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Abstract

We derive criteria for the quasiclassical Green functions in odd-frequency supercon-
ducting systems in the dirty limit and use these criteria to make three ansatzes
for models that give physically reasonable behavior. The density of states, the
renormalization of the spin-flip and spin-orbit scattering lengths, and the Meissner
response of these models are calculated and compared to the properties of con-
ventional superconductors. Depending on the model used, the density of states
can be either peaked or gapped at the Fermi energy. A general result is derived,
stating that odd-frequency superconductors display the same robustness towards
spin-flip scattering as a normal metal, while the effects of spin-orbit scattering are
renormalized in energy domains where the anomalous Green function has a real
part. The Meissner response is conventional, zero, or unconventional, depending
on the model. Finally, we solve numerically a realistic proximity system in which
odd-frequency superconductivity naturally arises and compare it with the analytic
models. The Meissner effect in this system is unconventional, and the density of
states is peaked, consistent with results for one of the analytic models. We apply a
spin-voltage to this system to study the non-equilibrium spin mode and find that
the spin-orbit scattering length is renormalized, while the spin-flip scattering length
is unchanged from the normal state, consistent with our analytical results. The spin
accumulation is enhanced compared with a conventional superconductor. Moreover,
for low temperatures and spin-voltages, the spin accumulation is enhanced even
compared to the normal state.
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Sammendrag

Vi utleder kriterier for den kvasiklassiske Green-funksjonen i superledende odde-
frekvens systemer hvor urenhets-spredning er dominerende, og bruker disse kriter-
iene til å lage tre ansatser for modeller som gir fysisk rimelig oppførsel. Tilstands-
tettheten, renormaliseringen av spinn-flipp- og spinn-bane-spredningslengdene og
Meissner-responsen til disse modellene blir s̊a beregnet og sammenlignet med
egenskaper hos en konvensjonell superleder. Tilstandstettheten kan ha et gap eller
en topp rundt Fermi-energien, avhengig av modellen som blir brukt. Vi utleder et
generelt resultat, som sier at odde-frekvens-superledning viser samme robusthet mot
spinn-flipp-spredning som et normalmetall, mens effekten av spinn-bane-spredning
blir renormalisert for energidomenet der den abnormale Green-funksjonen har en
realdel. Meissner-responsen er konvensjonell, null eller ukonvensjonell, avhengig
av modellen. Til slutt løser vi numerisk et realistisk system hvor odde-frekvens-
superledning oppst̊ar naturlig, og sammenligner med de analytiske modellene.
Meissner-effekten i dette systemet er ukonvensjonell, og tilstandstettheten har
en topp p̊a Fermienergien, noe som er tilsvarende oppførsel som vi fant i en av
de analytiske modellene. Vi p̊asetter en spinn-spenning til dette systemet for
a undersøke hvordan ikke-likevekts-spinn-moden oppfører seg i et slikt system,
og finner at spinn-bane-spredningslengden blir renormalisert, mens spinn-flipp-
spredningslengden er uforandret fra normaltilstanden, noe som er konsistent med
de analytiske resultatene. For lave temperaturer og spinn-spenninger, s̊a er spinn-
akkumulasjonen forhøyet sammenlignet med et normalmetall eller en konvensjonell
superleder.
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Notation and conventions

The unit system used in this thesis is natural units, with Planck’s reduced constant,
the speed of light in vacuum, and the Boltzmann constant set to unity. We set the
vacuum permeability and vacuum permittivity to unity well. In the usual symbols
this is written h̄ = c = kB = µ0 = ϵ0 = 1. We denote by e = −|e| the electron
charge, and the electron mass is denoted m. Partial derivatives will be written as
∂t ≡ ∂/∂t. Vectors will be typeset as k, and four-vectors as k. Similarly, we write
∇ and ∇ for a 3-gradients and 4-gradients, respectively. dr and d4x will be used
to denote the integration measures in three- and four-dimensional space. We use
the symbols ≡ for definitions, ≈ for approximations, and ∝ for proportionality.
When considering matrices, we will use the shorthand notations

diag(A,B) ≡
(
A 0
0 B

)
antidiag(A,B) ≡

(
0 A
B 0

)
,

where A and B can be scalars or square matrices of equal dimensions. For a clear
notation we denote a 2× 2 matrix as F

¯
, a 4× 4 matrix as F̂ , and a 8× 8 matrix as

F̌ . Matrices will generalize to higher dimensions as a Kronecker (direct) product
with a unit matrix where it is needed, so that e.g.

F
¯
Ĝ =

(
F
¯

0
0 F

¯

)
Ĝ.

Commutators and anticommutators are denoted in the usual way as [A,B] and
{A,B}, respectively. The Pauli matrices in spin space will be denoted by σ

¯1
, σ
¯2

and σ
¯3
. When used in particle-hole (Nambu) space, we use the symbols τ

¯1
, τ
¯2

and
τ
¯3
. The identity matrices will be denoted τ

¯0
, σ
¯0
, and 1

¯
. We gather these matrices

in vectors,

σ
¯
≡ (σ

¯1
, σ
¯2
, σ
¯3
)Tr τ

¯
≡ (τ

¯1
, τ
¯2
, τ
¯3
)Tr,
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where Tr denotes the matrix transpose. For matrices in Nambu-spin space we will
use the generalizations of the Pauli matrices,

τ̂1 ≡ τ
¯1

⊗ σ
¯0

τ̂2 ≡ τ
¯2

⊗ σ
¯0

τ̂3 ≡ τ
¯3

⊗ σ
¯0
,

and

σ̂1 ≡ diag(σ1, σ
∗
1)

σ̂2 ≡ diag(σ2, σ
∗
2)

σ̂3 ≡ diag(σ3, σ
∗
3) ,

where ”⊗” denotes the tensor product. The unit matrix in Nambu-spin space will
be denoted as 1̂. We gather the Nambu spin-matrices in 3-vectors as well,

σ̂ ≡ (σ̂1, σ̂2, σ̂3)
Tr τ̂ ≡ (τ̂1, τ̂2, τ̂3)

Tr.

For the numerical calculations, it is convenient to introduce additional matrices,

ρ̂0 ≡ τ̂0σ̂0 ρ̂1 ≡ τ̂0σ̂1 ρ̂2 ≡ τ̂0σ̂2 ρ̂3 ≡ τ̂0σ̂3

ρ̂4 ≡ τ̂3σ̂0 ρ̂5 ≡ τ̂3σ̂1 ρ̂6 ≡ τ̂3σ̂2 ρ̂7 ≡ τ̂3σ̂3

The antidiagonal unit matrices, sometimes called the exchange matrices, will be
denoted by J1, so that we have e.g. J

¯1 ≡ σ
¯1

= antidiag(1, 1) and Ĵ1 ≡ σ
¯1

⊗ σ
¯1

=
antidiag(1, 1, 1, 1). Finally, we define the antidiagonal version of the third Pauli
matrix as J

¯3 ≡ iσ2 = antidiag(1,−1), and Ĵ3 ≡ iσ
¯2

⊗ σ1 = antidiag(1, 1,−1,−1).
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Chapter 1

Introduction

In this chapter, we introduce the concepts of ferromagnetism and superconductivity,
and how they can be applied to the field of spintronics. We also explain the
organization of the chapters in this thesis.

1.1 Superconducting spintronics

Ferromagnets have fascinated man for at least 2000 years, and they have been used
in a wide range of different applications such as navigation, electrical generators,
and computer hard drives [1, 2]. The ferromagnetic state is characterized by the
spins of a material aligning to form a macroscopic magnetization, something that
cannot be explained by classical physics. Ferromagnets can also be used to make
currents spin-polarized, which is used in spintronics, where the spin of a particle is
used in solid-state devices. Spintronics has, through the giant magnetoresistance
effect [3, 4], which resulted in the Nobel Prize in physics in 2007 [5], already found
applications within read heads in hard drives [6], and shows further promise in
applications within energy-efficient and faster logic devices [7]. Superconductivity
is, together with ferromagnetism, the most dramatic manifestation of quantum
effects on macroscopic scales. A conventional superconductor is characterized by
the fact that magnetic fields are completely expelled from the interior, as well as the
zero-resistance electrical current that gives the effect its name. The fundamental
constituent of the superconductor is the Cooper pair, after Cooper [8], which
consists of two electrons forming a bound singlet spin-state, avoiding the scattering
of the ion lattice of the material. Superconductivity is used today in medical
magnetic imaging devices and sensitive imaging devices, due to their ability to
energy-efficiently carry large currents, as well as for magnetic levitation in e.g.
trains [9] due to the magnetic properties of superconductors [10].

In a world increasingly dependent on computers, the question arises whether it
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CHAPTER 1. INTRODUCTION

is possible to obtain synergies between the zero-resistance conductivity of the su-
perconductor and the spin-alignment of a ferromagnet. By placing superconductors
and ferromagnets in proximity to each other, properties tend to mix close to the
material interface [11], and such systems have been the subject of intense research
in the last years, showing promise to be used to produce supercurrents carrying a
net spin [6]. Interestingly, in many physically relevant systems, the Cooper pairing
becomes non-local and antisymmetric in time, a paring which was first described
by Berezinskii [12]. This pairing is usually denoted as odd-frequency pairing. Such
an exotic pairing is not only exhilarating from a fundamental physics point of view,
but it also gives rise to new properties, which differ greatly from the properties of
conventional superconductors, as was reviewed in a recent paper by Linder and
Balatsky [13]. This includes an altered local density of states [14, 15, 16, 17],
and robustness against spin-flip impurity scattering [18, 14]. The Meissner effect
in odd-frequency superconductors has been debated in the literature, and it has
been argued for both a paramagnetic [19, 20] and diamagnetic Meissner effect [21].
Superconducting systems that are odd in frequency have the advantage of being
able to carry net spin while also being robust against impurity scattering [22].
This opens a possible avenue for obtaining long-range spin-polarized supercurrents,
which are currents that flow without resistance while simultaneously carrying a net
spin [23]. Moreover, in a recent article by [24], it was shown that the spin current
was strongly enhanced in a proximity structure compared to what one would expect
for a conventional singlet superconductor, indicating that the proximity had induced
odd-frequency pairing in the superconductors. For the reasons mentioned above,
further understanding the nature of odd-frequency pairing in superconductors could
be an important step on the road to realizing energy-efficient superconducting
spintronics.

1.2 Structure of the thesis

In this thesis, we study odd-frequency superconductivity using quasiclassical the-
ory. The thesis consists of six chapters, including this introductory chapter. In
Chapter 2, we start by discussing some fundamental concepts of ferromagnetism,
superconductivity, and quantum theory, which are used extensively in the rest
of the thesis. We then proceed in Chapter 3 by introducing the field theory of
superconductors, ferromagnets, and metals, deriving equations of motions for the
Green functions in such materials. The quasiclassical approximation is introduced,
essentially assuming that the energies in the systems are small compared to the
Fermi energy. Finally, we consider so-called dirty systems, where impurity scatter-
ing dominates other energies in the system, and simplify the equations of motion by
averaging over all possible impurity configurations, thus making our approximate

2



1.2. Structure of the thesis

result valid for any system with randomly distributed impurities. Much of Chapter 3
will build upon the specialization thesis, which was written during the fall semester
as an introduction to this master’s thesis. Most of the specialization thesis is
spent deriving the Usadel equation in detail. This derivation is also available
in both textbooks and other theses, such as the master theses of Morten [25] or
Amundsen [26], or the textbook by Rammer [27]. In this thesis, we will instead
give an overview and sketch the methods used to derive the equations and refer
the reader to the specialization thesis or the other sources cited above for some
of the detailed calculations. The specialization thesis is not readily available but
will be handed out upon request. In Chapter 4, we propose physically reasonable
criteria that the quasiclassical Green functions of odd-frequency superconductors
are expected to satisfy and use these to propose analytical models for the Green
functions in odd-frequency superconductors. These models are then studied in
detail to investigate the physics they describe. In Chapter 5, we solve numerically
a realistic proximity system naturally displaying pure odd-frequency superconduct-
ivity and use this system to study properties relevant to spin transport such as spin
accumulation, spin-flip and spin-orbit scattering, and the density of states. The
Meissner response of the system is also calculated. These properties are compared
to properties of conventional superconductors, as well as our analytical models from
Chapter 4. The Python program that was written to solve for the equilibrium and
non-equilibrium quasiclassical Green function is available upon request. Finally,
we summarize and discuss the prospects of the thesis in Chapter 6.

3
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Chapter 2

Fundamental Concepts

In this chapter, we introduce the fundamentals of ferromagnetism, superconductivity,
and their interplay. We also explain some fundamental concepts from quantum
theory, which is used extensively throughout the thesis.

2.1 Ferromagnetism and superconductivity

We give brief historical introductions to ferromagnetism and superconductivity,
two of the most dramatic manifestations of quantum effects on the macroscopic
scale, as well as the coexistence of these phases. This will illuminate some of the
incredible implications of quantum theory for material properties.

2.1.1 Introduction to ferromagnetism

During the 19th century, the classical theory of electromagnetism was developed,
and when James Clerk Maxwell formulated his eponymous equations at the end of
the century, one could be led to believe that the theory of electromagnetism was
set in stone: static and moving electric charges produced electric and magnetic
fields, respectively, and the fields determined the movement of other charged
particles [28]. It was then natural to try to apply this theory to ferromagnets,
which are materials with a net magnetization even in the absence of external fields.
The magnetization was believed to simply be a product of bound currents in the
material. However, using statistical mechanics, Niels Bohr derived in his doctorate
thesis [29] what is now called the Bohr-van Leeuwen theorem, which states that
the net magnetization must be zero for a classical material in equilibrium, if the
magnetization comes from currents alone [2]. This was devastating for the hope of
using classical electromagnetism to explain the phenomenon of ferromagnetism.

With the invention of quantum mechanics and the discovery of the intrinsic
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CHAPTER 2. FUNDAMENTAL CONCEPTS

angular momentum, or quantum spin, of fundamental particles, the situation
changed. It is the electrons that carry the magnetization and by thinking of a
ferromagnet as a lattice of spin-1/2 particles, it seems natural to consider an analogy
to bar magnets placed on a lattice. These magnets try to align their neighbors
in the same direction as themselves, through the dipole-dipole-interaction. It can,
however, be shown, as done in a note by Timm [2], that the typical energies of
such interactions are on the scale of T ∼ 0.3K, suggesting that the dipole-dipole
interaction is too weak to be the dominant mechanism behind ferromagnetism,
which is present even at ambient temperatures.

The interaction responsible for the ferromagnetic order is the exchange inter-
action, which arises due to the Pauli principle, which states that two fermions
cannot be in the same quantum mechanical state. Electrons in the same spin
state will experience a repulsive Pauli exchange force1. It can be shown that for a
many-body system of localized electrons at half-filling, the Pauli principle results
in an exchange interaction, which takes the same form as a Zeeman interaction,
and lowers the energy of the system by aligning the spins of the electrons [26]. This
produces a ferromagnetic ground state, where spins align to form a macroscopic
magnetization.

2.1.2 Introduction to superconductivity

For temperatures in the ambient regime, the conductivity of a metal increases with
decreasing temperature. A physical interpretation of this is that the conductivity
is due to moving electrons, and resistance is due to scattering with the ion cores in
the metal; with increased temperature, the ions move around more, creating more
resistance. On the other hand, it was for a long time also unknown whether the
conducting electrons would be able to move at a temperature of absolute zero [30],
and it was, therefore, an open question what would happen to the resistivity of a
conductor at zero temperature. This was the situation in physics in the early 20th
century before 1911 when Heike Kamerlingh Onnes observed that the resistivity
of liquid mercury dropped abruptly to zero at a critical temperature Tc of a few
Kelvin [31], as presented in e.g. [27, 30]. The behavior of the resistivity in such a
material is illustrated in Fig. 2.1. This had no explanation within classical physics,
and almost 50 years passed before a complete explanation of this phenomenon of
superconductivity was put forth.

Nevertheless, progress was made during the 1930s. Although the perfect con-
ductivity was the first property of conventional superconductivity to be discovered,
it soon became clear that it was not the most fundamental property of such mater-

1Of course, in the fundamental physics definition of a force involving the exchange of a
force-carrying particle, the Pauli exchange ”force” is not an actual force.
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2.1. Ferromagnetism and superconductivity

1
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Figure 2.1: The temperature dependence of the resistivity ρ drops abruptly to zero
at the critical temperature Tc of a superconductor. For low temperatures above
the critical temperature, the resistivity increases approximately linearly.

ials. In 1933, Meissner and Ochsenfeld [32] found that magnetic fields are expelled
from the bulk of a superconductor below the critical temperature, meaning that
superconductors display perfect diamagnetism in addition to perfect conductance.
This effect was called the Meissner effect after its discoverer. It can be shown using
Maxwell’s equations, as is done e.g. by Tinkham [33], that a perfect conductor
will in general resist changes in the magnetic field, but this effect differs from the
perfect diamagnetism that superconductors display. If one places a superconductor
above the critical temperature in a magnetic field and then cools it down, the
magnetic field is expelled from the bulk of the superconductor, while in a perfect
conductor the field inside could in general remain constant when cooling it down
below the critical temperature, and then resisting changes in this magnetic field.
In other words, the Meissner effect does not follow from the property of perfect
conductance. It can, however, be shown that the opposite is true, perfect conduct-
ivity follows from the Meissner effect [13]. The discovery of the Meissner effect was
also important for the development of the theory of superconductivity because it
showed for the first time that superconductivity was a thermodynamic phase [34].

An important clue for the origin of the superconductivity came in the year 1950
when it was discovered that the critical temperature of mercury superconductors
depends on the mass of the ions constituting the lattice [34]. This so-called isotope
effect indicated that the electron-phonon interactions between the electrons and
the lattice played an important role in explaining the superconducting state. Such
an interaction gives rise to an attractive interaction, which at low frequencies is
attractive and, in some cases, can even overcome the Coulomb repulsion between
electrons [33]. In a monumental paper in 1956, Cooper [8] showed that even a
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weak attraction between electrons would lead to an instability in the Fermi sea,
suggesting that a phase transition would occur for materials displaying attractive
forces between electrons. Cooper showed that for such materials, pairs of electrons
would form at least one bound state in the form of spin-singlets, which are today
called Cooper pairs, which could move through the lattice without resistance. This
was due to the pairs having lower energy than the Fermi sea background, meaning
that it would take a finite excitation energy ∆ for each electron to break up the
Cooper pair. This instability depends on the existence of a Fermi sea, as well as
being a consequence of the Fermi statistics [33]. The formation of such a pair is
often explained using a classical analogy of two point-charge electrons moving in
a rigid lattice, as shown in Fig. 2.2. The rapid electrons displace the positively
charged lattice in their wake, creating a temporary increased charge density. This
increased charge density will in turn attract other electrons, in effect providing an
attractive force between electrons.

Figure 2.2: The classical analogy of the mechanism behind BCS superconductivity.
The ion cores (black), are pulled towards the rapidly moving electrons (red) and
create a temporary increased charge density which pulls on other electrons. This
results in a net attraction between the electrons. The figure is adapted from [26].

Finally, with the BCS theory of superconductivity in 1957, Bardeen, Cooper,
and Schrieffer [35] generalized the results to a condensate of many electrons. The
condensation was in essence due to the excitation of quasiparticles from this
condensate requiring a finite excitation energy above the condensate ground state
energy. The density of states for a superconductor can be found from BCS theory,
and is plotted in the left pane in Fig. 2.3. In BCS theory, the temperature
dependence of the gap can be approximated by an interpolation formula, as
presented e.g. in [36],

∆(T ) = ∆0 tanh

(
1.74

√
Tc
T

− 1

)
, (2.1)
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−4 −2 0 2 4

0

1

2

3

E/∆

N
(E

)/
N

0

0 0.2 0.4 0.6 0.8 1

0

0.5

1

T/Tc

∆
(T

)/
∆

0

Figure 2.3: In the left pane, the normalized density of states is plotted for a
conventional superconductor. In the right pane, the approximate temperature
dependence of the gap ∆(T ) is shown. See the main text for more details.

where ∆0 is the gap at zero temperature. This temperature dependence is plotted
in the right pane in Fig. 2.3. In the original paper, it was predicted that the ratio
of this energy gap ∆0 ≡ ∆(T = 0) at zero temperature and the critical temperature
Tc should be [35]

2∆0

Tc
= 3.50, (2.2)

which matches well with experimental results performed for superconductors like
Al, Nb or Hg [33, 37]2.

2.1.3 Coexistence between ferromagnetism and supercon-
ductivity

Ferromagnets and superconductors have properties that are useful for many applic-
ations within technology, and the question of combining the two effects naturally
arose during the development of the theory of superconductivity. Since the early
days of superconductivity it has, however, been known that for strong magnetic
fields, the superconducting state is broken [38, 23]. Taken together with the fact
that conventional superconductors display the Meissner effect, it is clear that
the ferromagnetic and superconducting states are largely incompatible [11]. The
question of coexistence between the two phases was considered by Ginzburg [39],
who studied how Cooper pairs were broken up by the orbital interaction that arises
when electrons move in a magnetic field. Moreover, in 1958, Matthias et al. [40]

2In [33], BCS theory is used to arrive at the ratio ∆0/Tc = 1.764.
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suggested also the effect of paramagnetic pair breaking, which originates from the
exchange interaction in the ferromagnet attempting to align the electrons in the
Cooper pair. The same effect is also present for magnetic fields, where the Zeeman
interaction tries to align the electrons [11]. This causes the singlet Cooper pairs
to be broken apart, but there is also another effect present, where the singlets
are transformed into triplets and back [11]. This is called the FFLO or LOFF
effect after Fulde and Ferrell [41] and Larkin and Ovchinnikov [42] who discovered
this effect independently and is due to the exchange splitting of the energy bands
causing the Cooper pair to acquire a nonzero center-of-mass momentum [23]. While
there are bulk systems that display both ferromagnetism and superconductivity,
the superconducting effects in singlet s-wave superconductors tend to be destroyed
in strong ferromagnets [23]. Triplet superconductors do not feel the exchange
interactions in a ferromagnet, but due to such superconductors usually exhibiting
p-wave symmetry3, they are, in contrast to s-wave or d -wave superconductors,
extremely sensitive to impurity scattering effects, making applications difficult to
realize [43, 23].

2.2 Andreev reflection and the proximity effect

Superconductivity is characterized by the existence of an energy gap ∆, which
means that there are no one-particle states available for excitation energies below
this gap, relative to the Fermi energy. The energy of such a quasiparticle is in a
BCS superconductor given as

Ek =
√
∆2 + ξ2k, (2.3)

where ξk = k2/2m − µ is the kinetic energy relative to the Fermi energy µ of a
particle with momentum k in the normal state, and m is the mass of the particle.
When placing a conductor in proximity to a superconductor, electrons with energies
below the gap can still move across the boundary from the normal metal into
the superconductor, by the mechanism known as Andreev reflection [44]. In this
effect, the incident electron is reflected as a hole, while a Cooper pair is created
on the superconducting side, meaning a charge transfer of 2e has occurred in the
process. This is illustrated in Fig. 2.4. Thinking of this process as one particle
being transformed into two electrons and a hole shows that the total charge is
conserved in the system. The reflected hole has the opposite momentum and spin
compared to the incident electron4, causing conservation of momentum and spin as
well.

3This is explained in more detail in Section 2.3
4Due to the hole being a missing electron, the physical spin of a hole is the opposite of the

spin of the missing electron.
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N S
Figure 2.4: Illustration of Andreev reflection between a normal metal (N) and a
superconductor (S). The electrons are shown in blue and the holes in red. The
black arrows show the velocity direction of the velocities of the particles, and the
blue arrows show the spin of the electrons. The red arrow shows the spin of the
missing electron.

An important feature of this process is that the reflected hole in the normal
metal will be phase-coherent with the transmitted Cooper pair, meaning that the
normal metal will become, to some extent, coherent with the superconductor [45].
It has been known since the 1960s that placing superconductors and metals in the
normal state together in so-called superconductor-normal metal (SN) heterostruc-
tures, dramatically charges material properties; superconducting properties can be
induced in the metal, and the superconducting properties in the superconductor
is weakened [46, 47]. Such phase-coherence is due to the mechanism of Andreev
reflection, causing the superconducting properties to persist for lengths much longer
than the microscopic scale into the normal metal [48], an effect known as the
proximity effect. Another type of proximity effect arises when placing a super-
conductor together with a ferromagnet in a so-called superconductor-ferromagnet
(SF) heterostructure. In the ferromagnet, the FFLO effect causes the singlet amp-
litude to oscillate into a triplet amplitude. For homogeneous magnetization, these
components both decay quickly inside the ferromagnet, but by utilizing a ferro-
magnet with an inhomogeneous magnetization, it is possible to make these triplets
long-ranged [49, 50]. In Section 5.2, we will use the Python program that was
written to study SN and SF structures with both homogeneous and inhomogeneous
magnetization, and the reader is directed to this section for a further discussion
about the proximity effect.
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2.3 Odd-frequency superconductivity

The concept of odd-frequency pairing was introduced by Berezinskii [12] as an
explanation for the superfluid phase of Helium-3. It was later found that the
superfluid Helium-3 did not display odd-frequency pairing, but rather a different
spatial pairing [21]. Nevertheless, the idea of a pairing that is odd in time, was almost
20 years later applied to superconducting systems by Balatsky and Abrahams [51].
In a recent paper, Linder and Balatsky [13] argued that the odd-frequency paring
was ubiquitous in superconducting systems and that it appeared not only in
heterostructures but also in bulk materials and dynamically driven superconducting
states. In this section, we follow this paper and review the fundamental properties
of odd-frequency superconductivity.

It can be shown in general that the pairing amplitude fσσ′(r1, t1; r2, t2), which
describes superconducting correlations, must be odd under the application of
the parity operator P , the spin-interchange operator S, and the time-reversing
operator T 56. This motivates the previous statement that was made about triplet
superconductors usually displaying p-wave pairing. In this thesis, we will focus on
systems where impurity scattering dominates over all other energy terms, which in
essence makes the pairing amplitude isotropic in space, thus becoming invariant
under P . An odd-frequency superconductor is characterized by a two-electron
pairing amplitude which is odd under the application of T [13]. When we Fourier
transform this causes the Fourier transformed pairing amplitude to be odd in
the relative frequency7. This leaves us with two possibilities for such systems:
singlet even-frequency or triplet odd-frequency. This classification is summarized
in Table 2.1.

Table 2.1: The different symmetry possibilities for the pairing function in a dirty
superconductor.

Pairing type P S T

Singlet even-frequency + - +
Triplet odd-frequency + + -

The discussion above reveals that in SF heterostructures, the triplet component
that is induced must be odd in frequency. Other possibilities for inducing an odd-
frequency pairing in a heterostructure include systems with spin-orbit coupling [52]

5Actually, P and T inverts only the relative positions and time coordinates, but we will not
discuss this distinction here. See [13] for a more rigorous introduction of these operators.

6In general, one could also have orbital indices, in which case we would also have to include
the orbital interchange operator. In this thesis, we work only with single-orbit systems.

7Energy and frequency have the same units in coordinates where we set h̄ = 1.
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and SN systems with unconventional superconductors [53, 54]. The amplitudes
of the odd-frequency pairing amplitude can in some systems, such as in systems
with inhomogeneous magnetization8 or spin-orbit coupling [52], persist for long
distances into the heterostructures.

Odd-frequency pairing alters the local density of states, and it seems that
both densities of states that are peaked and gapped at the Fermi energy are
possible [14, 13, 13]. Another signature of odd-frequency superconductivity is
that they are expected to be less robust to spin-orbit impurity scattering than
conventional superconductors, and more robust to spin-flip scattering on magnetic
impurities [14]. Finally, there has been some disagreement about the Meissner effect
in odd-frequency superconducting systems. The Meissner effect in a conventional
superconductor is diamagnetic, meaning that currents arise to cancel external
magnetic fields. It has been argued, e.g. in [19, 20] that the Meissner effect
in s-wave superconductors should exhibit a paramagnetic Meissner effect, and
that this causes an instability in bulk odd-frequency systems, effectively arguing
odd-frequency superconductivity to exist in the ground state in uniform systems.
In a later article, Solenov et al. [21] argued that these conclusions were incorrect
due to the erroneous assumption of the existence of a mean-field Hamiltonian. It
was argued that the retardation effect, that is the time delay in the interaction
between electrons, could not be ignored in the same way as it is in the BCS theory
of conventional superconductivity when one approximates the two-body interaction
as a mean-field term in the Hamiltonian. It was found, using a path-integral
approach, that the Meissner effect was diamagnetic, and a stable ground state
in a uniform system was possible. Note that even though the Meissner effect of
a bulk system is expected to be diamagnetic for the matter to be stable, it is
possible to find a paramagnetic Meissner effect, e.g. in superconductor-ferromagnet
heterostructures [13, 16]. The Meissner effect in odd-frequency superconductors
will be further explored in Section 4.5 and Section 5.3.2.

2.4 Second quantization

In this section, we introduce the notion of second quantization in quantum mech-
anics. This section will be based on the condensed matter field theory textbook by
Altland and Simons [55].

In quantum mechanics, one can describe a system of many particles through a
many-particle wave function, which can be constructed from the single-particle wave
functions. For the simple case of non-interacting particles, this is done by (tensor)
multiplying the single-particle wave functions, as well as symmetrizing or antisym-
metrizing the resulting wave function, following the spin-statistics theorem [56].

8Such a system is considered in Chapter 5.
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The procedure of applying the correct symmetries is simple for a two-particle sys-
tem, but as the number of particles increases, the procedure becomes cumbersome.
Using Dirac’s bra-ket notation, the N-particle wave function can be written as

|λ1, λ2...λN⟩ =
1√

N !
∏∞

k=0(nλk
!)

∑
S
ξ1−sgn(S) |λS1⟩ ⊗ · · · ⊗ |λSN

⟩ . (2.4)

Here, |λi⟩ is the one-particle wave function, ”⊗” denotes the tensor product, S is the
permutation of order N , sgn(S) is the sign function which is 1 (−1) for even (odd)
permutations, nλk

is the number of particles in the state λk and ξ = 1 for bosons and
ξ = −1 for fermions. It is the fact that we need to symmetrize or anti-symmetrize
the functions that lead to the complicated form of this many-particle wave function.
In addition to being complicated, this formalism has another disadvantage; the
wave functions only exist for a fixed particle number. From statistical mechanics in
classical physics, we know that it can often be convenient to use the grand canonical
ensemble, where the number of particles is allowed to fluctuate. When the number
of particles is large enough, the particle fluctuation will make no difference, but
many calculations can be made easier this way. Additionally, in the theory of
superconductivity, it is useful to have basis functions that contain superpositions
of states with different particle numbers.

