ent the so-called β-relaxation. However, the parameters from the fitting present
a higher value for τ, how it is expected for a cage-type region characterized by
a slowdown in the dynamics. The final relaxation, the α-relaxation, is also pre-
dicted with the typical stretched exponential as a fitting curve that validates a
typical glassy, non Gaussian behavior as described in previous papers for similar
systems [2, 51]. The exponent of the time-decay is estimated to be β = 0.62,
which agree with predictions from mode coupling theory stating β < 1.0. Fur-
ther, the relaxation time is here associated with τ ≈ 10 640. In the paper form
Kikuchi et al. [51] a colloidal binary mixture modeled with Yukawa potential is
investigated. The binary mixture is very similar to the one investigated here, and
one can observe similar trend in the self-intermediate scattering function. This
agreement further validates the investigations.
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Figure 4.3: Intermediate scattering function of type-B particles in the Yukawa
binary-colloidal system for a liquid and a glassy state. The magnitude of the wave
vector was set to |k⃗| = 6.1 as this correspond to the main peak of the static
structure factor. The dashed line represents fitted curves with forms predicted
by the mode coupling theory.

4.3 Dynamic heterogeneity

In this section, the traditional way of studying the dynamic heterogeneity is first
presented by looking at the non-Gaussian parameter and the dynamic susceptibil-
ity. Then the mobile particles are extracted before the method of k-means is finally
applied and analyzed.

4.3.1 α2-parameter and dynamic susceptibility

In order to study the dynamic heterogeneities of the glassy system, one first must
get an idea to where the heterogeneities are occurring. Figure 4.4 illustrates this
by plotting the non-Gaussian parameter α2(t) for the Yukawa colloidal system at
different temperatures according to equation (2.18). Each line is an average of
ten samples with an additional simple moving average applied to highlight the
trends of these curves. The two liquid systems look to remain at zero during the
whole simulation. This is expected for a system with particles not bounded by its
configuration and thus its displacement distribution will take a Gaussian form. The
same cannot be said for the glassy systems transitioned out of the ballistic regime.
Here α2(t) grows, which is expected to be related to the cage-effect holding parts
of the configuration locked, and thus the development of a tail in the Van Hove
function appears. Further, the peak of the non-Gaussian parameter increase as
the temperature is lowered, which is exactly the same trend found in previous
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work discussed in section 2.5. The decrease of temperature also predicted a time-
shift for this peak, and the same trend is found here. The delay of the peak for
lower temperatures relates to the higher relaxation times for these systems. By
comparing these results with the intermediate scattering function, one can also
note that α2(t) does not start to grow before the plateau in Fs(k, t) appear.

Figure 4.4: The non-Gaussian parameter for the Yukawa colloidal system at dif-
ferent temperatures. All lines represent an average of ten samples for the given
temperature. Additionally, a simple moving average was applied on the timeser-
ies.

In figure 4.5 the susceptibility χ4(t) of the system is plotted for the Yukawa col-
loidal system at different temperatures using equation 2.19. Note that the variance
of the fluctuations is calculated using the simulations of ten different samples for
each temperature. As χ4(t) is not an ensemble average like many other measure-
ments in this thesis, it requires a higher number of simulations to ensure accuracy.
Limitations in time deprioritized this issue, and ten samples was found to be ad-
equate to the qualitative analysis of this measurement. A simple moving average
was applied to smooth out the curves.
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Figure 4.5: The dynamic susceptibility for the Yukawa colloidal system at dif-
ferent temperatures. All lines represent an average of ten samples for the given
temperature. Additionally, a simple moving average was applied on the timeser-
ies.

Figure 4.5 show clearly three peaks at T=0.17, 0.15 and 0.14. The peaks of the
susceptibility for lower temperatures T < 0.14 appear to occur at later times and
thus not caught in the timespan of the calculations used in this work. However,
the expected trend is evident with the growth of the peak as the temperature
is decreased below the transition temperature. The overall shape of the curves,
especially as seen for T = 0.14, coincide with results of many other simulation
works in which glassy states and DH are studied [6, 9].The trend is as that for a
decrease of temperature, both, the χ4(t) and α2(t) increases in peak height and
their peaks shift to larger times [19].

4.3.2 The mobile particles

Figure 4.6 shows a snapshot in the plane z = 10.0 of the Yukawa colloidal system
for type-B particles at T = 0.14. Each subfigure illustrates the different regimes
that takes place in the simulation, namely the ballistic-, cage- and diffusive regime.
The colors are mapped according to how much each particle are dislocated in the
given timeframe. One can clearly see how the highly dislocated, mobile, particles
seem to cluster together in the later times, subfigure 4.6c, especially compared to
the initial ballistic regime illustrated for t = 0.083, subfigure 4.6a, and cage-effect
time, i.e. time t = 83, subfigure 4.6b.
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(a) t = 0.083 (b) t = 83.0

(c) t = 2490.0

Figure 4.6: Snapshots in the plane z = 10 of the Yukawa colloidal system at
T = 0.14 for three different timesteps. The colors are mapped according to how
much each particle have dislocated. Note that only type-B particles are plotted,
and size is not to scale.

