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Abstract

Most contemporary connectionist approaches to Al use an Aritifical Neural Net-
work (ANN) approach which is similar to Rosenblatt’s Perceptron neuron model.
This is true for contemporary ANNs tuned using backpropagation gradient des-
cent, and for most Neuroevolutionary approaches. Although other artificial neuron
models such as spiking neurons exist, they are often less computationally efficient.
In neuron model design there has typically been a performance-biological accur-
acy trade off. This thesis does not attempt to solve this dichotomy, but rather to
take a step to the side, and apply the biological principles of evolution to neuron
model design, in the hopes that evolved models can be efficient due to being based
on the computers actual computational primitives while also exhibiting more ad-
vanced behaviour than Rosenblatt-type neuron models. Such a development could
be viewed as part of a wider trend in Aritficial Intelligence where leveraging com-
putational search tends to outperform human design.

In this work neuron models are evolved by first defining an incompletely spe-
cified abstract model, and then using evolutionary search in the form of a vari-
ant of Cartesian Genetic Programming (CGP) to evolve complete specifications.
The incomplete neuron specification defines what neurons can do rigidly, but not
when, by dividing neuron behaviour into separate actions and using CGP to evolve
the control programs for these actions. The thesis primarily focuses on the One-
Pole Balancing control problem as a test problem.

The results show that the evolved neurons are able to form network structures
which perform better than taking random actions in the one-pole balancing prob-
lem. Results for different iterations of the software is presented as a design case
study, discussing primarily causes for observed program behavior and verifying
these hypotheses through changes in the next iteration. Although the developed
algorithm has several flaws, such as not maintaining population diversity within
runs and some core design features not being useful in practice, the results still
indicate that further research into the evolution of lifetime behaviour neurons
would yield further results.
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Sammendrag

Nétidens konneksjonistiske Kunstig Intelligensmetoder pleier & bruke Aritifial Neural
Network (ANN) metoder, med neuron-modeller som ligner p& Rosenblatt’s Per-
ceptron. Dette gjelder bade for ANNs trent med gradientnedstigning (gradient
descent) og bakoverpropagasjon (backpropagation), og mange neuroevolusjonere
metoder. Det finnes andre neuronmodeller som spiking neurons, men de trenger
ofte mer datakraft for tilsvarende resultat (dersom tilsvarende resultat er mulig
for neuronmodellen). I neuronmodelldesign har det tradisjonelt veert ngdvendig &
vektlegge utregningseffektivitet opp mot biologisk ngyaktighet. Denne masterop-
pgaven prover ikke a lgse dette vektleggingsproblemet, men heller 4 ta et skritt
til siden og se pé designproblemet fra en annen vinkel. Istedetfor & direkte ta in-
spirasjon fra biologiske neuroner, sd undersgker denne oppgaven om man kan ta
inspirasjon fra biologisk evolusjon og utvikle fungerende neuronmodeller. Slike
utviklede neuronmodeller kan kanskje bade vere effektive, da de kan utvikles til
& ta nytte av effektive operasjoner pd datamaskiner, og ha mer avansert oppfgrsel
enn Perceptron-lignende modeller. Dette kan ses pd som en del av en stgrre trend
innen Kunstig Intelligens der datamaskinsgk ofte produserer bedre resultat enn
direkte menneskelig design.

I denne oppgaven er neuronmodeller utviklet ved & forst definere enn inkom-
plett spesifikasjon (en abstract modell), og & deretter bruke evolusjonzart sgk til &
finne komplette spesifikasjoner ved a4 bruke Cartesian Genetic Programming (CGP).
Dette gjores ved a definere hvilke handlinger neuroner kan gjgre, og deretter
bruke CGP til & utvikle kontrollprogram for & styre neuronene. Oppgaven under-
spker hovedsakelig metoden ved & teste den p& One-Pole Balancing-kontrollproblemet.

Det vises at utviklede neuroner kan forme nettverkstrukturer som implementer
lgsninger p& One-Pole Balancing som er bedre enn 4 ta tilfeldige handlinger. For-
skjellige iterasjoner av programvaren undersgkes, og presenteres for til dels & fa
fram viktige hensyn med design av neuronevolusjonere algoritmer, samt 8 bruke
endringer til algoritmen til & teste og forstd den bedre. Selv om algoritmen har
flere nedsider, for eksempel at den ikke beholder diversitet i befolkningen og at
evolusjon viser at noen av designelementene ikke er nyttige, si viser resultatene
likevel at videre forskning pa evolusjon av livstidsoppferselsneuroner kan gi videre
forskningsresultater.






Preface

Special thanks to my thesis supervisor, Gunnar Tufte, for feedback, guidance, and
interesting discussions.

I would also like to thank the following authors. During my thesis work I've
read several books on the topic of the emergence of intelligence, which helped
awaken my interest in the topic, specify my project after the initial research phase
in cooperation with Tufte, and provided me with a conceptual framework to work
from. In particular I would like to highlight Intelligence Emerging: Adaptivity and
Search in Evolving Neural Systems by Keith Downing Downing (2015), Emergence:
From Chaos to Order by John H. Holland John H. Holland (1998), and The Self-
Assembling Brain: How Neural Networks Grow Smarter by Peter Robin Hiesinger
Hiesinger (2021). In particular, Downing and Hiesinger argue that a greater fo-
cus on emergent behavior produced by the interactions of local behavior may be
necessary for advanced intelligent behavior, which is the basic assumption behind
the focus on neuron models in this thesis.

vii






Contents

Abstract . . . . . .. e iii
Sammendrag . . . . . ... ... e A
Preface . . . . . . . . vii
Contents . . . . .. .. e e ix
1 Introduction . ... . ... ... . ... ... 1
1.1 Note on preliminarywork . . . .. .. .. ... ... ........... 5
1.2 WhySearch? . .. .. ... ... . . . . . . 5
2 Theoretical Background . .. ............. ... ... ...... 9
2.1 Literature Search Methodology . . . . . ... ............... 9
2.2 Introduction to Neuroevolution . ..................... 10
2.2.1 Developmental Approaches . ................... 12

2.2.2 Conceptual difference between developmental systems and
other evolutionary approaches . ................. 18
2.2.3 Biological Inspiration . ... .................... 21
2.3 A general model of connectionism . . . ... ............... 22
2.3.1 General Connectionist Model . .................. 23
2.3.2 Hebbian learning as a set of constraints upon GCM . . . . . . 24
233 UsingtheGCM . .. .. ... .. .. ... . 24
2.3.4 Other neural models as sets of constraints on the GCM ... 25
2.4 NMS Search Space Size . . . ... ... 26
2.4.1 Search spaces in the experiments . . . . ... ... ....... 28
2.5 Usedproblems . .. ..... ... .. ... 30
3 Methodology & Design . .. .. ......... .. ..., 33
3.1 NMS-LOC specification . . . . . ... v i i i i it 33
3.1.1 The modfified CGPsystem . .................... 33
3.1.2 TheNeuronModel . . . ... ... ... ... ... ........ 37
3.1.3 CGB Neuron Engine and randomness . .. ........... 39
3.2 Potential Issues . .. ... ... ... 41
3.2.1 Comparingsolutions. . . .. ... ... ... .. ... .... 41
3.2.2 The signal-sending assumption . . ................ 43
4 System Documentation . .. ............. ... ... ... ... 45
4.1 TechStack ......... ... . . . . . .. 45
4.1.1 CodeStructure . . . . . .. ..o v v v it 45
4.1.2 Programming Language . ..................... 45

ix



4.1.3 Cloud Computing . . ... ... .. uuuuuueennnn..n 46

4.1.4 Advice for future techstacks . . . . .......... ... ... 46

4.1.5 Advice for handling bugs and errors . . . ............ 47

5 Experiments and Discussion . . . .. ... ................... 51
5.1 Experiment 1 - Growing networks capable of sending signals . ... 52
5.2 Experiment 2. .. ... .. ...ttt 60
52.1 Preamble. .. ..... ... ... ... ... ... 60

5.2.2 Experimental Runl ............ ... ... .. ..... 62

5.2.3 Experimental Run2 ......................... 72

5.3 Experiment 3. ... ... ... .. 79
5.3.1 Looking into CGP functions . ................... 88

5.4 NMS-LOC and the IRIS Flower Classification Problem . . . . . .. .. 88

6 Conclusion . ......... . ... . ... 95
Bibliography . . . . . .. .. .. ... 99
A Appendix A: NMS Search Space Proof ... ................. 105
B Appendix B: CGP Node Functions . . ..................... 107
C Appendix C: Configfiles ... ........ ... .. ... ... ...... 109
C.1 Smoothened Gradient .............. ... ... ....... 112
C.2 Configfilesset 1 . . . ... it et 112

D Appendix D: Neuron and Axon-Dendrite Functions . . . . . .. ... .. 117
E Appendix E: Statistics Explained . . . . ... ... .............. 121
F Appendix F: Preliminary Thesis. . . . ... .................. 125



Chapter 1

Introduction

Most contemporary Artificial Neural Network (ANN) approaches use neuron mod-
els which are similar to Perceptrons (Rosenblatt (1958)), making most ANNs
Multiple-Layer Perceptron (MLP) models. Differences to the original Perceptron
include varied activation functions, recurrence, batch normalization, different net-
work structures such as LSTMs, training algorithms and much more (Goodfellow
et al. (2016)), but the basic model for individual neurons is similar to Perceptrons
despite differences. For convenience these similar approaches are all refereed to as
MLPs. Figure 1.1 shows the neuron model referred to in this work when referring
to MLPs and Perceptrons from this point on. MLPs are well suited to training us-
ing backpropagation gradient descent (Goodfellow et al. (2016)) which forms the
basis for contemporary Deep Learning. Neuroevolutionary approaches use evolu-
tionary algorithms to create ANNs, and here too the MLP model is common (ex.
Stanley and Miikkulainen (2002), Jackobi (1995)). Other neuron models do ex-
ist and do see some use, for example, Elbrecht and Schuman (2020) details a
neuroevolutionary approach based on a spiking neuron model. MLPs are dom-
inant in research and engineering due to being less computationally expensive
than other models (ex. Spiking Neuron models, see Downing (2015) for other
examples), as well as being compatible with GPU calculation, allowing MLPs to
achieve great performance on many problems given enough tunable parameters,
data, and training time. However, MLPs do have several drawbacks, such as a lack
of explainability (Xu et al. (2019))!, weakness in multi-task learning and lifelong
learning (Parisi et al. (2019) and Crawshaw (2020) - there are reasons to think
that some very modern architectures may support multi-task learning, see Reed
et al. (2022), but these still have the drawback of needing to be very large), as
well as requiring large amounts of parameters, data, and training time.

The central problem of neuron model design is that more biologically plaus-
ible models are less computationally efficient, and that it is not clear how bio-

Essentially, Deep Learning use backpropagation to tune a network, learning a series of functions
which minimizes the problem error, however as these functions are just a large series of matrices
it is difficult to understand why or how the functions work in isolation and together. Conceptually,
Deep Neural Networks don’t need to have a reason for why something works. It just needs to work.
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out = f{(i“inj*wi) + b)

in,

f is some activation function, ex. relu, sigmoid, linear, threshold/step

Figure 1.1: Depicts the neuron model referred to in this work as a perceptron.
Arranged in some directed graph, may or may not be recurrent.

logically plausible neuron models "need to be" (Downing (2015)). Evolutionary
algorithms may be beneficial in neuron model design. Evolved neurons may be
more computationally efficient by permitting only efficient computational opera-
tions, in contrast with simulating real physical processes which may be computa-
tionally expensive. It may also be possible to find neuron models which are novel
and unexpected and difficult for humans to design by hand, as the novelty factor
is one of the advantages of evolutionary methods (Lehman et al. (2018), Miikku-
lainen (2021)). By searching for neuron models which can be more complex than
MLPs, for example by having internal state and greater signal dimensionality, it
may be possible to find models with desirable properties such as a greater ability
to perform lifelong learning or multitask learning. Such models would be useful
from an engineering perspective, and the methods may also provide insight into
the emergence of cooperative intelligent behavior.

This work uses a method dubbed Neuron Model Search (NMS) which defines
an abstract model of a neuron by partially defining how neurons work, and then
using an evolutionary process to evolve complete specifications. The specific al-
gorithm developed in this work is called NMS-LOC?, and defines which actions
a neuron can do, and then uses a variant of Genetic Programming (GP) called
Cartesian Genetic Programming (CGP) to search for control programs to control
the actions. The method makes no distinction between training time and runtime.
As will be discussed in greater detail in the theory section there has been a limited
amount of research into searching for neuron models, especially combined with
lifelong learning, making it interesting to observe if such an approach can work.
A crucial concept in NMS-LOC and neuroevolutionary approaches is the concept
of network growth. In general, neurevolution works by gradually changing the
neural network structures of the evolved solution into better and better neural

2For NMS-LOCal
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Figure 1.2: Illustrates the development of a neural network. (t=0): The initial
network structure. (t=1): A connection is added to the output. (t=2): A new
neuron is added to the network. It could for example be generated in response to
the existing neuron not being able to handle a training sample (i.e. a target input-
output mapping). (t=n) Through many iterations complicated network structures
can develop. Usually the decoding process ends at some defined point.

networks. They do so by evaluating the fitness of the evolved networks against a
problem domain and selecting the best found solutions to base further search of.
Each solution consists of a genotype which is mutated and mapped to a phenotype
(a neural network) using a mapping function. In general, this mapping function
always uses the genotype data, but may be more complex and also use data from
the environment, random seeds, and step-by-step growth or development of the
phenotype using feedback from previous steps. Figure 1.2 shows an example of
how a phenotype may develop step by step using a complex mapping function.
The genotype size defines the search space size of the evolutionary search, while
the mapping function defines the set of phenotypes which may be found during
the search, and the evaluation of these phenotypes determines the fitness of dif-
ferent genotypes.

The combined runtime and training-time approach means that NMS-LOC uses
training data not only to evaluate the fitness of an evolved solution, but also as
input data during the development of the solution. Therefore, single NMS-LOC
genotypes can map to several different solution phenotypes, and a single genotype
could in principle produce phenotypes with good performance in several problem
domains (see 2.2.2). Such developmental approaches are in general interesting for
NMS as it may be possible to find genotypes which can produce good-performing
phenotypes in problem domains it has not been trained on. In other words, it may
be possible to use NMS approaches to search for learning algorithms, rather than
specific solutions, which differs from deep learning and most neuroevolutionary
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Neuron performance CGP produces
on test problem used next generation
to select next generation

Problem <———————————— Neuron Engine

Neuron Engine simulates neurons
using CGP functions

Main Controller

Control logic and communication

Figure 1.3: The overall logic of NMS. A CGP genome produces children, which
are evaluated in a neuron simulation engine on a specific problem domain. By
selecting children with a lower error as the next generation better models are
evolved.

approach which typically attempt to optimize a single phenotype for a defined
problem or set of problems. However, this work focuses on using NMS-LOC on
the one-pole balancing problem specifically due to scope limitations.

Figure 1.3 shows the overall design of the NMS-LOC system, where a Genome
is used to make a Phenotype (Neurons and Neural Network) which attempts to
solve a problem, and a fitness function defined over the problem domain is used to
continuously select better genotypes. The functionality of the system is discussed
in more details in Chapters 3 and 4. Additionally, the code for the version of the
NMS algorithm used in this paper is available at Github 3. The thesis presents the
design of NMS-LOC at a high level, while implementation details are presented
by the codebase itself.

In order to explain how NMS-LOC solutions work, the produced phenotypes
and statistical data is logged. Analyzing genotype logs was investigated, but due
to some bugs and the quickly very large complexity of doing so it was determined
to primarily use phenotypes and statistical data for analysis.

During research it became clear that it would be interesting to analyze the
impact of using randomness in the NMS-LOC algorithm, and of using different
CGP node functions (See Chapter 2 and 3). This thesis investigates the following
research questions:

1. Can NMS-LOC produce better than random phenotypes for the one-pole
balancing problem?

2. How does using randomness and different CGP node functions impact NMS-
LOC performance on the one-pole balancing problem?

3. Which design lessons can be learned from NMS-LOC for potential future
NMS systems?

3https://github.com/SaraRambjoer/CGP_Neuron Masters/tree/IRIS
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1.1 Note on preliminary work

During the autumn semester of 2021 work began on NMS-LOC in the form of a
"preliminary thesis" ("Prosjektoppgave") (Rambjgr (2021)) which is done at the
Computer Science department at NTNU as a preparation for the master’s thesis.
It is common for the preliminary thesis to be about the same topic as the master’s,
this is also the case for this work. Therefore, please note the following: Firstly, the
theory chapter (Chapter 2 and the method design chapter (Chapter 3) are based
on equivalent sections in the preliminary thesis. However, for the master’s thesis
the sections have been updated to contain more references after additional liter-
ature search, more discussion and new sections, improved writing, and updates
due to system changes. In general the master’s thesis builds upon the work in the
preliminary thesis, trying to extend and further the ideas and research done. The
preliminary work concluded that the version of NMS-LOC developed at that point
could find solutions in a simple problem domain by evolving non-environment re-
sponsive programs which output some determined sequence, and that NMS-LOC
was only able to find solutions consisting of one hidden/evolved neuron networks
(plus input and output neurons). The preliminary thesis is included in Appendix
F.

1.2 Why Search?

This thesis uses evolutionary search to find neuron models. What grounds are
there for (i) concluding that NMS can find useful neuron models (ii) that NMS
may produce novel models of neurons?

Chapter 2 gives a more thorough presentation of evolutionary methods in Al,
but it is clear that evolutionary methods are often suitable for solving a variety of
problem domains (ex. see Stanley, Clune et al. (2019) and Del Ser et al. (2019)).
The success of other evolutionary approaches signal that the hypothesises (i) and
(ii) are at the very least worth investigating. Further, Julian E Miller (2021) and
Julian E Miller et al. (2019) successfully evolve neurons using a similar approach.

Further, a central issue in the design of artificial neurons is weighing biological
accuracy against computational performance, that is, selecting the appropriate
level of abstraction (Downing (2015)). A level of abstraction that is too high may
end up being insufficient for intelligence equivalent to that found in biological
neural networks, and a level of abstraction that is too low may make computation
too slow for any application with contemporary computers. Another issue is that
human knowledge of biological neurons, brains and intelligence is incomplete,
which means that implementing biologically inspired neuron models is to some
degree educated guesswork. NMS reduces the need for educated guesswork, as
it may be easier to define a search space that contains good neuron models than
it is to define a good neuron model directly. Sutton (2019) argues that meth-
ods which leverage computational search have historically outperformed human
design within Al Due to the historical success of computational search it is reas-



onable to consider that computational search may outperform human design of
neuron models as well.

Finally, consider that pursuing biological accuracy in neuron model design is
not necessarily the optimal approach. Biological evolution has evolved neurons
and neural networks which are capable of intelligent behaviour through efficient
computation using a biological substrate; namely, the chemical interactions of
carbon-based molecules as defined by the laws of physics. This biological compu-
tation substrate is inherently different than the one used in contemporary com-
puters. It is likely that evolution has found ways to utilize the computational prop-
erties of the biological substrate as this would provide an evolutionary advantage.
A biological neuron can utilize the results of complex molecular interactions to
compute. Replicating these interactions in computers is complex and time intens-
ive as molecular interactions must be simulated instead of being inherent in the
computational substrate, vastly increasing the expense, and that is assuming the
chemical process is currently understood. As such one may expect a perfect simula-
tion of the brain which uses the same computational primitives as the universe (i.e.
the laws of physics) to be very difficult to develop on a computer. In a similar vein,
getting Windows to run on cells and organic molecules is far more difficult than
using transistors. This is because the computational substrates are different, and
the two "programs" are designed for their respective substrate. As such one may
expect that computational processes which are capable of producing intelligent
behavior on a contemporary computer and in a biological structure to be differ-
ent, because the computational intelligences have to leverage different properties
and primitives for the computation. Therefore, intelligence in computers should
be based on the available computational primitives; namely, the CPU’s instruc-
tion set, GPUs, and use of various parallelization techniques - or by using other
primitives, i.e. a virtual machine, which entails a low computational overhead.

To emphasise this point, consider the success of Deep Learning in recent years.
This was in large part made possible by an increase in computational capacity,
such as cluster computing, and through utilizing GPUs for matrix computations.
In other words, Deep Learning’s success is possible because it uses an appropriate
computational substrate for it’s algorithm. However, single-processor CPUs can in
principle run Deep Learning algorithms, but because of the different properties
of the substrate it is not efficient and therefore not feasible. In other terms, just
because a computational system is Turing complete does not mean that the compu-
tational properties of the system makes it suited to a certain type of computation.
This is relevant both in terms of computational efficiency and ease of develop-
ment. For example, the elementary cellular automata rule 110 is Turing complete
(Cook (2004)), but would be horribly unsuited to practical development.

Luckily, search provides an alternative to biological modeling. An evolutionary
search process will tend to select for efficient solutions, because these solutions
will tend to be more fit as long as there is some pressure on computation time in
the evolutionary process. Taking inspiration from biology when designing search
spaces for NMS may be desirable, but doing so still provides computational search
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the opportunity to find solutions which would be difficult to design by hand. Be-
cause the evolutionary pressure imposed on efficient computation differs in the
biological substrate and the contemporary computer substrate it is possible that
evolutionary algorithms can find solutions which would be sub-optimal in the
biological environment, but which are high-performing in the computer environ-
ment. However, evolutionary algorithms are themselves inspired by biology, and
human knowledge of evolution is also incomplete, which entails similar challenges
to designing evolutionary algorithms as to designing neurons directly. As such it is
likely prudent to investigate both approaches, but currently the field has focused
mostly on using human designed neuron models.






Chapter 2

Theoretical Background

This section gives a presentation of the core concepts of evolutionary computation
and neuroevolution and provides examples of relevant approaches. Evolutionary
algorithms work by searching over genotypes, mapping them onto phenotypes
whose fitness are evaluated and used for selection. Core issues in evolutionary
algorithms is the genotype representation, the genotype to phenotype mapping,
the fitness function, and how selection and reproduction should work. New gen-
otypes are produced using the current best genotype(s) using mutation operators
which makes some type of change in the genotype, or crossover operators which
combine the genotype of two or more parents (Goldberg and John Henry Holland
(1988); Eiben and Smith (2015)).

2.1 Literature Search Methodology

The initial inspiration for the thesis is the work of Julian Francis Miller, in particu-
lar Julian E Miller et al. (2019). As such, the article was used as a starting point for
literature search. Reviewing the citations in the article was used to gather further
references forming an initial start point for literature search.

Further, Downing (2015) was recommended to me by my supervisor Gun-
nar Tufte when discussing relevant literature, and articles mentioned in Downing
further added to the literature search pool. In general keeping a look out for in-
teresting articles mentioned in the similar work sections of read articles helped
grow the pool of relevant literature.

Similarly, the preparatory class TDT04 - Advanced Bio-inspired Methods fo-
cused on many articles from different parts of bio-inspired Al, some of which were
relevant to this thesis. Further, the class lecturer Pauline Haddow recommended
the book Eiben and Smith (2015) to me when I requested an introductory book to
bio-inspired Al, and the textbook was very useful to gain an overview of the field.

Finally, literature search was conducted using Google Scholar, searching for
relevant keywords, such as "CGP", "Neuroevolution", "Evolving neurons", "CGP
artificial neural networks" and more.



Articles were examined by first reading over the abstract and introduction,
and potentially skimming other parts, to determine if the articles held relevant
information. If so, the articles were read thoroughly. This way it was possible to
both consider an larger amount of articles, and read the relevant ones properly.
Citations in read articles were used to find new references, a sort of "branches of
trees" approach.

2.2 Introduction to Neuroevolution

Neuroevolution is a subfield of evolutionary algorithms focused on producing ar-
tificial neural networks. For a comprehensive overview see Downing (2015) or
Floreano et al. (2008). For a review of the state of the art of neuroevolution
see Stanley, Clune et al. (2019). Early work in neuroevolution often focused on
evolving weight parameters in a fixed topology, such as in Whitley et al. (1993).
Later, work began on Topology and Weight Evolved Artificial Neural Networks
(TWEANNS) in which both weights and topology is evolved. Earlier systems typ-
ically used direct genotype representations, where the topology and weights are
directly encoded in the genotype (such as in Stanley and Miikkulainen (2002)),
while later works moved on to using indirect genotype representation where a
sophisticated mapping function describes how a phenotype can be produced from
the genotype. The most well-known direct encoding approach may be NEAT (Stan-
ley and Miikkulainen (2002)), and it is perhaps an endorsement of indirect ap-
proaches that NEAT too moved on to indirect encodings in the form of HyperNEAT
(Stanley, D’Ambrosio et al. (2009)). NMS-LOC can be viewed as using a form of
indirect encoding, specifically a developmental approach. See section 2.2.2 for a
more in depth discussion of direct, indirect and developmental encodings.
Indirect genotypes allow for smaller genotypes relative to network size which
reduces the search space at the cost of introducing more human design in the map-
ping function. A smaller genotype is advantageous as it allows for evolving large
networks without having equally large genomes. Grammar-based approaches are
an example of indirect encodings, which work by applying rules in a formal gram-
mar to produce a neural network (Cangelosi et al. (1994)). Some indirect en-
coding approaches use artificial chemical systems, such as Genomic Regulatory
Networks (GRNs) (Jackobi (1995); Eggenberger (1997)). In GRNs chemical con-
centrations in and around cells define which genes should be active, which then
defines which chemicals should be produced. The chemicals also define cell be-
havior, such as how cells should migrate and connect, and how strong connec-
tion weights should be in the neural network phenotype produced by mapping
from the chemical neuron simulation. Among the mentioned approaches GRNs
are most similar to NMS-LOC, but there are two crucial distinctions. First, a dis-
tinction between training time and runtime is common in neuroevolution, where
neuroevolutionary methods typically use a specific algorithm to produce an ANN,
which then acts as a normal MLP However, in biological neural networks there is
not such a strict distinction between learning time and runtime (ex. neurogenesis
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in adults Zhao et al. (2008), or the simple facts that children can exhibit intelli-
gent behaviour while their brains are developing, and that adults can still learn),
therefore moving away from this separation could produce advances in lifetime
learning and transfer learning. Secondarily, the aforementioned approaches only
use training data to evaluate the fitness of genotypes. Biological neural structures
grow by reacting and interacting with their surroundings, not through a one-to-
one mapping from the genotype. For both reasons NMS has no separation between
training/development time and runtime, using the same neuron model for both.

As mentioned, Neural Evolution of Augmenting Topologies (NEAT) (Stanley
and Miikkulainen (2002)) is one of the most well known TWEANN algorithms.
NEAT outperformed contemporary systems at its release and solved the competing
conventions problem which made crossover in TWEANNS difficult because differ-
ent networks could be interpreting the output of subnetworks differently. Among
other improvements NEAT introduced historical markers or tags in the genome to
denote which evolutionary changes produced which sections. These tags where
also used to divide the population into several species in order to maintain di-
versity, which is a common design issue in evolutionary algorithms conceptually
similar to the problem of exploration versus exploitation in reinforcement learn-
ing (Eiben and Smith (2015)). NEAT was further developed in HyperNEAT where
NEAT is used to evolve a computational network which given neuron coordin-
ates outputs the weights between the neurons (Stanley, D’Ambrosio et al. (2009))
which made it possible to grow large networks displaying modularization and
regularity. Like other neuroevolutionary approaches NEAT and HyperNEAT makes
a distinction between Artificial Embryogeny (Stanley and Miikkulainen (2003))
(otherwise known as neurogenesis or "the developmental phase") and runtime be-
havior. NEAT also advocated beginning the evolutionary search from a minimally
simple structure, which is employed in NMS-LOC by defining the initial network
structure to be input neurons, output neurons and a single unconnected neuron
controlled by the evolved functions. NEAT and HyperNEAT are relevant as altern-
ative methods to NMS within the MLP-paragdim, as well as having speciation
which is not used in NMS-LOC.

Figure 2.1 illustrates how the phenotypes produced by NEAT can look over
several iterations. The figure is not meant to capture technical details of NEAT,
but just to highlight how the algorithm works conceptually by gradually making
the phenotypes more complex. Notice how similar this graph is to the general
case illustration of phenotype development in Figure 1.2. The difference is just
that NEAT changes the phenotype based on mutation and crossover-based search
from each phenotype iteration, while a developmental process executes a develop-
mental program which may not involve fitness evaluation and often does not use
evolutionary search, although it could in principle. One of NEATs innovations was
an emphasis on starting search from a minimal structure, and has since become a
common feature in Neuroevolution.

Some hybrid approaches attempt to combine backpropagation gradient des-
cent with evolutionary search. For example, Suganuma et al. (2002) searches for
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Figure 2.1: Illustration of the evolution of ANN using NEAT. Illustration meant
to convey concept of evolving neurons and weights, not technical details of the
algorithm.