Motivated by the arguments above, we instead introduce the formalism of second
quantization, which is sometimes also called the occupation number formalism. In
this formalism, instead of writing a ket on the form |λ1, λ2...⟩, where λi is the state
that particle i is in, we write the state as |n1, n2...⟩, where ni is the number of
particles that occupy state number i. We also introduce the vacuum state |0⟩ as
the state with no particles.

We now introduce the creation and annihilation operators as the operators that
raise or lower the number of particles in a given state. For simplicity, this is done
for fermionic particles only in the rest of the thesis, since we will consider mainly
electrons, which are fermions9. The creation operators c†λ and the annihilation
operators cλ are defined through their effect on the vacuum state,

c†λ |0⟩ = |λ⟩ cλ |λ⟩ = |0⟩ . (2.5)

The operators follow fermionic anticommutation relations{
cλ, c

†
λ′

}
= δλ,λ′

{
cλ, cλ′

}
= 0

{
c†λ, c

†
λ′

}
= 0, (2.6)

where δλ,λ′ is the Kronecker delta function. In the case of λ = λ′, the last two
equations mean that using either operator twice will destroy any state. This can

9For a general introduction to the second quantization of bosons, the reader is directed to the
book by Altland and Simons [55].
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be interpreted as the fact that only one fermionic particle can occupy a given state
at the time. This is the well-known Pauli principle, which is responsible for much
of the physics behind everyday effects, such as the stability of matter [57].

In the second quantization formalism, a one-particle operator A is given by

A =
∑
λ,λ′

⟨λ′|A1 |λ⟩ c†λ′cλ, (2.7)

where A1 is the first-quantized operator corresponding to A. By multiplying with
|α⟩ from the right and ⟨β| from the left we obtain

⟨β|A |α⟩ =
∑
λ,λ′

⟨λ′|A1 |λ⟩ ⟨0| cβc†λ′cλc
†
α |0⟩ = ⟨β|A1 |α⟩ , (2.8)

where in the last equation we have used the anticommuatation relations of the
creation and annihilation operators. We then see that the two formulations yield
the same matrix elements, and thus will give the same results for all physical
observable quantities. For N -particle operators, the procedure for constructing
the second quantized version is a straightforward generalization of the one-particle
operator, with the sum going over 2N variables, the first-quantized operator being
sandwiched between N bras and N kets, and with N creation operators and N
annihilation operators.

So far, the quantum number λ could be any quantum number that labels the
states. It is convenient to choose the quantum number and thus the basis in a
way that fits the system, in order to make calculations as simple as possible. In
this thesis, it will be convenient to choose10 λ = r, the position vector. Since r
is a continuous quantum number, discrete sums are replaced with integrals, and
Kronecker delta functions are replaced with Dirac delta functions. We denote the
creation and annihilation operators by

ψ(r, t) =

�
drϕλ(r, t)cλ ψ†(r, t) =

�
drϕ∗

λ(r, t)c
†
λ, (2.9)

where ϕλ(r, t) is the wave function of the state characterized by λ. These operators
are often called field operators and can be interpreted as the operators that create
and annihilate particles at position r and time t, and are sometimes referred to as
the field operators.

The operators, follow fermionic anticommutation relations at equal times,{
ψ(r, t), ψ†(r′, t)

}
= δ(r − r′) (2.10a){

ψ(r, t), ψ(r′, t)
}
= 0 (2.10b){

ψ†(r, t), ψ†(r′, t)
}
= 0, (2.10c)

10We will also include the spin quantum number, but here we are discussing the choice of the
quantum numbers for spatial degrees of freedom.
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where δ is the Dirac delta function. For an introduction to field theory in the
context of the Schrödinger equation, the reader is directed to Appendix B.

2.5 Pictures of quantum mechanics

In the formulation of quantum mechanics, one can choose whether to put the
time-dependence in the operators or the state vectors. We refer to these different
formulations as pictures of quantum mechanics. This section will be based on the
textbook on introductory quantum mechanics by Sakurai and Napolitano [56].

In the Schrödinger picture, the time evolution is placed only in the state vectors.
The time evolution of a state |Ψ(t)⟩ is given by the Schrödinger equation

i∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩ , (2.11)

where H is the Hamiltonian operator of the system, and where we have suppressed
the dependence on all variables except for time. We define the unitary time-
translation operator as

U(t, t0) |Ψ(t0)⟩ = |Ψ(t)⟩ . (2.12)

We can then rewrite the Schrödinger equation in terms of this operator as

i∂t U(t, t0) = H(t)U(t, t0). (2.13)

It is worth noting that in the simple case where there is no explicit time dependence
in H, the solution of (2.13) is simply

U(t, t0) = e−iH(t−t0). (2.14)

In the Heisenberg picture, one instead lets the operators carry the time evolution,
and the state vectors are independent of time. We consider a general operator AS

in the Schrödinger picture and assume that it has no time dependence, as this
will be the case for the field operators we consider in the rest of the thesis. We
assume that the state vector and operators coincide at t = t0, and require matrix
elements to be the same in the Heisenberg picture as in the Schrödinger picture
at all subsequent times. This means that all observable quantities will be the
same in the two pictures, which they must be in order for the two pictures to give
compatible results. This means that

⟨Ψ(t)|AS |Φ(t)⟩ = ⟨Ψ(t0)| U †(t, t0)ASU †(t, t0) |Φ(t0)⟩
= ⟨Ψ(t0)| U †(t, t0)AH(t0)U †(t, t0) |Φ(t0)⟩
= ⟨Ψ(t0)|AH(t) |Φ(t0)⟩ ,

(2.15)
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where the subscripts refer to the picture the operator is given in. Since the states
Ψ and Φ are arbitrary, the time-evolution of a general Heisenberg operator AH(t)
is given through the operator relation

AH(t) = U †(t, t0)AH(t0)U(t, t0). (2.16)

In order to calculate the time dependence of operators in the Heisenberg picture,
one could solve Eq. (2.13) for U(t, t0) and then insert into Eq. (2.16). There is,
however, a simpler way that involves deriving an equation of motion of the operator
A(t) directly. This equation is often called the Heisenberg equation of motion. We
start by considering the time derivative of the operator AH and use the definition
of the time evolution in Eq. (2.16). This yields (suppressing the time arguments in
U)

∂tAH(t) = ∂t
(
U †ASU + U †ASU

)
= −1

i
U †HUU †ASU † +

1

i
U †ASUU †HU

=
1

i

[
U †ASU ,U †HU

]
=

1

i
[AH(t), H]

= i [H,AH(t)] ,

(2.17)

In the first line, the Schrödinger equation for the time-evolution operator from
Eq. (2.13) and its adjoint equation was used. In the fourth line, we used Eq. (2.16)
and assumed the Hamiltonian to be time-independent such that it commutes with
the time-evolution operator11. This equation will be used extensively in Section 3,
where the operators in question are the field operators introduced in Section 2.4.
From here, we drop subscripts on the operators, with the knowledge that all
operators are given in the Heisenberg picture.

11This implies that from the definition of Heisenberg operators in Eq. (2.15), the Hamiltonian
is the same in both pictures. We can thus refer to the Hamiltonian of a system without specifying
which of the two pictures we are considering.
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Chapter 3

Theory

In this chapter, we introduce the non-equilibrium field theory of superconductors
using Green functions and introduce the quasiclassical approximation to simplify
the equations of motion. We take the dirty limit, assuming that the systems we will
consider are dominated by impurity scattering. This will result in the derivation of
the Usadel equation, valid for a superconductor where the impurity scattering is
assumed to be strong compared to other interactions. This equation is a nonlinear
differential equation that can be solved for the quasiclassical Green function of the
system. Much of this chapter is based on the specialization thesis [58]. Since much
of the specialization thesis is spent deriving the Usadel equation, and because this
is a derivation that is readily available in other texts, we will in this thesis focus
on conveying the concepts behind the derivation. To this end, we will cite other
works for some results, in order to keep the derivation short and to the point.

3.1 Field operators and their equations of motion

In this section, we introduce the dynamics of a superconducting system, and derive
equations of motion for the field operators.

3.1.1 Hamiltonian

We consider a superconducting system with spin-flip impurity scattering, spin-
orbit impurity scattering, and elastic impurity scattering. To be able to describe
ferromagnetic effects, we allow for an exchange interaction to be present in the
system. We also allow for electromagnetic fields in the material but neglect the effect
of spin-orbit coupling. For a thorough introduction to all these interactions and a
derivation of their Hamiltonian terms, the reader is directed to the master’s thesis of
Amundsen [26], where the microscopic theory of superconductivity, ferromagnetism,
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and elastic impurity scattering is derived and discussed. We will also include the
effects of spin-orbit scattering and spin-flip scattering on impurities, which are
discussed in the appendix of an article by Johnsen and Linder [14]. The Hamiltonian
of such a system is given by

H = H0 +HBCS +Hsc +Hsf +Hex +Hso, (3.1)

where we have defined the kinetic term H0, the BCS mean field term HBCS, the
ferromagnetic exchange term Hex, the impurity scattering term Hsc, the spin-flip
scattering term Hsf, the ferromagnetic exchange term Hex, and the spin-orbit
impurity scattering term Hso, as

H0 =
∑
σ

�
drψ†

σ(r, t)

[
− 1

2m
∇̃2 − µ(r, t) + eϕ(r, t)

]
ψσ(r, t) (3.2a)

HBCS =

�
dr
[
∆∗(r, t)ψ↓(r, t)ψ↑(r, t) + ∆(r, t)ψ†

↑(r, t)ψ
†
↓(r, t)

]
(3.2b)

Hsc =
∑
σ

�
drψ†

σ(r, t)Vsc(r, t)ψσ(r, t) (3.2c)

Hsf =
∑
σσ′

�
drψ†

σ(r, t) [σ¯
· S(r, t)]σσ′ Vsf(r, t)ψσ′(r, t) (3.2d)

Hex = −
∑
σσ′

�
drψ†

σ(r, t) [σ¯
· h(r, t)]σσ′ ψσ′(r, t) (3.2e)

Hso =
∑
σσ′

�
drψ†

σ(r, t) [Vso(r, t)]σσ′ ψσ(r, t), (3.2f)

where µ is the chemical potential of the system, σ = {↑, ↓} is the spin of a particle,
ϕ is the electrostatic potential, and h is the magnetization. m denotes the electron
mass and e = −|e| the electron charge. We have introduced external magnetic
effects through the minimal substitution p → p−eA(r, t) in the kinetic Hamiltonian
term, where A is the magnetic vector potential. In the position representation of
quantum mechanics, this is equivalent to replacing the derivative with the covariant
derivative, ∇ → ∇̃ ≡ ∇ − ieA. In Appendix D, we justify this substitution
as a way of incorporating a magnetic field in the Hamiltonian and also discuss
some properties of the vector potential. We have included the time-dependence in
all interactions, but will later restrict our discussion to stationary systems. The
magnetic spin-flip impurity scattering is described by a potential Vsf, describing
the magnetic impurities, and S is the spins of the magnetic impurities, which we
assumed can be treated as classical vectors. The impurity potential Vsc describes
the non-magnetic impurities in the system. The spin-orbit scattering is due to the
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impurity potential, and can in the position representation be written1

[Vso(r, t)]σσ′ = iα [σ
¯
×∇Vsc(r, t)]σσ′ ·∇, (3.3)

where α is the spin-orbit scattering parameter.

3.1.2 Field operator equations of motion

Inserting the Hamiltonian in Eq. (3.1) into the Heisenberg equation of motion in
Eq. (2.17), one can use the general operator identity[

A,BC
]
=
{
A,B

}
C −B

{
A,C

}
, (3.4)

and then use the fermionic anticommutation relations of the field operators from
Eq. (2.10) in order to simplify the result. After a lengthy but relatively straight-
forward calculation, the result can be shown to be [25, 58]

i∂tψσ(r, t) =

(
−∇̃2

2m
− µ(r, t) + Vsc(r, t) + eϕ(r, t)

)
ψσ(r, t)

+ ∆(r, t)
(
δσ↑ψ

†
↓(r, t)− δσ↓ψ

†
↑(r, t)

)
+
∑
σ′

[Vso(r, t)]σσ′ ψσ′(r, t)

+
∑
σ′

[σ
¯
· S(r, t)]σσ′ Vsf(r, t)ψσ′(r, t)−

∑
σ′

[σ
¯
· h(r, t)]σσ′ ψσ′(r, t). (3.5)

In order to obtain a similar equation of motion for the creation operator, we take
the Hermitian adjoint of this equation. This is equivalent to taking the complex
conjugate, and yields

− i∂tψ
†
σ(r, t) =

(
−(∇̃∗

)2

2m
− µ(r, t) + Vsc(r, t) + eϕ(r, t)

)
ψ†
σ(r, t)

+ ∆∗(r, t) (δσ↑ψ↓(r, t)− δσ↓ψ↑(r, t)) +
∑
σ′

ψ†
σ′(r, t) [Vso(r, t)]

∗
σσ′

+
∑
σ′

ψ†
σ′(r, t) [σ

¯
· S(r, t)]∗σσ′ Vsf(r, t)−

∑
σ′

ψ†
σ′(r, t) [σ

¯
· h(r, t)]∗σσ′ , (3.6)

where ∇̃∗
= ∇+ ieA.

1In the end, we will not consider the situation of both spin-orbit impurity scattering and an
external magnetic vector potential, so whether we use the covariant derivative in the last ∇-factor
of this potential does not matter. For this reason, we can use the canonical momentum in this
expression, which gives the simplest expressions.
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CHAPTER 3. THEORY

3.1.3 Nambu-spin space generalization

It will later prove useful to introduce structure in spin space and in or particle-hole
space, often denoted Nambu space [59]. We introduce the Nambu-spin space2

4-vector field operators

ψ(r, t) =


ψ↑(r, t)

ψ↓(r, t)

ψ†
↑(r, t)

ψ†
↓(r, t)

 , ψ†(r, t) =
(
ψ†
↑(r, t) ψ†

↓(r, t) ψ↑(r, t) ψ↓(r, t)
)
. (3.7)

It can be shown that these 4-vector field operators satisfy the equations of motion [25,
26]3

iτ̂3∂tψ(r, t) = Ĥ1ψ(r, t) −i∂tψ
†(r, t)τ̂3 = ψ†(r, t)Ĥ†

1(r, t), (3.8)

with

Ĥ1(r, t) = ξ̂(r, t) + Vsc(r, t)1̂ + Ŝ(r, t) + ∆̂(r, t)− M̂(r, t) (3.9)

Ĥ†
1(r, t) = ξ̂(r, t)∗1̂ + Vsc(r, t)1̂ + Ŝ(r, t)− ∆̂(r, t)− M̂(r, t), (3.10)

where we have defined Nambu-spin generalizations of the Hamiltonian terms,

ξ̂(r, t) = −
ˆ̃∇2

2m
− µ(r, t)1̂ + eϕ(r, t)1̂ (3.11a)

∆̂(r, t) = antidiag(∆(r, t),−∆(r, t),∆∗(r, t),−∆∗(r, t)) , (3.11b)

Ŝ(r, t) = Vsf(r, t)σ̂ · S(r, t) (3.11c)

M̂(r, t) = σ̂ · h(r, t) (3.11d)

V̂so(r, t) = iα [τ̂3σ̂ ×∇Vsc(r, t)] ·∇, (3.11e)

where we have defined ˆ̃∇ = ∇1̂ − ieτ̂3A, and the derivative in ξ̂(r, t)∗ must
be applied to the operator to the left. Here, we have used the definition σ̂ =
diag(σ

¯
,σ
¯
∗), and τ̂3 is the Nambu-spin generalization of the third Pauli matrix.

This means that in theory, one could use the Heisenberg equation in Eq. (2.17)
together with the Hamiltonian in Eq. (3.1) to solve for the time evolution of the field
operators. Observables are given in terms of field operators, and we can determine

2This space is a tensor product of Nambu space and spin space, and it is sometimes referred
to as ”Nambu⊗spin” space.

3Note that the notation for the Nambu-spin matrices differ in this thesis and in other theses
that derive the Usadel equation, such as [26, 25, 27, 58].
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3.2. Gauge transfomations

all physical quantities from the equations above. For complicated systems, however,
this is an impossible task, and we will in the following chapters explain how one
could instead derive equations of motion of Green functions, and express observables
from these. This will enable us to make physically relevant approximations allowing
us to solve for nontrivial systems, as well as providing a framework that is more
suitable for numerical calculations.

3.2 Gauge transformations and physical inter-

pretation of the magnetic vector potential

In this section, we will discuss gauge transformations and argue that we can use
the gauge freedom to make the gap ∆ a real quantity. This will also cause the
gauge field to acquire a physical interpretation, carrying information about the
supercurrent. This section is based on the master’s thesis by Morten [25] as well as
the book by Tinkham [33].

3.2.1 Gauge transformations of the fields

In classical electrodynamics, gauge freedom arises when we define the magnetic
vector potential A, causing the electromagnetic field to be given through the
relation [28] (suppressing coordinates in this section)

B = ∇×A (3.12)

E = −∇ϕ− ∂tA, (3.13)

where B is the magnetic field, E is the electric field and ϕ the electrostatic potential.
A standard result from calculus states that for a general function λ,

∇× (∇λ) = 0. (3.14)

For this reason, we can add a gradient term ∇λ to A, where λ is an arbitrary
function, without changing the physical field B. To also leave the electrical field
invariant, we must transform the two potentials simultaneously as

A → A′ = A+∇λ (3.15)

E → E′ = E − ∂tλ. (3.16)

The gauge transformation should not change any of the physical quantities in the
system. When transforming the fields, it can, however, be seen that additional terms
will arise in the Hamiltonian in Eq. (3.1). For our observables to be independent
of the choice of gauge, we demand that the fields transform in such a way that
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CHAPTER 3. THEORY

they cancel the terms that will have physical implications for our system. It can
be shown that this is satisfied for the field transformation

ψσ → ψ′
σ = ψσe

iλ (3.17)

ψσ → ψ′†
σ = ψ†

σe
−iλ, (3.18)

that must be performed simultaneously as the transformation of the fields. From
Eq. (3.1), it is seen that for a complex order parameter ∆ = |∆|eiΦ, we can choose
λ = Φ/2 in the gauge transformation, and cancel of the phase factor in the order
parameter. The extra terms that arise from this gauge transformation either cancel
or can be included in the chemical potential. The result is that we must perform
the substitution

eϕ→ eϕ− ∂tΦ

2
, (3.19)

and that the magnetic vector potential acquires the physical interpretation of
the supercurrent in the system. Making the gap real at all places in this way is
not possible if one wants to look at systems with more than one superconductor,
such as a Josephson junction. Since we in this thesis will only consider a single
superconductor, we assume in the following that we have fixed the gauge such that
the order parameter is real.

3.2.2 Physical interpretation of the chosen gauge

In this chapter, we will consider the gauge transformation from another angle, by
choosing the London gauge, which completely fixes the magnetic vector potential.

It can be shown that in the second quantized formalism, the electrical current
for a particle of spin σ can be written as

jσ = − ie

m

〈
ψ†
σ∇̃ψσ

〉
. (3.20)

We will now follow an argument by London [60], which is discussed also in the
textbook by Tinkham [33]. In a superconductor in absence of external fields,
the expectation value of the canonical momentum −i∇ is expected to be zero4,
meaning that we expect to find

jσ = −e
2

m
A
〈
ψ†
σψσ

〉
= −e

2nσ

m
A, (3.21)

where nσ is the expectation value of the number operator with spin σ. This equation
is sometimes called the London equation, since it can alternatively be obtained by

4This is the result of an unpublished theorem by Felix Bloch, which can be found in [60].
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3.3. Green functions and their equations of motion

combining the two London equations [33]. This means that the current produces
a screening effect, as we will justify in Section 4.5.1. Since we expect that the
current inside a bulk superconductor is zero, we expect that also A must vanish.
Additionally, we have that conservation of charge means that the current, and
thus also A must be divergenceless in equilibrium. Finally, it can be shown that if
one also demands that no current flows across the boundaries, the gauge uniquely
defines the magnetic vector potential. This choice of gauge is called the London
gauge in the literature, and is defined by [33]

∇ ·A = 0 A → 0 in bulk of superconductor A · en = 0, (3.22a)

where en is the normal vector at the surface of the superconductor. In the London
gauge, A gets a physical interpretation as being proportional to the supercurrent
of the system, because of Eq. (3.21). This is the same result that is obtained by
fixing the gauge as we did in Section 3.2.1 [61, 25].

3.3 Green functions and their equations of mo-

tion

In many-body quantum field theory, Green functions are defined as correlators
between field operators at, in general, different space-time coordinates5. Green
functions provide a powerful tool in condensed matter field theory, as they allow
for a perturbative calculation of physical quantities such as susceptibilities and
currents [27]. Moreover, the Green function formalism will be convenient when we
later make approximations. In this thesis, we will only consider Green functions
involving 2 field operators, so-called 2-point correlators. The Green function for an
electron can be thought of as the probability amplitude for an electron to propagate
from a given space-time position to another, and these Green functions are thus
often referred to as propagators [62]. In this text, Green functions are also used
more generally for entities such as electron holes or quasiparticles.

In this section, we will introduce the Keldysh formalism [63], before calculating
the equations of motion for the Green function. Because there is some ambiguity
about some signs in these equations of motion, with differing results e.g. in [64, 25,

5In mathematics, the Green function G(x) of a linear differential operator L is defined as the
function that produces the delta function when acted upon with the operator, LG(x) = δ(x).
If one views the delta function as the source term, the Green function can be interpreted as
the response of an impulse source [27]. Despite the definitions we give in this section bearing
little resemblance to the definition from mathematics, it will later become apparent that the
many-body Green function is the impulse response of the Schrödinger equation, causing G to be
the Green function also in the mathematical sense.
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CHAPTER 3. THEORY

14], the derivation will be done in more detail in this section than in other sections
of this thesis.

3.3.1 The Keldysh formalism

Using the Keldysh formalism, which is introduced e.g. in [63, 25, 27], and in-
troducing the shorthand notation (1, 2) ≡ (r1, t1; r2, t2), we define the retarded,
advanced, and the Keldysh Green functions as 2× 2 matrices in spin space,

G
¯
R
σσ′(1, 2) = −iΘ(t1 − t2)

〈{
ψσ(1), ψ

†
σ′(2)

}〉
(3.23a)

G
¯
A
σσ′(1, 2) = iΘ(t2 − t1)

〈{
ψσ(1), ψ

†
σ′(2)

}〉
(3.23b)

G
¯
K
σσ′(1, 2) = −i

〈[
ψσ(1), ψ

†
σ′(2)

]〉
, (3.23c)

where Θ is the Heaviside step function, and ⟨A⟩ denotes the thermal expectation
value of an arbitrary operator A,

⟨A⟩ = Tr{ρA} , (3.24)

where ρ is the density matrix. These Green functions can be interpreted as the
probability that a particle that was created at space-time coordinate 2 is found at
space-time coordinate 1. The retarded Green function is nonzero only for times
t1 > t2, which means that it describes propagation forward in time. The advanced
Green function is nonzero only for times t2 > t1, thus describing propagation
backward in time. The Keldysh Green function will contain contributions from
both forward and backward propagation.

In a superconductor, electrons form Cooper pairs, meaning that there is a
correlation between the positions of electrons [27, 65]. In other words, if the
position of an electron is known at a certain time, we have some information
about where another particle will be at later times. Motivated by this, we define
the anomalous Green functions6, which involve expressions of two annihilation
operators, and are defined as [63]

F
¯
R
σσ′(1, 2) = −iΘ(t1 − t2)

〈{
ψσ(1), ψσ′(2)

}〉
(3.25a)

F
¯
A
σσ′(1, 2) = iΘ(t2 − t1)

〈{
ψσ(1), ψσ′(2)

}〉
(3.25b)

F
¯
K
σσ′(1, 2) = −i

〈[
ψσ(1), ψσ′(2)

]〉
. (3.25c)

These functions can be interpreted as the probability of a particle being at space-
time coordinate 1, given that we have found a particle at 2, thus describing

6We will refer to the Green functions in Eq. (3.23), as well as their generalizations, as the
normal Green functions.
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3.3. Green functions and their equations of motion

correlations in the system. Similar to the case for the normal Green functions, the
retarded component of the anomalous Green function describes correlation forward
in time, the advanced component describes correlations backward in time, and
the Keldysh component contains contributions from both forward and backward
propagation.

It is convenient to gather the normal and anomalous Green functions in 4× 4
Green function matrices,

ĜR(1, 2) =

(
G
¯
R(1, 2) F

¯
R(1, 2)

F
¯
R(1, 2)∗ G

¯
R(1, 2)∗

)
(3.26a)

ĜA(1, 2) =

(
G
¯
A(1, 2) F

¯
A(1, 2)

F
¯
A(1, 2)∗ G

¯
A(1, 2)∗

)
(3.26b)

ĜK(1, 2) =

(
G
¯
K(1, 2) F

¯
K(1, 2)

−F
¯
K(1, 2)∗ −G

¯
K(1, 2)∗

)
. (3.26c)

From the form of the 4-vector field operators, it can then be seen that Eq. (3.26a)
can be written in terms of 4-vectors as

ĜR(1, 2) = −iτ̂3Θ(t1 − t2)
〈{
ψ(1), ψ†(2)

}〉
, (3.27)

where the τ̂3-matrix can be thought of as a way of including the negative sign arising
when doing the complex conjugation of F

¯
R and G

¯
R in Eq. (3.26a). In Eq. (3.27),

and the rest of this thesis, we have implicitly assumed matrix transposing where
it is needed in order to make the matrix product between the Nambu-spin field
operators have the right dimension. As an example, the anticommuator is Eq. (3.27)
can be written in component form as{

ψ(1), ψ†(2)
}
ij
= [ψ(1)]i[ψ

†(2)]j + [ψ†(2)]i[ψ(1)]j. (3.28)

Similar relations to Eq. (3.27) hold also for the advanced and the Keldysh compon-
ents [25],

ĜA(1, 2) = iτ̂3Θ(t2 − t1)
〈{
ψ(1), ψ†(2)

}〉
(3.29)

ĜK(1, 2) = −iτ̂3
〈[
ψ(1), ψ†(2)

]〉
. (3.30)

Finally, we gather the three matrices in a 8× 8 Green function matrix in Keldysh-
Nambu-spin space,

Ǧ(1, 2) =

(
ĜR(1, 2) ĜK(1, 2)

0 ĜA(1, 2)

)
, (3.31)

which will later enable us to write the equation of motion for the three Green
functions compactly.
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3.3.2 Green function equations of motion

We proceed by using the results for the equations of motion for the field operators
in Eq. (3.5) and Eq. (3.6) to obtain equations of motion for the Green functions
defined in Section 3.3.1. We start by calculating

i∂t1Ĝ
R(1, 2) = i∂t1

(
−iτ̂3Θ(t1 − t2)

〈{
ψ(1), ψ†(2)

}〉)
= τ̂3δ(t1 − t2)

〈{
ψ(1), ψ†(2)

}〉
− iΘ(t1 − t2)

〈{
iτ̂3∂t1ψ(1), ψ

†(2)
}〉

= τ̂3δ(t1 − t2)δ(r1 − r2)1̂− iΘ(t1 − t2)
〈{
Ĥ1(1)ψ(1), ψ

†(2)
}〉

= τ̂3δ(1− 2)1̂− iΘ(t1 − t2)Ĥ1(1)
〈{
ψ(1), ψ†(2)

}〉
= τ̂3δ(1− 2)1̂− Ĥ1(1)τ̂3

〈{
iτ̂3Θ(t1 − t2)ψ(1), ψ

†(2)
}〉

= τ̂3δ(1− 2)1̂ + Ĥ1(1)τ̂3Ĝ
R(1, 2),

(3.32)

where we in the first line used that the derivative of a Heaviside step function is a
delta function, and introduced

δ(1− 2) ≡ δ(t1 − t2)δ(r1 − r2). (3.33)

In the second line of Eq. (3.32), we have used that

δ(t1 − t2)
〈{
ψ(r1, t1), ψ

†(r2, t2)
}〉

= δ(t1 − t2)
〈{
ψ(r1, t1), ψ

†(r2, t1)
}〉
, (3.34)

and the anticommutation relation for the 4-vectors. In the third line, we used that
we could pull out Ĥ1(1), since it works only on ψ(1). Finally, in the fifth line of
Eq. (3.32), we inserted a factor of 1̂ = τ̂ 23 . By multiplying both sides of Eq. (3.32)
by τ̂3 from the left, we get the equation of motion for the retarded Green function,(

iτ̂3∂̂t1 − Ĥ(1)
)
ĜR(1, 2) = δ(1− 2)1̂, (3.35)

where we have introduced a new Hamiltonian Ĥ = τ̂3Ĥ1τ̂3 in Nambu-spin space.
From the form of Ĥ1 in Eq. (3.9) we see that Ĥ is similar, but with a negative sign
for the superconducting term ∆̂. Repeating the same steps for the advanced Green
function yields the same result, while for the Keldysh component there will not be
any delta function terms, due to there not being any step function in the definition
of the Keldysh component [25]. In total, this can be written as7(

iτ̂3∂t1 − Ĥ(1)
)
Ǧ(1, 2) = δ(1− 2)1̌. (3.36)

7This equation justifies the naming of the Green functions, since this is exactly the defining
equation for a Green function for a differential operator (iτ̂3∂t1 − Ĥ(1)), which of course is just a
Nambu-spin generalization of the Schrödinger equation.
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It will later prove useful to have also derived a ”left-handed” version of Eq. (3.36),
i.e. an equation where the Hamiltonian works to the left on the Green function. To
this end, we first rename the coordinate labels 1 ↔ 2, take the Hermitian adjoint of
Eq. (3.35), and then multiply with τ̂3 from both the right and the left. This yields

τ̂3Ĝ
R(2, 1)†

(
iτ̂3∂t2 − Ĥ(2)

)†
τ̂3 = τ̂3δ(2− 1)τ̂3 = δ(1− 2)1̂, (3.37)

where now the time derivative works on the Green function to the left. The adjoint
of the Green function can be rewritten as

ĜR(2, 1)† =
(
−iτ̂3Θ(t2 − t1)

〈{
ψ(2), ψ†(1)

}〉)†
= iΘ(t2 − t1)

〈{
ψ(1), ψ†(2)

}〉
τ̂3

= i
(
1−Θ(t1 − t2)

) 〈{
ψ(1), ψ†(2)

}〉
τ̂3

= i
〈{
ψ(1), ψ†(2)

}〉
τ̂3 + τ̂3Ĝ

R(1, 2)τ̂3,

(3.38)

where we in the third line used a property of the Heaviside step function, Θ(x) =
1−Θ(−x). Consider now the first term in the last line of Eq. (3.38) inserted into
the left-hand side of Eq. (3.37),

iτ̂3
〈{
ψ(1), ψ†(2)

}〉
τ̂3
(
iτ̂3∂t2 − Ĥ(2)

)†
τ̂3

= iτ̂3
〈{
ψ(1), ψ†(2)

}〉
τ̂3
(
−iτ̂3∂t2 − Ĥ†(2)

)
τ̂3

= iτ̂3
〈{
ψ(1), ψ†(2)

}〉 (
−iτ̂3∂t2 − τ̂3Ĥ

†(2)τ̂3
)

= −iτ̂3
〈{
ψ(1), ψ†(2)

}〉 (
iτ̂3∂t2 + Ĥ1(2)

)
= −iτ̂3

〈{
ψ(1), ψ†(2)

(
iτ̂3∂t2 + Ĥ1(2)

)}〉
= −iτ̂3

〈{
ψ(1), 0

}〉
= 0,

(3.39)

where we in the last line have used the equation of motion for ψ† from Eq. (3.8).
Inserting the second term of Eq. (3.38) into the left-hand side of Eq. (3.37) we find

τ̂3τ̂3Ǧ(1, 2)τ̂3

(
iτ̂3∂t2 − Ĥ(2)

)†
τ̂3 = Ǧ(1, 2)

(
iτ̂3∂t2 − τ̂3Ĥ(2)τ̂3

)†
. (3.40)

Eq. (3.37) can then be written as

ĜR(1, 2)
(
iτ̂3∂t2 − τ̂3Ĥ(2)τ̂3

)†
= δ(1− 2)1̂. (3.41)

Performing the same operators on the equations of motion for the advanced
component of the Green function, one obtains similar equations. This allows us to
write the total left-handed equation of motion for the Green function,

Ǧ(1, 2)
(
iτ̂3∂t2 − τ̂3Ĥ(2)τ̂3

)†
= δ(1− 2)1̌. (3.42)
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The reasoning for also calculating the left-handed equation is that we can now
subtract it from the right-handed version, canceling the delta function. This will
make subsequent calculations easier. The final equation of motion for the 8 × 8
Green function becomes8(

iτ̂3∂t1 − Ĥ(1)
)
Ǧ(1, 2)− Ǧ(1, 2)

(
iτ̂3∂t2 − τ̂3Ĥ(2)τ̂3

)†
= 0. (3.43)

3.4 Impurity averaging

One of the reasons why the equation of motion for the Green functions in Eq. (3.43)
is difficult to solve, is that it contains the terms Ŝ, V̂so and Vsc, which are scattering
terms that depend on the specific configuration of the material in consideration.
This is not only impractical, in that we have to specify the exact location of all
magnetic and non-magnetic impurities of the material, but it also means that
the results will only be valid for a specific configuration. Instead, we will in this
section average the equations of motion from the last section over all possible
impurity configurations, approximating the scattering potentials as self-energies.
The result is an approximation for any configuration of impurities that are randomly
distributed in space.