In order to perform the heterogeneity analysis on the mobile particles in the
system, they first need to be defined. For each timestep, the Van Hove function
was calculated and compared to the Gaussian distribution with same mean and
standard deviation, as described in section 3.3.1. Figure 4.7a and 4.7b shows the
Van Hove function and its corresponding Gaussian distribution for the glassy state
with T = 0.14 at time t = 84.0 for type-A and type-B particles respectively. One
can notice that the Van Hove function appear to develop a tail indicating that few
particles displace further than the bulk of the remaining particles. These particles
are defined as the ’mobile particles’ of the system. As described earlier, this tail is
related to that the bulk of the particles are still spatially correlated and "caged".
Only a fraction of the particles are expected to break free into a dislocation that
form the tail of the Van Hove. Using the crossing point, r∗, between the Van Hove
and the Gaussian appear to be a good method for extracting this tail, and thus
differentiate between mobile and immobile particles.

Although the method for extracting the mobile particles seem to work for the
glassy state at T = 0.14, its soundness depends on the Van Hove function having
a distinct tail with dislocated particles. For the liquid state and glassy states in
the ballistic regime, this tail however showed to be less distinct, which is due to
the particles being less bounded in a specific configuration and free to diffuse.
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(a) type-A (b) type-B

Figure 4.7: Calculation of cutoff distance r∗ using the Van Hove function Gs(r)
and a Gaussian distribution G0(r) for a system at temperature T = 0.14 after
a time t = 83.0. Results for type-A particles (a) give an intersection point at
r∗ = 0.77, while type-B (b) gives an intersection point at r∗ = 0.55.

Thus, the spatial correlation is not conserved for these systems, and it makes the
Van Hove function Gaussian for the liquid states, as one should expect. This was
confirmed by the low non-Gaussian parameter found for the liwuid system.

In order to keep the Van Hove definition consistent, a fixed number of bins was
used. Through some trail and error, the number of bins was set to 25, as this gave
reasonable curves for the whole range of timesteps and temperatures investigated
in this thesis. A bigger number of bins resulted in an unsmooth curve which made
the crossing point of the Gaussian and the Van Hove ambiguous. And furthermore,
a smaller number of bins resulted in a too coarse description of the Van Hove.
Note that the two plots in figure 4.7 seem to incorporate a different number of
bins in the Van Hove, but this is due to the type-A particles being of smaller size.
The smaller diameter of type-A particles speed up the dynamics compared to the
larger particles, and thus the tail in the Van Hove is developed earlier. With a
longer tail and a fixed number of bins, the size of the bins is simply increased. It
can be assumed that an adaptive number of bins would have made the definition
of the Van Hove function more accurate, but this was not investigated.

Figure 4.8 shows the development of the cut-off distance r∗ as function of time
illustrated in a log-log plot for three different temperatures. Each line is given by
the average over five different samples. Notice how similar the curves look to what
is expected for the motion of the particles in this regime. As the cut-off distance
r∗ is highly dependent on the displacements of the particles, the curves can be
assumed to represent the motion of the particles.
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The initial increase in r∗ represents the ballistic regime and as expected, the
three different temperatures behave similar here as none of the particles have had
time to be affected by their surroundings. The linear increase shown in the log-log
plot for r∗ in this region was found to be around c1 = 1. Keep in mind that the
the mean squared displacement of the particles is found to be of second order
in the ballistic regime. Thus, an initial first order increase of the cut-off distance
should be no surprise if one assumes that it is linearly dependent on the mean
displacement of the particles [32].

For intermediate times the liquid state, T = 1.0, continues to grow further,
but with a slightly lower rate of c2 = 0.51, which was found through a linear
regression. The decrease of the slope indicates that even for liquid states, the
interactions between the particles give a lower diffusion of the particles. Similarly,
this behavior is also found in the analysis of the motion for the same system. This
region is the diffusive region and the transitioning from the ballistic regime is
given by the intersection of the two regression lines. The transition point was
estimated to be at t = 0.29. If one compares this result to the fitting curves on the
intermediate scattering function from figure 4.3, the point appear to occur exactly
at the predicted α-relaxation time for the system at T = 1.0. This shows that the
cut-off distance used to characterize the mobile particles incorporate the dynamics
of the different regimes, which further improves the validity of this method.

Figure 4.8: Log-log plot of defined cutoff displacement r∗ for type-B particles in
liquid state, T = 1.0, and two glassy states, T = 0.14 and T = 0.05 as a function
of time t. The dashed lines c1, c2 and c3 represent the linear regressions of the
ballistic regime, the diffusive regime for T = 1.0 and the diffusive regime for
T = 0.14 respectively.

