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Abstract

Lengyel’s and Feng’s models for energy transport in the scrape-off layer are commonly
applied to stellarator island divertors without justifying the validity of the assumptions
imposed to simplify the models. This thesis presents a new framework for assessing
the validity of the assumptions made by these models based on field line tracing of
EMC3-EIRENE simulations covering a low and a high radiation scenario with total
radiated power fraction frad = 0.2 and frad = 0.8, respectively. The framework is
based on the concept of a limiting heat flux density at the target. We have examined
field lines that intersect the target at the limiting locations and then evaluated the
integral of the product of the energy sources and sinks and transport from upstream
to the target. The framework aims to capture the driving physics of the peaks of
the target heat flux distribution to predict the impurity concentration required for a
certain radiated power fraction.
The global energy balance of the low and high radiation cases was shown to agree
with Feng et al. (2021) [1]. An important observation is that the cross-field heat
flux densities are concentrated around the X-points, so a large amount of power is
transported to the PFR.
The parallel heat flux density profiles, the global energy balance and the approximated
cross-field heat flux densities show that the energy transport is not conduction dom-
inated nor dominated by parallel terms. Furthermore, the observed neutral losses in
the SOL and the PFR are significant.
The effective radiated power loss function from the EMC3 simulations shows that
the effect of impurity transport is significant. The integration of the effective radiated
power loss function is not well approximated by assuming a constant impurity residence
time for frad = 0.2 as it is characterised by transport from low to high-temperature
regions and vice versa. Promising results are obtained for frad = 0.8 for transport
from low to high-temperature regions, which is consistent with the observed inward
movement of the radiation front. The field lines in the PFR have shorter connec-
tion lengths, so less power is removed through impurity radiation. Since a significant
amount of power enters the PFR through cross-field transport, the PFR might be
crucial to consider for power exhaust handling.
The loss from upstream to the target of the parallel electron conductive channel was
used to assess the assumptions made in the simplified SOL energy transport mod-
els. The observed importance of heat convection disagrees with the assumption of
conduction-dominated energy transport as the convection is significant and even dom-
inant in some regions of the SOL. Furthermore, the effect of dilution due to the mag-
netic field strength variation along a field line in the SOL was significant. The values
given in this thesis are upper estimates and are very sensitive to the integration bounds
as the magnetic field strength has a toroidal periodicity. Furthermore, the dilution is
significantly more prominent in the PFR, so this term cannot be ignored and should
be investigated further.
Using the parallel electron conduction loss from upstream to target to assess assump-
tions made in Lengyel’s and Feng’s model gave incomplete results as it did not capture
the loss due to impurity radiation. Therefore the loss from upstream to the target
of the total parallel channel was derived for comparison. The results show that the
dilution due to the magnetic field strength variation is significant. Furthermore, the
cross-field term is observed to be significant of the total loss for frad = 0.2, and domi-
nant for frad = 0.8. The neutral loss due to electron impact is significant and decreases
for frad = 0.8, which is consistent with the results using the loss from the parallel elec-
tron conduction channel. The impurity loss is better captured, but it still does not
tend to dominate the losses as we would expect for frad = 0.8. Thus, the results pre-
sented in this thesis imply that the framework used to analyse the energy transport is
not optimal for impurity radiation scaling. However, it enabled identifying the driving
transport mechanisms in the SOL, which determined the valid assumptions imposed
in the energy transport model.
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1 Introduction

This section explains the conditions for fusion reactions and how to maintain continuous reactions
in magnetic confinement fusion devices focusing on the W7-X stellarator. Furthermore, the prob-
lem of heat exhaust and concentrated heat loads on the plasma-facing components (PFCs) will be
introduced and put in perspective the energy transport in the edge of the stellarator. The energy
transport in the edge is coupled with energy loss mechanisms where the most considerable contri-
bution to the loss is due to impurity radiation. Therefore, one would want to know how the total
radiated power scales with the density controlled by fueling, the temperature controlled by heating,
and the impurity fraction fZ = nZ/ne controlled by impurity injection/seeding. Simplified models
are often used to obtain such a scaling as previously proposed by Lengyel et al. (1981), Post et al.
(1995), Stangeby et al. (2000), and Feng et al. (2006) [6, 7, 8, 4]. The Lengyel model is widely
used for radiation scaling in magnetic confinement fusion. Although, the assumptions of the model
do not necessarily hold for edge transport in the stellarator because energy transport across the
magnetic field, excluded in the Lengyel model, is significant due to the transport properties that
follow from the magnetic field configuration. However, Feng has developed a stellarator-relevant
version of Lengyel’s model where cross-field energy transport is considered. This thesis reviewed
the assumptions imposed in the Lengyel model and its stellarator-relevant version to clarify the
validity of the models based on EMC3-EIRENE modeling of the scrape-off layer of W7-X.

1.1 The fusion reaction

In a fusion reaction, two nuclei collide with sufficient kinetic energy to overcome the Coulomb
barrier such that the strong nuclear force can become dominant. The collision eventually results
in the two nuclei creating a heavier nucleus [9]. The probability of a fusion reaction occurring
depends on the relative velocity of the colliding particles and will be discussed in one of the
following subsections. Relevant velocities for fusion reactions correspond to temperatures around
∼ 10 − 100 keV.

Due to the high temperature required for fusion reactions, neutral atoms are ionized into a plasma.
A plasma is an ensemble of charged particles that is globally neutral but locally charged. This prop-
erty is called quasi-neutrality and is a consequence of the dominant electric force between the ions

and electrons whose range is characterized by the Debye length λD =
(
e2n/ϵ0Te + e2n/ϵ0Ti

)−1/2

[9] where n = ne = ni is the plasma density assuming quasi-neutrality, e the electron charge,
and Te and Ti is the electron and ion temperature, respectively. Any deviation from neutrality
on scales larger than λD will be counteracted by the resulting electric interactions between the
particles (shielding). The plasma behaves collectively if enough particles are within a Debye sphere
ND = 4πλ3

Dn0/3, a sphere with a radius equal to the Debye length λD, and the plasma dimension
is much larger than the Debye length Lplasma ≫ λD. Thus, the plasma can be described as a fluid
assuming that collisionality is strong in the SOL, which in this thesis will be used to describe the
energy transport of the plasma [8].

The prime candidate for a fusion reaction to be used in magnetically confined fusion is the
deuterium-tritium (D-T) reaction, as it has the highest reaction rate at comparably low Ti [9].
The D-T reaction is given by the equation:

2
1D + 3

1T −→ 4
2He (3.5 MeV) + 1

0n (14.1 MeV), (1)

describing a collision between the hydrogen isotopes deuterium and tritium which produces an
alpha particle 4

2He and a neutron 1
0n with kinetic energies 3.5MeV and 14.1MeV, respectively.

1.2 Nuclear fusion and power generation

The energy released in a nuclear fusion reaction results from the mass difference between the
reactants and the products. The energy released can be directly computed by Einstein’s famous
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formula stating the relation between energy and mass:

∆E = ∆mc2. (2)

Figure 1: The Maxwellian average reaction rate ⟨σv⟩ for some fusion reactions. The D-T reaction
rate is given by the black line. Source: [2].

Thus, the D-T reaction produces the energy ∆E = (mα + mn − mD − mT )c2 ≈ 17.6MeV per
reaction [9]. To give an impression of the scale of the fusion power, one can compute the number of
fusion reactions per second and unit volume and integrate to get the extensive measure of energy
production in a fusion reactor. For the D-T reaction in a confined plasma, this is given by:

# fusion reactions

unit volume × unit time
= nDnT ⟨σDT v⟩fMaxwellian

(3)

where v is the relative velocity between the colliding particles, nD and nT are the deuterium and
tritium density using the subscript D and T, respectively. The D-T collisional cross-section σDT is
averaged over a Maxwellian particle distribution fMaxwellian indicated by ⟨·⟩fMaxwellian

and represents
the probability of a collision. The collisional cross-section depends on the colliding ions’ relative
velocity[9, 10].

Using Eq. 3 the fusion power density can be expressed as:

pf = nDnT ⟨σDT (v)v⟩v∆Ef . (4)

Furthermore, assuming a 50/50% mix of D-T fuel, giving nD = nT = 1
2ne and the effective ionic

charge Zeff = 1 meaning a plasma without impurities, Eq. 4 gives an expression for the fusion
power density:

pf =
1

4
n2
e⟨σDT v⟩∆Ef . (5)

The simplified total power balance [9] for the plasma can be expressed as:

Qα + Qh = QB + QT (6)

where α-heating Qα = (∆Eα/∆Ef )Pf = Pf/5, Qh is the heating power, QB is the energy loss due
to bremsstrahlung and radiation from high Z materials if impurities are present, and QT is the
energy loss due to transport often parametrized by the energy confinement time τE . The neutron
power loss Pn = (∆En/∆Ef )Pf = 4Pf/5 was ignored in Eq. 6 because the neutrons are not
confined and do not contribute to the power balance within the plasma [9].

Inserting power plant relevant values such as electron density ne = 1020m−3, a plasma volume of
Vp ∼ 500m3 and maximum reaction rate ⟨σDT v⟩ = 10−21m3s−1 gives a fusion power and power
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entering the scrape-off layer (SOL) PSOL at [11, 12]:

Pf ≈ 1

4
(1020)2m−6 × 500m3 × 10−21m3s−1 × 17.6 × 106 × 1.6 × 10−19J = 5GW

PSOL ≈ Qα =
1

5
Pf ∼ 1GW, (7)

where it is assumed that power is lost at the entrance of the SOL due to cross-field transport and
that the radiation loss in the core is equal to the heating power QB = Qh. The divertor targets have
a total surface At on the order of 100 m2, so the target plates must withstand a homogeneously
distributed heat flux density around 10 MWm−2 [13]. The heat flux in magnetic confinement
fusion devices is not homogeneously distributed. So some regions on the target will have heat flux
densities exceeding 10 MWm−2. Thus, it is key not only to reduce the total target heat load but
also to dissipate the power that enters the SOL to homogenize the heat flux distribution [11, 13].

1.2.1 Magnetic confinement fusion

The thermal energy needed for fusion reactions leads to the challenge of plasma confinement: the
thermal pressure of the plasma must be counteracted to prevent expansion. One way to address
this problem is to embed the plasma in a magnetic field with a shape that allows the field to
function as a cage for the plasma. The consequence of the plasma being locally charged is that
the particles gyrate around magnetic field lines due to the Lorentz force. The desired effect of the
magnetic field is that the direction of the Lorentz force on the particles opposes the expanding
force of the thermal pressure of the plasma.

Figure 2: The classical stellarator depicted with the copper coloured magnetic coils, toroidal coil
current in red and helical coil currents in blue. The resulting helical magnetic field is indicated by
the green arrows twisting around the plasma in purple. Source: [3], originally C. Brandt IPP.

Thus, confining the plasma is achieved if the shape of the magnetic field is helical, as seen in
Fig. 2, which depicts a classical stellarator. The helical shape of the magnetic field in the classic
stellarator is achieved from a combination of the magnetic field induced by currents in helical and
toroidal coils, as shown in Fig. 2. The helical shape of the field, as opposed to a purely toroidal
field, prevents charge separation originating from the curvature and the ∇B-drift by averaging out
the vertical ∇B and curvature drifts as particles can move freely along the field line [9]. If charge
separation takes place, it will create an electric field, and the presence of both an electric and a
magnetic field results in E ×B-drifts which pushes the plasma radially out from the centre of the
torus, breaking confinement [9, 14]. Thus, since a helical field prevents charge accumulation, no
E ×B-drifts will occur.
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Figure 3: Illustration of the toroidal and cylindrical coordinates system using the separatrix of
W7-X in the standard configuration as a reference. The separatrix has been outlined in red in the
right figure. The black dot in the left illustration and left side of the right illustration represents
z-axis and the origin, respectively, of the cylindrical coordinate system. The horizontal line going
from the origin of the cylindrical system to the black dot within the separatrix represents the
midplane z0 = 0. The black dot within the separatrix in the right illustration represents the ϕ-axis
of the toroidal coordinate system at major radius R0 and midplane. The dashed circles represent
the radius contour of the major radius (ϕ-axis) in the cylindrical coordinate system in the left
illustration and the radius contour in the toroidal coordinate system in the right illustration.

Since magnetic confinement fusion devices usually have the same topology as a torus, it is common
to describe the device using cylindrical and toroidal coordinate systems. The cylindrical coordinate
system is best explained by viewing the torus from above, as in the left illustration of Fig. 3. The
radius R goes radially out from the origin of the torus, the vertical distance from the midplane is
z and the toroidal angle ϕ. The poloidal cross sections at ϕ = 0◦, 12◦, 36◦ is shown in Fig. 4 where
the horizontal axis is represented by R and the vertical axis is represented by z. The toroidal
coordinates can be related to the cylindrical coordinates:

r =
√

(R−R0)2 + z2 (8)

θ = arcsin(z/r) = arctan(z/[R−R0]) (9)

where r defined in Eq. 8 is the radius in a poloidal cross-section centered at the toroidal axis at the
major radius R0. The poloidal angle θ defined in Eq. 9 is the angle between the position vector
and the horizontal midplane in a poloidal cross-section shown in the left illustration of Fig. 3.

Figure 4: Poincaré plot of the magnetic field (red) with the islands for toroidal angles ϕ =
0◦, 12◦, 36◦, and target components (black) to illustrate the island divertor in the standard config-
uration. The horizontal axis represent the major radius R of the torus and the vertical axis the
vertical distance z from the midplane.

In most reactors, the magnetic field is generated to intersect with parts of the machine, as illustrated
in Fig. 4. The Poincaré plot in red, a concept we will return to in section 2, represents a poloidal
cross-section of the magnetic field lines. Each red point represents a magnetic field line intersecting
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the Rz-plane. As seen in Fig. 4 the red points map out surfaces in the poloidal cross-section. These
surfaces are densely traced out by field lines and close on themselves after a toroidal revolution.
They are called flux surfaces because the magnetic field flux is constant at the surface for any
poloidal and toroidal angle. The field lines in the SOL are intercepted by the divertor target
components in black [15]. This magnetic field configuration is one of the heat exhaust solutions in
magnetic confinement fusion called a divertor. The name originates from its function: it diverts
the particles and heat to the divertor targets specifically made for particle and heat exhaust.
Naturally, the targets have a limited maximum heat flux density capacity. The current limit lies
at 10 MWm−2 [16, 17, 18]. A viable fusion power plant will have a thermal output of several
hundreds of MW and the divertor target surface area on the scale of 10 m [12, 11, 13]. The amount
of thermal output required for viable fusion power production and the current limit on the heat
flux density capability implies that a significant amount of the heat entering the SOL needs to be
dissipated to keep the targets intact for continuous operation [12, 19, 13, 11].

1.3 The island divertor

The island divertor is the version of the divertor used in the W7-X stellarator, which will be
described in this subsection. The divertor is characterised by open field lines. Open field lines
are called open because they intersect the divertor targets, as seen in Fig. 4, where the divertor
targets (black) cut the magnetic islands (red). The confined region is bounded by the last closed flux
surface (LCFS) shown as the red surface in Fig. 5 also called the separatrix [8]. The separatrix
distinguishes between two regions of different physical behaviour: the confined region and the
scrape-off layer (SOL). The power enters the SOL through the LCFS by perpendicular transport
and is diverted down to the targets by the field lines in the magnetic islands [20]. Thus, particles
and heat that follow open field lines will ultimately end up at one of the targets or the wall
components via parallel transport.

Figure 5: The island at the ϕ = 0◦ poloidal cross-section associated with field lines ending up at the
upper horizontal target with the features of the island divertor geometry. The X-point is indicated
where the black lines cross between the two islands. The binormal direction is indicated by the
direction of the increase in the number of the points 1,2,3 and 4 which represents consecutive
transits of the field line around the torus. It is is the poloidal direction in the island reference
frame. The island reference frame is centered at the O-point - the center of the island. The radial
size of the island is given by ri and the width wi, the LCFS is represented by the red line, and the
core is the region bounded by the LCFS.

The island divertor (ID) has poloidally and toroidally localized resonances in the magnetic topology
due to a perturbation δB in the magnetic field B = B0(x) + δB, called magnetic islands [21, 15].
The width of the island:

wi,mn = 4

√
R0bmn

mdι/dr
(10)

depends on the square-root of the resonant magnetic field component bmn, also referred to as the
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Fourier component of the perturbation of the magnetic field [22, 22]. The number of islands is given
by the poloidal mode number in the rotational transform ι, which is the number of poloidal transits
of a field line for each toroidal transit [23, 21, 24]. Since there are more irrational than rational
numbers, ι is usually irrational. The interpretation of an irrational ι means that a magnetic field
line does not close on itself but densely traces out a two-dimensional surface [21, 24]. However, it
can be divided into a rational and an irrational part [4]:

ι =
n

m
+ riι

′ (11)

where the fraction n/m indicates the resonance in the magnetic field at which the island chain
appears. n represents the toroidal mode number and m the poloidal mode number, ri is the
island radius shown in Fig. 6 and ι′ the magnetic shear dι/dr describing the degree of rotation of
the magnetic field at the n/m-resonance [4, 21]. A rotational transform ι = 5

5 indicates that the
islands consist of helical flux bundles that circle the torus five times toroidally and poloidally before
returning to their starting point. The second term in Eq. 11 represents the internal rotational
transform, i.e. the poloidal displacement per toroidal transit in the island reference frame centred
at the island O-point. The divertor-relevant field line pitch Θ = ∆xn̂×b̂/∆Lc, where ∆xn̂×b̂ is the
binormal displacement in the island reference frame and ∆Lc is the arclength of the field line for
the toroidal transit corresponding to the the binormal displacement. The binormal direction n̂× b̂
is indicated in Fig. 6. The divertor-relevant field line pitch is an important geometrical quantity
because it can be used as a measure of the ratio between parallel and cross-field transport [20, 4].

Figure 6: The orthogonal transport directions parallel b̂, normal n̂B , and binormal n̂B × b̂ are
indicated in the island reference frame for a poloidal cross-section at ϕ = 0◦.

In W7-X, the ID has three main magnetic configurations: low iota ( 5
6 ), standard ( 5

5 ) and high iota
( 5
4 ), each with slightly different field line pitch varying the footprint of the magnetic field on the

target [25]. The W7-X is a five-fold device, as shown from the top view of the separatrix surface
shown in Fig. 3, implying that the toroidal mode number n = 5 for W7-X. The poloidal mode
number m can be chosen freely. This thesis is restricted to the standard ι = 5

5 configuration shown
in Fig. 7 where the number of islands is determined by the poloidal mode number m = 5 as shown
in the right plot of Fig. 3. The magnetic field in the standard configuration is used for all the
EMC3-EIRENE simulations on which the thesis results are based.
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Figure 7: A 3D plot of the magnetic islands and the divertor targets. The islands are indicated
in shades of blue and green where blue and green indicate different half modules extending 36◦

toroidally where the torus consists of 10 half modules put together in up-down symmetric pairs.
The different islands are indicated by the strength of the colour, but the particular shade of the
colour is not correlated between half modules. The divertor targets are shown in red.

Specific regions in the divertor will be referred to further in the thesis, so some additional definitions
are needed. The X-points are defined in axisymmetric devices like the tokamak as the point(s) for
which the poloidal component of the magnetic field Bp = 0 [9, 24]. However, the definition of the
X-points is not so simple for non-axisymmetric devices like the stellarator. However, their locations
are illustrated in Fig. 5 and wrap helically around the LCFS [14]. The O-point are the lines that
define the centres of the islands and are characterised by infinite connection length because they
never intersect the targets [14]. The regions around the O-points are without colour in the insets
of Fig. 9 because the connection lengths are above a set threshold of 1km. The topology of the
island divertor consists of nested closed magnetic flux surfaces, which are defined in the single-fluid
model as isobaric surfaces [9]. This follows from the equilibrium condition ∇p = j ×B implying
B · ∇p = 0. The magnetic islands have closed flux surfaces wrapping helically around the LCFS,
as shown in Fig. 7. The region outside the confined region and the islands is called the private flux
region (PFR). The PFR is characterised by shorter connection lengths than the SOL and shown
in Fig. 9 as the region between the islands outlined in pink in the inset of the first and second
plots from the left.

Figure 8: The log-scaled connection length Lc at the poloidal cross-section ϕ = 12◦. The divertor
targets are plotted in grey. The values of the colourbar was clipped at 1 and 3.
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Figure 9: The ϕ = {0◦, 12◦, 36◦} cross-sections are shown in the left, middle and right plot,
respectively. The core region is shown in orange, the LCFS is represented by the black line, the
SOL is indicated by the red Poincaré plot, and the separatrix in cyan. The colour scale in the inset
indicates the connection length Lc by which the PFR and TSR can be separated from the SOL
because they have much smaller connection lengths. All points with Lc > 103m were removed to
obtain a reasonable colour scaling.

The divertor targets in W7-X are toroidally discontinuous as shown in Fig. 7. The region after
the field lines intersect the target in the toroidal direction is called the target shadowed region
(TSR). A schematic description of the TSR is given in Fig. 10 as the region adjacent to the main
transport channel in the SOL. The TSR is visible by the sudden drop in the connection length
from the O-point and radially outwards in the inset of the first subfigure from the right in Fig. 9.
Even though particles are deposited on the target at the point where the field line and the target
intersect due to parallel transport, particles can still enter the TSR by cross-field transport.

Figure 10: The TSR is illustrated with the SOL and the connection lengths are indicated. The
main transport channel in the SOL is depicted in white. The boundary between the SOL, and
the TSR starts where the field line intersects the first part of the target in the radial position at
ϕ = 0◦ in the left side of the figure. Source: [4].

The PFR and TSR connection lengths, plotted in the insets of Fig. 9 and for a poloidal cross-section
at ϕ = 12◦ in Fig. 8, are on the order of 10−100 m and 10 m, respectively. The connection lengths
for regions characterised by both parallel and perpendicular transport are typically on the order
of 100 − 1000 m for W7-X [1, 14]. For field lines with short connection lengths, the perpendicular
transport, the sources and the sinks are not very efficient because shorter connection lengths imply
shorter transport time from upstream to the target. So, for short Lc, the cross-field transport and
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the radiation will have little time to dissipate the energy leading to a target heat flux distribution
that will have an inverse relation with the Lc footprint. For long Lcs the cross-field transport and
radiation loss are more efficient, leaving a target heat flux distribution that tends to be broadened
by the effect of cross-field transport and the impurity radiation. In the extreme values of the
connection lengths, the parallel (short Lc) or the cross-field (long Lc) can dominate the transport,
but for the more general case of intermediate Lcs, parallel and cross-field transport compete. The
targets have non-uniform target connection length distribution as seen in Fig. 11, implying a non-
uniform distribution of transport properties in the SOL resulting in a heterogeneous target heat
flux distribution [25]. Each magnetic field configuration leaves a unique footprint on the targets
with a distribution of connection lengths. Thus, the magnetic field configuration gives some degree
of control of the transport properties in the SOL.