3.4.1 Impurity self-energy

We start by separating the Hamiltonian of the system in an impurity potential
part and the remaining part H0

9,

Ĥ(1) = Ĥ0(1) + V̂imp(1), (3.44)

where we have defined the total impurity potential,

V̂imp(1) = Vsc(1)1̂ + Ŝ(1) + V̂so(1). (3.45)

The right-handed equation of motion for the Green function from Eq. (3.36) becomes[
iτ̂3∂t1 − Ĥ0(1)− V̂imp(1)

]
Ǧ(1, 2) = δ(1− 2)1̌. (3.46)

We define Ǧ0 as the Green function satisfying Eq. (3.46) without the impurity
terms. In Appendix E, it is shown that Eq. (3.46) is equivalent to the Dyson
equation, which can be written as

Ǧ(1, 2) = Ǧ0(1, 2) + [Ǧ0 • Ûimp • Ǧ](1, 2), (3.47)

8This expression, which is consistent with the result in the appendix in [14], corrects some
minor inaccuracies in [25, 26].

9In this section, Ĥ0 is defined to contain all other terms than the impurity scattering terms.
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3.4. Impurity averaging

where we have introduced the bullet product,

[A •B](1, 2) ≡
�
dx3A(1, 3)B(3, 2), (3.48)

as well as the quantity Ûimp(1, 2) = V̂imp(1)δ(1− 2). This equation is an implicit
equation for Ǧ, and iterating it to second order, we obtain

Ǧ(1, 2) = Ǧ0(1, 2) + [Ǧ0 • Ûimp • Ǧ0](1, 2)

+ [Ǧ0 • Ûimp • Ǧ0 • Ûimp • Ǧ](1, 2).
(3.49)

For shorthand notation, we denote the average over both all spin impurity directions
and all impurity positions ⟨...⟩av. Performing impurity averaging on Eq. (3.49) and
defining the averaged Green function as Ǧav(1, 2) ≡ ⟨Ǧ(1, 2)⟩av, we obtain

Ǧav(1, 2) = Ǧ0(1, 2) + [Ǧ0 • ⟨Ûimp⟩av • Ǧ0](1, 2)

+ [Ǧ0 • ⟨Ûimp • Ǧ0 • Uimp • Ǧ⟩av](1, 2),
(3.50)

where we have used that the impurity averaging operator does not work on Ǧ0.
In the second term, the averaging works only on a single potential, and thus the
result will be a constant in the case of many randomly distributed impurities.
From Appendix E we know that this is equivalent to including a constant in the
equation of motion for the Green function. This constant can be absorbed into
the chemical potential, and the term is ignored in the following. The third term
includes averaging over several quantities, and cannot be ignored in the same way.
This term can, however, by expanding Ǧ to order O(U0

imp) in the impurity potential,
be approximated as〈

[Ûimp • Ǧ0 • Ûimp • Ǧ](1, 2)
〉
av

=

�
dx3

〈
V̂imp(1)Ǧ0(1, 3)V̂imp(3)Ǧ(3, 2)

〉
av

≈
�
dx3

〈
V̂imp(1)Ǧ0(1, 3)V̂imp(3)

〉
av
Ǧav(3, 2)

=
[〈
Ûimp • Ǧ0 • Ûimp

〉
av

• Ǧav

]
(1, 2)

(3.51)

That is, we assume that the full Green function is approximately equal to its
averaged value. This gives the expression

Ǧav(1, 2) = Ǧ0(1, 2) + [Ǧ0 • Σ̃imp • Ǧav](4, 2), (3.52)

for the impurity averaged Green function, where we have defined

Σ̃imp(1, 2) = ⟨Ûimp • Ǧ0 • Ûimp⟩av. (3.53)
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Additionally, we let Ǧ0 → Ǧav in this definition [66, 14], so that the final expression
is obtained by replacing Σ̃imp → Σ̌imp, where

Σ̌imp(1, 2) = ⟨Ûimp • Ǧav • Ûimp⟩av = ⟨V̂imp(1)Ǧav(1, 2)V̂imp(2)⟩av. (3.54)

This is the self-consistent Born approximation [66, 14, 67]. We know from Ap-
pendix E that Eq. (3.52) is equivalent to[

iτ̂3∂t1 − Ĥ0(1)
]
Ǧav(1, 2)− [Σ̌imp • Ǧav](1, 2) = δ(1− 2)1̌, (3.55)

effectively replacing the impurity potential, which was a function of coordinate
1, by a self-energy, which is a function of coordinates (1, 2). Repeating this for
the left-handed equation of motion, and then subtracting it from the right-handed
equation, causes the equation of motion in Eq. (3.43) to become(

iτ̂3∂t1 − Ĥ0(1)
)
Ǧav(1, 2)− Ǧav(1, 2)

(
iτ̂3∂t2 − τ̂3Ĥ0(2)τ̂3

)†
−
[
Σ̌imp

•, Ǧav

]
(1, 2) = 0, (3.56)

where we have introduced the bullet commutator,

[A •, B](1, 2) ≡ [A •B](1, 2)− [B • A](1, 2) (3.57)

and where
Ĥ0(1) = ξ̂(1)− ∆̂(1)− M̂(1).(1) (3.58)

To simplify notation, we will from this point on be referring to the impurity averaged
Green function without the subscript, remembering that we are dealing with a
quantity that has been averaged over all impurity configurations.

3.5 The Wigner representation

To derive approximate equations, it will be convenient to introduce new coordinates.
The new coordinates will be used to transform Eq. (3.56) into a form more suitable
for approximations. Much of this section is based on the master’s thesis of Morten
[25]

3.5.1 Relative and center-of-mass coordinates

For a system dependent on the coordinates (r1, t1) and (r2, t2), we introduce the
center-of-mass coordinates as

R ≡ r1 + r2

2
T ≡ t1 + t2

2
, (3.59)
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and the relative coordinates as

r ≡ r1 − r2 t ≡ t1 − t2. (3.60)

Using the chain rule, the derivatives with respect to the old coordinates can be
written in terms of the relative and center-of-mass coordinates,

∂t1 = ∂t1T (t1, t2)∂T + ∂t1t(t1, t2)∂t =
1

2
∂T + ∂t

∂t2 = ∂t2T (t1, t2)∂T + ∂t2t(t1, t2)∂t =
1

2
∂T − ∂t,

(3.61)

and

∇1 = ∇1R(r1, r2)∇R +∇1r(r1, r2)∇r =
1

2
∇R +∇r

∇2 = ∇2R(r1, r2)∇R +∇2r(r1, r2)∇r =
1

2
∇R −∇r.

(3.62)

It can be checked that when transforming from coordinates (r1, r2) into (r,R),
the absolute value of the Jacobi determinant is unity, which means that one
can transform an integral into the Wigner representation without any prefactors
appearing. We note also that we can write

∇2
1−∇2

2 =
(1
2
∇R+∇r

)2−(1
2
∇R−∇r

)2
= ∇R·∇r+∇R·∇r = 2∇R·∇r, (3.63)

an identity that will prove useful later when transforming the equations of motion
for the Green functions into the Wigner representation.

3.5.2 Fourier transformation and Moyal products

In the following, it will be convenient to use 4-vector notation for the space-time
and energy-momentum coordinates. These are formulated in the standard way, as

x = (t, r) (3.64)

p = (E,p). (3.65)

These are contravariant vectors [68], and we will not introduce the corresponding
covariant vectors, but simply note that the inner product between two 4-vectors
such as p and x must be interpreted as

p · x = −Et+ p · r (3.66)
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where the product sign must be understood to be a 4-vector dot product or a
normal 3-vector dot product depending on the quantities involved. The derivatives
with respect to 4-vector will be denoted

∇x = (∂t,∇r) ∇p = (∂E,∇p) , (3.67)

and their inner products are

∇p · ∇x = −∂E∂t +∇p ·∇r. (3.68)

Using the 4-vector notation, we can write a function f depending on two space-time
coordinates as

f(r1, t1; r2, t2) = f

(
1

2
r +R;

1

2
t+ T,−1

2
r +R,−1

2
t+ T

)
= f

(
X +

x

2
, X − x

2

)
,

(3.69)

where X = (T,R) is the center-of-mass 4-vecor coordinate. This function is
transformed into the Wigner representation by performing a Fourier transform in
the relative coordinates,

f(X, p) ≡
�
dxe−ix·pf

(
X +

x

2
, X − x

2

)
. (3.70)

Note that we use the same symbol for functions in real-space and in the Wigner
representation, and they are distinguished only by their arguments. This resulting
function f(X, p) is a function of the center-of-mass space-time coordinate and the
relative energy-momentum. For this reason, the Wigner representation is also
called the mixed representation [69, 70].

When we later transform Eq. (3.56) into the Wigner representation, we have to
calculate Fourier transformations of bullet products. To this end, we introduce the
Moyal product as [69]

[A⊙B](X, p) ≡
�
dxe−ix·p [A •B] (X +

x

2
, X − x

2
) (3.71)

= e
i
2(∇A

X ·∇B
p −∇A

p ∇B
X) [A(X, p)B(X, p)] , (3.72)

where the identity in the last line is shown in the appendix of [25]. Here, we
introduced the notation ∇W

u for a derivative with respect to the four-vector u,
working only on a function W (u). As usual, the exponential of the differential
operators must be interpreted as a Taylor series in the operators.

It will be relevant to consider the special case where A(1, 2) = A(1)δ(1, 2), i.e.
A is only a function of one coordinate. In this case, the bullet product reduces to
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3.5. The Wigner representation

a simple product, and the Fourier transformed quantity becomes a function of the
center-of-mass coordinate only. The Moyal product becomes

[A⊙B](X, p) =

�
dxe−ix·pA(x)B(X +

x

2
, X − x

2
) = e

i
2(∇A

X ·∇B
p ) [A(X)B(X, p)] .

(3.73)
Similarly, for B(1, 2) = δ(1− 2)B(2), we get

[A⊙B](X, p) = e−
i
2(∇A

p ∇B
X) [A(X)B(X, p)] . (3.74)

In the following it will be useful to also introduce the Moyal commutators and
Moyal anticommutators,[

A ⊙, B
]
≡ A⊙B −B ⊙ A

{
A ⊙, B

}
≡ A⊙B +B ⊙ A. (3.75)

It should be noted that while this allows for compact notation, many rules for
(anti)commutators do not generalize to the Moyal (anti)commutators. This includes
the possibility of pulling out scalar functions that depend on (X, p). We will still
use this notation because it allows us to write the equation of motion for the Green
function in a suggestive way, suited for approximations.

3.5.3 Transforming the equations of motion

We proceed with the derivation of the Usadel equation by transforming Eq. (3.56)
into the Wigner representation. Writing out Eq. (3.56), we get

iτ̂3∂t1Ǧ(1, 2)+i∂t2Ǧ(1, 2)τ̂3−Ĥ0(1)Ǧ(1, 2)+Ǧ(1, 2)τ̂3Ĥ
†
0(2)τ̂3−

[
Σ̌imp

•, Ǧ
]
(1, 2) = 0.

(3.76)
We consider the two terms containing time derivatives and transform them into
the Wigner representation using the definition in Eq. (3.70) and the identities in
Eq. (3.61). This yields

�
dxe−ix·p [iτ̂3∂t1Ǧ(1, 2) + i∂t2Ǧ(1, 2)τ̂3

]
=

�
dxe−ix·p[iτ̂3(1

2
∂T + ∂t

)
Ǧ(1, 2) + i

(1
2
∂T − ∂t

)
Ǧ(1, 2)τ̂3

]
=
i

2
∂T

�
dxe−ix·p [τ̂3Ǧ(1, 2) + Ǧ(1, 2)τ̂3

]
+ i

�
dxe−ix·p∂t

[
τ̂3Ǧ(1, 2)− Ǧ(1, 2)τ̂3

]
=
i

2
∂T
[
τ̂3Ǧ(X, p) + Ǧ(X, p)τ̂3

]
− i

�
dx∂t

(
e−ix·p) [τ̂3Ǧ(1, 2)− Ǧ(1, 2)τ̂3

]
=
i

2

{
τ̂3, ∂T Ǧ(X, p)

}
+ E

[
τ̂3, Ǧ(X, p)

]
.

(3.77)
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In the third equation, we have pulled out the center-of-mass time derivatives, since
the integral and the exponential factor do not depend on this variable. In the
fourth equation, we have performed a partial integration, and discarded the surface
term. The surface term vanishes since the Green function approaches zero as
the relative coordinate approaches infinity, something that is ensured by adding
the infinitesimal imaginary part to the energy. The inclusion of this infinitesimal
quantity is discussed in detail in Appendix A. From a physical point of view, this
corresponds to the fact that the correlation between two space-time points will be
zero as the temporal separation approaches infinity, which is physically reasonable.
It will be useful to calculate the Moyal products

[Eτ̂3 ⊙ Ǧ](X, p) = Eτ̂3Ǧ(X, p) +
i

2
∂E(Eτ̂3)∂T Ǧ(X, p)

= Eτ̂3Ǧ(X, p) +
i

2
τ̂3∂T Ǧ(X, p)

(3.78)

and

[Ǧ⊙ Eτ̂3](X, p) = Ǧ(X, p)Eτ̂3 −
i

2
∂T Ǧ(X, p)∂E(Eτ̂3)

= Eτ̂3Ǧ(X, p)−
i

2
∂T Ǧ(X, p)τ̂3.

(3.79)

Here, we have used that all derivatives except the energy derivative will vanish
when operating on Eτ̂3. By combining Eq. (3.78) and Eq. (3.79), we write[
Eτ̂3 ⊙, Ǧ

]
(X, p) = [Eτ̂3 ⊙ Ǧ](X, p)− [Ǧ⊙ Eτ̂3](X, p)

= Eτ̂3Ǧ(X, p) +
i

2
τ̂3∂T Ǧ(X, p)− Eτ̂3Ǧ(X, p) +

i

2
∂T τ̂3Ǧ(X, p)

=
[
Eτ̂3, Ǧ(X, p)

]
+

i

2

{
∂T Ǧ(X, p), τ̂3

}
,

(3.80)

which is exactly the term found in Eq. (3.77). Thus, we can write this result as a
single Moyal commutator.

We now proceed to the rest of the terms in Eq. (3.76), which can be written as

− Ĥ0(1)Ǧ(1, 2) + Ǧ(1, 2)τ̂3Ĥ
†
0(2)τ̂3 −

[
Σ̌imp

•, Ǧ
]
(1, 2)

=− ξ̂(1)Ǧ(1, 2) + Ǧ(1, 2)ξ̂(2)∗ −
[
Σ̌tot

•, Ǧ
]
(1, 2)

(3.81)

where we have introduced the total self-energy term10

Σ̌tot(1, 2) = −M̂(1)δ(1− 2)− ∆̂(1)δ(1− 2) + Σ̌imp(1, 2). (3.82)

10The inclusion of the delta function is a notational trick that makes it possible to write all
terms in the bullet commutator in the last line of Eq. (3.81).
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The reason for this separation is that the kinetic term, which contains derivatives,
demands a special treatment.

We start with the kinetic term,

Ǧ(1, 2)ξ̂(2)∗ − ξ̂(1)Ǧ(1, 2)

= Ǧ(1, 2)
[
−( ˆ̃∇∗

2)
2

2m
− µ(2) + eϕ(2)

]
−
[
−

ˆ̃∇2
1

2m
− µ(1) + eϕ(1)

]
Ǧ(1, 2)

= [µ(1)− µ(2) + eϕ(1)− eϕ(2)]Ǧ(1, 2) +
ˆ̃∇2

1

2m
Ǧ(1, 2)− Ǧ(1, 2)

( ˆ̃∇∗
2)

2

2m

(3.83)

The chemical potential term and the electrostatic potential terms does not contain
derivatives, and can be absorbed into the total self-energy. We consider only the
covariant derivative terms from Eq. (3.83) in the following. First, we note that
because the derivatives work to the left in the left-handed Green function equation
of motion, we have that

Ǧ(1, 2) (∇2 + ieτ̂3A(2))2 =∇2
2Ǧ(1, 2) + ie∇2 ·

(
Ǧ(1, 2)τ̂3A(2)

)
+ ie∇2Ǧ(1, 2) ·A(2)τ̂3 − e2Ǧ(1, 2)A(2)2.

(3.84)

The last line in Eq. (3.83) becomes

1

2m
(∇1 − ieτ̂3A(1))2 Ǧ(1, 2)− 1

2m
Ǧ(1, 2) (∇2 + ieτ̂3A(2))2

=
1

2m

(
∇2

1 −∇2
2

)
Ǧ(1, 2)− ie

2m

[
∇1 ·

(
τ̂3A(1)Ǧ(1, 2)

)
+∇2 ·

(
Ǧ(1, 2)τ̂3A(2)

)]
− ie

2m

[
τ̂3A(1) ·∇1Ǧ(1, 2) +∇2Ǧ(1, 2) ·A(2)τ̂3

]
− e2

2m

[
A(1)2 −A(2)2

]
Ǧ(1, 2).

(3.85)

Here, the last term can be absorbed into the total self-energy as well. Fourier
transforming with respect to the relative coordinate, and using the identities for
the Moyal products in Eq. (3.73) and Eq. (3.74), as well as the identities for the
derivative in Eq. (3.63), it can be shown that the three remaining terms in Eq. (3.85)
equals [25]

i

m
p ·∇RǦ(X, p)− i

p

m

[
ieAτ̂3 ⊙, Ǧ

]
(X, p)

− 1

2m

[
ie∇R ·Aτ̂3 ⊙, Ǧ

]
(X, p)− 1

2m

{
ieAτ̂3 ⊙, ∇RǦ

}
(X, p). (3.86)

Finally, we consider the self-energy terms, for which we can just use the definition
of the Moyal product,�

dxe−ix·p[Σ̌tot
•, Ǧ
]
(1, 2) =

[
Σ̌tot

⊙, Ǧ
]
(X, p). (3.87)
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Having calculated all terms, we can now write Eq. (3.43) in terms of Moyal
commutators as

i

m
p ·∇RǦ(X, p) +

[
Eτ̂3 − Σ̌tot

⊙, Ǧ
]
(X, p)− i

p

m

[
ieAτ̂3 ⊙, Ǧ

]
(X, p)

− 1

2m

[
e2A2 ⊙, Ǧ

]
(X, p)− 1

2m

[
ie∇R ·Aτ̂3 ⊙, Ǧ

]
(X, p)

− 1

2m

{
ieAτ̂3 ⊙, ∇RǦ

}
(X, p) = 0. (3.88)

3.6 The quasiclassical approximation

In this section, we introduce the quasiclassical approximation, assuming that all
physical quantities vary on a length scale much larger than the Fermi wavelength
λF . This is equivalent to assuming that the Fermi energy is the dominating energy
in the system of interest. We will show that the Green function generally will have
the form of short-wavelength oscillations modulated by an envelope function. In
the quasiclassical approximation, these short-wavelength oscillations which have
wavelengths on the order of the Fermi wavelength are discarded, making the
equations of motion at hand much simpler. This is because the derivatives of the
Green function will now vary slowly in spatial coordinates, instead of oscillating over
distances in the region of the Fermi wavelength. The quasiclassical approximation is
expected to hold for superconductors because long-range correlations are present [69],
meaning that observables change slowly in space. Moreover, we will consider
superconducting systems at temperatures smaller than the critical temperature,
which typically is on the order of a few Kelvin. This approximation will allow us
to cancel many of the terms in the equation of motion for the Green function in
Eq. (3.88).

3.6.1 Neglecting higher-order terms

In the quasiclassical approximation, we have that |p| ≈ pF ∝ λ−1
F , where pF is the

magnitude of the Fermi momentum. The quasiclassical approximation assumes
that the Fermi momentum is much larger than the quantity eA, which also has
units of momentum. Thus, we can ignore the last three terms in Eq. (3.88), and
only include the magnetic vector potential through the third term in the first line,
since this term involves a factor of p, while the others do not.

3.6.2 Truncating the spatial gradients

Because of the slow spatial variation of the Green function, we will truncate the
infinite series of derivatives arising in Eq. (3.88) at first order in spatial derivatives.
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The Moyal product then reduces to

[A⊙B] = e
i
2(∇A

X ·∇A
p −∇A

p ∇B
X)[AB]

= e−
i
2(∂A

T ∂B
E−∂A

E∂B
T )e

i
2(∇

A
R·∇B

p −∇A
p ·∇B

R)[AB]

≈ e−
i
2(∂A

T ∂B
E−∂A

E∂B
T )
(
[AB] +

i

2

[
∇A

R ·∇B
p −∇A

p ·∇B
R

]
[AB]

)
= [A ◦B] +

i

2
[∇RA ◦∇pB]− i

2
[∇pA ◦∇RB],

(3.89)

where the arguments (X, p) of A and B is suppressed here and in the following for
simpler notation, and we have introduced the circle product,

[A ◦B] = ei(∂
A
T ∂B

E−∂A
E∂B

T )[AB]. (3.90)

We now also define the circle commutator and circle anticommutator,[
A ◦, B

]
= [A ◦B]− [B ◦ A]

{
A ◦, B

}
= [A ◦B] + [B ◦ A] (3.91)

enabling us to write the gradient approximation for the Moyal commutator as[
A ⊙, B

]
≈
[
A ◦, B

]
+

i

2

{
∇RA ◦, ∇pB

}
− i

2

{
∇pA ◦, ∇RB

}
(3.92)

This can now be used to simplify the equation of motion in Eq. (3.88), after
neglecting terms as discussed in Section 3.6.1. Considering terms separately, we
find [

Eτ̂3 ⊙, Ǧ
]
≈
[
Eτ̂3 ◦, Ǧ

]
(3.93)[

Σ̌tot
⊙, G

]
≈
[
Σ̌tot

◦, Ǧ
]
+

i

2

{
∇RΣ̌tot

◦, ∇pǦ
}
− i

2

{
∇pΣ̌tot

◦, ∇RǦ
}

(3.94)[
ieAτ̂3 ⊙, Ǧ

]
≈
[
ieAτ̂3 ◦, Ǧ

]
+

i

2

{
ie∇R ·Aτ̂3 ◦, ∇pǦ

}
, (3.95)

so that the subtracted equation of motion from Eq. (3.88) becomes (restoring
arguments)

i

m
p ·∇RǦ(X, p) +

e

m

[
p ·A(X)τ̂3 ◦, Ǧ(X, p)

]
+
[
Eτ̂3 − Σ̌(X, p) ◦, Ǧ(X, p)

]
− i

2

{
∇RΣ̌tot(X, p) +

p

2m
∇R ·A(X) ◦, ∇pǦ(X, p)

}
+

i

2

{
∇pΣ̌tot(X, p) ◦, ∇RǦ(X, p)

}
= 0, (3.96)

where we have used that the circle product is distributive, which follows from the
distributive property of the derivative.
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3.6.3 The quasiclassical Green function

Even with the approximations made in Section 3.6.2, the equation of motion in
Eq. (3.96) for the Green function is still very complicated. It can be significantly
simplified by introducing the quasiclassical Green function ǧ, in which we have
integrated out the dependence on the size of the momentum. We assume that
the Green function is strongly peaked at the Fermi surface, and introduce the
quasiclassical Green function ǧ implicitly through [45, 25, 26]

Ǧ(X, p) ≈ π

i
δ(ξp)ǧ(X,pF , E), (3.97)

where ξp = p2/2m−µ is the kinetic energy relative to the Fermi surface. Eq. (3.97)
is easily isolated for the quasiclassical Green function by integrating over ξp,

ǧ(X,pF , E) ≡
i

π

� ωc

−ωc

dξpǦ(X,p, E), (3.98)

where ωc is a cutoff energy assumed smaller than the Fermi energy, but larger
than any other energy scale in the problem [66]. The reason why we assume ωc

larger than other energy scales is because we want to integrate over all poles of
the exact Green function, to capture all poles of the Green function, and thus all
relevant physics as well. The integration limits are discussed in more detail in
[64]. By integrating over the energy ξp, we have eliminated the dependence on the
magnitude of the momentum, and the quasiclassical Green function depends only
on the direction of the momentum at the Fermi surface pF . In order to get a more
physically telling form of the quasiclassical approximation, we Fourier transform
Eq. (3.97) back into the relative position space,

Ǧ(X, r, E) ≈ π

i

�
dp

(2π)3
e−ip·rδ(ξp)ǧ(X,pF , E) =

πN0

i

�
deF

4π
e−ip·rǧ(X,pF , E),

(3.99)
where we have used �

dp

(2π)3
→ N0

�
dξp

�
deF

4π
, (3.100)

which holds for systems with particle-hole symmetry [25]. This means that we get
a density of states that is symmetric around the Fermi level, which is why we could
pull out N0 from the integral. We now proceed with integrating Eq. (3.96) over the
energy ξp, fixing the momentum to have the magnitude of the Fermi momentum.
This causes the anticommutator terms in Eq. (3.96) to vanish [25, 64].

The equation of motion for the quasiclassical Green function can then be written

i

m
pF ·∇Rǧ(X,pF , E)−

e

m

[
pF ·A(X)τ̂3 ◦, ǧ(X,pF , E)

]
+
[
Eτ̂3 − σ̌tot(X,pF , E)

◦, ǧ(X,pF , E)
]
= 0, (3.101)
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where σ̌tot(X,pF , E) is the quasiclassical approximated version of the self-energy
Σtot, and will be calculated in the next section. In order to simplify further, we
introduce the covariant derivative, and use the notation[

∇̃ ◦, ǧ
]
≡ ∇ǧ −

[
ieAτ̂3 ◦, ǧ

]
. (3.102)

Using this, we write Eq. (3.101) more compactly,[
ivF · ∇̃+ Eτ̂3 − σ̌tot(X,pF , E)

◦, ǧ(X,pF , E)
]
= 0, (3.103)

where we also introduced the Fermi velocity vF ≡ pF/m.

3.6.4 Normalization of the quasiclassical Green functions

When subtracting the left-handed and right-handed equations of motion for the
Green functions in Section 3.3.2, we removed the delta function and obtained
a simpler equation of motion, but we also lost the normalization of the Green
function. To see this, we consider Eq. (3.88) and note that for all Green functions
Ǧ satisfying this equation, the function Ǧ′ = cǦ, with c an arbitrary constant, will
also satisfy this equation. This is in contrast to Eq. (3.36), and we will thus need to
apply a normalization condition in addition to Eq. (3.103) to uniquely determine
the quasiclassical Green function.

