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Abstract

The ever-growing consequences of climate change highlight the need for monitoring the
water cycle over land, particularly with the increasing catastrophic events such as floods
and droughts. This study shows that a novel remote sensing technology onboard micro-
satellites can monitor soil moisture variations and flooding events. The remote sensing
technology is based on the Global Navigation Satellite Systems (GNSS) Reflectometry
(GNSS-R) concept. GNSS-R analyzes the variations of GNSS signal strength after
reflection from land to retrieve information about changes in the soil’s water content.
Five areas with different geophysical conditions, as well as a larger area in northern
India and Pakistan are investigated. The thesis also discusses some of the geophysical
parameters affecting the performance of the GNSS-R measurements.

The primary dataset used in our investigations is obtained from the NASA Cyclone
GNSS (CYGNSS) mission with eight micro-satellites and a revisit time of about 7 hours.
The presence of moisture in the soil changes its electromagnetic properties, leading to
changes in the land surface response to incoming GNSS signals. This response can
be represented by a parameter called surface reflectivity, which is calculated using the
CYGNSS data. In addition, Soil Moisture Active Passive (SMAP) and the European
Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) ancillary datasets
containing soil moisture measurements are used for validation purposes.

Our analysis shows a significant correlation in the spatial domain between CYGNSS
surface reflectivity and SMAP soil moisture in northern India and Pakistan for January
and August 2020. However, this correlation was not equally present when comparing
CYGNSS to ERA5 in the same area and period. For evaluation of the CYGNSS
measurements in the temporal domain, we have generated time series of surface
reflectivity over the selected regions. The time series covers a period of three years
from 2019 to 2021. The CYGNSS time series over India demonstrates an overall
temporal correlation of 81.2% with the SMAP measurements. This case study manifests
a significant degradation of the performance over mountainous sub-regions with a
correlation of 28.9%. The results also demonstrate the promising potential of using
GNSS-R in disaster management applications. For example, the time series of surface
reflectivity measurements in Iran shows a significant increase during two flooding events.

We use machine learning to develop geophysical model functions (GMFs), converting
CYGNSS observations over land to soil moisture estimations. Our analysis shows that
areas with seasonal variations, low vegetation opacity, and low surface roughness are
favorable for remote sensing of soil moisture, with the example of an Indian sub-region
with a root mean square error (RMSE) of 0.03289 cm3/cm3 with respect to SMAP data.
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In contrast, dry regions exhibit lower RMSEs despite demonstrating a low correlation
with SMAP soil moisture. We present a novel approach to optimize data selection
based on incidence angle. The proposed method shows promising results in areas where
approximations of CYGNSS measurement uncertainties are producible. However, the
method faces some challenges in some regions and requires further research.

We have developed an interactive web page capable of generating and visualizing
soil moisture and surface reflectivity time series based on user input. The complete
scientific software package developed in this thesis is available at https://github.
com/vegardhaneberg/TBA4925, and the source code to the web page is available at
https://github.com/Mosinor/GNSSR_Toolbox.

https://github.com/vegardhaneberg/TBA4925
https://github.com/vegardhaneberg/TBA4925
https://github.com/Mosinor/GNSSR_Toolbox
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Sammendrag

Forsterkende konsekvenser av klimaendringer fremhever behovet for overvåkning
av jordens vannsykler over land, spesielt sett i sammenheng med økningen av
naturkatastrofer som flom og tørke. Denne studien presenterer en ny fjernmålingsteknikk
som ved bruk av mikrosatellitter kan overvåke variasjoner i jordfuktighet samt
flomdeteksjon. Fjernmålingsteknologien er basert på konseptet Global Navigation
Satellite Systems (GNSS) Reflektometri (GNSS-R). GNSS-R analyserer variasjonene
i GNSS signalstyrke etter refleksjon fra jordens landoverflate for å utlede informasjon
relatert til endringer i bakkens vanninnhold. Fem områder med forskjellige geofysiske
forhold, i tillegg til et større område i nord-India og Pakistan er brukt for å undersøke
fjernmåling av jordfuktighet og flomdeteksjon. I tillegg diskuterer vi ulike geofysiske
parametere som påvirker ytelsen til GNSS-R målinger.

