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Abstract

Long time horizon trading strategies do not necessarily consider short-term price
movements in the period shortly before and after orders are placed. In this thesis,
we introduce a framework for finding the most profitable time to execute an or-
der, allowing a time delay in the order of days. We consider the opportunity cost
of delaying orders and estimate execution parameters by modeling the total in-
crease in risk-adjusted return. The order execution model is based on a novel
adaptation of the stacking classifier ensemble method that incorporates purged
K-fold cross-validation. As regular cross-validation causes data leakage when fin-
ancial time series are used, our approach allows a stacking classifier to be trained
without over-exaggerated validation fold performances. Our stacking classifier im-
plementation uses the prediction probabilities of a LightGBM and a random forest
classifier as inputs into a logistic regression model. We show that the execution
strategy substantially outperforms the original trading strategy when accounting
for trading costs, and that it reduces the total number of orders. This implies that
the execution strategy can compress trading strategies by lowering trading costs
while sustaining or increasing their risk-adjusted return.
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Sammendrag

Langsiktige handelsstrategier tar ikke nødvendigvis hensyn til kortsiktige pris-
bevegelser kort tid før og etter markedsordre er plassert. I denne oppgaven in-
troduserer vi et rammeverk for å finne det mest lønnsomme tidspunktet for or-
dreutførelse, som tillater en tidsforsinkelse i ordreutførelse. Vi tar hensyn til tap
i profitt assosiert ved å forsinke ordrer, og estimerer strategiparametere ved å
modellere den totale økningen i risikojustert avkastning. Ordreutførelsesmodel-
len er basert på en ny tilpasning av stablingsklassifiserings-metoden inkludert
renset K-fold kryssvalidering. Siden vanlig kryssvalidering forårsaker datalekkasje
når finansielle tidsserier brukes, tillater vår tilnærming at en stablingsklassifiserer
kan trenes uten overvurdert valideringsfold-ytelse. Vår stablingsklassifiserings-
implementering bruker prediksjonssannsynlighetene til en LightGBM og en tilfeldig
skogklassifiserer som input til en logistisk regresjonsmodell. Vi viser at utførelses-
strategien overpresterer den opprinnelige handelsstrategien vesentlig når det tas
hensyn til handelskostnader, og at den reduserer det totale antallet ordre. Dette
antyder at utførelsesstrategien er i stand til å komprimere handelsstrategier, slik
at mindre handelskostnader påløper, samtidig som den opprettholder eller øker
den risikojusterte avkastningen til handelsstrategien.
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Chapter 1

Introduction

1.1 Motivation

Given a list of market orders comprising a long time horizon trading strategy, we
wish to find the optimal market execution time within an allowed period of E days.
Orders of the trading strategy have targeted holding durations of over a month
and are the result of concrete trading rules resulting from a transparent, non-
machine-learning-based trading model. The trading strategy might act on recent
or real-time information but does not consider price drift in the period directly
after order execution. We augment the trading strategy with a short-term pricing
model such that the price is less likely to move in a direction detrimental to orders
shortly after they are executed. Consider an example where a long-term valuation
estimates the price of an asset to increase substantially within a year. However, a
recent news event forces the entire market to fall briefly. A short-term execution
model might avoid buying the asset until the market fall has subsided, resulting
in increased total profit after the trade is liquidated.

1.2 Literature study

Many papers consider the problem of optimal execution of market orders, focusing
on approaches that utilize market microstructure for execution of block trades,
where all block trades compose the market order (Almgren and Chriss (2001)
and Bertsimas and Lo (1998)).
In Bertsimas and Lo (1998), the authors list the different sources of trading costs,
including commissions, market impact, bid/ask spreads, and the opportunity cost
of waiting. This thesis measures this opportunity cost and devises a framework
that estimates the profit-maximizing waiting duration over a period of days. Ana-
logous to Bertsimas and Lo, who specify that S shares are to be executed within
a time period T , we execute an arbitrary amount of shares within E days. Note
that our papers operate with very different time frames, as T represents a number
of 30-minute chunks, and a sequence of block trades are executed optimally with

1
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respect to an intra-day market impact model. In contrast, our setting is market
data at daily frequencies, and the market impact is assumed to be negligible for
the portfolios on which the models are meant.

Optimal execution papers also do not assume an end time frame of the orders they
execute (Almgren and Chriss (2001) and Leal et al. (2020)). We specify a long
time horizon on trades, expecting most price movement to not occur within the
first days of execution, which allows for a longer execution window. Therefore,
this thesis should not be considered an addition to traditional optimal order exe-
cution models but rather a suggestion of how short-term information can augment
long-term investments.

De Prado (2018) describes how black-box machine learning algorithms (ML) have
massive learning potential but suffer from being opaque, causing human practi-
tioners to fail to fulfill their generalization abilities while being overconfident in
their resulting badly specified models. He argues that ML models should work as
an additional layer to other theoretically sound models, governing only a single
task in the investment process, such as order sizing. Labels are then generated
from the underlying model with respect to this task, and an ML model is trained
on these labels. De Prado coins this approach “meta-labeling”. In our case, we
let the learning task be to determine the best time of execution of a theoretically
sound trading strategy, generating so-called meta-labels from future short-term
price movements.

Various machine learning approaches have been attempted in finance, with vary-
ing levels of success. Arguably the staple of modern machine learning research,
neural networks are documented to be effective in a variety of real-life applica-
tions (Brown et al. (2020), Flagel et al. (2019) and Jumper et al. (2021)), and
are proven to be universal function approximators, having the ability to learn
any learning set distribution (Sonoda and Murata (2017)). Naturally, many fin-
ance researchers find it tempting to use neural networks to predict asset returns,
and some have been successful (Gu et al. (2020) and Krauss et al. (2017)). How-
ever, the decisions of neural networks suffer from being very complex. Eschenbach
(2021) finds that understanding the inner workings of such networks is beyond
human comprehension, which causes distrust in their effectiveness. Tree-based
models, however, output results that are easier for humans to understand, as they
rely on concrete rule-based tree structures. Gu et al. (2020) performs a compar-
ative analysis of a variety of ML algorithms, showing that decision tree ensembles
are the most effective models for asset pricing. The combination of several ma-
chine learning models also shows promise, with Jiang et al. (2020) employing a
stacking classifier based on the predictions of tree based ensemble methods (XG-
Boost and LightGBM) and deep learning techniques (LSTM and GRU), showing
that a stacked combination of these classifiers display a higher accuracy, AUC and
F1-score than each of the classifiers by themselves. Stacking, of Wolpert (1992)
is effective for combining the outputs of several different classifiers into a single
strong classifier and uses a cross-validation approach to maximize the generaliz-
ation of the resulting model. Standard K-fold cross-validation, used in the stack-
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ing classifier algorithm, assumes that samples in training and validation folds are
independent. Finance data, or features of data sets generated with rolling win-
dows, are self-similar over time; therefore, this assumption can not be guaranteed.
De Prado (2018) modifies regular K-fold cross-validation to ensure no overlap
between train- and validation-folds, using methods he names purging and em-
bargoing. In this thesis, we combine the stacking ensemble classifier with purged
K-fold cross-validation, resulting in a stacking classifier that is applicable to fin-
ance data. This approach is, to our knowledge, a novel contribution to the field of
empirical finance.

1.3 Thesis outline

The thesis is structured as follows. The background chapter, Chapter 2, introduces
techniques that are prerequisites for the methods described in Chapter 3 for con-
structing an execution strategy. The strategy is implemented, and empirical results
are listed and displayed in Chapter 4. In Chapter 5 we discuss a few of our major
findings from the empirical study, then conclude by summarizing the advance-
ments made in the thesis, as well as discussing future work in Chapter 6.

1.4 Research objectives and research questions

1.4.1 Primary and secondary objectives

The primary objective of the thesis is to develop a framework for improving ex-
ecution of long-term time horizon trading strategies. The secondary objective is
to verify that the execution strategy framework is effective on several different
trading strategies.

1.4.2 Research questions

• Can we adapt a stacking ensemble method for financial time-series, and use
it to train a classifier that predicts future price direction?

• Can several of the key risk factors of the execution strategy be identified?



Chapter 2

Background

2.1 Data set splitting

When learning the parameters of a model, one should never expose the model
to the entire data set. This is due to many models’ tendencies to learn the noise
of the data when given enough time. Instead, we split the data set, D, into three
different independent chunks, called the training-set, validation-set, and test-set,
visualized as

20% 40% 60% 80%

D

Training Validation Testing

The training set is used for evaluating different model parameters. After using
the train set to train the model on in-sample data, we use the validation set to
estimate how well the model performs on out-of-sample data. We differentiate
estimating- from validating- how well the model performs out of sample because
we cannot regard the validation-set as an unseen data set, as the model is continu-
ously evaluated against it, causing implicit data leakage, as described in Kaufman
et al. (2011). Data leakage is when data intended to be unseen is revealed as a
result of methodological error. After experiments are run and model parameters
are found, the test-set is used once to check if the model is functioning. Train, test,
and validation splits are experiment-dependent, but train sets generally comprise
most of the full data set.

2.1.1 Cross validation

Cross-validation is a widely used method of validating the performance of models
with overfitting risk. Instead of training a model on the entire training set (see

4
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Section 2.1), a cross-validation approach would separate a validation set from
the training set so that model performance may be estimated without exposing
the test set. Performing the separation procedure multiple times, when aggreg-
ated, tends to estimate how well the model has generalized to unseen data. The
separation procedure can be random sampling or chronologically extracting parts
of the training set. The number of times this is done is typically determined by
the parameter K , which explains the naming of the most frequently used cross-
validation approach; K-fold cross-validation (Stone, 1974). Figure 2.1a illustrates
how a cross-validation with K = 4 splits the data set.

2.1.2 Purged K-fold cross validation

By using self-similar data features (auto- or cross-correlation), such as ones com-
puted on a rolling basis, one risks introducing future information into a model
if typical K-fold cross-validation is used. De Prado (2018) details the concept of
purging, forcing the most recent sample in a training set to be T samples previous
to the first validation set sample. This measure removes data set leakage if the
amount of self-similarity is correctly estimated.
Notice how a purging period of T = 20 units creates a margin between the val-
idation set and the training set in Figure 2.1b, compared to normal K-fold CV in
Figure 2.1a.