In the literature, a normalization often used is [14, 27, 71]

ǧ(X,pF , E) ◦ ǧ(X,pF , E) = 1̌ (3.104)

For an extensive discussion of the choice of normalization, the reader is directed to
the book by Rammer [27]. By writing out the matrix components of Eq. (3.104),
it is easily seen that they satisfy (suppressing the arguments for the rest of this
section)

ĝR ◦ ĝR = 1̂ ĝA ◦ ĝA = 1̂ ĝR ◦ ĝK + ĝK ◦ ĝA = 0. (3.105)

It can be shown by insertion that

ĝK = ĝR ◦ ĥ− ĥ ◦ ĝA (3.106)

automatically satisfies the third normalization condition, with ĥ a general matrix
function. As we will see in Section 3.8, ĥ has the interpretation of the matrix
describing the filling of states. It is thus a very useful quantity for systems out of
equilibrium. For this reason, ĥ is often denoted the distribution matrix [71, 25].
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3.6.5 Symmetries of the quasiclassical Green functions

In Appendix C.1, we show that due to the matrix structure of retarded Green
function in Eq. (3.26a), we can in general write the retarded quasiclassical Green
function as

ĝR(X,pF , E) =

(
g
¯
R(X,pF , E) f

¯

R(X,pF , E)

−f̃
¯

R
(X,pF , E) −g̃

¯

R(X,pF , E)

)
, (3.107)

where we have introduced the particle-hole tilde conjugation, which is the combined
operation of energy-momentum inversion and complex conjugation,

λ̃(X,pF , E) = λ(X,−pF ,−E, )∗, (3.108)

for a general function λ. A similar relation holds also for the retarded Green
function, but will not be needed due to a relation between the advanced and
retarded Green function,

ĝA(X,pF , E) = −τ̂3
[
ĝR(X,pF , E)

]†
τ̂3, (3.109)

which is shown in Appendix C.1 as well. Since the Keldysh Green function in
Eq. (3.26c) has a similar structure to the retarded and advanced function, but
with a positive sign in the lower two components, the quasiclassical Keldysh Green
function can be parametrized as well,

ĝK(X,pF , E) =

(
g
¯
K(X,pF , E) f

¯

K(X,pF , E)

f̃
¯

K
(X,pF , E) g̃

¯

K(X,pF , E)

)
. (3.110)

This means that if we have solved for ĝR and ĝK for positive energies, we can find
the negative-energy solution by

ĝR(X,−pF ,−E) = −τ̂1
[
ĝR(X,pF , E)

]∗
τ̂1 (3.111)

ĝK(X,−pF ,−E) = τ̂1
[
ĝK(X,pF , E)

]∗
τ̂1. (3.112)

Thus, to determine all Green functions of a system, we only need to solve for the
positive energy solutions of the retarded and the Keldysh component. Equivalently,
we could also solve for the distribution matrix instead of the Keldysh component,
and use Eq. (3.106) to determine the Keldysh component.

3.7 The Usadel equation and boundary condi-

tions

In this section, we will take the so-called dirty limit, where we assume that the
impurity scattering is so strong that the quasiclassical Green function is effectively

42



3.7. The Usadel equation and boundary conditions

averaged over all momentum directions [22]. This will result in the Usadel equation,
which is a simpler equation of motion to solve than Eq. (3.103). We will also state
a choice for boundary conditions.

3.7.1 The Usadel equation

Assuming that the quasiclassical Green function is close to being isotropic due to
strong impurity scattering, we can expand it to first order in a spherical symmetric
s-wave component and a small p-wave component that depends on pF . This can
be written as [72]

ǧ(X,pF , E) ≃ ǧs(X,E) + eF · ǧp(X,E), (3.113)

where eF = pF/pF . In the following, it will be useful to note that we can isolate
the s-wave part of the Green function by integrating Eq. (3.113) over all directions
of the Fermi momentum. This is because the s-wave part of the quasiclassical
Green function is isotropic in pF , while the p-wave part contains a factor eF that
will vanish when averaging over all directions. This can be written as�

deF

4π
ǧ =

�
deF

4π
(ǧs + eF · ǧp) = ǧs

�
deF

4π
= ǧs. (3.114)

Similarly, the p-wave part can be isolated by first multiplying with eF and then
performing the averaging. First, we note that we can parametrize the unit vector
eF in spherical coordinates as eF = (sin θ cosϕ, sin θ sinϕ, cos θ)Tr, where θ is the
polar angle and ϕ the azimuthal angle. Multiplying Eq. (3.113) by eF and then
averaging yields�

deF

4π
eF ǧ =

�
deF

4π
eF (ǧs + eF · ǧp) =

�
deF

4π
eF (eF · ǧp)

=
1

4π

� 2π

0

� π

0

dϕdθ sin(θ)

sin θ cosϕ
sin θ sinϕ

cos θ

(gxp sin θ cosϕ+ gyp sin θ sinϕ+ gzp cos θ
)

=
1

3
ǧp,

(3.115)

where the integration in the last line was performed using trigonometric identities.
We start by considering the quasiclassical self-energy σ̌tot. The terms arising

from the superconductivity, ferromagnetism, chemical potential, and electrostatic
potential are momentum-independent and are thus unchanged by the momentum
integration. The self-energy term

Σ̌imp(X, p) = ⟨V̂imp(X)Ǧ(X, p)V̂imp(X)⟩av, (3.116)
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on the other hand, depends on the quasiclassical Green function. It can be shown
that in the quasiclassical approximation, when taking the dirty limit and the
quasiclassical approximation, the terms take the form [14, 25, 26]

Σ̌imp(X,p, E) → σ̌imp(X,E) = −σ̌sf(X,E)− σ̌so(X,E)− σ̌ec(X,E) (3.117)

where we have defined

σ̌imp(X,E) =
i

2τimp

ǧs(X,E) (3.118)

σ̌sf(X,E) =
i

8τsf
σ̂ · (ǧs(X,E)σ̂) (3.119)

σ̌so(X,E) =
i

8τsf
τ̂3σ̂ · (ǧs(X,E)τ̂3σ̂) , (3.120)

and where the scattering lifetimes are given as

1

τsc
= 2πniN0⟨|vi(pF − q)|2⟩pf ,qF

(3.121)

1

τsf
= 8πnmN0⟨|vm(pF − q)|2⟩pf ,qF

(3.122)

1

τso
=

1

τsc

8α2p4F
9

(3.123)

where ni and nm is the concentration of non-magnetic and magnetic impurities, and
vi and vm is the potential from a non-magnetic and a magnetic impurity. Inserting
these self-energies, the equation of motion in Eq. (3.103) reads[

ivF · ∇̃+ Eτ̂3 + σ̌sf + σ̌sc + σ̌so − µ1̂ + M̂ + ∆̂ ◦, ǧs + eF · ǧp

]
= 0. (3.124)

We now proceed by splitting Eq. (3.124) into an odd and an even part. Per-
forming the angular average produces[

Eτ̂3 + σ̌sf + σ̌so + σ̌sc − µ1̌ + M̂ + ∆̂ ◦, ǧs
]
+

i

3
vF
[
∇̃ ◦, ǧp

]
= 0, (3.125)

where we have used that σ̌sf and σ̌sc are independent of pF , and that σ̌sc commutes
with ǧs. Multiplying Eq. (3.124) by eF and performing the averaging, we get

i

3
vF
[
∇̃ ◦, ǧs

]
+

i

6τsc

[
ǧs ◦, ǧp

]
≈ 0, (3.126)

where we have inserted the explicit form of σ̌sc, and assumed that the impurity
scattering dominates, so that we could ignore the spin-flip and spin-orbit scattering
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terms in this equation. By now performing the circle product with ǧs from the left,
and canceling a common factor i/3, we get

vF ǧs ◦
[
∇̃ ◦, ǧs

]
+

1

2τsc

[
ǧs ◦ ǧs ◦ ǧp − ǧs ◦ ǧp ◦ ǧs

]
= 0, (3.127)

To proceed, we will have to consider the normalization of ǧ, as discussed in
Section 3.6.4. Inserting the p-wave expansion from Eq. (3.113), the normalization
condition becomes

1̌ = (ǧs + eF · ǧp) ◦ (ǧs + eF · ǧp)

= ǧs ◦ ǧs + ǧs ◦ eF · ǧp + eF · ǧp ◦ ǧs +O(ǧp
2)

≃ ǧs ◦ ǧs + eF ·
(
ǧs ◦ ǧp + ǧp ◦ ǧs

)
,

(3.128)

where we have ignored second-order terms in the p-wave component, and used that
we can pull eF outside the circle product, with the understanding that it works on
ǧp. Performing the angular average and the angular average after multiplication
with eF , we get the two normalization conditions

ǧs ◦ ǧs = 1̌ ǧs ◦ ǧp + ǧp ◦ ǧs = 0, (3.129)

to first order in the expansion. Using these relations, Eq. (3.127) can be written as

vF ǧs ◦
[
∇̃ ◦, ǧs

]
+

1

2τsc

[
ǧp + ǧp

]
= 0, (3.130)

from which we can isolate

ǧp = −τscvF ǧs ◦
[
∇̃ ◦, ǧs

]
. (3.131)

This means that the p-wave part can be found from the s-wave part, and we
thus will only need to solve for ǧs. Inserting Eq. (3.131) back into Eq. (3.125),
we get an equation of motion containing ǧs only. Defining the diffusion constant
D = τscp

2
F/3m

2, the resulting equation reads (restoring arguments)

D
[
∇̃ ◦, ǧs(X,E) ◦

[
∇̃ ◦, ǧs(X,E)

]]
+ i
[
Eτ̂3 + σ̌sf(X,E) + σ̌so(X,E)− µ(X)1̂ + M̂(X) + ∆̂(X) ◦, ǧs(X,E)

]
= 0,
(3.132)

This is the Usadel equation, valid for a dirty system with superconducting, fer-
romagnetic, and electromagnetic interactions, as well as spin-flip and spin-orbit
scattering. Often, we will consider the stationary case, where there is no dependence
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on the center-of-mass time, so the circle products reduce simply to matrix products,
and the Usadel equation becomes

D
[
∇̃, ǧs(R, E)

[
∇̃, ǧs(R, E)

]]
+ i
[
Eτ̂3 + σ̌sf(R, E) + σ̌so(R, E) + ∆̂(R) + M̂(R), ǧs(R, E)

]
= 0, (3.133)

where we have used that the chemical potential, with the absorbed electrostatic
and magnetic potentials, cancels in the stationary case, because it commutes with
ǧs. We have also used the notation[

∇̃, ǧ
]
≡ ∇ǧ −

[
ieAτ̂3, ǧ

]
. (3.134)

Usually, we will express all observables in terms of the s-wave part of the quasi-
classical Green function. For this reason, we will in the rest of the thesis drop the
subscript, remembering that we are dealing with only the isotropic part of the full
quasiclassical Green function in Eq. (3.113).

3.7.2 Dimensionless form

The quasiclassical Green function carries no dimension, but the self-energies have
units of energy, and the derivatives have units of inverse energies. We simplify the
notation by introducing the total self-energy σ̌ as the sum of all self-energy terms in
Eq. (3.133). To numerically solve an equation, we want to write it in a dimensionless
form, using dimensionless variables. To this end, we divide Eq. (3.133) by ∆0, the
gap at zero temperature, and introduce the so-called superconducting coherence
length ξ =

√
D/∆0, which is a natural length scale in dirty superconductors, and

physically describes the length scale on which changes occur in superconducting
systems. We define the dimensionless self-energy as σ̌′ = σ̌/∆0, and new coordinates
as R′ = R/ξ. Derivatives then become ∇′ = ξ∇. For later, we note that we can
give temperatures in units of the critical temperature, T ′ = T/Tc. In the stationary
case, the Usadel equation then reads[

∇̃′, ǧ(R′, E ′)
[
∇̃′, ǧ(R′, E ′)

]]
+ i
[
σ̌′(R′, E ′), ǧ(R′, E ′)

]
= 0, (3.135)

where all quantities involved are dimensionless.

3.7.3 Boundary conditions

As discussed previously, the quasiclassical approximation assumes that all length
scales on which physical quantities vary are much larger than the Fermi wavelength
λF . This approximation works well for bulk but fails at interfaces, where there
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is an abrupt change in many physical quantities. For this reason, we will have
to supply boundary conditions for the quasiclassical Green function, which takes
into account the rapidly changing nature close to the interfaces. These boundary
conditions necessary have to come from non-quasiclassical theory, and they are
often found by expressing the current across a boundary through ballistic Green
functions, and then comparing with the quasiclassical expression for current [45].

Using this procedure, it can be derived that in the low transparency, non-
magnetic limit, the boundary conditions for the quasiclassical Green functions
become [73]

2Ljζj ĝ
R
j ∇nĝ

R
j = [ĝ1, ĝ2], (3.136)

where j = {1, 2} denotes which side of the interface we are on, and ∇n is the
derivative across material 1 to material 2. This is the so-called Kuprianov-Lukichev
(KL) boundary conditions, after Kuprianov and Lukichev [74]. This boundary
condition describes how superconducting correlations leak from one material to
another but does not capture the effects of magnetic interfaces, which can cause
e.g. singlet-triplet mixing [45].

3.8 Distribution matrix and physical observables

In this section, we concentrate on the distribution matrix and show how it is
a useful quantity out of equilibrium. The distribution matrix ĥ was introduced
in Section 3.6.4 as the matrix used to parametrize the Keldysh Green function.
This parametrization automatically satisfied the normalization condition. In the
stationary case, this parametrization reads

ĝK = ĝRĥ− ĥĝA. (3.137)

Here, we will show that the distribution matrix describes the filling of states in
the system. This section is based on the Ph.D. thesis of [45], which presents a
convenient formalism, writing the distribution matrix as an 8-vector.

We write the distribution matrix in terms of an 8-vector hj,

ĥ =
8∑

j=0

hj ρ̂j, (3.138)

where we use the following matrices in Nambu-spin space,

ρ̂0 ≡ τ̂0σ̂0 ρ̂1 ≡ τ̂0σ̂1 ρ̂2 ≡ τ̂0σ̂2 ρ̂3 ≡ τ̂0σ̂3

ρ̂4 ≡ τ̂3σ̂0 ρ̂5 ≡ τ̂3σ̂1 ρ̂6 ≡ τ̂3σ̂2 ρ̂7 ≡ τ̂3σ̂3 .
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These eight matrices are block diagonal and linearly independent, meaning that
they span the 8-dimensional space of block-diagonal 4-dimensional matrices. It can
be shown that one can project a component hj from

hj =
1

4
Tr
{
ρ̂jĥ
}
. (3.139)

Here, h0 is the energy mode, which contains equal contribution for spin-up and
spin-up electrons and holes, thus describing the average energy of the system. h1,
h2, and h3 are the spin-energy modes in the x -, y-, and z -direction, respectively,
describing differences in energy between the spin-up band and spin-down band.
This is in contrast to h5, h6 and h7, which are the spin modes in the x -, y-, and
z -direction, respectively, which contain equal contributions from particles with the
same physical spin11. Finally, h4 describes differences in particles and holes and is
for that reason called the charge mode of the system.

If we choose the spin quantization axis to be along the z -axis, the only nonzero
modes the energy mode h0, the z -direction spin-energy mode h3, the charge mode
h4 and the z -direction spin mode h7 [45]. This causes the distribution matrix to
become diagonal, and it can generally be written

ĥ = diag
(
h+↑ , h

+
↓ , h

−
↑ , h

−
↓
)
, (3.140)

where n
+(−)
σ = (1 − h

+(−)
σ )/2 is the occupation number of states for an electron

(hole) with spin σ12. From this, it can easily be seen that the four diagonal modes
can be written

h0 =
1

4

(
h+↑ + h+↓ + h−↑ + h−↓

)
(3.141)

h3 =
1

4

(
h+↑ − h+↓ + h−↑ − h−↓

)
(3.142)

h4 =
1

4

(
h+↑ + h+↓ − h−↑ − h−↓

)
(3.143)

h7 =
1

4

(
h+↑ − h+↓ − h−↑ + h−↓

)
. (3.144)

In analogy with the equilibrium case, one can then introduce temperatures and
voltages for each particle type and spin, as the quantities satisfying

h±σ (E) = tanh

(
E ± eVσ
2Tσ

)
. (3.145)

11A hole in the spin-up band has physical spin-down.
12When we say a hole has spin σ, we generally mean a missing electron of spin σ, meaning that

the physical spin is opposite.
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We can then define the averaged quantities of voltage V ≡ (V↑ + V↓)/2 and
temperature T ≡ (T↑ + T↓)/2, and the relative quantities of spin voltage Vs ≡
(V↑ − V↓)/2 and spin temperature Ts ≡ (T↑ − T↓)/2. In equilibrium, the only
non-vanishing quantity is the temperature, and we find that [25]

ĥ(E) = h0ρ̂0 = tanh

(
E

2T

)
1̂. (3.146)

We proceed by defining the spectral weight function for a given spin σ as [75],

Aσ(p, E) = − 1

π
ℑ{GR

σσ(p, E)}. (3.147)

Loosely speaking, the spectral function represents the probability density that
a particle with momentum in the range [p,p + dp] has an energy in the range
[E,E + dE]. The density of states for a particle with spin σ, Nσ(E), is found by
integrating out the momentum dependence [76],

Nσ(E) =

�
dp

(2π)3
Aσ(p, E) = − 1

π

�
dp

(2π)3
ℑ
{
GR

σ,σ(p, E)
}
. (3.148)

Inserting the quasiclassical expression from Eq. (3.97), we find that the density of
states in the quasiclassical approximation becomes

Nσ(E) = − 1

π

�
dp

(2π)3
ℑ
{
GR

σσ(p, E)
}

= − 1

π

�
dp

(2π)3
ℑ
{π
i
δ(ξp)gσσ(X,pF , E)

}
= N0

�
deF

4π

�
dξpℜ{δ(ξp)gσσ(X,pF , E)}

= N0ℜ{gσσ(X,pF , E)}

(3.149)

In situations where we do not care about the spin-resolved density of states, the
spin-averaged density of states,

N(E) ≡ 1

2
(N↑(E) +N↓(E)) , (3.150)

is used.
It can be shown that the quasiclassical spin accumulations is given in terms of

the Keldysh components of the Green function as [14, 45, 77]

µ7(x) = −
�
dE

N(E)

N0

h7(x,E), (3.151)
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which measures how much spin can be injected into the material. Similar accumu-
lations can also be found for the other modes. Finally, the charge current j4 and
the spin current j7 can be found as [14, 45, 77]

j4(R, E) =
N0eD

16

� ∞

−∞
dE Tr

{
ρ̂4

(
ǧ∇̃ǧ

)K}
(3.152)

j7(R, E) =
N0eD

32

� ∞

−∞
dE Tr

{
ρ̂7

(
ǧ∇̃ǧ

)K}
, (3.153)

where the extra factor of 1/2 in the spin current is due to the electrons and holes
having spin-1/2. We will primarily focus on the electrical current in this thesis,
and we will for this reason also use the notation j ≡ j4 for the electrical current.
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Chapter 4

Models of Odd-Frequency
Superconductivity

In this chapter, we start by solving the Usadel equation in a simple system
where odd-frequency superconductivity arises naturally. We discuss symmetries
and other properties that the quasiclassical Green functions for odd-frequency
superconductivity are expected to satisfy in the context of this simple system. This
discussion is then used to make ansatzes for criteria that general quasiclassical
odd-frequency Green functions should satisfy, and we make three models for odd-
frequency superconductivity satisfying these criteria. We then study the shape
of the density of states, the renormalization of the spin-orbit scattering length,
and the Meissner response of these properties, comparing with the properties of
conventional superconductors.

4.1 Weak odd-frequency proximity effect

In this section, we consider a simple heterostructure, in which odd-frequency
superconductivity arises naturally through the proximity effect. This will give us
an indication of how the quasiclassical Green function of such a superconductor
can look, and indicate which symmetries it satisfies. To this end, we consider a one-
dimensional system in the x -direction consisting of a BCS bulk superconductor, two
misaligned ferromagnets, and a normal metal. The first ferromagnet is denoted F1

and has its exchange field pointing in the z -direction, while the second ferromagnet is
denoted F2 and has its exchange field pointing in the x -direction. The ferromagnets
are assumed to have exchange fields of equal magnitude h. The electromagnetic
fields are assumed to be zero in the entire system, and we assume that the spin-flip
scattering and spin-orbit scattering can be neglected. The system is illustrated
in Fig. 4.1. Since we are interested in the main characteristic features of the
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Figure 4.1: The proximity system we solve in the weak proximity regime consists of
a superconductor (BCS), two misaligned ferromagnets (F1 and F2), and a normal
metal (N). The arrows indicate the magnetization direction. The ferromagnets
and the normal metal are assumed much longer than the normal metal coherence
length.

odd-frequency correlations in this system, such as their energy-symmetry, we will
make simplifying assumptions, which will allow for analytical treatment. Firstly, we
assume that the boundary between the superconductor and the first ferromagnet
allows only for a weak proximity effect. This corresponds to a high resistance
interface barrier. This allows us to linearize the Usadel equation, making it a linear
differential equation, which can be solved analytically. As another simplifying
assumption, we assume that all the materials involved are long compared to the
ferromagnetic coherence length ξF =

√
D/h and the normal metal coherence

length ξN =
√
D/T , such that we can discard exponentially increasing parts of the

solutions. We assume that we can solve the Usadel equation in one material, and
then use this solution as a boundary condition when solving for the next. These
approximations imply that the proximity effect will be extremely weak, but this is
tolerable because we are interested in the functional form and the symmetries of the
solutions. When we in Chapter 5 study the exact form of the Green functions in a
similar proximity structure, a system that produces a stronger proximity effect is
chosen. Finally, we assume that the materials are not affected substantially through
the inverse proximity effect, such that we can e.g. use the bulk BCS solution as
a boundary condition for F1. The order parameter ∆ in the superconductor is
assumed to be real, following the discussion in Section 3.2.

4.1.1 Linearization of the Usadel equation and boundary
conditions

In the weak proximity effect, the quasiclassical Green functions in the ferromagnets
and the normal metal will deviate only slightly from the normal-metal solution
ĝRN = τ̂3, which was calculated in Appendix A.2. In the following, we drop the
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superscript on the Green functions, keeping in mind that we are solving for the
retarded Green functions. We will thus expand the quasiclassical Green function
as (dropping arguments of the rest of this section)

ĝ = τ̂3 + δ̂f , (4.1)

where δ̂f is an off-diagonal matrix. Using the symmetries discussed in Section 3.6.5,
we can write this as

δ̂f =

(
0 δf

¯−δ̃f
¯

0

)
. (4.2)

The magnitudes of δ̂f are assumed to be small, meaning that we can ignore
higher-order terms.

The Usadel equation, as stated in Eq. (3.133), can, in the absence of electro-
magnetic fields and spin-flip and spin-orbit scattering, be written as1

D∂x
(
ĝ∂xĝ

)
= −i[Eτ̂3 + M̂, ĝ], (4.3)

where we recall that M̂ = h · diag(σ
¯
,σ
¯
∗). In order to solve for the anomalous

component, we take the upper right component of Eq. (4.3), yielding

D∂2xδf
¯
= −2iEδf

¯
− i
[
(h · σ

¯
)δf
¯
− δf

¯
(h · σ

¯
∗)
]
. (4.4)

For a clear and suggestive notation, we will decompose the anomalous quasiclassical
Green function using a singlet-triplet decomposition which is presented e.g. in an
article by Jacobsen et al. [73],

δf
¯
= (fs + d · σ

¯
)iσ
¯2

=

(
idy − dx dz + fs
dz − fs dx + idy

)
. (4.5)

Under a spin permutation of Eq. (4.5), it can be checked that d is invariant and fs
obtains a negative sign, suggesting that fs is the spin-singlet component and d are
the spin-triplet components.

Using Eq. (4.4), we can isolate the derivative of the singlet component fs by
adding the (1, 2) and (2, 1) components of Eq. (4.4). Similarly, one can isolate equa-
tions for the derivatives dx, dy and dz by adding or subtracting other components.
This results in

iD

2
∂2xfs = Efs + h · d (4.6)

iD

2
∂2xd = Ed+ hfs, (4.7)

1The superconducting gap term of course vanishes in ferromagnets and in normal metals, and
the anomalous Green function arises solely due to the proximity effect.
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which are four in general coupled linear differential equations, which can be solved
analytically.

The KL boundary condition for the right side of an interface is in the same
manner found by inserting the expansion in Eq. (4.1) into Eq. (3.136). We denote by
the subscript 1 (2) the left (right) material, so that the left-hand side of Eq. (3.136)
becomes

1

Ω2

ĝ2∂xĝ2 =
1

Ω2

(τ̂3 + δ̂f 2)∂xδ̂f 2 ≈
1

Ω2

τ̂3∂xδ̂f 2, (4.8)

where we have included only first-order terms in the small quantity δ̂f and its
derivative, and introduced the quantity Ωj = (2Ljζj)

−1. The right-hand side of the
KL boundary condition becomes

[ĝ1, ĝ2] = [ĝ1, τ̂3 + δ̂f ] ≈ [ĝ1, τ̂3] = −2 antidiag
(
f
¯1
, f̃
¯1

)
. (4.9)

The upper right component of Eq. (4.8) is ∂xδf
¯ 2
/Ω2, and for Eq. (4.9) it is −2f

¯1
,

where f
¯1

is the upper right component of ĝ1. Equating the upper right components
produces the linearized Kuprianov-Lukichev boundary conditions,

∂xf
¯2

= −2Ω2f
¯1
. (4.10)

The normal-derivative has reduced to a derivative in the x -direction because we
have assumed a one-dimensional system.

4.1.2 Solving the weak proximity system

We start by shortly discussing the physical interpretation of the solutions to the
four coupled differential equations in Eq. (4.6) and Eq. (4.7). For simplicity, we
base this discussion on the first ferromagnetic regime of the system, where h = hez,
but the results are easily generalized to an arbitrary magnetization. In this case, the
equations for the singlet component fs and the triplet component dz are coupled
through the exchange term, while the equations for the remaining two triplet
components decouple. The decoupled triplet components will follow the same
exponential decay as the singlet component does in a normal metal, decaying
over distances of ξE =

√
D/E. Typically, the energy E is in the same order of

magnitude as the temperature, which is much smaller than typical exchange fields.
In other words, the perpendicular components dx and dy do not ”feel” the exchange
field, and decay as if the ferromagnet was a normal metal. These are the so-called
long-ranged triplet components. The dz-component, however, is coupled to the
magnetic field and the singlet component and will decay with a much shorter
decay length on the order of the ferromagnetic coherence length ξF =

√
D/h. The

dz-component is thus the so-called short-ranged triplet component in this case.
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4.1. Weak odd-frequency proximity effect

Generally, it can be shown that the component of d that is parallel with h is
short-ranged, while the perpendicular components are long-ranged [73].

Physically, the above discussion is understood by considering the expansion in
Eq. (4.5), and noting that the different components of the matrix in spin space
correspond to different spin-1 states. dz has components at the (1, 2) and (2, 1)
matrix elements, meaning that it represents a spin-triplet with spin projection
Sz = 0 in the z -direction. Similarly, dx and dy are seen to represent linear
combinations of the Sz = 1 and Sz = −1 components. Symbolically, we write this
as

fs ∼ |↑↓⟩ − |↓↑⟩ dx ∼ |↓↓⟩ − |↑↑⟩ dy ∼ |↓↓⟩+ |↑↑⟩ dz ∼ |↑↓⟩+ |↓↑⟩ , (4.11)

where we have used |↑⟩ and |↓⟩ to represent spin-up and spin-down eigenstates
with respect to the z -axis, respectively. When placed in an exchange field along
the z -direction, the short-ranged triplet dz as well as the singlet is broken up by
the exchange field through the effect of paramagnetic pair breaking, as discussed
in Section 2.1.3. The long-ranged components are not affected by this effect, due
to consisting of two spins with equal projection along the z -axis.

We now turn to solving Eq. (4.6) and Eq. (4.7) in F1. The solutions for are

dj(x) = Aje
kx +Bje

−kx ≈ Be−kx, j = {x, y} (4.12)

dz(x) = C1e
k−x + C2e

−k−x + C3e
k+x + C4e

−k+x

≈ C2e
−k−x + C4e

−k+x
(4.13)

fs(x) = −C1e
k−x +−C2e

−k−x + C3e
k+x + C4e

−k+x

≈ −C2e
−k−x + C4e

−k+x,
(4.14)

which can be verified by insertion into the equations of motion. Here, we have
neglected the exponentially increasing functions, because the length of F1 is assumed
to be large. We have defined the four integration-constants Ci, i ∈ {1, 2, 3, 4}, and
the variables

k =

√
−2iE

D
k± =

√
−2i(E ± h)

D
. (4.15)

The solutions in F2, where h = hex follows from interchanging z ↔ x.
A simple but tedious calculation, using the linearized KL boundary conditions,

reveals that the dx component of the anomalous Green function in the normal
metal is given by2

dx(x) = 4Ω1Ω2Ω3
1

k2
fBCSe

−k(x−L1)

(−e−k−L1

k−
+

e−k+L1

k+

)
, (4.16)

2This quantity is independent on L2 because it decays similarly in F2 and in the normal metal.
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where Ωi is the transparency for interface i, L1 is the length of the first ferromagnet,
and

fBCS = I∆, (4.17)

with

I =
Θ(E2 −∆2)sign(E)√

E2 −∆2
− iΘ(∆2 − E2)√

∆2 − E2
, (4.18)

is the upper-right component of the anomalous Green function in a bulk conventional
superconductor, which was calculated in Appendix A.3. A similar calculation can
be done using transparent boundary conditions, where we assume that the value of
the anomalous Green function is unchanged across the boundaries. The result of
such a calculation is

dx(x) = fBCS e
−kx
(
−e−k+L1 + e−k+L1

)
. (4.19)

Since these expressions diverges as E → 0, and we have assumed a weak proximity
effect, the expressions are not valid for small energies, as this would produce a
large proximity effect. The solutions in this section will nevertheless serve as
inspiration when we discuss symmetries and suggest models for odd-frequency
superconductivity in the following sections.

4.2 Criteria for odd-frequency solutions

Motivated by the solution in the last section, we will now look for criteria that we
expect the retarded quasiclassical Green function to satisfy in the odd-frequency
case. Our goal will be to find models for an odd-frequency superconductor that
satisfy these properties, as well as reproduce results that are expected for such
superconductors.