Vi benytter data fra NASA-oppdraget Cyclone GNSS (CYGNSS), som bestående av
åtte mikrosatellitter oppnår en gjenbesøkelsestid på omtrent 7 timer. Tilstedeværelsen
av fuktighet i jorden endrer dets elektromagnetiske egenskaper, som fører til endringer
i jordoverflatens respons til innkommende GNSS signaler. Denne responsen kan
representeres ved en parameter kalt overflaterefleksjon, som kan utledes fra CYGNSS
data. I tillegg brukes Soil Moisture Active Passive (SMAP) og The European Centre for
Medium-Range Weather Forecasts Reanalysis v5 (ERA5), som blant annet inneholder
målinger på jordfuktighet, til valideringsformål.

Våre analyser viser en signifikant korrelasjon i det romlige domenet mellom CYGNSS
overflaterefleksjon og SMAP jordfuktighet i nord-India og Pakistan i både januar og
august 2020. Korrelasjonen i området var ikke like tydelig da CYGNSS ble sammenlignet
med ERA5 i samme tidsrom. Vi gjennomførte tidsserieanalyser av overflaterefleksjon for
å evaluere ytelsen til CYGNSS målinger i tidsdomenet. Tidsseriene ble gjennomført fra
2019 til slutten av 2021, og et område i India viser en overordnet tidsmessig korrelasjon
med SMAP på 81.2%. Dette området demonstrerer en signifikant svekkelse av ytelsen
i fjellrike områder, hvor en underregion viser en korrelasjon på 28.9%. Resultatene
fremhever også et lovende potensiale for utnyttelsen av GNSS-R i overvåkning og
håndtering av naturkatastrofer. Eksemplifisert av tidsserier i Iran som viser en signifikant
økning i overflaterefleksjon under to kjente flommer i januar 2020 og mai 2021.

Vi brukte også maskinlæring i utviklingen av geofysiske modellfunksjoner (GMF)
som konverterer CYGNSS-observasjoner over land til jordfuktighetsestimater. Disse
resultatene viser at områder med sesongvariasjoner, lav vegetasjonstetthet og lav
overflaterøffhet er foretrukket i fjernmåling av jordfuktighet, hvor et delområde i India
oppnådde en kvadratisk gjennomsnittsfeil (RMSE) på 0.03289 cm3/cm3 sammenliknet
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med SMAP data. Videre fremheves det at tørre områder oppnår lavere RMSE til
tross for å ha lavere korrelasjon med SMAP jordfuktighet. Til slutt utviklet vi en ny
fremgangsmåte for å optimalisere dataseleksjon basert på det transmitterte signalets
innfallsvinkel ved kontakt med jordens landoverflate. Metoden viser lovende resultater
i områder der tilnærminger av usikkerheten ved gjennomførte CYGNSS målinger er
produserbare. Da dette kan være utfordrende i noen områder anbefales det videre
utvikling av denne metoden.

Vi utviklet en interaktiv nettside som muliggjorde generering og visualisering av
tidsserier for jordfuktighet og overflaterefleksjon basert på brukerinput. Kildekoden
til programvaren utviklet i denne studien er tilgjengelig her https://github.
com/vegardhaneberg/TBA4925, og kildekoden til nettsiden finnes her https://
github.com/Mosinor/GNSSR_Toolbox.

https://github.com/vegardhaneberg/TBA4925
https://github.com/vegardhaneberg/TBA4925
https://github.com/Mosinor/GNSSR_Toolbox
https://github.com/Mosinor/GNSSR_Toolbox
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Chapter 1

Introduction

The first part of this thesis will contextualize the utilization of reflected Global Navigation
Satellite System (GNSS) signals for remote sensing of geophysical conditions on the
surface of the Earth. In addition, we elaborate on the motivation behind this approach
and define the research objectives this thesis aims to achieve. Finally, the structure of the
remaining chapters is presented.