Figure 11: The connection length distribution on the divertor targets. LHT stands for lower hori-
zontal target, UHT the upper horizontal target and UVT the upper vertical target. The horizontal
targets are projected in the Rϕ-plane and the vertical target in the zϕ-plane for interpretability.

Furthermore, due to significant target regions with long connection lengths, the discretization of
the divertor targets, and the short distance from the plasma to the targets, the cross-field transport
is significant in the ID of W7-X [26].

1.4 Target unloading and heat exhaust

The magnitude and the heterogeneity of the target heat flux density indicate that further total
and local reduction is needed to handle higher powers required for viable fusion energy production
[11, 13]. Furthermore, the complicated geometry of the ID in stellarators makes the 3D treatment
of heat transport inevitable. One of the main problems in fusion research is that the heat is not
homogeneously distributed at the targets [16, 27, 11, 13]. Thus, the target heat load distribution
must be treated in 2D, where the peaks of the heat loads are of greatest concern because the
divertor targets have limited heat flux density tolerance [17]. Therefore, it is essential to identify
the underlying transport mechanisms that cause these hot spots. What appears to be the driving
physics behind the target heat flux might be different for the hot spots. So, focusing on the energy
transport mechanisms that determine the hot spots might lead to the discovery of a simplification
of the physics model that analysing the total target heat load would not.

1.4.1 Exploiting radiation for cooling the plasma

Radiation is an important part of the heat exhaust because if it is well distributed in the ID, it can
be used to homogeneously reduce the target heat loads. The radiation loss can facilitate higher
input powers and reduce the degree of maintenance by thermal unloading of the PFCs [11, 13]. The
SOL impurity radiation, meaning radiation from particle species different to that of the plasma fuel,
is considered the dominant dissipation mechanism in the global energy balance. Impurity radiation
occurs due to the excitation or de-excitation of bound electrons via collisions between electrons and
heavier ions or neutrals or due to acceleration of electrons in the ion potential (bremsstrahlung).
Collisional radiation dominates in the SOL because bremsstrahlung is only significant at high
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electron temperature and for high Z impurities, i.e., on the same temperature scale as the core [2].
Impurity radiation is exploited to dissipate heat in the SOL and PFR instead of depositing the heat
onto the targets via the electron and ion fluxes. Radiation can be set to a certain level by injecting
impurities into the plasma. However, impurities are also unavoidably introduced from the PFCs
through erosion, and sputtering [17, 8]. Therefore, spreading heat through impurity radiation is
always accompanied by negative effects such as dilution of the plasma or excessive radiation in
the core, jeopardising the fusion power output from the core. For high radiative power fraction
frad = Prad/PSOL the radiation layer tends to move inwards from the targets towards the core as
shown in Fig. 12. The degree of inward movement of the radiation layer depends on the charge
state Z. Higher Z impurities ionise at higher electron temperatures and radiate more efficiently at
high temperatures than lower Z impurities. This inward movement can lead to a radiation level in
the core where the stored energy in the plasma is decreased to a point where it breaks down [1, 2].
So, a scaling law for frad to be used for machine control needs to be calibrated for such negative
effects.

(.1) frad = 0.2.

(.2) frad = 0.8.

Figure 12: The radiation distribution of EMC3 simulation where the total radiated power fraction
frad = 0.2 and frad = 0.8. The left plot zooms in on the upper targets plotted in black. The
magnetic islands are indicated by the Poincaré plot in grey. The plot shows inward movement of
the radiation front when the radiated power fraction is increased.
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The amount of radiation is governed by the fractional abundances - the distribution of the charge
states of the radiating species and the product between the rate coefficients and the energy released
in the atomic processes that cause radiation given by the photon emission coefficients (PECs). The
fractional abundances and the distribution of particle species in a fusion reactor are governed by
ionisation and recombination processes and transport. The equilibrium of the atomic processes
can be described by a collisional radiative model (CRM), stating that the charge states of one
impurity species are in local equilibrium [28]. One would want to know the relation between the
impurity density and the radiation intensity to control the amount of radiation. The solution of the
rate equation in the CRM gives the fractional abundances, the distribution of charge states, for a
given electron density and electron temperature. CRM equilibrium is assumed for the equilibrium
fractional abundances and is reached when the overall recombination rate balances the overall
ionisation rate citepost1977steady, summers2002atomic, summers2006ionization. Summing over
the product between photon emission coefficients of transitions from state p to q, PEC(p, q), and
the impurity density nZ gives the radiation intensity:

Simp(ne, nZ , Te, τZ) =
∑
Z

∑
α

FαZ

∑
p,q

PECαZ
(p, q) × nenZα

Simp(ne, nZ , Te, τZ) =
∑
α

Lα(ne, Te, τZ) × n2
ecα (12)

at a given density ne, temperature Te assuming that the effect of transport on the fractional
abundances can be captured by a constant impurity residence time τZ [29, 30, 31, 32, 33]. The

impurity concentration cα ≡
∑Z0

Z nαZ
/ne. In Eq. 12 FαZ

is the fractional abundance of impurity
species α in charge state Z. The total radiative power is then given by:

Prad =

∫∫∫
Vrad

SimpdV, (13)

where Vrad is the radiative volume.

1.5 Energy transport in the SOL

The divertor-relevant field line pitch Θ is crucial when comparing parallel and cross-field transport
in island divertors. For a spatially varying Θ there could be situations where the SOL has different
local regimes; one where cross-field transport and parallel transport compete, and another where
either dominates. The spatial variation of the transport properties of the SOL is averaged out in
global energy analysis. So, a global energy analysis must be seen in the context of the local energy
analysis to compensate for the effect that the local transport behaviour will have on the target
heat load. Therefore, the global and local energy balance and transport will be presented in this
context.

1.5.1 Global energy transport analysis

Global energy balance is obtained by integrating the local energy balance:

∇ · q = S (14)

given by the divergence of the heat flux density terms ∇ · q and the sources and sinks S. Global
energy balance and transport refer to the heat flux balance and transport, respectively. The sources
S represent input power, energy loss due to plasma-neutral interaction and energy loss due to
impurity radiation. Assuming that the boundary condition at the entrance of the SOL (LCFS) is
a constant positive radially oriented flux, the global power balance for the SOL can be written as:∫∫∫ rt

rsep

∇ · qdV =

∫∫∫ rt

rsep

SdV, (15)
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where rsep is the effective radius at the separatrix, rt is the effective radius at the target. Note that
the integration is performed after mapping nested approximate flux surfaces to nested surfaces at
given radii for a toroidal coordinate system shown in Fig. 13. The volume bounded by a surface
is an invariant of the mapping as indicated in Fig. 13. The integration requires the flux surfaces
in the island divertor to be approximated because the magnetic field structure of the SOL in the
ID does not consist of nested surfaces. So, the approximation will be erroneous due to incomplete
resolution of the magnetic islands, which themselves are closed flux surfaces. The mapping is a
homeomorphism since an approximate flux surface is topologically equivalent to a surface at a
given radius in a toroidal coordinates system.

Figure 13: The flux surface approximation and the corresponding surface at a given reff after the
mapping that preserves the volume bounded by the surfaces VFS = Veff = 2π2R0r

2
eff . Each purple

surface represents the approximated nested flux surfaces and their corresponding mapped toroidal
surfaces in cyan which is exemplified by the black dotted circle in the right illustration of Fig. 3.
The magnetic field is represented by the Poincaré plot in red and shows how the approximate flux
surfaces resolves the islands.

The approximation of nested flux surfaces is necessary to define the radial direction consistently.
The radial direction can be defined as the vector r⃗eff ≡ [(n̂FS)R, (n̂FS)z, 0] in a cylindrical coordinate
system which differs from the flux surface normal n̂FS because it has a zero ϕ-component. The
islands are resolved by surfaces shaped such that they resolve the X-points and have a similar
shape as the inner or outer separatrix indicated by the innermost and outermost purple surface in
Fig. 13.

The integration of the local energy transport is done such that the resulting heat flux goes through
a radially oriented surface given by the Green-Gauss theorem:

Q(r) =

∫∫∫ r

rsep

∇ · qdV =

∫∫
Sr

q · d(s · r̂) (16)

QS(r) =

∫∫∫ r

rsep

(Simp + Sneutral)dV + Qt(r) = Qimp(r) + Qneutral(r) + Qt(r), (17)

where Qt(r) is the heat flux lost to the target, s is the surface element associated with the heat
flux density vector q oriented in the direction ŝ⊥q̂. Qimp represents the heat flux due to impurity
radiation and Qneutral the heat flux due to interaction with neutral particles (excitation, ionization,
recombination, dissociation and charge exchange) [34].
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The dot product s · r̂ is the radial projection of the surface element s. Thus, Sr = Sr(r, θ, ϕ) is
the radial projection of a flux surface. Note that the radius at the target varies toroidally as the
targets intercept the magnetic field of different radial locations. In a poloidal cross-section, Q(r)
represents the amount of heat transported in the direction out of the radially projected flux surface.
The field lines in the SOL are open, so both the parallel and the cross-field heat flux densities have
components in the radial direction. For any given radius, heat going out of the surface s · r̂ Q(r)
plus the loss from the sinks and gain from the sources QS must be equal to the heat flux entering
the SOL from the confined region across the separatrix Psep:∫∫∫ r

rsep

∇ · qdV = Q(r) − Psep = QS(r) −QS(rsep)

Psep ≡
∫∫∫ rsep

0

∇⊥ · q (18)

Psep = Q(r) −QS(r) (19)

assuming that the loss from the sources and sinks in the core QS(rsep) is omitted in Psep. The
sources and sinks include radiation energy loss, energy loss from plasma-neutral interaction and
target heat flux. The transport from the confined region coming from cross-field transport is given
by Psep. However, in the SOL field lines are open, thus having a radial component. Consequently,
a part of the parallel transport contributes to the heat flux going through the radially oriented
surface of the poloidal cross-section. The radial component of the parallel heat flux is substantially
smaller than its total magnitude q∥(r̂ · b̂) ≪ |q∥|. Still, it can be large enough to be significant
compared to the radial component of the cross-field transport. Therefore, one has to include both
terms when obtaining the total heat flux out of a radially oriented surface.

Global energy balance captures the accumulated heat flux at the targets. The target heat flux
term included in QS in Eq. 19 is obtained by integrating over the surface area of the target. The
surface integral puts more weight on areas with smaller heat flux values than the peaks because
small heat flux values cover more area. The magnitude of the region of small heat flux can be
insignificant concerning the capability of the target material. Consequently, the importance of
the localisation of the heat flux is underestimated. The underestimation of the localisation of the
heat flux can lead to imprecise conclusions about the driving transport terms regarding the critical
spots on the targets. Thus, the global energy balance analysis to identify the driving physics of the
critical regions in the SOL is incomplete and should be additionally analysed in the context of local
analysis.

1.5.2 Local transport

The heat flux density q can be decomposed into a parallel and perpendicular term. The parallel
heat flux can be decomposed into a conductive and convective part:

q∥,cond = −κe,0T
5
2
e ∇∥Te︸ ︷︷ ︸

q∥,cond,e

−κi,0T
5
2
i ∇∥Ti︸ ︷︷ ︸

q∥,cond,i

(20)

q∥,conv =
5

2
nTev∥b︸ ︷︷ ︸
q∥,conv,e

+
5

2
nTiv∥b︸ ︷︷ ︸
q∥,conv,i

(21)

where quasi-neutrality is assumed in Eq. 21 and v∥ is the plasma velocity. The perpendicular
transport can be decomposed the same way:

q⊥,cond = −χen∇⊥Te︸ ︷︷ ︸
q⊥,cond,e

−χin∇⊥Ti︸ ︷︷ ︸
q⊥,cond,i

(22)

q⊥,conv =
5

2
DTe∇⊥n︸ ︷︷ ︸
q⊥,conv,e

+
5

2
DTi∇⊥n︸ ︷︷ ︸
q⊥,conv,i

. (23)
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where the cross-field diffusion and energy transport coefficients D and χ, respectively, represents
the cross-field anomalous transport characterised by turbulence [35, 36, 37]. The cross-field heat
flux density:

q⊥ = (n̂FS · q)n̂FS + [(n̂FS × b̂) · q](n̂FS × b̂), (24)

where it is separated into a normal component (n̂FS · q)n̂FS and a binormal component [(n̂FS × b̂) ·
q](n̂FS × b̂). The normal unit vector n̂FS is defined as the unit vector normal to the flux surfaces
and the binormal direction is the cross product between the normal and field aligned unit vectors
n̂FS × b as shown in Fig. 6.

1.5.3 Description of local energy transport in the ID

The effect of the terms from Eq. 14 from the core to the targets through the SOL will be described
in this subsection to facilitate further discussions of energy transport. Since the LCFS and all other
flux surfaces interior to the LCFS are parallel to the magnetic field, heat can only be transported
across the LCFS through cross-field transport indicated by q⃗⊥ from the core in Fig. 14 [20, 26].
Furthermore, the normal heat flux density q⃗n̂FS

tends to transport heat towards the O-point from
the region of the island adjacent to the O-point. In the same region, the parallel and binormal
component tends to smooth the heat toroidally and poloidally, respectively [38, 1]. However, the
binormal component tends to shorten the transport path due to the non-zero projection onto a
poloidal cross-section. The gradients in the region below the X-point are predominantly in the
binormal direction (perpendicular to the target plate) [38]. Thus, the dissipative effect of normal
transport, smoothing of plasma parameters by parallel heat conduction and dissipation due to
impurity radiation will be reduced if the binormal component is relatively large.

Figure 14: The energy transport is illustrated schematically for the core in pastel orange, the
LCFS in red and the PFR in lime green. The heat gets transported from the core to the SOL via
cross-field transport q⃗⊥ where the parallel and binormal transport q⃗n̂FS×b̂ tends to divert the heat
in the binormal direction. Furthermore, the term normal to the flux surfaces q⃗n̂FS

will transport
heat towards the island O-point. Power enters the PFR at the X-point via the cross-field heat
flux q⃗⊥ and the normal component q⃗n̂FS below X-point. At the radial distance from the targets
where the neutrals ionise, the convective transport becomes important. The increase in convection
is indicated by the black arrow going along the poloidal direction of the island flux surface.

At the X-point, the perpendicular heat flux density q⃗⊥ can short-circuit the heat transport directly
from the core region to the PFR as shown in Fig. 14. Moreover, below the X-point, the normal
component of the heat flux density q⃗n̂FS can transport heat from the island to the PFR. The
ionisation front of the neutrals is located below the X-point for low radiation scenarios, where
power is transferred to the convective term of the heat flux density. The region from the ionisation
front to the targets is characterised by relatively low temperatures and thus small temperature
gradients. This leaves out transport through conduction as it requires a temperature gradient.
Thus, power is transferred from being carried via conductive transport to convective transport
q⃗conv. The transition from conductive to convective transport needs to be seen in the context of
the continuity of ions, as the source of the newly ionised neutrals needs to be balanced out by an
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ion flux to the targets. Furthermore, the ions born at the ionisation front are accelerated to ion
sound speed at the target as follows from the Bohm boundary condition [8]. This means there is
a significant flow of particles allowing for heat to be carried by particles via convection behind the
ionisation front to the target.

1.6 Objectives

This thesis will assess the validity of applying simplified models to the energy balance in the ID SOL
as a basis for a scaling of the impurity radiation with plasma parameters (ne, Te, PHeat) focusing on
the Lengyel model and Feng’s correction of the Lengyel model for stellarators [6, 4]. In addition, a
new framework is suggested to address the challenging task of justifying the assumptions of these
models. In this framework, field lines are traced from target to target, which intersects the target
at the peaks of the target heat flux distribution. Thus, this selection of field lines is intended to
give insight into the driving physics of the energy transport in the ID SOL, which can eventually
be used to validate the assumptions made in the simplified models. Ultimately, this will lead to a
conclusion about what needs to be included in the SOL energy transport model used to derive a
scaling of the radiated power.

1.7 Thesis structure

In Section 2, the CRM will be described in further detail to give a complete picture of the impurity
radiation and transport and the related atomic processes. Furthermore, we will present the energy
transport in the context of the fluid equations. Moreover, a description of the EMC3-EIRENE
code used to simulate the plasma and the plasma-surface interactions (PSI) and the computational
methods used in the thesis will be presented.
In section 3, related work is presented to introduce the current state of the energy transport analysis
in the SOL for divertors, as well as the simplified models used to derive a scaling of the radiated
power. Furthermore, the differences between the framework for energy analysis in this thesis and
already established frameworks will be highlighted.
The results will be presented in section 4. First, the global power balance will be presented
and compared with previous results. Second, the main results of the thesis will be presented,
highlighting the main transport mechanisms through analysis of profiles along field lines and their
contribution to the heat flux distribution on the targets. Third, the results will be discussed
in terms of assessing the assumptions imposed in the simple models. Ultimately, the predicted
impurity concentration needed for a given radiated power fraction will be presented.
In section 5 the conclusion of the discussion of the results will be presented, and an outlook will
be given.
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2 Theory and methods

This section will first focus on the radiation source as the thesis’s main concern is assessing simple
energy transport models to be used for scaling the total radiated power. First, the CRM model
will be explained and the database used to compute the radiation will be presented. Then, the
complete global energy balance will be presented followed by a derivation of the equations for the
complete local energy balance. Moreover, the EMC3-EIRENE code and the field line tracer will
be described. Last, the two simulation cases representing a low and high radiation scenario will be
presented with boundary conditions and all the relevant transport parameters.

2.1 Collisional Radiative Model

As the power loss due to impurity radiation is the main focus points of this thesis, a more detailed
description of its physics is presented. The impurity radiation in this thesis is modeled using a
collisional radiative model (CRM), introduced in section 1. The CRM was first introduced by
Bates et al. and describes the population dynamics of an ion based on collisional theory [39].
This subsection aims to explain what causes the ionisation distribution, how it is affected by the
transport in the plasma and the resulting radiation distribution. In the CRM in equilibrium the
following assumptions are made about the plasma ([28]):

1. The plasma is optically thin meaning all the photons emitted by ions in the plasma leaves
the plasma without being absorbed.

2. The plasma is isotropic, so transport is irrelevant because there are no gradients. The isotropy
of the plasma implies that emitted photons are unpolarized and the angular intensity is
isotropically distributed.

The observed line-intensity Φ(p, q)[W] for excitation of lower-lying state q to higher-lying state p
is given by the lower-level population n(p) and the radiative transition probability F(p, q):

Φ(p, q) = n(p)F(p, q)︸ ︷︷ ︸
PECp,q

hνV (25)

where V is the volume of the radiating plasma and PECp,q = n(p)F(p, q) is the photon emission
coefficient for the transition from p to q. To compute the line-intensity the population n(p) in
state p must be known. This can be computed using the rate equation which is described in the
following subsection.

2.1.1 Atomic processes and the rate equation

In a hot plasma, atoms and ions transition between their quantum states due to radiative and
collisional processes. The most important of these are spontaneous radiative transitions induced by
electron collisions [28]. The CRM considers only these transitions. All other transition processes
are omitted, such as photo-ionisation as an optically thin plasma was assumed and transitions
induced by collisions with ions. The transitions considered in the rate equation are given in Fig.
15. The relevant transition coefficients due to electron impact are computed by integrating the
product of the cross-section and the energy distribution of the incoming electron(s) [28].
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Figure 15: Reaction equations of the transitions included in the rate equation. The thick lines
denote transitions which are similar in nature and the thin lines denote inverse processes. The
transition coefficients (letters above the arrows) are explained in Table 1. p and q indicate different
excited energy states of atoms, the electron charge is given by e, the energy of a photon hν with
frequency ν, and Z represents an ion in ionisation stage Z.

Einstein’s A for transition probability for q → p and p → q A(q, p), A(p, q) s−1

Einstein’s B for photon absorption and induced emission C(q, p), C(p, q) m3s−1

Excitation and deexcitation rate coefficients F(q, p),F(p, q) m3s−1

Ionisation rate coefficients S(p) m3s−1

Three-body recombination rate α(p) m6s−1

Radiative recombination β(p) m3s−1

Table 1: Transition coefficients and their dimensions.

Spontaneous radiative transition and radiative recombination

Spontaneous radiative transition is where an electron in state q > p spontaneously decays to a
lower energy state p emitting a photon with energy hν corresponding to the difference between the
two energy levels E(q, p). Radiative recombination is a similar process where a ground state ion
in ionisation stage Z captures an electron in continuum state qϵ having energy ϵ to form an atom
in level p in ionisation stage Z − 1 by emitting a photon with energy E(qϵ, p) and frequency ν.

Excitation and deexcitation by electron impact

Excitation by electron impact is when an electron collides with an ion in state p which excites the
ion to a higher energy state q and the electron is scattered. The projectile electron needs to have
a higher energy than the energy gap between the two states, and the likelihood of the collision
depends on the velocity of the incoming electron. In the inverse process, de-excitation by electron
impact, the energy difference between energy state q and p is converted into kinetic energy of the
scattered electron.

Ionisation by electron impact and three-body recombination

Ionisation by electron impact may be regarded as the continuation of the excitation process. In
addition to exciting the state p to the highest bound energy level q the electron in this state
breaks free from the atom, thus ionising the atom from ionisation stage Z − 1 to Z. The incoming
electron is scattered after the collision. Three-body recombination is the inverse process involving
two electrons and an ion. The ion is then recombined from ionisation stage Z to Z − 1. The
transition processes are given in terms of reaction equations in Fig. 15.

The rate equation

The rate equation describes the change in the population of discrete energy levels accounting for
the processes given in table 1. All other transition processes are omitted as assumed for the CRM.
The evolution of the population in state p, where p = 1 is the ground state, nZ(p) for each Z is
then given by the rate equation:
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d

dt
nZ(p) =

∑
q<p

C(q, p)nenZ(q)︸ ︷︷ ︸
Excitation flux

−

[{∑
q<p

F(p, q)ne +
∑
q>p

C(p, q) + S(p)

}
ne +

∑
q<p

A(p, q)

]
nZ(p)︸ ︷︷ ︸

Depopulating flux

(26)

+
∑
q>p

[F(q, p)ne + A(q, p)]nZ(q)︸ ︷︷ ︸
Flux from higher levels

+ [α(p)ne + β(p)]nZ+1︸ ︷︷ ︸
Direct recombination flux

+ S(p)nenZ−1︸ ︷︷ ︸
Ionisation flux

where ne denotes the electron density and nZ the ion density with nuclear charge Ze. The sum-
mation convention is that the summation over q < p is over levels q that lie energetically below
level p.

(.1) The rate equation illustrated as a graph
where the node Eq<p are all the energy levels
which are lower than the energy state p in ion-
isation stage Z − 1. Eq>p is the node denoting
the energy levels which are higher than Ep. EZ

represents the ground state energy of the ions.