4.2.1 Tilde symmetries

We recall that the advanced and retarded quasiclassical Green functions are related
through Eq. (C.4), a result that was derived in Appendix C.1. If we now consider
the upper right 2× 2 components of this equation, we get3

f
¯

A

σσ′(E) = −
[
f̃
¯

R
(E)
]†
σσ′

= −f
¯

R

σ′σ
(−E). (4.20)

This relation can be regarded as a generalization of the Pauli principle, including
also the possibility of having a pairing that is odd in energy [13]. Since we are

3In the general case, where we have not assumed a dirty material, this also includes an inversion
in the momentum variable
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4.2. Criteria for odd-frequency solutions

considering materials in the dirty limit, which display s-wave superconductivity,
triplets will be odd in frequency and singlets will be even in frequency. Because
the anomalous Green function is symmetric (antisymmetric) when exchanging spin
indices for triplets (singlets), we get

f
¯

A

σσ′(E) = −f
¯

R

σσ′(−E), for triplet odd-frequency (4.21)

f
¯

A

σσ′(E) = +f
¯

R

σσ′(−E), for singlet even-frequency. (4.22)

These symmetries, however, do nothing towards our goal of finding criteria for the
retarded Green function. Instead, we want to derive symmetries for the retarded
Green function directly.

Due to the particle-hole symmetry of quasiclassical theory, we expect that
the tilde-conjugation, which essentially interchanges electrons and holes, should
leave the magnitude of the quasiclassical Green function unchanged [78]. This
corresponds to the magnitude of the quasiclassical Green functions being symmetric
in energy. Thus, we expect at most a phase factor to appear under an application
of the tilde operator,

g̃
¯

R = eiγgg
¯

R (4.23)

f̃
¯

R
= eiγff

¯

R, (4.24)

where γg and γf are real quantities. From the BCS solution in Eq. (A.23) with a
real superconducting gap, we have

g̃
¯

R

BCS
= +g

¯

R

BCS
(4.25)

f̃
¯

R

BCS
= −f

¯

R

BCS
, (4.26)

and the same symmetries can easily be shown to also hold in an SN proximity
structure. In an SF-structure, such as the one we solved for in the last chapter, we
find that the singlet component fs,F and the triplet components dF satisfy different
symmetries,

f̃R
s,F = −fR

s,F (4.27)

d̃
R

F = dR
F , (4.28)

while the normal Green function still satisfies g̃
¯
= g

¯
. This can be seen from

Eq. (4.16) and Eq. (4.14), by noting that k̃+ = k− and that k̃ = k. That the
normal Green function is invariant under tilde conjugation also makes sense from a
physical standpoint, since we expect the density of states, which we recall is given
as the real part of g

¯
, to be symmetric in energy, again because of the particle-hole
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symmetry of quasiclassical theory. Moreover, when we solve numerically for a more
complicated proximity structure in Chapter 5, we find the same symmetries hold4.
Motivated by the discussion above, and the symmetries of the actual solution for
the odd-frequency anomalous Green function in a proximity structure, we make
the following ansatz,

Criterion 1 For a superconductor with a real gap,

g̃
¯

R = g
¯

R f̃
¯

R
= −f

¯

R (4.29)

holds for singlet even-frequency paring, while

g̃
¯

R = g
¯

R f̃
¯

R
= f
¯

R (4.30)

holds for triplet odd-frequency pairing.

Later, this criterion will be vital when we make ansatzes for models of odd-frequency
superconductors. If a generalization to a complex gap is needed, we will in analogy
with the BCS solution simply add an extra phase factor to the anomalous Green
function, or the order parameter, after using the above criterion.

4.2.2 Normalization

As discussed in Section 3.6.4, the quasiclassical Green function is assumed to be
normalized, which we state as a second criterion,

Criterion 2 The quasiclassical Green function is normalized, satisfying

g
¯

2 − f
¯
f̃
¯
= 1
¯
. (4.31)

When we later postulate models for the anomalous Green function, Eq. 4.31 will
serve as the definition of the normal Green function g

¯
, and we will then choose the

sign in such a way as to give a positive density of states.

4.2.3 Sum rule of the spectral weight

A third criterion can be found by considering the spectral weight function defined
in Eq. (3.147). Normally, the spectral weight satisfies the sum rule,

� ∞

−∞
dEAσ(p, E) = 1, (4.32)

4This can be seen from Fig. 5.5a.
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4.2. Criteria for odd-frequency solutions

which can be shown e.g. from the Lehmann representation, as is done in [76].
Physically, this means that the probability of an electron with momentum p to
be in any state is 1. In the quasiclassical approximation, however, we essentially
assume that all states have momentum the Fermi momentum pF , meaning that the
integral over any other momentum than the Fermi momentum vanishes, while for
the Fermi momentum the integral becomes infinite. Thus, we will need to modify
the sum rule for the spectral weight. We demand that the sum over the spectral
weight should be the same for all systems, and compare the general case with the
normal-metal case, where g

¯
R = 1

¯
, which was shown in Appendix A.2. We take the

integral to go from −ω0 to ω0, and take the limit as ω0 goes to infinity,

lim
ω0→∞

� ω0

−ω0

dE ℜ
{
δ(ξp)g

R
σσ(E,X,pF )

}
= lim

ω0→∞

� ω0

−ω0

dE ℜ{δ(ξp)} . (4.33)

Finally, we integrate over momentum to remove the delta functions and average
the quasiclassical Green function over the Fermi surface, using the approximation
from Eq. (3.100). Moving all quantities to the left-hand side, and using that the
particle-hole symmetry of quasiclassical theory implies a symmetric density of
states, we can use the expression for the density of state in Eq. (3.149) to state the
third criterion,

Criterion 3 The normalized number of states is the same for all systems,

� ∞

0

dE

{
Nσ(E)

N0

− 1

}
= 0. (4.34)

This criterion will be referred to as the criterion for conservation of the number of
states in the following.

4.2.4 Vanishing pairing for large energies

As a final criterion, we expect the superconducting pairing to disappear for large
energies, in analogy with the BCS pairing. Thus, we require

Criterion 4 The superconducting pairing vanishes at energies far from the
Fermi surface,

lim
|E|→∞

f
¯
(E) = 0. (4.35)

Again, this can be seen to hold for our solutions of the proximity system in Eq. (4.16)
and Eq. (4.19), as well as for the numerical solution of a realistic proximity system
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in Chapter 5. Note that criterion fits well with the criterion in Eq. (4.34) since
when the anomalous Green function vanishes for large energies, we get

g
¯
= 1

¯
, (4.36)

meaning that the normalized density of states becomes unity. This is required, but
not sufficient for the criterion in Eq. (4.34) to hold; we also need e.g. that the
integrand goes to zero fast enough for the integral in Eq. (4.34) to converge.

4.3 Models for odd-frequency Green functions

The exact pairing in an odd-frequency superconductor is difficult to derive from first
principles, as the time dependence, which is antisymmetric, cannot be neglected
in the way it is in e.g. BCS theory [13]. Instead, in a recent article, Johnsen
and Linder [14] suggested a model of odd-frequency superconductivity where the
quasiclassical Green functions were assumed to be on a BCS-like form, with the
only difference being that the gap was assumed to be an odd function of energy.
This causes the tilde-symmetry criterion in Eq. (4.30) to hold for such a model.
This produced a density of state that at the Fermi energy was peaked for some
parameter choices and gapped for others. The peaked models suggested in [14]
did, however, display a density of states larger than one for all energies, thus not
satisfying the criterion in Eq. (4.34). Moreover, the density of states for the gapped
models was not conserved either. Although it was argued that this problem could
be circumvented by flanking the density of states at large energies, it would still
be useful to find a model that satisfies all criteria that are required for the actual
quasiclassical Green function. To this end, we will in this chapter make ansatzes for
simple models that satisfy the four criteria from the last section, while also being
on a simple form resembling what was found in Section 4.1. We will then move on
to study the physical implications of the models; whether the density of states is
peaked or gapped, the resilience to spin-flip and spin-orbit scattering, and the sign
of the Meissner response. These results will be compared with the conventional
superconductor case, as well as the model in [13].

For the tilde symmetry from Eq. (4.30) to hold, a general anomalous Green
function for a pure dz triplet component can be written

f
¯
(E) = [S(E) + iA(E)]σ

¯1
, (4.37)

where S and A are real functions that are symmetric and antisymmetric in energy,
respectively. The normal Green function is found from the normalization condition,
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and using the tilde symmetry of the odd-frequency solution, this becomes5

g
¯
=
√

1
¯
+ f

¯
f̃
¯
= 1

¯

√
1 + f 2 = 1

¯

√
1−A(E)2 + S(E)2 + 2iS(E)A(E). (4.38)

This means that for g to follow the conservation of states criterion in Eq. (4.34), we
must have that S and A are both nonzero6. This is the reason the peaked model
in [14], which was real for all energies, does not satisfy this criterion.

A huge amount of different functions S and A can be chosen, and they must be
chosen such that the spectral weight criterion holds. In analogy with the solution
in Section 4.1, as well as the discussion to come in Chapter 5, we will let most
of these solutions keep a factor of fBCS, making many of the calculations more
convenient, as well as being physically relevant. The models will thus in no way
exhaust the different types of odd-frequency pairings, but rather serve as simple
models that exhibit different physics.

4.3.1 Model 1: A BCS-like model with a symmetric func-
tion

Motivated by the analytic solution in the weak proximity case we found in Section 4.1
we use the BCS solution fBCS, which of course has the appropriate symmetries for
a singlet superconductor, and guess the solution

f
¯
(E) = iS(E)fBCS(E)σ

¯1
, (4.39)

where S(E) is a symmetric function in energy, and where we have also shifted
the matrix structure in order to have only a dz triplet component. We restrict
S(E) ∈ ℜ, which means that this anomalous Green function satisfies the tilde
symmetry relation in Eq. (4.30). If needed, one could let ∆ → |∆|eiϕ, to generalize
to the complex case, but unless stated otherwise we will in the following assume
∆ to be real7. This anomalous Green function vanishes for large energies, satis-
fying Eq. (4.35). We find the corresponding normal Green function by using the
normalization condition in Eq. (4.31),

g
¯
=
√

1
¯
+ f

¯

2 =
√

1− S(E)2∆2I21
¯

=

√
1− S(E)2 ∆2

E2 −∆2
1
¯
=

√
E2 − (1 + S(E)2)∆2

E2 −∆2
1
¯
,

(4.40)

5From this equation, we note that even if we included an extra phase factor in f , this would
cancel in this expression.

6If both are zero, we obtain the trivial normal metal solution.
7In this model as well as Model 3, ∆ will sometimes be called the ”gap” or ”order parameter”,

but note that these models do not, in general, have gaps for |E| < |∆|, as the BCS solution has.
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where we chose the positive root in order for the solution to reduce to a normal-
metal solution in the case of ∆ → 08. It is easily seen that this function is peaked
at zero energy and that it is larger than unity for E < ∆. This quantity is purely
real for energies |E| < |∆| and |E| >

√
1 + S(E)|∆|, and purely imaginary in

between. This means that if we want a model without a gap in the density of
states, we must choose S such that it satisfies S(∆) = 0. For this model to satisfy
all criteria in Section 4.2, we only need to choose a function S(E) that causes the
number of states to be conserved for all choices of ∆.

Model 1a Constant symmetric function

For concreteness, we will consider a specific choice of the symmetric function S(E),
namely that of a real constant, S(E) = a ∈ ℜ. The real part of the normal Green
function is, for a choice of a = 1, shown in Fig. 4.2, together with the BCS density
of states. In order to use this model for other systems, where the meaning of the

−2 0 2

0

1

2

3

E/∆

N
(E

)/
N

0

BCS M1a

Figure 4.2: The density of states for a BCS superconductor and for Model 1a (M1a)
with a = 1. See the main text for details.

factor ∆ that appears in the fBCS-factor is unclear, we can use it as a curve-fitting
parameter, determining the width of the density of states in the system.

We now proceed to show that this model satisfies the criterion in Eq. (4.34). To
this end, it will be convenient to substitute a new variable b ≡

√
1 + a2. Inserting

the expression in Eq. (4.40) into the left-hand side of the criterion in Eq. (4.34),

8Another justification for this choice is only the positive root produces a positive density of
states.
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and splitting the integrand into three parts, we find

∆

� ∞

0

dE ′ {ℜ {g} − 1} = ∆

� 1

0

dE ′
{√

b2 − E ′2

1− E ′2 − 1

}
(4.41a)

−∆

� b

1

dE ′ {1} (4.41b)

+ ∆

� ∞

b

dE ′
{√

E ′2 − b√
E ′2 − 1

− 1

}
, (4.41c)

where we have introduced the integration variable E ′ ≡ E/∆. The first term in
Eq. (4.41a) is an elliptic integral, and the term can be shown to equal

∆

(
E
(
1

b

)
b− 1

)
. (4.42)

Here, we have introduced the complete elliptic integral of second kind as9

E(k) ≡ E(1, k), (4.43)

where we have used the incomplete elliptic integral of the second kind,

E(x, k) ≡
� x

0

dt

√
1− k2t2

1− t2
. (4.44)

The term in Eq. (4.41b) is trivial and becomes −∆(b − 1). For the term in
Eq. (4.41c), a mathematical software can be used to show that it equals

∆

(
F (b) b2 − E

(
1

b

)
b− E

(
b,
1

b

)
b+ E (b)−F (b) + b

)
, (4.45)

where we have used the complete integral of first kind,

F(k) ≡ F(1, k), (4.46)

given in terms of its incomplete counterpart,

F(x, k) ≡
� x

0

dt
1√

(1− k2t2)(1− t2)
. (4.47)

Adding the results for the three terms, we find that the result becomes

∆

(
F (b) b2 − E

(
1

b

)
b+ E (b)−F (b)

)
. (4.48)

This expression is difficult to simplify symbolically, but by evaluating it for different
values of b, it can be shown that it is identically zero for all values of b. Thus, this
model does in fact satisfy all our criteria for odd-frequency quasiclassical Green
functions.

9The reader is directed to [79] for a discussion of elliptic integrals.
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Adding inelastic scattering

In order to remove the divergences at the gap edge, we add the effects of inelastic
scattering through the Dynes approximation [80, 78], which was first used by Dynes
et al. [81]. We thus let E → E + iϵ∆, where ϵ is the inelastic scattering parameter.
This approximation yields good results for the effect on the density of states but
does not capture the inelastic scattering effect for energy mode decays [78]. Since
we are mainly interested in the spectral quantities such as the density of states
for this model, we will employ this approximation. For small values of ϵ, this has
the effect of ”smoothing” out the divergences. We note that the density of states
of Model 1a, as shown in Fig. 4.2, has an unconventional form. If we, however,
treat the Dynes parameter ϵ as a general cure-fitting parameter, we can make the
density of states look more like the one obtained from the realistic system where
odd-frequency arises naturally, as we will find in Chapter 5. The density of states
for different choices of ϵ is shown in Fig. 4.3. If we also treat the order parameter
∆ as a general parameter, we find that the result is a density of states where the
width can be adjusted by changing ∆, the height can be changed by changing a
and ϵ. We emphasize that using ∆ and ϵ in this manner is nothing more than a
way of curve-fitting Model 1a to systems. From a numerical integration, it can also
be seen that the number of states is still conserved, making the four criteria hold
in this case as well.

−4 −2 0 2 4
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E/∆
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ϵ = 0.01 ϵ = 0.2 ϵ = 0.5 ϵ = 1.0

Figure 4.3: The density of states for Model 1a with a = 2 for different Dynes
inelastic scattering parameters ϵ. See the main text for details.
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4.3.2 Model 2: A step function model

We suggest an even simpler model which also satisfies the symmetry relations for a
real order parameter superconductor, and which has a peaked density of states that
roughly resembles what we will find in the realistic proximity system in Chapter 5.
We propose the anomalous Green function

f
¯
= fσ

¯1
, (4.49)

with
f = Θ(a2 − E2)c+ isgn(E)Θ(E2 − a2)Θ(b2 − E2)d, (4.50)

where a, b, c, d are real parameters, and we restrict |d| < 1. It is easy to check
that this function satisfies the criteria for the tilde symmetries and the vanishing
anomalous Green functions in Eq. (4.30) and Eq. (4.35). The normal Green function
becomes

g
¯
= g1

¯
, (4.51)

with

g == c2Θ(a2 − E2) + d2Θ(E2 − a2)Θ(b2 − E2) + Θ(E2 − b2), (4.52)

where we introduced the parameters c2 ≡
√
1 + c2 and d2 ≡

√
1− d2 for later

convenience. This function is real for all possible values of the parameters, since
we restricted |d| < 1. The density of states is equal to the Green function and
is plotted in Fig. 4.4. Using basic geometry it is then easy to see that we must
require that the parameters satisfy

b = a
√
1 + c2 + (b− a)

√
1− d2, (4.53)

in order for the number of states to be conserved. In other words, we must choose
3 free independent parameters to vary, and the last parameter is set by Eq. (4.53).
Which parameters we want to be free may depend on the system we want to fit
the distribution to. In the following, we take b to be the dependent parameter,
satisfying

b =
a
√
1 + c2 − a

√
1− d2

1−
√
1− d2

. (4.54)

The density of states is shown in Fig. 4.4 for a particular choice of parameters.

4.3.3 Model 3: A BCS-like model with an antisymmetric
function

As we will see later, Model 1 produces a Meissner effect that is consistent with
that of induced odd-frequency superconductivity in a heterostructure, but does not
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Figure 4.4: The density of states for Model 2. See the main text for details.

give a stable solution for a bulk superconductor, a topic which will be explained in
more detail in Section 4.5.1. For this reason, we suggest a third model,

f
¯
(E) = A(E)fBCSσ

¯1
, (4.55)

where A is a real antisymmetric function, thus satisfies the tilde conjugation relation
that is appropriate for the odd-frequency case. As a side note, we notice that using

A(E) =
∆(E)I2(E)

fBCS

, (4.56)

with

I2 =
sign(E)Θ(E2 − |∆(E)|2)√

E2 − |∆(E)|2
− iΘ(|∆(E)|2 − E2)√

|∆(E)|2 − E2
, (4.57)

with an antisymmetric function ∆(E), we get the model that was used in [14]. This
model gives simple expressions that resemble the BCS solution, but does not in
general satisfy the conservation of the number of states for the choices of ∆(E)
that was used in the paper. We define the normal Green function through the
normalization condition,

g
¯
=
√

1
¯
+ f

¯
f̃
¯
=
√

1 + ∆2A(E)2I21
¯
=

√
E2 −∆2(1−A(E)2)

E2 − |∆|2 1
¯
. (4.58)

From Eq. (4.58), we see that the density of states for this model is nonzero for
energies |E| < |∆|

√
1−A(E)2, zero for |∆|

√
1−A(E)2 < |E| < ∆, and then

nonzero again for |E| > |∆|. We also see that the density of states is never peaked
at the Fermi energy since the numerator is always smaller than the denominator at
low energies.
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Model 3a: Sign function

For concreteness, we will in the following consider the antisymmetric function

A(E) = α sign(E) (4.59)

where α is a positive real number. This produces

g
¯
=

√
E2 −∆2(1− α2)

E2 − |∆|2 1
¯
, (4.60)

which for α ≥ 1 produces the same gap in the density of states as in a BCS
superconductor. Initially, this result may seem to be at odds with that the general
result that systems with odd-frequency pairing should have a density of states
larger or equal to one at E = 0, as was derived in Appendix C.2. This apparent
paradox is understood by noting that for the Green functions to be continuous, we
should demand that the sign function in Eq. (4.59) goes to zero for small energies.
This causes the density of states to be nonzero in a narrow peak around E = 0.
However, since we can choose this peak to be arbitrarily narrow, and since the
height of the peak is finite, the contribution to the density of states vanishes, and
we can ignore this peak in the following. The same holds also for other choices of
A(E) that produce a gap at the Fermi energy10. From Eq. (4.60), we recognize the
α = 1 case as the exact BCS solution for the normal Green function. The sum
rule of the spectral function is thus inherited for this model with α = 1 as well.
It is then obvious that since α > 1 gives a density of states higher than this at
all energies, the number of states cannot be conserved, and thus we must demand
α ≤ 1 for the solution to satisfy the criteria in Section 4.2.

For α < 1 we find the density of states,

g
¯
=

√
E ′2 − β2

E ′2 − 1
1
¯
, (4.61)

where we have introduced β =
√
1− α2, and again used the notation E ′ = E/∆.

This is real for |E ′| < β, imaginary for β < |E ′| < 1, and real again for |E| > 1.
The density of states for two values of β is shown in Fig. (4.5). We note that this
is the same integral as for Model 1, and one can show, that the number of states
is conserved for this model as well. Thus, this model also satisfies all criteria for
odd-frequency superconductors. It does, however, have a density of states at E = 0
smaller than unity for all choices of β. By adding a large Dynes inelastic scattering
parameter, as we did for Model 1a, the density of states is changed, but still smaller
than unity for E = 0. A plot showing the density of states for β = 0.8 and different
Dynes parameters is shown in Fig. 4.6.

10This includes the model used in [14].
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Figure 4.5: The density of states for Model 3a for different values of β. See the
main text for details.
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Figure 4.6: The density of states for Model 3a with β = 0.8 for different Dynes
inelastic scattering parameters ϵ. See the main text for details.

4.4 Spin mode renormalization

We proceed by considering a bulk odd-frequency superconductor that has the
form of the models in the last section. We apply a spin-voltage to such a system
and calculate how the spin mode is affected by spin-flip and spin-orbit impurity
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scattering in the system. Even if the odd-frequency pairing arises due to the
proximity effect in an SF-heterostructure, and thus is a function of position, we can
apply the spin-voltage perpendicular to the material, as illustrated in Fig. 4.7, and
thus justify using the models from the last section, which are position-independent.
Here, we will use the models for odd-frequency superconductors to study the

Figure 4.7: The proximity system in consideration. A conventional superconductor
(BCS) in contact with a ferromagnet (F ) that has a non-homogeneous magnetiza-
tion that causes the singlets and the triplets with Sz = ±1 to decay, meaning that
there is only an Sz = 0 triplet component in the normal metal (N). A spin voltage
Vs is applied across the normal metal with induced odd-frequency superconductivity
in a narrow area, where the triplet amplitude is constant, thus meaning that we
can treat the material as a bulk material in the calculation of the non-equilibrium
modes.

spin mode in the system. We will thus not include the effects the spin-flip and
spin-orbit scattering has on the equilibrium Green function, but instead study how
the non-equilibrium solutions are changed by the scattering. We include a general
superconducting term in the self-energy, which would need to be present in a bulk
odd-frequency superconducting system.

The Keldysh component of the Usadel equation in the odd-frequency supercon-
ductor with spin-flip and spin-orbit scattering reads

D∂x(ǧ∂xǧ)
K = −i

[
Êτ3 + σ̌so + σ̌sf + D̂T(E), ĝ

]K
, (4.62)

where we have introduced the superconducting self-energy term

D̂T(E) = antidiag(D(E), D(E),−D(E),−D(E)), (4.63)

where the energy dependence of D(E) is unknown for our systems11. It is possible
to derive the form of the order parameter for each model by working backward from

11We have used the notation D(E) for the unknown gap matrix to separate it from the quantity
∆, which is used in our models.
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the Usadel equation, but we will here only need the matrix structure, as this will
cause the effect on the spin mode decay to vanish. This is consistent with the fact
that superconductors display long-range order [14]. This is further justified when
we in Chapter 5 use a heterostructure to study odd-frequency superconductivity,
and find that the spin modes behave in the same way as in a normal metal when
neglecting spin-orbit and spin-flip scattering. For our three models, we can write,
in order to get a suggestive form resembling the BCS solution in Eq. (4.18),

fR ≡ If∆σ
¯1

(4.64)

gR ≡ IgEσ
¯3
, (4.65)

meaning that the full retarded Green function can be written

ĝR = IgEτ̂3 + If∆Ĵ3, (4.66)

where Ĵ3 ≡ antidiag(1, 1,−1,−1).
In a detailed calculation, we show in Appendix F that the Usadel equation can

be isolated for the spin mode in such a system. The equation reads

∂2xh
z =

hz

Dτsf
+

hz

Dτso

(
1 +

4∆2ℜ{If}2
1 + E2|Ig|2 − |If |2∆2

)
. (4.67)

By a similar derivation, but with a singlet gap matrix, it can be shown that the
equation of motion only results in a sign swap in the numerators in Eq. (F.26),
meaning that we will get

∂2xh
z =

hz

Dτsf

(
1 +

4∆2ℜ{If}2
1 + E2|Ig|2 − |If |2∆2

)
+

hz

Dτso
. (4.68)

The results above is consistent with the results found for the specific model in [14].
We can find the normal-metal case by letting ∆ → 0 in Eq. (4.67) or Eq. (4.68),
which yields

∂2xh
z ≡ hz

Dτsf
+

hz

Dτso
. (4.69)

Comparing this to Eq. (4.67) and Eq. (4.68), we see that we can introduce an
energy-dependent effective scattering parameter,

1

τ effi
=

1

τi

(
1 +

4∆2ℜ{If}2
1 + E2|Ig|2 − |If |2∆2

)
, (4.70)

where i = sf for an even-frequency superconductor, and i = so for an odd-frequency
superconductor. Thus, we have shown that for odd-frequency models that can be
written in the form in Eq. (4.64), there will be no renormalization of the spin-flip

70



4.4. Spin mode renormalization

scattering, while there will be a renormalization of the spin-flip scattering as long
as ℜ{If} ≠ 0. For an even-frequency singlet superconductor, the roles of spin-flip
and spin-orbit scattering is reversed. As a general remark, we thus conclude that
for models where Eq. (4.70) holds, we have spin-orbit (spin-flip) renormalization
in odd-frequency (even-frequency) systems when the normal Green function has a
real part. This is in agreement with results in the literature [50, 82, 14, 18].

It can be seen from the normalization condition in Eq. (4.38), that for a Green
function that is either purely real or purely imaginary at each energy, a real
normal Green function is associated with an increase in the density of states. For
such models, an increase in the density of states at an energy E is associated
with a renormalization of the spin-flip scattering for singlet superconductors, and
renormalization of the spin-orbit scattering for odd-frequency superconductors. As
an example, it was found in [14] that there is spin-orbit renormalization for all
energies because a model with a purely real normal Green function was used. In
this approximate model, the density of states was also found to be larger than
unity for all energies. Another example is the BCS superconductor, which has a
spin-flip renormalization and a density of states higher than unity for all energies
above the gap. We make the general remark that in order for the number of states
to be conserved, the anomalous Green function must, at least in some energy
domain, have a nonzero real part12, causing renormalization of the spin modes for
some energies. In the following, we will consider our models from Section 4.3, and
evaluate the specific renormalization of the spin-orbit scattering lengths in each
case.

4.4.1 Spin mode renormalization in a singlet supercon-
ductor

We start by considering the BCS superconductor case, where

If = Ig = I, (4.71)

from which we find that the effective spin-flip scattering length in Eq. (4.70)
becomes13

1

τ effsf
=

1

τsf

[
E2 +∆2

E2 −∆2

]
(4.72)

12The only other possibility is that the anomalous Green function is identically zero, which is
the trivial case of a normal metal.

13For energies below the gap, we find that both the numerator and denominator of Eq. (F.26)
vanishes, meaning that we strictly should go back to Eq. (F.25), and there assume that E > ∆.
That is, for energies E < ∆, we do not get any information about the spin mode in the
superconductor from Eq. (F.25), as both sides vanish. This works out in the end, because the
density of states is zero for the same energies that our equation vanishes for.
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This should only be applied for energies above the band gap. We know, however,
that for energies below the band gap there are no single-particle states available,
and since the spin-singlet does not carry spin, we know that the spin mode only
has contributions above the gap. Ultimately, it is the spin accumulation, which
also is dependent on the local density of states, which is the observable quantity,
and this will get zero contribution from energies below the gap because the density
of states here is zero.

From Eq. (4.72), it is seen that the effects of spin-flip scattering become larger
compared to a normal metal, making it difficult to sustain a spin mode in such a
superconductor with many magnetic impurities. We note that the renormalization
effect diverges for E → ∆, as the spin-flip scattering time τsf goes to zero.

4.4.2 Spin mode renormalization in Model 1a

In our first model of odd-frequency superconductivity, with the choice S(E) = a,
we have

If∆ =
ia∆sign(E)Θ(E2 −∆2)√

E2 −∆2
+
a∆Θ(∆2 − E2)√

∆2 − E2
(4.73)

IgE =

√
E2 − (1 + a2)∆2

E2 −∆2

[
Θ(E2 −∆2(1 + a2)) + Θ(∆2 − E2)

]
+ isign(E)

√
(1 + a2)∆2 − E2

E2 −∆2
Θ(E2 −∆2)Θ(∆2(1 + a2)− E2).

(4.74)

Inserting this into our general result in Eq. (4.70), we find that the spin-orbit
scattering time becomes

1

τ effso
=

1

τso

[
1 +

2∆2a2Θ(∆2 − E2)

∆2 − E2

]
. (4.75)

This expression is valid for energies outside the gap, which in this model is for
1 < |E/∆| <

√
1 + a2. We conclude that this specific model renormalizes the

spin-orbit scattering for energies below the gap, and not for energies above the gap.
It is easily seen that the spin-orbit scattering effect is enhanced, meaning that spin
modes will decay quicker in systems where spin-orbit scattering is present than in
the normal metal or BCS superconductor case. This effect diverges as E → ∆.

4.4.3 Spin mode renormalization in Model 2

Using the general form of the full Nambu-spin space Green function from Eq. (3.107),
we find that the retarded and advanced Green functions for the second model can
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be written as

ĝR(E) =
[√

1 + c2τ̂3 + cĴ4

]
Θ(a2 − E2) + Θ(E2 − b2)τ̂3

+
[√

1− d2τ̂3 + isign(E)dĴ4

]
Θ(E2 − a2)Θ(b2 − E2) (4.76)

and ĝA = −ĝR. Using this, we find

IgE =
√
1 + c2Θ(a2 − E2) +

√
1− d2Θ(E2 − a2)Θ(b2 − E2) + Θ(E2 − b2) (4.77)

If∆ = cΘ(a2 − E2) + idΘ(E2 − a2)Θ(b2 − E2), (4.78)

which can be inserted into the expression for the effective spin-orbit scattering time
in Eq. (4.70), producing

1

τ effso
=

1

τso

[
1 + 2c2Θ(a2 − E2)

]
, (4.79)

while of course the spin-flip scattering is the same as in the normal metal. Again, we
observe a renormalized spin-orbit scattering where the anomalous Green function
is real, but this quantity does not diverge at the band edge.