CNN architectures using CGB and then uses backpropagation to tune the network
weights and evaluate the fitness of the solution. For other hybrid approaches see
Stanley, Clune et al. (2019). Approaches like Suganuma et al. (2002) can also be
viewed as Baldwinian evolution approaches (Eiben & Smith, 2015), where muta-
tion operators are applied during genotype decoding which does not have any
impact on the genotype. The alternative to such approaches are Lamarckian evol-
ution approaches where genome processing operators alters the genome. NMS-
LOC is a strictly Baldwininan approach, without explicit changes of genomes dur-
ing runtime nor any epigenetic processes.

2.2.1 Developmental Approaches

Developmental approaches can be thought of as a subset of indirect encodings.
Specifically, developmental encodings are encodings which require the execution
of a computational process as encoded by the genotype to produce a phenotype.
The difference from indirect encodings is that it is not clear which phenotype a
genotype will map to before completing the computational process, nor exactly
which differences a change will cause. The intent is that developmental encodings
can allow for heavily compressed genotypes, because the produced phenotype is
produced by an extensive computational process, which also means that a small
change in the genotype may cause large changes to the phenotype due to it’s com-
pound effects. See 2.2.2 for a longer discussion of indirect and direct encodings.

NMS-LOC has a lot in common with other developmental approaches which
produce a phenotype through interaction with training data. One difference is that
developmental approaches sometimes map the developed structure onto a MLP
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(ex. Julian E Miller et al. (2019)). However, this is not always the case, and NMS
has more in common with developmental approaches which do not map the solu-
tion to an MLP. For example, Astor and Adami (2000) outline an approach based
on GRNs and chemical gradients where input neurons emit chemicals depending
on their state, eventually producing a multi-cell phenotype from a GRN genotype.
Despite the similarities to Astor & Adami’s work, NMS-LOC attempts to move away
from the use of chemical gradients as to not need to simulate chemicals to make
computation more efficient, and to have a greater focus on CGP-program centric
models, in the hopes that this would increase interpretability and explainability,
and to rely more on "computational primitives" as argued in section 1.2. Instead,
NMS-LOC focuses on the concept of neurons sending signals. However, an advant-
age of chemical gradient based approaches could be that the chemical gradients
provide a type of signaling mechanism that may be easier to evolve than signal
sending. In principle a neuron program can evolve which sends signals around per-
forming an equivalent function to chemical gradients, but if gradient simulation
is necessary an evolutionary overhead is introduced which may make the model
less efficient than just simulating chemical gradients. In particular, due to the the
availability of high performance GPUs, chemical gradient based models may be
more feasible as chemical diffusion could be simulated using GPUs through the
use of something similar to convolutional filters (see Figure 2.2). Therefore, the
use of chemical gradients should not be dismissed in future research, even though
this paper investigates an alternative approach.

However, even using GPUs the computational cost of chemical diffusion sim-
ulation can be expensive. If simulating neurons in a 3D-grid consisting of one
hundred by one hundred by one hundred positions, then each timestep would
involve updating one million position parameters per chemical.

Several other authors have used CGP to evolve neural networks. The Cartesian
Genetic Programming Artificial Neural Network (CGPANN) approach extends CGP-
graphs to include weights on directed links, and then uses standard CGP-techniques
to evolve networks (See Turner and Julian F. Miller (2013); M. M. Khan, Gul M.
Khan et al. (2010); M. M. Khan, Ahmad et al. (2013); Gul Muhammad Khan
(2018); N. Khan and Gul Muhammad Khan (2021)). Figure 2.3 illustrates a CG-
PANN graph, showing how CGPANN graphs are just normal CGP graphs with the
addition of weights which may be tuned using gradient descent. CGP is discussed
in more detail later, but as a contrast consider Figure 3.1 which illustrates a CGP
program which implements a one-bit fulladder. The disadvantage of using CG-
PANNS is that tuning may be computationally expensive, and that it may be more
more difficult to interpret the graphs. The most relevant approach to NMS-LOC is
research into CGP Developmental Networks (CGPDN), which use CGP to evolve
functions for use in a developmental process.

Julian E Miller et al. (2019) presents a CGPDN consisting of two CGP pro-
grams: One simulating a neuron soma, and one simulating a dendrite. Using in-
ternal state variables and hyperparameter defined increments and action thresholds
a one-dimensional network is grown. The development is done by running their
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Figure 2.2: Tllustrates chemical diffusion using matrix computation. Each chem-
ical layer in a 3D matrix has a magnitude preserving convolutional filter simulat-
ing chemical diffusion. (i) The state of one chemical layer. (ii) The same chemical
layer after one diffusion. The convolution would have to be zero-padded to main-
tain dimensionality and should likely either maintain the magnitude of chemicals

in the system, or reduce it on diffusion.
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n3 = 0.4*nl1 + 0.2*n2

Figure 2.3: An illustrated example of a CGPANN graph.
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soma and dendrite programs a given number of times, or until fitness decreases
in extracted ANNs. This makes Julian E Miller et al. (2019) approach an indirect
encoding approach which is sensitive to the genotype and fitness landscape of the
problem, but not the specific problem instances encountered. Similarly to other
neuroevolutionary methods it also makes a distinction between the development
phase of the network and the runtime network.

There are several key differences between Julian E Miller et al. (2019) ap-
proach and NMS-LOC. NMS-LOC is three-dimensional, incorporates the problem
domain in the developmental phase by making the neurons interact with problem
domain input and output, does not practice early stopping on fitness decreases and
does not make a distinction between development and runtime, that is, it does not
extract an ANN from the developed network. Julian E Miller et al. (2019) noted
that networks generated by their approach were often small, which may be be-
cause it uses an assumption of dendrite lengths being half of the neuron position
which may make it difficult to grow modular components and grow the network
as the one-dimensional half-distance from origo assumption may not be able to
take advantage of spatial data. Moving to two or three-dimensional spaces may
make it possible to use better geometric heuristics.

Further, Julian E Miller et al. (2019) relies on a set of pre-defined value types,
such as neuron health, which ties into the neuron control behavior in an explicit
fashion. The neuron model used in NMS-LOC instead uses a variable amount of
variables with no specific semantic meaning, functionally similarly to registers.
This was done to investigate if evolving CGP neuron programs would still be vi-
able in a more loosely defined model. Another approach which is similar to Miller
et. al.’s is Gul Muhammad Khan (2018), which also uses CGP to evolve neuron
control programs. Khan uses semantically defined state variables such as health
and resistance. The advantage of the approach taken in Khan and in Miller et.
al. is that it allows for freezing the developed network. That is, it is possible to
extract a static network, either by mapping the structure to an ANN, or freezing
system-changing variables like Health. The advantage is that this approach makes
it possible to extract stable networks which can run quickly in contemporary Al
frameworks, which is not the case for NMS-LOC. Miller recently published further
work focusing on their developmental neuron model applied to a two-dimensional
space (Julian E Miller (2021)). Julian E Miller (2021) also argues that the preval-
ence of storing information as synaptic weights is not necessarily accurate and is
not necessarily the best approach. However, the use of alternatives neuron mod-
els for actual computation in connectionist networks is not investigated in Millers
work. The similarities between Miller’s work and NMS-LOC is as such primarily
conceptual, and both approaches could be considered NMS systems.

Figure 2.4 shows the algorithm used in Julian E Miller et al. (2019) at a con-
ceptual level. A phenotype is developed over several iterations by running evolved
neuron soma and dendrite programs. Using the neurons and the dendrites internal
state variables MLP ANNSs are extracted, and each MLP ANN solves a different
problem (classification problems in Julian E Miller et al. (2019)). Notice how al-



Chapter 2: Theoretical Background 17

DEVELOPMENT DECODING

t=0 Snapping
o e% m

Inputs Hidden Outputs

Network extracted for Problem 2

Figure 2.4: An illustrated example of the algorithm used in Julian E Miller et al.
(2019) at a conceptual level. First, a phenotype is developed, then several ANNs
which solve different problems can be extracted from that phenotype. Figure is
adapted from Julian E Miller et al. (2019).

though the specifics of this algorithm differ greatly from NEAT it is clear that they
both are based on the same conceptual ideas of evolution and producing pheno-
types, and both approaches begin by starting at a minimal phenotype.

Another interesting area of existing research is the use of CGP in artificial life
simulations. One can view the problem of evolving neurons as trying to evolve a
information-processing creature, making these research areas conceptually sim-
ilar. Rothermich and J. Miller (2003) uses CGP to evolve cells capable of moving
towards energy sources in a simulated environment, and analyzes the strategies
used in the evolved phenotypes. In Rothermich, Wang et al. (2003) the same meth-
odology is used to allocate a parallel "cell-based" system for allocating computa-
tional resources between databases. One interesting aspect of the method in Ro-
thermich, Wang et al. (2003) is that it allows for CGP node functions to perform
actions on the cell level directly, instead of interpreting CGP output as control
signals. It is outside the scope of the work to compare these approaches more in
detail, but it is possible that the action-node-function approach could have ad-
vantages such as making it easier to evolve if-else type control structures in the
node programs.

An important sub-field of artificial life is the study of using Cellular Auto-
mata (CA) to construct patterns through the application of local rules on "cellu-
lar"/local organisms/programs. Oztiirkeri and Johnson (2011) gives a survey of
historical research into this subfield, and presents a solution which uses CGP to
evolve the local programs. Oztiirkeri and Johnson (2011) generates patterns us-



ing a two-dimensional cellular automata, meaning that the geometry/geography
of the simulated world is divided into a two-dimensional grid. Each cell can access
it’s own n-bit state along with the n-bit state of it’s neighbours. The evolved CGP
function then outputs the new internal state of the cell and the new internal state
of it’s neighbours. To avoid conflicts this is done in a deterministic order where
cells only updates neighbouring cells which comes after itself in the order. Unlike
many other approaches for evolving patterns, this approach does not use chemical
diffusion simulation. The authors claim that the state overwriting mechanism is
an sufficient signaling mechanism to permit organizing the pattern through the
application of local behavioural rules. Similarly, NMS-LOC uses a signaling mech-
anism instead of chemical diffusion. The state updating mechanisms in NMS-LOC
and Oztiirkeri and Johnson (2011) still have several differences, such as NMS-LOC
lack of an explicitly pre-determined execution order and permitting recurrence,
but both approaches still attempt to find computational signaling mechanisms that
do not depend on chemical diffusion.

In conclusion; NMS-LOC (and NMS) is a neuroevolution method inspired by
several other neuroevolutionary algorithms but attempts to be more general. In a
sense most neuroevolutionary approaches can be viewed as algorithms for find-
ing a specific MLP for a specific problem, while NMS-LOC instead seeks for a
controller for a neuron "robot", which interacts with other neuron robots to solve
one or more problems requiring learning (or equivalently, NMS-LOC constitutes
an agent-based approach to neural network intelligence (Laubenbacher et al.
(2013))). By not extracting MLPs from the developed networks, by not separat-
ing the development and runtime phase and by not using a one-to-one genotype-
phenotype mapping and by searching for "neuron robot controllers" (i.e., neuron
models) NMS-LOC may be able to find novel solutions. This comes at the cost of
potentially reduced computational efficiency, and the potential of neuron models
being unstable and degenerating which cannot occur with standard ANNs extrac-
ted from developmental networks.

2.2.2 Conceptual difference between developmental systems and other
evolutionary approaches

In direct encodings the genome can be directly mapped to the resulting phen-
otype. In effect the genotype space can be a complete one-to-one mapping from
the genotype domain to the phenotype domain. Evolutionary search therefore dir-
ectly navigates the search space of the phenotype applied to the problem domain.
Figure 2.5 illustrates how direct encoding mapping schemes work. In the figure
a genotype of a given size maps to a set of phenotypes which may be as large or
smaller to the set of possible genotypes. The size of the search space is limited by
the size of the genome, and will be unable to create neural networks of a given
size.

Indirect encodings are by definition compressed encodings which require a
decoding process before being mapped to phenotype space. It is possible that the
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Figure 2.5: Illustrating a deterministic mapping from genotype to phenotype
space.

indirect encoding forms a complete map, that is, every phenotype (of a given size)
can be produced by the possible genotypes, but this is not an requirement. The
indirect encoding can in principle also be a many-to-one encoding from genotype
space to phenotype space, but does not need to be. As mentioned indirect en-
codings are used because the compressed representation allows for searching for
larger phenotypes. In effect, the compression/decompression mapping applies a
transformation to the target search space. This is beneficial under at least two cir-
cumstances: One, if the used evolutionary algorithm is better suited to navigating
the transformed search space. Two, the transformation biases the search space,
either by dropping some poor solutions from the search space entirely, or by mak-
ing the evolution of high-performing phenotypes statistically more likely, for ex-
ample by increasing the percentage of genotypes which map to such phenotypes.
Figure 2.5 also illustrates the indirect encoding mapping scheme. The amount
of possible phenotypes does not increase by using indirect encoding, but by us-
ing an indirect encoding scheme one can reach a different set of phenotypes. For
example, the phenotype space may contain more complex phenotypes (i.e. large
neural networks).

Developmental encodings are a subset of indirect encodings, but can have
some key differences from non-developmental indirect encodings. Developmental
encodings may focus on defining the behavior of sub-components, which together
produce a phenotype through their interactions during the decoding process - of-
ten referred to as emergence. If the decoding process is deterministic and does not
take any input from the environment, developmental encodings are just a particu-
lar approach to indirect encodings. However, if the developmental encodings take
input from the environment during the decoding process the encodings have dif-
ferent properties from direct encodings and other indirect encodings. By taking



environmental input in account during the developmental process the mapping
from genotype space to phenotype space is no longer just a function of the gen-
otype, but also the environment. Instead of one genotype mapping to a specific
phenotype, genotypes can now map to a set of phenotypes. Other Indirect and
all direct encodings search for phenotypes, but input-sensitive developmental ap-
proaches search for information processing programs which produce phenotypes.
In effect the developmental system can produce an information structure using
the information of the genotype as well as the information from the input. This is
interesting as it means that a single genotype can in principle map to phenotypes
which perform well under different circumstances - for example, if the problem
domain is dynamic or changing. Further, it is interesting because it means that the
genotype in principle needs to encode less information (or at least less informa-
tion about the problem domain), because additional information will be provided
by the environment during the developmental process. Allegorically, a direct en-
coding searches for a bitmap image, an indirect encoding searches for an jpeg
image, and developmental encodings search for image compression/decompres-
sion algorithms, or alternatively, direct encodings searches for a specific solution,
indirect encodings searches for a compressed solution, and developmental encod-
ings search for compressed solutions which may use information from the envir-
onment, i.e. programs capable of some degree of learning or adaptation. From an
engineering perspective this could entail several desirable properties, such as ro-
bustness of genotypes during a change in the problem domain, or the application
of a single genotype to different problem domains. It is also clearly how advanced
biological organisms such as humans develop. Therefore, environment sensitive
developmental encodings are used in NMS-LOC (A similar argument is made in
Hintze et al. (2020) and the above is primarily a rephrasing of common argu-
ments in favor of indirect and developmental encodings such as Julian Francis
Miller (2003) and Eggenberger (1997)).

Direct and indirect encodings can be considered mapping functions of the type
Phenotype = mapping(Genotype). Developmental encodings on the other hand
can be more complex, and can in the most complex case be functions of the type
Phenotype, = mapping(Genotype, Phenotype,_;,environment,, f eedback,_;).
This both enables the use of different types of mapping functions which ideally
can bias the search to more favourable phenotypes and can also make it possible
to reach a larger amount of phenotypes, either by using environmental data such
as testing the phenotype on problems and getting fitness feedback or using ran-
dom seeds. Figure 2.6 illustrates how mapping functions which use more inputs
than just the genotype and previous timestep phenotypes can reach a larger set of
phenotypes, where some may be more probable than others. Note that direct and
indirect encodings as described by Figure 2.5 can also contain some phenotypes
which are unlikely to be actually reached in the search. Developmental encodings
are in practice a type of indirect encodings when they use mapping functions of
the type Phenotype, = mapping(Genotype,Phenotype;_;), as such functions
are in practice incremental deterministic decodings.
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Figure 2.6: Mapping the genotype to phenotype when using mapping functions
with other inputs than just the genotype and phenotypes at previous timesteps.

2.2.3 Biological Inspiration

Although NMS-LOC does not intent to be biologically accurate, some aspects of
biological organisms and neurons still helped inspire the design.

e Dendrite/axon lengths in human brains follow a power law distribution
(Downing (2015)). This means that Cartesian distance in three-dimensional
spaces can be a useful heuristic in algorithms when searching for possible
neuron connections. As such neurons search for connections to other neur-
ons by trying to find a target distance based on sampling a power law dis-
tribution in NMS-LOC.

e Vertebrae bodies and brains develop modular components through the ac-
tivation of homeobox gene-variants through the use of chemical markers. A
neuron model could potentially achieve similar homeobox modularization
by allowing it to switch between different versions of the neuron functions.
This is often done through the creation of chemical gradients in the body,
but as Stanley and Miikkulainen (2003) point out computer programs can
access the coordinates of a cell directly, and therefore CGP functions in NMS-
LOC is given the x, y, and z coordinates of the relevant neuron as input. As
an approximation of homeobox gene variants the CGP genome can contain
variants of each function, with a master control function which can select
between the variants, such that different functions can be used in different
circumstances.

e The theory of facilitated variation (Gerhart and Kirschner (2007)) posits
that evolutionary variation in the modern pos-pre-Cambrian era is primar-
ily done through searching over different combinations of core processes,
which are building blocks construed of genomes which are robust to evol-



utionary mutation, environmental change and recombination. The theory
states that evolutionary adaptivity is increased by searching over different
ways of combining the core processes, as mutations affecting the connec-
tions between core processess are more likely to produce useful changes in
the phenotype than other gene mutations. To approximate core processes
NMS-LOC allows the genome to extract sub-graphs from CGP-graphs, and
collapsing the sub-graph into a single CGP node during crossover. Ideally
this would make NMS-LOC capable of finding useful functions similarly to
core procesess.

e Biological neurons have a complex state, both represented through chemic-
als secreted throughout the local area as well as chemical buildup within the
neuron. John H. Holland (1998) discusses how buildup of "fatigue chemic-
als" can cause neural networks to switch between activation patterns, and as
such "switch focus". To allow for complex states within neurons NMS-LOC
has a configurable hyperparameter dictating an amount of neuron state vari-
ables (and axon-dendrite state variables) which can be read and written to
by the neuron (or axon-dendrites) functions.

2.3 A general model of connectionism

Connectionism is a paradgimn within cognitive neuroscience which focuses on
the study of the mind modelled by interconnected neurons. Historically, connec-
tionism has been related to neural network research, as computational neural
networks provide a way to determine the capabilities of connectionist models.
However, although neural networks have been used as models in connectionism,
this does not mean that connectionists hold the view that the neuron model used
is biologically plausible, rather just that the abstraction is inspired by biology and
useful for connectionist distributed processing (Waskan (n.d.); Buckner and Gar-
son (2019); Downing (2015); Minsky (1991); Hiesinger (2021)).

No matter which neuron model used all connectionist models have in common
that they model intelligence or computation through the use of several intercon-
nected neurons, or more abstractly, interconnected computational components.
Therefore, it would be beneficial to have a metaphorical or conceptual framework
to describe the computational components used in connectionist models in gen-
eral, here dubbed the General Connectionist Model (GCM). To some degree mod-
els must always be compared through listing specific differences, such as whether
the systems use backpropagation or a Hebbian learning rule, but viewing these
different systems as a specification of an abstract connectionist model may help
illuminate their relationships, provide a language to discuss the differences, and
inspire changes and new designs.

In particular, the use of an abstract connectionist model can be useful in the
design of NMS systems. As will be discussed connectionist models can be described
as a set of constraints upon the GCM. NMS systems may therefore be defined
by imposing constraints with degrees of freedom, that is, incompletely specified
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constraints which are specified through evolutionary search. In effect defining a
NMS system is equivalent to defining a set of connectionist models and then using
evolutionary search to select a specific model from that set.

2.3.1 General Connectionist Model

At a high level the GCM describes an abstract system built up of an infinite amount
of computational units which may recieve, transmit, and process signals between
themselves. The concrete specification follows, and is made with the intent to be
general enough to represent any connectionist software as a set of constraints.

The GCM consists of an infinite amount of Turing machines with infinite memory

(in the sense of being some type of computer which can compute any computable
function), with the addition of permitting the Turing machines to transmit and
receive signals between themselves. There is no concept of distance, sending a sig-
nal between any pair takes the same amount of time, and the signal may contain
any amount of information. Further specification of computing substrate may be
represented as additional constraints. The GCM Turing machines never degrade,
break down, or have errors unless further constraints say so. Each computational
unit may implement it’'s own program, but may also use the same program as
other units. The objective of the GCM is to minimize the time spent on computing
the output, as such it is not desirable to use a single Turing machine to compute
the output, but rather to spread it across other parallel units i.e. a connection-
ist mode of computation. Other performance measures such as energy efficiency,
robustness in face of component degradation, memory efficiency, and ease of de-
veloping useful programs can be desirable properties of connectionist models, but
are modelled as additional constraints imposed on the GCM.

Finally, the GCM needs a way to handle input and output. For generality every
computational unit is given every input, and the neuron program determines
which neurons act upon which inputs. Similarly, every computational unit may
transmit one or more of the outputs of the GCM.

Constraints upon the GCM should be defined as a constraint upon the in-
dividual computational neurons whenever possible. L.e. instead of defining the
update of network weights using the efficient matrix operations, one should in-
stead define the functions computed in each neuron, as if backpropagation was
computed in a distributed manner, because this is what happens to each compu-
tational unit on a conceptual level. Of course, actual implementation of models
defined in the GCM may be implemented differently.

Although the following discussion will be focused on using the GCM for neuron
models in relation to NMS, the GCM is intended to be general enough to describe
other forms of distributed computation. For example, distributing computations
over a server or several servers, multi-core processors or implementing cellular
automata (ex. Cook (2004)) could all be modelled through imposing a set of con-
straints upon the GCM due to it’s generality.



2.3.2 Hebbian learning as a set of constraints upon GCM

The GCM by itself is not implementable. It is abstract, and requires impossibilities
such as having an infinite amount of Turing machines with infinite memory. The
intended use for the GCM is instead as a framework for defining other connec-
tionist models in order to facilitate a language allowing comparison and possibly
invention. To illustrate use of the GCM a description of a Hebbian-type connec-
tionist model follows:

In the following set of constraints, a neuron refers to a computational unit in
GCM parlance.

e Neurons may only send signals to neurons they have an explicit pre-determined
connection to.

e Neurons may only have outgoing connections to non-ancestor neurons - in
other words, no recurrence.

¢ Only a finite set of neurons are used.

e Neurons only store the learning rate, the connection weights of incoming
connections in memory, in addition to whatever the neurons need to couple
incoming signals with the correct connection weight, the last incoming in-
puts and whatever it needs to connect these to the connection weights and
it’s own last output.

o There are three types of neurons, defined by implementing different neuron
programs: Input neurons, which transmits a specific input signal unchanged/un-
processed to neurons it has connections to. Hidden neurons, which take a
weighted sum of inputs, compute the sine of the sum, and transmits the
signal to neurons it has connections to. Hidden neurons may only do this
when all their inputs are ready. Output neurons function identically to hid-
den neurons, except that output neurons do not transmit any output to other
neurons, instead giving it as program output.

e After each training sample hidden neuron and output neurons are given
a signal. Using the contents of memory, the neurons update their weights
according to the formula:

weight; = (1 —learningrate) * weight;+

learningrate * (abs(incomingOutput; — outgoingOutput;))

2.3.3 Using the GCM

To show how GCM can be used to define neurons for use in NMS systems the
previous sections Hebbian learning is changed to include the use of evolveable
programs. The NMS system described in this section is meant to be illustrative,
and not as a suggestion for further research:

e Neurons are given coordinates in a two-dimensional space. Neurons do not
need to have unique coordinates.
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e Each neuron is given n internal state values it can write to (referred to as
neuron internal states - although the neurons strictly speaking also store
incoming weights etc.). The neuron internal states have default values used
at initialization.

e Neurons may form new connections to non-ancestor neurons. This is done
by defining a computable program. Defining the weight-path to a neuron
as the product of all weights along a path between the neurons, the com-
putable program is given the maximum of its weight paths to the target
neuron, the average weight path, the coordinates of the target neuron, it’s
own coordinates as input, and it’s own writable internal states. The program
outputs a value, if it is greater than one, a connection is formed - additionally
it outputs how much it’s internal state variables should change. (In order
to facilitate neurons getting this information neurons are allowed to send
signals back-stream for the explicit purpose of exchanging information for
this program). After each training sample a random subset of neurons runs
this program for a random subset of target neurons.

e Neurons may spawn new neurons. This is defined by an evolved program.
The program is given it’s internal state variables and coordinates, and out-
puts a value defining whether or not a neuron should be spawned, the co-
ordinates the spawned neuron should be spawned at, and it’s own internal
state. In terms of the GCM this is done by just selecting one of the infinite
amounts of unused neurons.

e An evolved program which updates internal state is ran after updating the
neurons weights - is given the average weight, average input value, and own
output value and coordinates as input. Outputs weight change.

o At the very end of each training sample each neuron runs a program which
determines if it dies. Input are coordinates and neuron internal states. On
death all incoming and outcoming connections are removed, no further
activity is performed in the neuron.

The Hebbian learning system has been extended to allow the neural network
to grow and shrink. Using an error measure over the outputs of the neural network
over a given amount of iterations makes it is possible to search for suitable evolved
programs.

2.3.4 Other neural models as sets of constraints on the GCM

It is outside of the scope of this thesis to give a detailed account of many con-
temporary neural network methods as sub-methods as GCM. However, as it is
possible a brief note is included to highlight a key difference between NMS and
contemporary methods (ex. Deep learning, NEAT).

In view of previous discussion it is possible to define a clear and specific defin-
ition of NMS systems. An NMS system is any system which attempts to solve
problems in an connectionist manner, and which constitutes a GCM subset of a
size greater than one, meaning that some part of the neuron (or computational



unit’s) specification is done by evolutionary search. For example, evolving activa-
tion functions for a specific MLP structure would qualify. This is a loose definition,
but there is no particular benefit to having a very strict definition and debating
at length what is and what isn’t an NMS system. As such NMS systems do not
need strictly need to use developmental encodings, per definition. However, the
properties of developmental systems, such as emerging through the interaction of
sub-components, seems to make NMS and developmental encodings a desirable
combination.

Stanley and Miikkulainen (2003) provides a way to classify neuroevolution-
ary systems. Using their taxonomy several characteristics of NMS systems can be
identified. In the following the word "program" is used, but strictly speaking the
evolved specification does not need to be a program; but "program" is a convenient
shorthand for "some evolved aspect of neuron behaviour".

1. Cell Fate (death, birth, topology, weights, position, internal states, runtime
behaviour or similar etc.) is determined by emergent behaviour resulting
from the execution of one or more evolved neuron programs. Not every
aspect of Cell Fate needs to be directly determined by evolved programs,
but at least one evolved program exists whose execution in some way effects
some aspect of Cell Fate.

2. Targeting may be evolved directly, partially or indirectly affected by evolved
programs, but does not necessarily have to be.

3. Heterochrony is most likely affected by the evolved programs. Heterochrony
is the timing of developmental events, and in NMS systems there may ex-
ist programs which in some way affect the development, such that future
developmental events is affected by the result of previous, making the de-
velopmental process an adaptive process determined by running the "over-
all program". However, strictly speaking an NMS system could only evolve
runtime/program solving behaviour, such as only evolving which function
neurons compute over their inputs.

4. Canalization (robustness to genomic mutation) is probably desirable, but is
a property of the specific system used.

5. Complexification, the ability to produce more advanced phenotypic beha-
viour through making the genome gradually more complex is also an imple-
mentation detail and is not necessary, although it may be desirable in some
systems.

2.4 NMS Search Space Size

Another way to view the GCM in relation to NMS system design is as a way to
reason about the size of the search space. The more behaviour that needs to be
evolved, the larger the search space. The following discussion of search space size
assumes that CGP is used to evolve the programs. This is not a requirement for
NMS, but is done as it applies to the NMS-LOC. An equation for a loose upper
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bound of search space size for a CGP-program with N inputs, M outputs, a max-
imum of Z active nodes, and Q different CGP node functions and a maximal node
function arity of T is shown in equation (2.1).

zn A QxZ%Z T N!
k————— % QL% L% Tk ————
(Zz—M) (N—=T)!

A proof is shown in the Appendix (Section A).