For the glassy state at T = 0.14, the growth of the cut-off distance halts after
the initial ballistic regime. This transition into a nearly fixed cut-off distance can
be explained by the cage-effect discussed earlier in which only a small fraction
of the particles is expected to dislocate in any significant amount. Also here the
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connections to the dynamics found in the intermediate scattering function can
be drawn. The cage regime locks the configurations until the system eventually
transition into a diffusive region at higher timescales. Here many of the particles
are able to break the caging and most of its spatial correlation starts to fade,
which correspond to the dynamics found in the intermediate scattering function.
Notice how the time at which r∗ starts its second growth agree with the time
at which the correlation described through the intermediate scattering function
break down. The slope at the diffusive region was estimated through a regression
which gave c3 = 0.43, although the growth in this region is expected to be the
same as for the liquid state in the diffusive region. The slightly lower growth in
the diffusive region compared to T = 1.0 can be explained by that the diffusive
region for T = 0.14 was not fully achieved in the limited timescale used in these
simulations.

For the system at T = 0.05, the caging region is much more evident as the
growth of the cut-off distance appears to be zero after the transition from the
ballistic regime.

Figure 4.9: Semi log-plot of the fraction of mobile type-B particles in the Yukawa
colloidal system simulated for three different temperatures. Each line represent
an average over five different samples at the given temperature and a simple
moving average is applied.

Figure 4.9 shows another interesting result form the mobile particle calcula-
tion. Here the fraction of mobile type-B particles is plotted by dividing the number
of mobile particles for each timestep by the total number of type-B particles in the
system, which in this case was 8000. Each line represent an average of five dif-
ferent samples, and a simple moving average of five datapoints was further used
to smooth out the plots. The liquid system at T = 1.0 does not seem to present
any significant temporal change during the timeframe of this experiment and only
fluctuate around a fraction of 6% of the total particle count. This is not a surprise
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considering that the liquid state is not bounded by its configuration through the
cage effect, and this has also been declared by other previous works [11]. The
Van Hove function is thus more similar to a Gaussian distribution with no forming
of a tail like in the glassy states. As a result, the dynamics of the system is only
changing in the transition from the ballistic to the diffusive regime. This transition
is however not visible in this calculation. An explanation of this could be that the
form of the Van Hove function is conserved during this transition, and the change
of the dynamics is corrected through the change of the cut-off distance shown in
figure 4.8.

In the glassy states at T = 0.05 and T = 0.14 the three different regimes is
more distinct. As expected, and what we have seen in previous calculations, they
all share the same characteristics in the ballistic regime [9]. In the intermediate
timescales, the glassy states however adapt a gradually smaller fraction of mobile
particles after they transit into the cage regime. This lower fraction of particles
can be explained by that the tail of the Van Hove function is gradually increas-
ing as more and more particles are “escaping” their cage of neighboring particles
[11]. The growing tail increase the relative size of the standard deviation for the
Van Hove function, which again result in a wider Gaussian distribution. With the
method used to extract the mobile particles, a wider Gaussian distribution effect-
ively increases the requirements for a particle existing in the tail, and thus the
number of mobile particles decrease.

The decrease in the fraction of mobile particles can further be explained by
the development of heterogeneity in the system. As described, the Van Hove func-
tion acquires a more distinctive tail as the glassy systems transition into the cage
regime. The fact is that this tail is a result of the heterogeneity, and one can not
really talk about a significant tail in either the ballistic regime, or the liquid state.
Thus, the systems at T = 0.14 and T = 0.05 experience a development of hetero-
geneity when the mobile particles describe the particles that “escape” their cage
rather than only the most diffusive particles.

One should also note that the glassy system at T = 0.14 returns to the fraction
of mobile particles found in the liquid state as the system enters the diffusive
region. The timescale of this return correlates with the transition time which was
found in the calculation of the cut-off distance. Similarly, the glassy system at a
much colder temperature at T = 0.05 is expected to jump back to a mobile fraction
of 6% as the diffusive region is reached. The delay of this transition is explained
through the slowdown of the dynamics as the temperature is lowered

In figure 4.10 a snapshot of the Yukawa colloidal system at t = 83.0 with
T = 0.14 is plotted. The two different types of particles are represented by the
two colors and only the mobile particles are visualized. For the given time and
temperature, one can see from the earlier analysis that the system should exper-
ience a degree of heterogeneity. In the figure, the particles look to be clustered
together. Note that these clusters seem to be independent of particle type. An ex-
planation for this clustering could be described by the dynamics forming under
the cage-effect. With most of the particles trapped by the neighboring particles, a
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Figure 4.10: Snapshot of the mobile particles of the Yukawa colloidal system in a
glassy state, T = 0.14, at a time t = 83.0. Blue points represent type-A particles,
orange points represent type-B particles, and their size is not to scale.

sudden escape for one of these particles could resolve some of the tension between
the particles. This change of the local configuration could trigger the surround-
ing particles to dislocate into new positions. With this understanding, the mobile
particles should form in groups like we see in the figure. Many papers have also
spoken of mobile particles clustering into "string-like" shaped clusters, contrar-
ily to immobile particles that assume a more spherical appearance [9]. One can
see the same behavior in here, the correlated mobile particles are gathering in
string-like shaped clusters.