4.4.4 Spin mode renormalization in Model 3a

For the third model, with A(E) = αsign(E), we have

If∆ =
α∆Θ(E2 −∆2)√

E2 −∆2
− iα∆sign(E)Θ(∆2 − E2)√

∆2 − E2
(4.80)

IgE =

√
E2 −∆2β2

E2 −∆2

[
Θ(E2 −∆2) + Θ(∆2β2 − E2)

]
(4.81)

+ isign(E)

√
1− ∆2

E2β2

E2 −∆2
Θ(E2 −∆2β2)Θ(∆2 − E2), (4.82)

where we again used β = 1− α2 to simplify notation. Using this, we find that the
spin-orbit scattering time in Eq. (4.70) becomes

1

τ effso
=

1

τso

[
1 +

2∆2α2

E2 −∆2
Θ(E2 −∆2)

]
, (4.83)

which diverges as E → ∆. This is, in contrast to the result for Model 1a, a
renormalization for energies outside the gap.
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4.5 Meissner response

The Meissner effect is the fundamental property of conventional superconductivity,
as we discussed briefly in Section 2.1.2. In this section, we will consider how the
Meissner effect arises in a superconductor from the Maxwell equations, before we
move on to calculating the Meissner response in our models, comparing them to
the response in a conventional superconductor.

4.5.1 Conventional and unconventional Meissner response

We consider the Maxwell equation in the potential formulation, which is derived
e.g. in a textbook by Griffiths [28]14,

(∇2A− ∂2tA)−∇(∇ ·A+ ∂tϕ) = −j, (4.84)

where j is the electric current. In the following, we will study the Meissner effect in a
superconductor in equilibrium, meaning that time-derivatives vanish. Additionally,
we know from Section 3.2 that in the London gauge, the magnetic vector potential
is divergenceless15,

∇ ·A = 0, (4.85)

so that Eq. (4.84) reduces to
∇2A = −j. (4.86)

We recall from Section 3.2.1 that the London equation, as stated in Eq. (3.20),
gives a relation between the magnetic vector potential and the current density,
valid for a conventional superconductor. Using this, the Eq. (4.84) reads

∇2A =
A

λ2L
, (4.87)

where we defined the London penetration depth [33],

λL =

√
m

e2n
, (4.88)

where n can be interpreted as the spin-averaged number of superconducting elec-
trons [33]. This equation has exponential solutions, meaning that magnetic fields
are expelled from the bulk of materials, corresponding to a conventional super-
conducting (perfect) diamagnetic Meissner effect. To see this, we consider a

14In our units, we have set the permittivity and permeability to unity.
15In for potentials that do not change in time, this requirement is met not only by the Coulomb

and London gauge but also the Lorenz gauge.
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one-dimensional superconducting system of length L in the x -direction, subject to
a constant applied magnetic field strength H = Hzez, which means that we can
choose A = Ay(x)ey. The magnetic field in the superconductor is then given in
terms of the magnetization M as [28]16

B = H +M = (1 + χ)H , (4.89)

where we in the second equation have assumed a linear material so that the mag-
netization is proportional with the magnetic field strength H . The proportionality
constant χ is the magnetic susceptibility. Letting the edges of the material be at
x = 0 and x = L, we get the following boundary conditions,

dAy

dx
(x = 0) = Hz

dAy

dx
(x = L) = Hz, (4.90)

Solving Eq. (4.87) with these boundary conditions, we find

Ay(x) = −HzλL
eλ

−1
L L − 1

eλ
−1
L L − e−λ−1

L L
e−λ−1

L x +HzλL
e−λ−1

L L − 1

eλ
−1
L L − e−λ−1

L L
eλ

−1
L x. (4.91)

The magnetic field, which is exclusively in the z -direction, is then found by taking
the derivative of the magnetic vector potential,

Bz(x) = Hz
eλ

−1
L L − 1

eλ
−1
L L − e−λ−1

L L
e−λ−1

L x +Hz
e−λ−1

L L − 1

eλ
−1
L L − e−λ−1

L L
eλ

−1
L x (4.92)

For later, we consider also an unconventional response where the current is
given as

j =
A

λ2L
, (4.93)

where we for simplicity assume that the proportional factor is the same as in the
conventional case. This can be interpreted as a negative density n [83, 84, 85].
This leads to the equation of motion for the vector potential,

∇2A = −A

λ2L
, (4.94)

which for the same material as considered above has the oscillating solutions

Ay(x) = HzλL sin(λ
−1
L x) +HzλL

cos(λ−1
L L)− 1

sin(λ−1
L L)

cos(λ−1
L x). (4.95)

16In our units, with µ0 = 1, the magnetic field B, the magnetic field strength H, and the
magnetization M is all given in the same units.
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Figure 4.8: The magnetic susceptibility χ of a material with length L = 14λL with
a conventional (solid) and unconventional (dashed) Meissner response. The values
of χ < −1 are unphysical. See the main text for details.

The magnetic field again has only a component in the z -direction, and found by
differentiating Ay,

Bz(x) = Hz cos(λ
−1
L x)−Hz

cos(λ−1
L L)− 1

sin(λ−1
L L)

sin(λ−1
L x). (4.96)

The magnetic susceptibility at a given point is given through Eq. (4.89),

χ(x) =
Bz(x)

Hz

− 1, (4.97)

and describes the degree that the material has become magnetized by the external
magnetic field. The magnetic susceptibilities for the conventional and unconven-
tional Meissner responses are plotted together in Fig. 4.8. It is seen from the
figure that the unconventional Meissner response leads to a magnetic field that
oscillates, taking both negative and positive values. Recalling that a paramagnetic
(diamagnetic) material has χ > 0 (χ < 0), we note that materials with an unconven-
tional Meissner response can in general display both diamagnetic and paramagnetic
behavior, while the system with the conventional Meissner response displays a dia-
magnetic effect, which fully suppresses magnetic fields in the bulk. For this reason,
we will sometimes refer to systems with an unconventional Meissner response as
being locally paramagnetic. It is important to note that values of |χ| > 1 indicate
an instability in the system, as explained further in an article by Yokoyama et
al. [84]. For values where χ < −1, we find that the energy density, which in our
units can be shown to be B2/(1 + χ) [28], becomes negative, indicating that the
energy can be lowered by increasing the magnetic field. This is an indication of
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either a breakdown of the linear response approximation we are using or of a phase
transition [84].

In general, the unconventional current response leads to instability in a ho-
mogeneous bulk system, but can be found in e.g. superconductor-ferromagnet
heterostructures [83, 19, 86], as we will find in Section 5.3.2. Such proximity systems
are, however, stabilized by the superconductor in the system, which displays the
conventional diamagnetic Meissner effect. For a further discussion of the sign of the
Meissner response in odd-frequency systems, the reader is directed to the article
by Linder and Balatsky [13].

4.5.2 Quasiclassical Meissner response

In this section, we calculate the electrical current from Eq. (3.152)17 in the quasi-
classical approximation for a bulk material, in order to study the Meissner response
of the material. We assume the system to be in equilibrium, where we recall from
Eq. (3.146) that the distribution matrix is given as tanh(E/2T )1̂.

In a bulk material the derivative in Eq. (3.152) vanishes, and only the term
proportional to A survives,

j = − iAN0e
2D

16

� ∞

−∞
dE Tr

{
τ̂3
(
ǧ
[
τ̂3, ǧ

])K}
. (4.98)

The trace can be simplified as,

Tr
{
τ̂3
(
ǧ
[
τ̂3, ǧ

])K}
=Tr

{
τ̂3
(
ĝR
[
τ̂3, ĝ

K
]
+ ĝK

[
τ̂3, ĝ

A
])}

=tanh

(
E

2T

)
Tr
{
τ̂3
(
ĝR
[
τ̂3, ĝ

R − ĝA
]
+
(
ĝR − ĝA

) [
τ̂3, ĝ

A
])}

=tanh

(
E

2T

)
Tr
{(
τ̂3ĝ

R
)2 − (τ̂3ĝA)2} ,

(4.99)

where we have assumed the system to be in equilibrium and used the normalization
conditions from Eq. (3.104) in the last line. Using the general form of the quasi-
classical Green function as shown in Eq. (3.107), together with the identity for the
advanced Green function in Eq. (3.109), we find (dropping the ”R” superscript on

17We here use the matrix τ̂3 instead of ρ̂4, as they are equivalent.
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the 2× 2 matrices for simpler notation)

τ̂3ĝ
R =

(
g
¯

f
¯f̃

¯
g̃
¯

)
(4.100)

τ̂3ĝ
A = −

(
g
¯
† f̃

¯

†

f
¯

† g̃
¯

†

)
, (4.101)

so that the elements in Eq. (4.99) become

(
τ̂3ĝ

R
)2

=

(
g
¯
2 + f

¯
f̃
¯

g
¯
f
¯
+ f

¯
g̃
¯f̃

¯
g
¯
+ g̃
¯
f̃
¯

g̃
¯

2 + f̃
¯
f
¯

)
(4.102)

(
τ̂3ĝ

A
)2

=

(
(g
¯
†)2 + f̃

¯

†
f
¯

† g
¯
†f̃
¯

†
+ f̃

¯

†
g̃
¯

†

f
¯

†g
¯
† + g̃

¯

†f
¯

† (g̃
¯

†)2 + f
¯

†f̃
¯

†

)
. (4.103)

We now perform the trace in Eq. (4.99), and using that Tr{A
¯
} = Tr

{
A
¯
Tr
}
, we

obtain

Tr
{(
τ̂3ĝ
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(4.104)

where we in the third line used the normalization conditions, g
¯
2 = 1

¯
+ f

¯
f̃
¯
and

(g
¯
∗)2 = 1

¯
+ f

¯

∗f̃
¯

∗
. In order to simplify the integral further, we note that the

equilibrium distribution function tanh(E/2T ) is an antisymmetric function in
energy. For an integral with symmetric integration limits, such as in Eq. (4.99), we
thus have for an arbitrary function W (E),
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)
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� ω
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(
E

2T

)
W (E)∗.

(4.105)

Using this identity in last term in Eq. (4.104), we write the final expression for the
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electric current as

j = A
N0e
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(4.106)

where we for later convenience have defined the integral

I(x) =

� ∞

−∞
dE tanh

(
E

2T

)
Tr
{
ℑ
{
f
¯
f̃
¯

}}
, (4.107)

which will determine whether the Meissner response is conventional or unconven-
tional.

4.5.3 Meissner response in a BCS superconductor

We consider a bulk BCS s-wave superconductor, where we have f
¯
= Ii∆σ

¯2
, with

I given by Eq. (4.18). Here, we must remember that we have a factor E → E + iδ
in the retarded Green function, and E → E − iδ in the advanced Green function,
as explained in detail in Appendix A.3. Since f

¯
was introduced as a part of the

retarded Green function, we use the positive energy shift here. We thus get

Tr
{
ℑ{f

¯
f̃
¯
}
}
= 2|∆|2ℑ

{
1

(E + iδ)2 − |∆|2
}

= 2|∆|2ℑ
{

E2 − |∆|2 − 2iδE

(E2 − |∆|2)2 + 4δ2E2

}
=

−4|∆|2Eδ
4E2δ2 + (E2 − |∆|2)2

=
−2|∆|2sign(E) δ′
δ′2 + (E2 − |∆|2)2 ,

(4.108)

where we in the second line ignored the term O(δ2), and δ′ = 2|E|δ is another
positive infinitesimal18. This expression has the form of a Lorentzian, which has
the property

lim
δ→0

δ

δ2 + x2
= πδ(x), (4.109)

18It is necessary for the infinitesimal to be positive, otherwise we would have in effect used the
negative energy shift corresponding to the advanced Green function.
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where δ(x) is the Dirac delta function. Taking the limit of Eq. (4.108) as the
infinitesimal quantity δ′ approaches zero, we get

lim
δ′→0

−2|∆|2sign(E) δ′
δ′2 + (E2 − |∆|2)2 = −2π|∆|2sign(E) δ(E2 − |∆|2)

=
−2π|∆|2sign(E)

|∆| [δ(E − |∆|) + δ(E + |∆|)] ,
(4.110)

where we in the last line have used the delta function identity

δ(p(x)) =
∑
i

1

|∂xp(xi)|
(x− xi) , (4.111)

where xi are the roots of the polynomial p(x). The current in equilibrium becomes
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= −KBCSA,

(4.112)

where we in the second line used that [δ(E − |∆|) + δ(E + |∆|)] is a symmetric
function in E19, and where we in the last line defined the positive quantity KBCS, for
which the specific form will not be of relevance to us. The relation j = −KBCSA
means that the supercurrent is a shielding current, as we expect to find in a
conventional superconductor that displays the diamagnetic Meissner effect.

4.5.4 Meissner response in Model 1

We now move on to considering the first model of odd-frequency superconductivity,
with20

f
¯

R = S(E)iI∆σ
¯1
, (4.113)

which means that we get21

Tr
{
ℑ{f

¯
f̃
¯
}
}
= −2S(E)2|∆|2ℑ

{
1

(E + iδ)2 − |∆|2
}
, (4.114)

19This follows from the Dirac delta function property that δ(−x) = δ(x).
20We allow the order parameter to be complex in this section.
21We assume that we can choose S(E) in such a way that we do not have to include the energy

shift E → E + iδ.
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which is just −S(E)2 times the result in Eq. (4.108) the expression in the BCS
case. Thus, we can immediately conclude that the current becomes

j = A
N0e

2D

π

� ∞

−∞
dE S(E)2 tanh

(
E

2T

)
sign(E) [δ(E − |∆|) + δ(E + |∆|)]

= K1A,

(4.115)

where we have introduced the positive constant K1 in the last line. This means that
we get an unconventional Meissner response for this model. Following the discussion
in Section 4.5.1, we see that this suggests that this model could be useful as a model
for the odd-frequency behavior in e.g. a proximity system since these can produce
a locally paramagnetic Meissner response. This model does, however, not describe
a Meissner response that gives a stable system for a bulk superconductor. We note
that this also holds for the model presented in [14] since their model is on the form
considered here. In an article by Higashitani [87], a possible mechanism for the
paramagnetic Meissner response in odd-frequency superconductors was suggested.
It was found that the paramagnetic response was associated with a peaked density
of states at the Fermi energy, which is exactly the behavior one generally finds
for Model 1. This current has the opposite sign compared to the BCS case, as
found in Eq. (4.112), in addition to a different constant. For concreteness, we
consider Model 1a, with S(E) = a ∈ ℜ. We can then pull a outside the integral in
Eq. (4.115), yielding

j = KBCSa
2A. (4.116)

4.5.5 Meissner response in Model 2

Inserting the expressions for the Green functions of Model 2 into Eq. (4.106) we
find that

ℑ{ff̃} = 0, (4.117)

meaning that this model does not give any Meissner response. This suggests that
even though a simple model like this can model the density of states and the
spin-orbit scattering of a material, it is unable to produce a Meissner effect. More
generally, it can be seen that for a model where the imaginary and real parts never
overlap, such as the three models we have used in this chapter, and we consider
either pure odd-frequency or pure even-frequency amplitudes, an energy shift is
required to get a nonzero Meissner response. In models that do not include the
energy variable, such as Model 2, Eq. (4.106) will thus vanish. This is because,
when the imaginary and the real part does not overlap, and if we do not include
an energy shift, we have

ℑ{ff̃} = ±ℑ{f 2} = ±ℑ{ℜ{f}2 −ℑ{f}2} = 0, (4.118)
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where we have used that f
¯

2 = 1
¯
f 2 when we have either a system with only one

singlet or triplet component, and the upper (lower) sign holds for odd(even)-
frequency superconductors with a real gap, according to our criterion in Eq. (4.29)
and Eq. (4.30). In systems where the imaginary and real parts overlap, such as the
system we consider in Chapter 5, this argumentation does not hold.

4.5.6 Meissner response in Model 3

For the third model, we have that for a general function A(E),

f
¯
= A(E)Iσ

¯1
, (4.119)

where we assumed A(E) to be a real and antisymmetric function in E. Using this
model, we get

Tr
{
ℑ{ff̃}

}
= 2ℑ{f 2} = A(E)2ℑ{I2} = 2A(E)2ℑ

{
1

(E + iδ)2 − |∆|2
}
, (4.120)

which again is similar to the BCS case with an extra factor of A(E)2. We thus get
that the current becomes

j = AπN0e
2D

� ∞

−∞
dEA(E)2 tanh

(
E

2T

)
sign(E) [δ(E − |∆|) + δ(E + |∆|)]

= −K3A,

(4.121)

where K3 is a new positive constant. Here, we used that the integrand is symmetric
and positive for all energies to conclude that K3 must be positive as well. This
is a diamagnetic Meissner effect, which is a similar response as we get in a BCS
superconductor. This also fits well with the article by Higashitani [87], where it
was suggested that a peaked density of states was associated with a paramagnetic
Meissner effect. The diamagnetic Meissner response means that there is no stability
issue when applying this model to a bulk odd-frequency system. In a recent paper,
however, Fominov et al. [83] studied the coexistence between the diamagnetic and
paramagnetic odd-frequency superconducting phases and found that such systems
gave rise to unphysical properties. Because the paramagnetic odd-frequency state
arises in e.g. proximity systems, as we will see in Section 5.3, it was argued that
this state was not realizable in a physical system. For a review of the stability of
odd-frequency solutions, the reader is referred to the article by Linder and Balatsky
[13].

As a side note, we notice that using the choice A(E) = αsign(E) with α = 1, we
find that the constant K3 takes the same value as in the BCS case. This model thus
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has the same Meissner response and density of states as a BCS superconductor, while
at the same time satisfying all of our criteria for an odd-frequency superconductor
in Section 4.2. It is an extremely simple model, while also describing a diamagnetic
Meissner effect.
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Chapter 5

Numerical Solutions of Proximity
Systems

The Usadel equation is a nonlinear differential equation, which can only be solved
analytically in a few special cases [45]. In this chapter, we introduce parametriz-
ations that can be used to solve the Usadel equation numerically for much more
general systems. We start by introducing the Riccati parametrization, which is
useful when solving for the retarded Green function. A Python program was written
that solves the retarded part of the Usadel equation in a proximity system. We
show how the proximity effect gives rise to odd-frequency superconductivity in
heterostructures, and design a proximity system that naturally displays only triplet
odd-frequency superconductivity. This system is used to compare with our models
in Section 4.3, as well as serving as a check of our criteria in Section 4.2.

In a recent article, Johnsen and Linder [14] predicted that the spin-injection
in an odd-frequency superconductor can be larger than that in an even-frequency
superconductor or even a normal metal, using a model that did not satisfy the sum
rule of the spectral weight1. In this chapter, we investigate whether we can design
a realistic system where this is the case, without violating the sum rule of the
spectral weight, which we stated as a criterion in Eq. (4.34). To that end, we will
introduce a convenient parametrization of the distribution matrix, which was used
to write the Keldysh component of the Usadel equation a convenient and compact
form. This parametrization was used to make another Python program, which
solves for the distribution matrix in a non-equilibrium system. We also study how
the spin-flip and spin-orbit scattering lengths are renormalized in such a system,
and discuss how they differ from the model used in [14]as well as our models in
Section 4.3. Finally, we also calculate the Meissner response in the system and
compare it with our models from Chapter 3

1The spectral function and its sum rule was discussed in detail in Section 4.2.

85



CHAPTER 5. NUMERICAL SOLUTIONS OF PROXIMITY SYSTEMS

5.1 The Riccati parametrization

Solving the retarded part of the Usadel equation in Eq. (3.133) is in general a
difficult task, and analytically one can only hope to find solutions for some very
simple systems. In some cases, as was done in Section 4.1, the Green functions can
be assumed to deviate little from well-known solutions such as the BCS solution or
the normal-metal solution, allowing for linearization and analytical solution. For
general systems, one can only hope to achieve numerical solutions. In this chapter,
we will introduce the Riccati parametrization, allowing us to write the retarded
component of the Usadel equation in a form suitable for numerical calculations.
This can be used to solve for the retarded Green function, which describes the
equilibrium properties of the system. These can then later be used in the calculation
of the distribution matrix, which describes the non-equilibrium properties of the
system. We can split the calculation up this way because the distribution function
does not enter the calculation of the retarded Green functions in the systems we are
considering. If one e.g. wanted to include self-consistent calculations for the order
parameter in a superconductor, we would have to solve for the retarded Green
functions and the distribution function simultaneously as the self-consistent gap
equation leads to mixing between the retarded and the Keldysh components.

The retarded component of the Usadel equation is a 4 × 4 matrix equation,
with in total amounts to 16 components to solve for. However, these components
are not all independent. We also have to take into account the normalization
conditions in Eq. (3.105). The normalization condition in total has 8 independent
equations, meaning that we have 8 remaining free variables to solve for. This
is apparent through Eq. (3.107), where we only have the two 2 × 2 matrices g

¯and f
¯
as independent variables. To exploit the reduced number of variables, we

introduce the Riccati parametrization2, which reduces the Usadel equation to a
2× 2 matrix equation with elements that automatically satisfy the normalization
conditions. In this section, we will closely follow the work of Jacobsen et al. [73],
who presents a derivation of the Riccati parametrized Usadel equations and KL
boundary conditions, as well as generalizing them to also include spin-orbit coupling.
We will not repeat the derivation here, but simply state the most important results
and discuss how they simplify in special cases.

The Riccati parametrization is defined by introducing a 2× 2 matrix γ. We also
introduce the normalization matrix N , which is a normalization matrix given in
terms of the independent variables γ and its tilde conjugate γ̃ as N = (1

¯
− γγ̃)−1.

For these matrices, we will drop the bar notation, as there is no ambiguity about
the dimensionality. Additionally, since we only use this parametrization to solve

2The parametrization gets its name from the fact that it transforms the Eilenberger equation
into the differential Riccati equation [45].
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for the retarded components of the quasiclassical Green function, we will drop
the superscripts indicating the retarded component. We parametrize the retarded
quasiclassical Green function as [73]

ĝ =

(
N 0

0 −Ñ

)(
1
¯
+ γγ̃ 2γ
2γ̃ 1

¯
+ γ̃γ

)
. (5.1)

Comparing with the general expression for the Green function in Eq. (3.107), we
find

g
¯
= N(1 + γγ̃) = 2N − 1

¯
(5.2)

f
¯
= 2Nγ, (5.3)

where we have used the definition of N to rewrite the first expression. It can easily
be checked that these expressions satisfy the normalization conditions automatically.
Moreover, the Riccati parametrization has the advantage that the parameters, which
are the components of γ, γ̃, have magnitudes that are bounded in the domain [0, 1].
This can be seen heuristically by using the definition of N , and looking at e.g. the
anomalous Green function in Eq. (5.3). For very small values of γ and its tilde
conjugate, the normalization matrix N becomes close to one, meaning that we find
f
¯
≈ 0

¯
. For γ on the order of unity, we find that N becomes huge, meaning that f

¯becomes huge as well. Thus, a finite variation of the parameters corresponds to an
infinite variation in the quasiclassical Green functions. A similar discussion also
holds for the normal Green function in Eq. (5.2). Having such a bounded domain
makes the Riccati parametrization a numerically stable parametrization [88].

Usadel equation and KL boundary conditions in the Riccati parametriz-
ation

We want to be able to solve the Usadel equation for a ferromagnetic system, in
contact with a superconductor via the proximity effect. From the components
of the Usadel equation for the retarded component, it can be shown that the
corresponding parametrized Usadel equation can be written

D∂2xγ = −2iEγ − ih · (σγ − γσ∗)− 2(∂xγ)Ñ γ̃(∂xγ), (5.4)

in a ferromagnet in the absence of a magnetic vector potential. The effects of
spin-orbit spin-flip scattering have been neglected, and we have also neglected
the effects of the magnetic vector potential. The corresponding KL boundary
conditions can, for a boundary with coordinate 1 to the left and 2 to the right, be
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written as3

∂xγ1 = Ω1 (1− γ1γ̃2)N2 (γ2 − γ1) (5.5)

∂xγ2 = Ω2 (1− γ2γ̃1)N1 (γ2 − γ1) . (5.6)

These equations and boundary conditions will allow us to solve the equilibrium
part of the Usadel equation in a ferromagnet in contact with another material.

BCS and normal metal solution in the Riccati parametrization

We now proceed to show how the Riccati matrices γ and N look in a bulk BCS
superconductor. This will be useful because we will consider systems that are in
contact with such superconductors, meaning that the Riccati matrices will enter
through the boundary conditions in the last section. Using Eq. (5.2) and the BCS
solution from Appendix A.3, we can isolate N ,

NBCS =
1

2
(1 + EI)1

¯
, (5.7)

where we recall that

I =
Θ(E2 −∆2)sign(E)√

E2 −∆2
− iΘ(∆2 − E2)√

∆2 − E2
. (5.8)

Since NBCS is a diagonal matrix it can easily be inverted, meaning that we can
isolate γ from Eq. (5.3),

γBCS =
1

2
N−1

BCSf
¯
=

∆I
1 + EI (iσ¯2) (5.9)

The normal metal solution is easily obtained by letting ∆ → 0, producing N = 1
¯

and γ = 0
¯
. This indicates that for small proximity effects γ is small, meaning that

N = 1
¯
and f

¯
= 2γ to first order in γ. Here, we will instead solve the equations

numerically, so that no such approximation is needed.

5.2 Numerical solutions of proximity systems

We introduce different proximity systems with increasing complexity, with the
final goal of having a proximity system with pure odd-frequency superconductivity.
The goal of this section is not only to introduce the reader to the proximity
effect in metals and ferromagnets and to design a system of pure odd-frequency

3The two equations are related by performing 1 ↔ 2, as well as an extra negative sign arising
from the derivative changing direction from 1 → 2 to 2 → 1.
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superconductivity but also to use the results to verify the Python program, which
solves the Usadel equation for the retarded quasiclassical Green functions. This
will be done by qualitatively checking whether the solutions for the simple systems
reproduce characteristic effects from known theory. In this section, we will assume
that the superconductor has a temperature T = 0, meaning that the order parameter
is ∆ = ∆0. Energies will be given in units of ∆0, and lengths in units of the
superconducting coherence length ξ. The systems we will consider are in contact
with a conventional superconductor at x = 0 and with the vacuum at x = L We
assume that the superconductor is not affected by the inverse proximity effect,
meaning that we can use the BCS bulk solution in the boundary conditions.

5.2.1 Superconductor-normal metal (SN) heterostructure

In Section 2.2, we discussed how superconducting properties leak from a supercon-
ductor (S) to a normal metal (N), when the materials are put in contact with each
other. Inside the normal metal, the Cooper pairing is not energetically favorable due
to the mismatch between the energy of electrons and holes in the Andreev reflection
at the interface, leading to decaying solutions on distances of order ξE =

√
D/E.

In Fig. 5.1, the anomalous Green function and the density of states in the normal
metal part of an SN heterostructure are shown. The existence of a minigap is clear
from Fig. 5.1b, matching well with the theory of SN heterostructures [89].
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Figure 5.1: The proximity effect for a normal metal in proximity with a super-
conductor. The length of the normal metal is L = 5ξ, and the SN interface is
characterized by ζ = 0.1. See the main text for details.
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5.2.2 Superconductor-ferromagnet (SF) heterostructure

If one instead considers the proximity effect in an FS structure, the Cooper pairs
will be torn apart even faster, because the paramagnetic effect of pair breaking will
destroy Cooper pairs consisting of electrons with different spins. We also expect to
find the FFLO effect, as discussed in Section 2.1.3. Fig. 5.2a shows the absolute
value of the amplitudes of the singlet component fs and the triplet component dz
in such a proximity structure, where the strength of the exchange field is h = 3∆0.
From this figure, we observe the FFLO effect. By comparing Fig 5.2 with Fig. (5.1),
we see that the decay length is much smaller in the ferromagnet than in the normal
metal, indicating that the effect of paramagnetic pair breaking is present. This
is especially clear from Fig. 5.2b, where the minigap that was present in the SN
heterostructure has been closed at x = L.
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E = 0.5∆0.
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Figure 5.2: The proximity effect in the ferromagnet with magnetization in the
z -direction in proximity with a superconductor. The ferromagnet has length L = 5ξ,
and the SF interface is characterized by ζ = 0.1. See the main text for details.

5.2.3 SF heterostructure with a non-homogeneous magnet-
ization

We are considering dirty materials, meaning that the SF heterostructure in the
last section induces triplets which are odd in frequency. To study the properties of
odd-frequency systems, however, it would be instructive if we could make a system
with a pure odd-frequency component. This will never happen in a system like
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the one considered above because the dz component and the fs component decay
equally fast for systems with magnetization in the z -direction. We know, however,
from our discussion in Section 4.1, that the dx and dy triplet components do not
”feel” an exchange field parallel with the z -axis, and decay as in a normal metal.
In order to induce a pure odd-frequency amplitude, we let the magnetic field with
|h| = 3∆0 rotate from being parallel with the z -direction at x = 0, to pointing in
the x -direction at x = ξ. This will induce both dz and dx triplets, and during the
last portion of the material, the dz triplets will be long-ranged, and should thus
survive while the other components decay.

The resulting Green function amplitudes and density of states for such a system
are shown in Fig. 5.3. From Fig. 5.3a, we see that at end of the system, the singlet
component fs and the triplet component dx have decayed, with only the desired
triplet component dz surviving. From Fig. 5.3b, we see that the triplet components
produce a peak in the density of states at the Fermi energy.
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Figure 5.3: The proximity effect inside a ferromagnet with rotating magnetization
in proximity with a BCS superconductor. The calculation was performed for a
ferromagnet of length L = 5ξ, and a boundary with ζ = 0.1. The exchange field,
which has a magnitude of h = 3∆0, rotates uniformly from being in the z -direction
at x = 0, to pointing in the x -direction at x = ξ, and remains in this position for
the rest of the ferromagnet. See the main text for details.

In the system considered above, a pure odd-frequency pairing has been induced
in a ferromagnet. We now want to modify this system so that we remove the
ferromagnetism. To do this, we place a normal metal in proximity to this system.
This will lead to a normal metal with purely odd-frequency amplitudes, which can be
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used to study the signatures of odd-frequency superconductivity. The setup is shown
in Fig. 5.4a. As an approximation to this system, we consider a system consisting
of a single ferromagnet but where the magnetization is suppressed exponentially,
making the last part of the system a normal metal. This approximation is shown
in Fig. 5.4b. We will in the following refer to this system as the odd-frequency
proximity system.

(a) The system that displays pure odd-frequency superconductivity consists of a conven-
tional bulk superconductor (BCS), a ferromagnet with a rotating magnetization (F ),
a ferromagnet with a constant magnetization, a ferromagnet with a rapidly decaying
magnetization (indicated by the arrows), and a normal metal (N). The lengths in the
figure are not to scale.
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(b) The magnetic field in ferromagnet and normal metal.