2.2 Data transformation

Data transformation is used to ensure that data conforms to a given structure.
Many predictive models assume that input data is normally distributed, of a spe-
cific type, or within a pre-set range. Rigorous statistical theory operates with as-
sumptions of properties such as homoskedasticity and stationarity. Using data
transformation, we can standardize a wide variety of data sources and even com-
pare data with entirely different structures.

2.2.1 Standard scaling

Standard scaling transforms data to so that its mean and standard deviation is
equal to 0 and 1, respectively. Letting Z(w) denote the standard scaling function,
a standard scaling of a set of values Y ∈ Rw can be expressed as

Y z =
Y −µY

σY
, where µY =

1
w

w
∑

i=1

Yi and (2.1)

σY =

√

√

√ 1
w

w
∑

i=1

(Yi −µY )2 (2.2)

and µY = [µY , . . . ,µY ] in Rw. Then Y z is the standard scaling of Y .
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(b) Purged K-fold cross validation with K = 4 and T = 20.

Figure 2.1: Comparison between regular and purged CV.
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2.2.2 Winsorizing

Winsorizing is the process of truncating extreme values on both tails of a data
distribution. In contrast to clipping, where extreme values are dropped from the
data set, winsorizing truncates them with the limit value consistent with the side
of the distribution they lie on. A percentile 0 ≤ p ≤ 1 is defined such that 1− p
of the values of the data set are truncated (Tukey (1962)). See Figure 2.2 for an
illustration of the effect of winsorization on a standard normal distributed data
set, where p = 0.95 such that 5% of values are truncated.

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4
Standard normal data
Winsorized data

Figure 2.2: Distribution of standard normal data in comparison to the same data
after winsorization. N = 1000, p = 0.95.

2.2.3 Exponential moving average

The exponentially weighted moving average (EWMA) is a way of computing a
moving average over a series of values Y where the most recent data points have
a much stronger influence over the output. EWMAs are widely used in finance as
they are simple and computationally efficient, as well as have the ability to take
new information into account.

Definition 1 Given a real valued vector Y , where the rightmost values in the vec-
tor corresponds to the most recent observation, an exponentially weighted moving
average for t, St , is defined as

St =

¨

Y1, t = 0

αYt + (1−α)St−1, t > 0
(2.3)

where 0 < α < 1 is a smoothing factor that governs the decay of the weights in the
EWMA.

Even though Definition 1 is in bracket style, Hunter (1986) shows that the current
S also can be simply stated as

St = α
�

Yt + (1−α)Yt−1 + (1−α)2Yt−2 + · · ·

· · ·+ (1−α)kYt−k

�

+ (1−α)k+1St−(k+1)
(2.4)
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We can specify the decay factor α = 1 − exp
�

ln(0.5)
λ

�

, where λ is the halflife of
the exponential decay, which can be a more interpretable way of quantifying de-
cay. One can illustrate the exponential behaviour of the EWMA by expressing its
weights as

α

t−1
∑

i=0

(1−α)i = α
�

1− (1−α)t

1− (1−α)

�

= 1− (1−α)t (2.5)

showing that weights monotonously decrease. Notice that the weights in Equa-
tion (2.5) in the limit sum to

lim
t→∞

[1− (1−α)t] = 1 (2.6)

2.3 Triple-barrier labelling

2022-02-15 2022-03-01 2022-03-15 2022-04-01 2022-04-15 2022-05-01 2022-05-15

0.996

0.998

1.000

1.002

1.004

1.006

t=Kt=0

upper
lower
price

Figure 2.3: Example of positive label with triple barrier method, with ±3σ as
take-profit/stop-loss levels and Rtriple = 20 as the right-barrier limit.

The most typical approach for labeling the direction of future price movements
is picking a time in the future with respect to the labeling timestamp, then calcu-
lating the sign of the price change. This is called the fixed-time horizon method.
De Prado (2018) explains how this approach likely fails to maximize profits, as it
tends to generate plenty of buy/sell signals, each with very thin profit margins.
De Prado introduces a labeling method with dynamic barriers, where labels are
set if the price exits a range determined by the volatility of the asset and a prede-
termined maximum time duration, Rtriple. Consider the synthetic example in Fig-
ure 2.3, where price change after t = 0 initially was negative, then subsequently
reached the dynamic barrier three standard deviations above the starting point.
This example would be more profitable when using triple-barrier labeling than
fixed-time horizon labeling.
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2.4 Regression

Regression is the task of predicting dependent numerical target values y given
data points X (the regressors or the independent variables). The learning al-
gorithm produces a function f , which maps y = f (X ) + ϵ, put as a category
as

X y
f

The prediction is associated with an error ϵ, which we aim to minimize with meth-
ods appropriate for the covariance structure of the regressors.

2.4.1 Linear regression

Linear regression is a method of parameter estimation where, given a set of en-
dogenous variables X ∈ Rp×n, we wish to find the parameter vector β that is the
solution to the optimization problem

β̂ = arg min
β

||y − X⊤β || (2.7)

where y ∈ Rn, the dependent variable, is the target values of our optimization.

Definition 2 The minimization in 2.7 can be rewritten in the general case to

β̂ = argmin
β

(y − X⊤β)⊤Ω−1(y − X⊤β) (2.8)

whereΩ is the covariance matrix of y−X ⊺β , and is referred to as the error covariance
matrix. Nelder and Wedderburn (1972) defines this formulation of the optimization
problem as the generalized least squares (GLS).

For the linear regression solution β to be BLUE, the regression problem must sat-
isfy the Gauss-Markov theorem. When Gauss-Markov is satisfied we can ensure
that the error covariance is i.i.d with equal error variance σ2 along the diagonal,
such that Ω = Ω−1 = σ2 In, causing the GLS to be equal to the ordinary least
squares problem in 2.7.

Definition 3 Letting Ω from Equation (2.8) be diagonal such that the errors are
assumed i.i.d, we define this new error covariance matrix as W. Minimization of the
reformulated objective function

β̂ = arg min
β

∥W
1
2
�

y − X⊤β
�

∥

= (X⊤W X )−1X⊤W y
(2.9)

yields the solution to the weighted least squares (WLS), a special case of the GLS from
Definition 2.
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2.4.2 Cross-sectional regression

Table 2.1: Structure of a design matrix, X , in finance. The matrix defines rela-
tionships between factors, β , and asset names a, quantified by their weights.

β1 . . . βp

a1 X11 · · · X1p
...

...
. . .

...
an Xn1 · · · Xnp

Where regular regression applications typically consider data across time, cross-
sectional regression describes how the dependent variable, yt , for a single time-
step distributes into the p factors describing yt . In practice, each column of X
describes how a row of the dependent variable is influenced by one or several
factors. See Table 2.1 for an example of a typical structure of X in finance, first
described by Rosenberg (1974), which we can use to model the structure of values
of assets a. A the cross-sectional regression models a1 as

a1 =
p
∑

i=1

β1iX1i +α1 (2.10)

As an example, let x i j ∈ {0, 1}, i = 1, 2, . . . , p, j = 1,2, . . . , n and

X1 = [x11, x12, ..., x1p]
⊤ =

¨

x1i = 1, i = 1,3

x1i = 0, otherwise

Then we can write out 2.10 as a1 = β11 + β13 +α1, and the different βs can rep-
resent memberships of categories such as country and sector, and α will represent
the market factor that is common in all assets. The chosen value of a0 can then
be simply deconstructed into a0 = country(a0)+ sector(a0)+market. This kind of
reasoning is very prevalent in finance, - perhaps most famously used by Eugene
Fama and Kenneth French in Fama and French (1992).

2.4.3 Logistic regression

Logistic regression is a binary classification method that seeks to estimate a set of
parameters β ∈ Rp such that the logistic function

p(x) =
1

1+ e−β x
(2.11)

best estimates the probability that a sample x ∈ Rp belongs to a class of the
Bernoulli distributed variable y taking the value of either 0 or 1. The class of a
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prediction ŷ is determined using the prediction probability 0 ≤ p(x) ≤ 1 such
that

ŷ =

�

1, p(x)> 0.5
0, otherwise

(2.12)

Let L(β; Y, X ) be the likelihood of the logistic regression parameters β with respect
to the target data set Y = {y0, . . . , yN} and the feature data set X = {x0, . . . , xN}.
The expression of L(β; Y, X ) is as described in Kleinbaum et al. (2002), and ex-
presses the probability of observing a constant X given varying parameters β .
Since β is the argument of L, a maximization of L yields the parameters that best
fits X . Then we introduce the parameter C , which corresponds to the reciprocal
of the L2-regularization strength, such that the parameters are the solution of

min
β

log L(β; Y, X ) +
1
C
∥β∥2 (2.13)

2.5 Constrained optimization

Constrained optimization is the problem of optimizing an objective function (equi-
valent to the energy function in control theory) with respect to a set of constraints,
often used for imposing real-life limitations on the arguments of the objective
function. Generally, a constrained optimization problem can be posed as

min f (x)
subject to gi(x) = ci for i = 1, . . . , m Equality constraints

h j(x)≥ d j for j = 1, . . . ,ℓ Inequality constraints
(2.14)

2.5.1 Karush-Kuhn-Tucker

For a general problem in constrained optimization as stated in Equation (2.14),
where ci = 0 ∀ i and d j = 0 ∀ j and constraints are formulated as

g(x) = [g1(x), . . . , gm(x)]
⊤ , h(x) = [h1(x), . . . , hℓ(x)]

⊤ (2.15)

The Lagrangian function L(x ,µ,λ), a weighted sum of the objective function and
its constraints, is constructed in the form

L(x ,µ,λ) = f (x) +µ⊤g(x) +λ⊤h(x) (2.16)

Theorem 1 If f , g, h ∈ C1({x⋆}), i.e. continuously differentiable at a point x⋆ ∈ Rn,
and x⋆ is a local optimum, then there exists KKT-multipliers µ⋆ ∈ Rm and λ⋆ ∈ Rℓ

such that J f (x⋆) + Jg(x⋆)µ⋆ + Jg(x⋆)λ⋆ = 0, which minimizes Equation (2.14) if
the following conditions are held.

1. g(x⋆)≤ 0 and h(x⋆) = 0 (Primal feasibility)
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2. µ⋆ ≥ 0 (Dual feasibility)
3. µ⋆⊤g(x⋆) = 0 (Complementary slackness)

These conditions are not exclusive in producing an objective minimizing solu-
tion that satisfies the KKT conditions (Kuhn and Tucker (2014) and Nocedal and
Wright (2006)). There are a variety of other constraint qualifications that ensures
a constrained minimizer also satisfies the KKT conditions. Since this thesis only
concerns convex objective functions and constraints, Slater’s condition is the only
additional constraint qualification that will be included in this section, stating the
existence of a point x⋆ which satisfies Item 1, primal feasibility (Slater (2013)).