4.3.3 Clustering analysis

With the mobile particles now extracted, the clustering algorithm can finally be
used to quantify the heterogeneity of the system. To ensure accurate measure-
ments using the k-means algorithm, a convergence analysis was performed and
described in Appendix C. The main finding from the analysis is that convergence
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required a bigger number of iterations than first anticipated. The qualitative res-
ults however showed similar conclusions even when the number of iterations were
not adequate to ensure convergence.

Because the inherent number of clusters, κ, in each configuration was un-
known and difficult to distinguish with a standard approach, The method de-
scribed in section 3.3.2 was decided as a method to find the optimal values for κ.
The scan over κ used in the k-mean algorithm ranged from two clusters to 50%
of the total number of mobile particles with an upper limit of 150 clusters. This
ensured that each cluster included at least two particles at average. The silhouette
scores in the first scan were calculated as the best score among 30 iterations for
each κ in the scan. The second and more precise scan utilized 500 iterations for
each κ that ranged over the 21 κ-values surrounding the peak of the first scan.
The exact code used in this calculation is described in Appendix D. All of the fol-
lowing clustering results were calculated with k-means described in the Chapter
3.

A result of the applied k-means algorithm is shown in figure 4.11. The figure
visualizes the mobile particles of the Yukawa colloidal system at a temperature of
T = 0.14 for t = 83.0, which is the exact same snapshot as in figure 4.10. The color
coding of the particles in figure 4.11 was given to represent the clustering solution
which resulted in the highest silhouette score. The highest score was calculated
to be 〈s〉= 0.451 and given with the number of clusters set to κ= 32. Thus, each
of the 32 clusters is given its own color, although it can be somewhat difficult to
differentiate them in the center of the figure. For the clusters positioned along the
edge of the system, the clustering solution clearly seem to be good at defining the
borders between each cluster.

Figure 4.12: Average silhouette score 〈s〉 for the mobile type-B particles in the
Yukawa colloidal system at three different temperatures. Each of the lines repres-
ent an average over five different samples at the given temperature.
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Figure 4.11: Snapshot of the mobile particles of the Yukawa colloidal system in
a glassy state, T = 0.14, at a time t = 83.0. The k-means algorithm is applied
to cluster the particles and each color represents a specific cluster. The number
of clusters used in the calculation was k = 32, which gave an average silhouette
score of 〈s〉= 0.451. Size of particles are not to scale.

Figure 4.12 shows time dependence of the calculated average silhouette score
for the mobile type-B particles in the Yukawa colloidal system simulated at differ-
ent temperatures. Each line represents an average over ten different samples with
a simple moving average including five data-points applied to smooth the curves
without losing qualitative information on the dynamics.

As expected, both the liquid and glassy states have similar scores in the ballistic
regime. As explained earlier, the particles in this timescale do not have sufficient
time to affect each other, resulting in a homogeneous blend in the dislocations
for the various particles. The mobile particles should thus be scattered around in
no particular order and the fact that the glassy state show similar values for 〈s〉
as the liquid state, indicates that no heterogeneity is present in this region. The
transition out of the ballistic regime marks an increase in 〈s〉 for all temperatures.
One explanation for this relatively small increase during the transition can be that
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the transition does not occur in a uniform fashion. Local variation in temperature
across the simulation volume can result in some regions of particles transitioning
faster than others. Thus, with the definition of mobile particles used in this thesis,
heterogeneity will occur when only these transitioned particles are filtered out.
This explanation requires that a homogeneous system like the liquid state should
return to a lower silhouette score after the transition into a diffusive regime, which
it in fact does for the rest of the simulation time.

For the two glassy states, the increase of 〈s〉 however continues well after
the transition from the ballistic regime. As seen in the intermediate scattering
function for the system, they transition into the cage regime, and it is exactly
here the heterogeneity of the glassy states are predicted to emerge. In logarithmic
time, a seemingly linear increase of the silhouette scores is present with the same
rate for both temperatures. For the system at T = 0.14, this behavior change at
times in the order of 1×102, which not surprisingly also marks a transition of the
dynamics seen in the intermediate scattering function. Here the particles in the
system starts to migrate into a diffusive region and relaxing the system. A peak of
〈s〉 ≈ 0.44 is a decent silhouette score and can only be explained by a sufficient
heterogeneity in the configuration, with evident clusters. For longer times, this
heterogeneity should fade out as the system relaxes and the silhouette score is
expected to idle down to a value around 0.3. The exact same behavior is visible
for the glassy system at a colder temperature of T = 0.05. One of the differences
at this temperature is that the almost “frozen” particles result in a much slower
dynamic, which again give a delayed peak in the silhouette score and the transition
to a diffusive regime. A more interesting difference is the higher peak value of the
silhouette score. A possible explanation for this is discussed later.