Figure 5.4: We approximate the two ferromagnetic parts and the normal metal part
of the heterostructure with single material with a non-homogeneous magnetization.

5.3 Analysis of the odd-frequency proximity sys-

tem in equilibrium

We continue working with the odd-frequency proximity system that was introduced
in the last section and discuss properties such as density of states and symmetries
of the quasiclassical Green functions. To get a significant effect, we want the
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anomalous Green function component dz to be as large as possible at the end of
the system. This can be done by making the system short, and by making the
interface resistance ζ small. At the same time, we must make sure that the singlet
component and the triplet component dx decay fast enough to vanish. This can
be done by choosing a large exchange field. We, therefore, require that dz/fs > 10
for all energies at the end of the system to ensure that the odd-frequency pairing
dominates completely in this region of space. Trial and error shows that using
values h = 50∆0, ζ = 0.1 and L = 0.75ξ produce good results. We use a Dynes
parameter of ϵ = 0.01∆0 in order to remove divergences. In the following, we
consider how the Green functions look at the end of this material, that is at the
vacuum edge, where we to a good approximation have only odd-frequency triplet
states.

5.3.1 Symmetries and density of states

The quasiclassical Green function dz and the density of states at x = L in the
odd-frequency proximity system are found using the Python program and plotted
in Fig. 5.5. In contrast to a BCS superconductor, and thus also to our three
models, we find that the real and imaginary parts of both the anomalous and
normal Green functions overlap. This is shown in Fig. 5.5a. It can be seen from
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(a) The real and imaginary part of the an-
omalous Green function.
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(b) The density of states.

Figure 5.5: The proximity effect at x = L in the odd-frequency proximity system.
Parameters used are h = 50∆0, ζ = 0.1, L = 0.75ξ, and ϵ = 0.01∆0. See the main
text for details.

the figure that the solution has inherited properties of the BCS superconductor
through the proximity effect, as the function changes rapidly at the gap edge. We
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observe that the real part is symmetric, while the imaginary part is antisymmetric,
which of course is consistent with and further justifies the tilde symmetry criterion
in Eq. (4.30). Additionally, the anomalous Green function disappears for large
energies, consistent with the criterion in Eq. (4.35). This is also consistent with
our discussion in Appendix C.2. The density of states at the vacuum edge in our
system with induced odd-frequency superconductivity is shown in Fig. 5.5b. The
density of states is peaked for energies close to the Fermi energy. By numerical
integration, it can be checked that the number of states is conserved, as required
in the criterion Eq. (4.34). Finally, the criterion of normalization is automatically
satisfied by the Riccati parametrization, meaning that this solution satisfies all the
criteria we argued for in Section 4.2.

Finally, we compare the density of states to our analytical models, as shown in
Fig. 5.6. It is that the density of states loosely resembles the density of states for
Model 1a with a large Dynes parameter. A curve fit between this model and the
numerical results is shown in Fig. 5.6a. This is only a good fit for small energies,
and around the band gap there is a large discrepancy between the two. Even
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(a) A curve fit using Model 1a (M1a). Para-
meters used are ∆ = 0.18∆0, δ = 0.27∆0,
and a = 1.3.
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(b) A curve fit using Model 2 (M2). Para-
meters used are a = 0.32, b = 1.0,c = 0.56,
and d = 0.37.

Figure 5.6: Different models fitted to the density of states from the proximity
structure. See the main text for details.

though the fit is not very good, and depends on the inclusion of the large Dynes
parameter, this is an indication that the solutions in the odd-frequency proximity
system has some resemblance to Model 1. By choosing a more advanced symmetric
function S(E), a better fit could be obtained. From the discussion in Section 4.3.1,
we know that this function should be chosen such that it satisfies S(∆) = 0, in
order to produce a density of states with no gaps. A curve fit with Model 2 is
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shown in Fig. 5.6b, and it can be seen that this roughly approximates the shape of
the density of states.

5.3.2 The Meissner response

We follow the same method of calculating the Meissner response as in Section 4.5,
using linear response. This is done by numerically calculating the integral I(x) in
Eq. (4.107) for the proximity system. The result is shown in Fig. 5.7. We find that

0 0.2 0.4 0.6

−0.2

0

0.2

x/ξ

I
(x
)/
∆

0

Figure 5.7: The integral I(x) determining the sign of the Meissner response inside
the proximity system. See the main text for details.

the integral is negative close to the superconductor, but changes its sign inside the
odd-frequency proximity system. This is due to the system transitioning from being
dominated by the even-frequency singlet component close to the superconductor
to being dominated by the odd-frequency triplet component. This matches our
discussion in Section 4.5.1 well. Inside the system, where odd-frequency pairing
dominates, the Meissner response has oscillating solutions, which are stabilized
by the BCS superconductor and the diamagnetic part of the proximity system.
This means that Model 1 describes the physics of odd-frequency superconductivity
induced by such a proximity system well. Additionally, Model 1 has a peaked
density of states, just like this proximity system. Model 2 has a peaked density of
states as well but does not give any Meissner response. Model 3 has a diamagnetic
Meissner response and a gap in the density of states, thus bearing little resemblance
to the odd-frequency paring induced in the odd-frequency proximity system. It
could, as discussed in Section 4.5.1, describe a bulk odd-frequency superconductor
because the diamagnetic Meissner effect gives stable solutions for the magnetic
field.
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5.4 Parametrization of the non-equilibrium equa-

tions

In this section, we will introduce a convenient parametrization of the Keldysh
component of the Usadel equation. This section will follow the work of Ouassou et
al. [78]. For a general quasiclassical self-energy term σ̌, the Keldysh component of
the Usadel equation reads

D∇ (ǧ∇ǧ)K = −i
[
σ̌, ǧ
]K
, (5.10)

where we have neglected the magnetic vector potential. First, it is convenient to
introduce an 8-vector h, through the equation

ĥ =
7∑

j=0

hj ρ̂j, (5.11)

where the matrices are given as

ρ̂0 ≡ τ̂0σ̂0 ρ̂1 ≡ τ̂0σ̂1 ρ̂2 ≡ τ̂0σ̂2 ρ̂3 ≡ τ̂0σ̂3

ρ̂4 ≡ τ̂3σ̂0 ρ̂5 ≡ τ̂3σ̂1 ρ̂6 ≡ τ̂3σ̂2 ρ̂7 ≡ τ̂3σ̂3.

Assuming the self-energy to be of first order in the quasiclassical Green functions,
we can write it as

σ̌ = v̂ + ŵǧŵ, (5.12)

where we have introduced the zeroth and first-order self-energy terms as v̂ and
ŵ, respectively. By comparing with the Usadel equation in Eq. (3.133), we see
that the kinetic term, the superconducting term, and the ferromagnetic terms
are examples of zeroth-order terms, while the spin-flip and spin-orbit scattering
terms are examples of first-order terms. It can be shown that by introducing the
quantities

Qnm =
D

4
Tr
{
ρ̂mρ̂nĝ

R∇ĝR − ρ̂nρ̂mĝ
A∇ĝA

}
(5.13)

Mnm =
D

4
Tr
{
ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝ
A
}

(5.14)

Vnm =
i

4
Tr
{[
ρ̂n, v̂

]
(ĝRρ̂m − ρ̂mĝ

A)
}

(5.15)

Wnm =
i

4
Tr
{[
ρ̂n, ŵ

]
(ĝRŵĝRρ̂m − ρ̂mĝ

AŵĝA + ĝR
[
ρ̂m, ŵ

]
ĝA)
}
, (5.16)

the kinetic equations can be written compactly as

Mnm∇2hm = −(∇Mnm +Qnm) ·∇hm − (∇Qnm + Vnm +Wnm)hm. (5.17)
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This equation is convenient to use in a numerical solver. We can also make this
equation dimensionless by dividing it by ∆0, and giving lengths in units of the
superconducting coherence length ξ =

√
D/∆0, and energies in units of ∆0.

5.5 Spin modes and spin accumulation

Using the parametrization in the last section, a program was written in Python that
solves the kinetic equation for the distribution matrix in the full system introduced
in Section 5.2.3. This allows us to study non-equilibrium phenomena such as the
response to applying voltages or spin voltages. Johnsen and Linder [14] predicted
recently that the spin accumulation can be larger in an odd-frequency system
than in a superconductor or even in the normal state. Predictions were also made
about the renormalization of the spin-flip and spin-orbit scattering lengths. In this
section, we aim to investigate these predictions numerically for a realistic proximity
system. We will apply a spin-voltage across the proximity system from Section 5.3,
and study the spin accumulation and the decay of spin modes close to the vacuum
edge, where we have pure odd-frequency amplitude.

In the calculations to come, we have made several assumptions. For once, we
have ignored the effects of spin-orbit and spin-flip scattering on the equilibrium
Green functions calculated in Section 5.3. Secondly, we have assumed that the
right-hand side of the system is in contact with a vacuum, while still applying a
spin voltage. This could be fixed by instead calculating the equilibrium Green
functions for a system with a normal-metal edge instead of the vacuum edge. This
gives the same functional form for the quasiclassical Green functions, with a peaked
density of states that is slightly lower. We will neglect the temperature dependence
of the order parameter, as we are interested in comparing different models at
a constant temperature. This corresponds to assuming that the temperature is
T = 0 in the odd-frequency system while allowing the temperature in the reservoirs
to vary. When calculating the spin accumulation numerically, we introduce an
integration cutoff at E = ±3∆0. It can be shown numerically that neglecting the
contributions from energies higher than this cutoff is a very good approximation in
the situations we will consider. Finally, we use continuous boundary conditions
for the non-equilibrium calculations, since using e.g. the KL-boundary conditions
would only lower the spin mode in all materials, and not affect the qualitative
nature of the spin mode [14].

We start by considering a spin-voltage of magnitude V↑ = −V↓ = Vs, meaning
that the normal voltage vanishes, and we get the boundary conditions for the
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energy mode,

h0(x = 0) =
1

2

[
tanh

(
E + eVs

2T

)
+ tanh

(
E − eVs

2T

)]
(5.18)

h0(x = L) =
1

2

[
tanh

(
E − eVs

2T

)
+ tanh

(
E + eVs

2T

)]
, (5.19)

and for the spin mode,

h7(x = 0) =
1

2

[
tanh

(
E + eVs

2T

)
− tanh

(
E − eVs

2T

)]
(5.20)

h7(x = L) =
1

2

[
tanh

(
E − eVs

2T

)
− tanh

(
E + eVs

2T

)]
, (5.21)

while the other modes vanish. In Fig. 5.8, the boundary condition h7(x = L) is
plotted against energy for different spin voltages and temperatures. A high spin
voltage and temperature correspond to a wide distribution, while a small spin
voltage and low temperature make the distribution narrow. This indicates that for
lower temperatures and spin voltages, the density of states at the Fermi energy
becomes increasingly more important for spin accumulation. Thus, we expect
the spin accumulation to be high in an odd-frequency system such as the one we
are considering and very low in the gapped conventional superconductor. The
figure also justifies our integration cutoff, as we see that the spin-mode vanishes for
energies ±3∆0 for temperatures and spin voltages in the range we will be using.
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Figure 5.8: The boundary distribution h7(x = L) is plotted against energy for
T = 0.5Tc (solid), eVs = 0.5∆0 (dashed), T = 0.1Tc, eVs = 0.1∆0, and T = 0.01Tc,
eVs = 0.05∆0 (dotted). See the main text for details.
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5.5.1 Without scattering

We set T = 0.5Tc and eVs = 0.5∆0, and calculate the spin mode in the absence
of spin-flip and spin-orbit scattering. The spin mode is used to calculate the
spin accumulation, using Eq. (3.151). The result is shown in Fig. 5.9a. It is
apparent from the figure that the spin accumulation in the normal metal and the
odd-frequency system are almost identical, while the BCS superconductor has a
much smaller spin accumulation. This is consistent with our result in Eq. (4.70) in
Chapter 4. It is thus the density of states that determines the spin accumulation
in this case; the BCS superconductor has no states inside the gap, meaning that
the spin accumulation becomes small. The odd-frequency system has a peaked
density of states at zero energy, but also a lowered density of states for small but
nonzero energies. Thus, by using T = 0.5Tc and eVs = 0.5∆0, corresponding to a
broad spin mode at the boundaries, the spin accumulation becomes similar in the
normal metal and the odd-frequency superconductor.

We then choose T = 0.01Tc and eVs = 0.05∆0, corresponding to a much
narrower spin mode. The spin accumulation for these parameters is shown in
Fig. 5.9b. We observe that the spin accumulation in the BCS superconductor
vanishes, which is expected for a narrow spin mode at the boundaries, while the
odd-frequency superconductor obtains a higher spin mode. Thus, we have shown
numerically that for narrow spin modes, one can obtain higher spin accumulation in
an odd-frequency superconductor than in a normal metal. For higher temperatures
and spin voltages, the spin accumulation will be approximately equal to that of a
normal metal.

From both of the subfigures in Fig. 5.9, we see that while the spin accumu-
lation in the odd-frequency superconductor starts at a higher value close to the
applied voltage, it drops off quickly. This can be understood by considering the
spin accumulation for the whole system, which is shown in Fig. 5.10. The spin
accumulation in the full system is of course also affected by the non-homogenous
magnetic field in the ferromagnetic part of the system. This is what causes the
spin accumulation to drop of faster in this system. It seems reasonable to expect
that in a bulk material of the type that we find in the odd-frequency part of our
system, the spin accumulation will drop off as in a normal metal, and the spin
accumulation will be even higher than in this heterostructure.
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Figure 5.9: The spin accumulation for different spin voltages Vs and reservoir
temperatures T in the odd-frequency part of the system, compared with a BCS
superconductor and a normal metal. See the main text for details.
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Figure 5.10: The spin accumulation for different reservoir temperatures T and spin
voltages Vs in the full proximity system compared with a BCS superconductor and
a normal metal of the same length.
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5.5.2 Spin-flip scattering

We define the spin-flip scattering length lsf =
√
Dτsf, and calculate the spin modes

and spin accumulation in a system with lsf = 0.0375ξ. The result for two different
energies is shown in Fig. 5.11 for a reservoir temperature of T = 0.5Tc and a spin
voltage of eVs = 0.5∆0. We observe that the spin-flip scattering length of the BCS
superconductor is renormalized, and for energies E ≈ ∆0, this renormalization
becomes huge. The spin mode in the normal metal and in the proximity odd-
frequency system is not renormalized. These results are consistent with the general
discussion we had in Section 4.4, where we found that odd-frequency pairing is
unaffected by spin-flip impurity scattering.
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Figure 5.11: Spin modes in the presence of spin-flip scattering with scattering length
lsf = 0.0375ξ. In the left pane, E = 1.02∆0, and in the right pane, E = 1.50∆0.
The temperature of the reservoir is T = 0.5Tc, and the spin-voltage is eVs = 0.5∆0.
The ordinate label and the legend are shared for the two axes. See the main text
for details.

Using Eq. (3.151), we find the spin accumulation in the system, as shown in
Fig. 5.12. In the right pane, we have normalized each spin accumulation to be able
to only see the differences in decay rates. This effectively hides the differences in the
density of states of the different systems. The decay rates of the spin accumulation
is inherited from the decay rates of the spin modes, and, as expected, we find that
the spin accumulation decays faster in the BCS superconductor compared with the
normal metal and odd-frequency superconductor, which decays with the same rate.
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Figure 5.12: The spin accumulation in the presence of spin-flip scattering with
scattering length lsf = 0.0375ξ. The temperature of the reservoir is T = 0.5Tc, and
the spin-voltage is eVs = 0.5∆0. The spin accumulations in the right panel have
been normalized by dividing by the value of the spin accumulation at x = L. See
the main text for details.

5.5.3 Spin-orbit scattering

We define the spin-orbit scattering length lso =
√
Dτso, and calculate the spin

modes and spin accumulation in a system with lso = 0.0375ξ. The spin mode
decays exponentially, as shown in Fig. 5.13, where the spin mode is plotted for
two different energies. The normal metal and BCS superconductor experience no
renormalization of the spin-orbit length, while the odd-frequency superconductor
decays faster. Qualitatively, this is consistent with both the discussion in Section 4.4
and in [14]. The renormalization does, however, not diverge at the band gap or
anywhere else, which is in contrast with [14]. This result can be understood from
the general result in Eq. 4.70, and by observing from Fig. 5.5a that the anomalous
Green function of this system has a real part that is large at zero energy and
does not diverge for any energies. This means that while the spin accumulation
will be smaller for the odd-frequency model, it does not decay much faster than
the BCS superconductor and the normal metal. The spin accumulation is shown
in Fig. 5.14. These results bear some resemblance with the results from Model
2, which has a spin-orbit renormalization for small energies where the density of
states is peaked, but differ drastically from those of Model 1a and Model 3a. By
choosing the specific functions in Model 1 and Model 3 in such a way that there is
no divergence at the gap edge4, one could obtain models that better capture the
spin-orbit impurity scattering in the proximity structure we have considered here.

4This can be done e.g. for Model 1 by choosing the function S(E) such that S(∆) = 0.
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Figure 5.13: Spin modes in the presence of spin-orbit scattering with scattering
length lso = 0.0375ξ. In the left pane, E = 0.02∆0, and in the right pane,
E = 1.02∆0. The temperature of the reservoir is T = 0.5Tc, and the spin-voltage
is eVs = 0.5∆0. The ordinate label is shared for the two axes. See the main text
for details.
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Figure 5.14: The spin accumulation in the presence of spin-orbit scattering with
scattering length lso = 0.0375ξ. The temperature of the reservoir is T = 0.5Tc, and
the spin-voltage is eVs = 0.5∆0. The spin accumulations in the right panel have
been normalized by dividing by the value of the spin accumulation at x = L. See
the main text for details.
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Chapter 6

Conclusion and Outlook

In this thesis, quasiclassical theory in the dirty limit was derived and used to study
superconducting odd-frequency systems. Such systems have attracted much interest
recently, due to the possibility of having long-ranged spin-polarized supercurrents,
which could be used in applications in energy-efficient computing [6]. Moreover,
the pairing in such systems is non-local and antisymmetric in time [13], making
odd-frequency superconductivity interesting also from a fundamental physics point
of view.

We proposed four criteria for the quasiclassical Green functions in odd-frequency
superconductors, based on general arguments as well as analytical and numerical
solutions of proximity systems. Using these criteria in addition to solutions of
superconductor-ferromagnet systems, we proposed ansatzes for three models describ-
ing odd-frequency superconducting systems with physically reasonable behavior.
Model 1 consists of the BCS solution multiplied with a symmetric function S(E),
and we introduced Model 1a as the special case where S(E) is a constant. Model 2
was constructed to be as simple as possible, as a step function model with a peaked
density of states. Finally, Model 3 consists of the BCS solution multiplied with
an antisymmetric function A(E), and we introduced Model 3a as the special case
where A(E) = αsign(E), with α ≤ 1.

We calculated the density of states, the renormalization of the spin-flip and
spin-orbit scattering lengths, and the Meissner response for these models. Model 1
and Model 2 generally have a peaked density of states around the Fermi energy,
while the density of states of Model 3 is lowered, and in some cases, such as for
Model 3a, gapped close to the Fermi energy. A general result was derived, stating
that the spin-orbit scattering length is renormalized in odd-frequency systems,
while the spin-flip scattering length is renormalized in even-frequency systems.
In both cases, this renormalization depended on the real part of the anomalous
Green function being nonzero. This was used to argue that in general, there must
at least be some energy domains where such a renormalization takes place for
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all possible models. It was found that Model 1, in contrast with conventional
superconductors, can display an unconventional and locally paramagnetic Meissner
response. This, along with the peaked density of states, makes Model 1 suitable
for describing odd-frequency superconductivity induced by the proximity effect in
heterostructures. Model 3 has a diamagnetic Meissner response similar to that of
a conventional superconductor, making bulk solutions avoid the stability issues
found in systems with a paramagnetic Meissner response. This makes Model 3 a
candidate for a bulk odd-frequency superconductor. Model 2 displays no Meissner
effect, indicating that it is too primitive to capture the electromagnetic properties
of a superconductor.

In the final chapter, we solved numerically for the quasiclassical Green functions
in a realistic system displaying odd-frequency superconductivity. We found a peaked
density of states, and it was found that this system generally has a higher spin
accumulation than a conventional superconductor. This is consistent with Model
1 and Model 2, supporting the claim that these models can describe proximity
systems. For low temperatures and spin voltages, the spin accumulation was shown
to be higher than in the normal state. This confirms the predictions made in [14],
using a realistic system that satisfies the sum rule of the spectral weight. The
spin-orbit scattering length was renormalized, while the spin-flip scattering length
was unchanged in the odd-frequency part of this system, consistent with our results
from the analytic part. The Meissner effect in the proximity structure was found
to be unconventional in the part where odd-frequency pairing dominates, again
consistent with Model 1.

The results in this thesis suggest several further tasks. To get a model that
captures the physics of realistic proximity systems better, effort should be put
into finding an approximate functional form of the real and imaginary parts of the
quasiclassical Green function of the odd-frequency proximity system. This could
be done by considering Model 1 for functions satisfying S(∆) = 0, which makes the
density of states non-gapped for all energies. One could then find the symmetric
function S that best fits the numerical results, while also making sure that the
model satisfies the sum rule of the spectral weight.

Another possible direction could be to drop the constraints of our three models
and directly curve-fit a new function to the numerical results. This approach results
in anomalous Green functions which have overlapping real and imaginary parts,
which would make analytical calculations more difficult, but would better describe
the physics in a proximity structure. This approach would, however, probably
result in an unconventional Meissner response, making the model inapplicable to
bulk systems.

The possibility of combining models should also be investigated. By e.g. adding
Models 3 and 2, it should be possible to find a model that has a peaked density of
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states as well as a diamagnetic Meissner effect. Moreover, by adding solutions in this
way, it should also be possible to find models that have nonzero real and imaginary
parts for all energies, thus experiencing spin-orbit scattering renormalization for all
energies, which seems physically reasonable. Finally, the prospect of using Model
3, alone or in combination with e.g. Model 2, as a model for a bulk odd-frequency
system should be explored further. Model 3a can be chosen in such a way that it has
the same density of stats and Meissner response as a conventional superconductor,
and the further implications of the model should be studied to understand whether
such a system is physically realizable, and what the physical implications of such a
system would be.
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Appendix A

Simple Green Function Solutions

We solve for the Green functions in some simple systems in equilibrium. This
appendix serves as an application of the theory of Green functions developed in
Chapter 3, deriving results that are used extensively in the main text, as well as
highlighting important details such as the infinitesimal convergence factors added
to the energy variable of the Green functions. Parts of this appendix are based on
the master’s thesis by Morten [25].

A.1 Kinetic one-particle Hamiltonian

We consider a system where free particles of mass m move in a box of volume V.
The one-particle free-particle Hamiltonian is in the position representation given as

H(r) = −∇2

2m
− µ, (A.1)

where µ is the chemical potential of the system, which we assume is a constant. In
the following, we solve for the Green function by using two different methods: first
by solving the Heisenberg equation of motion for the field operators from Eq. (2.17)
directly, and then by Fourier transforming the equations of motion themselves,
before solving the equation. The first calculation is useful because it will illuminate
the important aspect of infinitesimal convergence factors when defining the Fourier
transformed Green function, and the second method is useful because it generalizes
the easiest to more complicated systems.
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Solving the Heisenberg equation of motion directly

The second quantized version of the Hamiltonian in Eq. (A.1) reads

H(t) =

�
dr′ψ†(r′, t)

(
−∇2

2m
− µ

)
ψ(r′, t)

=
1

V2

�
dr′
∑
p′′p′

eip
′′·r′
c†p′′(t)

(
−∇2

2m
− µ

)
e−ip′·r′

cp′(t)

=
1

V2

�
dr′
∑
p′′p′

eip
′′·r′
c†p′′(t)ξp′′e−ip′·r′

cp′(t)

=
∑
p′

ξp′c†p′(t)cp′(t),

(A.2)

where we have changed into momentum basis, defined the function ξp = p2/2m−µ,
and used the definition of the delta function in the last line. Using the anticom-
mutation relation of the creation and annihilation operators it is then easy to show
that [

H(t), cp(t)
]
= −ξpcp(t) (A.3)[

H(t), cp(t)
]
= ξpc

†
p(t), (A.4)

from which we can solve the Heisenberg equation of motion from Eq. (2.17) to get

cp(t) = e−iξptcp(0) (A.5)

c†p(t) = eiξptc†p(0). (A.6)

Inserting this into the definition of the retarded Green function, we obtain

G(p, t1 − t2) = −iΘ(t1 − t2)e
−iξp(t1−t2). (A.7)

In order to get the Green function as a function of energy, we perform a Fourier
transformation in the relative time variable,

G(p, E) = −i

� ∞

−∞
dt eiEtΘ(t)e−iξpt

= −i

� ∞

0

dt eit(E−ξp).

(A.8)

Care is needed when evaluating this expression, since this integral does not strictly
converge. The integral is problematic both because the integrand does not converge
as t→ ∞, and because the integral goes to infinity for E − ξp = 0. In order to fix
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A.1. Kinetic one-particle Hamiltonian

both of these problems, the usual procedure is to perform the analytic continuation
in E → E + iδ, and then take the limit δ → 0 in the end [27]. In order for the
integrand to converge, we see that we must choose δ > 0, thus making an analytic
continuation in the upper half plane. Using this, the integral becomes trivial,

G(p, E) =
1

E − ξp + iδ
. (A.9)

We observe that the Fourier-transformed Green function has poles at E = ξp− iδ, in
the lower half-plane, while it is analytic in the upper half-plane. It can in the same
manner be shown that for the advanced Green function, the analytic continuation
must be performed in the lower half-plane, E → E − iδ. Moreover, this pole is
located at the single-particle energies, with an infinitesimal shift. These results
have been derived for a free single-particle Hamiltonian, but is valid in general [27].

Fourier transforming the Green function equation of motion

We now perform the same calculation by first Fourier transforming the equation
of motion. First, we insert the Hamiltonian from Eq. (A.1) into the equation of
motion for the Green function, as was stated in a Nambu-spin space generalized
version in Eq. (3.36),

[i∂t1 −H(r1)]G
R(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2). (A.10)

This is easiest solved by Fourier transforming the entire equation into the energy-
momentum-domain, solving for the transformed Green function, and then perform-
ing the inverse Green function if we want to go back into position-space. Assuming
we are in a stationary system, GR is only a function of the relative time t = t1 − t2.
We can then use that ∂t1G(t) = ∂tG(t), and performing a Fourier transform of
Eq. (A.10), we obtain

[E + iδ −H(r1)]G
R(r1, r2, E) = δ(r1 − r2), (A.11)

where we have again added the infinitesimal imaginary part to E, and used
integration by parts. Since we are considering a bulk material, we also assume that
the Green function is a function of relative coordinate only. Fourier transforming
in the relative coordinate, again using integration by parts, we find

GR(p, E) =
1

E − ξp ++iδ
, (A.12)

with ξp = p2/2m− µ. This is, of course, the same results we found using the first
method.
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The quasiclassical approximation

In the quasiclassical approximation, we assume that E << µ, which means that
the retarded Green function in Eq. (A.9) is strongly peaked at the Fermi level µ.
In order to obtain the quasiclassical expression, we integrate over energies and get

gR(E,pF , X) =
i

π

� ωc

−ωc

dξp
1

E + iδ − ξp

=
i

π

� ωc

−ωc

dξp
E + iδ + ξp

(E + iδ)2 − ξ2p

=
i(E + iδ)

π

� ωc

−ωc

dξp
1

(E + iδ)2 − ξ2p

=
i(E + iδ)

2π(E + iδ)
dξp

� ωc

−ωc

dξp

[ −1

ξp − (E + iδ)
+

1

ξp + (E + iδ)

]
=

i

2π
(−2πi) = 1

(A.13)

where we in the second line we ignored the antisymmetric term in ξp, in the third
line we have expanded in partial fractions, and in the last line we have performed
the residue integration1, which is the same whether we do it in the upper or lower
half-plane.

A.2 Nambu-spin generalization

We now generalize the result for the Green functions for a normal metal in Nambu-
spin space. The Hamiltonian in Nambu-spin space reads

Ĥ = −∇2

2m
1̂− µ1̂, (A.14)

and the Green function equation of motion is[
i∂t1 τ̂3 − Ĥ(r1)

]
ĜR(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2). (A.15)

Performing the Fourier transform, we get, similarly to the last section,

GR(p, E) =
[
(E + iδ)τ̂3 − ξp1̂

]−1

=
E + iδ

(E + iδ)2 − ξ2p
τ̂3 +

ξp
(E + iδ)2 − ξ2p

1̂
(A.16)

1For this, we have replaced the limits ωc → ∞. The reader is directed to the master’s thesis
of [26] for a discussion about the limits of the quasiclassical Green function.
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where we have performed the matrix inverse in the last equation.

When performing the integral in the quasiclassical approximation, the second
term in Eq. (A.16) vanishes due to being antisymmetric in ξp, so the expression
becomes

ĝR(E,pF , X) =
i

π

� ωc

−ωc

E + iδ

(E + iδ)2 − ξ2p
τ̂3 = τ̂3, (A.17)

where we have used the results from the last section in order to do the integral.

A.3 BCS equilibrium solution

We now proceed solve for the Green functions for a bulk BCS superconductor. In
a bulk superconductor, the Hamiltonian is

Ĥ = −∇2

2m
1̂− µ1̂ + ∆̂, (A.18)

which yields

ĜR(E,p) =
[
(E + iδ)τ̂3 − ξp1̂− ∆̂

]−1

=
1

(E + iδ)2 − |∆|2 − ξ2p

[
(E + iδ)τ̂3 + ξp1̂− ∆̂

]
,

(A.19)

where the evaluation of the matrix inverse can be checked explicitly. Again, the
term with ξp in the numerator vanishes when we perform the quasiclassical integral.