(.2) Atomic processes illustrated by the transi-
tions between the excited populations p and q
for q > p. The ground state of the neighbouring
ionisation stages Z−1 and Z are represented as
the lower and upper slap, respectively. The co-
efficients associated with the transitional prob-
abilities are C(p, q), F(q, p), A(q, p), S(p), α(p),
β(p), and the ionisation potential of state p is
χ(p).

Figure 16: Illustrations of the transitions associated with the rate equation.

The dimensions of the transition coefficients is given in table 1 and the rate equation is illustrated
as a graph in Fig. 16.1. The first line in Eq. 26 represents the excitation flux from lower lying
levels q into level p and the second line the flux population out of level p. The third line is the
populating flux into level p from higher lying levels and the last line represents populating influx
due to direct recombination. It is important to note that Eq. 26 is coupled with similar equations
for other excited levels, an the neighbouring charge states nZ−1 and nZ+1 via recombination. In the
SOL the validity of the first assumption in the CRM is questionable considering that the density
conditions can change significantly due to plasma-neutral interaction being highly localised [20, 1].
The second assumption follows the same argument. Globally the ion transport might be small, but
in regions close to the targets it can be relatively large. The couplings between the neighbouring
charge states are generally not in an equilibrium due to transport in an inhomogeneous plasma.
Therefore, the results using atomic data based on the rate equation must be seen in context of
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these assumptions. However, the equation can be simplified by assuming a quasi stationary-state
which will be described in the following subsection.

2.1.2 Quasi steady-state

In reality the system described by the rate equation has a relaxation time to a steady-state solution.
However, if the ground state density n(1) or the plasma undergoes a rapid change in the electron
density ne and temperature Te the ground and metastable states do not have enough time to relax to
equilibrium. In realistic situations for magnetic confinement fusion it is expected that at a certain
time the excited-level populations have already reached their steady-state values given by the
ground-state density nZ(1), Te and ne at that time. Hence, the excited-level populations are defined
by an impurity density nZ , electron density ne and electron temperature Te. The timescales of the
metastable and the ground state populations are comparable to the plasma ion diffusion across
temperature or density scale lengths, relaxation times of transient phenomena and observation
times τrec, τion ∼ τtransport [32]. Thus, the metastable and the ground state populations evolve
in order of the timescale of the plasma dynamics and should be modeled explicitly. The excited
states of impurities may assumed to be relaxed with respect to the instantaneous metastable and
grounds state populations and thus are said to be in a quasi steady-state (QSS) as the equilibration
times are shorter than τtransport. In the QSS the time derivative of the excited-level populations is
therefore approximated as being zero:

dn(p)

dt
= 0 for p = 2, 3, . . . (27)

The time derivatives of the ground-state populations nZ(1), nZ−1(1) and nZ+1(1) are kept non-
zero. The formulation splits up the system in two parts: the excited-state population, and the
ground-state population and ion density. Thus, Eq. 27 can be expressed in a set of linear equations
on matrix form: 

· · · ·
· · · ·
· · · ·
· · · ·



n(2)
·

n(p)
·

 =


·
·
·
·

nZ(1) +


·
·
·
·

nZ+1 +


·
·
·
·

nZ−1 (28)

where the elements of the square matrix on the LHS and the column matrices on the RHS are
terms of the RHS of Eq. 26. These terms are functions of the electron temperature Te, via the
collisional rate coefficients, and electron density ne [28, 32]. The imply that we can get the photon
emission coefficients for transitions between level p and q PECp,q = n(p)F(p, q).

Once the ionisation has been solved, one can obtain the normalised fraction of the ionisation stages
compared to the initial atom density before ionisation at given plasma conditions. This quantity
is called the fractional abundances and is given by:

FαZ
=

nαZ

nα0

; Z = 1, . . . Z0 (29)

where Z indicates the ionisation stage of the ion of species α and nα0
is the neutral impurity

density. The equilibrium radiated power loss function can be obtained by combining the expression
of the fractional abundances and the power coefficients associated with overall excitation and
recombination. The following subsection will explain how these coefficients and the power loss
function are obtained.

2.1.3 Atomic data and analysis structure

OPEN-ADAS (Atomic Data and Analysis Structure) is an atomic database which can be used
to compute the radiated power loss from impurities in plasmas [32]. The data from ADAS is
used to obtain both the ionisation distribution and the radiative power loss for given plasma
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conditions. The following assumptions are made for the radiative power loss, which in thesis will
be approximated by what is referred to as the electron energy loss in Summers et al. (2006) [32]:

1. Ground states of ions and metastable states have long lifetimes compared to other excited
states. Thus the excited state population is in QSS.

2. The transition between meta-stables are negligible. We use data where metastables are only
ground states, i.e. we simulate full ion charge states only.

The ADF11 iso-nuclear master files include the overall ionisation and recombination, and the
line power coefficients following the abovementioned assumptions. This thesis uses these files to
compute the impurity radiation in the EMC3-EIRENE simulations. The temperature dependence
of the coefficients used in this computation is shown for equilibrium in Fig. 17. The solution of Eq.
28 gives the ionisation distribution in quasi-steady state. Now assuming that the only metastables
present are the ground states of ions the LHS of Eq. 28 is zero and the overall recombination and
ionisation coefficients are found by solving the following set of equations:

ṅZ = −SZnZ + αnenZ+1 + βnZ+1 + SZ−1nZ−1 (30)

for which the equilibrium is:

ṅZ = 0 =

−S0 α1ne + β1 0 . . .
S0 −S1 α2ne + β2 · · ·
...

. . .
. . .



n0

n1

...
nZ

 (31)

where the overall recombination rate coefficient ACD is given by:

ACD ≡ αne + β (32)

and the overall ionisation rate coefficient SCD is:

SCD ≡ S (33)

where the symbols on the RHS of Eqs. 32 and 33 are described in Tab. 1. CD indicates that the
CRM includes dielectronic recombination for both coefficients [31].

PLT is the line power coefficient for line power driven by excitation of ions in the metastable states,
given by [32]:

PLTZ =
∑
p,q

E(p, q)F(p, q)Fexc
Z (p)︸ ︷︷ ︸

PECexc

. (34)

The sum in Eq. 34 is taken over the transitions of the ion in stage Z from p → q where
F(p, q)Fexc

Z (p) is the excitation photon emissivity coefficient for this transition [32]. The energy
difference between the two states p and q is given by E(p, q). The recombination-bremsstrahlung
power coefficient PRB is based on line power driven by recombination and bremsstrahlung of
dominant ions:

PRBZ+1 =
∑
p,q

E(p, q)F(p, q)Frec
Z+1(p)︸ ︷︷ ︸

PECrec

, (35)

where F(p, q)Frec
Z (p) is the recombination photon emissivity coefficient [32]. Fexc

Z (p) and Frec
Z (p)

are the effective contributions to the fractional abundances from excited populations of metastables
and free electron capture by higher-lying metastable states [31]. However, since this thesis only
concerns the ground states p = 1 the coefficients reduces to:

PLTZ =
∑
q

E(1, q)F(1, q)Fexc
Z (1) (36)

PRBZ+1 =
∑
q

E(1, q)F(1, q)Frec
Z+1(1) (37)
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In the reduced equations, both the excitation and recombination emissivity coefficient are associ-
ated with the ground states of the ions in ionisation stage Z and Z + 1, respectively.

Figure 17: The coefficients used in the computation of the fractional abundances and radiation
power loss function in coronal equilibrium is plotted against the electron temperature. From the
top left: the effective ionisation coefficient SCD, the effective recombination coefficient ACD and
the line power driven by excitation of ions in the ground state PLT and the continuum and line
power driven by recombination and bremsstrahlung of ions in the ground state PRB. The rate
coefficients SCD and ACD are given in m3s−1 and line power coefficients PLT and PRB are given
in Wm3. Note that for the recombination coefficients 0-5 is the ionisation stages Z = 1 − 6.

The impurity model uses the effective recombination (ACD) and ionisation coefficients (SCD) to
compute the ionisation distribution for local plasma parameters in CRM equilibrium. However,
transport of impurities is included in the EMC3 impurity model which will be discussed in further
detail the subsection on EMC3-EIRENE.

2.1.4 Radiated power loss function

Now that the ionisation, recombination and power coefficients have been introduced they will be
used to obtain the fractional abundances and the radiated power loss function. The effect of
transport assuming a constant residence time τZ of the impurities can be assessed with data from
ADAS, and will introduced for later discussion in section 4.

(.1) Constant impurity residence time τZ =
10−2s.

(.2) Constant impurity residence time τZ =
10−4s.

Figure 18: Fractional abundances of carbon against the electron temperature Te. The lines rep-
resent the fractional abundances after relaxation to coronal equilibrium and the dashed lines the
fractional abundances where the ionisation distribution is affected by transport assuming a con-
stant impurity residence time τZ . The numbers in the legends represent the charge state Z.
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(.1) Constant impurity residence time τZ =
10−2s.

(.2) Constant impurity residence time τZ =
10−4s.

Figure 19: Radiation power loss function for all ionisation stages of carbon against the electron
temperature Te. The lines represent the radiation power loss functions after relaxation to equi-
librium and the dashed lines the radiation power loss function where the ionisation distribution
is affected by transport from lower to higher temperature regions assuming a constant impurity
residence time τZ .

Generally the radiative power loss function LZ is given by the the product of the equilibrium
fractional abundances and sum of the the power coefficients PLT and PRB:

LZ =

MZ∑
σ=0

(PLTZ
σ + PRBZ

σ )F
(equil)
Z,σ (38)

The last term on the RHS of Eq. 38 F
(equil)
Z,σ is the fractional abundances for charge state Z in

metastable state σ. The summation over σ up to MZ refers to the summation over all meta-stables.
Due to the plasma conditions in the SOL the recombination and the bremsstrahlung is assumed
to be negligible. For carbon, the former can be argued from the temperature dependence of the
PRB coefficients in Fig. 17. The PRB’s only become significant, when seen in context with the
temperature dependent fractional abundances, for temperatures which are mostly outside the SOL
range of 100 − 103eV. In Fig. 17 the significant coefficients are the ions in the two last ionisation
stages for which the fractional abundances in the temperature region of significance ≈ 20eV is zero.
Furthermore, the only metastables are assumed to be the ground states. Thus, the expression for
the equilibrium radiated power loss function can be simplified to:

LZ = PLTZFZ,equil. (39)

The difference in the radiated power loss function in Figs. 19.1 and 19.2 for residence times
τZ = {10−2s, 10−4s}, respectively, indicate that shorter residence times tends to broaden the
radiation power loss function in the transport direction. The residence time was in these radiated
power loss functions related to transport from lower to higher temperature regions. This effect will
be discussed further in section 4.

2.2 Local energy balance

The local energy balance is introduced in section 1. It will in this subsection be described in further
detail starting from the local energy balance given by Eq. 14. Furthermore, the integral along a
field line including almost every term in the energy balance equation will be derived.

Eq. 14 needs to be simplified to decompose the divergence into gradients parallel and perpendicular
to the magnetic field. This was done by accounting for the Jacobian J = 1/B in Clebsch coordinates
with the contravariant representation of B [24, 23]. For simplicity it is assumed that the variation
of the magnetic field perpendicular to the field lines has a negligible effect on the cross-field heat
flux density. However, the dilution from flux expansion or contraction of the parallel heat flux
due to magnetic field strength variations along the flux tube is accounted for. Thus, the simplified
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version of Eq. 14 is:

∇⃗ · q =
1

J

[
∇∥(Jb̂ · q) + ∇⊥(Jn̂⊥ · q)

]
= B(∇∥(q∥/B) + ∇⊥(q⊥/B)) = S →

B∇∥

(q∥
B

)
+ ∇⊥q⊥ = S, (40)

where the decomposed operators:

∇∥ = (b̂ · ∇)b̂

∇⊥ = ∇−∇∥

b̂ =
B

B
.

The flux tube cross-sectional area A⊥ is proportional to 1/B leading to a coupling with the parallel
heat flux density as q∥ = Q∥/A⊥. The correction of the variation of the magnetic field strength

in the direction perpendicular to the flux surfaces would be to include the term B∇⊥
(
q⊥
B

)
. This

term was left out to be solved in the future. The suggested approach to solve for this correction is
given in the outlook in section 5.

We can write the first term from the left on the LHS of Eq. 40 is:

B∇∥

(q∥
B

)
= B

B∇∥q∥ − q∥∇∥B

B2
= ∇∥q∥ −

q∥∇∥B

B
. (41)

and decompose using q∥ = q∥,cond,e + q∥,cond,i + q∥,conv,e + q∥,conv,i:

∇∥q∥,cond,e = S −∇⊥q⊥ +
q∥∇∥B

B
−∇∥q∥,conv −∇∥q∥,cond,i (42)

q∥,cond,e = κ∥0eT
5/2
e ∇∥Te. (43)

We have chosen q∥,cond,e to be the only term on the LHS, making the analysis comparable to the
Lengyel model. The physical interpretation of the Lengyel integral is how much power is lost from
the parallel electron conductive channel due to radiation assuming that parallel electron transport
is dominant. In the full energy trasnport model, the parallel conductive channels are not dominant.
However, if a similar fraction of power is lost from the parallel electron conductive channel due to
radiation as from the total power it can still be used to derive a relation between radiation losses
and plasma parameters. The integral to be used as a baseline for assessing the assumptions in the
Lengyel and Feng models can be derived by combining Eq. 42 and 43.

2.2.1 Derivation of field line integral

Now that the transport mechanisms have been described locally, we will look at the heat transport
integrated along a field line. This integral is equivalent to the summed effect of all the contributions
of the different energy transport mechanisms along (parallel heat flux density terms) and across
(cross-field term, sinks and sources) the magnetic field. By combining Eqs. 42 and 43 the integral
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from downstream to upstream can be derived:

(∇∥q∥,cond,e)q∥,cond,e = q∥,cond,e

(
S −∇⊥q⊥ +

q∥∇∥B

B

−∇∥q∥,conv −∇∥q∥,cond,i

)
1

2
∇∥(q2∥,cond,e) =

1

2

∫ u

t

∇∥(q2∥,cond,e) =

∫ u

t

q∥,cond,e

(
S −∇⊥q⊥ +

q∥∇∥B

B

−∇∥q∥,conv −∇∥q∥,cond,i

)
dl∥

(q2∥,cond,e,u − q2∥,cond,e,t)/2 =

∫ u

t

q∥,cond,e

(
S −∇⊥q⊥ +

q∥∇∥B

B

−∇∥q∥,conv −∇∥q∥,cond,i

)
dl∥ (44)

S = Sneutral + Simp, (45)

where Lα =
∑Z0,α

Z=1 which is the radiated power loss function summed over all ionisation stages
of species α. The integral in Eq. 44 describes the contributions from every energy transport
mechanism along a field line with arclength l∥ from upstream to downstream. The source terms
are given in Eq. 45. The power loss due to impurity radiation Simp is assumed to be dominated by
a primary radiator of species α. If the system is directly simulated all the quantities in Eq. 44 are
available. Thus, the integral can be evaluated for the simulation data, and be used as a baseline
for assessing simplifying assumptions. For readability the following definitions are made:

Ineutral =

∫ u

t

q∥,cond,eSneutraldl∥ (46)

Iimp =

∫ u

t

q∥,cond,eSimpdl∥

= −
∫ u

t

q∥,cond,en
2
ecαLαdl∥ (47)

I⊥ =

∫ u

t

q∥,cond,e∇⊥q⊥dl∥ (48)

IB =

∫ u

t

q∥,cond,e
q∥∇∥B

B
dl∥ (49)

Iconv =

∫ u

t

q∥,cond,e∇∥q∥,convdl∥ (50)

Icond,i =

∫ u

t

q∥,cond,e∇∥q∥,cond,idl∥ (51)

which gives the following compact expression for the integral in Eq. 44:

1

2
(q2∥,cond,e,u − q2∥,cond,e,t) = Iimp + Ineutral − I⊥ + IB − Iconv − Icond,i. (52)

Eq. 52 is the complete picture of the power transferred from the parallel conductive heat flux
density channel from upstream to downstream due to the transport mechanism on the RHS. The
contribution of each of the terms will be assessed in section 4.

The impurity concentration using the complete model gives a measure to compare the impact of
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imposing simplifying assumptions:

Iimp =
1

2
(q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB + Iconv + Icond,i∫ u

t

κ∥0eT
5/2
e n2

ecαLα∇∥Tedl∥ ≈ ⟨cα⟩ut
∫ u

t

κ∥0eT
5/2
e n2

eLαdTe

⟨cα⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB + Iconv + Icond,i∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(53)

where the impurity is assumed to be constant as the mean weighted by the impurity radiation
profile from upstream to target ⟨cα⟩ut . The reason for weighting the the impurity concentration
with the radiation profile is to avoid underestimation as the impurity concentration is lower in
regions where the radiation level is low. Eq. 53 forms the baseline of assessing each assumption
in the Lengyel and the Feng model. The results from removing each of the integral terms Ix
for x = {neutral,⊥,B, conv, cond, i} is used to conclude whether the effect of removing a term is
insignificant or not. These results will be presented and assessed in the final part of section 4.

2.3 The physics of EMC3-EIRENE

The physics of EMC3-EIRENE is based on a two-fluid model for the plasma, a trace model for
the impurities and a kinetic model for neutral gas which are self-consistently coupled. EMC3-
EIRENE consists of two codes, EMC3 and EIRENE. The EMC3 code provides the background
plasma required to compute the plasma-neutral interaction in the EIRENE code [40, 41]. Plasma-
neutral interactions are included in this thesis’s assessment of energy transport. However, EIRENE
includes kinetic theory that is beyond the scope of the discussion of this thesis. Therefore, only
the EMC3 model will be described in this subsection.

The continuity and momentum balance equations in the two-fluid model is given by:

∇ ·
(
nivi,∥b−D∇⊥ni

)
= Sp (54)

∇ ·
(
miniv

2
i,∥b− η∥∇∥vi,∥b

)
+ ∇⊥ ·D∇(minivi,∥) = −∇∥p + Sm, (55)

where mi is the ion mass, ni the ion density and vi,∥ is the ion fluid velocity. The unit magnetic
field vector is denoted as b and the anomalous diffusion coefficient is given by D. The term on the
RHS of Eq. 54 is the particle source Sp associated with neutrals. The first term on the RHS of
Eq. 55 is the parallel pressure gradient and the second term the momentum source Sm associated
with neutrals [41].

The energy transport equation is separated for ions and electrons:

∇ ·
(

5

2
neTevi,∥b− κe∇∥Te −

5

2
TeD∇⊥ne − χene∇⊥Te

)
= −ke(Te − Ti) + See + Simp (56)

∇ ·
(

5

2
niTivi,∥b− κi∇∥Ti −

5

2
TiD∇⊥ni − χini∇⊥Ti

)
= ke(Te − Ti) + Sei (57)

where κe and κi are the parallel classical conductive transport parameters and the D,χe, χi are the
cross-field anomalous transport coefficients which are free parameters in the code. Furthermore,
EMC3 assumes that the plasma velocity equals the ion velocity. The source-terms See and Sei

represent the plasma-neutral interactions calculated in the EIRENE part of the code. The impurity
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radiation Simp is computed by a trace-impurity model in EMC3 and is given by:

∇ ·
(
nZ
αv

Z
α,∥b−DZ

α∇⊥n
Z
α

)
= SZ−1→Z − SZ→Z+1 + RZ+1→Z −RZ→Z−1 (58)

UZ
α,∥

(
vZα,∥ − vi,∥

)
= −b · ∇nZ

αT
Z
α + nZ

αZeE∥ + nZ
αZ

2Ceb · ∇Te + nZ
αCib · ∇Ti (59)

0 = b · ∇neTe + neeE∥ + neCeb · ∇Te (60)

TZ
α = Ti. (61)

The continuity equation for impurities is given in Eq. 58 where nZ
α is the impurity ion density

of species α and ionisation stage Z. The super- and subscripts were chosen to be different from
previously in the thesis for readability. These super- and subscripts are consistent throughout
the model for other quantities. The parallel impurity velocity is given by vZα,∥ and the impurity

diffusion coefficient DZ
α,∥. On the RHS of Eq. 58 the first two terms denoted by S are the source

and sink terms representing ionisation and last two terms denoted by R represent recombination.
Intrinsic impurity particles are introduced to the simulation domain through a physical sputtering
source [41]. Extrinsic impurities can be introduces as a volume source or as neutrals entering the
plasma with an initial kinetic energy E0 from a particle depot whose location is defined in the code.
The total particle source for impurities is either determined by a constant impurity sputtering yield
following the description in Stangeby et al. (2000) or by a total radiation boundary condition [8].

The momentum balance equation is given by equations Eq. 59 and 60. The LHS of Eq. 59
represents the friction force on the impurity ions moving with fluid parallel velocity vZα,∥ exerted

by the background ions moving with fluid parallel velocity vi,∥ where UZ
α,∥ = ρZα/τs for stopping

time τs and mass density ρZα [8]. On the RHS the first term −b · ∇nZ
αT

Z
α = −b · ∇pZα represents

the parallel pressure gradient and the second term nZ
αZeE∥ the electrostatic force. The third

term from the left on the RHS nZ
αZ

2Ceb · ∇Te represents the electron temperature gradient force.
The coefficient Ce is related to the Coulomb interaction between the electrons and the impurities.
The last term in Eq. 59 nZ

αCib · ∇Ti represents the ion temperature gradient force where the
coefficient Ci is related to the Coulomb interaction between the ions and the impurities. Both
coefficients of the two last terms are related to the momentum transfer which decreases strongly
with the relative velocity between the colliding particles, i.e., an inverse dependence on the electron

and ion temperature Ce,i ∝ T
−3/2
e,i , respectively. In effect the ions and electrons that strike the

impurities from cold regions will transfer more momentum to the impurities than those from the
warm regions [8]. Eq. 60 determines the E∥ from the electron momentum balance which follows
from the imposed quasi-neutrality. Furthermore, the energy balance in Eq. 61 assumes thermal
equilibrium between the impurities and the other background ions. Thus, the temperatures of the
impurities are equal to the ion temperature as stated in the energy balance of the model.

Conductivity coefficient

The parallel conductivity coefficients characterise the diffusive motion along magnetic field lines.
The definition in the EMC3 code follows the definition given in the Braginskii fluid model [42].
The electron conductivity coefficient is defined as:

κ∥e = 3.16
neTeτe
me

(62)

where the electron collision time τe is given by:

τe =
3
√
meT

3/2
e

4
√

2πλe4Z2ni

. (63)

The parallel conductivity coefficient for ions is given by:

κ∥i = 3.9
niTiτi
mi

(64)
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where the ion collision time τi is given by:

τi =
3
√
miT

3/2
i

4
√

2πλe4Z4ni

, (65)

and the Coulomb logarithm λ is given by:

λ =

{
23.4 − 1.15 log n + 3.45 log Te, Te < 50eV

25.3 − 1.15 log n + 2.3 log Te, Te > 50eV
(66)

2.3.1 Conductive cross-field energy transport

The cross field conductive terms given in Eq. 67:

q⊥,cond = −χen∇⊥Te − χin∇⊥Ti, (67)

are driven by the the temperature gradients where the transport coefficients χe and χi are the
anomalous energy transport coefficients characterised by turbulent transport [35, 36, 37]. However,
in the code they are set as free parameter and can be chosen to be either spatially varying or
constant throughout the computational domain.