The silhouette scores calculated from the system at different temperatures can
be compared with respect to each other. The results alone can however not sup-
port a nonzero value for 〈s〉 at configurations with mobile particles predicted to
be homogeneous in space. To further explain the results found from the cluster-
ing analysis, a truly homogeneous system was calculated by using k-means on a
system of uniformly distributed particles. The average silhouette score is plotted
in figure 4.13 as a function of κ for systems containing N = 100, N = 500 and
N = 2000 particles positioned in a fixed volume equal to the simulation box used
to simulate the Yukawa colloidal system. The results show an exponentially de-
creasing silhouette score as the number of clusters increases, before it eventually
goes to zero when the number of clusters is equal to the number of particles in
the system. When κ is equal to the the number of particles in the problem, each
particle will act as a separate cluster. From equation (3.13) one can see that this
makes ai = 0, giving si = 0. Thus, the highest silhouette score for a uniform dis-
tribution is given for the lowest value of κ. In this thesis, the fraction of mobile
particles ranged from 2% to 7% from a total of 8000 type-B particles, meaning
that an average silhouette score between 0.30 and 0.35 is expected for a homo-
geneous configuration. This coincides well with the results presented in figure
4.12, for the systems in the ballistic regime, and the liquid state. Furthermore,
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Figure 4.13: Average silhouette scores calculated as a function of number of
clusters in a system, κ, of uniformly distributed particles positioned in a volume
corresponding to the simulation box of molecular dynamics simulations. The
scores were calculated for systems with particle numbers of N = 100, N = 500
and N = 2000.

these results show that the silhouette score is dependent on the particle density in
the configuration, and thus the fraction of mobile particles should be considered
when discussing the silhouette scores of the Yukawa colloidal system. At the same
time, the advantage of having a lower density is far from explaining the high peaks
of the silhouette scores found for the glassy system.

In addition to the silhouette scores, other interesting results could be extrac-
ted from the clustering solution given by k-means for each configuration of the
Yukawa colloidal system. Figure 4.14 how the average number of particles for
each cluster is changing over the timescale of the molecular dynamic simulation
for three different temperatures. Further the average cluster diameter was also
calculated as described in section 3.3.2, and the results are shown in figure 4.15.
Equivalent to earlier results, the different regimes in the dynamics are clearly
present in these results. The ballistic regime shows that the best silhouette scores
were given for big clusters, which coincide with the results found for the system
of uniformly distributed particles. At the transition from the ballistic regime, true
clusters are believed to form for all temperatures. Thus, the optimal cluster solu-
tion is suddenly given by the inherent number of clusters, which in this case give
small clusters each containing only a few particles. For further timescales, the dy-
namics of the liquid and the glassy states separate as the liquid state gradually
fall back to big clusters. As expected for the glassy states, the trend of small dis-
tinct clusters continue into the cage regime, while one can see slight increase in
cluster size as the system at T = 0.14 move into a more diffusive regime at high
timescales.
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Figure 4.14: Average number of particles per cluster for the type-B particles in
the Yukawa colloidal system at three different temperatures. Each of the lines
represent an average over five different samples at the given temperature.

Figure 4.15: Average cluster diameter calculated for the mobile type-B particles
in the Yukawa colloidal system at three different temperatures. Each of the lines
represent an average over five different samples at the given temperature.

A somewhat surprising discovery is that the for the glassy states, both the frac-
tion of mobile particles and the silhouette scores seem to evolve in an exponential
fashion in the cage-regime, while the size of the clusters seem to be confined in
time for the same region. When the glassy states incorporate the cage-effect, the
mobile particles one by one hop out of their cages, resulting in a growing tail of the
Van Hove. This increase of the tail will further highlight the difference between
mobile and immobile particles. Thus, making it less likely that a relatively fast,
but not fully mobile, particle will fall under the definition of mobile particles used
in this thesis. So even though the true fraction of mobile particles increases, less
of the bulk of particles are included in the definition, and the effective number of
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mobile particles decrease. With a more well-defined group of mobile particles, the
silhouette score increases accordingly, as it is these particles that should invoke
heterogeneity.

The reason for the more conserved cluster size is however harder to consider.
One explanation can be that the truly immobile particles included in the definition
can simply fall both inside and outside the proximity of the true clusters. By doing
an average over all the clusters, the effects cancel each other, keeping the size of
the clusters connected to the heterogeneity of the mobile particles in the given
configuration.

As a final note, it should be said that recently, many other ML approaches have
been used successfully to study the glassy state DH in order to provide properties
predictions [17, 18, 20, 21]. In general, all the ML approaches, included the one
studied in this thesis, have been able to represents some features of the glass phe-
nomenology. Thus, validating the meaning of those tools are ideal fitting methods.