Further, the NMS system used in this thesis permits modular CGP node func-
tions to contain other modular CGP node functions, theoretically permitting an
infinite amount of genotypes. The intent behind allowing modular CGP functions
is for useful components to evolve which could make further evolution simpler,
inspired by core processes in facilitated variation theory (Gerhart and Kirschner
(2007); Downing (2015)). In the ideal case these core processes could be com-
bined into new components, which themselves could form core processes. As such
the intent is that modular CGP makes the search space easier to navigate, at the
cost of increasing the size of the search space. In principle for a high-recursive-
depth modular function to survive it needs to correlate with an increase in fitness,
although it is possible that it may be used or persist due to assosiation with an-
other change leading to improved fitness, corresponding to the phenomenon of
hitchiking in Schema Theory (Eiben and Smith (2015)). As such recursion depth
of CGP modular functions and the amount of CGP modular functions should be
monitored to ensure that issues do not occur in practice, which could be indic-
ated by the use of many high recursive-depth modular functions in poor-fitness
programs. Such issues could be alleviated by introducing a max recursion depth
for modular CGP functions, in which case a theoretical upper bound of the search
space could also be determined.

Further, the use of modular CGP makes the T parameter difficult to set, as
although the may only use ’basic’ CGP node functions of some arity T, the CGP
modules may still evolve to have a larger arity than T (unless it is deliberately
capped). Additionally, the Q parameter does not account for the creation of CGP
node types. As such the upper bound is better suited for non-modular CGP pro-
grams, or if modules are rare or not present in the genotypes in practice. However,
Equation 2.1 may still give a decent estimate as long as high-arity modular CGP
functions are not common in the genotype, even if it is not the actual upper bound
for the modular CGP case. Experimentally NMS-LOC does not use modular CGP
functions, even though it is permitted, making the upper bound in practice ac-
curate, and thus a reasonable measure to discuss the size of the search spaces in
various configurations of NMS-LOC.

Additionally, the NMS system used in this thesis uses several evolved programs
in its evolved neuron models, several of which contain several inputs and outputs
depending on the set hyperparameters. If O is the set of input arities to each pro-
gram, I is the set of output arities of each program, there are P different programs

(2.1)

!As an implementation detail there is an effective maximal recursion depth in NMS-LOC con-
strained by the maximal depth of the Python callstack.



and the function f(o, i) denotes equation (2.1) with N=o and M=i then equation
(2.2) shows the total size of the search space.
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[170,.1) (2.2)
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Clearly, the genotypic search space in NMS can be extremely large. Note how-
ever that the phenotypic space may be far smaller, as it it is possible that many
genotypes map to the same or very similar phenotype(s). It is clear that NMS sys-
tems should focus on developing and using algorithms which are able to efficiently
navigate the search space and on optimization in order to handle the search space
size. There are several issues which can occur in terms of the navigability of the
search space: First, it may simply be too large, in which case evolvable program
inputs and size can be adjusted, or an evolvable program could be dropped in
favor of a hardcoded function. Secondly, it is possible that few genotypes map to
meaningful phenotypes. In other words, the search space may consist of many
local optima or large search space plateaus or flat ridges, making it difficult to
navigate due to a lack of an available gradient (see Figure 2.7 for an illustration
of search spaces). Although CGP’s neutral drift means that it can escape local op-
tima given sufficient runtime, it still needs a navigable search space, as otherwise
one might as well use random search. If this is a problem the neuron design could
be reevaluated in order to make it easier or more likely to produce phenotypes
with meaningful behaviour, for example by replacing an evolveable program with
an hardcoded function. The third possible problem is that the search space does
not contain a good solution or contains very few good solutions, in which case a
reevaluation of the neuron design is necessary. The first and second problem are
made more critical by the fact that developing a phenotype from a genotype may
be an computationally expensive operation in NMS systems.

2.4.1 Search spaces in the experiments

Based on the configuration files for the experiments in the thesis the above for-
mulas can be used to calculate the search space size of the NMS-LOC problems.
In short, the search spaces are large due to combinatorial explosion, but no larger
than other AI problems. The config files are shown in Appendix C, and the corres-
ponding search space sizes are shown in Table ??. These search spaces are large,
but search spaces of most Al problems is large due to combinatorial explosion,
what matters is that the applied algorithm is able to navigate the search space cor-
rectly. For example, an MLP with one million weights and one thousand possible
values per weight gives one thousand to the power of one million, or, 10100000000
different possible permutations, which is far larger than the NMS search space
sizes. The nature of these search spaces are different, as the MLP fitness land-
scape is continuous and differentiable (or approximately so, in the case of some
activation functions like ReLU), while CGP search spaces are made up of discrete
points. However, due to CGP’s neutral drift and inactive nodes large parts of the
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(i)

(iii)

(iv)

A 1.0

Fitness 0.0

Figure 2.7: Illustrated search spaces. (i) Many local optima make it difficult to find
the global optima. (ii) The search space is divided into several plateaus. Although
the plateus are connected, movement within each plateau is random, making it
difficult to reach the optimum. (iii) Movement in the search landscape will likely
move along the long ridge, making it difficult to reach the global optimum. The
issue is not that the system moves along the ridge, but that the ridge does not
lead anywhere in the search space. (iv) An idealized smooth gradient, making it
easy for evolutionary search to find the global optimum.



Config file Search space size Search space size limiting to one
homeobox function variant per function

Config 2 4.8 %102 4.8 % 10%°2
Config 3 1.0% 101003 3.0 % 10°6®
Config 4 1.6% 10108 6.4 % 10!

Table 2.1: NMS-LOC search spaces sizes by config file.

search space will effectively be compiled to the same genotype. Further, although
the theoretical amount of programs can be large, the amount of programs which
is likely to be considered by a given search algorithm can be smaller. Similarly
to discrete state games such as chess there may exist states which are technically
legal, but which would never occur in practice.

As such, it is reasonable to expect that it is possible for NMS-LOC to find good
CGP programs, but that a suitable search algorithm is used, as entirely random
search would probably struggle in the face of the large search space size. Experi-
mentally it is clear that NMS-LOC is able to find good programs through a variant
of the CGP evolutionary algorithm.

2.5 Used problems

This section presents the problem domains used in experiments in this thesis.

One pole balancing: The one pole balancing problem is a classic control prob-
lem, where the task is to balance a pole placed on top of a cart at an angle by
moving the cart to the left or to the right by applying a force to the cart at each
timestep. The pole starts at randomized angles. As long as the pole position is no
more than 15 degrees from vertical and the cart does not move more than 2.4
units from the center position a reward of 1 is given each timestep. When this
is no longer the case, the problem instance has failed. This version of the one
pole balancing problem uses the CartPole-v0O implementation in Brockman et al.
(2016), which is based on the specification in ‘Neuronlike adaptive elements that
can solve difficult learning control problems’ (1983). In NMS-LOC each evalu-
ation against the one pole balancing problem consists of one hundred timesteps,
where reaching a fail state counts as a reward of 0, and failing to output an action
counts as a reward of 0. The fitness of a genotype is 1 - (Reward/100), making
the objective fitness minimization (aka error minimization).

IRIS flower dataset: The IRIS flower dataset is a classic tabular data clas-
sification problem. The task is to classify Iris flowers into species based on the
measured length and width of petals and sepals. There are three species, and the
dataset contains 150 samples. At the start of an evolutionary run the dataset is
split into one part containing 120 samples - the training data - and one contain-
ing 30 samples - the validation data. A phenotype is given the training set in a
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randomized order to develop and evaluate it’s fitness twice, and is afterwards
then additionally evaluated on the validation data to track validation fitness over
time. Only the fitness from the evaluating the training set is used in the evolu-
tionary algorithm, as such, the validation data has no impact on the evolutionary
run. The version of the IRIS flower dataset used is maintained by Dua and Graff
(2017), and was originally made by Fischer (1936).






Chapter 3

Methodology & Design

The following details the design of NMS-LOC at a high level. Not every technical
detail is presented, but the overall system functionality should be clear from the
following discussion. The system concludes with a discussion of possible issues
with the design.

3.1 NMS-LOC specification

The following section describes the design of NMS-LOC, first presenting the vari-
ant of CGP used to control the neurons, then presenting the neuron engine (or
the "neuron environment" or "neuron world") in which the neurons act and are
simulated.

3.1.1 The modfified CGP system

In this section the NMS systems use of CGP is discussed, introducing CGP briefly
as well as describing the modifications and choices made for this specific system.

Introduction to CGP

Genetic Programming (GP) is a subfield of evolutionary algorithms which searches
for computer programs by searching over syntax parse trees (Willis et al. (1997)).
CGP is a variant of GP where programs are represented as directed acyclic graphs.
CGP genomes define nodes by defining which function (hence node function) the
node executes over it’s input(s), and which nodes each node gets input from.
Additionally, the genome specifies which nodes are output nodes. Input nodes are
added as a part of decoding the genome (Julian E Miller (2020)). Several variants
and extensions of CGP exists, of note for this work are modular CGP-functions,
where other CGP-programs can be used as node functions (Walker and Julian E
Miller (2004)). For an example of a CGP program see Figure 3.1, which shows an
CGP full adder. Modular CGP works by allowing a single node to compute another
CGP-program, such as an full adder.
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Figure 3.1: Example of a CGP function equivalent to a 1-bit full adder. Inputs are
sent form bottom up, red nodes are inputs, green are outputs, blue neither.

Genome

Hex-selector Functions
Function Function, Function, ..., Function
Hex-variant, Hex-variant, ..., Hex-variant

Figure 3.2: Shows the structure of the NMS genome.

By default CGP does not use crossover operators. Default CGP uses mutation
operators which can add nodes up to a predefined limit, change edge connections
up to a maximum arity of the node or change node type. CGP genomes can con-
tain inactive nodes which are either not fully connected to input or output nodes,
and mutation over these nodes serves as neutral drift facilitating evolutionary ex-
ploration (Julian E Miller (2020)). The standard evolution strategy consists of
maintaining one parent genotype and producing a given number of offspring and
selecting the offspring with the highest fitness that is higher or equal to the parent
to facilitate neutral drift through mutations in the inactive nodes (A (1+A) evol-
utionary strategy) (Julian E Miller (2020); Eiben and Smith (2015)). However,
by maintaining only a single population member it may be difficult to explore a
wide area of the design space. Therefore, the variant of CGP used in NMS-LOC
introduces a crossover operator to facilitate the use of larger populations.
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Details on CGP variant used in NMS-LOC

In NMS-LOC the CGP genome is split in two main parts, as illustrated in Figure
3.2. One part, the Functions part, defines a set of functions, each of which is a
control program for one of the things neurons and axon-dendrites can do in the
neuron engine. Each function has a configurable amount of variants, called hex-
variants. The other part of the genome, the Hex-selector, is itself a CGP program.
However, the hex-selector has a special function. When run it outputs which hex-
variant of the functions should be used. This is inspired by homeobox genes in
vertebrae biology, where chemical markers in the body can dictate that different
parts of an organism’s genome should be used, i.e. whether to make an arm or a
leg, an hippocampus or a frontal lobe (Downing (2015)). The intent is that dif-
ferent homeobox variants can be used in different circumstances, for example in
different regions of the neuron engine. To facilitate this functions are given the
position of the neuron as input, inspired by the suggestion in Stanley and Miikku-
lainen (2003) to let evolutionary programs access coordinates directly instead of
simulating chemical gradients.

An alternative to having several functions for every neuron action would be
to have a single master-control program controlling all possible input and output
actions. The choice to have several programs is inspired by Walker and Julian E
Miller (2004) which successfully solved a circuit design problem by separating
the problem into n-subproblems where n is the desired amount of circuit outputs.
Unlike Walker and Julian E Miller (2004) the function programs have several
outputs, and each genotype has a shared fitness instead of an individual fitness
for each function as the fitness of each function is dependent on their relation
to the other functions. The intent of using a design which has several functions
(see the Appendix B) instead of one unified neuron-controller program is to sim-
plify the search space, and to make the functionality of found programs easier
to interpret. The design decision is also inspired by biology, specifically the the-
ory of facilitated variation (Gerhart and Kirschner (2007)). Facilitated variation
states that evolutionary variation in the post-pre-Cambrian era is primarily done
through searching over combinations of gene blocks called core processes, which
are gene blocks that are stable and robust to being combined with other blocks
in many ways. The theory postulates that robust evolutionary variation can be
achieved through evolving different ways for these core processes to interact and
inter-regulate, rather than mutating the processes themselves. Each function can
be viewed as a core process which has a specific functionality and is only weakly
linked to the others through the neurons internal states and the effects each func-
tion has on the neurons behavior, which the implemented crossover operations
attempt to take advantage of.

It should be noted that the aforementioned CGPANN approaches sometimes
split the genome up in chromosomes, but do not contain a concept of homeobox
variants. An interesting approach in N. Khan and Gul Muhammad Khan (2021) is
the use of an ensemble approach to evolution (Eiben and Smith (2015)), where
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Figure 3.3: Illustrates how crossover works at the CGP-function level. A part of
one parent genomes active nodes is made into a node function, and set as the node
function executed by an inactive node in a copy of the other parent genome. This
inactive node may then become active through mutation.

each chromosome is evolved separately with separate fitness values (similar to
Walker and Julian E Miller (2004)), achieved by averaging the fitnesses of solu-
tions in which the chromosome appears. Such an approach could be useful for
NMS-LOC, but has not been investigated due to scope limitations.

Crossover is implemented at two levels, one of which is also inspired by fa-
cilitated variation. Functions and their homeobox variants can be swapped with
a given probability, and within a homeobox variant may be copied over to the
neighbouring homeobox variant of the same function with a given probability.
The other level of crossover is at the CGP level, where functions can be crossov-
ered by extracting sub-graphs of one function and using it as a modular function
in an inactive node in the other function, as shown in Figure 3.3. Modular CGP
functions therefore act as core processes, potentially accelerating evolution and
allowing greater complexity by finding good modules. Pairs of genomes are selec-
ted as crossover pairs randomly, and each genome can only participating in one
pairing. Each pairing produces a number of offspring which together with other
offspring are evaluated for selecting the next generation.

After crossover mutation is applied. CGP mutation in this work is slightly dif-
ferent from the standard CGP-mutation operator which can change and add edges
or changing the type of a node. For one, the existing modular CGP-functions in
a genome is added to the set of types a node can mutate to. Secondly, mutation
probabilities are scaled depending on the input arity of a function: The node type
mutation chance is scaled by dividing by input count, such that large-input func-
tions are not more likely to be discarded than low-input functions due to inactivity.
Secondly, the link mutation chance is scaled by dividing by input count such that
large-input node functions can change inputs at the same rate. Finally, output in-
dex change chance is scaled by input arity of node pointed to by the index for the
same reason.

Modular CGP-programs were introduced in Walker and Julian E Miller (2004),
but unlike in Walker & Miller modules can contain other modules in NMS-LOC,
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and cannot be expanded and changed after creation. Modules creation in NMS-
LOC is based on Kaufmann and Platzner (2008); specifically modules are created
from cones (i.e., beginning with a node and picking nodes connected to it such
that there is always a path from any node to the first picked node). Kaufmann and
Platzner (2008) also investigated using crossover, but found it tended to lead to
increased computational cost - in case this applies to the NMS-LOC the code sup-
ports populations as low as 2, minimizing this overhead, and could be customized
to single-population as in regular CGP relatively easily by making a single geno-
type pair with itself.

Each pair of parents create two or four children - four if using an optional set-
ting which produces two extra children without using crossover, two otherwise.
If a child has equal or higher fitness than its parent, then it replaces the parent.
This is done instead of selecting the highest fitness genotypes overall for the next
generation to reduce the speed at which dominant genotypes take over the pop-
ulation, in the hopes of preserving more diversity in the search. A child of equal
fitness replaces its parent to facilitate neutral drift, as this allows traversing a
plateau in the fitness landscape. To make it possible for good genotypes to spread
in the population an explicit replacement mechanism is implemented: Genomes
are split around the average fitness. A random genome from the best split then
replaces a random genome from the worst split.

Mutation rates can be configured using hyperparameters. Finding a better
child genotype multiplies the mutation rate by a configurable factor, and fail-
ure to find a neutral or better child genotype, that is, being stuck in the state
landscape, multiplies the mutation rate with a configurable number. Additionally,
neutral child genotype mutation rates suffer a slight decay rate. This ensures that
as mutation rate goes low, the mutation rate does not get stuck due to NMS-LOC
producing the same or functionally similar genotypes. A mutation rate limit is in-
cluded as a configurable hyperparameter, and when the mutation rate is lower
than this hypermutation is triggered which sets the mutation rate to a far higher
value in order to escape local minima (Eiben and Smith (2015)).

3.1.2 The Neuron Model

The neuron engine consists of a three-dimensional Cartesian grid. Each position
in the grid can contain several neurons which saves computational resources for
checking and handling neuron collisions. Similarly, there is no concept of dendrite
collisions. This is done to save computational resources on detecting and handling
collisions and to take advantage of the fact that the artificial neurons are not
actually constrained by physical space.

Axons and dendrite are unified in axon-dendrites, which each are connected
to a neuron, and can be connected to another axon-dendrite or be a free axon-
dendrite. The distinction is done based on whether signals are being sent forwards
from dendrite to axon, or backwards through axon to the dendrite, and depending
on the direction different programs are used for processing and transmitting sig-



nals. A unified axon-dendrite model was selected to reduce the size of the search
space. Hidden neurons (that is, evolved neurons (and their axon-dendrites)) can
perform the actions defined in Appendix A. Input and Output neurons can per-
form no actions, but are always considered as having free dendrites, such that
the genotype-controlled neurons can connect to them. When a neuron seeks a
connection to an axon-dendrite it samples a power-law distribution to determine
the target distance in order to favor shorter connections as in the human brain
(Downing (2015)). This assumption is made to avoid simulating axon-dendrite
movement while also trying to maintain some similarity to biological structures.
To simplify distance calculations the overall grid is divided into sub-grids, and
candidate connections are gathered by investigating the sub-grids which have a
gridwise distance close to the sampled distance.

When initializing the neuron grid when evaluating a genotype the neuron grid
contains a single genotype-controlled (i.e. hidden) neuron that is connected to the
input nodes!, as well as input and output nodes. For each problem instance the
neuron engine allows up to a given amount of neuron functions to execute, and
then stops the neuron engine to avoid infinite loops and select for quicker pro-
grams. When given the next problem instance the grown network is maintained,
such that the growing neuron structure can develop.

The neuron simulation engine maintains an action queue, which determines
which neuron function should be run next. Each action in the queue has a timestamp,
and the lowest timestamp in the queue is always selected as the next action. Within
a single timestep there is a FIFO queue to determine the order of same-timestep
actions. The timestamp system ensures that actions are executed in a temporally
sensible manner and gives each neuron equal access to computational resources.

Signals sent between neurons and axon-dendrites can be multi-dimensional,
i.e., several floats can be sent in one signal. The number of floats per signal is a
configurable hyperparameter. Likewise, the number of internal state variables is
a configurable hyperparameter. These two design decisions are inspired by bio-
logical neurons, which maintain complex chemical states internally and in their
local area (Lovinger (2008); John H. Holland (1998); Downing (2015)). Further,
there is no reason to assume that one-dimensional signals as done in MLP is ne-
cessarily optimal.

A complete list of neuron and axon-dendrite functions is given in Table ??
and Table ?? in Appendix D. Most functions are given internal state variables and
neuron position as input, and some are given signals as input.

Figure 3.4 illustrates how an NMS-LOC phenotype can develop. The figure
shows the initial NMS-LOC phenotype structure with a hidden neuron go through
several timesteps upon receiving an input signal. The figure illustrates how the
learned program may grow a simple neural network structure, signal sending is
not illustrated. Notice again how this process is conceptually similar to neural
network growth/development in general, and for example NEAT and Miller’s 1D

Earlier versions of NMS-LOG started with the hidden neuron not being connected to anything,
but this was changed, as further discussed in Chapter 5
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Figure 3.4: Shows how a NMS-LOC phenotype may develop over several
timesteps to produce a simple neural network.

CGPDNN, even though the actual algorithms differ.

3.1.3 CGPE Neuron Engine and randomness

NMS-LOC allows for the use of randomness (through sampling psuedo-random
number generators). This is always used in the "evolution" part of NMS-LOC, and
various amounts of randomness in the "execution" part is investigated and dis-
cussed in Chapter 5.

Randomness in the execution of CGP functions may make it possible to find
smoother gradients. When the neuron engine determines if an action should be
taken based on output from a CGP function it may do so semi-randomly. A value
greater than 1 means always do the action, a value lower than 0 means never do
the action, and a value in the range [0, 1] denotes the probability of doing the
action. This allows for non-deterministic programs which could not be evolved
without allowing for randomness, and may make it possible to have smooth gradi-
ents in the state space by adjusting probabilities gradually. It is also investigated if
using Gaussian sampling as a CGP node function where the inputs is the mean and
standard deviance of the Gaussian is beneficial. Such sampling may provide sim-
ilar advantages to the above, additionally programs which are evolved to handle



noise in the form of Gauss sampling may also be more robust to unexpected input.
In terms of Stanley and Miikkulainen (2003)’s taxonomy for artificial embryogeny
using randomness may increase canalization. Initial states of the one-pole balan-
cing problem are also randomly sampled.

The disadvantage with using randomness is that there is no deterministic
mapping between genotypes and phenotypes. This means that the phenotypes,
and therefore the fitness of the genotypes, can vary between runs. This could be
handled by running each evaluation many times, effectively doing a Monte Carlo
estimation of the genotype fitness. However, running many evaluations could
quickly become prohibitively expensive, especially if the genotype space contains
many bad genotypes. Effectively the fitness of a genotype is a random variable,
and the issues introduced by making fitness a random variable are discussed at
length in Chapter 5. The following part of this section describes the design choices
made to accommodate randomness in NMS-LOC.

The approach taken in this thesis is to only perform multiple evaluations
on the most promising genotypes. In standard CGP the current genotype in the
(1+lambda) evolutionary strategy is only evaluated once, namely when it is a
child genotype of the previous parent genotype. In this version of CGB each of the
several parent genotypes are evaluated every generation. Their fitness is updated
by calculating the average fitness across every evaluation. That way genotypes
which seem promising, that is, have the highest fitness, are evaluated many times
and as such are given a more accurate estimate.

Still, two potential issues can occur. One issue that can occur is that a child
genotype is "lucky", and it’s first fitness evaluation is far higher than the actual
average fitness given enough evaluations. In this case the child will take the pop-
ulation slot from another genotype, which may be higher performing on average.
Between children competing for the same population slot, we can expect that
by definition in the average case the average best child genotype will win out,
even if only one phenotype-genotype mapping is performed. The larger issue is
if a on-average worse child happens to win out over a on-average better parent,
effectively leading to loss of information through gradient ascent against a min-
imization optimization goal. To circumvent this issue a second list of "all-time"
historic best genotypes is maintained, of length equal to the population. The his-
toric best genotypes do not produce children, and are not evaluated. However, on
each population iteration the current population is evaluated against the historic
best, and the n-best genotypes where n is population size from the current popu-
lation and the historic best become the new population. The genotypes swapped
out from the population are maintained in the historic best list. This helps reduce
the probability and severity of information loss between children and parents, be-
cause when a child replaces a parent genotype in the population, the parent takes
a slot in the historic best list if it’s fitness is great enough. To prevent a singular
good genotype from dominating the historic best list and therefore the popula-
tion, a check is made to ensure that each genotype ID can only exist in the historic
best once. To ensure that a genotype family does not dominate the historic bests
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completely (effectively reducing variance and preventing any speciation in the
population), a list of genotype parent ID history is maintained up to depth 32, s.t.
a genotype can not be added to historic bests if it has the same parent up to depth
3 as another genotype in the historic bests - in this case it may only replace the
existing genome in historic bests. In genetic-programming parlance the wrongful
child-parent replacement would make the evolutionary strategy non-elitist: That
is, good parent genotypes are discarded in favour of worse children, which may
lead to a loss of information (Eiben and Smith (2015)). There is in general some
debate on whether or not elitism is necessary or desirable in general, but for CGP
specifically elitism is a core assumption (Julian E Miller (2020)).

For the same reason when a genome is replaced by another due to the replace-
ment mechanism, the replaced genome is added to the historic best list. Of course,
it is possible that a on-average worse genome is lucky and replaces a on-average
better genome in the historic list, but the historic list at least mitigates the issue
to some degree.

The other issue that can occur is that a child genotype is "unlucky", and ran-
domly has a statistically unlikely poor performance. This is not as critical, because
if this causes it to perform worse than a parent or other child it does not cause
gradient ascent. At worst it could lead to situation where the search converges or
gets stuck at a worse local minimum. This issue is therefore less severe, and is not
mitigated against, instead it is accepted as a risk of using randomness. Chapter 5
also discusses how making the fitness of a genotype into a random variable can
introduce noise which may make the gradient disappear.

3.2 Potential Issues

This section presents possible issues of NMS-LOC which were not considered crit-
ical for the purposes of this thesis, and suggest possible remedies to facilitate
further development if it should be desirable.

3.2.1 Comparing solutions

When using CGP for NMS it may at some point be desirable to compare solu-
tions in some meaningful semantic sense. For example, if evaluating a genome
takes a long time, it would be sensible to check that a child solution is actually
behaviourally different than the parent. Further, in order to control the popula-
tion in evolutionary programming it is often important to consider the diversity of
the population, that is, how different population members are (Eiben and Smith
(2015)). This can be used to tune hyperparameters, or to produce more advanced
population control mechanisms like speciation (Eiben and Smith (2015); Stanley
and Miikkulainen (2002)). A naive approach would be to compare genetic strings
directly, but this may be misleading. Depending on the specifics of the CGP genetic

2Later increased to 6.



string representation, a CGP genome could be shuffled and still produce the same
solution directly, or be shuffled with appropriate changes to indexes to produce
the same solution. In other words, a single CGP program may have several differ-
ent genetic representations - as such similarity at the level of genetic strings does
not necessarily correlate to the similarity of the programs. A simple improvement
could be to compare the set of active nodes instead, as suggested in Goldman and
Punch (2013). In Goldman and Punch’s terminology the NMS system handles
duplicates by skipping evaluation, instead using the parent genomes fitness. In
theory one could do graph comparison, but this can be a relatively expensive op-
eration, and is made more complex as two CGP functions may have the same or
similar hex variants but in a different order, and because it is difficult to estimate
how "big" the impact a genotype-space difference would have in phenotype-space.
On the other hand, CGP function sizes may be relatively small (ex. in NMS-LOC
experiments max size was set to 50 nodes, and some of those will be inactive)
making it possible that even inefficient graph-comparison algorithm could be sig-
nificantly quicker than developing a phenotype (See Wills and Meyer (2020) for
an overview of graph comparison algorithms).

Goldman and Punch (2013) set solution makes it possible to detect some du-
plicates, but it may still be desirable to compare how similar non-identical solu-
tions are. A percentage wise set comparison could give some view on how similar
the genotypes are, but would not be able to compare how similar the produced
phenotypes are. A single change to one of the active genes in a genome can pro-
duce drastically different behaviour. As such, it would be desirable to instead com-
pare the phenotypic similarity of the programs.

To compare the phenotypic similarity of CGP programs I raise the suggestion
of using a input-output tests, a sort of black-box analysis. By giving the programs
which should be compared the same set of input, and observing how the output
of the programs differ, one has data one can use to say something about how
similar the programs function. The disadvantage is that for this comparison to
be objective, one would have to input every possible input value. However, if the
input values are representative enough of realistic program input input-output
comparison may provide meaningful data about the similarity of phenotypic be-
haviour, perhaps by observing typical inputs to functions in the parent genotypes
when they are evaluated, and using these as testing criteria for the child genotype.
Other alternatives could be observing how sensitive programs are to variation of
single variables. One possible optimization could be to determine the "points of
divergence" between the CGP graphs, that is, the earliest points at which the CGP
graphs have different active genes, and then performing input-output analysis
only on the inputs which feed into points of divergence. Such testing might be
useful as a heuristic similarity measure.

NMS-LOC tracks population variance for statistical purposes through a naive
method of tokenizing genome ID’s and calculating the Shannon entropy of the
distribution. This is not a true measure of the variance of the population, as it
only reflects the variance in ID space, and not in genotype or phenotype space.
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However, if the ID Shannon entropy is low then singular IDs are more prevalent in
the population, and the genotype and phenotype variety is necessarily lower, such
that the measure can detect if NMS-LOC literally gets stuck on the same genotype
in many or all population slots.

3.2.2 The signal-sending assumption

In the NMS-LOC it is assumed that neuron behavior can be evolved which is able to
send communication signals of several types between neurons. As such the neuron
signals may have several dimensions. The explicit signal-sending mechanism is
intended as a simpler computational approach than simulating chemical diffusion.

However, it is possible that signal-sending behavior is difficult to evolve. Al-
though the search space may in principle include signal-sending behavior, a prob-
lem may still emerge if the search spaces navigability relies on behavior which
is only present in a small subset of the search space. Signal-sending behavior is
relatively difficult to evolve, as it requires several things:

1. The ability to form neuron networks

2. The ability to have meaningful connections in these networks

3. The ability to transmit signals of any type

4. Evolving control programs which interpret signals and transmit signals in a
meaningful semantic manner

In particular, as will be discussed in Chapter 5, the design of NMS-LOC was
unsuited for sending signals backwards through connections, and as sending a
signal from a hidden neuron to another involves 6 or 7 CGP program evaluations
it is also too time intensive to send many control signals between neurons in the
allotted computation time.