Since, in the BCS bulk case, ∆̂ is independent of energy, we only need to calculate
the integral

� ωc

−ωc

dξp
1

(E + iδ)2 − |∆|2 − ξ2p
. (A.20)

This integral is the same as in Eq. (A.13), under the substitution (E + iδ)2 →
(E + iδ)2 − |∆|2. We thus have to calculate this separately for E2 − |∆|2 > 0
and E2 − |∆|2 < 0. In the following, it will be convenient to define the quantity
E+ ≡ E + iδ, thus simplifying notation slightly.
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In the domain where E2 − |∆|2 > 0,
� ωc

−ωc

dξp
1

(E + iδ)2 − |∆|2 − ξ2p

=

� ωc

−ωc

dξp

[
1√

(E + iδ)2 − |∆|2 − ξp

1√
(E + iδ)2 − |∆|2 + ξp

]

=
1

2
√
E2

+ − |∆|2
� ωc

−ωc

dξp

[
1√

E2
+ − |∆|2 − ξp

+
1√

E2
+ − |∆|2 + ξp

]

=
1

2
√
E2

+ − |∆|2
� ωc

−ωc

dξp

[
1√

E2 − |∆|2 + iEδ − ξp
+

1√
E2 − |∆|2 + iEδ + ξp

]

=
π

i

sign(E)√
(E + iδ)2 − |∆|2

,

(A.21)

We have expanded the square root to the first order in δ in the denominator in the
fourth equation. In the last equation, we have performed the contour integrations,
which produced a factor of sign(E) because the two factors in the line above have
a difference in the sign of the residue at their poles.

For the domain where E2 − |∆|2 < 0, we calculate
� ωc

−ωc

dξp
1

E2
+ − |∆|2 − ξ2p

=

� ωc

−ωc

dξp

[
1

i2 (|∆|2 − E2
+)− ξ2p

]

=

� ωc

−ωc

dξp

[
1

i
√

|∆|2 − E2
+ − ξp

1

i
√
|∆|2 − E2

+ + ξp

]

=
1

2i
√

|∆|2 − E2
+

� ωc

−ωc

dξp

[
1

i
√

|∆|2 − E2
+ − ξp

+
1

i
√

|∆|2 − E2
+ + ξp

]

=
1

2i
√

|∆|2 − E2
+

� ωc

−ωc

dξp

[
1

i
√

|∆|2 − E2 + iEδ − ξp
+

1

i
√

|∆|2 − E2 + iEδ + ξp

]
=
π

i

−i√
|∆|2 − E2

+ + ξp
(A.22)

The factor proportional to δ does not influence the contour integrals, since the
poles are placed on the imaginary axis. Thus, we find that the retarded Green
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function is given as

ĝ(E,R,pF ) = I
(
E+τ̂3 + ∆̂

)
, (A.23)

with

I =
Θ(E2 −∆2)sign(E)√

E2
+ −∆2

− i
Θ(∆2 − E2)√

∆2 − E2
+

. (A.24)

In the main part of the thesis, we will normally not write out the infinitesimal
factor explicitly, and instead reinstate it when it influences the results.
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Appendix B

Schrödinger Field Theory

In this section, we introduce the concepts of second quantization and field operators
in the context of the Schrödinger field; the field that satisfies the same equation as
the wave functions from standard quantum mechanics. This section is based on
the book by Economou [75].

We start by considering the Schrödinger equation for a classical field ψ(r, t),

i∂tψ(r, t) = Hψ(r, t) =
(
− 1

2m
∇2 + V (r)

)
ψ(r, t), (B.1)

where H = p2/2m+ V is the Hamiltonian of the system we consider, and V is an
arbitrary potential. The Lagrangian density that produces this equation of motion
when we apply the principle of stationary action is

L = iψ†∂tψ − 1

2m
∇ψ†∇ψ − V ψ†ψ. (B.2)

ψ is a scalar function, satisfying ψ† = ψ∗, but we use the dagger notation for
convenience when we later quantize the field. The canonical momentum of the field
is given in the standard way,

Π =
∂L

∂ (∂tψ)
= iψ†. (B.3)

From quantum mechanics we know that the general solution of Eq. (B.1) is given
by

ψ(r, t) =
∑
n

cne
−iEntψn(r), (B.4)

where ψn are the stationary energy eigenfunctions, satisfying

Hψn = Enψn. (B.5)
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We can take the eigenfunctions as orthonormal, and it is assumed that these
constitute a complete set. In (B.4), we assumed that the spectrum is discrete, but
the arguments in this section will be similar for continuous spectra.

From classical field theory, we know that the field and the canonical momenta
satisfies the Poisson bracket relations,

{ψ(r),Π(r′)}P = δ(r − r′) {ψ(r), ψ(r′)}P = 0 {Π(r),Π(r′)}P = 0, (B.6)

where the subscript indicates that these are Poisson brackets. The canonical
quantization procedure consists of promoting the fields to operators, and Poisson
brackets to commutation or anticommutation relations, depending on whether the
particles described are fermions or bosons. Since we want to describe electrons, we
choose the fermionic anticommutation relations,

{}P → i{}. (B.7)

Inserting the result from (B.3) the anticommutation relations reduce to

{ψ(r), ψ†(r′)} = δ(r − r′) {ψ(r), ψ(r′)} = 0 {ψ†(r), ψ†(r′)} = 0, (B.8)

which of course is the usual anticommutation relations for a fermionic field. Similarly,
if we insert Eq. (B.4) into these relations, we get for the first equation that∑

n,n′

e−i(En−En′ )t{cn, c†n′}ψn(r)ψ
∗
n′(r′). = δ(r − r′) (B.9)

In order to isolate the anticommutator, we first multiply with ψ∗
n′′(r) and integrate

over r. Using the orthonormality of the energy eigenfunctions, we obtain∑
n′

e−i(En′′−En′ )t{cn′′ , c†n′}ψ∗
n′(r′). = ψ∗

n′′(r′), (B.10)

and after multiplying with ψn(r
′) and integrating over r′ we get

{cn′′ , c†n} = δnn′′e+i(En′′−En)t = δnn′′ . (B.11)

Similar calculations for the other anticommutation relations the total set of anti-
commutation relations

{cn, c†n′} = δnn′ {cn, cn′} = 0 {c†n, c†n′} = 0, (B.12)

where we have repeated the first result for completion. Thus, the anticommutation
relations also hold for the energy eigenfunction basis.
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Symmetries of the Quasiclassical
Green Functions

In this appendix, we will derive symmetry relations of the quasiclassical Green
function. We start with some general symmetries and then move on to symmetries
specific to a real order parameter. Part of this chapter is based on the master’s
thesis of Morten [25].

C.1 General symmetries

In this section, we derive general symmetries of the quasiclassical Green functions.
The 4×4 matrix ĜR/A was defined in Eq. (3.26a) to involve the complex conjugates
at the lower row components, and we now calculate the corresponding components
of the quasiclassical Green functions. For the lower right components,

i

π

�
dξp

�
dxe−ix·pG

¯
R/A(X +

1

2
x,X − 1

2
x)∗

=−
[
i

π

�
dξp

�
dxe−ix·(−p)G

¯
R/A(X +

1

2
x,X − 1

2
x)

]∗
=− g

¯

R/A(−E,−pE)
∗ = −g̃

¯

R/A,

(C.1)

and the same is found for the anomalous Green function, allowing us to write the
4× 4 quasiclassical retarded Green function as

ĝR/A =

(
g
¯
R/A f

¯

R/A

−f̃
¯

R/A −g̃
¯

R/A

)
(C.2)

We now move on to proving the general result relating the retarded and advanced
quasiclassical Green function to each other. From the definitions of the Green
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functions in Eq. (3.27) and Eq. (3.29) in Section 3.3.1,

τ̂3

[
ĜA(2, 1)

]†
τ̂3 = τ̂3

[
iτ̂3Θ(t1 − t2)

〈{
ψ(2), ψ†(1)

}〉]†
τ̂3

= τ̂3
[
−iΘ(t1 − t2)

〈{
ψ(1), ψ†(2)

}〉
τ̂3
]
τ̂3

= −iτ̂3Θ(t1 − t2)
〈{
ψ(1), ψ†(2)

}〉
= ĜR(1, 2)

(C.3)

Using this in the definition of the advanced quasiclassical Green function, we get

ĝA(E,p, X) =
i

π

�
dξp

�
dxe−ix·pĜA(X +

1

2
x,X − 1

2
x)

=
i

π

�
dξp

�
dxe−ix·pτ̂3

[
ĜR(X − 1

2
x,X +

1

2
x)

]†
τ̂3

=

[−i

π

�
dξp

�
dxe+ix·pτ̂3Ĝ

R(X − 1

2
x,X +

1

2
x)τ̂3

]†
= −τ̂3

[
i

π

�
dξp

�
dxe−ix·pĜR(X +

1

2
x,X − 1

2
x)

]†
τ̂3

= −τ̂3
(
ĝR
)†
τ̂3

(C.4)

This result is extremely useful since it removes the necessity of solving the Usadel
equation for the advanced part when we already have found the solution for the
retarded part1.

C.2 Density of states at zero energy

Here, we will derive a relation describing how the symmetries of the quasiclassical
Green function determine the effect of the density of states at the Fermi energy.
Specifically, we will show that for triplet odd-frequency pairing, the density of
states must be larger or equal to one, while for singlet even-frequency, it must be
lowered. Consider a system with both triplet and singlet pairing, described by

f
¯
=

(
0 dz + fs

dz − fs 0

)
, (C.5)

and consider the case of the energy relative to the Fermi energy to be E = 0,
meaning that f̃(0) = f ∗(0). We get, temporarily suppressing the E = 0 argument,

1We could of course also solve the Usadel equation for the advanced part and obtain the
retarded part from Eq. (3.109).
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and introducing the quantity c ≡ fs∗dz − fsd
∗
z,

g
¯

2 = 1
¯
+ f

¯
f̃
¯
=

(
1 + |dz|2 − |fs|2 + 2iℑ{c} 0

0 1 + |dz|2 − |fs|2 − 2iℑ{c}

)
. (C.6)

Taking the square root of this equation yields an expression for the quasiclassical
Green function. In order to get the spin averaged density of states, we average
over the spin-up and spin-down pairing density, and take the real part of the
quasiclassical Green function,

N(E = 0) =
N0

2
ℜ{g↑↑ + g↓↓}

=
N0

2
ℜ
{√

1 + |dz|2 − |fs|2 + 2iℑ{c}+
√

1 + |dz|2 − |fs|2 − 2iℑ{c}
}
.

(C.7)

In the case of a weak proximity effect, we expand the square root to first order,
and get2

N(E = 0) = N0

(
1 +

|dz|2 − |fs|2
2

)
. (C.8)

This shows that in the weak regime, singlets will always lower the zero-energy
density of states, while triplets will increase it.

In the case of a strong proximity effect, we cannot expand the square root, and
the expression will not reduce in the same way as in the weak proximity regime. If
we however consider systems with only singlets or only triplets, we find that

N(E = 0) =

{
N0

√
1− |fs|2, pure even-frequency singlet paring,

N0

√
1 + |dz|2, pure odd-frequency triplet paring with Sz = 0.

(C.9)
We see that triplets increase the density of states at zero energy, while singlets
decrease it.

This can be understood better from the symmetries of the quasiclassical Green
functions. We consider a real gap, such that we can use the symmetry criteria from
Eq. (4.29) and Eq. (4.30). From the normalization condition in (3.105), it can be
seen that if one considers a singlet superconductor with f

¯
= antidiag(fs,−fs), one

obtains

g
¯
=
√
1
¯
+ f

¯
f̃
¯
= 1

¯

√
1 + f 2

s = 1
¯

√
1 + ℜ{fs}2 −ℑ{fs}2 + 2iℜ{fs}ℑ{fs}. (C.10)

2This can be seen either due to taking the real part or due to the imaginary numbers canceling
each other.
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Repeating the same with an Sz = 0 triplet with f
¯
= antidiag(dz, dz), we find that

the same relation holds,

g
¯
= 1

¯

√
1 + ℜ{dz}2 −ℑ{dz}2 + 2iℜ{dz}ℑ{dz}. (C.11)

The symmetry criterion for the even-frequency singlet in Eq. (4.29) says that the
real part of fs is antisymmetric in E, while the imaginary part is symmetric. This,
of course, implies a vanishing real part at E = 0, which from Eq. (C.10) implies
the result for the even-frequency singlets from Eq. (C.9). Similarly, the symmetry
criterion for the odd-frequency triplet in Eq. (4.30) says that the imaginary part
of fs is antisymmetric in E, while the real part is symmetric. This, together with
Eq. (C.11) implies the result for odd-frequency triplets from Eq. (C.9).
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Appendix D

Electrodynamics

In this section, we will derive the Hamiltonian for a classical particle in an electro-
magnetic field, and show how the magnetic vector potential A enters1. We will also
discuss the distinction between the canonical and the kinetic momentum. Much of
the theory of electromagnetism used in this section is based on Griffiths [28].

Classical electrodynamics is defined by the Maxwell equations,

∇ ·E = ρ ∇ ·B = 0 ∇×E = −∂tB ∇×B = J + ∂tE, (D.1)

where we have set the permittivity and permeability to unity. These equations
describe the dynamics of the electric field E and the magnetic field B in terms of
the charge density ρ and the electrical current J . Together with the Lorentz force
law,

F = q(E + v ×B), (D.2)

describing the force F on a particle with velocity v, these equations completely
describe all classical electromagnetic phenomenon.

We start of our derivation of the Hamiltonian by guessing a Lagrangian L,
which when inserted into the Lagrangian equations,

∂iL− d

dt
∂viL = 0, (D.3)

where i = {x, y, z}, should produce the Lorentz force law. By trial and error, we
guess the Lagrangian

L =
1

2
mv2 − qϕ+ qA · v, (D.4)

1This is useful since we obtain quantum mechanics by using the classical Hamiltonian, along
with the promotion of observable quantities to operators.
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where v = |v|, ϕ is the electrostatic potential and A the magnetic vector potential.
The fields are given in terms of the potentials as

B = ∇×A (D.5)

E = −∇ϕ− ∂tA, (D.6)

Noting that,

∂xL = q(v · ∂xA− ∂x) (D.7)

d

dt
∂vxL = m

d

dt
vx + q(v · ∇Ax + ∂tAx), (D.8)

where we have used the definition of a total derivative in the second equation.
Inserting into (D.3), we get for the x -component,

m
dvx
dt

= qv · ∂xA− q(v ·∇)Ax − q(∂xϕ+ ∂tAx)

= q (vy [∂xAy − ∂yAx] + vz [∂xAz − ∂zAx]) + eEx

= q
(
vy [∇× A]z − vz [∇× A]y

)
+ qEx

= q (vyBz − vzBy) + qEx

= q ([v ×B]x + Ex) ,

(D.9)

which is exactly the x -component of the Lorentz force law in Eq. (D.2). The
calculation for the other components is completely similar. This proves that the
Lagrangian in Eq. (D.4) is the correct one for a particle moving in an electromagnetic
field.

The canonical momentum is

p = ∇vL = mv + qA, (D.10)

and the Hamiltonian is given by the Legendre transformation

H = p · v − L =
1

2
mv2 + qϕ =

1

2m
(p− qA)2 + qϕ, (D.11)

meaning that we have transformed from the Lagrangian, which is a function of
r, ṙ, to the Hamiltonian, which is a function of r,p. Note that it is the so-called
kinetic momentum,

P ≡ p− qA =
1

2
mv, (D.12)

which is the quantity that appears in the Hamiltonian. This makes sense from a
physical standpoint, since the magnetic field should not contribute to the energy of
the particle.
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Finally, we discuss conservation laws for these momenta. It is sometimes
mentioned that the canonical momenta are conserved for a particle moving in an
electromagnetic field. Here, we will argue that in general neither the canonical
momentum nor the kinetic momenta are conserved for such a particle. Using
Eq. (D.9), we see that

dP

dt
= q ([v × (∇×A)]−∇ϕ− ∂tA) , (D.13)

meaning that the kinetic momentum for a particle in an electromagnetic field is
not conserved. This is of course to be expected, since the particle is influenced by
electric and magnetic forces, in the Newtonian formalism. The equation of motion
for the canonical momenta becomes

dp

dt
= q ([v × (∇×A)]−∇ϕ+ (v ·∇) ·A) , (D.14)

which in general is nonzero as well. As a final remark, we see that if the potentials
are position-independent, we get that the canonical momentum is conserved, which
is a consequence of Noether’s theorem [68].

125



APPENDIX D. ELECTRODYNAMICS

126



Appendix E

The Dyson Equation

In this section, we will show the equivalence of the Dyson equation and a generalized
equation of motion for the Green function,[

iτ̂3∂t1 − Ĥ0(1)
]
Ǧ(1, 2)−

[
Σ̌ • Ǧ

]
(1, 2) = δ(1− 2)1̌, (E.1)

where Σ̌(1, 2) is a general 2-body self-energy term, and we use the shorthand
notation (1, 2) ≡ (x1, x2). The bullet product is given by

[
Σ̌ • Ǧ

]
(1, 2) =

�
dx3Σ̌(1, 3)Ǧ(3, 2). (E.2)

Eq. (E.1) corresponds to the right-handed equation of motion of the Green function
with a scalar potential if Σ̌(1, 2) = δ(1− 2)V (1)1̌, so that the equation of motion
reads [

iτ̂3∂t1 − Ĥ0(r1)− V (1)1̂
]
Ǧ(1, 2) = δ(1− 2)1̌. (E.3)

Let Ǧ0 be the Green function that solves Eq. (E.1) without the self-energy
term, [

iτ̂3∂t1 − Ĥ0(1)
]
Ǧ0(1, 2) = δ(1− 2)1̌. (E.4)

For suggestive notation, we define the differential operator L̂(1) ≡ iτ̂3∂t1 − Ĥ0(1),
and the source term š(1, 2) ≡ δ(1− 2)1̌+ [Σ̌ • Ǧ](1, 2). We can then write Eq. (E.1)
as

L(1)Ǧ(1, 2) = š(1, 2), (E.5)

which is a function Ǧ acted upon by a differential operator, and Ǧ0 is the Green
function of the differential operator L̂(1). As usual, the solution of the differential
equation with the source term, which in this case is Eq. (E.1), is given as the
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integral over the source terms, and the Green function of the differential operator,

Ǧ(1, 2) =

�
dx3Ǧ0(1, 3)š(3, 2) (E.6)

=

�
dx3Ǧ0(1, 3)

(
δ(3− 2)1̌ +

�
dx4Σ̌(3, 4)Ǧ(4, 2)

)
(E.7)

= Ǧ0(1, 2) +
[
G0 • Σ̌ • Ǧ

]
(1, 2), (E.8)

which is the Dyson equation, which can be iterated by inserting the expression for
Ǧ into the right-hand side. In the case of a scalar potential Σ̌(1, 2) = V (1)δ(1−2)1̌,
this reduces to

Ǧ(1, 2) = Ǧ0(1, 2) +

�
dx3Ǧ0(1, 3)V (3)Ǧ(3, 2). (E.9)

Thus, we have shown that the Dyson equation in Eq. (E.6) is equivalent to Eq. (E.1).
In the case of a scalar potential, this means that Eq. (E.4) is equivalent to Eq. (E.9).

128



Appendix F

Spin Mode Renormalization in a
Triplet Superconductor

In this appendix, we consider the Usadel equation,

D∂x(ǧ∂xǧ)
K = −i

[
Êτ3 + σ̌so + σ̌sf + D̂T(E), ĝ

]K
, (F.1)

and find the equation of motion for the non-equilibrium spin mode. The distribution
function is diagonal, and we define the components of the distribution matrix as
ĥ = diag(h1, h2, h3, h4).

We start by considering the left-hand side of Eq. (F.1). The term inside the
first derivative can be written

(ǧ∂xǧ)
K = ĝR∂xĝ

K + ĝK∂xĝ
A = ĝR∂x

(
ĝRĥ− ĥĝA

)
= ∂xĥ− gR∂xĥĝ

A, (F.2)

where we have used that the derivative of the retarded and the advanced Green
functions vanish in a bulk material, the parametrization of the Keldysh Green func-
tion from Eq. (3.106), and the normalization condition from Eq. (4.31). Inserting
this back into the Usadel equation, the left-hand side becomes

D∂2x

(
ĥ− ĝRĥĝA

)
. (F.3)

Since we want to calculate the spin mode in the material, we perform the trace
operation Tr{τ̂3σ̂3...} /4, and find that the first term of Eq. (F.3) becomes D∂2xh

z.
The second term is somewhat more complicated, because of the extra retarded
and advanced Green functions. First, we use the relation for the advanced Green
function in Eq. (3.109),

ĝA = −τ̂3
(
IgEτ̂3 + If∆Ĵ3

)†
τ̂3

= −τ̂3
(
I∗
gEτ̂3 + I∗

f∆
[
−Ĵ3

])
τ̂3

= −I∗
gEτ̂3 − I∗

f∆Ĵ3.

(F.4)
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In the last equation, we have used that τ̂ 23 = 1̂ and that τ̂3 anticommutes with
any antidiagonal matrix, such as Ĵ3. The second term inside the parenthesis in
Eq. (F.3) becomes

1

4
Tr
{
τ̂3σ̂3ĝ

RĥĝA
}
= −1

4
Tr
{
τ̂3σ̂3

(
IgEτ̂3 + If∆Ĵ3

)
ĥ
(
I∗
gEτ̂3 + I∗

f∆Ĵ3

)}
. (F.5)

The four terms in this equation evaluate to

−E
2|Ig|2
4

Tr
{
τ̂3σ̂3τ̂3ĥτ̂3

}
= −E2|Ig|2ĥz (F.6)

−∆2|If |2
4

Tr
{
τ̂3σ̂3Ĵ3ĥĴ3

}
= |If |2∆2hz (F.7)

−
∆EIgI∗

f

4
Tr
{
τ̂3σ̂3τ̂3ĥĴ3

}
= 0 (F.8)

−∆EI∗
gIf

4
Tr
{
τ̂3σ̂3Ĵ3ĥτ3

}
= 0. (F.9)

In the second equation, we have used that Ĵ3ĥĴ3 = −diag(h4, h3, h2, h1), and in
the third and fourth equations we used that terms containing one antidiagonal
matrix and several diagonal matrices will be antidiagonal, making the trace vanish.
Eq. (F.3) thus evaluates to

D∂2x

(
ĥ− ĝRĥĝA

)
= D∂2xh

z
(
1 + |Ig|2E2 − |If |2∆2

)
(F.10)

We proceed by considering the right-hand side of the Usadel equation in
Eq. (F.1). The kinetic and superconducting terms are diagonal in Keldysh space
so that taking the Keldysh component of the commutator is equivalent to just
replacing the Green function with its Keldysh component,

[Eτ̂3 +∆Ĵ3, ǧ]
K = [Eτ̂3 +∆Ĵ3, ĝ

K ] (F.11)

Using this, we evaluate the spin-trace of the kinetic term, first noting that we have

[τ̂3, ĝ
R] = If [τ̂3,∆Ĵ3] = If∆Ĵ1 (F.12)

and
[τ̂3, ĝ

A] = I∗
f [τ̂3,∆Ĵ3] = I∗

f∆Ĵ1, (F.13)

with Ĵ1 the antidiagonal identity matrix. We thus get for the kinetic term,

− i

4
Tr
{
τ̂3σ̂3[Eτ̂3, ĝ

K ]
}
= − iE

4
Tr
{
[τ̂3, ĝ

Rĥ− ĥgA]
}

= − iE

4
Tr
{
τ̂3σ̂3[τ̂3, ĝ

R]ĥ− ĥ[τ̂3, ĝ
A]
}

=
E∆

4
Tr
{
τ̂3σ̂3

(
If Ĵ3ĥ− I∗

f ĥĴ3

)}
= 0

(F.14)
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where we in the second line have used the commutator identity

[A,BC] = [A,B]C +B[A,C], (F.15)

as well as the fact that the diagonal distribution matrix commutes with τ̂3. In the
last line, we used that the trace of any antidiagonal four-dimensional matrix is
zero1. This result means that the kinetic term in the Usadel equation does not
affect the spin mode of the system, which makes sense physically.

To calculate the superconducting term, we first calculate some more commutat-
ors,

[D̂T(E), ĝR] = IgE[D̂
T(E), τ̂3] = −2IgED(E)Ĵ1 (F.16)

[D̂T(E), ĝA] = −I∗
gE[D̂

T(E), τ̂3] = 2I∗
gED(E)Ĵ1 (F.17)

[D̂T(E), ĥ] = −D(E) antidiag(h1 − h4, h2 − h3, h2 − h3, h1 − h4) (F.18)

Ĵ3[D̂
T(E), ĥ] = −D(E) diag(h2 − h3, h2 − h3,−h1 + h4,−h1 + h4) (F.19)

In total, we want to calculate

− i

4
Tr
{
τ̂3σ̂3

[
D̂T(E), ĝK

]}
= − i

4
Tr
{
τ̂3σ̂3

([
D̂T(E), ĝRĥ

]
−
[
D̂T(E), ĥĝA

])}
= − i

4
Tr
{
τ̂3σ̂3

([
D̂T(E), ĝR

]
ĥ+ ĝR

[
D̂T(E), ĥ

])}
− i

4
Tr
{
τ̂3σ̂3

(
−
[
D̂T(E), ĥ

]
ĝA − ĥ[D̂T(E), ĝA]

)}
.

(F.20)

We consider the first and fourth terms in the last equation,

− i

4
Tr
{
τ̂3σ̂3

([
D̂T(E), ĝR

]
ĥ− ĥ

[
D̂T(E), ĝA

])}
=− i

4
Tr
{
τ̂3σ̂3

([
D̂T(E), ĝR

]
ĥ−

[
D̂T(E), ĝA

]
ĥ
)}

=iℜ{Ig}ED(E)Tr
{
τ̂3σ̂3Ĵ1ĥ

}
= 0,

(F.21)

where we in the second line have commuted ĥ through the diagonal matrices τ̂3
and σ̂3, and used the cyclic permutation identity of the trace. In the last line, we
have again used that the trace of an antidiagonal four-dimensional matrix is zero.

1The more general result is of course that the trace of a matrix in an even number of dimensions
vanishes.
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The second and third term of Eq. (F.20) becomes

− i

4
Tr
{
τ̂3σ̂3

(
ĝR[D̂T(E), ĥ]− [D̂T(E), ĥ]ĝA

)}
=
−i

4
Tr
{
τ̂3σ̂3

(
If∆Ĵ3[D̂

T(E), ĥ]− [D̂T(E), ĥ]I∗
f∆Ĵ3

)}
=
∆ℑ{If}

2
Tr
{
τ̂3σ̂3

(
Ĵ3[D̂

T(E), ĥ]
)}

=−D(E)∆
ℑ{If}

2
Tr{diag(h2 − h3,−h2 + h3, h1 − h4,−h1 + h4)} = 0,

(F.22)

where we in the third line have used again that the trace of an antidiagonal matrix
vanishes as well as that Ĵ3 anticommutes with τ̂3 and σ̂3, and in the last line we
used Eq. (F.19). Thus, we have shown that the superconducting term as well will
give no contribution to the equation of motion for the spin mode.

We proceed to calculate the spin-flip term,

− i

4
Tr
{
τ̂3σ̂3 [σ̌sf, ǧ]

K
}
= − i

4
Tr
{
τ̂3σ̂3

[
σ̂R
sf ĝ

K + σ̂K
sf ĝ

A − ĝRσ̂A
sf − ĝK σ̂A

sf

]}
=
hz

τsf

(
2ℜ{Ig}2E2 −∆2

[
|If |2 + ℜ{I2

f}
])
,

(F.23)

where the calculation has been performed using mathematical software. Similarly,
for the spin-orbit term we find

− i

4
Tr
{
τ̂3σ̂3 [σ̂so, ǧ]

K
}
= − i

4
Tr
{
τ̂3σ̂3

[
σ̂R

soĝ
K + σ̂K

soĝ
A − ĝRσ̂A

so − ĝKσ̂A
so

]}
=
hz

τso

(
2ℜ{Ig}2E2 +∆2

[
|If |2 + ℜ{I2

f}
])
.

(F.24)

In total, the equation of motion for the spin mode reads

D∂2xh
z
(
1 + |Ig|2E2 − |If |2∆2

)
=

2hz

τsf

(
ℜ{Ig}2E2 −∆2

[
|If |2 + ℜ{I2

f}
])

+
2hz

τso

(
ℜ{Ig}2E2 +∆2

[
|If |2 + ℜ{I2

f}
])
,

(F.25)

which can be isolated for the derivative as

∂2xh
z =

hz

Dτsf

2ℜ{Ig}2E2 −∆2
[
|If |2 + ℜ{I2

f}
]

1 + E2|Ig|2 − |If |2∆2

+
hz

Dτso

2ℜ{Ig}2E2 +∆2
[
|If |2 + ℜ{I2

f}
]

1 + E2|Ig|2 − |If |2∆2
.

(F.26)
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We now consider the two terms in detail, starting with the spin-flip term. We begin
by noting that the normalization of ĝR means that(
ĝR
)2

= I2
gE

2τ̂ 23 + E∆IgIf

(
τ̂3Ĵ3 + τ̂3Ĵ3

)
+∆2I2

f Ĵ3 = I2
gE

2 − I2
f∆

2 = 1. (F.27)

Taking the real part of this, we find

ℜ{I2
g}E2 −ℜ{I2

f}∆2 = 1. (F.28)

Inserting this into the spin-flip term, we find that the numerator becomes

2ℜ{Ig}2E2 −∆2
(
|If |2 + ℜ{I2

f}
)

(F.29)

=2ℜ{Ig}2E2 −∆2|If |2 + 1−ℜ{I2
g}E2 (F.30)

=1−∆2|If |2 + E2
(
2ℜ{Ig}2 −ℜ{I2

g}
)

(F.31)

=1−∆2|If |2 + E2
(
2ℜ{Ig}2 −ℜ{Ig}2 + ℑ{Ig}2

)
(F.32)

=1−∆2|If |2 + E2|Ig|2, (F.33)

which cancels the denominator. Moving on to the spin-orbit term in Eq. (F.26),
we can rewrite the numerator as

2ℜ{Ig}2E2 +∆2
(
|If |2 + ℜ{I2

f}
)

(F.34)

=2ℜ{Ig}2E2 −∆2
(
|If |2 + ℜ{I2

f}
)
+ 2∆2

(
|If |2 + ℜ{I2

f}
)

(F.35)

=
[
1−∆2|If |2 + E2|Ig|2

]
+ 4∆2ℜ{If}2 (F.36)

where we have used Eq. (F.28) in the last line. Using this, we rewrite Eq. (F.26),
and obtain the final expression for the equation of motion for the spin mode,

∂2xh
z =

hz

Dτsf
+

hz

Dτso

(
1 +

4∆2ℜ{If}2
1 + E2|Ig|2 − |If |2∆2

)
. (F.37)
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