Chapter 5

Conclusion

In this thesis, I have studied the relaxation and dynamical Heterogeneity of a
Yukawa-glass forming material combining Molecular Dynamics (MD) simulation
with the k-means clustering technique. During my pre-study work, I have got used
with the MD technique and the simulation model, i.e. Yukawa binary colloidal
system, that I have shown to present the typical feature of a glass forming mater-
ial, reproducing with an excellent agreement previous results [16, 22, 51]. Being
sure to have found the right model, I have decided to spend the months of my
Master in studying the intriguing problem of the glassy dynamics and Dynamics
Heterogeneity. I have studied the particles correlations with the typical scatter-
ing functions at different temperatures, and found out the particles motions is
following the very well known regimes observed experimentally [12, 14], theor-
etically [4, 6, 34] and by modeling [11] for all the temperatures investigated. In a
second stage, I have analyzed the particles motion and scattering function fluctu-
ations using the standard functions, i.e. α2 parameter and χ4, that helped me to
distinguish between the random diffusive motion typical of a liquid, from a non-
Gaussian behavior typical of glassy systems. In a third stage, I have applied the
standard definitions of the particles mobility [6], and, I have coupled the k-means
clustering technique to infer more information on the mobility-cluster shapes and
evolution in time.

I have, myself, chosen the ML technique, and I have found its results consistent
with the information given by the other standard tools used in MD. Thus, adding
important information on the shape of the mobile-clusters and on their evolution.
I am aware that this work would need more statistical significance, but I think,
given the short time available, I have been able to reach a good understanding of
the problems and to contribute to test a ML method that was not previously used
in such field. The learning curve has been very steep, but I have found the topic
very intriguing and worth the efforts and ling time waiting after my simulations’
completion. I have got help in diving on the topic and on the MD codes, but I
have developed myself all the post-processing codes using the Julia programming
language.

47



48 Bertheussen A.: Relaxation process of Yukawa-glass

I have also used the Piz-Daint machine of the Swiss HPC-facilities, CSCS con-
sortium, that is known for its GPUs super-computers [42]. It means, I have also
gained very useful knowledge of the GPU accelerated machines and the syntax
necessary to use those.
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Appendix A

Lammps Input File

The input file described in code listing A.1 is an example of how the experiment
was run using the LAMMPS software to simulate a binary colloidal system de-
scribed in this project. The initial.config file was either the initial configuration
described in 3.2 or replaced by one of the output files from an earlier simulation
in order to continue from a sample already converged into a specific temperature.
Because all the temporal changes was analysed over a logarithmic timescale, the
output frequency was adjusted to evenly be distributed in logarithmic time.

Code listing A.1: Lammps input file used for simulations of the binary colloidal
system. Temperature was set to T = 0.14

suffix gpu
units lj # Use Lennard-Jones units
atom_style sphere # Use Colloids
dimension 3

# Import initial configuration or previous configuration
#read_data initial.config
read_data sim_res/data_014_1.colloid

# Define system parameters
set type 1 mass 1.0
set type 2 mass 1.0

set type 1 diameter 1.0
set type 2 diameter 1.2

variable t equal step

# Multi neighbor and comm for efficiency

neighbor 1 multi
neigh_modify delay 0
comm_modify mode multi
comm_modify vel yes

# Colloidal potential (Yukawa) and thermostat

pair_style hybrid/overlay yukawa 6.0 2.5 dpd/tstat 0.14 &
0.14 1.25 34387

55



56 Bertheussen A.: Relaxation process of Yukawa-glass

# The hybrid command allows to combine the yukawa potential
# and the dpd thermostat for the temperature

pair_coeff 1 1 yukawa 403.4588 3.4784
pair_coeff 1 2 yukawa 1132.0466 3.3253
pair_coeff 2 2 yukawa 3214.6338 3.1984

# dpd parameters
pair_coeff 1 1 dpd/tstat 12 1.25
pair_coeff 1 2 dpd/tstat 12 1.25
pair_coeff 2 2 dpd/tstat 12 1.25

change_box all triclinic

fix 1 all nve

# Change output to logarithmic frequency
variable s equal logfreq2(1,18,10)
dump 1 all custom 100 pos_014K_1.dump id type xu yu zu x y z
dump 2 all custom 100 vel_014K_1.dump id type vx vy vz x y z
dump_modify 1 every v_s first yes
dump_modify 2 every v_s first yes

# Define thermo-log parameters
thermo_style multi
thermo_style custom step time temp etotal press vol pxx pxy xy
thermo 1000

timestep 0.0083
# Restart file in case simulation stops
restart 100000 restart1.dat restart2.dat

# Run simulation
run 2000000

# Save end configuration
#write_data data_014_1.colloid



Appendix B

Optimization process of static
structure factor calculation

From the partial static structure factor given by equation (2.8), a system with
NA = NB = 8000 will need to do calculations for 80002 = 64× 106 particle pairs.
For a large set of k-vectors, this can be a cumbersome calculation. The number
of k-vectors, Nk, included in the set given by equation (4.1) can be approximated
by the volume spanned by (nx , ny , nz). Thus, with kmax = 15 and ∆k ≈ 0.21874,
one gets

Nk ≈
π

6

�kmax

∆k

�3
≈ 170 000. (B.1)

The calculation heavy post-processing scripts, like calculating the static struc-
ture factor, were all written in the Julia programming language [52]. This choice
was made because of Julia being a dynamic language, make it easy to write, while
it at the same time runs generally fast. Additionally, Julia is developed around sci-
entific programming, which means that there exist a wide range of open-source
packages and tools to help make the post-processing efficient and fast.