Following are suggested changes to NMS-LOC which could alleviate the poten-
tial signaling issue, but investigating these are outside of the scope of this work:

e Simplifying axon-dendrites such that they always transmit signals without
running CGP programs to reduce the CGP programs used per neuron-to-
neuron transmission from 6-7 to 2-3.

e Hardcoding neurons to only process signals when their magnitude is greater
than some set or evolved constant, or special state variable. Incoming signals
may be accumulated dimension-wise.

e Introduce a shared state for neurons in the same sub-grid as an abstraction
of local chemicals. May diffuse to nearby grids.

¢ Instead of sending signals to specific neurons, neurons may send signals to
all other neurons in the same sub-grid with strength inversely proportional
to the distance between the neurons. Sub-grids should have some overlap,
for example 25% between adjacent grids, effectively sharing corners with
adjacent sub-grids. Could involve splitting the sending of control signals
or "chemical signals" using this method and sending "normal" signals using
axon-dendrite connections.



e Originally the intent was for NMS-LOC to be able to send signals backwards
through axon-dendrites. However, this was done by sharing functions for
sending backwards and forwards, which could make it difficult to evolve
meaningful behavior. Additionally, there was not enough functionality for
generating the control signals which were to be sent backwards, and the
CGP function call amount per signal sent neuron-to-neuron also made this
approach untenable. With other changes it could be reintroduced, but care
should be made to ensure that there is enough opportunity to generate
backwards signals, that backwards signals are handled differently either by
giving functions inputs denoting backwards/forwards or through evolving
another set of functions, and that signaling is not too time intensive.



Chapter 4

System Documentation

In this section the implemented CGP system is discussed. A high-level overview
of design is given in Chapter 3, but the following chapter discusses more in de-
tail the structure of the code base, software implementation, and development
process. As such this section discusses NMS-LOC from a software development
perspective, and presents choices made, challenges encountered, and advice for
the development of other NMS systems.

4.1 Tech Stack

4.1.1 Code Structure

The following section provides a high-level overview of the structure of the code-
base.

NMS-LOC’s implementation is divided into four main parts. One part contains
the control code for evolution and statistics gathering. This part calls the Neuron
Engine, which controls the simulation of neurons during the evaluation of a gen-
otype. The Neuron Engine is provided with a problem object which should imple-
ment a interface. The Neuron Engine is also provided with a Genome object. The
Genome part of the code functions as a container for CGP code, and handles all
non-inner-CGP specific mutation and crossover code. The CGP part of the code-
base contains the implementation of CGP

Additionally, there exists several scripts for processing statistics and doing the
Monte-Carlo simulations used in this thesis.

4.1.2 Programming Language

NMS-LOC was implemented using the Python programming language®. Python
was chosen because it is generally regarded as being a programming language
suited to quick prototyping and development. Further, I have used Python ex-
tensively in the past, and as such using Python prevents the introduction of de-

Thttps://www.python.org/
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velopment overhead in the form of learning a new programming language. The
disadvantage of using Python is that as an interpreted language it is slower than
other alternatives, such as C++2. However, lower-level compiled languages such
as C++ are fast when the software is written well, and learning to write C++ code
which is both functional and efficient constitutes a large development overhead
in addition to Python being generally easier to write code in. As such Python was
chosen for NMS-LOC.

The use of Cython® was investigated. Cython is a C++ compiler which com-
piles code written in Python to C++ by extending the Python language with op-
tional language constructs such as strict typing to aid in the conversion. However,
using Cython ultimately provided little time improvement. It was attempted to
optimize Python code by converting it to Cython, however, due to the codebases
heavy reliance on Python objects this provided little improvement, as much of the
code could not be effectively converted. Taking advantage of Cython would there-
fore require an extensive code rewrite, which was not desirable at that point of
the project.

4.1.3 Cloud Computing

Evaluating NMS-LOC requires some computational power. As NMS-LOC is writ-
ten in Python and in an Object Oriented manner for ease of implementation it is
not hyper-optimized or lightning fast. Additionally, to evaluating and comparing
different settings for NMS-LOC requires running several runs with each setting to
gather statistics. In order to achieve this a cloud computing platform was used
to run separate evolution runs in parallel. The platform used is NTNU’s computa-
tional cluster IDUN*, whose setup is described in Sjélander et al. (2019).

Without access to IDUN the analysis in this thesis would necessarily have been
more limited, as it would have made it necessary to be more "economical”" with
running NMS-LOC. Even so, one possible criticism of this work is that NMS-LOC
configuration files (hence configs) are tested using five to ten evolutionary runs
per experiment per config. Although doing a hundred or a thousand runs for each
config would provide more statistically significant results, it is not possible with
the available computational resources.

4.1.4 Advice for future tech stacks

Using a lower-level programming language could make it possible to write faster
code, but this requires a development team that is experienced with a lower-level
language, which was not available for this thesis project. Further, higher level
languages typically lend themselves to quicker prototyping by being simpler to
write and debug. Compromises could be prototyping the NMS system in a higher-
level language and then porting it, or writing some parts of the software such as

2https://www.cplusplus.com/
Shttps://cython.org/
“https://www.hpc.ntnu.no/
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the neuron engine or the CGP engine in a lower-level language and then calling
it from a higher-level language as a library.

Computational clusters such as cloud computing should be used if available,
unless the implemented NMS software is very efficient.

It may be desirable to consider how parallelization can be used during the
design phase. For example, if one can design a system which is able to offload
a large degree of the computation to a GPU or other Single Instruction Multiple
Data computational systems it may provide greatly increased efficiency. Some-
times leveraging efficiency for computational search can be more useful than
clever design (as argued by Sutton (2019)).

4.1.5 Advice for handling bugs and errors

The NMS software package is a relatively large software package. The interaction
and behavior of the software is by design complex, and there is a great amount
of different possible inputs the the various functions in the code. As such there is
also a great possibility for bugs in the code.

During the development of the code it was decided to not use unit testing
or test-driven development® ® paradigms. Although test driven development can
help detect bugs quickly, it also introduces a overhead in writing and re-writing
test upon changing the code. As the NMS code-base is experimental it has been
through many changes and iterations, and rigorous unit testing would therefore
require rigorous test-rewriting which may have constituted an overhead larger
than the time saved.

Instead, the codebase uses exceptions and warnings to detect and handle in-
correct behavior in select parts of the code. The advantage of this approach is that
due to the large amount of possible program states it would be very difficult to
reach 100% data flow coverage using unit testing anyway. Instead, the continuous
checking for invalid inputs/states in runtime effectively tests the codebase over
the effective input space to the various functions. The disadvantage is that there
are some errors which could have been detected using unit testing by testing for
expected edge cases/errors. The disadvantage is that error checking introduces a
runtime overhead, and that thrown errors in runtime introduces overhead in the
form of cancelled runs.

Therefore, a better testing paradigm for the development of NMS and NMS-
like systems could be to combine partial unit-test coverage in sections of the code-
base deemed unlikely to go through changes, in order to detect errors in these
parts as quickly as possible, in particular by testing edge cases. Additionally, by
raising exceptions and warnings at various points of the code the debugging of
errors is greatly simplified, as when errors occur during the programs runtime the
source of the error is far clearer from a deliberately raised exception than waiting

Shttps://www.ibm.com/garage/method/practices/code/practice test driven_
development/
6h‘ctps ://www.agilealliance.org/glossary/tdd/



for the Python runtime to crash due to invalid use of base library functions caused
by earlier unexpected and undetected errors. In larger development teams (than
just one person) pair-programming or code-review processes could also help de-
tect and correct bugs.

Finally, NMS systems should support gathering and presenting statistics about
runs of the system. First of all, gathering statistical knowledge makes it possible
to discuss the system in an analytically meaningful way. NMS systems may also
be difficult to analyze without gathering statistics, as it is not necessarily easy to
understand or explain program behavior otherwise without spending great deals
of time analyzing various program traces. Finally, gathering statistics helps detect
bugs and issues in the software, which is particularly important as NMS systems
may need to go through several design iterations. An overview of the gathered
statistics is shown in Appendix E.

For example, in NMS-LOC a bug in the code prevented the system from des-
cending the gradient even when it was able to find better solutions, but by gather-
ing statistics it was easy to identify and correct this problem. Figure 4.1 shows the
relevant statistical graphs. First, the fitness graph makes it is clear that the system
is not able to improve the fitness of the population. Further, the ID Shannon en-
tropy graph shows that a single genotype is able to overtake the entire population
over time. Then, the graph showing the percentage of child genotypes which are a
neutral or a better change from a parent genotype shows that the systems should
actually be improving it’s fitness, or at having population slots overtaken by child
genotypes. Finally, the rightmost graph shows that population slots are not being
overtaken as they should be according to the previous graph. As such it was clear
that the systems error was in the child-parent swapping mechanism.
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Figure 4.1: From top left to bottom right: Fitness over time, Shannon entropy
of distribution of ID’s in population, chance of a child genotype being an im-
provement or neutral change, percentage of times a child genotype takes over a
population slot.






Chapter 5

Experiments and Discussion

The following section documents a series of experiments done using NMS-LOC by
presenting the experiment, and discussing a selection of the statistical results de-
pending on the intent of the experiment. The discussions are then used to change
aspects of NMS-LOC’s design if it seems that parts of the design are not func-
tional, compare different settings, and discuss properties of NMS-LOC. As such
some changes to the system are done during the course of the experiments. The
experiments are presented in chronological order and the changes made likewise.
Further, the statistical logging functionality of NMS-LOC is developed as experi-
ments are conducted, as the results of experiments made it clear if new aspects of
the system would be desirable to investigate using statistical logging.

The following section uses gathered statistics from NMS-LOC runs. It should be
clear what each statistic means from the discussion, but for a complete reference
see Appendix E. Note two things regarding statistics: First, not every statistic is
presented or discussed for each run; for the sake of brevity only statistics which
are deemed interesting for the discussion is presented. Secondly, note that not
every statistic is gathered for each run as the statistics gathering is developed
along with the experiments as it becomes evident that gathering other types of
data is desirable; as such some data which may seem desirable in an Experiment
may also be missing simply because the functionality was not implemented at that
time.

Please note that in the following experiments the optimization objective is
minimizing fitness, i.e. getting the fitness score as low as possible, where 0 is an
perfect performance. Note also that some experimental runs are cancelled due to
computation time exceeding the allocated computation time on IDUN (maximal
170 hours per job with default user privileges). Cancelled runs could have things
in common which cause them to take longer to compute, but there is no evid-
ence to conclude that this is the case. It may also just be due to random chance
and particularities of IDUN scheduling and computation speeds of different cores
on the cluster. Usually 5 runs are scheduled per config, but the experiment are
sometimes rerun to gather more statistics, giving a total of 10 started runs per
config.
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5.1 Experiment 1 - Growing networks capable of sending
signals

Early on in the thesis work NMS-LOC was evaluated for its ability to solve the
one-pole balancing problem. However, due to an error in the fitness function,
the genomes were given the highest possible fitness score for each timestep in the
problem domain where the genomes phenotype successfully sent an output signal,
regardless of if the pole fell during that timestep or not (see Equation 5.1 and 5.2).
However, this was to some degree a happy accident: The problem in experiment
1 is effectively if NMS-LOC is able to form a connection to an output node and
transmit a signal, which can be viewed as the most simple problem possible. As
such these results are suitable for discussing the properties of NMS-LOC in the
most basic case.

. . 0, if output signal is not None.
fitness,(action) = . (5.1)
1, otherwise.

R SUmestep (fitpess, ) (5.2)

The results show that NMS-LOC is capable of connecting the initial hidden
neuron to the output neuron, and transmitting a signal. In 32 out of 32 runs NMS-
LOC was able to evolve a genotype that could transmit a signal, and spread that
genotype throughout the population. It should be noted that the ancestor check
for historic bests as discussed in Section 3.1.3 was not enabled during these runs
due to a bug. The used CGP node functions are listed in table ?? in the Appendix,
and the config files are listed in Appendix C. For this experiment ten runs were
done for each of the four used config files.

Figure 5.1 shows the fitness over all runs for the NMS-LOC system, and the
fitness improvement means that NMS-LOC was able to learn to form connections
to the output node, and successfully send signals to the output. Further, the figure
shows that on average NMS-LOC is able to follow a gradient in the state space of
this simple problem. Even the worst genome with the highest fitness was able to
descend the gradient over time. One of the advantages of CGP is that it’s neutral
drift make it possible to make large steps in the state space when a block of inactive
nodes is made active (Julian E Miller (2020)), which may explain why even the
worst-case across all runs got better over time. The developmental encoding used
in NMS-LOC may also have helped, as small changes could potentially compound
to larger differences in the final phenotype. Either way, the results show that NMS-
LOC is able to find a gradient and learn to send signals to the output node.

It may seem strange that the minimal fitness sometimes increases in the fitness
graph in Figure 5.1. This is likely due to the use of randomness in NMS-LOC, which
means that a genome may have a statistically unlikely good fitness on it’s first
evaluation. On subsequent evaluations the fitness of the genome is the average
of its finesses from each run, and as such the minimum fitness may appear to
increase, while it really is just being made more accurate in terms of the actual



Chapter 5: Experiments and Discussion 53

—— average
bl Avg. std. for evals over genomes
- min
— max
0.8
. 0.6
w
4]
c
b=
=
0.4
0.2
0.0 A
T T T T T T T T T
0 50 100 150 200 250 300 350 400
iteration

Figure 5.1: Average fitness across runs for all configs (as shown in Appendix C).

"underlying" fitness. Looking into similar fitness graphs for individual evolutionary
runs shows similar noise in the fitness over time.

Figure 5.2 graphs the neuron count in the phenotypes over all runs and shows
that the evolved NMS-LOC phenotypes have a varied amount of hidden neurons.
The high standard deviance means that NMS-LOC was able to find good pheno-
types with few and many neurons. One could expect that this fits well with the
amount of unique neurons connected to output neurons graphed in Figure 5.3
and the amount of unique neurons connected to input neurons graphed in Figure
5.4, because the figures also have high standard deviation, which could be inter-
preted as the high neuron count phenotypes also having a lot of unique connec-
tions. However, the correlation matrix in Figure 5.5 shows the correlation between
the tracked statistics (see Appendix E) and the correlation between neuron count
and unique input/output connections tells a different story: In actuality, neuron
amount is weakly negatively correlated with the amount of unique output con-
nections, and has approximately zero correlation with the amount of unique input
connections.

The correlation matrix also shows that all activation functions help minimize
the fitness. Further, it seems like SINU is somewhat different than the other activ-
ation functions, as it is strongly correlated with a minimization of maximal fitness,
while others are more strongly correlated with minimizing minimum fitness. This
is likely because the other activation functions have a positive correlation, mean-
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Figure 5.2: Neuron count in phenotypes across all runs for all configs
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Figure 5.3: Unique hidden neurons connected to output neuron across all runs
for all configs
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Figure 5.4: Unique hidden neurons connected to input neurons across all runs
for all configs

ing that they are often used together, while SINU has a negative correlation with
every other activation function than itself. This means that the other activation
functions have a correlation with stochastic behavior caused by GAUSS, while
SINU is usually used in more deterministic genotypes. Stochastic behavior can be
expected to both make the minimum fitness lower, and the max higher, as com-
pared to deterministic chromosomes, due to the introduction of variance. This
matches with SINU also greatly reducing the standard deviance of fitness.

Figure 5.6 shows the average amount of connections from hidden neurons to
the output neuron. Interestingly, this number is very high. This seems strange, be-
cause the output neuron simply outputs the last received value at the end of the
processing period for each sample. An hypothesis for why this may occur is that it
is an effect of the use of randomness. When using GAUSS and due to the inherent
randomness of the neuron engine there can exist for some genomes a probabil-
ity that a signal is successfully transferred. One way to ensure that a signal gets
through is therefore to form many connections, and attempting to send the signal
many times. Further evidence supporting this hypothesis could be gathered by
removing randomness, and observing if the output connectivity decreases. Cer-
tainly, this high of an output connectivity is problematic, as it would require more
actions than the neuron engine is alloted per sample to transmit a signal over all
of these connections. When the action queue of the neuron engine is initialized,
every neurons action controller is added to the queue. This could make it possible
for NMS-LOC to learn solutions which do not react to input signals, and instead
relies on the action controllers to establish connections and generate signals. In-
deed, experimental data from later experiments also suggests that this is the case
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Figure 5.5: Correlation Matrix of tracked statistics for all runs for all config files
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Figure 5.6: Average amount of hidden neuron connections to output neuron for
all runs for all configs.
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Figure 5.7: Fitness over time for the most complex settings without additional
penalty terms (See Section C.1) (left) vs with additional penalty terms (right)

here.

By comparing the fitness graphs of running NMS-LOC with and without addi-
tional penalty terms it is possible to get a gauge on whether or not smoothened
gradients can have a positive effect. As shown in Figure 5.7 the fitness graphs
are mostly similar, with the exception of the maximal fitness. It seems that the
smoothened gradient actually deteriorated the worst-case convergence rate.

Investigating the use of switching between homeobox functions reveals that
this functionality is mostly used in the most complex genotype, without gradient
smoothing. The amount of homeobox functions switches are graphed in Figure
5.8. It is not clear why gradient smoothing should have a negative effect on use of
homeobox functions, other than that it perhaps biases the search towards simpler
genotypes. A possible explanation for why more complex variants of NMS-LOC use
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Figure 5.8: Compares the use of switching between homeobox function variants.
Config 3 (left) vs Config 4 (middle) vs Config 4 Smoothend Gradient (right).
NMS-LOC with Config 4 tends to switch more between homeobox variants.
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Figure 5.9: Shows the average use of modules in CGP genomes over all runs for
all configs. Modules are barely used at all.

homeobox function variants more often is that the more complex variant of NMS-
LOC use more internal states and a higher signal dimensionality, which means that
there is an larger amount of functions which can be computed, which could be
making switching between different functions more useful. Note that config 2 does
not contain homeobox variants, and as such never switches between homeobox
function variants.

Another interesting result is that the found genotypes do not use modular CGP
node functions. Figure 5.9 graphs the average amount of modules and shows that
modules are rarely used, and are not used in the high fitness functions at all. One
possible reason could be an program error, which put a size requirement on on
module size (to avoid a large amount of one-module modules, which happened in
preliminary test runs), but also generated suggested modules of an smaller size,
which may have made it unlikely to generate a valid module which would get
evaluated. This is fixed for further experiments. Another reason could be that the
used CGP node functions do not lend themselves well to modular CGP programs.
It is also possible that modular CGP is not very useful for this problem, i.e., there
is no need for advanced modular functionality.

In conclusion the results show that NMS-LOC is able to form neural networks,
and transmit signals of some description. However, due to the simplicity of the
problem domain it is not possible to conclude if NMS-LOC in this variant is suited
for more advanced problem solving. For example, it is possible that NMS-LOC
networks are not able to process information, but instead can only transmit some
more or less meaningless signal to the output neurons. The fact that NMS-LOC
forms a very large amount of connections to the output neurons suggests that



Iterations /Fitness | 0.01 | 0.03 | 0.05 | 0.08 | 0.10 0.12 0.14 0.18 0.25 0.50 0.75
1 1.24 | 3.72 | 6.20 | 9.92 | 12.40 | 14.88 | 17.36 | 22.32 | 31.00 | 62.00 | 93.00
2 1.23 | 3.69 | 6.15 | 9.84 | 12.30 | 14.76 | 17.22 | 22.14 | 30.75 | 61.50 | 92.25
3 1.22 | 3.66 | 6.10 | 9.76 | 12.20 | 14.64 | 17.08 | 21.96 | 30.50 | 61.00 | 91.50
5 1.20 | 3.60 | 6.00 | 9.60 | 12.00 | 14.40 | 16.80 | 21.60 | 30.00 | 60.00 | 90.00
10 1.15 | 3.45 | 5.75 | 9.20 | 11.50 | 13.80 | 16.10 | 20.70 | 28.75 | 57.50 | 86.25
20 1.05 | 3.15 | 5.25 | 8.40 | 10.50 | 12.60 | 14.70 | 18.90 | 26.25 | 52.50 | 78.75
50 0.75 225 |3.75|6.00| 7.50 | 9.00 | 10.50 | 13.50 | 18.75 | 37.50 | 56.25

Table 5.1: The inner numbers in the table detail how many times the pole falls
(i.e. problem resets) based on how many iterations it takes NMS-LOC to start
sending signals and what fitness level the genotype achieves.

this may be the case, due to the use of randomness making the result of actions
highly uncertain. If so, it an possible improvement to NMS-LOC could be to move
away from randomness - if doing so, it may be desirable to use the CGP node
functions used by Julian E Miller (2021) for the simple reason that they have
been shown to be functional in an CGPDNN. Other than that, the results seem
to suggest that smoothened gradients may make search worse, and that the most
complex version of NMS-LOC (Config 4) may be able to find more interesting
behaviors, such as using homeobox variants. The next experiment conducted on
the One-Pole Balancing problem domain will help provide more conclusive results
regarding these issues.

5.2 Experiment 2

The following section details Experiment 2. It is divided into three subsections:
Preamble, which discusses changes from Experiment 1 and how the fitness scores
should be interpreted, and in Experimental Run 1 & 2. Experimental Run 2 is
a repeat of Experiment Run 1 due to a a found bug, however, the analysis and
discussion in Experimental Run 1 still applies and to a large degree concurs with
the results in Experimental Run 2. As such Experimental Run 2 can be read as a
continuation of Experimental Run 1.

5.2.1 Preamble

Experiment 2 is almost identical to Experiment 1. The fitness measure is fixed,
and the statistical logging functionality is further developed based on which areas
seemed to warrant more investigation. Experiment 1 was useful for continuing the
development of statistical logging, as analyzing the results revealed which parts
of NMS-LOC required more data to analyze. Further, the signal sending behaviour
of NMS-LOC is tweaked. Previously, it has been possible for neurons to send sig-
nals backwards through connections, however, this was removed. Although the
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capability of sending signals backwards might be useful, the implementation had
several issues:

e NMS-LOC used the same evolved programs to process information moving
forwards and backwards. Although this might produce useful behaviour,
separate programs for signal directional should necessarily contain more
useful genotypes in the search space due to containing every identical pro-
gram set and all others.

e NMS-LOC functions had limited functionality for generating signals to send
backwards.

¢ Sending signals backwards uses the limited amount of actions NMS-LOC
has to process training samples, which could make it harder to find useful
solutions. Currently, sending a signal takes 6-7 actions and is a relatively
expensive operation time-wise.

For these reasons sending signals backwards through connections was disabled
entirely. Potential fixes are discussed in Section 3.2, but would in short require
extensive design revisions, increasing the search space, or more computational
power than available. Therefore, it was deemed prudent to investigate if NMS-
LOC functions without backward signaling. Do note that NMS-LOC can still send
signals backwards through recurrent connections.

. . 0, if output signal is not None and pole does not fall on timestep.
fitness,(action) =

1, otherwise.
(5.3)

yStmestep (fitnegs, ) (5.4)

Experiment 2 uses the fitness measure shown in Equations 5.3 and 5.4. The
objective is still minimization. To provide a better intuitive understanding of the
fitness measure, consider Table 5.1. The table maps how many iterations (i.e.
problem samples) an NMS-LOC genotype needs to start sending signals and the
achieved fitness to how many times the pole balancing problem resets (assuming
runs of 100 problem samples, as used in the configs). Taking a random action
results in a fitness of about 0.102 (found by Monte-Carlo estimation), which can
be used as a reference for the achieved fitness values; that is, if a genotype has
an fitness adjusted for the iterations it uses to establish a signal sending network
lower than 0.102 it implements a policy that is better than taking random actions,
meaning that the NMS-LOC phenotype implements some meaningful behavior. It
should be noted that the establishment time is actually the amount of one-pole bal-
ancing timesteps which do not get an output from the NMS-LOC network, which
doesn’t strictly speaking have to happen only during the establishment of the net-
work, as the time of these events are not tracked. However, the comparison still
holds to some degree, as an adjusted fitness lower than 0.102 indicates that suc-
cessful processing of a sample implements a better-than-random policy, especially
if the non-adjusted fitness is also lower than 0.102.



Value 0.092 0.082 | 0.052 | 0.022 0.0
Probability | ~#0.33% | ~0% | 0% | ~0% | ~ 0%

Table 5.2: The probability of getting a fitness equal or lower to value when
sampling a random policy four times. Estimated using Monte Carlo estimation.

However, it should be noted that the standard deviation of the random policy is
approximately 0.0038 (Estimated by Monte Carlo estimation). Because genotypes
are evaluated for single runs, it is possible that seemingly high-performing geno-
types could simply be implementing random or random-like policies. Because the
deviation for random policies is high, and because each genotype in NMS-LOC
has four children, the system may present genotypes which implement random
policies as having fitnessess lower than 0.102, simply because as the amount of
samples taken from a Gaussian with mean 0.102 and standard deviation 0.0038
increases it becomes likely that some of the samples will score lower than 0.102.
However, this effect would only become noticeable as the amount of children per
genotype is high enough, which may not be the case in NMS-LOC, which only
produces four children per pair of genotypes. To check if this could influence ex-
perimental results, Monte Carlo estimation is done to check the probability of con-
sistently getting lower scores for child genotypes of genotypes implementing the
random policy (assuming child genotypes also implement the random policy). The
results are shown in Table 5.2, and indicate that it is highly unlikely that this ef-
fect should consistently lower the fitnesses of the population to values much lower
than 0.102 if the produced phenotypes simply implement the random policy. It is
possible that NMS-LOC could find other policies with higher standard deviance
when sampling the fitness random variable, in which case the effect or similar
effects could be impactful, but in this case NMS-LOC still finds policies which are
different than the standard random policy.

In the following discussion reference to statistics will be made using normal
distributions. These are calculated by taking the statistical values for the last 50
timesteps and assuming these are approximately normally distributed, which is
reasonable under the Central Limit Theorem, especially as these numbers will
mostly be used to present the results in a more abbreviated manner than using
graphs for each thing discussed.

5.2.2 Experimental Run 1

To start with the average performance of NMS-LOC over all configs will be dis-
cussed. 38 runs out of 40 started runs were successfully completed. Their fitness
graphs are shown in Figure 5.10, which show that NMS-LOC is able to find gradi-
ents and converge to low fitness values, both the average fitness and the highest
fitness over all runs at each timestep decrease over time. The minimal fitness de-
creases quite quickly. As seen on the rightmost figure, the average corrected fitness
is lower than 0.102, meaning that on average NMS-LOC is able to find solutions
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Figure 5.10: Shows the average fitness over all configs for Experiment 2. To the
left are unadjusted fitness stats, to the right is the average fitness adjusted for
establishment time.
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Figure 5.11: The average, min and max, respectively, link mutation chance and
node mutation chance for each timestep for all configs combined.

slightly better than a random policy.

Figure 5.11 shows the link and node mutation rate over time for NMS-LOC
over the different config files. These figures can be used to evaluate the mutation
rate adaptation scheme. As expected some of the genotypes have the maximal
hypermutation rate at 30%. On average it seems that the mutation rate balances
around 5% for link mutation and 2.5% for node mutation, due to link mutation
being initialized at twice the value of node mutation. At minimum the mutation
rate goes low, but is still over the hypermutation cut-off at 0.01% node mutation.
This could mean that a low but good mutation rate is found, but it may also
mean that the mutation rate is sufficiently low that NMS-LOC is producing child
genotypes identical to the parent, in which case the mutation rate should remain
approximately constant with some fluctuations due to sampling randomness. To
remedy this potential issue, NMS-LOC is changed to include a small decay factor
is added to the mutation rate if the genotype has the same fitness as the parent,
such that it should eventually enter hypermutation.

Figure 5.10 graphs average fitness over time and shows that the fitness of
genotypes tend to converge to a low value, and then "jitter" around that value,



with little further improvement. As pointed out in the discussion of Experiment
1 it could be that this is an unfortunate effect of using randomness. Figure 5.13
graphs the percentage of child genomes which have a neutral or better fitness than
at least one of their parent genomes shows that it is far more likely to produce
a child genotype which is better than the parent than one that is neutral. Due to
the usage of randomness the fitness of a genotype is itself a random variable, and
due to children being evaluated using a single sampling of the genotype fitness
random variable the observed sample fitness will sometimes be an outlier on the
side of lower fitness than the actual unobserved mean. As fitness improves the
potential improvements in fitness that can be made from a step in the state space
may also become small, for example, if each step can improve fitness by 1% in
the optimal case, the absolute value of the improvement will converge to zero. If
however the variance of the sampled genotype fitness random variables remains
constant or scales down more slowly, then it may be possible that the gradient is
not observable due to the noise of the genotype fitness random variables.