2.6 Decision tree classification

Decision tree classification involves methods that distinguish between two or more
classes by using classification trees. Ensemble methods rely on multiple classi-
fication trees that are combined by either bootstrap aggregating or boosting to
minimize classification model error.

2.6.1 Classification trees

A classification tree is a supervised learning algorithm that, when visualized, has
the appearance of a tree with a root node, internal nodes, and leaf nodes (see
Figure 2.4).

Leaf node

Root node


Internal node


Leaf node Leaf node

Internal node


Leaf node

Yes No

NoNoYes Yes

Figure 2.4: Structure of a decision tree with two levels. Decision trees can have
an arbitrary number of levels of internal nodes before reaching leaf nodes.

Consider a binary classification problem where leaf nodes show classification prob-
abilities p = P(y = 1 |X ). Then P(y = 0 |X ) = 1−p. Decision trees, of which clas-
sification trees are a special case, are constructed by splitting nodes at a feature
value that best divides the data set. In other words, a split aims to maximize the
difference between the sides of the split with respect to the two classes. Trees can
be split based on a variety of criteria, including Gini impurity, estimate of positive
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correctness or information gain (Rokach and Maimon (2005)). In this thesis we
employ Gini impurity, which is described by

IG(p) =
P
∑

i=1

 

pi

∑

j ̸=i

p j

!

=
P
∑

i=1

pi (1− pi) , (2.17)

for a data set containing P classes. For binary classification it is simply expressed
as

IG(p) = 2p(1− p) (2.18)

Intuitively, Gini impurity can be described as the probability of misclassifying a
sample if given a random class label according to the distribution of the classes.
A Gini impurity of zero would indicate that within a split, there would be a zero-
probability of sampling a member of the wrong class. Therefore, each node is split
at the point of the data feature that minimizes IG . This means that a candidate’s
minimum Gini impurity has to be computed for each feature, and the tree is ulti-
mately split on the argument of the minimum of all candidates.

2.6.2 Ensemble learning techniques

Ensemble learning techniques are used to increase the accuracy of predictions
compared to the outputs of e.g., a single classification tree, which would have a
high bias and low variance. In this thesis, we improve on this by employing the
three following ensemble techniques.

Bagging

Bootstrap aggregating, or bagging, increases classification accuracy by taking the
equal-weighted mean of classifications from a set of predictors trained on boot-
strapped subsets of a training set L = {(yn, xn)}Nn=1. Following Breiman (1996),
let yn be a Bernoulli distributed target class and xn be an input sample. A bagged
predictor is created by random sampling M equal sized training sets {Lm}Mm=1 from
L and growing a classification tree φm(x ,Lm) for each. The bagged classifier is
then expressed as

φ(x)A =
1
M

M
∑

m=1

φm(x) (2.19)

The random forest classifier is essentially a result of this approach in combination
with a random sampling of a subset of features of a randomly sampled training
data set. This is done to reduce the emphasis on the most predictive features, such
that correlation across trees is reduced (Ho (1995)).

Stacking

Wolpert (1992) introduces stacked classifiers as a method of reducing generaliza-
tion error by using the outputs of a set of classifiers Bi , i = 1, . . . , M as the training
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of for an additional classifier Cm, which we refer to as the meta-classifier. Then a
classification of a data sample x is given by the composite function

ŷ = Cm(B1(x), B2(x), . . . , BM (x)) (2.20)

Boosting

In the same manner as bagging, multiple weak predictors φm are formed from
the original data set L, but instead of using bootstrapped subsamples of L, weak
predictors are trained sequentially on the entirety of L. Samples with high mis-
classification rates are then weighted higher than their counterparts, and a new
weak classifier is trained by minimizing error with respect to the new weighting.
This process is continued until the desired number of weak classifiers is reached.
Then, the final strong classifierφ(x)B is a linear combination ofφ1, . . . ,φm (Bühl-
mann (2012)). The weighting method and loss function vary across boosting im-
plementations, but in this thesis, we use the efficient gradient boosted decision
tree algorithm LightGBM of Ke et al. (2017). LightGBM, or LGBM, lets each weak
predictor learn the residuals of the former weak predictors and builds decision
trees very efficiently by approximating the split criterion instead of computing it
on all data instances. The authors show that LGBM trains much more efficiently
than its high-performing peers, including XGBoost of Chen and Guestrin (2016)
while only suffering a slight performance decrease. This makes LGBM suitable for
large data sets with a large amount of features.
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Method

The execution strategy can be described as the sum of three components. The first
is a multi-factor model, which we use for generating data features that we train
our second component, a stacking classifier, with. The stacking classifier predicts
the future direction of asset prices for all assets daily. These classifications are
used in a final execution rule, the algorithm that we consider our third and final
component of the execution strategy.

3.1 Pure factor model

For this thesis we consider a pure factor model with a structure similar to the
Barra Global Equity Model (GEM2), implementing a range of style factors. A pure
factor model is defined as a result of multivariate regressions that simultaneously
consider all factors, as opposed to simple factor models that compute all factors
isolated in a univariate fashion. Note that we wish to estimate the factors, which
are unobserved. Recall the cross-sectional decomposition of an asset’s returns from
Equation 2.10, and consider the standard formulation of GEM2 as published in
Menchero, Morozov et al. (2010), decomposing the returns rk of an asset k for a
point in time t into

rk = 1 · βm +
∑

c

X c,kβc +
∑

i

X i,kβi +
∑

s

Xs,kβs + uk, k = 1, . . . , M (3.1)

where βm is the market factor to which all assets are exposed to, βc is a country
factor, βi is an industry factor, and βs is a style factor. uk is the regression error,
which Menchero, Morozov et al. (2010) refers to as the idiosyncratic return, which
is the return that can not be attributed by the factor model. We have a design
matrix X in the form of Table 2.1. Following Heston and Rouwenhorst (1994) we
impose the following equality constraints on the regression parameters.

gcountries =
∑

c

wcβc = 0 and gsectors =
∑

i

wiβi = 0 (3.2)

15
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Heston and Rouwenhorst specifies that the weights wc must sum to one and con-
strains the weighted sums of sectors and countries to sum to zero. The weighted
sums are calculated by taking the sums of market capitalizations of all assets in a
factor,

Mc =
Ac
∑

k

mk, (3.3)

where Ac is the set of all assets in factor c and mk is the market cap of asset k. We
then normalize these sums, yielding country constraint weights

wc =
Mc

∑

C Mc
, (3.4)

where C is the set of all country factors. Equivalently, we perform the same nor-
malization as Equation (3.4) over the set I, containing all sector factors.
Note that these constraints are not enforced on each sector or country by them-
selves but on sectors or countries as groups of factors. Therefore we cannot be
sure that the constraint holds for a single country in isolation since there is no
guarantee that assets in all countries are distributed over the same sectors with
the same market cap distribution as the whole market.
Finally, the model imposes an indirect constraint on the style factor loadings, such
that the market cap-weighted average factor exposure of each style is equal to
zero. The specifics of how this standardization is performed are described in Sec-
tion 3.1.2.

3.1.1 Factor loadings

Factor loadings, which are the scalar values contained within the exposure matrix
X , are, in this implementation, the exponentially weighted beta values of each
asset against the market cap-weighted average returns of the assets contained
in the factor. This approach is similar to Shepard (2008), where for an arbitrary
factor, the loading for an asset k on a factor i is given by

Xk,i =
Cov (rk, Ri)

Var (Ri)
(3.5)

where Ri ∈ RT is the market cap weighted averages of the returns of the members
of factor i, and rk ∈ RT is the T most recent log-returns of asset k.
As described by Shepard, the intuition behind this approach is based on the tend-
ency of assets to be affected by the movements of their industries to varying de-
grees. When unit exposing every asset to a factor, the factor return will have an
equal impact on the returns of each of the assets. In real life, one would expect
this impact to vary based on, e.g., the company supply chain and sources of cash
flow, which do not necessarily source from the same industry as the asset.
We consider a slightly modified version of the factor loading method of Shepard,
utilizing the definition of financial beta in the form of the regression
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rk = βRi + ϵ, ϵ ∼N (0, σ2) (3.6)

which is computed as an exponentially weighted WLS regression. The solution to
the WLS regression is given by

Xk,i = βk,i =
�

R⊤i ARi

�−1
R⊤i Ark (3.7)

where A∈ RT×T is a square weight matrix with an exponential weighting scheme
on the diagonal given by

At,t =
exp

�

− t
L ln 1

2

�

∑T
j=1 exp

�

− j
L ln 1

2

� , t = 1,2, . . . , T (3.8)

where L is the halflife of the exponential weight decay. This expression of β places
more emphasis on recent observations, as opposed to Equation (3.6), which would
consider values at the end of the calculation window equally relevant as the ob-
servation of the current day. We show in Section 4.3 that using this factor loading
method results in increased explanatory power of the factor model compared to
unit exposures.

3.1.2 Style factors

We include style factors in our multi-factor model to increase the explained vari-
ance of the model, as well as using their exposures as features in the stacking
meta-classifier. Style factors are different from sector and country factors by be-
ing exposed to all assets in the loadings matrix, enabling practitioners to see how
characteristics such as return momentum and company size reflect on asset return
performance on a global scale.
Style factor weights are processed in the same manner as in Menchero, Morozov
et al. (2010), where the raw values of the style factor, ds,k, are standardized with
respect to the cap-weighted mean of the style factor as follows

Xs,k = winsorize

�

ds,k −µs

σs
, p

�

, (3.9)

where the truncation percentile p is determined by maximization of model ex-
plained variance using K-fold cross validation on a subset of the asset return data.
From this point on, we refer to raw style factors as descriptors, in line with the
language used in the MSCI-literature (Menchero, Morozov et al., 2010). In Equa-
tion (3.9), µs is the market cap weighted mean of all descriptors, and σs is the
equal weighted standard deviation of all descriptors.