Initially the static structure factor was calculated through a double for-loop,
exactly as described in equation church. Because of the high number of particle
pairs considered in the calculation, the algorithm ended up taking 2.1 seconds for
each wave vector. In order to utilize the CPU better, the calculation needed to be
vectorized. This was done by defining a matrix

X i, j = rx ,i − rx , j , (B.2)

where rx ,i is the x-position of particle i. Similarly Y and Z was defined for the two
other directions. All subtractions included in the matrices was then only calculated
once instead of doing it for all wave vectors. The static structure was now given
as

S(k⃗) =
1
N

�

sum
�

cos(kx X + ky Y + kz Z)
�

+ sum
�

sin(kx X + ky Y + kz Z)
�

�

. (B.3)

With X , Y and Z being 8000 × 8000 matrices, the algorithm was faster, but
still far from sufficient. A nice speed-up was made through the realization that the
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matrices was symmetric with zero along the diagonal. Thus, the calculation could
be cut in half by only using the upper triangular part of the matrices. After convert-
ing them to arrays of 32×106 elements each, the calculation used 0.84 seconds per
wave vector, which was around 2.5 times faster than the initial algorithm. With
the limitations for single-core computing starting to appear, the next speed up was
done by multiprocessing the task. Running calculations for different k-vectors on
multiple threads helped to further half the estimated calculation time (for a 6-core
CPU). By calculating the static structure factor for 20 wave vectors, it was estim-
ated that each calculation now took 0.46 seconds. Thus, it would take around 22
hours to run the calculation on the total set of wave vectors. The progression is
summarized in table B.1.

Table B.1: Progression on optimization of the static structure factor calculation.
Total estimated calculation time is based on average time elapsed for calculations
on 20 k-vectors and then scaled up to 170 000 k-vectors.

Version Total estimated calculation time
(hours)

Double for-loop 107
Vectorization 84
Upper triangular part 42
Multiprocessing 22
Utilizing the GPU 0.36 ∗
∗ Nvidia GTX 1050 Ti Max-Q

Although running the calculation for 22 hours was doable, it was not desir-
able to let a laptop run on 90%+ CPU utilization for that amount of time. This
could have been solved by rewriting the algorithm to run on a high-performance
cluster where it could have employed a bigger number of CPU-cores. Another, and
potentially easier solution, was to run most of the calculations on a GPU. All the
mathematical operations involved in the calculations were basic and thus allowed
to run on GPU-cores. With today’s GPUs packing several hundreds or thousands
of cores, a huge speed-up could be gained. With use of the CUDA.jl package and a
dedicated NVIDIA graphics card, the calculation time was reduced to a staggering
8 milliseconds per wave vector.



Appendix C

Convergence of k-means

To ensure accurate measurements using the k-means algorithm, a convergence
analysis was performed. For a range of temperatures, times and values for κ, the
best silhouette score 〈s〉 was plotted as a function of iterations with k-means on
the mobile particles. The configurations were chosen to best represent the differ-
ent configurations investigated in this thesis, ie. both liquid and glassy states at
different timesteps. The results are shown in figure C.1, where the blue, orange
and green lines represent scores for κ = 10, κ = 50 and κ = 100 respectively.
Each line is given by an average over three samples.

The convergence analysis highlights one of the difficulties with using the k-
means algorithm as a method to cluster the particles. The optimization problem
solved by the algorithm has many local minima and thus numerous iterations are
required to achieve the best possible solution. From figure C.1 we can see that
many of the configurations requires up to 1× 105 number of iterations in order
to ensure a decent convergence. This is especially the case for truly homogen-
eous particle configurations, as the global minima is ambiguous. The system at
T = 0.14 with t = 83.0 however seem to converge faster than the other configur-
ations, expectedly because of the heterogeneous properties of the configuration.
The optimization problem has a more evident global minima when the best value
for κ is used on a homogeneous configuration, resulting in a fast convergence into
a solution with a high silhouette score. One should note the scale of the axis, and
even though some configurations increase the silhouette score by 0.5 over 1×105

iterations, the expected heterogeneous solution consistently holds a higher max-
imum silhouette score.
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(a) T=0.05, t = 0.083 (b) T=0.05, t = 83.0

(c) T=0.14, t = 0.083 (d) T=0.14, t = 83.0

(e) T=1.0, t = 0.083 (f) T=1.0, t = 83.0

Figure C.1: Best average silhouette score for three different temperatures at two
different times as a function of iterations with the k-means algorithm. The blue,
orange and green lines represent scores for κ= 10, κ= 50 and κ= 100 respect-
ively. Each line is given by an average over three samples.