To determine if the gradient could be disappearing a Monte Carlo simulation
is run. The simulation is run for different standard deviances, different sizes of
better steps and worse steps in the fitness landscape assuming the parent genotype
has a fitness of 0.09', and for different percentages of better child genotypes.
Some simplifying assumptions are made. For one, it is assumed that good and bad
solutions are distributed using a normal variable with a mean equal to 0.09 +/- the
step size. As the observed amount of child genotypes with finesses sampled lower
than the parent tends to be around 20% (see Figure 5.13), different percentages
of children with a better mean then the parent are evaluated for percentages lower
than 20%. Finally, it assumes that the remaining child genotypes are split fifty-fifty
between neutral (i.e. same fitness) and worse than the parent. When referring to
child genotypes as better/neutral / worse it is done in reference to the underlying
actual mean of the fitness random variable, which is not observed. The simulation
then tests how "obscured" the gradient becomes under different parameters. In
effect it may be possible that the gradient descent gets stuck in a "noise swamp"?,
where it can not improve even though there is a gradient present in the fitness
landscape.

The results of the simulation are shown in Tables ??, 2?, ??, ??, and ??. These
tables show two interesting things. First, the actual chance of choosing a better
child is lower than in the deterministic case across the board, and gets progress-
ively lower as the standard deviation increases. Secondly, there is a significant

10.09 is chosen as it is the average fitness observed in Experiment 2 Run 1 in the last 50 iterations.
Note also that the observed standard deviance was 0.003, higher standard deviance are tested to
examine the concept of "noise swamps", and because the standard variance of the average fitness
may be different than the standard variance of the genotype fitness random variables. Samples are
capped to a minimum value of 0.0, and it is necessary for the better child to have a strictly lower
fitness to count as being chosen correctly.

2I wouldn’t be surprised if similar analysis or concepts have been discussed before, but I do not
believe that I have personally encountered discussion of "Noise Swamps" or equivalent. In either
case it was desirable to get some numerical results specific to the parameters in NMS-LOC.
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Fitness im- | 9.00E-06 9.00E-05 9.00E-04 9.00E-03 0.02
provement,
std
3.00E-03 7.60E-04 / | 1.44E-03 / | 1.64E-03 / | 3.68E-03 / | 4.00E-03 /
0.50 /0.50 | 0.51/0.49 | 0.58/0.42 | 0.92/0.08 | 0.93/0.07
0.05 1.44E-03 / | 1.04E-03 / | 7.60E-04 / | 1.36E-03 / | 2.24E-03 /
0.50/0.50 | 0.49 /0.51 | 0.51/0.49 | 0.54 /0.46 | 0.62/ 0.38
0.10 7.60E-04 / | 9.20E-04 / | 1.04E-03 / | 1.04E-03 / | 1.16E-03 /
0.46 / 0.54 | 0.46 /0.53 | 0.46 / 0.54 | 0.49 / 0.51 | 0.53 / 0.47
0.50 3.20E-04 / | 4.00E-04 / | 3.20E-04 / | 5.20E-04 / | 5.20E-04 /
0.33/0.67 | 0.32/0.67 | 0.33/0.67 | 0.33/0.67 | 0.34/ 0.66
1.00 3.60E-04 / | 2.80E-04 / | 3.60E-04 / | 2.40E-04 / | 3.20E-04 /
0.30/0.70 | 0.31/0.69 | 0.30/0.70 | 0.31/0.69 | 0.31/0.69
1.50 2.80E-04 / | 3.20E-04 / | 4.00E-04 / | 1.20E-04 / | 4.40E-04 /
0.30/0.70 | 0.30/0.70 | 0.30/0.70 | 0.30/0.70 | 0.30/ 0.70
2.00 2.80E-04 / | 1.60E-04 / | 1.20E-04 / | 4.80E-04 / | 6.00E-04 /
0.30/0.70 | 0.30/0.70 | 0.30/0.70 | 0.30/0.70 | 0.30/ 0.69
5.00 1.60E-04 / | 4.40E-04 / | 2.40E-04 / | 1.60E-04 / | 2.80E-04 /
0.28/0.72 | 0.29/0.71 | 0.29 /0.71 | 0.29 /0.71 | 0.29 / 0.71
10.00 3.20E-04 / | 3.60E-04 / | 1.60E-04 / | 2.80E-04 / | 4.00E-04 /
0.28/0.72 | 0.29 /0.71 | 0.29 /0.71 | 0.29 /0.71 | 0.29 / 0.71

Table 5.3: Percentage of respectively actually good steps / neutral steps / worse steps in state space
for different variances and step sizes if 0.001 of the child genotypes are better than the parent.
For reference, the actual percentage of the time a deterministic gradient descent algorithm could
descend the gradient is the amount of children times the chance of a child being better (0.004)



Fitness im- | 9.00E-06 9.00E-05 9.00E-04 9.00E-03 0.02

provement,

std

3.00E-03 0.01 / 0.49 | 9.92E-03 / | 0.02 / 0.57 | 0.04 / 0.89 | 0.04 / 0.90
/ 0.50 0.51/0.48 | /0.42 / 0.07 / 0.06

0.05 8.88E-03 / | 9.68E-03 / | 9.80E-03 / | 0.01 / 0.54 | 0.02 / 0.61
0.49 /0.50 | 0.49 /0.50 | 0.49 / 0.50 | / 0.45 /0.38

0.10 9.44E-03 / | 8.48E-03 / | 8.84E-03 / | 9.84E-03 / | 0.01 / 0.52
0.46 / 0.54 | 0.46 / 0.53 | 0.46 /0.53 | 0.48 / 0.51 | / 0.47

0.50 4.72E-03 / | 4.72E-03 / | 4.48E-03 / | 3.56E-03 / | 4.16E-03 /
0.33/0.67 | 0.33/0.66 | 0.33/0.67 | 0.34 / 0.66 | 0.34 / 0.65

1.00 3.52E-03 / | 3.40E-03 / | 3.24E-03 / | 3.80E-03 / | 3.00E-03 /
0.31/0.69 | 0.31/0.69 | 0.31/0.69 | 0.31/0.69 | 0.31/0.68

1.50 3.80E-03 / | 3.04E-03 / | 3.28E-03 / | 3.48E-03 / | 3.92E-03 /
0.30/0.70 | 0.30/0.69 | 0.30/0.69 | 0.31/0.69 | 0.30/ 0.69

2.00 3.44E-03 / | 4.16E-03 / | 3.36E-03 / | 3.04E-03 / | 3.56E-03 /
0.29 /0.70 | 0.30/0.70 | 0.29 /0.71 | 0.30/0.70 | 0.30 / 0.70

5.00 2.76E-03 / | 2.88E-03 / | 3.20E-03 / | 2.92E-03 / | 3.84E-03 /
0.29 /0.71 | 0.29 /0.71 | 0.29 /0.71 | 0.29 / 0.71 | 0.30 / 0.70

10.00 3.32E-03 / | 3.48E-03 / | 2.80E-03 / | 3.96E-03 / | 3.28E-03 /
0.28 /0.71 | 0.29 /0.71 | 0.29 /0.71 | 0.29 /0.71 | 0.29 / 0.71

Table 5.4: Percentage of respectively actually good steps / neutral steps / worse steps in state
space for different variances and step sizes if 0.01 of the child genotypes are better than the parent.
For reference, the actual percentage of the time a deterministic gradient descent algorithm could
descend the gradient is the amount of children times the chance of a child being better (0.04)
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Fitness im- | 9.00E-06 9.00E-05 9.00E-04 9.00E-03 0.02
provement,
std
3.00E-03 0.05/0.47 | 0.05/0.48 | 0.08 /0.53 | 0.18 /0.75 | 0.19 / 0.76

/ 0.47 / 0.47 / 0.39 / 0.06 / 0.05
0.05 0.05/0.48 | 0.05/0.47 | 0.05/0.48 | 0.06 / 0.52 | 0.09 / 0.56
/ 0.47 /0.48 / 0.47 /0.42 / 0.35
0.10 0.04 / 0.44 | 0.04 / 0.44 | 0.04 / 0.44 | 0.05 / 0.46 | 0.06 / 0.50
/ 0.52 / 0.52 / 0.51 / 0.49 / 0.44
0.50 0.02 /0.33 | 0.02 /0.33 | 0.02/0.33 | 0.02/0.33 | 0.02/0.34
/ 0.65 / 0.65 / 0.65 / 0.64 / 0.63
1.00 0.02 /0.31 | 0.02 /0.31 | 0.02/0.31 | 0.02/0.31 | 0.02/0.32
/ 0.67 / 0.67 / 0.67 / 0.67 / 0.66
1.50 0.02 / 0.30 | 0.02 / 0.31 | 0.02 /0.30 | 0.02 /0.30 | 0.02 / 0.31
/ 0.68 / 0.68 / 0.68 / 0.68 / 0.67
2.00 0.02 / 0.30 | 0.02 / 0.30 | 0.02 / 0.30 | 0.02 / 0.30 | 0.02 / 0.31
/ 0.68 / 0.68 / 0.68 / 0.68 / 0.67
5.00 0.02 / 0.29 | 0.02 / 0.30 | 0.02 / 0.30 | 0.02 / 0.30 | 0.02 / 0.30
/ 0.69 / 0.69 / 0.69 / 0.68 / 0.69
10.00 0.02 / 0.29 | 0.02 / 0.29 | 0.02 / 0.30 | 0.02 / 0.29 | 0.02 / 0.29
/ 0.69 / 0.69 / 0.68 / 0.69 / 0.69

Table 5.5: Percentage of respectively actually good steps / neutral steps / worse steps in state
space for different variances and step sizes if 0.05 of the child genotypes are better than the parent.
For reference, the actual percentage of the time a deterministic gradient descent algorithm could
descend the gradient is the amount of children times the chance of a child being better (0.2)



Fitness im- | 9.00E-06 9.00E-05 9.00E-04 9.00E-03 0.02

provement,

std

3.00E-03 0.10 / 0.45 | 0.11 / 0.45 | 0.14 / 0.50 | 0.34 / 0.61 | 0.34 / 0.62
/ 0.45 / 0.44 / 0.36 / 0.05 / 0.04

0.05 0.10 /0.45 | 0.10 / 0.45 | 0.10 / 0.45 | 0.13/ 0.48 | 0.16 / 0.51
/ 0.45 / 0.45 / 0.45 /0.39 /0.32

0.10 0.09 / 0.42 | 0.09 / 0.42 | 0.09 / 0.42 | 0.10 / 0.44 | 0.11 / 0.47
/ 0.49 / 0.49 / 0.49 / 0.47 / 0.42

0.50 0.05/0.33 | 0.04/034|0.05/033]0.05/033| 0.05/0.35
/ 0.63 / 0.62 / 0.62 / 0.62 / 0.60

1.00 0.04 / 0.32 | 0.04 / 0.31 | 0.04 /0.31 | 0.04 / 0.32 | 0.04 / 0.32
/ 0.64 / 0.65 / 0.65 / 0.64 / 0.64

1.50 0.04 /031 | 0.04 /031 | 0.04/031|0.04/031]0.04/0.32
/ 0.65 / 0.65 / 0.65 / 0.65 / 0.64

2.00 0.04 /0.30 | 0.04 / 0.31 | 0.04 /0.30 | 0.04 / 0.31 | 0.04 / 0.31
/ 0.66 / 0.65 / 0.66 / 0.66 / 0.65

5.00 0.04 /0.30 | 0.03/0.30 | 0.04 / 0.30 | 0.04 / 0.31 | 0.04 / 0.31
/ 0.66 / 0.67 / 0.67 / 0.66 / 0.66

10.00 0.04 / 0.29 | 0.03 /0.30 | 0.04 / 0.30 | 0.03 /0.30 | 0.03 / 0.30
/ 0.67 / 0.67 / 0.66 / 0.66 / 0.67

Table 5.6: Percentage of respectively actually good steps / neutral steps / worse steps in state
space for different variances and step sizes if 0.1 of the child genotypes are better than the parent.
For reference, the actual percentage of the time a deterministic gradient descent algorithm could
descend the gradient is the amount of children times the chance of a child being better (0.4)
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Fitness im- | 9.00E-06 9.00E-05 9.00E-04 9.00E-03 0.02
provement,
std
3.00E-03 0.20 /0.40 | 0.21 / 0.41 | 0.28 / 0.41 | 0.58 / 0.39 | 0.60 / 0.38

/ 0.40 / 0.39 / 0.30 / 0.03 / 0.02
0.05 0.20 / 0.40 | 0.20 / 0.40 | 0.20 / 0.40 | 0.24 / 0.42 | 0.31 / 0.43
/ 0.40 / 0.40 / 0.40 / 0.34 / 0.26
0.10 0.17 /0.39 | 0.18 /0.38 | 0.18 / 0.38 | 0.20 / 0.40 | 0.23 / 0.41
/ 0.44 / 0.44 / 0.44 / 0.40 / 0.36
0.50 0.10 /0.33 | 0.10 /0.33 | 0.10 /0.33 | 0.10 / 0.33 | 0.10 / 0.35
/ 0.57 / 0.57 / 0.57 / 0.57 / 0.55
1.00 0.09 /0.32 | 0.09 / 0.32 | 0.09 /0.32 | 0.09 /0.32 | 0.10 / 0.32
/ 0.59 / 0.60 / 0.59 / 0.60 / 0.58
1.50 0.09 /0.32 | 0.09 / 0.31 | 0.09 / 0.32 | 0.09 / 0.31 | 0.09 / 0.32
/ 0.60 / 0.60 / 0.60 / 0.60 / 0.59
2.00 0.08 /0.32 | 0.08 / 0.31 | 0.09 / 0.31 | 0.09 / 0.31 | 0.08 / 0.31
/ 0.60 / 0.61 / 0.60 / 0.60 / 0.60
5.00 0.08 /0.31 | 0.09 /0.31 | 0.08 / 0.31 | 0.08 / 0.31 | 0.08 / 0.31
/ 0.61 / 0.61 / 0.61 / 0.61 / 0.61
10.00 0.08 / 0.30 | 0.08 / 0.31 | 0.08 /0.31 | 0.08 / 0.31 | 0.08 / 0.30
/ 0.62 / 0.62 / 0.61 /0.61 / 0.61

Table 5.7: Percentage of respectively actually good steps/neutral steps/worse steps in state space
for different variances and step sizes if 0.2 of the child genotypes are better than the parent. For
reference, the actual percentage of the time a deterministic gradient descent algorithm could des-
cend the gradient is the amount of children times the chance of a child being better (0.8)



chance of picking a child genotype which is actually worse which increases with
standard deviation. This is more impactful than that the chance of picking good
children is lower than in the deterministic case, as in the deterministic case one
would never perform gradient ascent accidentally, but based on the Tables there
seems to be a significant chance of doing so in random NMS-LOC, and it seems
that NMS-LOC may indeed get stuck in "Noise Swamps". This begs the question:
How does NMS-LOC manage to decrease fitness at all, and why does not fitness
start increasing when Noise Swamps are encountered?
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First, although Noise Swamps would interfere with NMS-LOC, the entire state
space is likely not an Noise Swamp. The tables show that for low standard devi-
ance areas in the state space the chance of finding the good children is within the
same order of magnitude as in the deterministic case, at least while the percentage-
wise fitness improvement per step is 1% or better, as one may expect at the be-
ginning of the search. Further, although bad children may be accidentally picked,
NMS-LOC has mechanisms to deal with this. NMS-LOC reevaluates genotypes fit-
ness when they are a part of the parent population, meaning that the observed
fitness should eventually converge to the actual fitness of the genotype. Further,
NMS-LOCs historic best tracking ensures that even if gradient ascent is performed,
the information loss is minimal, because the discarded genotypes can be recovered.
Indeed, Figure 5.12 graphs the use of historic best swaps and shows that NMS-LOC
uses the historic best feature frequently as the fitness converges. One possible ex-
planation for NMS-LOC stalling in the fitness descent may therefore be that when
it finds a sufficiently good genotype, it gets stuck in a Noise Swamp. The Historic
Bests tracking ensures that it is able to keep the good genotypes, but because the
chance of finding new better children is significantly reduced the search gets stuck
- In reality, these effects may interact to produce an even worse situation, where
several fitness evaluation steps are "wasted" on getting an accurate estimate of
worse-mean genotypes, making it even less likely to find a better-mean genotype.
Other explanations are also possible, for example, the high-performing genotypes
that NMS-LOC finds might simply be local minima which are difficult to escape
from in any case. These explanations are also not mutually exclusive; local min-
ima would make it less likely to find children which are better, but the Noise
Swamps due to the use of randomness also make it less likely that better children
are correctly identified. To further investigate the impact of randomness later ex-
periments will compare versions of NMS-LOC which allow for varying degrees
of randomness. It should also be noted that the use of randomness is not neces-
sarily negative; some use of randomness may make the fitness landscape space
"more continuous" and "smoother" by allowing gradual transitions by adjusting
probabilities between the points which would exist in an equivalent deterministic
case, which could make it easier to find gradients up to the point that the search
gets stuck in a noise swamp. Randomness also allows for programs which are not
possible in the strictly deterministic case.

On average NMS-LOC solutions consist of multiple neurons connected in some
network structure. The average amount of neurons in a phenotype was 270.84 +
13.15, where each neuron had an average of 36.45 + 2.13 connections. Input
neurons typically had 35.7 £ 0.87 connections, while output neurons had an lar-
ger average of 296.97 £ 7.25 connections. This may seem promising in the sense
that it indicates that NMS-LOC creates intricate networks, but considering that the
maximal amount of actions NMS-LOC has to process each sample is 125 the high
connection count is worrying. Depending on the network topology it is possible
that NMS-LOC phenotypes simply can not transmit a signal from the input to the
output in the allotted amount of signals. However, as the timesteps of one-pole
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Figure 5.12: Shows the average amount of historic best swaps done over time.

balancing tends to have a direct correlation with the previous it may also not be
necessary to react to the current state input in order to output something reason-
able. However, with only 135 actions per sample, and with the connectivity of the
output neuron being higher than 135, it should in most cases not be possible to for
NMS-LOC to transmit a signal at all if the action queue’s FIFO order is preserved.
Checking if this is the case reveals that a bug permitted some actions to be added
to the top of the queue under rare circumstances.

5.2.3 Experimental Run 2

Fixing this error still results in good fitness, giving a minimal fitness of 0.0094 +
0.0042 before correcting for setup time, and an average fitness across all runs for
all configs of 0.0646 £ 0.00174 before correcting for setup time - meaning that
in the best case NMS-LOC still performs far better than the random policy, and
on average also does so. In Experimental Run 2 26 out of a total of 40 runs were
completed. The fitness numbers are better than before the error fixing (0.0963
+ 0.0151 before and 0.0.0646 + 0.0115 after). It should be noted that this may
also be in part due to the change in the mutation rate adaptivity described earlier,
as it should in principle help with escaping local minima (in practice this lead to
mutation rates for individual runs sometimes spiking, i.e. entering hypermutation
and then either exiting hypermutation after finding an gradient or being replaced
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Figure 5.13: The percentage of child genotypes which are respectively as good
as the parent or better than the parent.

by another genome). Interestingly however, the neuron connectivity and neuron
amount is higher after the bugfix, which likely means that although it is no longer
possible to "sneak ahead" in the action queue, it is still possible to use the call to
the neuron controller to send signals without necessarily interfacing with inputs.
Another significant difference is that after the bugfix there is a on average decrease
of approximately 100 active CGP nodes per genome, meaning that the programs
that are found are fall smaller. Otherwise the stats are similar, indicating that the
preceding discussion of "Noise Swamps" and the impact of randomness is equally
applicable. Notably, the changed mutation rate adaption scheme and the bugfix
did not change the "fitness wobbling" at convergence. Based on the fact that NMS-
LOC tends to converge using all the tested config files further investigation of
the smoothened gradients is discarded. Because NMS-LOC is able to descend the
gradient without smoothened gradients it is unnecessary to bias the search.

Fixing this bug did not entirely prevent the existence of these programs. The
neuron engine sends a special type of signal on death which skips some of the
steps which a signal normally would have to go through in the action queue,
which might make it possible to send signals rapidly enough even if there is a large
amount of neurons and output connections. As long as calls to the neurons action
controller is added to the action queue on initialization, such programs can be
possible (especially as actions of the same timestep were added first in the queue
for that timestep, instead of in a proper FIFO queue per timestep as intended).
In future experiments the death signals will still be present, but neuron action
controllers won’t be added on initialization, and the action queue order is fixed,
more on this later.

In the bugfix-version of Experiment 2 data was also gathered logging samples
of the evolved programs and produced phenotypes at the end of evolution. To ana-
lyze the phenotypes they are categorized according to whether they have none,
(<1), single (1), low (<20), medium (< 100) or high neuron counts, input con-
nectivity, hidden connectivity, and output connectivity. It was observed that in
general each evolutionary run produced a single phenotype "type" based on the
categories above, which may indicate that NMS-LOC is not good at preserving



diversity in the population, likely due to the explicit population takeover feature
and the implicit population takeover produced by the historical list. Although his-
torical list replacements checks that there aren’t common ancestors to a certain
depth it is possible that this depth is exceeded quickly, and this check is also not
applied to the current population, meaning that genotype "species" can spread by
getting put into the historic best list, then into the population, then back into the
list, and so on. To attempt to remedy this and preserve diversity better the historic
best checks are changed to check for common ancestors up to and including depth
6 from a previous 3, and by also checking the current population.

However, the distinct genotype split between each runs makes it convenient to
group the runs by produced phenotype. That makes it possible to examine com-
mon statistics for the different types of phenotypes. Note that there can of course
exist other important characteristics of phenotypes not captured or represented
by this clustering method, but this grouping method is still chosen as it is easy to
observe and do using the gathered statistics and captures important and semantic-
ally meaningful properties of the phenotypes. For the purposes of this discussion
a phenotype is considered interesting if it could be possible for it to be reactive
to input signals (as to some degree any high-performing phenotype is interesting
otherwise - in general all phenotypes which perform well are equally valid solu-
tions and show that NMS-LOC works, but under the view of using NMS-LOC to
find connectionist computational structures these solutions are not necessarily as
interesting).

Phenotypes® with either high output or high input are unlikely to be interest-
ing, as they likely rely on the neuron engine’s action controllers instead of actual
input values, along with death signals and relying on the incorrect LIFO-queue for
same-timestep actions. Empirically these phenotypes do not have more neuron
deaths than on average (87.5 £+ 4.0 vs. 213.2 £ 7.3), but they do have more
neuron births (2173.6 = 139.5 vs 842.6 + 32.6), axon-dendrite deaths (743.3 +
26.5 vs. 422.2 + 11.2) and axon-dendrite births (835.8 £ 9.4 vs. 481.4 + 8.2).
It is possible that the birth-functions are more useful than the death-functions for
sending signals in time; both neuron creation and axon creation provides axon-
dendrites with the opportunity to connect to other axon-dendrites, which could
potentially be the ones for the output node, and axon-dendrite birth specifically
can generate signals. On the other hand calling functions for creating neurons
and axon-dendrites more is necessary to create high-neuron and high-connection
phenotypes in the first place, so these statistical differences could also be related
to that bias instead of how the programs work.

In general, phenotypes which rely exclusively on signal generation without
regard for input signals can be considered another example of how evolutionary
Al can find solutions which exploit the simulation engine in unexpected ways
(Lehman et al. (2018)).

Phenotypes with no input connectivity are necessarily not interesting as it is

3Please note that in following phenotype graph visualizations neurons which are at the same
position are randomly spread out around that point to improve the visualization.
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Figure 5.14: An example of a neuron phenotype with high neurons, high output,
and high input. Color key (used in all phenotype graphs): Blue - hidden neuron,
green - output neuron, red - input neurons, black line - axon-dendrite connection.

not possible for them to consider input signals. They perhaps work similarly to
high-neuron high-connectivity phenotypes, in that high-neuron and high-connectivity
phenotypes may also be using the signal-generating functions instead of actual
signal input.

High neuron phenotypes with low or medium input and output connectivity,
and a low hidden neuron connectivity can be interesting. In such phenotypes it
can be possible to send signals from input to output for each sample, as neurons
could for example "filter" through which neurons fire, effectively doing some form
of "if/else" control structure. Another interesting class of policies which could be
implemented in such phenotypes would be policies which pick an action for prob-
lem instance t+n using data from problem instance t.

High output phenotypes typically look something like Figure 5.14. A large
amount of neurons are gathered in close proximity, and most are connected to
the output neuron. Alternatively, they may look like Figure 5.15 which depicts a
phenotype with just a single neuron - here the single neuron has formed many
connections to the output neuron.

Phenotypes with low or medium neurons, input, output and hidden connectiv-
ity are likely to be interesting, as they are likely able to process and transmit
outputs based on the input signal for the same problem sample. Singular neuron
phenotypes can also be interesting and easy to analyze, but ultimately phenotypes
with multiple neurons are more interesting from the perspective of connectionist
computing, and because one neuron has a limited computational power due to
the CGP program size limit. However, a phenotype belonging to either of these
classes does not prove that it does not use action engine signal generation instead
of processing input signals, only that it might be possible for the phenotype to
transmit signals from input neurons to output neurons for the same problem in-
stance. It should also be noted that all phenotype variants call the various CGP
functions for processing and transmitting signals, but it is not explicitly tracked



Figure 5.15: An example of a neuron phenotype with only one neuron. This
specific phenotype has many connections to the output neuron.
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where these signals originate* nor how far they reach before the neuron engine
has used all the allotted actions for the timestep.

Figure 5.16 shows several examples of low or medium neurons, input, out-
put and hidden connectivity phenotypes. Note that when a neuron creates a new
neuron, they automatically have a connection, such that programs which do not
properly utilize inter-hidden neuron connections might still have them. Another
reason why seemingly reasonable connection structures may not actually utilize
the connections meaningfully is that the programs may just be searching for con-
nections to the output neuron specifically, and sometimes accidentally forms con-
nections with other neurons instead, without necessarily using these connections
meaningfully.

It was attempted to investigate the logged CGP-Programs. However, a logic
bug in the CGP engine made it so that information was lost, making it impossible
to reproduce the programs accurately. The bug essentially permitted the output
nodes to not be in the set of nodes which are given sufficient input to produce
a output, which worked by defaulting output values to 0, while also making it
possible to produce genotypes which contain such output nodes. Possible other
impacts of this logic error could be making the use of CGP modules less useful,
and making it more difficult to evolve deeper/larger CGP programs.

However, some conclusions can still be drawn from the logs. The evolved CGP
programs often used division and subtraction to create constant numbers, by di-
viding a number by itself it could produce the number 1 reliably, and by subtract-
ing a number from itself it could produce the number 0, which are meaningful in
NMS-LOC because 0 means "definitely do not do" something, while 1 means "def-
initely do something". It was also observed that the effective genotype variance in
each population was small or nonexistent, likely due to the population replace-
ment mechanism and the use of historic lists, such that it will be interesting to see
if diversity is more maintained with the changes to these mechanisms described
above. Additionally, the common ancestor check is added to the population re-
placement mechanism, which could help increase diversity further.

The results of Experiment 2 shows that NMS-LOC is able to find solutions to the
one-pole balancing problem which are better than taking entirely random actions.
The use of randomness in NMS-LOC may cause evolution to get stuck in "noise
swamps", making it difficult to continue improving after a certain point. Due to
some bugs and design choices it was possible for NMS-LOC to generate signals and
transmit them to the output node without considering the input from the input
node. Although such solutions may be functional, they are not as "interesting"
as programs which can be reactive to input data. For this reason NMS-LOC is
changed to not add neuron controller calls to the action queue of the engine at
the start of each problem instance, and at initialization of a phenotype the single
hidden neuron is initialized with connections to the input nodes. NMS-LOC was

“This would be difficult to do as previously received signals which were not transmitted may
in principle be part of the information sent when a received signal triggers sending a signal, and
because the logs for the programs would grow extremely large.



Figure 5.16: Several examples of phenotypes which seem to form interesting
structures.
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able to create several types of phenotypes, but some of them may have relied on
generating signals, and not on transmitting them from the input node. Overall
the results show that NMS-LOC is capable of evolving solutions to the One-Pole
Balancing problem, but that the algorithm could be improved in several areas.

5.3 Experiment 3

Experiment 3 investigates NMS-LOC further. First, the fixes from the previous
experiment may improve diversity and performance, and will fix the remaining
issues with logging genotypes properly, allowing for more analysis. The exper-
iment will only use the input signals as the initial actions in the action queue
instead of calling every neurons action controller also, which is expected to pro-
duce more phenotypes with low amounts of neurons and connections. Further, the
impact of randomness will also be investigated. Specifically, another set of CGP
node functions are implemented, the ones used in Julian E Miller (2021), which
should be suitable as they are used successfully in Miller’s experiments which also
control neuron models using CGP. These will be tested alone in a deterministic
neuron engine (where >1 means action, <1 means no action) (MILLER-DET), in
a stochastic neuron engine (where the range <0, 1> denotes the probability of
taking an action) (MILLER-RAND) and in a stochastic neuron engine with the ad-
dition of Gauss sampling as a node function (MILLER-GAUSS). These results will
be compared with running the changed version of NMS-LOC with the same node
functions and the stochastic neuron engine as in experiments 1 and 2 (RAND). Fi-
nally, the locations of output neurons, the initial hidden neuron, and input neur-
ons are changed, the expected result is that the output phenotypes might look
less cluttered. However, this location change does make input and output neur-
ons more geometrically distanced, which is information the search could use in
found solutions.