2.3.2 Convective cross-field energy transport

The cross-field convective terms are given in Eq. 68:

q⊥,conv =
5

2
D(Te + Ti)∇⊥n, (68)

and are driven by the cross-field density gradients ∇⊥n and characterised by the anomalous diffu-
sion coefficient D. The diffusion coefficient is characterised by turbulent particle transport and is in
the same sense as the anomalous energy transport coefficients a free parameter. In our simulations
D, χ⊥,e and χ⊥,i are spatially constant.

2.3.3 Source terms

The source terms are given in Eq. 17 where Simp is the power loss due to impurity radiation, and
See and Sei are the sources and sinks associated plasma-neutral interaction. See and Sei includes
excitation, ionisation, molecular dissociation and charge-exchange collisions. The total impurity
radiation is given in the code by Eq. 12, and the target heat flux is:

qt = n(γeTe + γiTi)csb (69)

which is coupled with the plasma-neutral interactions. The plasma-neutral interaction terms See

and Sei are determined by self-consistently solving a coupled Boltzmann equation which is done
in EIRENE [41]. The last term in Eq. 17 is the target heat flux corresponding to the target heat
flux density given Eq. 69 where the Bohm boundary condition has been imposed where the plasma
sound speed cs =

√
(Te + Ti)/(mi + me). The coefficients γe and γi are the sheath transmission

coefficients for electrons and ions, respectively. The sheath is a microscopic region right in front of
the targets. It determines how much power is deposited at the target for given plasma conditions
[8]. It has other physical properties than the SOL, and is therefore not the focus of this thesis. It
is discussed in further detail in Stangeby (2000) [8].
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2.4 Numerical modeling of the fluid equations

The fluid equations in EMC3-EIRENE is equivalent to a stochastic process describing the discrete
motion of individual particles. Edge Monte Carlo 3D (EMC3) is based on a Monte Carlo approach
to solve the fluid equations [43, 40, 41, 44, 45]. The previously presented fluid equations can be
cast in a general Fokker-Planck form:

∂f(x, t)

∂t
=

− N∑
i=1

∂

∂xi
D

(1)
i (x) +

N∑
i,j=1

∂2

∂xi∂xj
D

(2)
ij (x)

 f(x, t) (70)

where x is the coordinate vector, t is the time, D
(1)
i (x) the spatially dependent convection coef-

ficient and D
(2)
ij (x) the spatially dependent diffusion coefficient. The Fokker-Planck equation is

equivalent with a master equation where the transition matrix is equivalent with the operator [·] in
front of f(x, t) on the RHS of Eq. 70. In other words the transition matrix describes the transition
probabilities of an asymmetric random walk along and across the magnetic field lines [46]. The
field f(x, t) in Eq. 70 describes the spatially and temporally dependent particle distribution for
which the statistical moments represent the fluid quantities of interest [46]. Thus, despite different
boundary conditions for the fluid moments the generalization of the fluid equations by the Fokker-
Planck equation enables the application of this general numerical method to determine n, v∥, Te

and Ti for arbitrary magnetic configurations [41]. To make the equation more interpretable in the
case of a plasma immersed in a magnetic field the coefficients are divided into components parallel
and perpendicular to the magnetic field:

∂f(x, t)

∂t
= −∇∥ ·

[
α∥f(x, t) + ∇∥(β∥f(x, t))

]
−∇⊥ · [α⊥f(x, t) + ∇⊥(β⊥f(x, t))] (71)

where D
(1)
i (x) from Eq. 70 was decomposed into a parallel and perpendicular component α∥ and

α⊥ and D
(2)
ij (x) into β∥ and β⊥.

Eq. 70 describes the conservation of the particle distribution, and thus its moments. Therefore,
the fluid fields can be determined by simulating the motion of individual particles. Particles are
randomly instantiated by a given source distribution, followed in small time steps ∆t. So, the
motion of the particles are simulated as a random walk in 3D where the step:

∆r =
√

2β∥∆tξ∥ + α∥∆t +
√

4β⊥∆tξ⊥ + α∆t (72)

where ξ∥ and ξ⊥ are random unit vectors from a uniform distribution parallel and perpendicular
to the magnetic field, respectively. The terms including the coefficient β are associated with
the diffusive transport and the terms including α are associated with convective transport in
the direction parallel and perpendicular to the magnetic field denoted by the subscript ∥ and ⊥,
respectively. Thus, a local orthogonal coordinate system is chosen where x3 is along the magnetic
field, and x1 and x2 is perpendicular to x3. Furthermore, the unit base vectors {ei}3i=1 are chosen
as:

e1 = − (b · ∇)b

|(b · ∇)b|
e2 = b× e1 (73)

e3 = b,

where b is the unit vector tangential to the magnetic field. Thus, by this choice of unit vector basis
the diffusion tensor becomes:

D = D⊥e1e1 + D⊥e2e2 + D∥e3e3 = (D∥ −D⊥)bb + D⊥I (74)
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where bb is given in dyadic notation. The transport coefficient from Eq. 71, α and β, are related
to the diffusion coefficient D as follows [44, 41]:

α∥ = b · (V + ∇D∥) − (D∥ −D⊥)∇ · b (75)

α⊥ = (e1 + e2) · (V + ∇D⊥) − (D∥ −D⊥)|(b · ∇)b| (76)

β∥ = D∥ (77)

β⊥ = D⊥ (78)

The fluid moments are computed by averaging over the distribution of particles at each cell in the
computational domain. This is done by estimating the fluid moment:

fj =
1

Cj

∑
i

wi
li
vi

=
1

Cj

∑
i

wi∆ti, (79)

where fj represents the fluid moment in cell j, Cj . The sum on the RHS of Eq. 79 is over all visits
of the particles at cell j. The weight quantity of the particle, associated with the integrands of the
moment, is given by wi, the traced length li, the velocity of the particle vi and the time spent in
cell j, ti [44].

2.4.1 Field line tracing and grid generation

The grid used for the simulation domain is generated through the same field line tracer used in this
thesis’s framework of the analysis. Thus, both will be described in this subsection. The field line
tracing used in this thesis is a reversible field line mapping (RFLM) technique developed by Feng
et al. [45]. It ensures a unique and continuous reconstruction of the field lines given a discretized
field-aligned grid combining a reversible field line mapping technique and a bilinear interpolation
scheme.

Figure 20: The field line illustrated in red has toroidal coordinates (ρ, θ, ϕ). The superscript m
and m + 1 on the toroidal angle indicates that the coordinates are for consecutive cells m and
m + 1. At the interface ϕm

+ = ϕm+1
− , which is the equality of the toroidal angle at the interface of

two consecutive grid cells m and m + 1.
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Figure 21: The local coordinates {xi,j}1,1i=0,j=0 of the flux tube cross-section at the intermediate
toroidal tracing coordinates ϕk is shown. The toroidal index k is omitted and the local field line
coordinates (ρ, θ) are given by the grey dot representing the intersection between the cross-section
and the field line.

The reversible field line mapping starts with dividing the computational domain into toroidal
subdomains. A 2D radial-poloidal grid is defined for a constant toroidal angle ϕm

0 = const. The
grid contours are closed and nested extending radially inwards within the LCFS to match SOL
with the confined region. Fig. 20 shows two consecutive cells denoted by the toroidal subdomain
m and m + 1. The field line is integrated numerically in positive and negative field directions up
to ϕm

+ and ϕm
− , respectively. The coordinates of the field line are stored in intermediate toroidal

positions ϕk ∈ [ϕm
− , ϕm

+ ]. This is done for all cells in the 2D grid and the result is a 3D mesh defining
a 2D set of finite flux tubes in the toroidal subdomain m. This process is continued for the next
toroidal subdomain m + 1 where the toroidal positions of the field line is ϕk ∈ [ϕm+1

− , ϕm+1
+ ] with

ϕm+1
− = ϕm

+ .

For W7-X the magnetic configuration exhibits stellarator symmetry:

BR(R, z, ϕ⋆) = −BR(R,−z,−ϕ⋆)

Bz(R, z, ϕ⋆) = Bz(R,−z,−ϕ⋆) (80)

Bϕ(R, z, ϕ⋆) = Bϕ(R,−z,−ϕ⋆)

(81)

where R is the major radius, z is the vertical distance over the midplane, and ϕ⋆ = ϕ− ϕs where
ϕs is the toroidal angle at an up-down symmetric poloidal cross-section. The toroidal range of the
subdomains is bounded by the constraint on the deformation of the flux tubes in 3D, i.e. the cells
has to be convex for the bilinear interpolation to work. Thus, the toroidal range of the subdomains
depends on the magnetic shear, the curvature of the flux surface and the contours of the islands
in the poloidal cross-section. A single subdomain was sufficient to satisfy the convexity constraint
for W7-X [45]. Thus, the 3D grid cells are generalized hexahedra with every quadrilateral face
satisfying the convexity constraint.

Any field line inside a finite flux tube shown in Fig. 20 has the local coordinates (ρ, θ) where
ρ, θ ∈ [0, 1]. At every intermediate toroidal position ϕk the cylindrical coordinates x = (R, z)
defining the mesh corners can be computed by a bilinear interpolation from the four corners of the
flux tube cross-section, which are the stored values of the grid. The four corners of the flux tube
cross-section at ϕk, {xijk}1,1,1i,j,k=0, are illustrated in Fig. 21. The real space coordinates x = (R, z)
as a function of the local coordinates (ρ, θ) is given by:

x(ρ, θ, ϕk) = xi,j,k + (xi+1,j,k − xi,j,k)ρ + (xi+1,j,k − xi,j,k)θ

+ (xi+1,j+1,k − xi,j+1,k − xi+1,j,k + xi,j,k)ρθ (82)

x = f(ξ, {xijk}1,1,1i,j,k=0) (83)

where Eq. 83 is an abbreviation of Eq. 82, and ξ ≡ (ρ, θ). The mapping x ↔ ξ is one-to-one for
any point inside any finite flux tube as follows from the convexity property of the cell [45]. At the
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interface ϕm
+ a field line with flux-tube coordinates ξm in toroidal subdomain m has the real space

coordinates:
xint = f(ξm, {xm

ij,+}
1,1
i,j=0,+). (84)

The flux tube coordinates in toroidal subdomain m + 1 is obtained by inverting Eq. 84:

xint = f(ξm+1, {xm+1
ij,− }1,1i,j=0,−) (85)

for a given set of real space coordinates xint. Eq. 84 is equivalent to Eq. 85, except that the
latter is applied to a flux tube enclosing the field line in the consecutive toroidal subdomain with
common interface ϕm

+ = ϕm+1
− . Combining Eqs.84 and 85 the mapping from local coordinates to

real space coordinates can be expressed as a reversible mapping through the common interface:

f(ξm, {xm
ij,+}

1,1
i,j=0,+) = xint = f(ξm+1, {xm+1

ij,− }1,1i,j=0,−). (86)

Eq. 86 shows that the transfer of the field line from one toroidal subdomain to the consecutive
toroidal subdomain through the interface does not change the real-space coordinates xint. So,
the mapping is therefore error free [45]. Thus, once a field line is traced in a given subdomain
it extends continuously to the consecutive subdomain, where the trajectory of the field line is
uniquely determined in all the subdomains regardless of the tracing direction. The reversibility
property of the field line tracing is crucial to the numerical treatment of the fluid equations in the
EMC3 code. Large cross-field numerical diffusion errors arising from fast parallel transport are
avoided because of the reversibility property [45].

Since the mesh is grid aligned the flux-tube cross-section is deformed. Therefore, the bilinear
interpolation of the field lines inside the flux tube introduces a second order error in the mesh size
∆Lmesh. The deformation increases with the toroidal extent of the flux tube, but if the flux tube
is short enough it scales linearly with the flux-tube length ∆L∥:

δx = O
(
[∆Lmesh]2

)
∆L∥. (87)

The computational domain used in this thesis consists of half modules extending 36◦ toroidally. Due
to the up-down symmetry property of the W7-X the half modules can be put together forming
a full module which extends 72◦ toroidally. Thus, the whole torus consist of 5 identical full
modules and 10 half modules where every pair of half modules are up-down symmetric. Since the
computational domain is divided into half modules the fluid fields must be mapped at the bounds
of the computational domain when obtaining profiles of the fluid fields along the field lines.

Figure 22: The mapping of fluid fields stored in the flux tubes. The overlap areas {ai}4i=1 at
the mapping surface weighs the fluid field from the previous flux tubes in black to the flux tube
toroidally after the mapping surface. A field line is indicated by the black (before mapping) and
blue (after mapping) dashed line.

Furthermore, the fluid profiles of the field lines are discontinuous due to the mapping surface at the
bounds of the computational domain called the triangular cross-sections where ϕ = 36◦ +n72◦;n ∈
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[0, 4]. One flux tube cross-section is mapped to adjacent flux tubes with overlapping areas at the
mapping surface as shown in Fig. 22. The fluid fields in the mapping procedure is weighted by the
overlap area of adjacent flux tubes:

fnew =

4∑
i=1

fiai/

4∑
i=1

ai, (88)

where fnew is the fluid field of the fluxed tube adjacent to the flux tubes toroidally before the
mapping surface with fluid field values {fi}4i=1. as shown in Fig 22. The displacement of the flux
tubes at the mapping surface compensates for the field line motion towards the targets. If there was
no displacement between adjacent flux tubes the parallel transport would not have a component
in the radial direction of the grid. The grid was constructed such that the poloidal cross-sections
at ϕ = 0◦ + n72◦;n ∈ [0, 5] called the bean cross-section are identical when stellarator symmetry
is imposed. So, the mapping from one bean cross-section to another does not involve any relative
displacement of the adjacent flux tubes.

2.5 Field line energy analysis framework

The toroidal symmetry of tokamaks allows for a two-dimensional energy transport analysis whereas
this is not the case for stellarators. Moulton et al. (2021) analyse the heat load limiting flux tube as
introduced in section 3 [5]. In stellarators the simplification of analysing a flux tube is impossible
since they are not axisymmetric. The framework for energy transport analysis introduced in
this thesis builds upon the same idea as Moulton et al. (2021). However, it is directly related
to transport along field lines, making the analysis three-dimensional. So, instead of looking at
toroidal flux tubes, the field line intersecting the targets at the peaks of the heat flux distribution
will be regarded as the main contribution to the target load.

The field line tracer described previously in this section requires an initial position and traces in
both directions of the field. The initial position of the field line tracer is chosen to be at the peaks
of the heat flux distribution at each target. The number of peaks is limited by setting a threshold
α where all chosen points satisfies:

{qt}peaks ≥ α∥qt∥∞; α ∈ [0, 1]. (89)

where ∥qt∥∞ is the maximum of the heat flux distribution at each target individually. So, selection
of points are chosen relative to the value of the peak heat flux at each target. The points were
selected by setting α = 0.75 and are shown in Fig. 23. The other points in purple are reference
points to check for consistent behaviour of the energy transport along the field line for field lines
that are not associated with the hot spots at the targets. The method used in this thesis for
selecting initial positions for the field line tracer was intended to explore the physics of field lines
that end up at every target.
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(.1) Upper horizontal target.

(.2) Lower horizontal target.

(.3) Upper vertical target.

Figure 23: Heat flux distribution on the divertor targets. Red indicates a large value of the heat
flux density, and dark blue zero. The points in pink satisfies Eq. 89.

Each term in the local energy balance is given for each field line. Thus, the fields along field lines
selected by the condition in Eq. 89 are evaluated by the integral in Eq. 52. The assumptions made
in Feng’s and Lengyel’s models can be assessed by sequentially removing terms from the divertor
impurity concentration given in Eq. 53 until the same form as given in the respective models is
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obtained. In this thesis the only impurity considered was carbon, an intrinsic impurity in W7-X
because the divertor targets are made of carbon-fiber composite [18]. Thus, carbon is an intrinsic
impurity because it is introduced to the plasma via sputtering from the walls [8]. The assessment
is done by the following steps:

1. Compute the impurity concentration in the divertor directly from the impurity densities for
each ionisation stage of carbon:

cC =

Z0∑
Z=0

cZ/ne. (90)

This will be used as a baseline for assessing the validity of the assumption made in the
Lengyel and Feng model.

2. The divertor impurity concentration is approximated by:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB + Iconv + Icond,i∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(91)

3. Icond,i is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB + Iconv∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(92)

4. Iconv,e is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB + Iconv,i∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(93)

5. Iconv,i is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥ − IB∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(94)

6. IB is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral + I⊥∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(95)

7. The transfer of power due to cross-field transport I⊥ is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t) − Ineutral∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(96)

8. The plasma-neutral interaction loss Ineutral is assumed to be negligible:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t)∫ u

t
κ∥0eT

5/2
e n2

eLαdTe

(97)

9. The electron static pressure pe = neTe is assumed constant and set to the upstream value
pe = pe,up:

⟨cC⟩ut ≈
1
2 (q2∥,cond,e,u − q2∥,cond,e,t)

p2e,up
∫ u

t
κ∥0eT

1/2
e LαdTe

(98)

10. The temperature-independent parallel electron conductivity coefficient κ∥0e is assumed con-
stant and set to the mean along the field line value from upstream to the target κ∥0e = ⟨κ∥0e⟩ut
and q∥,cond,e,t = 0:

⟨cC⟩ut ≈
1
2q

2
∥,cond,e,u

p2e,up⟨κ∥0e⟩ut
∫ u

t
T

1/2
e LαdTe

(99)
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2.6 Global energy analysis

A global energy analysis was carried out to assess the consistency between the field line treatment
of the contribution to the targets and the total target heat load. This analysis is similar to what
was done in the paper by Feng [1].

2.6.1 Grid structure

The grid structure needs to be described to present the global energy balance analysis framework.
The grid is constructed with cylindrical coordinates (R, z, ϕ) where R is the major radius, z is the
vertical distance from the midplane and ϕ the toroidal angle given in radians. Furthermore, the
grid is structured with dimensions (ir, iθ, iϕ) representing the grid’s radial, poloidal and toroidal
dimensions, respectively. In this thesis the grid has dimensions (ir, iθ, iϕ) = (129, 398, 36). The
structure of the cell is shown in Fig. 24. The scalar fields are cell-centred and uniquely defined for
each radial, poloidal and toroidal grid cell.

Figure 24: The structure of a grid cell is shown. The coordinates of the computational domain are
defined at each corner of every grid cell. The corners of a grid cell is given by local radial, poloidal
and toroidal indices {i∆r, i∆θ, i∆ϕ}, respectively. The scalar field obtained in the simulations are
defined at the center of mass of each grid cell shown as the red dot. All scalar field quantities are
given for radial, poloidal and toroidal indices {ir, iθ, iϕ}.

2.6.2 Global energy balance

The global energy balance was computed by the volume integral over the local energy balance
cumulatively up to a radius r given by Eq. 19. The radial integration was defined numerically by
summing over a radial index ir. The volume integral can be expressed as the cumulative sum:

PSOL =

ir∑
i′r=20

398∑
iθ=20

36∑
iϕ=20

(∇ · q − See − Sei − Simp)dVcell(i
′
r, iθ, iϕ) −Qt(ir) (100)

where the cross-field term on the LHS ∇ · q⊥dV (ir = 20) was set to 4.5 MW as the heat entering
the SOL from the core across the LCFS (ir = 20) is through cross-field transport. The cell volumes
dV (ir, iθ, iϕ) was computed by subdividing the grid cells into tetrahedra. Then the volume of each
tetrahedra wa computed and the volume of the grid cell was evaluated by summing over all the
tetrahedra making up the grid cell. The subdivision was done such that the hexahedral cell was
divided into the least amount of tetrahedra which was 5 [47].
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2.6.3 Radial heat flux densities

The heat flux densities are computed as described in Eqs. 56 and 57. However, the radial dis-
placement needed to compute the gradients is taken to be the distance along the radial index ir
with respect to cylindrical axis of the grid indicated by the black dot in Fig. 25. The cylindrical

axis {Rj
0, z

j
0, ϕ

j
0}

max(iϕ)
j=0 is taken as the poloidal mean of the inner radial boundary surface for each

toroidal angle, and will thus change with the toroidal angle:

{Rj
0, z

j
0, ϕ

j
0}

max(iϕ)
j=0 = ⟨(R, z, ϕi)⟩iθ,ir=0,iϕ=ijϕ

(101)

where the superscript max(iϕ) indicates the toroidal indices’ maximum value. The toroidal angles
ϕ in the set of coordinates centered at the cylindrical axis are identical to the original toroidal grid
angles. Curly brackets {·} is used to indicate the set of a quantity where the sub- and superscript
indicate the range of grid indices for which the set is selected.

Figure 25: A coarse version of the EMC3 grid is plotted for a poloidal cross-section with green
edges at ϕ = 0◦ for every 10th radial and 5th poloidal index. The radial and poloidal directions are
indicated by the black and cyan arrows, respectively. The purple line represents the LCFS and the
magnetic islands are shown as a Poincaré section in red. The black dot is the cylindrical axis of the
grid computed by the poloidal mean of the inner radial surface of the poloidal cross-section where

the coordinates {Rj
0, z

j
0, ϕ

j
0}

max(iϕ)
j=0 of the cylindrical axis are dependent on the toroidal angle.

In order to illustrate how the grid resolves the magnetic islands the island are plotted as a Poincaré
section over the grid. The coordinates (rc, zc) centered at the cylindrical axis is defined as:

{rc}
max(iϕ)
j=0 = {R}max(iϕ)

j=0 − {R0}
max(iϕ)
j=0 (102)

{zc}
max(iϕ)
j=0 = {z}max(iϕ)

j=0 − {z0}
max(iϕ)
j=0 . (103)

The radial gradients of the density and temperature fields {Te, ne} was computed as follows:

∇rc{Te, ne}(iθ, iϕ) =
{Te, ne}(ir + 1, iθ, iϕ) − {Te, ne}(ir, iθ, iϕ)

|rc(ir + 1, iθ, iϕ) − rc(ir, iθ, iϕ)|
(104)

where the derivative was computed for any poloidal and toroidal grid index iθ and iϕ, respectively,
between radial surfaces defined at radial indices ir + 1 and ir. The region of interest for these
gradients were defined from the LCFS (ir = 20).
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2.6.4 Poincaré map

For magnetic field lines a Poincaré map is defined by the tracing the points along a field line that
intersect a 2D cross-section. The equation for a magnetic field line is [48, 49]:

dr(s)

ds
=

B

|B|
(105)

where r(s) is the coordinates of a point on the field line dependent on the field line arclength s.
Specifically for the field line tracer used to make the Poincaré map Eq. 105 is solved with the
initial condition r(0) and the magnetic filed computed with Biot-Savart’s law for a given set of
coils and coil currents [48]. In this thesis the coil configuration and coil currents used for making
the Poincaré map corresponds to the standard magnetic field configuration in the W7-X. For a
cylindrical coordinate system with coordinates (R, z, ϕ) the field line equations is given by:

1

R

dz

dϕ
=

Bz

Bϕ
(106)

1

R

dR

dϕ
=

BR

Bϕ
(107)

where the magnetic field components B = BRR̂ + Bz ẑ + Bϕϕ̂ can be determined by the vector
potential A through the equation B = ∇×A.