Because no universal value for κ used in the k-mean algorithm could be found,
the scan to find the optimal κ had to be conducted for all timesteps for all tem-
peratures. Due to the limited timeframe of this project, the true convergence cri-
teria were not fully met during the calculation of the silhouette scores. Because
the gain of a higher number of iterations showed to be much less than the differ-
ence between a heterogeneous and a homogeneous system, and further between a
good and a bad value for κ, the qualitative conclusions of the silhouette scores was
believed to be correct. Argutely, a smaller number of iterations is only highlight-
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ing the heterogeneous configurations, as a heterogeneous configurations seem to
converge into a global minimum faster than a clusterless system. With more time
and resources, a smother and more accurate calculation of the silhouette scores
could have been achieved. There exist several methods for speeding up the cal-
culations, where parallelization combined with HPC is an easy way. Alternatively,
k-means has been shown to adopt a significant speed gain when run on GPU [53].
Further, an adaptive stopping criterion could have been developed to account for
the variations in number of iterations required for decent convergence and thus
increasing the efficiency of the method.





Appendix D

K-means clustering of the system

The Julia code described in this appendix was used to cluster the different config-
urations in this thesis using the k-means algorithm. The k-means algorithm from
the Julia package Clustering.jl [24] was utilized and wrapped in the code written
by the author. The method kmean() initialize the cluster centers according to the
k-mean++ technique. The input, X_dict, is a dictionary containing position, id,
type and displacements for all the mobile particles for the different timestep of a
simulation done with the LAMMPS software.

Additionally the average cluster diameter is estimated after the best silhouette
score is estimated. All methods incorporated in this code was described in more
depth by section 3.3.2.

Code listing D.1: Code used to cluster the particles, calculate the silhouette scores
and estimate the cluster diameters for each timestep in a simulation.

function silhouettes_scores(X_dict::Dict{Any,Any})
#Function that calculates the silhouette scores and cluster diameter
#for each timesteps for the mobile particles given in X_dict.
#
#X_dict includes particle: id, type, position, displacements

# Array containing all the timesteps
ts = sort(collect(keys(X_dict)))

#Initialize arrays to store results
scores = zeros(Float64, length(ts)) # Best silhouette score
cluster_nums = zeros(Int64, length(ts))
# Number of cluster that give the best score
avg_diam = zeros(Float64, length(ts)) # Average cluster diameter

# Loop over timesteps
for (i,t) in enumerate(ts)

# Extract the wrapped cordinates into a matrix
X = Array(X_dict[t][:,[:xw,:yw,:zw]])’

# Locate area for best k-value (Number of clusters)
max_k = minimum([floor(Int, nrow(X_dict[t])*0.5), 150])
N_clusters = Array(2:4:max_k)
best_scores = zeros(Float64, length(N_clusters))
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for (i, k) in enumerate(N_clusters)
samples = 30
best = zeros(1)
#Find max silluette score for samples
for j in 1:samples

R = kmeans(X, k; display=:none)
score = mean(silhouettes(R, pairwise(Euclidean(), X, dims=2)))
if score > best[1]

best[1] = score
sort!(best)

end
end
# For each k, store the best score of 30 samples
best_scores[i] = mean(best)

end
# The best k should be around the k that gave the best score
k_g = N_clusters[argmax(sma(best_scores,1,1))]
best_R = kmeans(X, k_g; display=:none)

# Refine the search to find the best k-value
iterations = 500
best_score = 0
best_k = 0
lower = k_g-10>2 ? k_g-10 : 2 # Lower bound for k is 2
# Search area is the previous best k, +- 10
N_clusters = Array(lower:k_g+10)
for (i, k) in enumerate(N_clusters)

#Find best silhouette score over 500 iterations
for j in 1:iterations

R = kmeans(X, k; display=:none)
score = mean(silhouettes(R, pairwise(Euclidean(), X, dims=2)))
if score > best_score

best_score = score
best_k = k
best_R = R

end
end

end
# Store the best k and the respective silhouette score
scores[i] = best_score
cluster_nums[i] = best_k

# Calculate the cluster diameters for the best clustering solution, R
diameters = zeros(best_k)
# Loop over all the clusters
for k in 1:best_k

# Filter out the particles assigned to cluster k
Xs = X[:,findall(best_R.assignments .== k)]
# Calculate all the pair distances and save
# the longest intra-cluster distance
for j in 1:(size(Xs)[2])

diam = maximum(sqrt.((Xs[1,j:end].-Xs[1,j]).^2
.+(Xs[2,j:end].-Xs[2,j]).^2
.+(Xs[3,j:end].-Xs[3,j]).^2))
if diam > diameters[k]

diameters[k] = diam
end

end
end
# Store the average cluster-diameter
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avg_diam[i] = mean(diameters)

end
# Return the timesteps, silhouette scores, number of clusters
# and average cluster diameter
return ts, scores, Int.(cluster_nums), avg_diam

end
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