Due to computational limitations the iterations per evolutionary run is lowered
down to 200, as this version of NMS-LOC tended to take longer to run. In total one
120 runs were started, ten for each config version, and 86 of these runs finished
successfully. The rest were cancelled due to taking longer than 70 hours to com-
pute, which is the default limit in the IDUN computational cluster. It is possible
that the cancelled runs could have something in common with each other, but on
there is also no evidence to conclude that this is the case.

Otherwise, the config files are identical to the ones shown in Appendix C. The
four variants with various use of Miller functions and randomness as described
above were each run for each config, giving a total of 12 config files.

This experiment will help answer the following questions:

e Does removing neuron action controller calls from the initial action queue
mean that there are less high-neuron high-connectivity phenotypes at the
end of the search?

¢ [s randomness/stochasticity necessary to find a gradient?
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Figure 5.17: The unified fitness graph for Experiment 2 Experimental Run 2 (left)
vs. the unified fitness for Experiment 3 RAND (right)

e Does removing randomness/stochasticity help with finding a gradient in
low-fitness parts of the state space, potentially because the search no longer
gets stuck in Noise Swamps?

e Does Julian E Miller (2021) set of CGP functions work in NMS-LOC, and
are they perhaps better suited for creating modular CGP functions?

Fitness Reference

Due to the decreased amount of training iterations per run it should be expected
that fitness is on average higher, regardless of the impact of the other changes
made to NMS-LOC. By comparing the RAND runs with the first two hundred it-
erations of Experiment 2 Experimental Run 2 it is possible to compare the new
NMS-LOC version with the old, and establish a reference for the other runs. Figure
5.17 shows that the changes made seem to improve NMS-LOC’s convergence rate.
Statistically the 50 last iterations (150-200) of RAND had an average fitness of
A 0.0828+0.0150 while the last of Experiment 2 had ~ 0.0646+0.0115. As such
it seems that the two versions of NMS-LOC are comparable, only that Experiment
2 had another 100 iterations to further improve the fitness and that Experiment
2 may be slightly better on average. Both are better than a random policy on av-
erage. The minimum fitness® for RAND was ~ 0.0123, while Experiment 2 was
A 0.009, and are comparable similarly to the average fitness.

Fitness across the different runs

NMS-LOC is able to find a gradient for each of the four different run types. For
RAND, MILLER-RAND and MILLER-GAUSS ~ 19% of children per generation is
better than one of their parent genotypes. MILLER-DET has ~ 15%, which is lower,

®Note that this is the average minimum fitness for the last 50 iterations for all aggregated over all
the relevant runs. This is not the same as the minimum in the last iteration of the run, but by taking
an average the measure is less susceptible to randomly good fitness random variable samplings
while still giving a measure of the "best case".
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but still enough to follow a gradient. It is likely that some of the difference is due
to randomness giving a too optimistic estimate for some fitness random variables,
causing the better child statistic to be slightly inflated. However, comparing the
fitness’s suggests that randomness is also useful for faster convergence to lower
fitness values. Due to the limited run length it is not possible to conclude that
MILLER-DET would not eventually converge to the same fitness values (or better)
as the other run types. MILLER-DET had an average fitness of ~ 0.165 % 0.002
which is worse than random, and a minimum fitness of 0.009 = 0.004, which is
significantly better than random, showing that deterministic programs for NMS-
LOC can also do well on the one-pole balancing problem. Numbers for MILLER-
RAND is &~ 0.103 + 0.04 average, which is slightly worse than random, and ~
0.0103 £ 0.002 at minimum, which is better than random and comparable to
MILLER-DET. RAND as mentioned has an average fitness of ~ 0.082+£0.015 and a
minimum of ~ 0.012£0.005, both better than random. However, MILLER-GAUSS
does the best with an average fitness of &~ 0.054+0.003 and a minimum fitness of
zero, as in perfect performance. The low standard deviance in fitness may indicate
that there is little variation in the produced phenotypes for each evolutionary
run, as the standard deviance is the average of the standard deviances for each
individual run.

MILLER-GAUSS only found a "perfect" solution® once, however. It is possible
that the low score is as such partially caused by this potential statistical outlier.
Additionally, unlike the other versions MILLER-GAUSS did not have any statist-
ical outliers with unusually high fitness. It is possible that this could be due to
random chance, but it does seem to indicate that MILLER-GAUSS performs bet-
ter than the other versions. If so, two conclusions can be drawn. Using Julian E
Miller (2021)’s functions with the addition of Gaussian sampling in a stochastic
engine is better than the node functions shown in Appendix B. Additionally, using
Miller’s functions with the addition of Gauss sampling is better than just using
the node functions in a deterministic and in a stochastic engine. It makes sense
that Miller’s functions work better, as they are a more extensive set of functions
and should make it possible to evolve a larger class of functions, and allow lar-
ger variance of programs in low-active node programs. The hypothesis behind
allowing for randomness was that this might help find gradients, which in view
of these results may be true. However, it could also just be that the addition of
Gauss sampling opens up for a larger class of functions in CGP programs, as they
permit for stochasticity in the programs which is otherwise not included in Miller’s
function set. Although these results are not entire conclusive they do suggest that
MILLER-GAUSS is the preferred version of NMS-LOC for the one-pole balancing
problem.

MILLER-DET is clearly different from the other versions in that while all ver-

SThat is, a perfect score for the encountered problem instances. However, as the minimum fitness
is taken as the average over 50 runs and is still zero with no variance, it seems clear that the solution
is able to solve the one-pole balancing problem for most problem instances, as the initial problem
instance is random each time.
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Figure 5.18: The fitness graphs of the different versions of NMS-LOC. In or-
der from upper left and clockwise: MILLER-DET, MILLER-RAND, MILLER-GAUSS,
RAND

sions consider using modular CGP functions, MILLER-DET is the only one to actu-
ally use these in the evolved programs. However, this still only happened in two
of the runs. It is possible that the determinism makes it easier to evolve modules
which behave "consistently", but that is a hypothesis at best. Statistically, in the
run with the most used modules, the logs suggest that the modules used the tanh,
sub, and rmux functions, as they are far more common than the other node func-
tions in this run. Due to a logging bug the modules are unfortunately not logged”.
Notably, the average fitness of this run was 1.0, meaning that no meaningful be-
havior was found. This lead to a "failure state" in NMS-LOC’s design, which favors
trying to spread CGP modules under the assumption that they are useful, but as
there is in this case no found gradient they spread widely due to this bias. As such
the logging bug ultimately did not matter, as the modules did no useful computa-
tion anyway. The other run had an average fitness of ~ 0.041 4 0.005, suggesting
that the found modules may have been useful, which shows that although NMS-
LOC rarely ends up using CGP modules it is still possible for it to do so, meaning
that CGP modules can be useful, which means that the system could potentially
be tweaked or changed such that it can take more advantage of CGP modules.
Figure 5.18 shows the fitness graphs for the different versions. It shows that

7 A bug which was difficult to notice previously as modules were simply not being used.
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while all versions can do large jumps in fitness, the versions which permit ran-
domness may have an easier time of successfully making smaller steps in the fit-
ness landscape, which would indicate that the use of randomness can help the
search find an gradient. The fact that the the versions which use Gauss sampling
have a worst case performance better than 1.0 (no meaningful behavior, i.e. no
outputs sent) may also suggest that randomness helps provide an gradient. Oth-
erwise it is clear that the best-case performance is somewhat comparable across
the versions, which concurs with the statistics presented earlier (with the excep-
tion of the 0.0 potential outlier). Overall it seems reasonably fair to conclude that
MILLER-GAUSS is the preferable version, while noting that the available evidence
is not enough to conclusively say that it must be better than the other versions.

Another interesting fact is that the best-case runs (min) seem to have con-
verged or basically converged by iteration 30 to 50. This suggest that an alternat-
ive strategy for finding good solutions would be to only run NMS-LOC evolution
for 30 to 50 timesteps, checking if the solution is sufficiently good, and if not,
starting the search again from a random point in the state space. For example, if
the fitness is not better than random by run thirty, it might be a good choice to
discard the evolutionary search and restart. However, this observation only holds
for the one pole balancing problem. It is possible that other problem domains will
require more evolutionary iterations to find a good solution.

Finally, we can note that there are not grounds to comment on the validity of
the hypothesis about noise swamps. Due to the lower amount of iterations it is
less clear how the search progresses when it starts to converge. What we can say
for sure, however, is that it is possible for NMS-LOC to avoid noise swamps when
using Miller’s function with the addition of Gaussian sampling, the fitness graph
for MILLER-GAUSS in Figure 5.18 clearly shows how the minimal fitness program
is stable at a fitness of 0.0. The results also show that even in the deterministic
case, in MILLER-DET, there is still some noise as can be told from the "wiggle"
in the fitness graph. This noise is a result of the problem instance sampling still
being stochastic/random in MILLER-DET, meaning that there is still a source of
some noise.

Impact on Phenotype types

The changes made to NMS-LOC significantly reduced the amount of high-neuron
high-connectivity phenotypes. Out of 86 phenotypes, 60 (~ 70%) had only a
single neuron on average, 10 (&~ 0.12%) had 2 to 20, 6 (~ 0.07%) had between 21
and 100, and 10 (=~ 0.12%) had more than one hundred neurons. In the second
run of experiment 2, 4 (& 15%) out of 26 phenotypes had a single neuron, 9
(~ 36%) had a 2 to 20, 5 (~ 0.19%) had 21 to 100, and 8 (~ 0.31%) had
more than 100. The results show that single-neuron phenotypes are far more com-
mon after the changes. It is interesting to observe that some high-neuron phen-
otypes still exist, and some have better-than-random performance, even though
the phenotype control flow must start from the input neurons. MILLER-DET had



A 84% single neuron phenotypes, MILLER-RAND had ~ 54%, MILLER-GAUSS
had ~ 73%, and RAND had ~ 70%. As mentioned, the functions from Julian F.
Miller (2021) are designed for the range of real numbers in the range [-1, 1], and
are not designed for stochastic systems, which may have made it more difficult for
MILLER-RAND to evolve programs which have exactly one neuron without the ad-
dition. Instead, MILLER-RAND had more low (/& 0.23%) and medium (=~ 0.09%)
neuron phenotypes, but due to the relatively low sample sizes (respectively, 19
MILLER-DET, 22 MILLER-RAND, 22 MILLER-GAUSS, and 23 RAND) this may be
a random difference.

MILLER-DET, MILLER-RAND, and MILLER-GAUSS primarily exhibited two types
of network structures in the final phenotypes. The one type is single-neuron struc-
tures with connections to all inputs and the output neuron, as shown in Figure
5.19. The other phenotype type is also a single-neuron structure, but contains sev-
eral more neurons which are not connected to anything, some sort of unpurged
remnants from the phenotypes development. The difference in phenotype types
mentioned above is therefore just that some of the runs randomly had more of
these remnants than others. Such remnants are shown in Figure 5.20. It should
be noted that although in the problem solving phase of the neuron engine the
initial actions in the action queue are only signal transmissions from the input
neuron, in the reward phase the reward program for each neuron in the simula-
tion is called, which means that the neurons could still purge themselves even if
they are not connected to anything, i.e. it is not impossible to "clean up" in such
phenotypes, but it’s possible that doing so doesn’t provide evolutionary advant-
ages. It is also possible that they might reconnect to the network in the reward
phase. Finally, some phenotypes contained many neurons, and in these it is not so
easy to tell if the entire network structure does anything, or if there are just more
unpurged remnants and unpurged connections. Examples are shown in Figure
5.21. In high neuron phenotypes there are typically more connections to the out-
put neuron than to the input neuron, which may indicate that some of the neurons
are not doing anything, and that actual computation is done in a small part of the
network structure, probably single neurons connected to both input and output
neurons, or the neuron connected to the input neuron and a few other neurons,
at least one of which is connected to the output.

Even low-neuron phenotypes can have a high amount of connections to the
output nodes. This varies across the phenotypes, likely both few and many con-
nections can be useful. Having many connections to the output neuron may be
useful for several reasons. It is possible that each separate axon-dendrite reacts
to a different input, making up collectively some "if-else" type of structure. In ver-
sions of NMS-LOC which permit stochasticity in the engine (and CGP programs)
having multiple axon-dendrite connections to the output neuron may be a way
of handling uncertainty. Another possible explanation is that axon-dendrite birth
could be used to generate signals, and that old axon-dendrites just aren’t purged
completely.

The prevalence of single-neuron phenotypes or effectively single-neuron phen-
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Figure 5.19: A phenotype displaying the usual case for single neuron phenotypes.
The 0.0 (perfect) phenotype had this structure.
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Figure 5.20: A phenotype displaying a fake multi-neuron structure. As can be
seen, most of the neurons are disconnected, and the phenotype has only one
active neuron. The example shows how the neuron locations have moved over
time. Hypothetically, adjusting the position of a single neuron could be a type
of learning, as neuron position is given as program input in many of the CGP
programs, although this is not necessarily how these phenotypes work.
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Figure 5.21: A phenotype displaying a multi-neuron phenotype. Are all neurons
involved in computation? Just subsets? Only a few?



otypes can be explained by the fact that having a single neuron is sufficient for
NMS-LOC to do well on the one-pole balancing problem, which follows from
single-neuron phenotypes having low fitness values across the different versions.
Evolution may then tend to find these solutions if they are easier to find than
multi-neuron solutions - after all, it is simpler to just process and transmit a sig-
nal to the output neuron, than to do so while also creating a more complicated
network structure.

RAND contains more actual multi-neuron phenotypes than the other versions.
RAND seems to both create high-neuron phenotypes which likely share similar-
ities with high-neuron phenotypes (see Figure 5.22 in the other versions - albeit
seeming to spread out more in geometric space - but also phenotypes with a low
amount of neurons which seem to exist in some type of network structure (see
Figure 5.23. A possible explanation for this is that the other versions have more
CGP node functions, allowing a larger class of functions to be implemented in
the CGP programs. Because RAND may be restricted to smaller class of CGP pro-
grams, it is possible that relying on more distributed computation scheme is more
often useful. Hopefully, as RAND seems to be able to form network structures, it
is possible that the other versions of NMS-LOC can also form network structures
should they be applied to a sufficiently difficult problem.

5.3.1 Looking into CGP functions

There are two problems with interpreting CGP functions, which makes it not pos-
sible to do so. First of all, the bug causing data incompleteness prevailed. Secondly,
the CGP programs are not friendly to human interpretation, although it may be
possible to understand. Figure 5.24 shows the problem, namely that individual
programs can be very complex. Additionally, there are 17 functions, and for some
variants of NMS-LOC each of these can have three hex variants. Finally, these 51
programs interact in complex ways which there is no trace of, as such a trace
would be very large.

5.4 NMS-LOC and the IRIS Flower Classification Problem

NMS-LOC was adapted to the IRIS flower dataset (Fischer (1936)). The results
are slightly promising, but detailed experiments and analysis is outside of the
scope of this work, and the limited amount of experimentation with IRIS where
honestly mostly done to see if it would work at all, but as the very limited results
are still somewhat interesting they are documented and discussed. Essentially,
several runs were attempted, but likely due to the problem complexity NMS-LOC
was too inefficient to compute many iterations, and low iteration runs seemed to
struggle to produce useful phenotypes. However, doing a 100-iteration run and
changing the config file to increase the CGP program size to 400 managed to
produce useful phenotypes. The increased maximal function size would mean that
a larger class of functions can be evolved, and an larger amount of inactive nodes
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Figure 5.22: A high neuron phenotype evolved using the RAND version of NMS-
LOC.
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Figure 5.23: A low neuron phenotype which seems to have a network structure
evolved using the RAND version of NMS-LOC.

Figure 5.24: The figure shows a single CGP function, which consists of 24 nodes
in a complicated network structure.
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could potentially be beneficial for CGP neutral drift. The run uses Miller functions,
a stochastic neuron engine, and the GAUSS node type.

Before describing these further a couple of notes should be made about the
IRIS problem domain. Unlike One-Pole balancing, IRIS is a classification problem.
Implementation wise IRIS contains three output neurons in NMS-LOC, while One-
Pole only has one. IRIS having multiple output neurons and NMS-LOC being able
to still evolve meaningful phenotypes mean that NMS-LOC can find solutions for
multiple-output neuron problems.

It should also be made clear that only one experimental run was done after
the change to CGP program size, meaning that the results should be read more
as a particular case or example and not as representative of average performance
on the problem domain. In particular, each evolutionary run begins with splitting
the IRIS dataset into a validation set and a training set constant for the duration
of the run, and it is possible that this particular split was favorable, but no log was
made of the split so there are no grounds to say anything conclusive.

Figure 5.25 shows the fitness graph for the IRIS classification problem with
both training set and validation set fitness over time. In this run there were only
two population slots, so the max, min, and average value is essentially the same.
The graph shows that NMS-LOC was able to evolve a phenotype with a train-
ing set Mean-Squared Error (MSE) lower than 0.5, indicating that it classifies a
little more than 30% of the training set correctly. Taking into consideration that
the fitness score is evaluated from the entire evolution from the minimal network
structure of a single hidden neuron connected to the input neurons this score is
not too bad considering that this is a one-off test and not the use case NMS-LOC
has been tested and developed for. The MSE correcting for the amount of times
no output is sent to the output neuron (which may be the amount of iterations
before a connection to the output neuron is established, but is not necessarily
only establishment iterations) gives a MSE of about 0.4 which means that about
37% of the training data samples are classified correctly after establishment. The
IRIS dataset is balanced, meaning that each classification category has an equal
amount of samples, but this does not need to be true for the training data/valida-
tion data split in the NMS-LOC implementation. However, a random policy which
simply picks each class with equal probability should be right about 0.33% of
the time on average and get an MSE of about 0.44. This means that the evolved
phenotype is about as good as outputing a random classification, which is not
particularly impressive. It does not mean that the evolved phenotype implements
the random policy, however, only that the implemented program is about as good
as the random policy. It is possible that longer evolutionary runs or runs with
more populations lots could produce better phenotypes, but there is no reason
to conclude that this is true. Note also that the phenotypes are only exposed to
one pass through of the training dataset, e.g. 120 training data samples. In a way,
the results are more impressive considering how few training passes are done to
produce the phenotypes, and increasing the amount of training data passes could
potentially improve fitness significantly.
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Figure 5.25: The fitness graph for the IRIS classification problem

Figure 5.25 shows that the validation set fitness is worse than the training set
fitness and has a greater variance over time. In general one can expect validation
set fitness to be worse than training set fitness on classification problems. The
higher variance might is likely caused by two factors: One, the used version of
NMS-LOC is random, but the genotype is only trained to be robust for the training
set, and the random permutations may have a greater impact on validation set
performance. Two, genotype state space steps which are neutral or good in the
training set may be negative in the validation set. Note also that the validation set
is smaller, which may produce higher variance. Also, be aware that the validation
set evaluation is done on the phenotype produced after the training set evaluation,
and the evolutionary algorithm is only aware of the training set fitness.

Figure 5.26 shows a typical phenotype at the end of evolution. These phen-
otypes have a large amount of neurons (&~ 1591 & 204). There are no grounds
to make a conclusion about how the phenotype works, but based on the statist-
ics some observations and hypothesises can be made. The hidden neurons have
few connections on average (&~ 2.75 % 0.05), and the input neurons also have
few connections on average (~ 14.4 & 3.30). This may explain how the neuron
network is able to work despite having so many neurons. Because the amount of
connections to the input are low, it is possible that most neurons are filtered out
at an early stage. As the network does not appear to be very deep, at least from
the graph although it is hard to tell for sure and since average network depth cal-



Chapter 5: Experiments and Discussion 93

culation is not implemented (and could be infinite if there is a recursive loop) it
can’t be concluded that the network does not contain long paths, but there must
at least exist some paths which are shallow enough and filtered enough for sig-
nals to get through to the output neurons from the input neurons for some cases.
A hypothesis is that the neuron network implements some type of "if/else"-like
decomposition of the input data. Another hypothesis is that the neuron network
simply sends a signal to a random output node and happens to develop a large
network structure as a computational artefact, which would fit with the approx-
imately random-policy level performance on the training data. However, if the
network truly implemented a random policy, one could expect it to also perform
at random level on the validation data, which it does not. As such it is probable
that the network structure is in some way reactive to the input data and the re-
turned error score given after each training sample, i.e. in some way reactive to
the training data. Another interesting observation is that the hox switch count
and the neuron count have a good-as perfect positive correlation. A hypothesis
is that each hox version of the CGP functions (of which there are three) imple-
ments a program in some way suitable or correlated for each problem domain
class. However, it should be noted that there is a default hox selection check at
neuron creation which is not logged as a statistic, and that it is perhaps more
likely that the hox selection program is in the neuron which gives birth to another
neuron after neuron birth, in which case another possible hypothesis is that the
hox functions are related to how many steps away the neuron is to the output
neuron.

Ultimately, the results show that NMS-LOC can find a gradient in problems
which have multiple output neurons. The results are not particularly impressive
in regards to NMS-LOCs capability of solving classification problems in general or
IRIS specifically as the produced phenotypes are not much better than random.
However, as only one evolutionary run is analyzed there are the results may not
be indicative of the average case performance on IRIS with the same settings.
Possible changes which may improve NMS-LOC performance on the IRIS prob-
lem are more iterations per evolutionary run- More problem samples per genome
evaluation/phenotype development would allow NMS-LOC to have more time to
learn and have more of the evaluations percentage-wise be done with developed
phenotypes which may improve recorded performance.



Figure 5.26: An NMS-LOC phenotype produced for the IRIS problem
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Conclusion

The results on the One-Pole Balancing problem show that Neuron Model Search
is conclusive proof that NMS-methods can at solve some problems (at least the
One-Pole Balancing problem). More specifically, systems which evolve neurons
and do not extract ANNSs, i.e. learning lifetime behaviour, work to some degree.
However, despite showing that NMS-LOC is able to solve a problem domain it
remains to investigate which other properties NMS systems may have, which could
be interesting areas to investigate in further work. For example:

e Can a single NMS genotype create phenotypes which solve several or even
many problem domains, when each phenotype is evolved in interaction with
that problem domain?

e Can NMS phenotypes adapt to dynamic problem domains?

e Can single NMS genotypes create phenotypes which solves several problems
at once?

e Can an NMS genotype with good performance on a set of training problems
get good performance on an non-overlapping set of validation problems?

e Which other problem domains can NMS approaches be shown capable of
solving?

e How do found solutions work?

Personally, I find the potential of evolving neurons which can solve several
problem domains interesting. If a neuron which implements a novel way for neural
structures to learn it could potentially be extracted from the evolutionary con-
text and be re-implemented in an optimized fashion and potentially be efficient
enough for engineering use. Additionally, a hypothetical discovery of new learning
rules would be interesting by itself.

Despite being able to solve the One-Pole Balancing problem there are several
likely problems with the NMS-LOC algorithm. There is good reason to believe that
the population diversity within an evolutionary search becomes small as time goes
on, based on how similar the produced phenotypes by different genotypes in the
search are. This is likely due to the explicit population replacement mechanism
and the implicit population replacement produced by swapping in and out of the
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historic best list. Possible changes to fix could be removing the explicit population
replacement and separating the historic best into several list, such that a genome
can only be swapped out for one of it’s own ancestors. Overall there has been much
research into population management in bio-inspired Al, for an introduction see
Eiben and Smith (2015).

A core design idea in NMS-LOC was using modular CGP functions as core pro-
cesses, but in practice the algorithm struggled to find useful modules. Although
it is perfectly fine by itself that modular CGP was not useful for this particular
problem with this particular algorithm, I will argue that designing NMS systems
which successfully use components analogous to core processes would be bene-
ficial, based on how important they seem to be in nature (Gerhart and Kirschner
(2007)). Successful use of such processes would per definition provide increased
ability for canalization and complexification in terms of Stanley and Miikkulainen
(2003)’s taxonomy. Similar arguments are made in Downing (2015), there with
focus on the emergence of behaviour as a result of complex interactions at several
levels of abstraction. Finally, spreading and creating modules should be restric-
ted such that modules are only created in better-than-worst-case phenotypes to
prevent neutral drift from creating genotypes with large amounts of recursive
modules which implement no useful behaviour .

One potential alternate system could be to, instead of evolving neuron be-
haviour, directly evolve parallellizable CGP part-functions. A set of "input" CGP
functions are called at the beginning of processing input, and these may output
an output tag which is matched against other functions in the function pool, along
with passing along signals and potentially writing to state registers or chemical
state. By extending self-modifying CGP (Julian E Miller (2020)) to be able to pro-
duce new functions during the execution of a genotype the resulting program
could have several desirable traits: One, it could evolve re-usable components
(i.e. core processes). Two, it could modify itself. And three, it would process in-
formation at both a symbolic level (the definition of each CGP program), and a
sub-symbolic level (the signals and states in the system).

Other changes could be to change evolution of hex-variants to a coevolution-
ary approach where each hex variant is evolved separately, and their fitness is
the average fitness of put-together complete genotypes. Another potential change
could be to include some neuron actions on the CGP program level as node func-
tions, such as: "If output is >= 1.0, then Neuron dies." or "Move neuron in the
x-direction equal to input.", which could reduce the amount of genotypes that
need to be evolved as several could be abstracted away as node functions. In fact,
all neuron actions could be implemented as node functions of a specific arity. This
could be combined with co-evolving several "control programs", which may call
on each other. Such a change might be beneficial as it further limits the impact of
human design: In NMS-LOC the way the different programs interact in terms of
which might call which with what inputs is pre-defined, but in principle this could
also be left to evolutionary search.

One notable issue in the design of NMS-LOC is that sending a signal between
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two neurons requires 5 to 6 calls to CGP programs. This makes sending signals
a relatively expensive operation, putting an effective limit to the complexity of
produced network structures, and making the system slower than alternatives
with faster signaling. In general it would be beneficial to produce more optimized
NMS systems in the future, especially as a proof-of-concept system now has been
shown to work in one problem domain.

Overall, the success of NMS-LOC on the one-pole balancing problem war-
rants further investigation into if other neuron-evolving systems could work better.
Based on the aforementioned design issues with NMS-LOG, it is the authors opin-
ion that there likely exist other and better systems which evolve lifetime behaviour
neurons. In a sense the existence of biological neurons is conclusive proof that it
is possible to evolve lifetime behaviour neurons, at least on some computational
substrates. The question is just if we can do if far faster than biological evolution
on our computational substrates. To do so, it will likely be necessary to go through
several designs in research, create more optimized systems, and continue to take
inspiration from the biological neurons and evolutionary systems found in nature
to some degree.

There is not sufficient data to determine if using randomness in the simula-
tion engine and in CGP functions is beneficial or detrimental. What can be said
with certainty is that NMS-LOC was able to find good solutions to the one-pole
balancing problem when using randomness, and that there is a slight indication
that using Julian E Miller (2021)’s node functions in addition to simulation en-
gine randomness and adding Gauss as a node function may preferable as default
settings for NMS-LOC. The advantages of using randomness is that it opens up
for a new class of functions, and may lend itself to increased robustness and oth-
erwise make the search landscape easier to navigate. The disadvantage is that it
can make solutions harder to interpret and understand, and that it makes fitness
evaluation into a random variable sampling rather than a deterministic evalu-
ation. This means that there is a need to handle potential information loss from
incorrect estimations, and a need to run several fitness evaluations for the same
genotype.

Finally, the single result on the IRIS problem show that NMS-LOC can find a
gradient in problems with multiple output neurons, but did not evolve better-than-
random phenotypes. However, the limited amount of computational resources
used, such as having only a hundred evolutionary iterations and just one experi-
ment means that there is no data to comment on if NMS-LOC could perform better
on IRIS with more computation. The IRIS example also highlights possible system
configuration changes which may be important to some problems, such as the
CGP function maximal node size, and the amount of passes through the training
set.

Ultimately, the conducted experiments show conclusively that NMS systems
can work on at least one problem. In principle as long as neuron models which
can solve the target problem exist within the search space of an NMS system they
can be reached. In practice the system must be designed such that fitness land-



scape has gradients which can be navigated by a suitable evolutionary algorithm.
Additionally, NMS software must be sufficiently efficient from a computational
perspective, especially if NMS systems are to be applied to more complex prob-
lem domains.
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Appendix A

Appendix A: NMS Search Space
Proof

Proof for equation (2.1). There are C(Z,2) = Z % (Z — 1)/2 different possible
edges in undirected graphs without loops. Although CGP programs are acyclic
directed graphs, a CGP node is not allowed to form a connection to a node at
a lower depth. As such the directed graphs in CGP programs are equivalent to
acyclic undirected graphs in the sense that directionality can be determined from
edge depth. Therefore, as the CGP graph has a maximal arity of T, there are a
maximum of Z x T /2 possible edges in a CGP graph. However, as CGP functions
have different input slots/parameters, the order of connections to a node is not
irrelevant. For a node with T inputs, there are T! different input orderings. As such
the amount of different possible edges in a CGP graph is Z * T!/2 As such there
exists 27 possible CGP graphs with N nodes.