The cylindrical coordinates are related to the toroidal coordinates through:

R = R0 + rcosθ (108)

z = rsinθ (109)

where R0 is the major radius of the torus and r the minor radial coordinate. In the thesis the
Poincaré plots were made by using the web services field line tracer [48].

2.7 Simulation cases

The most important parameters chosen for the EMC3 simulations carried out for this thesis is
shown in Table 2.

frad[%] nu[m−3] PIBS[MW] D⊥[m2s−1] χ⊥,e,i[m
2s−1]

20 3.5 × 1019 4.5 0.25 0.75
80 3.5 × 1019 4.5 0.25 0.75

Table 2: Key parameters of EMC3 simulation cases where frad = {0.2, 0.8}.

For both cases the SOL input power PIBS was chosen as 4.5MW and distributed in such a way that
the plasma temperature Te was constant over the inner boundary surface (IBS) defined at radial
index ir = 9. The upstream density nu = 3.5 × 1019m−3 constant over the radial surface corre-
sponding to the LCFS. Moreover, a constant diffusion coefficient D = 0.25m2s−1 and cross-field
conductivity coefficients χe = χi = 3 ·D = 0.75m2s−1 was chosen throughout the computational
domain where the linear relation between the diffusive and the conductivity coefficient is based
on experimental estimations from density scans [20]. For both simulations a radiation boundary
condition was chosen as a fraction of the SOL input power. In other words the total energy loss
fraction frad = Prad/PIBS due to impurity radiation was chosen represent a low frad = 20% and
high radiation scenario frad = 80%. A low and high radiation scenario was chosen to determine the
consistency of the energy transport properties with respect to the radiated fraction as well as rep-
resenting an attached and detached plasma. Furthermore, for the high radiation case frad = 80%
was chosen to represent phase I of the two detachment phases described in Feng et al. (2021) [1].
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3 Simplified SOL energy transport models

The energy balance can be simplified when removing terms from Eq. 14 gives approximately equal
values on both sides of the equation. Lengyel, Post, Stangeby, and Feng have derived simplified
models for energy transport in the SOL [6, 7, 8, 38, 4]. Most importantly, they all assume that
the impurity radiation dominates the energy sink and source terms implying that plasma-neutral
interaction sources and sinks Sneutral are insignificant. Regardless of divertor configuration, the
parallel electron conductive heat flux density is much larger than the cross-field heat flux density,
i.e., q⊥/q∥ ≪ 1. However, for the heat flux in the direction of the radial distance from the last
closed flux surface this is not necessarily the case [4, 1]. The radial projection of the parallel terms

are much smaller than their total magnitude q∥b̂ · r̂/|q∥| ≪ 1. The field line pitch Θ is introduced by
Feng as the radial projection parameter of the parallel transport. The magnitude of Θ determines
the parallel and perpendicular transport ratio. This ratio is important to establish before deriving
a scaling law because it determines which terms need to be included in the model. The two models
presented in the following subsections are simplified models for the energy balance in the SOL of
magnetically confined plasmas.

3.1 Lengyel model

In 1981 Lengyel wrote a report on the stability and equilibrium properties of radiating plasma
boundary layers [6]. His objective was to obtain information about the properties of the radiation
layers with respect to the magnitude of the energy flux that can be removed from the plasma by
the impurity radiation while the impurity content is kept at a tolerable level with respect to the
radiation loss in the core [6]. Lengyel assumes time-independence is for the local energy balance.
Thus, the simplified version of the time-independent energy balance and transport equations given
in Eqs. 42 and 43 describing the transport along magnetic field lines (Eq. 111) and the loss due
to impurity radiation (Eq. 110) is :

∇∥q∥ = −n2
ecαLZ(Te) (110)

q∥ = −κ0,eT
5/2
e ∇∥Te (111)

where LZ(Te) the electron temperature dependent radiated power loss function for equilibrium
fractional abundances [6, 50]. The ionisation distribution is given by the density of the ionisation
stages of the impurities with respect to the temperature. Eq. 110 is a simplified version of the
local energy balance. Lengyel made the following assumptions in order to reduce the equation to
the form given in Eqs. 110 and 111:

1. Parallel conductive electron energy transport is dominant.

2. Sources and sinks due to plasma-neutral interactions are insignificant. All dissipation is due
to impurity radiation.

3. The effect of the impurity transport on the fractional abundances can be included by using
a single constant residence time for the impurities [5, 51]. Thus, the radiation power loss
function only depends on the electron temperature.

By combining the pair of equations Eq. 110 and 111, and dividing by the temperature gradient
along a field line, we get an expression for the square of the heat flux density and the temperature
profile [6, 7]:

∂q2∥

∂T
= κ0,eT

5/2
e n2

ecαLZ(T ). (112)

Eq. 112 can be solved with respect to the temperature dependent heat flux density for a given
temperature profile: ∫ q∥,up

q∥,t

dq2∥ =

∫ T

T0

κ0,eT
′5/2
e n2

ecαLZ(T ′
e)dT

′
e (113)
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where the RHS is integrated along the temperature profile from the inner boundary temperature
T0. The RHS represents the losses due to impurity radiation. Upstream can be considered as the
maximum temperature along a field line going from target to target, and downstream the position
where the field line ends up at the target. Integrating from downstream to upstream conditions
Eq. 113 becomes:

q2∥,up − q2∥,t = p2ecα

∫ Tup

Tt

κ0eT
′1/2
e LZ(T ′

e)dT
′
e (114)

where the static electron static pressure pe and the impurity concentration cα is assumed constant
along the field line. pe was set to the upstream value pe = pe,up. The value of the impurity
concentration is given by the average of the impurity concentration ⟨cα⟩TSOL

e
over the temperature

range of the SOL indicated by the subscript T SOL
e of the averaging brackets. Furthermore, the

equation can be rewritten as the ratio between the heat flux densities at the targets and the
entrance of the SOL:

q∥,t

q∥,up
=

[
1 −

p2e,upcα
∫ Tup

Tt
κ0,eT

′1/2
e LZ(T ′

e)dT
′
e

q2∥(Tt)

]1/2
. (115)

By defining the radiated power fraction frad ≡ 1 − q∥,t/q∥,up the equation can be rewritten:

1 − frad =

[
1 −

p2e,upcα
∫ Tup

Tt
κ0,eT

′1/2
e LZ(T ′

e)dT
′
e

q2∥(Tt)

]1/2

frad = 1 −

[
1 −

p2e,upcα
∫ Tup

Tt
κ0,eT

′1/2
e LZ(T ′

e)dT
′
e

q2∥(Tt)

]1/2
(116)

which makes the LHS comparable to experimental values as the total radiated power Prad can be
measured by a bolometer and frad = Prad/Pin.

3.2 Including cross-field transport - Feng model

Correcting for the effect of the field line pitch in the ID requires the cross-field terms to be included.
Assuming that transport still is conduction dominated, Feng expresses the energy transport equa-
tion with both parallel and cross-field transport terms projected in the radial direction x from the
LCFS [4]:

∂q

∂x
= −n2

ecαLZ(Te) (117)

q = D⊥
∂Te

∂x
(118)

D⊥ = κ0,eT
5/2
e Θ2 + χene (119)

where D⊥ is the effective radial conductive diffusion coefficient and Θ is the divertor relevant field
line pitch. From here on out, it will be referred to as just the field line pitch. To give a rigorous
definition of Θ is difficult, but this thesis will use the definition as given in section 1. This is
expressed mathematically as:

Θ =
∆xn̂×b̂

∆Lc
, (120)

where ∆xn̂×b̂ is the binormal displacement between two intersections of consecutive revolutions

around the torus with arclength ∆Lc where the sum
∑N

i=1 ∆L
(i)
c = Lc is taken up to the number

of revolutions N of the field line from target to target. If the field line is normal to the poloidal
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cross-sectional surface, the contribution from the parallel component of the heat flux in the radial
direction is exactly zero. However, if the field line has a small angle from the normal of the poloidal
cross-section the radial component of the parallel transport is small. So, the corresponding radial
component of the cross-field transport needs to be included because the magnitudes could be
comparable.

Each island has a slightly different pitch angle with respect to the poloidal cross section. Therefore,
the definition of Θ is an approximation to simplify the analysis and the interpretation of the results.
Feng makes additional approximations for simplification:

1. The field line pitch is spatially varying, but the variation is small enough to be approximated
as constant, so Θ ≈ const.

2. The anomalous conductive transport represented by the transport coefficient χe is assumed
to be constant.

3. The binormal transport is continuous.

Dividing the transport coefficients in front of the temperature gradient from Eq. 119 gives the
following condition for dominant parallel transport:

χene

κ0,eT
5/2
e Θ2

< 1

Te >

(
χene

κ0,eΘ2

)2/5

(121)

which means that for low-temperature regions the cross-field transport will compete or even dom-
inate the radial transport [4]. The condition captures the transport properties of the SOL region
close to the targets. Consequently, the SOL should be split up in regions where parallel trans-
port dominates, parallel and perpendicular transport is competing and perpendicular transport
dominates [52].

The condition on transport regime can also be expressed for the field line pitch Θ:

Θ >

(
χene

κ0,eT
5/2
e

)1/2

, (122)

assuming that the field line pitch is spatially varying. This condition indicates which magnetic
field configuration that belongs to which transport regime. Ideally, this condition can be used
as a measure for choosing a magnetic configuration that enforces a transport regime with desired
energy transport properties as it determines the Lc footprint on the targets.

3.3 Validity of Lengyel model based on SOLPS simulations

Two SOL energy transport models have been introduced in the previous subsections. This sub-
section will present a framework for assessing the validity of the assumptions made in the Lengyel
model. The analysis done in this thesis is based on the framework presented by Moulton.

Moulton et al. (2019) compares the Lengyel model to SOL plasma solver (SOLPS) simulations
for a physics gain factor Q = (Pout − Pin)/Pin = 10 ITER scenario with neon-seeded plasmas
[9, 5]. Thus, this simulation mimics the behaviour of operating a plasma that gains 10 times more
energy than put in, and that extrinsic impurity radiation is obtained by injecting neon. The paper
introduces a new framework for validating the Lengyel model for predicting impurity concentration
needed for detachment, roughly at the temperature for which the target ion flux rolls over. Their
framework is based on evaluating the heat flux equation along flux tubes, referred to as flux rings
in the paper, which they argue are of most importance to the radiative volume. The flux ring is
chosen based on conditions in the outer divertor as this is the limiting region with respect to the
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target heat load. This corresponds to the flux ring extending up to the power width of the SOL
λq, also known as the width of the heat flux channel [53, 54, 55]. Thus, the analysis for a flux
ring of width λq at the rollover condition for target particle flux defining detachment onset. This
definition of detachment onset corresponds to a target temperature Te,t ∼ 1eV.

The SOLPS simulations solves the following equations for the parallel heat flux density [5]:

B
d

ds

(q∥
B

)
= n2

ecαL
SOLPS
α︸ ︷︷ ︸

SQα

+SQother
(123)

q∥ = κe,∥0,FLT
5/2
e

dTe

ds︸ ︷︷ ︸
q∥,e,cond

+q∥,other (124)

q∥,other = q∥,e,conv + q∥,i,cond + q∥,i,conv (125)

SQα = n2
e

Z0,α∑
Z=0

nαZ

ne
LSOLPS
α (126)

LSOLPS
α =

Z0,α∑
Z=0

F SOLPS
αZ

ηSTRAHL
αZ

(127)

F SOLPS
αZ

=
nαZ∑Z0,α

Z=0 nαZ

(128)

SQother
= SQneut

+ SQRT
(129)

(130)

Eq. 123 is the full SOLPS equation for the parallel heat flux density and describes the balance
between the heat flux density on the LHS and the sources and sinks on the RHS. The LHS accounts
for dilution due to flux expansion in the parallel direction. The first term on the RHS is the energy
loss due to impurity radiation and the second term represents the loss due to all other energy
loss mechanisms. Eq. 124 represents all the parallel heat flux density terms, and is divided into
the electron conductive transport and the other terms given in Eq. 125. The subscript FL of the
conductivity coefficient stand for flux-limiting which limits the conductive heat flux to convective
free-streaming electrons at sound speed cs. The impurity radiation loss is assumed to come from
a primary impurity radiator of species α. The concentration of the primary impurity radiator

cα =
∑Z0,α

Z=0 nαZ
/ne in Eq. 126. The sum is over all charge states Z of species α up to the charge

state where the ion is stripped of electrons Z0,α. The radiated power loss function function from
SOLPS is defined in Eq. 127 where F SOLPS

αZ
is the fractional abundance of αZ defined in Eq. 128

which includes transport effects. ηSTRAHL
αZ

is the cooling rate coefficient for αZ , from the STRAHL
dataset, including line radiation , recombination, bremsstrahlung and ionisation cost [56]. The
second term in Eq. 123 defined in Eq. 129 represents the energy loss due to interaction between
the plasma and the deuterium neutrals SQneut and net radial energy flux out of the considered flux
tube SQRT

(RT - radial transport).

3.3.1 Integral terms

After establishing the terms included in the local energy balance Eq. 123 and 124 are combined
and integrated to obtain an expression for the heat flux density at the end of the flux tube by the
same treatment as Lengyel has done in Eq. 113:

q∥,t =

(
q2∥,u − 2

∫ u

t

κe,∥0,FLT
5/2
e n2

ecαL
SOLPS
α dTe + 2tB − 2tother

)1/2

(131)

tB =

∫ u

t

B
d

ds

(q∥
B

)
−
∫ u

t

q∥dq∥ (132)

tother =

∫ u

t

Bq∥,otherd
(q∥
B

)
+

∫ u

t

κe,∥0,FLT
5/2
e SQother

dTe (133)
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Eq. 131 is the solution of the Lengyel integral from target to upstream conditions expressed in
terms of the heat flux density at the target end of the flux tube. Eq. 132 accounts for the variation
in the magnetic field strength along the field line where tB = 0 if B = const. Eq. 133 accounts
for the energy loss other than Ne radiation along the flux tube, which is net radial transport and
plasma-neutral interaction, parallel convective and ion conductive transport.

3.3.2 Lengyel model solution in Moulton analysis

The following set of equations gives a self-contained solution of the integral along the flux tube
from upstream u to target t:

q∥,t =

(
q2∥,u − 2κe,∥0,FLn

2
e,uT

2
e,ucα

∫ u

t

T 1/2
e Lneτ

α dTe

)1/2

(134)

q∥,t = γ(ne,uTe,u/2)
√

2Te,t/mi (135)

L∥ = κe,∥0,FL

∫ u

t

T 5/2
e q∥(Te)dTe (136)

where γ is the sheath transmission coefficient [8]. The following assumptions have been made for
Eq. 134-136:

1. κe,∥0,FL, B, and cα are constant along the flux tube. A constant B along the flux tube means
no energy dilution because the variation of the magnetic field strength along the flux tube
is zero. The temperature-independent conductivity κe,∥0,FL can be assumed constant as it
does not change much along the divertor leg. Assuming constant impurity concentration cα
means that the variation is so small that using the exact impurity concentration will have
no impact on the result of the integral. Thus, the conductivity coefficient and the impurity
concentration can be put outside the integral in 134.

2. The electron pressure neTe is assumed to be constant in the radiation region, meaning it can
be put outside the integral of Eq. 134 and given by the upstream value.

3. LSOLPS
α represents the baseline of they radiated power loss function for which the electron

cooling coefficients ηSTRAHL
αZ

ignores electron impact deexcitation due to sufficiently low elec-
tron density. The impurity transport is approximated by calculating the fractional abun-
dances from an ionisation balance for a population of impurity atoms exposed to a plasma
at fixed ne and Te for a constant impurity residence time τ . This makes the radiated power
loss function Lneτ

α (Te) only dependent on the electron temperature avoiding resolving the
expression for coupled quantities.

4. The net radial transport and energy loss due to plasma-neutral interaction is negligible, so
q∥,other = 0 and Sother = 0.

5. The ion and electron temperatures at the target are equal Ti,t = Te,t.

6. The heat flux density at the target is transmitted through the sheath with transmission
coefficient γ as given in the Bohm criterion [8].

3.3.3 Framework for comparison with the Lengyel model

The focus of the paper by Moulton et al. (2021) is to review how the simplification of the SOL
physics model, required to derive a scaling of the radiation, affects the quality of the prediction
of the impurity concentration needed for detachment. Starting with the complex model given by
the SOLPS equations the validity of the assumptions used in the Lengyel model is investigated by
sequentially removing terms according to the following steps:

1. The integral is evaluated for quantities computed using the complete SOLPS model which is
to be used as a baseline for comparison with simplified expressions.
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2. The impurity concentration is approximated by the average impurity concentration in the
divertor ⟨cα⟩div at detachment given by:

⟨cα⟩div ≈
1
2 (q2∥,u − q2∥,t) + tB − tother∫ u

t
κe,∥0,FLT

5/2
e n2

eL
SOLPS
α dTe

(137)

3. The terms related to other heat flux mechanisms (convective and ion conduction) as well
as other energy losses other than impurity radiation (net radial transport + plasma-neutral
interactions) given by tother is removed:

⟨cα⟩div ≈
1
2 (q2∥,u − q2∥,t) + tB∫ u

t
κe,∥0,FLT

5/2
e n2

eL
SOLPS
α dTe

. (138)

4. The energy loss due to variation in the magnetic field strength given by tB is removed because
the magnetic field strength along the divertor leg is approximately constant:

⟨cα⟩div ≈
1
2 (q2∥,u − q2∥,t)∫ u

t
κe,∥0,FLT

5/2
e n2

eL
SOLPS
α dTe

. (139)

5. The static pressure pe = neTe is assumed constant over the integration domain and brought
outside the integral:

⟨cα⟩div ≈
1
2 (q2∥,u − q2∥,t)

n2
e,uT

2
e,u

∫ u

t
κe,∥0,FLLSOLPS

α dTe

. (140)

6. The SOLPS radiated power loss function LSOLPS
Z is replaced with Lneτ

Z assuming constant
neτ . Thus, the radiation power loss function only depends on the electron temperature Te:

⟨cα⟩div ≈
1
2 (q2∥,u − q2∥,t)

n2
e,uT

2
e,u

∫ u

t
κe,∥0,FLL

neτ
α (Te)dTe

. (141)

7. The simplified Lengyel model is applied where the upper electron temperature boundary
is approximated by the two-point model (2PM) and the lower boundary is set to zero [8].
The electron conduction coefficient κe,∥0,FL is approximated as constant and taken to be the
average value over the divertor leg. Thus, the set of equations with boundary conditions
from the 2PM are:

cNe =
q2∥,u/2

⟨κe,∥0,FL⟩n2
e,uT

2
e,u

∫ u

0
Lneτ
α

√
TedTe

(142)

Te,u = T 2PM
e,u =

7

2

(
q∥,uL∥

⟨κe,∥0,FL⟩

)2/7

, (143)

where Eq. 143 is the 2PM upstream temperature for zero target temperature Te,t = 0 eV.
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3.3.4 Relevant results and conclusions

Figure 26: Then main result of the paper following the sequential removal of terms given in
framework of Moulton et al. (2019). Source: [5].

The paper’s main result is shown in Fig. 26 where the sequential removal of terms as described in
the framework have been applied in the prediction of the impurity concentration in the divertor
needed for detachment. The simplified Lengyel model is consistently conservative in predicting the
impurity concentration needed for detachment. The following is worth noting for comparison with
the results later on in the thesis:

1. The difference between the actual SOLPS simulation of the average divertor concentration
(average taken along the flux ring) is minimal with respect to the approximation given in
Eq. 137.

2. Removing the term representing the energy loss along the flux tube due to net radial transport
and plasma-neutral interactions predict to increase by a factor of 2.

3. The concentration prediction almost doubles when constant pressure along the flux tube is
assumed.

4. For the flux ring of interest the approximation of constant impurity residence time τ barely
affects the concentration prediction.

Thus, the results tell us that the assumption of constant pressure along a flux tube and negligible
net radial transport and energy loss due to plasma-neutral interaction needs further investigation
as it indicates that the assumptions are invalid. Furthermore, the assumptions on negligible energy
loss due to variation in the magnetic field strength and constant residence time for the impurity
transport modeling seem to be valid. For the latter, it is the integral

∫ u

t

√
TeLZ(Te)dTe that is

important. Thus, the local differences between the radiation loss profiles computed by SOLPS and
the one assuming constant residence time are of less concern for the contribution to the heat load
on the target as long as the local variations are cancelled out by integration. This means that this
assumption can capture the integrated tendency of the radiative power loss, but cannot be used
for local analysis.

3.4 Global energy transport analysis in W7-X

Feng et al. (2021) describes the behaviour of the island divertor in W7-X at detachment based
on simulation results from EMC3-EIRENE [40, 38, 4, 1]. The simulation cases were made to
match discharges for which validated experimental data exists. In the paper, a global analysis of
the energy transport has been carried out with respect to the total heat load on the target and
the unloading due to impurity radiation at detachment. The results of the simulations for high
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total radiated power fraction frad cases show a homogeneously thermal unloading of the targets
by impurity line radiation. The radiation is distributed over a broad poloidal surface area and is
helically continuous. This results in a cooling layer at the edge with large area coverage supporting
the discovery of the homogeneity of the thermal unloading of the targets. Furthermore, the heat
flux mechanisms are studied in detail. It is shown that both classical heat conduction and cross-
field transport play a significant role in the energy transport from the LCFS radially outwards to
the targets.

3.4.1 Supportive experimental results

Figure 27: The main experimental results that is used to set the parameters of the simulation cases
in Feng et al. (2021). Source: [1].

Fig. 27 shows a typical experiment of a detached scenario with the W7-X island divertor in the
standard configuration. The detachment window corresponding to the yellow and red shaded areas
in Fig. 27 can be divided into two phases. In phase I the total radiative power Prad builds up
and after the gas puff the total target heat flux drops by an order of magnitude. The change
in core-related parameters like the edge electron temperature Tes, the line averaged density ⟨ne⟩
and the plasma stored energy Wdia for frad ≥ 0.8 can be associated with radiated power levels
beyond a critical level. Critical radiation levels in the core eventually leads to the breakdown of
the stored energy in the plasma. This event is outside the scope of this thesis. Thus, the rest of
the description of the plasma from Feng et al. (2021) given in this thesis will only concern phase I.