1.1 Background

The ecosystem of the Earth has experienced severe anthropogenic environmental effects
in recent time, with global climate change being one of the major outcomes. Con-
sequently, a noticeable increase in extreme weather conditions has caused human life
hazards and devastating economic losses. Therefore, monitoring events related to the
Earth’s biosphere and climate changes has become of great interest in many areas and
applications.

GNSS has been used in positioning and timing for several decades, becoming a high ac-
curacy navigation service. In addition to the American Global Positioning System (GPS)
and the Russian GLONASS, the GNSS constellation has been enriched with contribu-
tions from China and Europe, reaching a total of 136 operational satellites in 2022. The
transmitted L-band frequency signals limit the impact of weather conditions, making it
possible to provide global coverage independent of time.

Research has shown that GNSS signals can be utilized as signals of opportunity by focus-
ing on the signals after reflection of the surface of the Earth, a technique known as GNSS
Reflectometry (GNSS-R) [63]. GNSS-R aims to utilize the scattered GNSS signals of
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the Earth’s surface to e.g. derive information related to the reflective medium. Using
reflected GNSS signals as a source of opportunity was first proposed by Martin-Neira in
1993, quickly followed by other studies on the subject due to the vast amount of oppor-
tunities this technology offered [48]. One of the geophysical parameters that has been
studied using GNSS-R is soil moisture, defined as the amount of water stored in the soil
measured in cm3/cm3. Zavorotny and Voronovich published the first attempt to use this
remote sensing approach for soil moisture monitoring [83]. Due to the highly reflective
properties of water, the initial research focused on ocean surface monitoring. However,
because research has shown that the signals can be useful over land, the focus has shifted
towards land [20].

In 2016 NASA launched a space mission called Cyclone GNSS(CYGNSS), with the
objective of measuring wind speeds in tropical cyclones. This mission included eight
low Earth orbiting (LEO) satellites installed with receivers capable of detecting both
direct and reflected GNSS signals. The spread spectrum technique used in GNSS makes
it possible to use low gain and low power antennas, which can be mounted on small
satellites. Furthermore, by using the already available GNSS signals, CYGNSS inherits
the advantage of using L-band microwave radio frequencies (RF). This leads to CYGNSS
being considerably cheaper than other soil moisture missions while at the same time
providing improved spatiotemporal resolution.

1.2 The Importance of Soil Moisture

Life on Earth is strongly connected to cycles where water plays the most important role.
These affect humans both directly, through droughts and flooding events, and indirectly
as e.g. plants require water to contribute to the production of the human vital substance
Oxygen. Common for many of these happenings is that soil moisture either directly
affects the events or can help monitor and survey them. Accurately measuring and ad-
ministrating soil moisture, can therefore be helpful in several important applications [15].

1.2.1 Earth Environmental Cycles Including Water

The hydrological cycle is Earth’s recycling system of water and is presented in Figure 1.1.
It describes how water evaporates from, among others, the ocean and lakes. After evap-
oration, the steam rises to the atmosphere before it cools, condenses, and creates pre-
cipitation. Next, the rain falls to the surface of the Earth and eventually reemerges in
lakes or oceans through aquifers. This cycle is affected equally by the ocean and land
surfaces, which means that the amount of soil moisture dramatically contributes to the
process through evaporation to the atmosphere and transportation to oceans [35].
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Another cycle affecting life on Earth is the carbon cycle. This cycle describes how car-
bon is exchanged between the biosphere, pedosphere, geosphere, and atmosphere of the
Earth, and its events are vital in preserving life on Earth. The changes that increase the
amount of carbon in the atmosphere raise the temperature on Earth, which is one cru-
cial climate implication humanity face at present. Both the water- and carbon cycles are
connected and affect each other. For example, a larger amount of carbon in the atmo-
sphere leads to increased temperatures, which again causes more evaporation. In some
regions, this can cause more precipitation, whereas the increased temperatures can lead
to droughts elsewhere.