M of these Z nodes are chosen as output nodes. As the ordering of output
nodes matter there are =7 M), different permutations.

Each of the Z active nodes can have Q different CGP node functions, so that
for each of the possible graph and output structures there are Z*Q different node
function selections.

Finally, the Z active nodes may be connected to the N input nodes in several
ways. In the worst case where every input to every node is connected to every
input node there is for each node (N T), different permutations of connections
to the input nodes, and these connectlons have T! different orderings as input to

each node, giving Z x T! (N T), different comblnatlons

Therefore, there is an upper bound of 2%
different genotypes in the search space.

It is assumed that each of the Q node functions has an arity equal to the max-
imal arity T, which does not need to be true in general, making (2.1) a loose upper
bound.

*Q*xZxZxT %

ge=n M)' (N T)'
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Appendix B: CGP Node Functions

One set of CGP node functions is shown in ??. These node functions are used when
permitting randomness.

NMS-LOC also has an option to use the node functions described in Julian
E Miller (2021). These were chosen as an alternative as they had already been
used successfully in that research application, which is similar to NMS-LOC in
that it searches for neuron models. The only difference is that NMS-LOC can have
values outside of the range [-1, 1], which can occur because NMS-LOC may write
to internal state registers and accumulate larger values. To avoid overflow the
range is still capped to [-100, 100].

Neuron function Arity | Description

Sine 1 sin(inl)

Addition 2 inl + in2

Subtraction 2 inl - in2

Multiplication 2 inl * in2, output capped to absolute value of 100
Division 2 inl1/in2, output capped to absolute value of 100,

in2 set to +/- 0.01 if smaller

Gaussian Sampling

One random sampling of Gaussian N(u=inl,
o=in2)

Table B.1: One set of node functions used in CGP in NMS-LOC
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Appendix C

Appendix C: Config files

The following section documents the config files used in the experiments. The

config files use the following format (C.1):

Config field

Description

Mutation chance node

Initial chance of node type muta-
tion and output index mutation

Mutation chance link

Initial chance of mutating CGP
links in genotype

Non-crossover children

If true, on crossover also generate
two children of parent 1 which are
copies of parent 1 without cros-
sover

Smooth gradient

Establish an additional small re-
ward factor for having a certain
amount of neurons, connectiv-
ity between hidden neurons and
connections to input and output
neurons. Intent is to provide a
smoother gradient. See Section
C.1

Genome count

Amount of genomes in population
which can create offspring. Min-
imum 2.

Neuron internal state count

How many internal states a

neuron should have.

Axon-dendrite internal state count

How many internal states an axon-
dendrite should have.

Signal dimensionality

The dimension of the signals sent
through the network.
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Hox variant count

How many hox variants each CGP
functino should have.

Iterations

How many child-generation +
evaluation steps should be done.

Hox crossover chance

During crossover chance of copy-
ing over a homeobox function
from other parent (If O the two
children has all of parent func-
tions after mutation, designates
how often to mix). Chance check is
repreated for each hex variant for
each function.

Hox duplication chance

On crossover, chance of copying a
homeobox variant function over to
the next homeobox variant of the
function, overwriting the previous.
To support duplication and differ-
entiation.

Fail mutation chance node multiplier

Number that node mutation
chance of genome is multiplied
with on fail to find equally good
or better child of parent genome.

Fail mutation chance link multiplier

Number that link mutation chance
of genome is multiplied with on
fail to find equally good or better
child of parent genome.

Neutral mutation chance node multiplier

Same as above, only for when
neutral change is found but not
improvement.

Neutral mutation chance link multiplier

Same as above, only for when
neutral change is found but not
improvement.

Max mutation chance node

Maximum chance of node muta-
tion outside of hypermutation

Max mutation chance link

Maximum chance of link mutation
outside of hypermutation

Hypermutation mutation chance

Chance of node and link mutation
during hypermutation

CGP progam size

How many CGP each CGP func-
tion/program may contain.

Logger ignore messages

Designate list of detailed logging
messages to ignore
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Seek dendrite tries

When an axon-dendrite attempts
to find a connection, it can evalu-
ate this number of candidates.

CGP function constant numbers

Provide a list of constant numbers
that CGP functions are given as in-
put.

Grid count Amount of grids that the neuron
geometric space should contain
Grid size How many points there should be

in each 3D directions per grid

Actions max

How many CGP functions the
neuron engine may call per train-
ing instance and per reward eval-
uation.

Instances per iteration

How many times the neuron en-
gine can do an input-output cycle
(i.e. evaluate training sample/en-
vironment interaction) per gen-
ome evaluation.

Advanced logging

Enable or disable advanced log-
ging

engine-random

Whether or not the engine inter-
prets numbers in the range [0.0,
1.0> as the probability of doing
something. Alternative is binary
check on >=1.0.

use-miller-funcs

If true the CGP node functions
will be based on Julian E Miller
(2021), otherwise as described in
Appendix D.

miller-and-random

If true and if use-miller-funcs the
Gauss node function as described
in Appendix D will be used in ad-
dition to the node functions de-
scribed in Julian E Miller (2021).

Table C.1: Config file description



C.1 Smoothened Gradient

Russel et al. (2010) recommends that reward functions only reward the desired
outcome, and not how the designer thinks the solution should work. The smoothened
reward function takes this into consideration by giving a full score for modest cri-
teria which are necessary for required behaviour.

The reward function works by including a punishment for some conditions
which are necessary to have interesting networks:

Neuron penalty: If there are less than 3 hidden neurons, give a penalty equal
to (3-hidden neuron count) /3.

Neuron connectivity penalty: If average neuron connectivity is less than 3, give
a penalty equal to (3-average penalty)/3.

Input connectivity penalty: If there are no connection to any inputs, give a
penalty of 1.

Output connectivity penalty: If there are no connections to any output, give a
penalty of 1.

C.2 Config files set 1

The config files shown in Tables ??, ??, ??, ?? are three settings of increasing NMS-
LOC complexity. As such the more complex configs, i.e. config 3 and then config
4 as most complex, have larger search spaces. Config 4 also has a config variant
using smoothened gradient, to see how smoothened gradient affects navigating
the largest search space.
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Config field Value
Mutation chance node 0.1
Mutation chance link 0.1
Non-crossover children True
Smooth gradient False
Genome count 10
Neuron internal state count 1
Axon-dendrite internal state count 1
Signal dimensionality 1
Hox variant count 1
Iterations 400
Hox crossover chance 0.01
Hox duplication chance 0.01
Fail mutation chance node multiplier 0.8
Fail mutation chance link multiplier 0.8

Neutral mutation chance node multiplier | 1.2
Neutral mutation chance link multiplier 1.2

Max mutation chance node 0.1
Max mutation chance link 0.2
Hypermutation mutation chance 0.3
CGP progam size 50
Logger ignore messages n/a
Seek dendrite tries 4
CGP function constant numbers None
Grid count 6
Grid size 20
Actions max 75
Instances per iteration 100
Advanced logging False

Table C.2: Config file 2



Config field Value
Mutation chance node 0.1
Mutation chance link 0.1
Non-crossover children True
Smooth gradient False
Genome count 10
Neuron internal state count 1
Axon-dendrite internal state count 1
Signal dimensionality 1
Hox variant count 3
Iterations 400
Hox crossover chance 0.01
Hox duplication chance 0.01
Fail mutation chance node multiplier 0.8
Fail mutation chance link multiplier 0.8
Neutral mutation chance node multiplier 1.2
Neutral mutation chance link multiplier 1.2
Max mutation chance node 0.1
Max mutation chance link 0.2
Hypermutation mutation chance 0.3
CGP progam size 50
Logger ignore messages n/a
Seek dendrite tries 4
CGP function constant numbers 1,2,10
Grid count 6
Grid size 20
Actions max 75
Instances per iteration 100
Advanced logging False

Table C.3: Config file 3
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Config field Value
Mutation chance node 0.1
Mutation chance link 0.1
Non-crossover children True
Smooth gradient False
Genome count 10
Neuron internal state count 4
Axon-dendrite internal state count 4
Signal dimensionality 4
Hox variant count 3
Iterations 400
Hox crossover chance 0.01
Hox duplication chance 0.01
Fail mutation chance node multiplier 0.8
Fail mutation chance link multiplier 0.8
Neutral mutation chance node multiplier 1.2
Neutral mutation chance link multiplier 1.2
Max mutation chance node 0.1
Max mutation chance link 0.2
Hypermutation mutation chance 0.3
CGP progam size 50
Logger ignore messages n/a
Seek dendrite tries 4
CGP function constant numbers 1,2,10
Grid count 6
Grid size 20
Actions max 75
Instances per iteration 100
Advanced logging False

Table C.4: Config file 4



Config field Value
Mutation chance node 0.1
Mutation chance link 0.1
Non-crossover children True
Smooth gradient True
Genome count 10
Neuron internal state count 4
Axon-dendrite internal state count 4
Signal dimensionality 4
Hox variant count 3
Iterations 400
Hox crossover chance 0.01
Hox duplication chance 0.01
Fail mutation chance node multiplier 0.8
Fail mutation chance link multiplier 0.8
Neutral mutation chance node multiplier 1.2
Neutral mutation chance link multiplier 1.2
Max mutation chance node 0.1
Max mutation chance link 0.2
Hypermutation mutation chance 0.3
CGP progam size 50
Logger ignore messages n/a
Seek dendrite tries 4
CGP function constant numbers 1,2,10
Grid count 6
Grid size 20
Actions max 75
Instances per iteration 100
Advanced logging False

Table C.5: Config file 4 Smoothened Gradient
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Function

Inputs

Outputs

Hex selection

Position, internal states,
constant values

Float for each hex vari-
ant, highest is chosen

Axon-dendrite birth

Position, internal state,
dendrite count, constant
values

RB: Add dendrite, RB:
Send signal, signal
output, RB: Run action
controller, internal state
delta

Signal axon-dendrite

Signal input, position,
internal states, constant
values

RB: Send signal, signal
output, internal state
delta, RB: Run action
controller

Receive signal

Signal input, global po-
sition, internal states,
constant values

Signal output, RB:
Run action controller,
internal state delta

Receive reward

Position, internal states,
reward, constant values

Internal state delta, RB:
Run action controller

Move Position, internal states, | RBs for movement in X,
constant values y, z direction, +/-, RB:
Send signal, signal out-
put
Die Global position, internal | RB: Die, RB: Send sig-

states, constant values

nal, signal output

Neuron birth

Position, internal states,
constant values

RB: Birth neuron, in-
ternal state delta

Action controller

Position, internal states,
constant values

RBs for adding each of
the preceding actions to
engine queue

Table D.1: Neuron Functions: Shows each Neuron CGP-learnt function with
defined inputs and outputs.
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Function Inputs Outputs
Receive signal from | Position, internal states, | Signal output, RB:
neuron input signal, constant | Run action controller,
values internal state delta
Receive signal from | Position, internal states, | Signal output, RB:

axon-dendrite

input signal, constant
values

Run action controller,
internal state delta

Signal neuron

Position, internal states,
input signal, constant
values

RB: Send signal, in-
ternal state delta, RB:
Run action controller

Signal axon-dendrite

Position, internal states,
input signal, constant
values

RB: Send signal, in-
ternal state delta, RB:
Run action controller

Accept connection
request from axon-
dendrite, constant
values

Own position, request-
ing axon-dendrite
position, own internal
states, requesting axon-
dendrite internal states

RB: Accept connection,
own internal state delta.

Break connection

Own position, request-
ing axon-dendrite
position, own internal
states, requesting axon-
dendrite internal states,
constant values

RB: Break connection

Receive reward

Position, internal states,
reward, constant values

RB: Run action control-
ler, internal state delta

Die

Position, internal states

RB: Die

Action controller

Position, internal states,
constant values

RB: For running each of
the other actions

Table D.2: Axon-Dendrite Functions: Shows each Axon-Dendrite CGP-learnt func-
tion with defined inputs and outputs.
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Appendix E: Statistics Explained

The following section gives a description of statistics gathered by the NMS-LOC
system. The NMS-LOC system does gather other statistics as well, but that is "be-
hind the hood" and not used for analyzing the system, only as options for adding
further analysis tools. For some degree of brevity only used statistics are presented
here.

These stats can perform aggregates over a single run, in which case they per-
form average, max, min, std, and count aggregation per timestep. They may also
be gathered over several separate runs, in which the average of the above aggreg-
ates on each run separately is used.

total-active-nodes-average: On average how many nodes were used in the en-
tire CGP genome (not per chromosome)

max-module-depth-average: The maximum module depth. A module which is
not in another module has depth 1. A model which is in a module which is not in
another module has depth 2, and so on.

module-count-avg: How many modules there were on average in the entire
CGP genome (not per chromosome)

recursive-module-count-avg: How many modules contains other modules

module-size-avg: How many nodes a module usually contained

unique-output-neuron-connections-avg: How many unique neurons are connec-
ted to an output neuron.

unique-input-node-connections-avg: How many unique neurons are connected
to an input neuron.

neuron-connectivity-avg: How many axon-dendrite connections the average
hidden neuron has.

input-neuron-connectivity-avg: How many axon-dendrite connections the av-
erage input neuron has

output-neuron-connectivity-avg: How many axon-dendrite connections the av-
erage output neuron has

hox-switch-count-average: How many times a switch between homeobox func-
tions is done
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max-link-mutation-chances: The maximum link mutation value in the popula-
tion

min-link-mutation-chances: The minimum link mutation value in the popula-
tion

avg-link-mutation-chances: The average link mutation value in the population

max-node-mutation-chances: The maximum node mutation value in the popu-
lation

min-node-mutation-chances: The minimum node mutation value in the popu-
lation

avg-node-mutation-chances: The average node mutation value in the popula-
tion

max-fitness: The maximum fitness in the population

min-fitness: The minimum fitness in the population

avg-fitness: The average fitness in the population

std-fitness: The standard deviation of fitness in the population

genome-takeover-counts: How many times a genome takes another genomes
population slot using the replacement mechanism

eval-time-averages: The average amount of seconds used to evaluate every gen-
ome in a produce-child step (children + parents evaluated)

neuron-counts-avg: How many neurons there are in the phenotype at the end
of evaluation

population-entropy-avg: The shannon entropy of genome ID’s in the population

better-swap-avg: The percentage of the parent population which is replaced by
a child with better performance

neutral-swap-avg: The percentage of the parent population which is replaced
by a child with equal performance

any-swap-avg: The percentage of the parent population which is replaced by
a child

better-child-percentage-avg: The percentage of child genotypes which are better
than one of their parent genotypes

neutral-child-percentage-avg: The percentage of child genotypes which are equally
good to one of their parent genotypes

any-change-avg: The percentage of child genotypes which are equally good or
better than one of their parent genotypes

dendrite-internal-state-use-count-average: The average amount of CGP connec-
tions to a dendrite internal state input in CGP functions

constant-number-use-avg: The average amount of CGP connections to a con-
stant number value input in CGP functions

neuron-engine-dim-use-avg: The average amount of CGP connections to a neur-
ons coordinates in the neuron engine input in CGP functions

signal-dim-use-avg: The average amount of CGP connections to a signal input
in CGP functions

neuron-internal-state-avg: The average amount of CGP connections to a neuron
internal state input in CGP functions
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CGP node type uses: For each type of CGP function node gather how many
times it is used in each genome.

Further, statistics about the behavior of phenotypes gathered. The following
are gathered, all of which are actions in the neuron engine, except for dendrite-
seek-connection and dendrite-accept-connection which are done outside of the
action control flow - note that some actions may sometimes be done outside of
the action control flow and in that case are not counted. All are presented as
average aggregates over the population at a given iteration.

axon-recieve-signal-dendrite: How many times an axon receives a signal from
an axon-dendrite.

axon-recieve-signal-neuron: How many times an axon receives a signal from a
neuron.

axon-signal-dendrite: How many times an axon runs the program to check if it
should signals a dendrite

dendrite-accept-connection: ... runs the program to check if it should accepts
an incoming connection

dendrite-action-controller: ... runs it’s action controller program

dendrite-axon-death-connection-signal: ... axon or dendrite runs the program
to check if it should send a signal to another axon-dendrite upon it’s own death

dendrite-axon-death-neuron-signal: ... axon or dendrite runs the program to
check if it should send a signal to a neuron upon it’s own death

dendrite-break-connection: ... axon or dendrite runs the program to check if it
should break it’s connection

dendrite-die: ... axon or dendrite runs the program to check if it should die

dendrite-recieve-reward: ... axon or dendrite runs the receive reward program

dendrite-recieve-signal-axon: ... runs the receive signal from axon program’
dendrite-recieve-signal-dendrite: ... dendrite runs the receive signal from dend-
rite program

dendrite-recieve-signal-neuron: ... dendrite runs the receive neuron program

dendrite-seek-connection: ... axon or dendrite seeks connection to another axon
or dendrite

dendrite-signal-axon: ... dendrite runs the program to check if it should signal
an axon

dendrite-signal-dendrite: ... axon runs the program to check if it should signal
an dendrite

dendrite-signal-neuron: ... axon or dendrite runs the program to check if it
should signal to its parent neuron

neuron-action-controller: ... neuron runs its action controller

neuron-axon-birth: ... runs the program to check if it should create an axon

neuron-dendrite-birth: ... runs the program to check if it should create an dend-
rite

! Although these are spoken of as going in two directions/being separate programs, it is the same
program for axons and dendrites, but they are counted differently depending on the context of the
direction of the signal



neuron-die: ... runs the program to check if it should die

neuron-hox-variant-selection: ... runs the hox variant selection program

neuron-move: ... runs the move program

neuron-neuron-birth: ... runs the program to check if it should birth another
neurno

neuron-recieve-axon-signal: ... receives a signal from an axon

neuron-recieve-reward: ... receives a reward signal from the neuron engine

neuron-signal-axon: ... runs the program to check if it should signal an axon

neuron-signal-dendrite: ... runs the program to check if it should signal a dend-
rite

skip-post-death: ... an action skipped because the object doing the action has
died. Not counted towards the action limit.
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Appendix F: Preliminary Thesis

The following appendix documents the preliminary thesis work done in the au-
tumn of 2021 (Rambjgr (2021)), which forms the basis for the master’s thesis.
Please note that between the preliminary work and the master’s thesis the author
has changed their legal name from Jon Oddvar Rambjgr to Sara Rambjgr, but both
the preliminary work and the thesis are written by the same person.
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Cartesian Genetic Programming for searching for novel Neuron Models

Jon Oddvar Rambjgr

Abstract

This paper presents Neuron Model Search
(NMS) using Carthesian Genetic Pro-
gramming for defining functions of an ab-
stract neuron model. These neuron mod-
els then interact with a problem domain to
grow neuron structures. Most neuroevolu-
tionary approaches focus on finding neu-
ron networks for a specific neuron model,
while this approach focuses on finding
the neuron models which grow networks
while interacting with a problem domain.
The intent is for NMS to find neuron mod-
els with interesting or unexpected emer-
gent properties and behaviour. The pa-
per describes the implemented NMS al-
gorithm, presents and discusses results on
a test problem to show that the algorithm
functions, and presents plans for and other
possible further work.

1 Introduction

Evolutionary algorithms can lead to novel and un-
expected results (Lehman et al., 2018); (Miikku-
lainen, 2021), as such using evolutionary search to
search for models of neurons may result in novel
designs. This approach differs from contempo-
rary deep learning approaches, as deep learning
approaches are in essence multilayer perceptrons
trained using a variant of backpropagation, and
as such use a defined and specific neuron model.
It also differs from other neuroevolutionary ap-
proaches, as although neuroevolutionary meth-
ods differ greatly in how networks are evolved,
they still typically produce multi-layer perceptron
neural networks (ex. (Stanley and Miikkulainen,
2002), (Jackobi, 1995)), or networks consisting of
another well-specified neuron model such as spik-
ing neurons (ex. (Elbrecht and Schuman, 2020)).
The approach discussed in this article, dubbed
Neuron Model Search (NMS) defines an abstract

model of a neuron by defining what a neuron can
do, and then uses a variant of Genetic Program-
ming (GP) called Cartesian Genetic Programming
(CGP) to search for programs which define when
and how a neuron should take a specific ac-
tion. This differs from contemporary deep learn-
ing and neuroevolution approaches which use a
completely specified neuron model and focuses
on adjusting the weights of connections or the
connection topology. NMS contains a concept
of connections between neurons, but how signals
are processed through the connections, dubbed
axon-dendrites, is evolved. Likewise, the neu-
ron topology is produced by the evolved neuron
model. NMS therefore has the potential to find
unexpected models of neurons within the set of
possible designs which satisfy the set constraints
imposed by a abstract partially specified neuron
model (see Section 3, 4 and the Appendix). These
models could be interesting in terms of the emer-
gence of intelligent behavior, as well as potentially
being a suitable solution methodology for some
problems.

NMS also differs from other neuroevolutionary
approaches in that it makes no seperation between
the development of the network and the runtime
of the network. Further, many (but not all) neu-
roevolutionary approaches use training data only
to evaluate the fitness of proposed solutions, while
NMS uses training data during the developmental
phase - as such a single NMS genotype can map
to several different solutions and may be able to
solve several problems. In principle a single NMS
genome could be trained on several problems, and
instead learn how to adapt and adjust to the prob-
lem domain it encounters, making it possible for
a single neuron model to solve multiple problems,
and possibly showing some degree of proficiency
on problem domains it has not been trained on.
Therefore, the intent behind NMS can be viewed
as laying a groundwork for searching for learning



Genome

Neuron performance
on test problem used
to select next generation

Problem <—————————— Neuron Engine
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next generation

Neuron Engine simulates neurons
using CGP functions

Main Controller
Control logic and communication

Figure 1: The overall logic of NMS. A CGP
genome produces children, which are evaluated in
a neuron simulation engine on a specific problem
domain. By selecting children with a lower error
as the next generation better models are evolved.

algorithms, rather than specific solutions to prob-
lems. This differs from deep learning and neu-
roevolution approaches which typically search for
solutions to a specific problem, such as a mini-
mizing the mean squared error of a model when
trained on a specific training set.

Figure 1 shows the overall design of the NMS
system, and the functionality of the system is dis-
cussed in more details in Sections 3 and 4. Addi-
tionally, the code for the version of the NMS algo-
rithm used in this paper is available !, and although
this article presents the design of the NMS algo-
rithm at a high level the code covers more techni-
cal details.

Ideally, NMS would be able to find neuron mod-
els capable of solving several problems. Because
the method searches for models and not specific
solutions and allows for interaction with the prob-
lem domain, NMS may be able to find neuron
models implementing learning algorithms instead
of specific solutions. This would be particularly
interesting if a found model was able to solve a
large class of problems using an unknown learning
algorithm. Further, NMS searches specifically for
functions determining when neurons should take
specific actions, what signals they should send,
and how they should change their internal state.
This means that by tracing the neurons actions and
state changes, and inspecting the found functions,
it may be possible to explain how the found mod-
els work. As such, the planned experiments for the
masters thesis will investigate the following ques-

"https://github.com/jonoddram/CGP_
Neuron_Masters/tree/semesteroppgave_2021

tions:

1. Can NMS solve problems, specifically the n-
pole balancing problem?

2. Can NMS find a genotype capable of solving
several variants of the n-pole balancing prob-
lem?

3. Does starting the evolutionary search from
an existing genotype improve search perfor-
mance, i.e. training a genotype for the 2-
pole balancing problem and then re-training
it for the 3-pole balancing problem? Does
this cause the genotype to forget how to solve
the 2-pole balancing problem?

4. If a genotype is capable of solving several
problems, can it also produce phenotypes
capable of solving several problems at the
same time? L.e., can one phenotype be found
which solves several variants of the n-pole-
balancing problem?

Due to the time constraints of the project, it is
likely that not all of these questions can be in-
vestigated in detail or at all. This, and the nov-
elty of the approach, indicates that focusing on
one experiment at a time is the most suited re-
search approach. By conducting the research on
an experiment-by-experiment basis it is guaran-
teed that there is enough time to get some con-
clusive results, and it also allows flexibility in ex-
perimental design and selection. It is possible that
the result of one experiment is useful for select-
ing further research directions. The master’s the-
sis should nevertheless show whether NMS works
and if it is suitable for further research, or if it does
not work well, and if so, what could be done dif-
ferently in similar approaches in the future. In this
paper introductory experiments are done in a sim-
ple problem domain to show that the approach is
capable of solving some problems to some degree.

2 Evolutionary Algorithms,
Neuroevolution and CGP

This section gives a presentation of the core
concepts of evolutionary computation and neu-
roevolution and provides examples of relevant
approaches. Evolutionary algorithms work by
searching over genotypes mapping them onto phe-
notypes whose fitness are evaluated and used



for selection. Core issues in evolutionary algo-
rithms is the genotype representation, the geno-
type to phenotype mapping, the fitness function
and how selection and reproduction should work.
New genotypes are produced using the current
best genotype(s) using mutation operators which
makes some type of change in the genotype, or
crossover operators which combine the genotype
of two or more parents (Goldberg and Holland,
1988) (Eiben and Smith, 2015).

2.1 Introduction to Neuroevolution

Neuroevolution is a subfield of evolutionary algo-
rithms focused on producing artificial neural net-
works. For a comprehensive overview see (Down-
ing, 2015) or (Floreano et al., 2008). For a review
of the state of the art of neuroevolution see (Stan-
ley et al., 2019). Early work in neuroevolution
often focused on evolving weight parameters in a
fixed topology, such as in (Whitley, 1993). Later,
work began on Topology and Weight Evolved Ar-
tificial Neural Networks (TWEANNSs) in which
both weights and topology is evolved. Earlier
systems typically used direct genotype representa-
tions, where the topology and weights are directly
encoded in the genotype (such as in (Stanley and
Miikkulainen, 2002)), while later works moved on
to using indirect genotype representation where a
sophisticated mapping function describes how a
phenotype can be produced from the genotype.
The most well-known direct encoding approach
may be NEAT (Stanley and Miikkulainen, 2002),
and it is perhaps an endorsement of indirect ap-
proaches that NEAT too moved on to indirect en-
codings in the form of HyperNEAT (Stanley et al.,
2009). NMS can be viewed as a form of indirect
encoding, specifically a developmental approach.

Indirect genotypes allow for smaller genotypes
which reduces the search space at the cost of intro-
ducing more human design in the mapping func-
tion. A smaller genotype is advantageous as it al-
lows for evolving large networks without having
very large genomes. Grammar-based approaches
are an example of indirect encodings, which work
by applying rules in a formal grammar to pro-
duce a neural network (Cangelosi et al., 1994).
Some indirect encoding approaches use artificial
chemical systems, such as Genomic Regulatory
Networks (GRNs) (Jackobi, 1995) (Eggenberger,
1997). In GRNs chemical concentrations in and
around cells define which genes should be active,

which then defines which chemicals should be
produced. The chemicals also define cell behavior,
such as how they should migrate and connect, and
how strong connection weights should be in the
neural network phenotype produced by mapping
from the chemical neuron simulation. Of these
approaches GRNs are most similar to NMS, but
there are two crucial distinctions. First, a distinc-
tion between training time and runtime is common
in neuroevolution, where neuroevolutionary meth-
ods typically use a specific algorithm to produce
an ANN, which then acts as a normal multilayer-
perceptron model. However, in biological neu-
ral networks there is not such a strict distinction
between learning time and runtime (ex. neuro-
genesis in adults (Zhao et al., 2008), or the sim-
ple facts that children can exhibit intelligent be-
haviour while their brains are developing, and that
adults can still learn), therefore moving away from
this separation could produce advances in life-
time learning and transfer learning. Secondarily,
the aforementioned approaches only use training
data to evaluate the fitness of genotypes. Bio-
logical neural structures grow by reacting and in-
teracting with their surroundings, not through a
one-to-one mapping from the genotype. For both
reasons NMS has no separation between train-
ing/development time and runtime, using the same
neuron model for both.

2.2 Developmental Approaches

NMS has a lot in common with other develop-
mental approaches, who also produce a phenotype
through interaction with training data. One differ-
ence is that developmental approaches sometimes
map the developed structure onto a multilayer pe-
ceptron (ex. (?)). However, this is not always the
case, and NMS has more in common with devel-
opmental approaches which do not map the solu-
tion to a multilayer perceptron. For example, As-
tor & Adami (Astor and Adami, 2000) outline an
approach based on GRNs and chemical gradients
where input neurons emit chemicals depending on
their state, eventually producing a multi-cell phe-
notype from a GRN genotype. Despite the simi-
larities to Astor & Adami’s work, NMS attempts
to move away from the use of chemical gradients
as to not need to simulate chemicals to make com-
putation more efficient, and to have a greater focus
on CGP-program centric models, in the hopes that
this would increase interpretability and explain-



ability.