3.4.2 Energy transport equations

The local energy balance used for the energy transport in Feng’s paper is the equations used in
the EMC3 code given by Eqs. 56 and 57. Integrating the equations over the SOL volume gives
the radial 1D power balance in the SOL given in Eq. 19. However, for the computational domain
used in in the EMC3-EIRENE simulations the radially dependent heat flux terms are defined as
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follows:

Q⊥,cond(r) =

∫∫
r

(−χen∇⊥Te − χin∇⊥Ti) · ds (144)

Q∥,cond(r) =

∫∫
ϕ

(
−κeT

5/2
e ∇∥Te − κiT

5/2
i ∇∥Ti

)
· ds (145)

Qconv(r) =

∫∫
ϕ

[
5

2
n(Te + Ti)v∥,i

]
b · ds−

∫∫
r

[
5

2
D⊥(Te + Ti)∇⊥n

]
· ds (146)

Qimp(r) =

∫∫∫
r

RimpdV (147)

Qneutral(r) = −
∫∫∫

r

(See + Sei)dV (148)

Qt(r) =

∫∫
t

n(γeTe + γiTi)csb · ds (149)

where
∫∫

r
(·) · ds means integration over a radially-oriented surface. The integration

∫∫
ϕ
(·) · ds is

over a toroidally oriented surface of the radially projected parallel term (·). The volume integral∫∫∫
r
(·)dV and

∫∫
t
(·) ·ds means the integration over the target surface. All radially dependent heat

flux terms are integrated cumulatively up to r. Feng has a different grid than the one used for the
simulations in this thesis. The main difference is that Feng’s grid does not resolve the X-points,
but consists of nested surfaces as described in 2 that is more aligned with the flux surfaces of the
confined region. Feng’s grid gives a radial direction from the grid surfaces that varies less than
the grid used in this thesis. Feng’s choice of shape of the grid surfaces simplifies the interpretation
and computation of the global energy transport. However, it comes at the cost of not resolving
the transport in the region around the X-points.

Q⊥,cond is the total perpendicular conductive heat flux of electrons and ions going out from grid
surfaces oriented in the radial direction. Qconv is the total convective heat flux including both
perpendicular and parallel terms. The radial component of the parallel term is computed similarly
to the parallel conductive heat flux. Qneutral is the cumulative radially dependent energy loss
due to plasma-neutral interaction that includes the contribution of the ionization potential energy
released during surface recombination processes. Qimp is the cumulative radially dependent energy
loss due to impurity radiation, and Qt is the cumulative radially dependent power loss to the
target.

3.4.3 Results of detachment simulations

Figure 28: Radially depending heat flux for simulations with a) fimp = 0.64 and b) frad = 0.9. Note
that the scale is reduced in b) and that the heat flux from the impurity radiation Qrad is divided
by 2. Fort both plots the sum of all terms corresponds to the SOL input power PSOL = 5[MW].
Source: [1].
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The results of Feng’s simulations show the following:

1. The homogeneity of the unloading of the target heat loads is increased because the radiation
is better distributed for higher radiative powers. At high radiated power fraction the radi-
ation is well distributed poloidally and toroidally, making a continuous surface resulting in
homogeneous unloading of the targets.

2. Parallel conduction is a small contribution to the total energy balance throughout the SOL.

3. Perpendicular conductive transport is significant out to a distance from the LCFS where
convective transport becomes largest.

4. The convective transport peaks close to the ionization front of the hydrogen neutrals. As
the neutral penetration depth increase with higher radiated power fraction the peak of the
convective flow moves inwards towards the LCFS.

5. For increasingly high radiative power fractions the radiation front moves inwards almost
towards the LCFS as shown in Fig. 29. The tendency agrees with the experimental data
shown in Fig. 27 where the slope of the stored energy and edge temperature suddenly drops
when the radiative power saturates for which the radiation front has passed the LCFS.

Figure 29: The calculated a) and reconstructed (from the bolometer measurement of the discharge
shown in Fig. 27) b) radiation distribution during detachment is shown for cases with different
total radiative power fraction frad. The effective radius is shown on the horizontal axis where the
effective radius in a) has been approximated as the cylindrical average of each radial surface in the
computational mesh and the effective radius in b) denotes the closed surfaces linearly extrapolated
from the LCFS in a triangular cross-section. The top horizontal axes indicate the different regions
(confinement, SOL, target area). Source: [1].

Items 4 and 5 in the list of Feng’s results are not shown explicitly in the Feng et al. (2021 [1]), but
are spread across many papers [38, 57, 4]. The results from the simulations only motivate their
validity within the frames of the physics model of the code. Since the target unloading is observed
to be homogeneous, the field lines in this thesis’s analysis can be chosen to be traced from the
same locations at the target regardless of the radiated power boundary condition. Furthermore,
the shown insignificance of the parallel electron conductive heat flux density already indicate the
invalid assumption in Lengyel’s model. However, this can be locally dependent and needs to be
confirmed for profiles along the field line. Feng’s results indicate that the power loss from cross-
field transport and to the convective channels is significant. The convective transport can be very
important for large radiated power fractions as it peaks at the ionisation front, correlated with the
radiation front’s location.

In this section the simplified models for the energy transport in the SOL was presented. Further-
more, Moulton et al. did a validity assessment of the Lengyel model for SOLPS Q = 10 neon
seeded simulations, giving insight into the most severe assumptions about the energy transport at
detachment onset [5]. The results of the EMC3-EIRENE simulations of the energy transport in
the island divertor SOL will be presented and discussed in the next section.
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4 Assessment of Lengyel model in stellarator ID

In this section the result of the analysis of the EMC3 simulations will be shown first for the
global energy balance as defined in 2 in Eq. 19 complemented with the radial projection of the
cross-field heat flux density terms. This demonstrates consistency with the previous work by Feng
[38, 57, 4, 52, 1].

Second, the field line profiles of the terms in the field line integral from Eq. 52 and the contributions
from each integral term given in Eqs. 46-51 for each field line will be computed and discussed.
Since most of the heat load in the standard configuration is deposited on the upper horizontal target,
and to limit the discussion, the results presented in this thesis are only associated with the upper
horizontal target (low iota target). The analysis intends to compare the ratio of the magnitude of
the transport integral terms with respect to the results from Moulton et al. (2021) [5]. The ratio
between parallel and perpendicular transport terms is crucial to establish before simplifying the
LHS of Eq. 14 by making an assumption on the heat flux density terms.

Third, the impurity concentration was predicted following the list of imposed assumptions given in
Eqs. 91-99 using Eq. 90 as a baseline. The impurity concentration profiles and their upstream to
target average for each field line will be shown for comparison with the predictions by Eqs. 91-99.
This will indicate whether the concentration prediction can be used as a conservative estimate of
the required concentration for a desired frad.

4.1 Global energy transport analysis

The global power balance is given in Fig. 30 and 31 for cases with radiative power fraction
frad = 0.2 and frad = 0.8, respectively. The heat flux terms have been computed as described in
section 2. All components have been plotted in of Fig. 30 along with the sum of all the terms. The
grey dashed lines in Figs. 30 and 31 represents the approximate radial distance from the LCFS to
the X-points as described in section 2 and the poloidal and toroidal averaged temperature at the
radial grid surface intersecting the X-points, respectively. The location of the lines indicating the
X-points were determined by averaging a radial grid surface over the poloidal and toroidal indices.
The radial index was chosen by inspection of the location of the grid surface with respect to the
X-points. The dashed black line represents the region where the plasma starts interacting with the
targets. The location of the black line was chosen by inspection at the first intersection between
the grid surface at a constant radial grid index and the divertor targets in the first poloidal cross
section the targets and the grid surface cross.
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(.1) The global power balance is shown for radiative power fraction frad = 0.2

(.2) The global power balance is shown for radiative power fraction frad = 0.8.

Figure 30: The global power balance is shown as the integrated heat flux cumulatively up to radial
index ir. The sum of all the terms

∑
i

∫ r

rsep
dV∇ · q⃗i = Psep +

∫ r

rsep
dV S relaxes to the value of

the target heat flux. The symbol for impurity radiation intensity is Simp and the total impurity
radiation is Pimp. The plasma-neutral interaction sources and sinks due to electron impact is given
by See and ion impact by Sei. The symbol for total power loss to the target is Pt.

The interpretation of the integrals shown in Figs. 30 and 31 is the cumulative sum from the
grid surface representing the LCFS up to a surface at a given ir of the heat flux difference
dQ(ir) = [

∑
i ∇ · qidV ](ir) between the inner and outer radial surface of a toroidal shell of volume∑

iθ,iϕ
dV (ir, iθ, iϕ) defined at a radial grid index ir. It is clear from Figs. 30 and 31 that there is

global power balance for both simulation cases. This is shown by the convergence of the sum of
all the heat flux terms to the target heat flux. The sum of the heat flux terms is equivalent with
the sum of the power at separatrix Psep and the effective energy loss

∫ r

rsep
dV S which is Eq. 19

expressed in terms of the heat flux for a given radius Q(r). Furthermore, the total radiation loss
Pimp =

∫ r

rsep
dV Simp converges to the value given in radiation boundary condition as it is supposed

to.
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(.1) The global power balance is shown for radiative power fraction frad = 0.2

(.2) The global power balance is shown for radiative power fraction frad = 0.8.

Figure 31: The global power balance is shown as the cumulative integral of the net heat flux of a
radial shell up to radial index ir. The sum of all the terms is

∑
i

∫ r

rsep
dV∇ · q⃗i = Psep +

∫ r

rsep
dV S.

The horizontal axis is represented by the electron temperature Te in eV. The symbol for impurity
radiation intensity is Simp and the total impurity radiation is Pimp. The plasma-neutral interaction
sources and sinks due to electron impact is given by See and ion impact by Sei. The symbol for
total power loss to the target is Pt.

The tendencies of the global power balance agrees with the corresponding results presented in
Feng et al. (2021) [1]. In both cases the cross-field transport dominates. Furthermore, the region
from the X-points to the target region shows a larger change in the cross-field transport and
parallel electron conductive transport for frad = 0.8 compared to the frad = 0.2 case due to a
stronger drop in the temperature. The temperature drops more in the high radiation case because
increased radiation implies a stronger temperature reduction in the radiative volume. Due to
the inwards movement of the ionization front the parallel convective term overtakes the parallel
electron conductive term before crossing the X-points. Furthermore, the parallel convective heat
flux for ions and electrons have approximately the same magnitude. Moreover, in the low radiation
case the energy losses are dominated by the neutral interactions due to electron impact, but the
role changes with the radiation losses when the radiated power fraction is increased to frad = 0.8.
This implies that there is a transition at some radiated power fraction between frad = 0.2 and
frad = 0.8 where the impurity radiation loss becomes greater than the neutral losses. In both
cases the observed energy loss from the neutral interactions due to ion impact and the parallel ion
conductive transport is insignificant. The latter is expected as the electron conductivity is larger

than the ion conductivity due to the m
−1/2
i dependence of the conductivity coefficient [42, 8].
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4.1.1 Radial projection of cross-field conductive heat flux densities

The radial projection of the conductive cross-field heat flux densities was computed as described
in section 2. The targets and the island structure are included in Figs. 32 and 33 by black lines
and a red Poincaré plot in grid index space (ir, iθ), respectively. The conductive cross-field heat
flux densities are plotted against the radial and poloidal grid indices for interpretation because
they are homogeneously distributed. The cross-field heat flux densities starts at the LCFS given
by the same radial index as the inner boundary for the global power balance (ir = 20). Note that
the cross-field heat flux densities are approximated by the radial gradients of the density and the
temperature fields. The magnitude of the approximated cross-field heat flux densities agrees with
the magnitude of experimental measurements [35].

(.1) The radial projection of the decomposed cross-field heat flux densities at ϕ = 0◦.

(.2) The radial projection of the decomposed cross-field heat flux densities at ϕ = 12◦.

(.3) The radial projection of the decomposed cross-field heat flux densities at ϕ = 35◦.

Figure 32: The radial projection of the cross field heat flux densities at toroidal angles ϕ =
{0◦, 12◦, 35◦} for the frad = 0.2 case. The islands structure is indicate by the grey Poincaré plot
and the targets by the black lines. The horizontal axis is given by the poloidal grid indices iθ and
and the vertical axis is given by the radial grid indices ir.

The plots in Fig. 32 shows the conductive cross-field heat flux density components for the low
radiation case with frad = 0.2. It exhibits a clear structure with transport towards the targets
(positive) strongly localised at the X-points. For the convective term this is closely followed by
transport in the opposite direction (negative) located inside the island, and between the X-points
and the targets. The negative transport is due to a local maximum in the density correlated with
the ionization front. The correlation between the convective transport and the ionisation front will
be emphasized in the next subsection on the analysis of the field line ensemble. Thus, below the
X-points heat is transported back towards the confined region via cross-field convective transport.
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The negative parallel convection agrees with the negative values for the cross-field term seen in the
global energy balance for the low temperature region Te ∼ 0 − 10eV.

(.1) The radial projection of the decomposed cross-field heat flux densities at ϕ = 0◦.

(.2) The radial projection of the decomposed cross-field heat flux densities at ϕ = 12◦.

(.3) The radial projection of the decomposed cross-field heat flux densities at ϕ = 35◦.

Figure 33: The radial projection of the cross field heat flux densities at toroidal angles ϕ =
{0, 12, 35} for the frad = 0.8 case. The islands structure is indicated by the grey Poincaré plot.
The horizontal axis is given by the poloidal grid indices iθ and and the vertical axis is given by the
radial grid indices ir.

The plots in Fig. 33 show the cross-field heat flux density components of the high radiation
case with frad = 0.8. In both the frad = 0.2 and frad = 0.8 case the ion and electron temperature
decrease from the LCFS to the targets, so the cross-field conductive terms are positive, as expected.
The localisation of the heat flux densities at the X-points implies that the PFR is important.
Furthermore, the concentration is larger around some X-points than others. This implies that the
distribution of power to the PFR is asymmetric. An asymmetry in the power distribution around
the X-points implies an asymmetry in the heat deposition on the walls. So, if the variation of the
power at the X-points is large enough, the region of strongest cross-field transport will be critical to
consider. The heat flux density is concentrated at the X-points around the poloidal index iθ = 20
and iθ = 200. This feature is more profound for frad = 0.8 than frad = 0.2 which can be correlated
to the inwards movement of the radiation front towards the X-points. The X-point at poloidal
index iθ = 20 is associated with the X-point poloidally before the island intersecting the upper
horizontal target. The island around iθ = 200 is the island on the inboard side. The coloured
Poincaré plot in Fig. 34 indicates the total cross-field heat flux density and the island locations.
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(.1) frad = 0.2

(.2) frad = 0.8

Figure 34: The total cross-field heat flux density for frad = 0.2 and frad = 0.8 at ϕ = {0◦, 12◦, 35◦}.
The upper plots show the heat flux densities in grid index space (ir, iθ) and the lower plot shows
the corresponding poloidal cross section. The horizontal colourbar indicates the poloidal index iθ
so that the islands in the plots above can be associated with their real space coordinates (R, z) in
the plot below. The divertor targets are shown by the black lines.

A key observation is that the dominance of the cross-field convection in Fig. 34 does not appear
to be in immediate agreement with Feng’s results for the cross-field heat flux where cross-field
conduction is larger than the cross-field convection as shown in Fig. 28. However, the approximated
convective cross-field heat flux densities in Figs. 32 and 33 have significant negative values. Thus,
the positive regions are reduced by the negative regions in the volume integral such that the
cross-field conductive heat flux might be larger than the cross-field convective heat flux.

4.2 Local energy transport

In this subsection profiles along field lines will be presented such that the local behaviour of the
plasma in the ID can be discussed and compared with the behaviour presented in sections 1 and
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2. Furthermore, it intends to demonstrate the consistency between the integral terms in the
impurity concentration prediction given in Eqs. 91-99 and the results from Feng et al. (2021) [1].
The stepwise simplification of the impurity concentration equation presented in section 2 will be
evaluated in this subsection.

4.2.1 Ensemble of field lines in the SOL

To show the tendency of the local behaviour all field lines in the SOL in both simulation cases
are shown in the same plot. The spatial location of each field line with respect to a poloidal
cross-section for a toroidal angle ϕ = 2◦ is shown in Fig. 35. The magnetic islands are plotted as
a Poincaré plot in grey. The profiles of the scalar and vector fields along the field lines are shown
against a normalised arclength l∥/∥l∥∥∞.

Figure 35: The field lines are projected onto the poloidal cross-section for toroidal angle ϕ = 2◦

such that the field lines can be related to their location in the island. The colour of the field line
intersections are the same as used for the field lines profiles. The scatter points shows the location
of the approximated X-points and are given as dashed vertical lines in the profiles along the field
lines. These points were approximated by taking the index of the intersections closest to 20% and
80% of the maximum index of the intersections between the field lines and the poloidal plane at
ϕ = 2◦.

To distinguish between what is referred to as the left and right part of the field line, the two parts
are shown for a poloidal cross-section at ϕ = 2◦ and the q∥cond,e-profile for q∥cond,e where the
intersections between the field line and the poloidal plane are the white to black dots in Fig. 36
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Figure 36: How the field line is split into a left (0 ≤ l∥/∥l∥∥∞ ≤ 0.5 ) and right part (0.5 ≤
l∥/∥l∥∥∞ ≤ 1 ) at the upstream location indicated by the dashed black line is shown. The two
parts are shown for a poloidal cross-section at ϕ = 2◦ in the right plot and the corresponding split
in the q∥cond,e-profile in the left plot. The intersections between the field line and the poloidal
plane are shown in both plots where the shades of grey and the horizontal axis in the left plot
represents the normalised arclength l∥/∥l∥∥∞.

Density, temperature and pressure profiles

The electron density ne, electron and ion temperature Te, Ti and static pressure pe, pi, and the
Mach number M profiles along the field lines associated with the upper horizontal target are
plotted in Fig. 37 for the frad = 0.2 and frad = 0.8 case in the left and right column, respectively.
These are the relevant profiles for discussing the parallel heat flux density terms as they are the
only quantities they depend on. The middle of the profiles are indicated by the grey dashed line as
a reference when distinguishing between the left and the right part of the field line as shown in Fig.
36. Furthermore, the black dashed line in the field line profiles is a reference line at l∥/∥l∥∥∞ = 0.25
and l∥/∥l∥∥∞ = 0.75 for the coloured dashed lines representing the X-points.
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(.1) frad = 0.2. (.2) frad = 0.8.

Figure 37: The field line profiles of ion and electron density, temperature, pressure and Mach
number along the normalised arclength l∥/∥l∥∥∞ are shown for frad = 0.2 and frad = 0.8 in 37.1
and 37.2, respectively. The colour of the lines indicate the same field lines as in Fig. 35. The X-
points locations for each field line are approximated by taking the index of the set of intersections
between the field lines and the poloidal plane at ϕ = 2◦ closest to 20% and 80% of the maximum
index of the intersections. These selected points correspond to the vertical dashed lines with
respect to both location and colour. The black dashed lines labeled X-points at l∥/∥l∥∥∞ = 0.25
and l∥/∥l∥∥∞ = 0.75 are given as a reference for the X-points.
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(.1) frad = 0.2 (.2) frad = 0.8

Figure 38: The logscaled electron density in the SOL.

The density profiles for both cases tend to increase by around 25% from the middle of the field
line where they have a minima as seen in Fig. 38 to around l∥/∥l∥∥∞ = 0.1 where they exhibit a
maximum. In the same region the temperature has a strong gradient towards the targets followed
by a positive gradient forming a local minima in the temperature profile. The spike in the density
profile agrees with the change in signs of the cross-field convective terms in Figs. 32 and 33.
Furthermore, the density profiles for field lines closer to the O-point have a steeper slope than the
field lines closer to the outer flux surface of the island. This explains why the slope of the pressure
profiles increases with the radial distance in the island reference frame as the temperature profiles
seem to be independent of location in the island.

The electron temperature profiles also show a clear tendency. In the range where the normalized
field line arclength l∥/∥l∥∥∞ ∈ [0.4, 0.6] the electron temperature almost constant. Then it starts to
decrease to around l∥/∥l∥∥∞ ∼ 0.1, 0.9 for the left part and right part, respectively, where it exhibits
a local minima meaning the parallel electron conduction will change directions before Te continues
to decay towards the target. The decay is approximately linear for frad = 0.2 implying parallel

electron conduction q∥cond,e ∼ T
5/2
e since ∇∥Te ∼ const. This was not the case for frad = 0.8 where

the temperature profile does not have clear local minima at l∥/∥l∥∥∞ ∼ 0.1, 0.9. Furthermore, the
local minima is correlated to the location of the ionisation and radiation front as the temperature
decreases in the region where the plasma-neutral interaction and impurity radiation sinks are
active. The ion temperature profiles have similar features, but it peaks around the middle of the
field line region where the electron temperature is approximately constant, and does not have local
minima at l∥/∥l∥∥∞ ∼ 0.1, 0.9.

Since, quasi-neutrality is assumed and the electron density has a minimum at the middle of the
field line the ion pressure profile is flat at the middle as opposed to the electron pressure which
exhibits a local minima. The width of the kink in the pressure profiles at around l∥/∥l∥∥∞ ∼ 0.1, 0.9
for frad = 0.2 is increased for frad = 0.8. Furthermore, this feature resembles a stepwise drop in
the pressure for frad = 0.2 compared to a continuous transition in frad = 0.8. Overall the ion
and electron temperature profiles exhibit similar properties causing the ion and electron pressure
profiles to have the same general tendency. They vary little in the range l∥/∥l∥∥∞ ∈ [0.3, 0.7] and
then decay approximately linearly towards the target.

(.1) frad = 0.2 (.2) frad = 0.8

Figure 39: The total pressure ptot in the SOL.

The static pressures and the Mach number are seem to be coupled, which is expected as the static
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and dynamic pressure is coupled. Total pressure is not preserved as shown in Fig. 39 since other
energy sources and sinks are present, but the plasma velocity is increased when the static pressure
decrease. Furthermore, the slope of the static pressure profiles are linear, and since pstatic ∝ v2

the response will be ∝ √
p in the Mach profile as the plasma velocity v = csM . The response in

the pressure and flow profiles for frad = 0.8 compared to frad = 0.2 supports this supports the
correlation between increasing velocity for decreasing pressure as the slope of both profiles are
steeper at frad = 0.8.

Figure 40: A schematic illustration of the flow picture of the island with respect to the left and right
part of the field line indicated by L and R, respectively. Furthermore, the upstream is defined at
the black dashed line above the X-point and the targets are given by the black lines. The direction
of the magnetic field is indicated by ⊗ representing the toroidal direction and the black arrow
representing the component of the velocity vector in the poloidal cross-section. The flow direction
in the poloidal cross-section is indicated by the black arrow attached to v⃗∥,i.