These cycles are all linked through soil moisture, and detailed monitoring of these provides
an overview of how the whole Earth system works. This includes the global climate and
its future changes, which can cause substantial changes to how societies function in the
future [22].

Figure 1.1: Overview of the hydrologic cycle describing the pilgrimage of water as water mo-
lecules make their way from the Earth’s surface to the atmosphere and back again, in some cases
below the surface.

Source: https://earthobservatory.nasa.gov
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1.2.2 Monitoring of Extreme Weather and Nature Disasters

The World Meteorological Organization (WMO) published a report1 on the 31st of Au-
gust 2021, which investigated weather-related disasters over the past 50 years. This is the
most comprehensive study of mortality and economic consequences from meteorological
disasters to date. The WMO is an intergovernmental organization, which since 1950 has
been the specialized agency for meteorology of the United Nations. The report suggests
that during the past 50 years, a disaster related to a weather, climate, or water hazard
occurred every single day on average. Worldwide, these disasters lead to a daily cost of
about 202 million USD in addition to the loss of human lives.

WMO also investigated the trends of mortality and economic losses during the studied
period. The report concluded that recent climate changes lead to extreme weather occur-
ring more frequently by a factor of five from 1970 to 2019. This resulted in a sevenfold
increase in economic losses from the 1970s to the 2010s. Mortality showed a different
trend than the financial losses, where the number of deaths has decreased by a factor of
almost three. One of the main reasons for this development, and the final conclusion of
the report, was that early warnings save lives. This highlights the importance of early
detection and monitoring the probability of future hazards.

Weather forecasts require continuous monitoring of the atmosphere, in which soil mois-
ture is an important parameter. The amount of water in the soil directly affects the amount
of water particles evaporating from the land, which again contributes to several weather
cycles. The United States of America’s Air Force included soil moisture data to improve
their weather forecasts in 2019 [22].

Droughts and floods were two of the top three hazards leading to the most extensive hu-
man losses, according to the 2021 WMO report. Soil moisture is directly connected to
the definition of drought, which is defined as a deficit in the amount of water in the soil,
and is therefore the solely most important parameter to monitor in this aspect. The occur-
rence of wildfires is also strongly correlated with drought, thus soil moisture enables the
possibility to evaluate the danger of wildfires. Furthermore, assessing how wet the soil is
before rainstorms can help determine the likelihood of water overtaking its natural paths,
resulting in floods. In addition, soil moisture strongly affects the amount of precipitation
that runs off or infiltrates nearby streams and rivers, which is not only related to flooding
but can contribute to cause e.g. landslides [22].

1Retreived from https://public.wmo.int/en/media/press-release/weather-related-disasters on the 27th of
May 2022.
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1.2.3 Famine and Agriculture

Famine is defined as a severe and prolonged hunger in a large proportion of a population
and can significantly increase mortality in several regions or countries. One of the factors
that can cause such a devastating situation is related to agricultural crops, which again is
strongly connected to soil moisture. A study conducted in 2019 investigated the connec-
tion between famines and soil moisture in India between 1870 and 2016. Out of the six
major discovered famines, the researchers concluded that five of them were linked to soil
moisture agriculture drought. Monitoring the possibility of such events can lead to not
only economic savings, but also spare lives [50].

Soil moisture is connected to the failure of agricultural crops and can be used as a para-
meter to optimize productivity in farming. Studies have shown that the number of un-
dernourished people will increase by 5-26% worldwide by 2080. Therefore, it is of great
interest to maximize the production with the same invested efforts and material. Further-
more, accurate soil moisture monitoring can help create the best conditions for healthy
plant growth by improving crop yield forecasts and irrigation planning [22].

The examples mentioned above explain how soil moisture is connected to several aspects
of human life. Consumption of food and water, weather conditions and extreme hazards
are all related to soil moisture to some degree. The same applies to our understanding of
how the Earth manages its many energy cycles.
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1.3 Main Objectives and Research Questions

The main objective of this thesis is divided into two parts. The first goal is to contribute
to the state of the art research in remote sensing of soil moisture using GNSS-R. This
culminates in answering the following research questions:

(i) Which geophysical parameters affect the quality of remote sensing soil moisture
estimates using GNSS-R?