In this thesis, we consider a selection of the most well-documented style factors
in the literature. Feng et al. (2020) shows that the production of factors in aca-
demic finance has exploded due to academic practitioners failing to rigorously test
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whether factors contribute to increasing the explanatory power of factor models.
They introduce a novel method of evaluating explanatory power using a hybrid of
the double selection LASSO of Belloni et al. (2014) and Fama-Macbeth regression
of Fama and MacBeth (1973), then evaluate a selection of 150 factors introduced
in the literature in the last 30 years. In addition to the small-minus-big (SMB)
factor of Fama and French (1992) and the momentum factor of Jegadeesh and
Titman (1993), we include the following significant factors in the model:

Industry-adjusted size

Asness et al. (2000) models the returns of an asset k with respect to its log market
cap value mk in comparison to its mean market cap within-industry, as follows

rk = γ0 + γ1mk + γ2 (mk −mk) + ϵk, (3.10)

where mk is the equal weighted average log market cap of all assets in the industry
of asset k, in effect breaking traditional explanatory variables into an across-
industry component and a within-industry component. The authors explain that
only the factor γ1 − γ2 is statistically significant (t = 2.43), showing that Equa-
tion (3.10) is equal to

rk = γ0 + (γ1 − γ2)
︸ ︷︷ ︸

γi

mk + γ2mk + ϵk. (3.11)

In this implementation we add the style factor γi to the model, where γi is an
instrumental variable (Bowden and Turkington, 1990).

Volatility of dollar trading volume

The notion that liquidity can affect asset returns is widely accepted, shepherded
by Amihud and Mendelson (1986). Chordia et al. (2001) successfully verifies that
the second moment of liquidity also has a similar effect and uses dollar trading
volume as a proxy for liquidity. The variability of dollar trading volume is then
computed as the standard deviation of the natural logarithm of dollar trading
volume, computed on a window of a trading year. We use NOK as the stand-
ard currency, which closely approximates the weights resulting from dollar values
after standardization using the methodology in Equation (3.9).

Betting against beta

Frazzini and Pedersen (2014) uses an ordinal rank scale of market beta values
as part of a weighting factor, sorting low beta assets and high beta assets into
separate portfolios, Lpf and Hpf, respectively. Beta ranks are given by a vector
z ∈ RN , containing elements zi = rankβ(βi), i = 1,2, . . . , N , where each beta is
ranked in comparison to the betas of all other assets in the investment universe.
Portfolios are rebalanced every calendar month, following the portfolio weights
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wH = k(z − z̄)+

wL = k(z − z̄)−
(3.12)

where k is a normalizing constant expressed as k = 1
2

∑N
i=1 |zi − z̄|. The + or −

superscripts indicate the positive and negative elements of the vector z−z̄, putting
all assets with lower than average beta rank into portfolio Lpf and vice versa into
Hpf. We calculate β-values as described in Equation (3.5), setting Ri = RM (see
??). Note that Frazzini and Pedersen employs a shrinkage measure on the market
β values as described in Vasicek (1973) before ranking them in order to compute
a theoretical zero-beta portfolio. However, the shrinkage measure shrinks the β
values linearly towards the cross-sectional mean, which does not change their
ordinal ranks. Therefore, we skip this processing step when exclusively computing
factor weights and rank the exposures to the market factor.

3.1.3 Regression weights

The type of weights w is a design choice dependent on how one wants each asset in
the factor to influence the latent factor value. Menchero and Nagy (2013) shows in
The Impact of Regression Weighting that using the square root of current log market
capitalization as weights acts as a proxy for inverse specific variance weighting,
which minimizes sampling error in factor realizations. Therefore we let wk =p

mk, k = 1, . . . , N , be the weights on the diagonal of W ∈ RN×N in Equation (2.9).

3.1.4 Panel regression

We let the equality constraint weights from Equation (3.2) be put into vector form,
defining a constraint matrix C ∈ R2×K containing factor-wise constraint weights

C =

�

wC1
· · · wCn

0 · · · 0
0 · · · 0 wI1

· · · wIm

�

(3.13)

such that primal feasibility is satisfied if Cβ = 0 (see Theorem 1). This approach
is dependent on the ordering of factors within β , meaning that the n-th column
of C corresponds to the n-th factor, βn.

Theorem 2 Given the optimization problem

min 1
2∥W

1
2
�

r − X⊤β
�

∥2
2

subject to Cβ = 0
(3.14)

where W ∈ RN×N is a diagonal error covariance matrix, r ∈ RN is a return vector,
and C ∈ R2×K is a linear equality constraint matrix as described in Equation (3.13),
a solution, β ∈ RK , is given by

�

β

λ

�

=

�

X⊤W X C⊤

C 0

�† �
X⊤W r

0

�

(3.15)
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and is valid if the equality constraints are satisfied.

Proof 1 (Proof of Theorem 2) Taking the objective function of the WLS from Equa-
tion (2.9), we define the Lagrangian of the system

L(β ,λ) :=
1
2
∥W

1
2 (r − X⊤β)∥2

2 +λ
⊤Cβ

=
1
2
(r − X⊤β)⊤W (r − X⊤β) +λ⊤Cβ

(3.16)

Taking the partial derivatives of the Lagrangian and finding where they vanish, we
obtain the linear system

�

X⊤W X C⊤

C 0

��

β

λ

�

=

�

X⊤W r
0

�

(3.17)

Equation (3.17) is then solved using a left pseudoinverse, yielding proposed factor
returns and Lagrange multipliers on the form

�

β

λ

�

=

�

X⊤W X C⊤

C 0

�† �
X⊤W r

0

�

(3.18)

Since we have time-varying returns, regression weights, and loadings matrices,
the panel regression is solved by chronologically solving the cross-sectional re-
gression described in Theorem 2. This is equivalent to solving a fixed-effects panel
regression with pooled least squares. Asset return values are winsorized at ±3σ
for any given asset to reduce extreme values of factor returns, especially in factors
with few participants.

3.1.5 Model explanatory power

We measure the explanatory power of the factor model by computing the R2 of
the cross sectional regressions

R2 = 1−

∑

k wku2
k

∑

k wkr2
k

(3.19)

where wk is the regression weight and uk is the regression residual for asset k,
following the definition of Guerard Jr (2009).
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3.2 Order execution model

In this section, we detail the construction of an order execution model based on
ensemble learning, where output probabilities of a set of tree-based classification
models are used as inputs in a stacking meta-classifier. The tree-based classifiers
are primarily trained on data features of deviations from asset return predictions
over time, where return predictions are directly computed from factor realizations
and loadings detailed in Section 3.1.

Asset returns

Factor model Generate
features

Triple-barrier
label

Train stacking

purged K-fold CV


classifier

Meta-classifier

Prediction

probabilities

Object Function Values

Figure 3.1: Overview of the order execution model.

Consider a rough overview of the order execution model in Figure 3.1, showing
how factor model loadings and asset returns are used to compute training data for
a meta-classifier model, which predicts the sign of the next asset return. The meta-
classifier is a logistic regression model trained on the prediction probabilities of
four light gradient boosting models (LGBM), each of which is trained on classifier
features detailed in Section 3.2.2. The training procedure is based on a slightly
modified version of stacked generalization in Tang et al. (2014), using purged K-
fold cross-validation of De Prado (2018) as its cross-validation splitter. The process
is described in detail in Section 3.2.3.

3.2.1 Execution decisions from meta-classifier predictions

Letting trading signals (pending orders) be contained in vectors d for each asset,
each signal dt ∈ d is the signal for time t with values dt = −1 ∨ 1. For each
point in time we take the meta-classifier prediction probability, −1< pm < 1, and
checks if the sign of the signal dt matches the sign of pm, and that the prediction
probability is greater than pthreshold. Let {pm | pm ≤ 0} correspond to negative
return predictions within the prediction horizon. Vice versa, we let the rest of the
classifications be positive return predictions. Algorithm 1 shows how a signal is
executed only if the meta-classifier model agrees with the trading direction of the
signal. Since orders have a long time horizon, they do not have to be executed
instantly. If the meta-classifier model (which is short-term based) disagrees with
the direction of the long-term signal, the signal is placed in embargo. Signals are
executed regardless after a specified maximum embargo period E. If the dates of
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two orders in the same asset coincide due to Algorithm 1, the most recent one is
chosen.

Algorithm 1 Make trade execution decision from classifier predictions.

procedure DECIDE_EXECUTION(d, E, pm, pthreshold)
j← 1
while j ≤ E do

if d j =
|pm|
pm

and |pm| ≥ pthreshold then
Execute trade d, j days after original signal date.

end if
j← j + 1

end while
Execute trade d, E days after original signal date.

end procedure

We use a threshold on prediction probabilities, pthreshold, to adjust the confidence
in classifications. Some trading signals, such as signals based on news releases
and quarterly reports, tend to decay in profitability as a function of time after
publication. This means that a delay in execution caused by a high-conviction
meta-classifier signal can result in a less profitable trade if the trading strategy
we want to improve execution on is associated with a high degree of time-based
profit decay. On the other hand, if a strategy is robust to time delays, pthreshold can
be set to a value closer to one. Section 3.2.4 details how pthreshold is determined
with respect to the distribution of prediction probabilities and time based profit
decay.

3.2.2 Base classifier features

We include a total of q = 20 features for the base classifiers, as follows.
The vector r̂t ∈ RN of asset return now-casts are given by r̂t = X tβt , the loadings
and factor realizations of the factor model for time t. It is important to emphasize
that today’s asset prices, and therefore returns, cannot be used when predicting
the same returns.
The close prices of the current and previous dates are used for computing factor
realizations which are then used to compute r̂. When residuals from actual returns
r − r̂ are calculated, processed, and used as inputs into classification models, it
is based on the assumption that they have prediction value about the direction of
future price changes.
Table 3.1 shows the features of the base classifiers. All features with a temporal
aspect, such as cumulative percentage deviations, are calculated on a rolling basis,
reducing the possibility of data set leakage. Features are based on the hypothesis
that deviations over time of true asset returns from predicted returns tend to re-
solve themselves and that the magnitude of deviation, as well as consensus across
time-frames, is predictive in estimating future price direction. We also include the



Chapter 3: Method 23

Table 3.1: Input features Db of base classifiers. Note that although seven differ-
ent types of features are included, some of them have variations in parameters,
resulting in 20 features in total.