The profiles of the Mach number M = v∥,i/cs where cs is the sound speed, show that the plasma
flow increases below the X-points and is negative for the left and positive for the right part of the
field line. The direction of the magnetic field is positive in the direction of increasing arclength.
So, the negative value of the left part of the field line indicate that flow goes from upstream to
the targets, i.e. in the opposite direction of the magnetic field which agrees with the study of the
plasma flow in the W7-X ID done by Perseo et al. (2021) [58]. The observed tendency is that the
electron and ion parallel temperature gradients ∇∥Te and ∇∥Ti, respectively, are negative in the
direction from upstream to the targets. This implies that the parallel conduction goes against the
magnetic field in the left part and along the field in the right part of the field line. The flow is
also negative for the left part of the field line, meaning it goes against the magnetic field, and vice
versa for the right part of the field line. The Mach number increases below the X-points at the
inverse cusp in the temperature and spike in the density profiles at the ends of both parts of the
field lines close to the targets. Since the local minima in the temperature profiles are associated
with the ionisation front, this implies that the increase in plasma flow correlates with the location
of the ionization front.

There are clear differences between the high and low radiation case. The decay in the temperature
profiles is more profound for frad = 0.8 compared to frad = 0.2, as expected from the larger
radiation loss. Furthermore, the initial decay in the ion temperature is stronger close to the
middle of the field line and the electron temperature has a stronger decay below the X-points for
the frad = 0.8 case. This agrees well with the effect of the inward movement of the radiation
and ionization front discussed in section 2 observed by Feng [1]. The ion temperature profiles for
frad = 0.8 case also exhibit saddle at l∥/∥l∥∥∞ ≈ 0.4, 0.6. The flattening can be due to longer
neutral penetration depths as the temperature was reduced due to larger radiation loss causing
the temperature to decay further upstream. The latter is due to the inward movement of the
radiation front when the radiated power fraction is increased. The inward movement is shown in
section 1 in Fig. 12. This implies that the parallel conduction is small as the region’s temperature
gradients are close to zero. Thus, the pressure profiles for the frad = 0.8 case show a larger
pressure drop that starts further upstream, especially for the field lines closer to the O-points for
which the temperature profiles starts to decay at the middle of the field line. This implies that the
assumptions of constant pressure is invalid, especially for frad = 0.8 as the pressure drops around
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or above an order of magnitude from upstream to target.

4.2.2 Field line integrand terms

The field line profiles for the parallel heat flux densities, the sources and the sinks, the divergence
of the cross-field heat flux density and the parallel gradients of the parallel heat flux densities are
shown for the low radiation case in Fig. 41 and the high radiation case in Fig. 42. The plots use
the same colours for the profiles and the dashed lines as Fig. 37. The colours of the profiles are
consistent with the lines in Fig. 35 and the dashed lines close to the X-points correspond to the
dots on the lines in Fig. 35. This is to indicate the approximate location of the X-points with
respect to the fraction of the connection length l∥/∥l∥∥∞.

Figure 41: In the left column the profiles of the parallel ion and electron heat flux density along
field lines against normalised arclength are shown. The middle column shows the cross-field heat
flux density divergence and the sources and sinks. The right column shows the parallel gradient of
the heat flux density profiles from the left. All profiles are shown for the low radiation case where
frad = 0.2. The lines’ colour and the dashed lines’ locations are equivalent to the field lines in Fig.
35.

Parallel heat flux densities

The parallel heat flux densities associated with the field lines ending up at the upper horizontal
target are shown in the left column of Figs. 41 and 42. The most important observation is that the
parallel convective terms are on the same order of magnitude as the parallel electron conductive
term. This invalidates the assumption of dominant parallel electron heat conduction. Another
important observation related to the significance of the transport terms is that the ion conductive
heat flux density is approximately an order of magnitude lower than the other terms for both the
low and high radiation case. This indicates that the assumption of negligible parallel ion conduction
is valid and consistent for frad ∈ {0.2, 0.8}. Furthermore, the parallel conductive electron heat flux
density strongly decreases at the X-point in the high radiation case. This is expected from the
effect on the temperature profiles as the radiation is stronger and located further upstream [2, 1]. In
the same region for the high radiative case the convective transport peaks and kept approximately

59



constant over 10% of the connection length. This agrees well with the increase in the Mach number
profile and the decrease in the pressure profiles below and right above the X-points for the low and
high radiation case, respectively.

Figure 42: Equivalent to Fig. 41 for frad = 0.8.

The profiles for the parallel heat flux densities for field lines in the SOL at the outer island flux
surfaces are steeper and larger in magnitude than the profiles closer to the O-point. This is
consistent with the property that the field lines closer to the O-points are more affected by cross-
field transport as described in section 1. More power in the cross-field channel implies less power
in the parallel channels. Furthermore, it seems that this happens at the X-point for frad = 0.2.
For the field lines closest to the O-points the parallel electron conductive channel builds up power
above the X-point and then decays after passing the X-point. One explanation of the observed
decay can be that power is lost at the ionisation and radiation front because it is radially localised
in the island reference frame as shown in Fig. 12. Thus, it does not affect the field lines further
away from the O-point. However, in the high radiation case all the parallel electron conductive
channel profiles show a significant power loss at the X-points due to a broader radiation distribution
featured in Fig. 12.2. This agrees with Feng’s observation of a helically continuous distribution of
the radiation volume for high radiated power fractions. The ratio between parallel conduction and
convection is shown in Fig. 43 where the parallel conduction is larger at the spikes close to the
targets and an order of magnitude larger only in a narrow region around the middle of the field
line. Everywhere else, the parallel convection and conduction have the same order of magnitude
or the parallel convection is larger. Thus, the assumption of dominant parallel electron conduction
is invalid, and if assumed higher radiated power fractions will give larger errors.
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(.1) frad = 0.2 (.2) frad = 0.8

Figure 43: The ratio of between the parallel conduction and parallel convection in the SOL.

The magnitude of the parallel convective terms is a factor of ∼ 5 larger than the parallel electron
conduction and an order of magnitude larger than the parallel ion conduction for frad = 0.8 from
the X-points to the targets where most of the sources, sinks and cross-field transport is active.
Furthermore, the relative importance of parallel convection increase for field lines closer to the
O-points for both frad = 0.2 and frad = 0.8. For frad = 0.8 the convection is almost an order of
magnitude larger than conduction in the region from l∥/∥l∥∥∞ ∈ {0.3, 0.7} to the targets. The only
exception is a spike in the conduction for the field lines at the outer island flux surface implying
some intermediate transfer of power to the parallel ion conduction channel indicated by the spikes
in the q∥cond,i-profile at l∥/∥l∥∥∞ ∈ {0.1, 0.9}. Thus, for frad = 0.8 the total convective flow could
be assumed dominant.

The computation of the divertor-relevant field line pitch was left out for future work, but can be
assumed constant following the arguments of Feng where Θ ∼ 10−3 [4, 52]. This implies that the
parallel heat flux terms are on the order of 104 Wm−2 except the parallel conductive ion term
which is an order of magnitude lower. From the previous subsection it was observed that the
radial projection of the total cross-field heat flux density was on the order of 105 Wm−2. This
implies that the cross-field transport is significant and might be dominant in some regions. These
observations agree with the suggested importance of the cross-field transport in Feng et al. (2006)
[4]. However, it is unclear if it can be assumed to dominate over parallel transport throughout the
SOL because the cross-field heat flux density is observed as being strongly localised around the
X-points. Furthermore, the cross-field convective transport is observed to be negative below the
X-points and the parallel convection is positive with respect to the direction towards targets. Thus,
the general tendency of the net heat transport due to the convective channel in the PFR is not
clear when convection is decomposed. The negative region of the cross-field convection are on the
order of 104 Wm−2 which is the same order as the projected parallel heat flux densities. However,
the convective cross-field heat flux density still appears to be the dominant term in the SOL. Thus,
it is clear that in the SOL the ion convective cross-field heat flux density is significantly larger
than the other cross-field terms as it contributes to most of the total cross-field heat flux density
(∼ 50%). So, according to the observations made in this thesis the energy transport cannot be
assumed to be conduction dominated. This conclusion agrees with the trend of the ratio between
the parallel convection and the parallel conduction as shown in Fig. 43, but disagrees with Feng’s
assumption of dominant conductive transport in Feng et al. (2006) [4] .

Neutral sources and sinks, and radiative power loss in the SOL

The profiles for the sources and sinks along the field lines are shown in the center column in
Figs. 41 and 42 for the low and high radiation case, respectively. For frad = 0.2 the plasma-
neutral interaction due to ion impact appears as a power source below the X-point except at the
target where it alternates. The plasma-neutral interaction due to electron impact appears as a
sink throughout the field line and the spikes in the profiles indicate the ionization front which
starts at around l∥/∥l∥∥∞ = 0.1 and l∥/∥l∥∥∞ = 0.9. The plasma-neutral interaction sources and
sinks in the low radiation case are located in the same region as the low temperature impurity
radiation. This implies that most ionisation loss happens in the same region where the low Z
charge states ionise. Furthermore, the magnitude of the neutral losses is significantly reduced in
the high radiation case where more energy is lost due to radiation than ionisation shown in Fig. 44.
Furthermore, the log-scale makes the separation between the radiation distribution for field lines
close to the O-point and field lines close to the outer flux surface of the island visible. This has to
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be seen in context of the radiation distribution in the whole SOL shown in Fig. 12 considering that
the field line visits all islands from target to target. The radiation is not equally distributed in each
island, but vary with respect to the radial distance from the O-point in the island reference frame.
The dependency seems beneficial for the field lines closer to the O-points as the radiation intensity
is generally larger for the field lines close to the O-point than close to the outer flux surface of the
island.

(.1) frad = 0.2.

(.2) frad = 0.8.

Figure 44: The absolute value sources and sinks, and the divergence of the cross-field heat flux
density in the SOL have been plotted with a log-scaled y-axis.

The radiation profile show that the the radiation front has moved further upstream and is broader
distributed along the field line for frad = 0.8, as expected. The parallel conduction and convection
increase simultaneously for frad = 0.2 in the region from the middle of the field line to the X-
points, implying that the convective and conductive channel receives power from other channels.
The neutral sources are inactive in this region implying that the power supplied to the parallel
channels comes from the cross-field channel. Furthermore, the spikes at both ends of the ∇·qcross-
profile have been significantly reduced at frad = 0.8 as shown in Fig. 44 compared to frad = 0.2.
The reduction of the spikes indicates that the cross-field transport right in front of the target is
suppressed for higher radiated power fractions, which agrees with the cross-field heat flux density
reduction seen in the 2D profiles shown in Figs. 32 and 33. This is because increased radiated
power loss is followed by broadening of the radiation distribution which effectively flattens out the
temperature and density gradients close to the target.

Parallel gradient of the parallel heat flux density terms

The field line profiles of the parallel gradient of the parallel heat flux density is shown in the right
column Figs. 41 and 42 for the low and high radiation case, respectively.
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Figure 45: An illustration of the hot and cold parts of the region between upstream represented by
the dashed black line and the target. The intention with this illustration is to show the regions of
the general tendency of the ∇∥qconv terms with respect to the left and right part of the field line.
For the left part of the field line denoted L ∇∥qconv > 0 for the hot region and ∇∥qconv < 0 for
the cold region. For the right part of the field line denoted R ∇∥qconv > 0 for the hot region and
∇∥qconv < 0 for the cold region. This agrees with the parallel heat flux density profiles in Figs. 41
and 42.

The trends in the parallel gradient of the parallel convection profiles are schematically illustrated
in Fig. 45 where the sign of the gradients are associated with the cold and hot part of the target to
upstream region. For some of the field lines there are spikes at l∥/∥l∥∥∞ = 0.1 and l∥/∥l∥∥∞ = 0.9
to the target. Note that the spikes for the parallel gradient of the parallel convective heat flux
density terms tends to be positive and negative for the conductive heat flux density terms for the
left part of the field line and vice versa for the right part of the field line. There seem to be a
correlation between the location where power is lost from the conductive channel and the location
where the convective channel receives power. Furthermore, the spikes are in the same region as the
radiation and neutral sources and sinks have spikes. This indicates that the parallel conductive’s
power loss and the parallel convective channel’s gain come from ionisation and radiation. However,
the temperature dependence of the parallel convective channel reduces the transport significantly
from l∥/∥l∥∥∞ = 0.1 and l∥/∥l∥∥∞ = 0.9 to the target.

4.2.3 Radiative power loss function

The assumption of constant residence time for the impurities was compared with the transport
implemented in EMC3-EIRENE. The constant residence time assumption mimics the transport
by a constant transport term nZ/τ of charge states from their equilibrium temperature region to
lower or higher temperature regions. The residence time is referred to as τ in this section because
it is modeled to be independent of charge state Z. Previously it was referred to as τZ to avoid
confusion with other τ -parameters when discussing characteristic times for impurity transport.
The fractional abundances are shown in Fig. 46 where the fractional abundances computed with
the EMC3 simulations are compared with an assumed constant residence time of τ = 10−3s and
electron density ne = 1020m−3 mimicking transport from lower to higher regions for the low
radiation case. This was computed using data from ADAS ADF11 iso-nuclear files [33].
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Figure 46: The fractional abundances is shown in the left plot for the EMC3 simulations compared
with the ADAS fractional abundances for τ = 10−3s and constant electron density ne = 1020m−3

for the frad = 0.2 case for transport from lower to higher temperature regions. The corresponding
plot to the right is for the frad = 0.8 case for transport with τ = 10−2s from higher to lower
temperature regions. The different colours indicate different ionisation stages Z of Carbon. The
same colour is used in EMC3 and ADAS computations for each ionisation stage.

A smaller τ means that the charge state spend less time in a lower temperature region before
being transported to a higher temperature region. This is shown for frad = 0.2 in the left plot of
Fig. 46. The interpretation of the τ parameter when mimicking transport of charge states from
higher to lower temperature regions is similar, but the transport direction is reversed. Then, a
small τ means that the charge state will spend less time in the high temperature region before it
is transported to a lower temperature region. This is shown for frad = 0.8 in the right plot of Fig.
46.

In the case of the EMC3 simulations it seems like the charge states are ”squeezed” from both ends
of the temperature range. Lower charge states seem to be transported towards higher temperature
regions and higher charge states are transported to lower temperature regions when compared with
the equilibrium fractional abundances. The observation implies that the fractional abundances are
best resolved for an assumed constant transport by combining transport from lower to higher
temperature for lower charge states and vice versa.

Since the curve representing the assumption of constant neτ does not fit the fractional abundances
well, the radiative power loss function will be weighted accordingly. The effect on transport of
charge states from lower to higher temperature regions on the radiative power loss function Lα is
shown in Fig. 47. The effective radiative power loss function from the EMC3 simulations LEMC3

α

shown in Fig. 47 for the field lines in the SOL and are compared to a set of neτ parameters,
equilibrium radiative power loss function and the radiative power loss function for an assumed
penetration depth λneutral of the neutrals where λneutral = 0.13 m which includes transport due
to charge-exchange. This was included to demonstrate that the result would not be very different
if charge-exchange was included in the modeling.
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(.1) The radiative power loss functions for frad =
0.2

(.2) The radiative power loss functions for frad =
0.8.

Figure 47: The radiative power loss functions for various parameters of τ for a constant density
ne = 1020m−3 are shown in lines in black to orange, and for the effective radiative loss function for
field lines in the SOL in colours from pink to cyan. The equilibrium radiative power loss function is
represented by the green line and the radiative power loss function assuming a neutral penetration
depth λ = 0.13m is represented by the yellow line.

Even though the radiative power loss function using the ADAS data does not fit LEMC3
α well locally

it is the integrated value as given in Eq. 47 in section 2 which is important. The temperature
weighted radiative power loss function Lα

√
Te is shown in Fig. 48 which is the term that appears

in the Lengyel integrand given by Eq. 114. Note that this assessment is related to the assumption
of constant residence time, static electron pressure, and impurity concentration. Compared to the
plots in Fig. 47 the tendency is that the temperature weighting seems to flatten out the curve and
increasing the transport broadens the Lα

√
Te profile. However, the impact on the integrated and

temperature weighted value
∫ u

t
dTeLα

√
Te is not clear just by looking at the profiles.

(.1) The integrand Lα

√
Te for frad = 0.2 (.2) The integrand Lα

√
Te for frad = 0.8.

Figure 48: The integrand Lα

√
Te are shown for various parameters of neτ where the electron

density was approximated to be ne = 1020m−3. The residence time τ represents transport from
lower to higher temperature regions. The Lengyel integrand is also shown for the EMC3 cases,
including the impurity transport. The labeling and colouring is the same as in Fig. 47. The dashed
horizontal lines represents the integral from target to upstream

∫ u

t
Lα

√
TedTe.

Therefore, the Lα

√
Te profile was integrated from target to the middle of the field line to have a con-

sistent definition of upstream for the approximated and the effective radiated power loss function.
The dashed lines in Fig. 48 represent the integral from target to upstream. Furthermore, the inte-
gral was only computed for the left part of the field line, i.e. from l∥/∥l∥∥∞ = 0 to l∥/∥l∥∥∞ = 0.5.
For the low radiation case the assumption of constant transport with τ ∈ [10−2, 10−1] captures
most of the radiation losses. However, it does not capture the field lines with significantly lower
radiation loss. Furthermore, for frad = 0.2 the integral seem to be characterised by transport from
higher to lower temperature regions which is shown in Fig. 49.
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(.1) The integrand Lα

√
Te for frad = 0.2 (.2) The integrand Lα

√
Te for frad = 0.8.

Figure 49: The integrand Lα

√
Te are shown for various parameters of neτ where the electron

density was approximated to be ne = 1020m−3. The residence time τ represents transport from
higher to lower temperature regions. The Lengyel integrand is also shown for the EMC3 cases
which include the impurity transport. The labeling and colouring is the same as in Fig. 47. The
dashed horizontal lines represents the integral from target to upstream

∫ u

t
Lα

√
TedTe.

The radiation distribution for frad = 0.2 is characterised by transport from higher to lower tem-
perature regions and vice versa indicated by the effective power loss functions lying on both sides
of the equilibrium profile. The integral values indicates that the best fit is between equilibrium
radiation loss function and transport with τ ≈ 10−2 for transport from higher to lower tempera-
ture regions. On the other hand, for frad = 0.8 the power loss function profiles and the Lengyel
integrand, and the integral values are better fitted by transport from lower to higher temperature
regions indicated by both the profiles and the integral values. This is consistent with the inward
movement of the radiation front as the radiation distribution for frad = 0.8 is moved to a region
with relatively larger temperature compared to frad = 0.2. Thus, frad = 0.2 involve complicated
impurity transport leading to a complex impurity radiation distribution. However, the assumption
of constant impurity residence time looks promising for transport from higher to lower temperature
regions for frad = 0.2 as indicated by the integral values in Fig. 49.1 for neτ ≈ 1018m−3s and lower
to higher temperature regions for frad = 0.8 as indicated by Fig. 48.2 for neτ ∈ [1017, 1018]m−3s.

4.2.4 Field line integral terms

The integral terms on the RHS of Eq. 52 was computed for each field line associated with the
upper horizontal target. All terms were normalised to (q∥cond,e,u/2)2 and the absolute values of
the terms are shown in the bar plots in Fig. 50. The symbols in the legend of the plots are the
same as in Eq. 46-51. Furthermore, the upstream location is defined as at the maximum of the
parallel electron conductive heat flux density of both parts of the field line when dividing it at the

middle. The location of upstream in the left part is at the arclength l∥ = l∥

(∥∥∥q(left)∥cond,e

∥∥∥
∞

)
. The

upstream location of the right part is l∥ = l∥

(∥∥∥q(left)∥cond,e

∥∥∥
∞

)
. In the expressions the arclength has

been expressed as a function of the parallel electron conductive heat flux density, and evaluated at
the maximum of q∥cond,e for the left and right part indicated by the superscripts.
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(.1) frad = 0.2.

(.2) frad = 0.8.

Figure 50: The integral terms from Eqs. 46-51 from Eq. 52 are shown for each field line whose
number # FL is represented by the horizontal axes. Each term is shown with a unique colour.
The field lines are split at the upstream location into a left and right part. The left part of the

field line starts at arclength l∥ = 0 and ends at l∥ = l∥

(∥∥∥q(left)∥cond,e

∥∥∥
∞

)
, and the right part starts at

l∥ = l∥

(∥∥∥q(left)∥cond,e

∥∥∥
∞

)
and ends up at l∥ = Lc. This is done to compute the integral from target to

upstream.

The plots in Fig. 50 intends to show the transfer of power from or to the parallel conductive
channel to or from the sources, sinks and the divergence of the cross-field heat flux density. After
the normalisation to (q∥cond,e/2)2 the LHS of Eq. 52 reads 1 − q2∥cond,e,t/q

2
∥cond,e,u. Thus, the

LHS represents how much power the parallel conductive heat flux channel has effectively lost to
other channels from upstream to target due to all the sources and sinks given by the terms on
the RHS. The connection length are associated with the field line number # FL in Fig. 51. The
cross-field term I⊥ in Fig. 50 is large for field lines that have long connection lengths, for instance
#FL = 1, 2, 6, 7, 9, 10, 11 which is either seen on the contribution of the left or the right part of the
field line.

Figure 51: The connection length Lc against the field line number # FL for both cases and for
field lines in the SOL and PFR.

To convince the reader about the interpretation of the integral along the field line the Lengyel
model is examplified. The integral given in Eq. 114 represents the power loss due to radiation
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along a field line assuming dominant parallel electron conductive transport. This is the same as
power being lost from the parallel conductive channel. The power is lost because the plasma is
assumed to be optically thin so the radiation escapes the plasma and is deposited on the wall
components. In a general situation where every energy transport mechanism is considered power
is not necessarily just lost to the wall components, but can be transferred from one channel to
another. For example at the ionization front the power can be lost from the conductive to the
convective channel. Another example is the transfer of power between field lines via cross-field
transport where one of the parallel channels carries the power that the field line receives from the
cross-field channel. The exchange of power from the cross-field channel to the parallel channel
continues until the heat is deposited at the wall components.

Figure 52: The target parallel electron heat flux density q∥cond,e,t with respect to the field line
number # FL.

In the terms of the integrals on the RHS of Eq. 52 the upstream parallel conductive heat flux
q∥cond,e,u is compared with the parallel conductive heat flux at the target q∥cond,e,t shown in Fig.
52 for the respective field line number # FL. The parallel electron conductive heat flux q∥cond,e,t <
q∥cond,e,u by definition. The values of q∥cond,e,t indicates a maximum target heat flux density at
∼ 10MWm−2 and a significant decrease for frad = 0.8 for all field lines in the SOL and the PFR.