Several other authors have used CGP to evolve
neural networks. The Cartesian Genetic Program-
ming Artificial Neural Network (CGPANN) ap-
proach extends CGP-graphs to include weights
on directed links, and then uses standard CGP-
techniques to evolve networks (See (Turner and
Miller, 2013), (Khan et al., 2010), (Khan et al.,
2013)). The most relevant approach to this ap-
proach is however work is CGP Developmental
Networks (CGPDN), which use CGP to evolve
functions for use in a developmental process.

Julian, Wilson & Cussact-Blanc (Miller et al.,
2019) presents a CGPDN consisting of two CGP
programs: One simulating a neuron soma, and
one simulating a dendrite. Using internal state
variables and hyperparameter defined increments
and action thresholds a one-dimensional network
is grown. This continues by running their soma
and dendrite programs a given number of times,
or until fitness decreases in extracted ANNs. This
makes Julian, Wilson & Cussact-Blanc approach
an indirect encoding approach with a complicated
genotype-phenotype mapping dependent on pri-
marily the genotype and secondarily the fitness
landscape of the problem domain for stopping
the developmental process instead of a process
which really interacts with the problem domain.
Similarly to other neuroevolutionary methods it
also makes a distinction between the development
phase of the network and the runtime network.

In conclusion; NMS is a method inspired by
several other neuroevolutionary algorithms but at-
tempts to be more general. In a sense most neu-
roevolutionary approaches can be viewed as algo-
rithms for finding a specific multi-layer percep-
tron for a specific problem, while NMS instead
seeks for a controller for a neuron “robot”, which
interacts with other neuron robots to solve one
or more problems requiring learning (or equiva-
lently, NMS constitutes an agent-based approach
(Laubenbacher et al., 2013) to neural network in-
telligence). By not extracting standard ANNs
from the developed networks, by not separating
the development and runtime phase and by not
using a one-to-one genotype-phenotype mapping
and by searching for “neuron robot controllers”
(i.e., neuron models) NMS may be able to find
novel solutions. This comes at the cost of po-
tentially reduced computational efficiency, and the
potential of neuron models being unstable and
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Figure 2: Example of a CGP function equivalent
to a 1-bit full adder. Inputs are sent form bottom
up, red nodes are inputs, green are outputs, blue
neither.

degenerating which cannot occur with standard
ANNSs extracted from developmental networks.
NMS attempts to include less human design of the
neuron models and learning models, and is instead
a method for leveraging computation, which can
be viewed as being in line with the design philos-
ophy argued for in Sutton’s Bitter Lesson (Sutton,
2019).

3 CGP Modifications

In this section the NMS systems use of CGP is
discussed, introducing CGP briefly as well as de-
scribing the modifications and choices made for
this specific system.

3.1 Introduction to CGP

GP is a subfield of evolutionary algorithms which
searches for computer programs by searching over
syntax parse trees (Willis et al.,, 1997). CGP is
a variant of GP where programs are represented
as directed acyclic graphs. CGP genomes define
nodes by defining which function they execute
over their input(s), and which nodes they get input
from. Additionally, the genome which nodes are
output nodes. Input nodes are added as a part of
decoding the genome (Miller, 2020). Many vari-
ants of CGP exists, of note for this work are mod-
ular CGP-functions, where other CGP-programs
can be used as node functions (Walker and Miller,
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Figure 3: Shows the structure of the NMS genome.

2004). Consider figure 2, which shows an example
of a CGP function computing the same function as
a full adder. Modular CGP basically works by al-
lowing a single node to be equivalent to a learned
CGP-program, such as a full adder.

CGP does not use crossover operators by de-
fault. Default CGP uses mutation operators which
can add nodes up to a predefined limit, change
edge connections up to a maximum arity of the
node or change node type. CGP genomes can con-
tain inactive nodes which are either not fully con-
nected to input or output nodes, and mutation over
these nodes serves as neutral drift facilitating evo-
lutionary exploration (Miller, 2020). The standard
evolution strategy consists of maintaining one par-
ent genotype and producing a given number of off-
spring and selecting the offspring with the highest
fitness that is higher or equal to the parent to fa-
cilitate neutral drift through mutations in the inac-
tive nodes. However, by maintaining only a single
population member it may be difficult to explore a
wide area of the design space. Therefore, the vari-
ant of CGP used in NMS introduces a crossover
operator to facilitate the use of larger populations.

3.2 Details on CGP variant used in NMS

In this work the genome is spilt in three parts
as illustrated in Figure 3. The first part defines
a Homeobox selection program, which defines
which variant of the other functions the neuron or
axon-dendrite should use. The second part con-
sists of all the other neuron and axon-dendrite
functions along with their homeobox variants. The
final part of the genome contains adaptive control
parameters (Eiben and Smith, 2015). The genome
can contain several variants of each Function by
defining another CGP-program, the Hex selector,
which uses coordinates and neuron state variables
to determine which function variant to use. This
is inspired by homeobox genes in vertebrate bi-
ology, where chemical markers in the body dic-
tate which variant of an organism’s genome should
be used, ex. to determine whether to make an

arm or a leg, or an hippocampus or frontal lobe
(Downing, 2015). However, like Stanley & Mi-
ikkulainen (Stanley and Miikkulainen, 2003) point
out computer programs can access cell coordinates
directly, and as such there is no need to maintain
chemical gradients for this purpose.

An alternative to having several functions for
every neuron action would be to have a single
master-control program controlling all possible in-
put and output actions. The choice to have several
programs is inspired by Walker et. al. (Walker
and Miller, 2004) which successfully solved a cir-
cuit design problem by seperating the problem into
n-subproblems where n is the desired amount of
circuit outputs. Unlike Walker et. al. (Walker
and Miller, 2004) the function programs have sev-
eral outputs, and each genotype has a shared fit-
ness instead of an individual fitness for each func-
tion as the fitness of each function is dependent
on their relation to the other functions. The in-
tent of using a design which has several func-
tions (see the Appendix for a list) instead of one
unfiied neuron-controller program is to simplify
the search space, and to make the functionality
of found programs easier to interpret. The design
decision is also inspired by biology, specifically
the theory of facilitated variation (Gerhart and
Kirschner, 2007). Facilitated variation states that
evolutionary variation in the post-pre-Cambrian
era is primarily done through searching over com-
binations of gene blocks called core processes,
which are gene blocks that are stable and robust
to being combined with other blocks in many
ways. The theory postulates that robust evolu-
tionary variation can be achieved through evolv-
ing different ways for these core processes to inter-
act and interregulate, rather than mutating the pro-
cesses themselves. Each function can be viewed
as a core process which has a specific functionality
and is only weakly linked to the others through the
neurons internal states and the effects each func-
tion has on the neurons behavior, which the im-
plemented crossover operations attempt to take ad-
vantage of.

Crossover is implemented at two levels, one
of which is also based on facilitated variation.
Functions and their homeobox variants can be
swapped with a given probability, and the or-
der of the homeobox variants may also change
with some probability, similarly adaptive hyper-
parameters can be swapped. The other level of
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Figure 4: Illustrates how crossover works at the
CGP-function level. A part of one parent genomes
active nodes is made into a node function, and set
as the node function executed by an inactive node
in a copy of the other parent genome. This inactive
node may then become active through mutation.

crossover is at the CGP level, where functions
can be crossovered by extracting sub-graphs of
one function and using it as a modular function in
an inactive node in the other function, as shown
in Figure 4. Modular CGP functions therefore
act as core processes, potentially accelerating evo-
lution and allowing greater complexity by find-
ing good modules. Pairs of genomes are se-
lected as crossover pairs randomly, more complex
crossover selection could be implemented in the
future, for example based on fitness or common
ancestry.

After crossover mutation is applied. CGP muta-
tion in this work uses the standard CGP-mutation
operator of changing or adding edges or changing
the type of a node, with one change: The existing
modular CGP-functions in a genome is added to
the set of types a node can mutate to.

Modular CGP-programs were introduced in
(Walker and Miller, 2004), but unlike in Walker
& Miller modules can contain other modules, and
can not be expanded and changed after creation.
Modules in this work are instead based on Kauf-
mann & Platzner (Kaufmann and Platzner, 2008),
specifically modules are created from cones (i.e.,
beginning with a node and picking nodes con-
nected to it such that there is always a path from
any node to the first picked node). Kaufmann
& Platzner also investigated using crossover, but
found it tended to lead to increased computational
cost - in case this applies to the NMS problem
domain the code supports populations as low as
2, minimizing this overhead, and could be cus-

tomized to single-population as in regular CGP
relatively easily.

Each pair of parents create two or four children
- four if using an optional setting which produces
two extra children without using crossover, two
otherwise. If a child has equal or higher fitness
than its parent, then it replaces the parent. This is
done instead of selecting the highest fitness geno-
types overall for the next generation to reduce the
speed at which dominant genotypes take over the
population, in the hopes of preserving more diver-
sity in the search. More sophisticated diversity-
preserving mechanisms could be implemented in
the future. A child of equal fitness replaces its par-
ent to facilitate neutral drift, as this allows travers-
ing a plateau in the fitness landscape.

Mutation rates can be configured using hyper-
parameters. By default, it is recommended to
start with high mutation rates. On failure to per-
form neutral drift or positive improvements, that
is, when stuck in the fitness landscape, the mu-
tation rate is be decreased such that neutral drift
is more likely to occur. If the mutation rate goes
lower than a threshold hypermutation is be trig-
gered, as a low enough mutation rate indicates
that the genome is close to a local maximum, and
needs to take larger steps to escape.

It should be noted that implementation of adap-
tive hyperparameters and homeobox function vari-
ants is not finished due to time constraints. These
parts of the design will be implemented at the start
of the next semester along with the n-pole balanc-
ing problems.

4 Neuron model & Engine

The neuron engine consists of a three-dimensional
Cartesian grid, consisting of n-by-n-by-n discrete
positions. Each position can contain several
neurons which saves computational resources for
checking and handling neuron collisions. Simi-
larly, there is no concept of dendrite collisions.
This is done to save computational resources on
detecting and handling collisions and to take ad-
vantage of the fact that the artificial neurons are
not actually constrained by physical space.

Axons and dendrite are unified in axon-
dendrites, which each are connected to a neuron,
and can be connected to another axon-dendrite or
be a free axon-dendrite. The distinction is done
based on whether signals are being sent forwards
from dendrite to axon, or backwards through axon



to the dendrite, and depending on the direction dif-
ferent programs are used for processing and trans-
mitting signals. A unified axon-dendrite model
was selected to reduce the search space. Neurons
can perform the actions as defined in Appendix
A. Input and Output neurons can perform no ac-
tions, but are always considered as having free
dendrites, such that the genotype-controlled neu-
rons can connect to them. When a neuron seeks a
connection to an axon-dendrite it samples a power-
law distribution to determine the target distance in
order to favor shorter connections as in the brain
(Downing, 2015), but this assumption could be re-
duced to make the model more general. This as-
sumption is also made to avoid simulating axon-
dendrite movement. To simplify distance calcu-
lations the overall grid is divided into sub-grids,
and the sub-grid with free axon-dendrites with the
closest grid-wise distance to the target distance.

When initializing the neuron grid for evaluating
a genotype it is set to contain a single genotype-
controlled neuron that is not connected to any-
thing, as well as input and output nodes. For each
problem instance the neuron engine allows up to a
given amount of neuron functions to execute, and
then stops the neuron engine to avoid infinite loops
and select for quicker programs. When given the
next problem instance the grown network is main-
tained, such that the growing neuron structure can
learn.

The neuron simulation engine maintains an ac-
tion queue, which determines which neuron func-
tion should be run next. Each action in the queue
has a timestamp, and the lowest timestamp in the
queue is always selected as the next action. When
there are several actions with the same times-
tamp, they are selected in a first-in-first-out man-
ner. The timestamp system ensures that actions
are executed in a temporally sensible manner and
gives each neuron equal access to computational
resources.

Signals sent between neurons and axon-
dendrites can be multi-dimensional, i.e., several
floats can be sent in one signal. The number of
floats per signal is a configurable hyperparameter.
Likewise, the number of internal state variables
is a configurable hyperparameter. These two de-
sign decisions are inspired by biological neurons,
which maintain complex chemical states internally
and in their local area (Lovinger, 2008), (Holland,
1998). Further, there is no reason to assume that

one-dimensional signals are necessarily optimal.

A complete list of neuron and axon-dendrite
functions is given in Table 1 and Table 2. Most
functions are given internal state variables and
neuron position as input, and some are given sig-
nals as input.

5 Results

During this semester software for NMS has been
developed, along with analysis and logging tools
to understand solutions. NMS was tested on a sim-
ple problem domain consisting of classifying bi-
nary numbers from O to 15 as either 1 or 0, where
numbers less than 8 are 0. The system was able
to do this with some proficiency, achieving at best
mean squared error of 0.4 averaged over 50 sam-
ples when evolved with a signal arity of 1 and 1
internal state in neurons and dendrites. This is a
good result, as the primary interest was to deter-
mine whether NMS could work at all, not achiev-
ing good performance on a test problem.

However, looking into the program logs reveals
some interesting information about NMS. First, it
is unable to evolve as much as try random geno-
types and stick with the ones which work. This
is evident by modular CGP-programs not being
present in the program, and the inability of NMS
to find better solutions from a good solution, ef-
fectively getting stuck in the state space. These
problems are likely interrelated as the inability to
use modules would make it more difficult to take
larger steps in the state space, due to a limited
genome size and requiring more mutations to re-
evolve a module rather than starting to use it after
CIOSSOVEr.

To alleviate these problems several changes will
be made. First, cone-selection for module creation
will be based on node age, as suggested by (Kauf-
mann and Platzner, 2008), as this could lead to
more useful modules being evolved. Secondly, the
probability of changing the function a neuron ex-
ecutes will be scaled with the number of inputs it
requires: Modules can have more inputs than the
standard unary and binary node functions, and are
therefore more likely to mutate to another func-
tion before they evolve enough input connections.
Thirdly, during mutation of node types it will be
possible to mutate into a module that exists in the
entire genome and not just the specific CGP func-
tion, as this will allow the functions in the genome
to share information about useful modules. In
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Figure 5: Neuron structure/phenotype produced
by a genotype with MSE of 0.4. Although hard
to tell from figure, looking at logs confirms that
neuron is connected to all output and input neu-
rons.

view of Kaufmann & Platzners (2008) findings
that crossover operators using modular CGP in-
creased computational cost the third improvement
may be particularly important, as Kaufmann &
Platzners results indicate that for crossover to be
useful it may need to be coupled with other mech-
anisms.

Some other conclusions can be drawn from the
genotypes which are able to solve the test prob-
lem to some degree. They only consist of a sin-
gle evolved neuron, connected to the input nodes
and to the output node, as shown in figure 5. Still,
NMS is capable of creating structures with several
neurons, as shown in figure 8, but as the figure
also shows the investigated programs struggle to
connect these neurons. To remedy this and make
it easier to learn to develop multi-neuron struc-
tures the engine will be changed to include a con-
nection between a parent and a child neuron per
default. These can be contrasted with figure 6,
which shows how a more desirable neuron struc-
ture might look like. The capability of produc-
ing multi-neuron structures is desirable, partially
because this may provide insight into the evolu-
tion of cooperating neurons similar conceptually
to biological neurons, and because a single neuron
has a limited computational capacity due to the fi-
nite amount of memory and the finite size of its
CGP-programs which means that some computa-
tions may only be possible with multiple neurons.

Looking into the engine execution logs of the

best programs also reveals that they do not exhibit
adaptive or reactive behaviour, but rather repeats
a learned sequence of actions. In other words, the
evolved genome does not react to the input sig-
nal in any meaningful way other than transmit-
ting a signal to the output neuron. If genomes
are trained using several versions of the problem
or several problems this may improve, as it would
make learning more complex behavior more im-
pactful on performance. This result is somewhat
analogous to the motivation for incremental learn-
ing discussed in (Gomez and Miikkulainen, 1996).
It is also possible that more complex neuron mod-
els could be found if allowing for more computa-
tion per sample, and for longer evolutionary runs
in general. Upping internal state count and signal
arity will also allow for more complex behavior,
but at the same time increase the size of the search
space.

Looking into the population maintained by
NMS evolution reveals that good solutions do not
spread and are unable to take over the population
at all. In one way this is positive, as it enforces di-
versity, but on the other hand it also makes the al-
gorithm unable to exploit searching around good
solutions, increasing the chance of finding better
versions. An explicit spreading mechanism will be
implemented, which will have a chance of replac-
ing the worst population member with one of the
better ones with likelihood proportional to their
difference in fitness, given that the fitness differ-
ence is sufficiently large. This way good solutions
will be able to spread in the population, while also
ensuring that diversity is not discarded in favour
of a slightly better solution.

As an example of a evolved CGP function con-
sider figure 7. This figure uses software developed
for this project to display the CGP program. An-
notations in white and black are edited in for read-
ability. Inputs are given to the red input nodes,and
are transmitted upwards. Green nodes are output
nodes. This program displays the logic a neuron
uses when determining if it should transmit a sig-
nal or not. In essence this program always sends
a signal of 0 and may increment the internal state
variable with one. Because of this the single neu-
ron in the solution can always transmit an answer
to the output node. As an illustrative example also
consider figure 9, which is a simplified illustration
of a hypothethical CGP function that computes the
sine of the input added with a bias term, and al-
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Figure 6: How a hypothetical idealized neural
structure might look like. Any network connect-
ing several neurons to solve a problem would be
an improvement, but networks which can produce
groups of connected neurons/cell assembly (Hol-
land, 1998)/modularized neuron structures and re-
current would also be promising as their presence
may indicate complexity and because these ele-
ments are present in the human brain (Downing,
2015).

ways transmits a signal.

Figure 9 is hypothethical, and also illustrates a
considered addition to the CGP-framework, where
some numbers, in this case one, is always given
as input to each CGP-function. Giving CGP-
functions access to some constant numbers would
make it easier for CGP to evolve some types of
functions, as it can rely on a input remaining con-
stant, and because the function would otherwise
require the evolution of a way to produce the
number. The disadvantage is that by increasing
the amount of CGP-inputs one also increases the
amount of different functions that can be learned
with a given number of nodes, which would in-
crease the size of the search space per available
node. Still, if the increased search space is in-
creased because it contains more useful functions
this would be beneficial.

Software used to create figure 5 and figure 8
was also developed for this project. During the
masters more work will be done on improving the
logging and analysis software, including produc-
ing more detailed and readable logs, and remov-
ing bugs. Further development of logging was not
done this semester due to time constraints.

6 Planned Experiments

The following planned experiments are planned
around the use of the n-pole balancing problem,
but equivalent experiments can be conducted in
any problem domain which contains classes of
problem instances of varying complexity. This is
advantageous as if the n-pole balancing domain is
too complex for the available computational re-
sources then a simpler problem domain can be
used. The experiments also utilize the test prob-
lem described in Section 5, but any simple prob-
lem could substitute this.

6.1 Experiment 1

Compare the fitness over several epochs when
searching for a neuron model to solve the 1-
pole pole-balancing problem when beginning the
search from a random genotype and from a high-
performing genotype on the test problem. Average
fitness per epoch over several runs using different
random seeds.

Hypothesis: Using existing genotypes capable
of solving some problem when starting genotype
search in new problem domains leads to quicker
convergence than using randomly initialized geno-
types. This is expected because any genotype
capable of solving problems needs to be able
to connect axon-dendrites and transmit signals.
Additionally, beginning evolutionary search from
known solution is a well-known strategy within
Evolutionary Algorithms (Eiben & Smith, 2015).

6.2 Experiment 2

Train a genotype for the 1-pole balancing problem
and the 2-pole balancing problem. Compare the
fitness convergence when utilizing each genotype
on the opposite problem and with a baseline ran-
domly initialized genotype.

Hypothesis: In both cases convergence will be
quicker than from a randomly initialized genotype,
both because of the assumption of similarity as
discussed in Experiment 1 but also because the
problem domains are similar. It is expected also
that 2-pole to 1-pole transfer learning should be
quicker than 1-pole to 2-pole because 2-pole bal-
ancing is the more complex problem.

6.3 Experiment 3

Train a genotype to solve both 1-pole balancing
and 2-pole balancing, such that each time a new
pole-balancing task is started the 1-pole or 2-pole
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Figure 7: Shows the CGP program evolved for sending signals from neurons.
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Figure 8: Phenotype/neuron structure which does
not solve the test problem. Although it produced
many neurons, it does not connect them with axon-
dendrites.
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is chosen randomly. Can a genotype grow a phe-
notype which is able to solve both tasks simulta-
neously?

Hypothesis: A genotype can grow a pheno-
type capable of solving several types of problems
with some proficiency. By analyzing neuron firing
patterns across the two problems, it can be deter-
mined whether or not the network uses the same
neurons for each problem type, and if it does this
indicates that NMS has found a model capable of
learning what the problems have in common to
some degree.

6.4 Finishing remarks on planned
experiments

In addition to the experiments analysis will be con-
ducted to determine how they work, as in Section
5. The experiments are designed to be relevant to
the research goals presented in Section 1, while
also taking into consideration the time constraints
of the master’s thesis. In addition to being limited
in scope each experiment will be conducted as an
individual package, to ensure that there is time to
conduct the experiment, analyze results and write
for at least some of the experiments. If there is
sufficient time the experimental results will likely
help guide what to investigate further, as such the
experiment plan deems these three experiments



Constant 1

Figure 9: Tllustrates a hypothetical evolved CGP-function equivalent to a normal sinusoidal perceptron

with a single input

sufficient.

7 Conclusion

By searching for computational models of neurons
it may be possible to detect novel models of neu-
ron functionality, which can help guide further re-
search into neuron models and the emergence of
intelligence. The results in Section 6 show that
the NMS approach is capable of learning to solve
a simple problem to some degree. However, the
results show that several weaknesses of the imple-
mented NMS system, such as only finding solu-
tions which execute a set sequence of actions, and
which only utilize one evolved neuron. Further, it
is an open question whether NMS can find neuron
models capable of solving more general classes of
problems, which will be investigated further in the
thesis. However, the results do show that NMS is
able to find a solution of some quality to the prob-
lem, which indicates that the concept of searching
for neuron models has potential and is therefore
worthy of further research. The software devel-
oped during this semester will developed further
during the thesis semester and used to investigate
NMS further.

8 Future Work

Suggested further research and algorithmic im-
provements are presented in the Future Work sec-
tion. The suggestions made here include algo-
rithmic improvements and further research that
will likely be outside of the scope of the mas-
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ter’s thesis, although the master’s thesis may touch
upon related topics. As such this section provides
suggestions for parties interested in continued re-
search or development of the NMS algorithm.

8.1 Further study

Of particular interest is investigating if a single
genome can be evolved that is can solve a large
class of problems. This is interesting because to
accomplish this the genome needs to have evolved
a capability for learning, which could inform fur-
ther design of learning algorithms or be interest-
ing in terms of the study of emergent intelligent
behavior. To train such a genome it may be bene-
ficial to first train the genome on a set of relatively
easy problems, then as performance increases pro-
gressively add in more and more complex prob-
lems - the assumption being that the genomes ca-
pable of solving the easier and the harder problems
is at least a partial subset of the genomes capa-
ble of solving the easier problems. This concept
of incrementally introducing more difficult tasks
has been discussed previously in neuroevolution
(Gomez and Miikkulainen, 1996), but due to NMS
searching for neuron models rather than specific
solutions may also be applied to tasks from differ-
ent problem domains. A simple version of this is
present in the system, in the form of an optional
smoothed gradient option, which gives a penalty
for failing sub-tasks like having any connections at
all, having any evolved neurons, producing some
output; in practice sub-tasks which must be solved



to solve a task in any real problem domain.

Although this work uses a specific algorithm for
NMS, it is in principle possible to define other
models in which to search for functions. The in-
tent of this design is not necessarily to present an
optimal algorithm for NMS, but rather to present
an algorithm for NMS at all - as such further re-
search can likely find other similar approaches
which are more efficient or have other advantages.
In the master’s thesis a section will be included
defining a conceptual framework for an abstract
unified connectionist model, from which other
connectionist models can be created on a concep-
tual level through the application of constraints to
the abstract model, with the intent of providing a
cognitive framework for comparison and design of
connectionist models.

8.2 Algorithmic improvements

Each action with the same timestamp in the neuron
engine could be executed in parallel, but imple-
mentation is non-trivial as this can introduce some
resource conflicts. Several actions involving the
same neuron or axon-dendrite introduces a con-
flict on the entities internal state, there can occur
conflicts over free axon-dendrites, and the neuron
engine would become non-deterministic due to a
non-deterministic sequence of calls to a random
function. With care these issues could potentially
be alleviated or designed around. Parallel compu-
tation could also be done on a genome-phenotype
mapping level.

Biological neural networks, such as those in the
human brain, rely on neuromodulators deployed in
brain regions to learn. The human basal ganglia
seems to approximate TD-learning through re-
leasing dopamine when experiencing suprise and
other emotions (Gershman et al., 2014) (Downing,
2015). In the current design of the system neuro-
modulators can only be simulated through sending
signals between neurons one by one. This may be
difficult to learn, and because the neuron engine
limits the amount of neuron functions that can be
run the system may also be selecting against the
emergence of approaches similar to regional neu-
romodulators. However, neurons are divided into
sub-grids of the global neuron grid. As such an
approximation of neuromodulators could be made
by giving each sub-grid an internal state and al-
lowing all neurons in the grid to access this state,
in practice giving neurons in the same sub-grid a
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shared memory. If desirable chemical diffusion
and chemicals could also be simulated at a sub-
grid level at a far smaller cost than simulating over
each grid position.

It should be noted that if reward feedback is
given to the NMS algorithm, which may or may
not be done depending on the problem domain,
then the NMS algorithm will select for neuron
models which function well when given reward
feedback. If these genotypes or trained pheno-
types were applied to real-world problems which
do not supply reward feedback performance may
degenerate. A potential solution could be to in-
clude a phase where rewards are not given in train-
ing to select for genotypes producing stable phe-
notypes.
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9 Appendixes

Shows details of the functions learnt for neurons
and axon-dendrites. Seperation between axons
and dendrites is internal in neurons, to handle
which way signals are being sent, but the same
functions are used. RB is short for random bool,
where output is 1 if sampling an uniform distribu-
tion between 0 and 1 yields a number lower than
the program output, else 0. CGP-learnable Neu-
ron functions are shown in Table 1, while CGP-
learnable Axon functions are shown in Table 2.

14



Function

Inputs

Outputs

Hex selection

Position, internal states

Float for each hex variant, high-
est is chosen

Axon-dendrite birth

Position, internal state, dendrite
count

RB: Add dendrite, RB: Send
signal, signal output, RB: Run
action controller, internal state
delta

Signal axon-dendrite

Signal input, position, internal
states

RB: Send signal, signal output,
internal state delta, RB: Run ac-
tion controller

Recieve signal

Signal input, global position,
internal states

Signal output, RB: Run action
controller, internal state delta

Recieve reward

Position, internal states, reward

Internal state delta, RB: Run ac-
tion controller

Move Position, internal states RBs for movement in X, y, z di-
rection, +/-, RB: Send signal,
signal output

Die Global position, internal state RB: Die, RB: Send signal, sig-
nal output

Neuron birth Position, internal states RB: Birth neuron, internal state

delta

Action controller

Position, internal states

RBs for adding each of the pre-
ceeding actions to engine queue

Table 1: Neuron Functions: Shows each Neuron CGP-learnt function with defined inputs and outputs.
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Function Inputs Outputs

Recieve signal from neuron Position, internal states, input | Signal output, RB: Run action
signal controller, internal state delta

Recieve signal from axon- | Position, internal states, input | Signal output, RB: Run action

dendrite signal controller, internal state delta

Signal neuron Position, internal states, input | RB: Send signal, internal state
signal delta, RB: Run action controller

Signal axon-dendrite Position, internal states, input | RB: Send signal, internal state
signal delta, RB: Run action controller

Accept connection request from
axon-dendrite

Own position, requesting axon-
dendrite position, own internal
states, requesting axon-dendrite
internal states

RB: Accept connection, own in-
ternal state delta.

Break connection

Own position, requesting axon-
dendrite position, own internal
states, requesting axon-dendrite
internal states

RB: Break connection

Recieve reward

Die

Position, internal states, reward

Position, internal states

RB: Run action controller, in-
ternal state delta
RB: Die

Action controller

Position, internal states

RB: For running each of the
other actions

Table 2: Axon-Dendrite Functions:
and outputs.

Shows each Axon-Dendrite CGP-learnt function with defined inputs
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