Name Definition Variations

Cumulative percent deviation
(nowcast - true)

exp
�∑w

i=1(r̂−i − r−i)
�

− 1, w ∈W W = {4,8, 16, 32}

Cumulative percent deviation
(equal weighted - true)

exp
�∑w

i=1(r̃−i − r−i)
�

− 1, w ∈W W = {4, 8, 16,32}

Cumulative percent deviation
(equal weighted - nowcast)

exp
�∑w

i=1(r̃−i − r̂−i)
�

− 1, w ∈W W = {4,8, 16, 32}

Style factor loading of asset k Xs,k All style factors (Section 3.1.2)
R2 (nowcast, true) Exponentially weighted R2 with a 25-day halflife -

Most recent asset return r−1 -
Most recent nowcast r̂−1 -

R2-value between nowcasts and true returns to adjust the confidence of classific-
ations, such that worse-fitting assets have prediction probabilities close to 50%.
Having classification probabilities that reflect real-world values is paramount for
our base classifiers, as their outputs are used as inputs in the final meta-classifier.
In addition to utilizing residuals from nowcasts, we introduce an equal-weighted
asset equivalent, meaning that for any given asset participating in several factors,
its equivalent would be the estimated return mean of all assets inhabiting the same
characteristics. For an asset participating in sector i, country c and style factor s,
we express the equivalent as

r̃ t
k =

β t
c

|Ac|

|Ac |
∑

j=1

X jc +
β t

i

|Ai|

|Ai |
∑

j=1

X ji +
β t

s

N

N
∑

j=1

X js

︸ ︷︷ ︸

=0

= β t
c + β

t
i

(3.20)

where |S| is the size of a set S. Unit exposures of industry and country factors fol-
low from their loadings being beta-exposures towards their cap-weighted return
averages, as described in Section 3.1.1. Style factors vanish as a result of style
factor constraints of Section 3.1.2. The decision of only including one style factor
in Equation (3.20) is irrelevant, as additional style factors also would vanish in
the aggregate. We use r̃ in the same manner as r̂, where we compute cumulative
percent deviations from true asset returns. These features are designed to give
a reference of how well an asset is performing in comparison to similar assets,
in effect calculating specific indices for each asset. This added reference point is
informative, as it explains how well assets are performing compared to how well
their peers are expected to perform, and how well assets are expected to perform
compared to how well their peers are expected to perform. This enables a well
trained model to identify and remove recent biases in the factor model return
estimates.
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3.2.3 Stacking with purged K-fold Cross Validation

Generate K
pairs of purged
train/val folds


Train base
classifiers


Predict

Add to




Train
meta-

classifier


Meta-
classifier

Object Function ValuesLoop

Figure 3.2: Purged K-fold cross validation stacking.

Using triple-barrier labeled prices as target variables and data features as listed in
Table 3.1, a selection of tree-based classifiers are trained as bases1 to a stacked en-
semble learner we refer to as the meta-classifier. In this thesis we introduce a mod-
ified version of stacking with K-fold cross-validation, where instead of randomly
splitting a data set D into K even validation folds D = {Dk | |Dk|= c}Kk=1(c ∈ Z

+),
we generate K pairs of purged training and validation pairs, {Tk, Vk}Kk=1. In the ori-
ginal approach described in Tang et al. (2014), training folds are simply expressed
as Tk = D \Dk. In the case of overlapping time-series data, such as financial data,
this approach would cause data leakage and, therefore, over-optimistic results.
Stacking with purged K-fold cross-validation reduces data leakage by negating
data samples in the training set if they are closer to the first validation set sample
than a set purging duration. Despite purging, the meta-classifier is exposed to each
sample in D exactly once, as {Vk}Kk=1 = D. This is a property of regular stacking

1We refer to base classifiers and meta-classifiers synonymously to what Wolpert respectively
would refer to as level 0 and level 1 learners in Wolpert (1992).
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with K-fold cross-validation as well, meaning that only the size of training sets is
decreased with purged data set splitting.
Let Db = {(x t , yt)}Tt=1(x t ∈ Rq, yt ∈ R) denote the training data set for base classi-
fiers, Bi , i = 1,2, . . . , p, containing the features of Table 3.1 as well as triple-barrier
labels as targets. Also, let Dm = {(bt , yt)}Tt=1(bt = [B1(x t), . . . , Bp(x t)]⊤, yt ∈ R)
be the training data set of the meta-classifier, Cm, containing prediction probab-
ilities of the base classifiers as features and the same targets as in Db. The meta-
classifier is then trained on the full training data set Db using purged K-fold cross-
validation. As in regular stacking with cross-validation, we construct the training
set for the meta-classifier with the probabilistic outputs of the base classifiers. This
method differs in how training and validation folds are computed. See Figure 3.2
for an overview illustration of the method. A specific explanation is documented
in Algorithm 2.

Algorithm 2 Stacking with purged K-fold cross validation.

procedure STACK_PURGED(Db)
Split Db into K tuples of {Tk, Vk}Kk=1 using purged K-fold CV
Dm← ;
for k← 1 to K do

for i← 1 to p do
Train base classifier Bi on Tk (Section 3.2.5)

end for
for x i , yi ∈ Vk do ▷ Add outputs of base classifiers to Dm

Dm← Dm ∪ { x̂ i , yi}, where x̂ i = {B1(x i), B2(x i), . . . , Bp(x i)}
end for

end for
Train meta-classifier Cm on Dm
for i← 1 to p do ▷ Retrain base classifiers on entire training set

Train base classifier Bi on Db
end for
return Cm(B1(x), B1(x), . . . , Bp(x))

end procedure

3.2.4 Determining key execution parameters

Key parameters are defined as the parameters that are thought to have the greatest
influence on the performance of the execution strategy while being independent
of any classifier parameters discussed in the following subsections. We consider
these parameters to be the prediction probability threshold pthreshold, the max-
imum embargo period E, and the right triple barrier limit Rtriple. The final para-
meters are thought to maximize the Sharpe ratio of the execution strategy. De
Prado (2018) emphasizes the importance of not using historical backtesting as a
research tool, and the adage of Goodhart’s law states that "When a measure be-
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comes a target, it ceases to be a good measure" (Goodhart (1984)). Therefore, we
choose the value that maximizes the signal-to-noise ratio of excess return on the
validation set of the meta-classifier, which we use as a proxy for the Sharpe ratio.
The measured Sharpe ratio is only calculated when backtesting, which is per-
formed after the completion of all modeling. Notice the similarity of the Sharpe
ratio, Sa, of Sharpe (1998) and the square root of the signal to noise ratio of a
random variable,

p

SNRa, defined in Butler and Sherman (2016) as

Sa =
E [ra − rb]
σa

(3.21)

p

SNRa =

√

√

√E [ra]
2

σ2
a
=
E [ra]
σa

(3.22)

where ra is the return of an investment, rb is the risk-free return, and σa is the
standard deviation of ra. If we let rb = 0, then the two definitions are equal. Re-
gardless, the ranks of the different values are preserved between the two defini-
tions, as the risk-free return can be seen as a linear bias2. Since we cannot simulate
the actual excess profit from the execution strategy before backtesting, we model
the distribution of

p

SNRa and extract the parameters that maximize its expected
value. Assume that for any profitable trade by the execution strategy, we receive a
constant payoff per day. Since profits are positive, we estimate the per day profit
to be the mean absolute return over all assets in the investment universe, that is

µ|r| =
1

N T

N
∑

k=1

� T
∑

t=1

|r x
k,t |

�

(3.23)

where r x = er − 1 is a linearly scaled asset return3. The mean probability of the
meta-classifier correctly classifying future return direction, ϵ, can be estimated
empirically from classification probabilities predicted from a validation data set,
and represents ϵ = Pr(Cm(x) = y | |pm| ≥ pthreshold) for any sample x and target
return direction y . Then mean profit the day after an order execution is modelled
as

πd = µ|r|ϵ −µ|r|(1− ϵ)
= µ|r|(2ϵ − 1)

(3.24)

Following Section 3.2.1, we use Algorithm 1 to execute an order within E days.
Let β be the probability4 of the meta-classifier outputting a prediction probability
greater than pthreshold. Then pc = 1 − (1 − αβ)D is the probability of encounter-
ing at least one probability value |pm| greater than pthreshold within the period,
and that the order direction is equal to the predicted direction. Here α is defined

2Consider that a+ b < c + b if a < c for all b ∈ R.
3Recall that r is log-scaled.
4This can be estimated from the empirical cumulative distribution of prediction probabilities

from a validation data set.
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as the probability that the meta-classifier predicts that the price will move in the
same direction as the trade side, e.g. when predicted positive price change and a
long order coincides. D ∈ Z+ is the expected embargo duration D = ⌈min{ 1

β , E}⌉.
Since 1

β quickly exceeds E when β decreases, we have to enforce the maximum
embargo duration E by taking the minimum of the two at each time. Finally, πd pc
represents the mean gross profit over an embargo period. However, as a side effect
of delaying the original trading strategy by D days on average, we can expect a
profit reduction in the original trading strategy as a function of the time delay D.
This loss in profitability is dependent on the extent to which the strategy acts on
time-sensitive information, such as real-time news updates or quarterly financial
reports of companies. We define θt as the per day profit percentage difference
caused by delaying the original trading strategy by t days. θt is estimated empir-
ically by backtesting the original trading strategy on a validation data set using
orders that are shifted by t days, then estimating the mean and standard devi-
ation of the difference in profit compared to the performance of the un-shifted
strategy. If we crudely assume that θt ∼ N (µθt

,σ2
θt
), then profit decay over a

period of t days is sampled from tθt ∼ N (tµθt
, t2σ2

θt
). Therefore, the estimated

net execution strategy profit per order is sampled from

πE ∼N
�

πd pc − DµθD
, D2σ2

θD

�

(3.25)

which we can use to model our proxy for Sharpe ratio,
p

SNR, as defined in Equa-
tion (3.22), as

p
SNRE ∼N

�

πd pc − DµθD

DσθD

, 1

�

∼N
�

πd pc

DσθD

−
µθD

σθD

, 1

� (3.26)

when we recognize the analogs ra := πd pc − DµθD
and σa := D2σ2

θD
. Then the

maximization of its expected value, E
�p

SNRE

�

, yields E and pthreshold. We form-
alize this optimization problem as

E⋆, p⋆threshold = arg max
E,pthreshold

πd pc

DσθD

−
µθD

σθD

(3.27)

where E⋆ and p⋆threshold represents the parameters that are modelled to result in an
execution strategy that maximizes the Sharpe ratio of the original trading strategy.
The right triple barrier label length R⋆triple is chosen by training the meta-classifier
as described in Section 3.2.3 for different values of Rtriple in the training data set
and optimizing Equation (3.27) for each of them. The final value of Rtriple is the
one that maximizes E