The absolute value of each integral term is represented by the bar plot to demonstrate the mag-
nitude of each transport mechanism’s contribution effective power loss of the parallel electron
conduction channel. For higher radiated power the contribution from the impurity radiation in-
tegral is higher as expected, but compared to the magnitude of other terms it is unexpectedly
small. The parallel conductive ion transport contribution is negligible as expected from the field
line profiles. The parallel convective terms are dominating both cases. Furthermore, the cross-field
term is significant in both cases, and increase for frad = 0.8. However, the neutral losses are larger
for frad = 0.2 and decrease for frad = 0.8. Furthermore, the neutral loss due to electron impact
is significantly larger than the neutral losses due to ion impact. This agrees well with the relative
magnitudes of the field line profiles.

Figure 53: The magnetic field strength along the traced field lines is represented by the purple
lines and the upstream locations by the red crosses. Almost all upstream locations is at or close
the peak of the magnetic field strength.
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Another significant contribution is from the dilution due to the variation of the magnetic field
strength along the field line IB . It is important to note that the term in this analysis represents
the worst case as the upstream location is chosen at the peak of the parallel electron conductive
heat flux density. Thus, the upstream location is defined at the peak of the magnetic field strength
since q∥,cond,e ∝ B. The same magnetic field configuration was used for both simulation cases
and the same field lines were traced for comparison. The upstream location with respect to the
magnetic field strength is shown in Fig. 53. Thus, for a different definition of the upstream location
the magnetic field strength is either equal or smaller at the upstream location which means that the
IB term will either be equal or smaller. However, based on the observed magnitude of IB in Fig.
50 we cannot exclude that it is valid to neglect this term.

Now that the SOL field lines have been analysed the key results of from the field lines in the
PFR will be included for completeness. Considering the approximated cross-field heat flux density
which is concentrated around the X-point the field lines in the PFR might be crucial for the power
exhaust in the ID.

4.2.5 PFR field line analysis

The PFR integral terms were included because the radial heat flux densities were observed to be
concentrated around the X-points. This implies that a significant amount of power is transported
into the PFR across the X-point via the cross-field transport. Therefore, the same analysis was
carried out on the field lines in the PFR as the field lines in the SOL to check for consistencies in
the transport properties between the PFR and the SOL.

Figure 54: The field lines in the PFR are shown with respect to the magnetic field geometry for a
poloidal cross-section at ϕ = 2◦.

The are some characteristic differences between the PFR profiles shown in Fig. 55 and 37. The
general shape of the static electron pressure profiles does not exhibit a minimum at the middle
of the field line due to approximately constant density profiles as shown in Fig. 56, but have
a spike due to the maximum in the density at around l∥/∥l∥∥∞ = 0.15 and l∥/∥l∥∥∞ = 0.85.
The density increase can explain the spike due to the ionization of neutrals entering the PFR.
Furthermore, the magnitude of the ion temperature profiles have been reduced by ∼ 25eV for
increased radiated power fraction. Moreover, the sudden increase in the Mach number close to the
target l∥/∥l∥∥∞ ≈ 0.2, 0.8 implies the increase in flow due to ion conservation as ions are being
born in the region below the dashed lines. In the PFR the dashed lines does not represent the
X-points, but is used as a point of reference. The flow increase is stronger for frad = 0.8 than
frad = 0.2. The middle of the field lines in the PFR is closest to the X-points indicated by the
locations of the field lines with respect to the islands shown in Fig. 54.

69



(.1) frad = 0.2. (.2) frad = 0.8.

Figure 55: The ion and electron density, temperature and pressure field line profiles against tem-
perature are shown for the two cases. The colour of the lines indicate the same field lines as in Fig.
54. The dashed lines correspond to the arclength selected by the index closest to 20% and 80% of
the maximum index of the intersections between the field lines and the poloidal plane at ϕ = 2◦.
These selected points are shown as the dots in Fig. 54. The black dashed lines labeled X-points
at l∥/∥l∥∥∞ = 0.25 and l∥/∥l∥∥∞ = 0.75 are given as a reference.
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(.1) frad = 0.2 (.2) frad = 0.8

Figure 56: The logscaled electron density in the PFR.

Figure 57: In the left column the profiles of the parallel ion and electron heat flux density along
field lines against normalised arclength are shown. The middle column shows the divergence of the
cross-field heat flux density and the sources and the sinks. The right column shows the parallel
gradient of the heat flux density profiles from the left. All profiles are shown for the high radiation
case where frad = 0.2. The colour of the lines indicate the same field lines as in Fig. 54.

The heat flux density profiles shown in Fig. 57 and 58 also exhibit some characteristic differ-
ences. The magnitude of the parallel convective terms have been reduced by a factor ∼ 2 and the
magnitude of the parallel ion conductive term has been reduced by an order of magnitude. The
main difference between the profiles shown in Figs. 57 and 58 and the profiles shown in Figs. 41
and 42 is the shape of the parallel electron conductive heat flux density profile. The slope of the
temperature profiles of the field lines in the PFR are smaller in the region between the middle of
the field line and the X-points leading to a weaker parallel temperature gradient. The effect is seen

in the q∥cond,e-profile where the slope is linear, so the T
5/2
e seem to be compensated by the slope of

the parallel temperature gradient in the region from the X-points to the targets. Furthermore, the
ratio between the parallel conduction and convection shown in Fig. 59 shows that the convection
channel is relatively larger for the frad = 0.8 case than the frad = 0.2 case.
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Figure 58: In the left column the ion and electron parallel heat flux density field line profiles against
normalised arclength are shown. The middle column shows the divergence of the cross-field heat
flux density and the sources and the sinks. The right column shows the parallel gradient of the
heat flux density profiles from the left column. All profiles are shown for the high radiation case
where frad = 0.8. The colour of the lines indicate the same field lines as in Fig. 54.

(.1) frad = 0.2 (.2) frad = 0.8

Figure 59: The ratio of between the parallel conduction and parallel convection in the PFR.

The integral terms normalised to q2∥,cond,e,u/2 for the field lines in the PFR are shown in Fig. 60.
The contribution from the parallel ion conductive transport is negligible. The contributions from
IB has increased and the convective terms have decreased. The left part of the field line ends up
at the vertical target, whereas the right part ends up at the horizontal target as seen in Fig. 54.
The convective losses are smaller for the left part of the field line attached to the vertical target
than the right part attached to the horizontal target. The difference in the magnitude between
the left and right part of the field line of the convective integral terms is larger for frad = 0.8 than
frad = 0.2.
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(.1) Integral terms for frad = 0.2.

(.2) Integral terms for frad = 0.8.

Figure 60: The integral terms from Eqs. 46-51 which are terms of the integral of the complete heat
flux density transport model given by equation 52. For each field line in the PFR the contribution
of each term is shown. The field lines integrated for the plots are the same as in Fig. 54. The field
lines are split in a left and right part the same way as the field lines in the SOL.

Moreover, the contribution from the radiation loss is insignificant and the neutral loss due to
electron impact stands for ∼ 50% of the energy loss in the PFR. The impurity loss appears
relatively small supposedly due to the shorter connection lengths of the field lines in the PFR as
shown in Fig. 51, i.e. the radiation will have a limited time to dissipate power. The neutral loss
is large because neutrals enter the PFR as shown in Fig. 61 and ionise at a larger part of the field
line in the PFR compared to the field lines in the SOL as seen in Figs. 62 and 63. Furthermore,
the plot shows that the neutral energy sources and sinks have a broader distribution when the
radiated power fraction is increased.

Figure 61: Neutral hydrogen distribution for poloidal cross-section at ϕ = 0◦. The low and high
radiation case is plotted in the left and right, respectively.
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Figure 62: See distribution for poloidal cross-section at ϕ = 0◦. The low and high radiation case
is plotted in the left and right, respectively.

Figure 63: Sei distribution for poloidal cross-section at ϕ = 0◦. The low and high radiation case is
plotted in the left and right, respectively.

Considering that the only way that power enters the PFR is via cross-field transport it is strange
that this contribution is not larger. However, the field lines never cross the separatrix and enter the
PFR, but are already in the PFR. Thus, there is potentially a large contribution from cross-field
transport that is not accounted for in Fig. 60 and the results needs to be viewed therein.

Figure 64: The upstream locations of the field lines in the PFR given in terms of the normalised
arclength l∥/∥l∥∥∞.

The profiles of the parallel electron heat flux density shown in Figs. 57 and 58 have a different
shape than the corresponding profiles in the SOL shown in Figs. 41 and 42. It builds up linearly
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to around l∥/∥l∥∥∞ = 0.1 and l∥/∥l∥∥∞ = 0.9 where it drops to almost zero. Thus, the relative
magnitude of the integral terms to q2∥cond,u,e/2 is very sensitive to the upstream definition. The
upstream locations with respect to the normalised arclength are plotted in Fig. 64. This is
explains why some of the field lines does not show any loss due to impurity radiation as the
impurity radiation is active only in the regions l∥/∥l∥∥∞ ∈ [0.1, 0.2] and l∥/∥l∥∥∞ ∈ [0.8, 0.9].
Therefore, the integrand associated with the impurity radiation is small in that region. The
upstream definition of these field lines are further downstream than the radiation region. Different
upstream definitions gave unreasonable results when computing the normalised contributions of
the integral terms Ix/(q2∥cond,u,e/2). This is important to consider when interpreting the results.

4.2.6 Alternative derivation with q∥

As the results in Fig. 50 does not capture the energy loss due to impurity radiation an alternative
assessment was done. Instead of focusing on q∥,cond,e the field line integral from Eq. 52 can be
derived by combining the equations for ∇∥q∥ and q∥ as opposed to combining Eqs. 42 and 43.
Thus the complete derivation for the impurity concentration is:

(∇∥q∥)q∥ =

(
S −∇⊥ · q +

q∥∇∥B

B

)
q∥

∇∥q
2
∥/2 =∫ u

t

dl∥∇∥q
2
∥/2 =

∫ u

t

dl∥(Sneutral + Simp −∇⊥ · q +
q∥∇∥B

B
)q∥ (150)

Simpq∥ = q∥cond,en
2
ecαLα + Simp(q∥conv + q∥cond,i)∫ u

t

dl∥q∥cond,en
2
ecαLα ≈ ⟨cα⟩ut

∫ u

t

dl∥q∥cond,en
2
eLα

⟨cα⟩ut
∫ u

t

dl∥q∥cond,en
2
eLα ≈ q2∥u/2 − q2∥t/2 − I

⟨cα⟩ut ≈
q2∥u/2 − q2∥t/2 − I∫ u

t
dl∥q∥cond,en2

eLα

⟨cα⟩ut ≈
q2∥u/2 − q2∥t/2 − I∫ u

t
dl∥q∥cond,en2

eLα

(151)

where the integral term I is defined as:
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∫ u

t

dl∥

{(
Sneutral + Simp −∇⊥ · q +

q∥∇∥B
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)
q∥ − Simpq∥cond,e

}
. (152)

Furthermore, the integral term I is decomposed:

Ineutral =

∫ u

t

dl∥q∥Sneutral (153)

Iimp =

∫ u

t

dl∥q∥Simp (154)

I⊥ =

∫ u

t

dl∥q∥∇⊥ · q (155)

IB =

∫ u

t

dl∥q∥
q∥∇∥B

B
(156)

Iimp,corr =

∫ u

t

dl∥Simpq∥cond,e (157)

This gives bar plots which are comparable to Fig. 50.1, 50.2, 60.1 and 60.2. The results are shown
in Figs. 65, 66, 67 and 68.
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Figure 65: The integral terms from Eqs. 153 - 157 is shown normalised to q2∥/2 for frad = 0.2 case
for field lines in the SOL.

Figure 66: The integral terms from Eqs. 153 - 157 is shown normalised to q2∥/2 for frad = 0.8 case
for field lines in the SOL.

Figure 67: The integral terms from Eqs. 153 - 157 is shown normalised to q2∥/2 for frad = 0.2 case
for field lines in the PFR.

Figure 68: The integral terms from Eqs. 153 - 157 is shown normalised to q2∥/2 for frad = 0.8 case
for field lines in the PFR.

The results in Figs. 65 and 66 show similarities with the results in Figs. 50.1 and 50.2, and
some significant differences. First, the radiation loss is better captured by the former and show
consistent behaviour amongst the field lines. Furthermore, the IB term is now significantly larger
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and cannot be ignored. Second, the cross-field term I⊥ is significant for frad = 0.2 and has the
largest magnitude of all the terms for frad = 0.8. The neutral loss, have the same tendency of
begin small when frad = 0.8 and is significant for the frad = 0.2 and insignificant for frad = 0.8.
The results in Figs. 67 and 68 have similar features as the results from Figs. 60.1 and 60.2, but
the cross-field term is now larger or the same magnitude as the IB term. Furthermore, the results
in Figs. 67 and 68 does not give insight in the importance of the parallel convective channels. The
impurity losses are corrected by Iimp,corr which appears to be larger for increased radiated power
fraction in both the SOL and the PFR. The interpretation of Iimp,corr is the power loss from the
parallel electron conductive channel, which appears to be significant compared to the loss from the
total parallel channel due to impurity radiation.

4.3 Impurity radiation weighted by impurity concentration

The baseline for the assessing the assumptions in the simplified models using the impurity concen-
tration as a measure is the average impurity concentration from upstream to target weighted by
the radiation distribution along the field line. The mean values and the profiles of the impurity
concentration are shown in Fig. 69 for the SOL and in Fig. 70 for the PFR.

4.3.1 SOL

(.1) frad = 0.2. (.2) frad = 0.8

Figure 69: The impurity fraction profiles and the mean impurity fraction from upstream to target
for each field line associated with the upper horizontal target are shown in the right and left
plot, respectively, for frad = 0.2 in Fig. 69.1 and frad = 0.8 in Fig. 69.2. The mean divertor
concentration is weighted by the impurity radiation intensity profile. The black horizontal line
represent a constant impurity concentration of cα = 0.025.
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4.3.2 PFR

(.1) frad = 0.2 (.2) frad = 0.8

Figure 70: The impurity fraction profiles and the mean impurity fraction from upstream to target
for each field line associated with the upper horizontal target are shown in the right and left
plot, respectively, for frad = 0.2 in Fig. 70.1 and frad = 0.8 in Fig. 70.2. The mean divertor
concentration is weighted by the impurity radiation intensity profile. The black horizontal line
represent a constant impurity concentration of cα = 0.025.

4.4 Prediction from framework in the SOL

The approximation given in Eq. 91 is the impurity concentration computed by solving the fraction
including all the integral terms given in Eqs. 46-51. From the step where the approximation is
introduced, the assumptions are imposed on the approximated impurity concentration, and each
step is represented by the term removed.

(.1) frad = .2

(.2) The same as Fig. 71.1, but zoomed in on the y-axis.

Figure 71: The prediction after imposing each assumption in the framework for each field line in
the SOL for the low radiation case.
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(.1) frad = 0.8

(.2) The same as Fig. 72.1, but zoomed in on the y-axis.

Figure 72: The prediction after imposing each assumption in the framework for each field line in
the SOL for the low radiation case.

The scale of the results and the non-physical negative values of the predicted impurity concentration
clearly shows that the results are unreasonable. Negative impurity concentrations implies that
q∥,cond,e,t > q∥,cond,e,u meaning energy is gained from upstream to target. Thus, the impurity
concentration is predicted as being negative because the impurity radiation will function as a
power source to compensate for a power gain from upstream to target. Furthermore, the expected
concentration is much larger for the full model than the baseline shown in Fig. 69 and 70. The
expected behaviour is that when a term is removed the impurity concentration will be overpredicted
as observed in Moulton et al. (2021) [5]. The tendency is opposite in Fig. 71 and 72, i.e. the
removal of a term causes underprediction of the impurity concentration needed for a given radiated
power fraction. Furthermore, some of the values are negative. The large variation in the predicted
impurity concentration can be due to the sensitivity of the upstream definition and that the
inappropriate channel was used to derive the impurity concentration approximation. Thus, the
unreasonable values of the impurity concentration left the open question if it is possible to use the
impurity concentration as measure to assess the assumptions of the simplified models.
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5 Conclusion and outlook

The assumptions of simplified models for the energy transport in the SOL of the W7-X island
divertor in the standard configuration were assessed by comparing the relative magnitude of the
terms involved in the product between the parallel heat flux densities and the sources and sinks
integrated along the field line. Specifically, the loss from upstream to the target of the parallel
electron conductive channel was derived from comparing with a similar analysis done previously
by Moulton et al. (2021) [5]. Furthermore, it made it easier to assess each assumption imposed in
Lengyel’s model [6]. The loss from the parallel electron conductive channel was compared with the
computed loss from the total parallel channel. Furthermore, assuming divertor-relevant field line
pitch Θ ∼ 10−3, the Feng model was reviewed by comparing the magnitude of the approximated
cross-field and the projected parallel heat transport.

It is already clear from inspecting the heat flux density profiles, the global energy balance and the
approximated cross-field heat flux densities that the energy transport is not conduction dominated
nor dominated by parallel terms. Furthermore, the observed neutral losses in the SOL shown
in Figs. 50.1 and 50.2 are significant compared to the radiation losses. However, the computed
neutral losses in the SOL decrease for frad = 0.8. The neutral losses in the PFR are significant
for both cases. Thus, the results indicate the invalidity of assumed negligible neutral losses as a
significant power loss in both the PFR and the SOL.

The dilution due to the variation of the magnetic field strength along the field lines is significant.
However, this strongly depends on the integration bounds through the definition of upstream,
which in this thesis is defined at the maximum of the parallel electron heat flux density, which is
proportional to the magnetic field strength. Thus, the definition of upstream used in this thesis
will most likely overestimate the contribution of the magnetic field strength dilution. Furthermore,
the importance of this term is significantly larger in the PFR. So, since a lot of power enters the
PFR via cross-field transport, it is a contribution that needs further investigation. In addition,
the integrated terms for the PFR show a strong contribution from the neutral interaction, which
is dominated by the loss due to electron impact. These observations are consistent for the field
line integral representing the loss from upstream to target for the parallel electron conductive and
total parallel channels. Thus, the loss due to neutral interaction cannot be ignored. Furthermore,
since the field lines in the PFR have shorter connection lengths, as shown in Fig. 51, it is harder
to remove power through impurity radiation. Thus, the power deposited at the targets in the PFR
might be crucial to consider for the power exhaust handling.

The convective transport seems to dominate the loss from the parallel electron conductive chan-
nel, as shown in Figs. 50.1 and 50.2. The 2D profile of the approximated cross-field heat flux
density shown in Fig. 33 also implies that the convective transport channel is important and even
larger than the conductive channel. Thus, the observations made in this thesis disagree with the
assumption of conduction-dominated energy transport in the stellarator ID SOL locally. However,
if the poloidal and toroidal average of the heat flux is considered, the cross-field convective term
is averaged out since it is characterized by both positive and negative regions along the poloidal
direction. Thus, after averaging this term, the total heat flux agrees with the global energy analysis
and Feng’s results.

The loss from the parallel electron conductive channel as a measure to assess the assumptions of
the simplified SOL energy transport models gave incomplete results as it did not capture the loss
due to impurity radiation. Therefore, a similar computation was carried out for the derivation of
the field line integral using the loss of the total parallel channel from upstream to target. The
results show a more moderate total loss than the parallel electron conduction channel. For this
computation, the dilution due to the magnetic field strength variation is significant in both cases.
The contribution was large for frad = 0.2, but smaller for frad = 0.8. Furthermore, the cross-field
term was observed to be significant for frad = 0.2, and dominant of the total loss for frad = 0.8.
The neutral loss due to electron impact is significant at frad = 0.2, but decreases significantly for
frad = 0.8. This observation is consistent with the other alternative computation of the field line
integral terms. The neutral loss due to ion impact was also negligible in the SOL but significant
in the PFR. The impurity loss is now consistently present for all field lines and the contribution
is larger for frad = 0.8 than frad = 0.2, as expected. However, it is still unexpectedly low, which
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highlights a major weakness of the framework as the radiation loss was expected to be consistent
with chosen radiated power fraction for the simulations.

5.1 Outlook

Cross-field transport was observed to be significant and even dominating in some regions. Thus,
to address the problem of simplifying SOL energy transport models in the future using EMC3-
EIRENE simulations for the W7-X ID SOL, an island-aligned grid that allows computing of the
normal and binormal components of the cross-field transport should be generated. Furthermore,
the island-aligned grid will enable an accurate comparison of the cross-field and parallel terms
through the divertor-relevant field line pitch, which can be computed for field lines traced with
such a grid. It will also give additional detailed insight into the transport properties of the SOL.

The Monte Carlo approach the EMC3-EIRENE code is based on is inherently noisy, so more work
should be done to identify if there are significant errors in the profiles and if they are statistical.
The gradients, divergence terms, sources, and sinks can suffer from low noise levels. So, we suggest
a noise study to eliminate or confirm if there are statistical errors that affect the integrals along field
lines. The noise study should focus on asymmetries in the integrand profiles because asymmetries
tend to increase the area under the curve. If statistical noise is a source of error, the suggested
course of action is to smooth the profiles. There are several ways of smoothing the profiles, but the
priority should be to average over many iterations for converged simulation cases for a beneficial
cost-gain ratio. Furthermore, the profiles can be smoothed in post-processing by interpolating field
lines. Interpolation of profiles along field lines was attempted, but a smooth profile could not be
obtained without altering the physics of the profiles. So, the challenging task is to separate the
profiles’ physics and the statistical noise. Furthermore, the field line profiles are discontinuous
due to the mapping surface at the triangular cross-sections. The discontinuity can be handled by
increasing the grid resolution, but this also implies that one has to increase the total number of
particles in the EMC3 simulations to maintain approximately the same amount of particles in the
grid cells. If the increase in grid resolution is not compensated by increasing the number of particles
within a cell, the scalar and vector fields will be noisier. The required compensation implies that
the primary sources of error are coupled. Thus, compensating for these errors is computationally
expensive.

The concentration prediction was computed but gave unreasonable results. The origin of the
unreasonable predictions is unclear, but some probable candidates exist. First, the sensitivity of
the definition of upstream can significantly impact the value of the integral terms. An effect of
defining the upstream location is that the integrand is cut such that the profile’s left and right
parts exhibit an asymmetry. Asymmetries lead to arbitrary integral values as the integral strongly
depends on the integration bounds. Another source of error can be the choice of measure used
for computing the concentration. The suggested course of action is to do a similar analysis with
the integral from target to upstream of q∇rq where the subscript r indicates the radial direction
of the corresponding toroidal coordinate system. This derivation is similar to the Feng model
but includes convection. The integral

∫ u

t
q∇rqdr is then interpreted as the total heat flux density

loss from upstream to downstream, and see if the approximated impurity concentration improves.
Furthermore, as the cross-field convective channel was significantly larger than other channels,
it should be attempted to compute this integral under the assumption of dominant cross-field
convection. If assuming dominant convection for

∫ u

t
q∇rqdr gives good results, this would greatly

simplify the energy transport model. However, deriving a radiation scaling requires removing the
neutral sources that are currently significant, as including this in the energy transport model gives
an expression which is too complex.
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