�p
SNRE

�

over all candidate triple barrier lengths.
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3.2.5 Randomized parameter search for base classifiers

Each base classifier Bi is optimized K times (see Figure 3.2), and each optimization
step is performed by using each Tk as a standalone data set for purged cross-
validation. It should be emphasized that this data set splitting is additional to
when Db is split K times. Letting F be the number of folds when optimizing any
Bi , the total number of samples to be learned is T K · T

K F = T2F . This number
is then multiplied by the number of attempted parameter combinations, n, which
can make the process very computationally intensive. To simplify the complexity of
each base classifier optimization, we choose random parameter search over, e.g.,
a stochastic gradient descent of log-loss. Instead of iterating until an optimum
is reached, we specify a performance quantile q ∈ [0,1] that we find acceptable
for each base classifier. The optimal parameter combination yields performance
in q = 1.
For each parameter we wish to tune in the base classifier, we specify a range of
values from which the random search can choose. Assuming that an optimal para-
meter combination lies within the specified ranges, we know that over a number
of trials, we can place each trial’s performance within a quantile. Setting a power
p, we can estimate how many iterations of random search are needed to reach a
parameter combination with a performance above the qth quantile, with 100p %
certainty. Assuming that trials are independent, the probability that all n of them
are beneath q is qn. Therefore, the probability that at least one of the trials is
above q is 1− qn. Hence, we can express the sufficient number of trials as

1− qn ≥ p =⇒ n≥
log(1− p)

log(q)
(3.28)

0.0 0.2 0.4 0.6 0.8 1.0
q

100

101

102

103

Su
ffi

cie
nt

 it
er

at
io

ns
 n

 (l
og

)

Figure 3.3: The amount of iterations sufficient for encountering a model per-
formance within the quantile q, with p set to 95% confidence (log scale).

Figure 3.3 shows the relationship between n and q if p = 0.95. The iteration
number can then be chosen based on time- and computational constraints. As an
example, a result in the top 5% with 95% confidence requires n = 59 iterations,
following Equation (3.28).
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3.2.6 Feature selection for base classifiers

Since base classifiers are tree-based, we utilize feature permutation importance
of Altmann et al. (2010), and leave out data features with less than zero im-
portance. Permutation importance is used, as the most frequently used feature
importance methods are based on impurity reduction of splits (MDI), which are
proven to be biased (Breiman et al. (1984)). This bias can be illustrated by adding
a noise column as a data feature, then applying the various feature importance
methods to a trained model. For impurity reduction-based methods, the noise fea-
ture will show a non-zero and, at times, substantial importance, as displayed in
Permutation Importance vs Random Forest Feature Importance (MDI) (2022). MDI,
although fast, only considers the mean prevalence of a feature within all trees.
Permutation importance purposely corrupts a feature and calculates its effect on
model performance. This approach is less biased but comes at the cost of being
more computationally demanding.



Chapter 4

Experimental results

The approach described in Chapter 3 discusses a general framework for construct-
ing an execution model based on stacking classifiers using information from a
multi-factor model. Except for a description of the features of the base classifi-
ers, the type and amount of classifiers are arbitrary such that the method can
be extended to trading strategies of different types and time horizons. In this
chapter, we test the performance of the execution strategy by training a meta-
classifier based on real market information, factor realizations, and exposures and
then testing it out-of-sample by improving trading signals from two real trading
strategies, Strategy 1 and Strategy 2. We benchmark the performance of the execu-
tion strategy against the performance of the original trading strategy and establish
whether market conditions are influential on the accuracy of the meta-classifier.
We also test the explanatory power of the factor model, investigating whether
or not the factor loading method detailed in Section 3.1.1 shows promise over
traditional unit weighted loadings.

4.1 Measures against data leakage

When evaluating the effectiveness of the execution strategy, minimizing the risk of
data leakage is of the highest priority. Data leakage occurs when a model accesses
information outside its training data set. This can happen directly, as a result of a
logical error, or indirectly, in the form of "p-hacking". P-hacking is a human error
made when only positive results are reported after multiple testing. For instance,
if several models are trained on a training set, but only the top-performing model
on the test set is chosen, then the results have been p-hacked. In a scenario like
this, the test set loses its purpose and becomes a part of the training set. In this
thesis, we reduce the risk of this happening by exposing the model to the test
set precisely once per trading strategy, meaning that all parameters are determ-
ined before historical backtesting begins. Another measure against p-hacking was
receiving the out-of-sample trading signals of Strategy 2 after the completion of
all modeling, making it impossible to p-hack the performance of the execution
strategy on that trading strategy.

30
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Throughout the development of the execution model, we assume that we do not
necessarily get to execute orders instantly after market data is received. Therefore
we increase model robustness by computing classifier features on market open
prices and labeling targets from market close prices (starting the next day).

4.2 Experimental setup

This section describes the specifics of testing the execution strategy and its un-
derlying components, such as the factor model, the base classifiers, and the meta-
classifier. This includes specifying the trading universe, data sources, data pro-
cessing, and parameter choices.

4.2.1 Data sources

Throughout the thesis, we use data from three different sources. Firstly, market
data such as daily price quotes, currencies, market capitalization, and volume are
used to compute factor realizations as well as getting the differences between
predicted and actual price returns. We use a selection of 1150 European stocks
and the currency pairs EURNOK, SEKNOK, and DKKNOK, which we retrieve from
Refinitiv Eikon through a subscription managed by NTNU. Secondly, asset charac-
teristics such as industry, currency, and country of origin are used to construct the
daily updating dynamic factor matrices. Lastly, we estimate the performance of
the execution strategy by simulating signals from real trading strategies supplied
by Intelligent Trading, where the signals with unmodified execution dates give us
a benchmark equity curve used to statistically test whether the execution strategy
is significantly more profitable. See Table 4.1 for a sample of how trading signals
from Intelligent Trading are listed. Note that the numbers in the table have been
fictionalized, as the company does not wish to disclose the signals to the public.
We test execution model performance on two different trading strategies. One that
is mostly based on momentum, meaning in short terms that recently overperform-
ing stocks are thought to continue to over-perform, and vice versa. We refer to this
strategy as Strategy 1. The other strategy is primarily based on fundamental in-
formation such as quarterly financial reports. We refer to this strategy as Strategy
2. One can assume that the former is more sensitive to delays in execution time, as
other market participants act on the same information as quickly as it is released.
The momentum effect of Jegadeesh and Titman (1993) assumes monthly rebalan-
cing, which indicates that it is resistant to substantial time delays. See Table 4.4
for empirical estimations of θt (Section 3.2.4), which support this assumption.
For the factor model, we use market data from 2004-2022, and factors are com-
puted on market open prices1. Classifiers use factor model exposures and factor
realizations in the features described in Section 3.2.2, which cover trading dates
between 2006 and April 2022. Triple-barrier labels use market close prices in the
same date range.

1The O in OHLC bar data.
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Table 4.1: Fictionalized sample of trading signals. Column explanations: Security
ID: asset identifier. Side: Buy (1) or sell (-1) order. When Previous position is zero
or negative, -1 is a short-order. Previous position: The amount of shares of this
asset previously held in the portfolio. An increase or decrease of position that does
not result in a zero exposure to the stock is a rebalancing trade. Order volume:
Amount of shares. Currency: Currency of Security ID.

Schema dfirst . . . dlast

Date 2007-01-02 · · · 2022-04-25
Security ID DHER GY · · · MAERSKB DC
Side -1 · · · 1
Previous position -3764 · · · 334
Order volume 263 · · · 22
Currency EUR · · · DKK
Fill price 117.3218 · · · 15553.9602

4.2.2 Data processing

When used in regression constraints, currency pairs are used to convert all market
capitalization values into NOK, ensuring that we are not over-emphasizing assets
where the currency value has a large scalar value. There is no specific reason NOK
is chosen as the currency other than that values are ensured to have the same unit.
When the market capitalizations are used as weights, the scale is insignificant as
the weights are normalized.

4.2.3 Factor model specifications

We implement a factor model as developed in Section 3.1, with the factors listed in
Table A.1. The halflife of the exponentially weighted beta values (Equation (3.8))
is set to - as a result of maximizing explanatory power from 2004-2006. Equality
constraints of Equation (3.2) are weighted by market cap, and regression weights
of WLS-regressions are set to square roots of market capitalization in line with
Section 3.1.3. Asset returns are winsorized at ±3σk, where σk is an asset stand-
ard deviation of log returns computed from rolling sample variance over a trading
year. We compute factors using each trading day’s opening prices to counteract im-
plicit data leakage caused by assuming that traders can execute on closing prices.
Since style factor exposures and return now-casts are used as data features in
the meta-classifier, mistakenly classifying price direction based on data only re-
trievable later in the day would be a large methodical error. Figure A.1 displays
the result of implementing the specified factor model. Other information is also
stored, such as regression residuals and time-varying exposure matrices.
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Figure 4.1: Model of E
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of excess profit net the original trading strategy.
The figure includes two different views of the surface. Arguments at maximum:
p⋆threshold = 0.5 and E⋆ = 2.

4.2.4 Meta-classifier specifications

Using the data set described in Section 3.2.2 we train a meta-classifier using pre-
diction probabilities from two base classifiers, from 2006 until the end of 2019. In
this thesis, we let the base classifiers be a random forest classifier and a light gradi-
ent boosting machine trained on the same features and targets. The meta-classifier
is a logistic regression model. Using stacking with purged K-fold cross-validation
as detailed in Section 3.2.3, we optimize the model parameters in Table 4.2 using
random search, where the sufficient number of iterations is calculated by specify-
ing a tolerance of results in the top 5% quantile with a 95% confidence. Applica-
tion of Equation (3.28) yields 59 iterations. Purged K-fold cross-validation is set
to K = 4 and a purging period of 175 days for the stacking process as well as
in randomized parameter search. The purging period is set to 175 days, as it is
the smallest period that allows exponential weights outside the purging period
to have less than 1% of their original size, given an exponential window halflife
of 25 days. Out of the 20 data features in Table 4.2, the only feature affected
is the rolling correlation, meaning that we implicitly allow a minimal degree of
data leakage into the validation folds when training the stacking meta-classifier.
However, this does not affect backtesting simulations, as they are calculated on a
testing data set from 2020 to May 2022. After generating the classifier features
of Table 3.1 and generating triple-barrier labels with lengths 1, 3, and 5, we train
three separate meta-classifiers using the different triple-barrier labels as targets.
We estimate the parameters R⋆right = 1, p⋆threshold = 0.5 and E⋆ = 2 by solving Equa-
tion (3.27) on the training set from 2006-2019, meaning that values of β , α and
θ are estimated from meta-classifier predictions and backtest performance of the
original trading strategy from all data up to and including 2019. Figure 4.1 shows
the surface of E

�p
SNR

�

as a function of E and pthreshold. The final meta-classifier
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Table 4.2: Search space for random parameter search of the models involved in
the execution classifier.

Model Parameter name Search space Final value

Logistic regression C 0.1, 1, 10 0.1

Random forest classifier
n estimators 50, 100, 200, 500 200
max depth 3, 4, 5, 6 4
n estimators 50, 100, 200, 500 200
max depth 3, 4, 5, 6 4LGBM
learning rate 0.01, 0.1, 0.2, 0.3 0.1

parameters are listed in Table 4.2 after a randomized parameter search on both
base classifiers within the meta-classifier using permutations of the parameters
described in the same table. The meta-classifier achieves an accuracy of 52.6% on
validation folds, which is higher than the class bias of 50.2%2. We measure an F1
score of 52.3%.

4.3 Factor model explanatory power

2008 2010 2012 2014 2016 2018 2020

0.2

0.4

Jan
2020

Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

Apr
0.2

0.3

0.4

Basic materials
Communications
Consumer cyclical
Consumer non-cyclical
Energy

Financial
Industrial
Technology
Denmark
Finland

Netherlands
Norway
Sweden
Market

Figure 4.2: Rolling explanatory power (R2) of the beta weighted factor model.
Top view: years 2008-2020. Bottom view: years 2020-2022.

Recall the definition of Equation (3.19), where the explanatory power of the factor

2Markets tend to rise over time, which explains how returns are slightly more likely to be positive.



Chapter 4: Experimental results 35

model is given by

R2 = 1−

∑

k wku2
k

∑

k wkr2
k

(4.1)

where weights w are market capitalizations and u are regression residuals. As
discussed in Section 3.1.1, factor exposure matrices are typically unit weighted,
meaning that for an example where asset A is a member of factor F , then XA,F = 1,
otherwise 0. Section 3.1.1 also describes the method used in this thesis, where
the exposure of XA,F is the exponentially weighted beta value of the return rA
against the market cap-weighted return average of all assets that are members of
factor F . We compute the factor realizations from 2007-2022 using both weighting
methods and compare the explanatory powers of each method over rolling periods
of a trading year. Explanatory power values are listed in Table 4.3, showing that
beta weighting over-performs unit weights in all factors on average. Note that
the explanatory power of each factor is not based on the performance of a single-
factor model using that factor exclusively. Instead, explanatory power is calculated
from returns and regression residuals of assets that are members of a factor. This
explains why R2-values do not sum to the R2-value of the common market factor.
See Figure 4.2 for a plot of rolling explanatory power of the beta weighted factor
model.

Table 4.3: Comparison of explanatory power (R2) of factor models using expos-
ure matrices either with unit weights or with weights of beta against market cap
weighted return of each factor.

Unit weights Beta weights
Factor type Name µ σ µ σ

Denmark 0.247 0.041 0.272 0.049
Finland 0.215 0.037 0.240 0.039
Netherlands 0.240 0.042 0.281 0.041
Norway 0.186 0.040 0.216 0.049

Country

Sweden 0.234 0.043 0.263 0.048

Sector

Basic materials 0.293 0.051 0.320 0.063
Communications 0.197 0.035 0.232 0.054
Consumer cyclical 0.224 0.042 0.251 0.042
Consumer non-cyclical 0.218 0.035 0.251 0.048
Energy 0.230 0.044 0.258 0.059
Financial 0.226 0.043 0.251 0.049
Industrial 0.252 0.043 0.288 0.047
Technology 0.207 0.042 0.232 0.055

Common Market 0.318 0.039 0.349 0.041
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4.4 Simulations

Using an event-driven backtesting engine, we compute historical simulations of
trading strategy performances pre- and post-application of the execution strategy.
Distribution parameters of θt are also estimated in order to solve the optimization
problem of Equation (3.27).

4.4.1 Delayed execution strategy returns

Optimizing Equation (3.27) requires estimates of θt for relevant time delay values
t. The results of Table 4.4 are found by shifting market orders of the original
trading strategies by t trading days, which is dependent on the trading calendar
of each asset, as trading calendars might differ based on the exchange an asset
is traded on. This is among the considerations a systematic asset manager has to
make for portfolios that span multiple countries. Simulations using the different
amounts of shift are performed by backtesting the signals over a period from 2007-
2020. Whether or not backtests for this purpose include trading costs is irrelevant,
as the performance difference of a strategy when shifted cancels out incurred
costs. This is valid when we know that order sizes are not recalculated prior to
execution, implying that the currency cost incurred on a single order is constant
when shifted.

Table 4.4: Parameter estimations of θt for t = 0, 1, . . . , 5 for both trading
strategies supplied by Intelligent Trading. Values are loss of return per day com-
pared to the original, un-shifted strategy.

Time delay (days)
0 1 2 3 4 5

µθ 0 -2.0e-6 1.9e-5 8.0e-6 3.7e-5 5.9e-5Strategy 1
(Momentum) σθ 8.8e-3 8.8e-3 8.8e-3 8.8e-3 8.7e-3 8.8e-3
Strategy 2
(Financial reports)

µθ 0 -9.4e-6 4.6e-7 7.2e-5 7.3e-5 9.8e-5
σθ 1.8e-4 1.8e-4 1.8e-4 1.8e-4 1.8e-4 1.9e-4

4.4.2 Execution strategy performance

We compute historical backtests of both Strategy 1 and Strategy 2 using either
original trading signals or signals from the execution strategy, which result from
Algorithm 1. Backtests are run with and without trading fees, which are set to a
constant of 0.2% of each order size. Let the in-sample period be defined as data
from 2006 until the end of 2019, and 2020 until May 2022 be defined as the out-
of-sample period. Recall that the in-sample period is used for training all models
and that the out-of-sample period is previously unseen. Cumulative returns are
shown in Figure 4.4 and Figure 4.3, for in-sample and out-of-sample tests, re-
spectively. Backtest statistics for Strategy 1 are listed in Table 4.5, and statistics
for Strategy 2 are listed in Table 4.6. Historical testing shows that signals using



Chapter 4: Experimental results 37

the execution strategy have higher out-of-sample Sharpe ratios on all counts com-
pared to the original signals. Higher Sharpe ratios are also observed in-sample
on all counts except for in-sample on Strategy 1 (momentum-based) when simu-
lated without trading fees (Exec. strategy Sharpe: 0.96. Original strategy Sharpe:
1.07). Overall, we measure a mean increase in Sharpe ratio of 0.02 when simu-
lating without fees and an increase of 0.75 with fees. Welch’s t-tests3 show that
the execution strategy produces significant excess profitability over the original
strategy only when fees are included in simulations. Strategy 1 generates signific-
ant excess profit when simulating with fees (p = 0.0187), but not without fees
(p = 0.988). The same goes for Strategy 2 (financial reports-based), getting p-
values of p = 0.006 with fees and p = 0.713 without fees.
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Figure 4.3: Out-of-sample cumulative performance of the execution strategy with
and without commission fees, which are set to 0.2% per order.

Although simulations without trading fees are likely to be as profitable with the
execution strategy as without, the simulations using the execution strategy gen-
erate the same profit with much fewer trades. In Strategy 1, the original trading
strategy in-sample includes a total of 8260 trades, while the same strategy with
improved execution includes 7716 trades - a reduction of 4.9%. From Table 4.5
we can calculate a reduction out-of-sample of 6.6%. In Strategy 2 we observe re-
ductions of 6.5% and 4.9% in-sample and out-of-sample, respectively.

3An adapted version of the Student’s t-test where equal population variances are not assumed
(Welch (1947))
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Figure 4.4: In-sample cumulative performance of the execution strategy with and
without commission fees, which are set to 0.2% per order.

Table 4.6: Performance of Strategy 2, the financial reports-based strategy, with
or without using the execution strategy and with or without trading fees. OoS:
Out-of-sample, IS: In-sample.

With fees Without fees
Execution strategy Original Execution strategy Original

IS OoS IS OoS IS OoS IS OoS

Cumulative return 194.76% 35.97% -36.41% 2.08% 276.82% 41.91% 208.81% 38.23%
CAGR% 9.4% 14.14% -3.69% 0.89% 11.66% 16.26% 9.83% 14.95%
Sharpe 0.77 0.99 -0.26 0.13 0.93 1.12 0.85 1.09
Max drawdown -37.24% -24.67% -39.94% -26.37% -34.52% -24.61% -24.18% -25.67%
Days longest drawdown 643 155 3576 276 509 139 329 179
Mean drawdown -2.07% -2.04% -10.57% -3.42% -1.99% -1.84% -2.04% -1.84%
Days mean drawdown 29 17 546 44 26 15 28 17
Number of trades 7770 1484 8308 1560 7770 1484 8308 1560

The simulated returns from both strategies display high degrees of correlation be-
fore and after the execution strategy is applied. Strategy 1 is 84.0% correlated with
itself after application, and for Strategy 2 R2

% = 84.6%. However, higher correla-
tions are measured between Strategy 1 and Strategy 2 after both have applied the
execution strategy, with R2

% = 98.6%. The original strategies are 87.5% correlated.
Excess return over the original strategies displays autocorrelation over a day. It is
strongest with fees applied, where in Strategy 1 excess profits are 15.0% autocor-
related (p < 10−5) and in Strategy 2, they are 18.5% autocorrelated (p < 10−5).
In other words, the execution strategy is more likely to continue outperforming
the original trading strategy if it also outperformed the previous day. Autocor-
relation is also found in the classification accuracy of the meta-classifier, where
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Table 4.5: Performance of Strategy 1, the momentum-based strategy, with or
without using the execution strategy and with or without trading fees. OoS: Out-
of-sample, IS: In-sample.

With fees Without fees
Execution strategy Original Execution strategy Original
IS OoS IS OoS IS OoS IS OoS

Cumulative return 209% 35.59% -13.33% 5.33% 291.79% 42.48% 321.38% 36.3%
CAGR% 10.57% 14.36% -1.18% 2.26% 12.02% 16.46% 12.7% 14.26%
Sharpe 0.8 1.03 -0.04 0.23 0.96 1.16 1.07 1.08
Max drawdown -35.95% -22.71% -35.7% -24.44% -33.73% -22.76% -27.54% -23.51%
Days longest drawdown 624 155 1794 276 508 139 333 136
Mean drawdown -2.01% -2.12% -5.93% -4.86% -1.97% -1.99% -1.82% -2.39%
Days mean drawdown 29 17 196 75 26 16 26 21
Number of trades 7716 1443 8260 1517 7716 1443 8260 1517

correctly- or incorrectly classified future price directions are likely to follow other
correct or incorrect classifications. However, at 5.5% at lag one, this effect is not
as strong as the autocorrelation found in excess returns resulting from backtesting
simulations.
We also check whether market conditions affect the over-performance of the ex-
ecution strategy, as well as the prediction ability of the meta-classifier. Regress-
ing mean correlations of assets towards the cap-weighted market with execution
strategy excess return does not display any linear dependence. We also perform
logistic regression, mapping mean market correlation to whether or not predic-
tions of the meta-classifier are correct, finding no significant coefficients. When
mean market correlation is replaced with the rolling explanatory power of the
factor model and the same regressions are computed, we again find no statistic-
ally significant links.
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Discussion

5.1 Attribution of execution strategy over-performance

Table 4.5 shows that the total number of trading signals from Strategy 1 is de-
creased after the application of the execution strategy. The reductions are by 4.9%
and 6.6%, in- and out-of-sample, respectively. Similarly, in Table 4.6, we show that
Strategy 2 experiences reductions of trading signals by 6.5% in-sample and 4.9%
out-of-sample. This suggests that the execution strategy compresses the original
trading strategy while retaining the same performance level. This effect can partly
explain why the execution strategy vastly over-performs the original strategy un-
der trading costs: The total number of trades is significantly reduced, as is the total
sum of trading costs that chips away at the strategy’s profitability. Note that our
out-of-sample period coincides with a period of market prosperity, which may pos-
itively skew the performance indicators in Table 4.5 and Table 4.6. When testing a
machine learning model, one typically expects the out-of-sample performance to
decrease due to the model over-fitting to the training data set. The extent of this
problem is hard to measure, but it is likely to be improved in our case as a result
of adapting purged cross-validation to the stacking algorithm. De Prado (2018)
discusses how purging training folds improves data leakage in self-similar data,
which leads to less biased validation fold performances.

5.2 Impact of market distress on excess profitability

It is well known in the finance literature that periods of market distress cause av-
erage stock correlations to increase. Preis et al. (2012) document that correlations
within DJIA1 scale linearly with the returns of the index over various time scales.
Baig and Goldfajn (1999) study correlations in currency- and stock markets dur-
ing and after the Asian financial crisis of 1997, showing that correlations increased

1The Dow Jones Industrial Average, a market index with 30 constituents intended to reflect the
state of the US economy. Whether or not it accomplishes that is controversial (Haensly et al. (2001),
Jr. and Allen (1979) and Shoven and Sialm (2000)).
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substantially between markets, suggesting that market distress is not restricted to
single countries but also propagates to similar markets. Our execution strategy
does not directly consider market conditions through any set rule. Considering
that our experimental implementation covers a multi-country asset universe, it is
natural to question whether market distress worsens its performance compared
to the original trading strategy. In Section 4.4.2 we show that there is no evidence
of this when we use a similar approach as Preis et al. (2012) when estimating
average correlations (A slight difference can be argued, considering that DJIA is
a price-weighted average and our index is market cap-weighted). Additionally,
no connection is found between incorrect meta-classifier predictions and market
distress. This evidence implies that our execution strategy does not under- or over-
perform the original trading strategy as a function of market distress, indicating
that it is robust against adverse market conditions.

5.3 Explanatory power of exposure matrix weighting meth-
ods

In the results section we evaluate the explanatory power of the factor model us-
ing either unit weighted or exponentially weighted beta loadings in the factor
exposure matrices. Guerard Jr (2009) employs unit weighted loadings and doc-
uments overall explanatory power of R2

% = 30%. Using the specifications of our
factor model implementation, its explanatory power with traditional unit weights
as well as beta weights described in Section 3.1.1, we see from the resulting R2-
values in Table 4.3 that our implementation yields a total explanatory power of
31.8%, which is similar to Guerard Jr (2009) when unit weighted loadings are
used. However, we observe increased explanatory power when beta weightings
are used, measuring 34.9%. When measured with respect to sectors and coun-
tries, explanatory powers are also higher for beta weights in all counts in Table 4.3.
Note that Guerard Jr (2009) implements a global multi-factor model, which differs
from our European-based model. Connor (1995) reports explanatory powers of
42.6% for a US-based multi-factor model calculated using cross-sectional regres-
sions. However, the model of Connor includes twelve fundamental style factors,
and our model only includes seven, which can explain some of the differences
in explanatory power. It is also possible that the idiosyncratic return components
(see Equation (3.1)) of European stocks are larger than in their North-American
counterparts. However, we do not have quantitative evidence to support this con-
jecture at the time of writing.

5.4 Risks

Even though we observe an increase in risk-adjusted return in trading strategies
using our execution framework, this does not imply that the additional profits are
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not risk-less. This section identifies several possible risk sources associated with
our approach.

5.4.1 Autocorrelation of meta-classifier accuracy

Since over-performance is autocorrelated, we can expect the execution strategy
to have consecutive days of over- or under-performance. We also show in Sec-
tion 4.4.2 that meta-classifier prediction accuracy is autocorrelated for one lag.
This leads to increased risk after the day after a misclassified price direction, where
the consecutive day also is more likely to be misclassified. Since classification fea-
tures are calculated from market open information, and the labels are calculated
from market close prices of the next day, the true value of the previous classi-
fication is not known until after the next classification is made. In cases where
significant autocorrelation can be found in longer time lags, we can address this
problem, e.g., by using an autoregressive method, such that future losses can be
reduced (Shumway et al. (2000)). However, this is not implemented in the cur-
rent iteration of the execution strategy, meaning that this downside risk currently
persists for meta-classifiers with longer autocorrelation.

5.4.2 Increased correlation across trading strategies

Systematic fund managers may simultaneously deploy multiple trading strategies
to diversify risk. This is contingent on the assumption that strategies are inde-
pendent, such that the variance of the resulting portfolio is reduced. Sorensen
et al. (2004) details the combination of multiple sources of alpha by computing
optimal weights for each of these alpha sources, such that the linear combination
is referred to as the composite alpha source. It is reasonable to think that such
an approach could also be applied to the trading strategies we use to benchmark
our execution strategy, to construct a portfolio with a Sharpe ratio higher than
each of its parts. A problem can arise, however, if we combine highly correlated
strategies. Sorensen et al. expresses the expected information ratio of the compos-
ite alpha as a multivariate function that decreases when correlation coefficients
increase. As we showed in Section 4.4.2, the application of the execution strategy
on Strategy 1 and Strategy 2 increases across-strategy correlation from 87.5% to
98.6%. Therefore, an increase in profitability of different strategies after apply-
ing the execution strategy might lead to a composite alpha that is worse than the
composite alpha resulting from combining the original trading strategies.
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Conclusion

In this thesis, we describe a framework for optimizing the execution time for or-
ders of a long time horizon trading strategy, allowing orders to be delayed by E
days. The framework, referred to as the execution strategy, is based on a novel
adaptation of a stacking classifier, replacing regular K-fold cross-validation with
purged K-fold cross-validation. This enables the use of self-similar classifier fea-
tures, which are often found in finance. Using a LightGBM and a random forest
classifier as base classifiers in the stacking ensemble, we achieve a prediction ac-
curacy of 52.6%, and an F1-score of 52.3%, when predicting the direction of asset
returns of the next trading day.
Features of the base classifiers are based on information from a BARRA-style multi-
factor model, which we use for estimating asset returns and style factor expos-
ures. Rolling deviations between the return estimates from the factor model and
true returns are also included as data features. We show that using exponentially
weighted factor-beta values as loadings of the factor model produce an overall ex-
planatory power of 34.9%, which is higher than with unit weights (31.8%), which
are traditionally used in the literature.
Different trading strategies respond differently to a delay in market execution.
We use the estimated loss associated with delayed execution and the distribution
of probabilities of meta-classifier predictions to estimate the optimal parameters
of the execution strategy. To test the performance of the execution model, we
simulate two different trading strategies, finding significant profit increases in
both strategies when simulated with trading fees of 0.2% per trade (p = 0.0187
and p = 0.006), and a mean increase in Sharpe ratios of 0.75. We find a mean
improvement in Sharpe ratios of 0.02 when simulating without trading fees but
find insignificant changes in profitability. However, we observe a mean decrease
in total amounts of trades of 4.9%, out-of-sample, which suggests that the exe-
cution strategy can compress trading strategies without loss of profitability. Our
results imply that the execution strategy is effective for several different trading
strategies, being a viable approach for augmenting human reasoning with ma-
chine intelligence.
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Future work

We can think of a number of ways this work can be developed.
It is not essential that the execution model uses a factor model for parts of its
features. The execution framework supports any binary classification model that
predicts future asset returns. Therefore, a way of addressing the problem of in-
creased correlation between strategies, as discussed in Section 5.4.2, could be to
let different, independent classifiers determine the execution of each strategy. Al-
ternatively, one could swap the factor model for another predictive model, such
that the structure and feature names would be identical but with different values
for model-true deviations (see Table 3.1).
In the implementation discussed in this thesis we use daily data frequency. We
think it is reasonable to assume that the execution strategy also can be effective
for other time-frames. The amount of orders of a trading strategy typically in-
creases as its data frequency increases, as high-frequency trading is an example
of. If the execution strategy retains its ability to lower the number of orders while
performing as well, it might enable the use of strategies that are ordinarily un-
profitable under trading costs.
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Appendix A

Additional experiment content
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Figure A.1: Plot of cumulative factor realizations using the factor model specific-
ations described in Section 4.2.3. Y-axis scale as well as factor scales are logar-
ithmic.
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Table A.1: Sectors, countries and style factors of the assets used in the experi-
ment.

Factor type Name

Denmark
Finland
Netherlands
Norway

Country

Sweden

Sector

Basic materials
Communications
Consumer cyclical
Consumer non-cyclical
Energy
Financial
Industrial
Technology

Style Described in Section 3.1.2
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