(ii) Is it possible to reduce the amount of unwanted impact from geophysical conditions
when performing remote sensing of soil moisture using GNSS-R?

(iii) Can time series analysis of surface reflectivity be used to capture flooding events?

(iv) Can machine learning be utilized to generate high performing geophysical model
functions, connecting reflected GNSS signals and soil moisture?

Research questions (i) and (ii) aim to form a thorough understanding of the parameters
affecting remote sensing of soil moisture using GNSS-R. This is important as future
space missions can benefit from this understanding and thereby develop improved remote
sensing products. In addition, time series analysis will be conducted to reveal if extreme
weather events, such as flooding, leave a significant footprint which makes them possible
to detect. Finally, the last research question focuses on converting the observed GNSS-R
data to actual soil moisture estimates by using machine learning to create a geophysical
model function.

In addition to focus on novel research within the field of remote sensing using GNSS-R,
this thesis will also strive towards making the obtained results available to the public.
This culminates in the following goals:

(v) Develop a web page that allows users to be presented with soil moisture related
data.

(vi) Publish an article in a scientific journal to raise the awareness of this new techno-
logy of remote sensing, contributing to drive the research forward.

Goal (v) will be conducted by developing a web page that creates time series of both
CYGNSS surface reflectivity and soil moisture from an ancillary data source. Users
should be able to select a region, either graphically on a map or through specific coordin-
ates, and a time frame before being presented with time series for the desired paramet-
ers. This will be performed in collaboration with the department of civil engineering
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at NTNU. Goal (vi) aims at publishing significant findings to contribute to the science
community.
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1.4 Outline

The remainder of this thesis is organized into the following chapters: The Theoretical
Background, Previous Work, Data Products & Data Processing, Methodology, Results &
Discussion, and Conclusion.

In Chapter 2 - Theoretical Background, we describe the conceptual foundations neces-
sary to understand, analyze, and use GNSS-R for remote sensing. This include both the
GNSS technology itself and how the reflected signals can be utilized. The final section
introduces the theory behind machine learning and how this can be used in GNSS-R and
soil moisture estimation.

In Chapter 3 - Previous Approaches, we present earlier studies that have investigated
different aspects of the utilization of reflected GNSS signals for soil moisture estimation.
This culminates in a description of the state of the art findings within this field of research.

In Chapter 4 - Data Products and Data Processing, we present both the data sources that
will be utilized and the most important data handling steps. The main focus will be dir-
ected towards CYGNSS, but SMAP and ERA5 soil moisture products are also described.
Furthermore, we introduce the SRTM digital elevation model (DEM) before the choice of
programming language is discussed. Finally, an interactive web page showing GNSS-R
related results is presented.

In Chapter 5 - Methodology, we first present how how surface reflectivity is computed
from measured SNR values available in the CYGNSS Level 1 data. Then, the analyzed
areas are presented and justified before a novel framework for optimizing incidence angle
interval filtering is presented. Furthermore, we present several approaches to analyze how
different parameters in GNSS-R affect the quality of soil moisture estimates. Finally, a
machine learning approach to soil moisture estimation is described.

In Chapter 6 - Results and Discussion, we present the results obtained from our analysis,
where the main focus is on the parameters affecting the quality of soil moisture estimates
using GNSS-R. In addition, we present a geophysical model function in terms of a ma-
chine learning model capable of converting raw CYGNSS observations to soil moisture
estimates for local regions.

In Chapter 7 - Conclusion, we conclude on the main findings of our work and present
ideas for future work.

8



Chapter 2

Theoretical Background

2.1 GNSS

The Global Navigation Satellite System (GNSS) consists of several satellite constella-
tions orbiting the Earth. These constellations provide positioning and timing services
to GNSS receivers located anywhere on or near the Earth’s surface. The GPS is one
of the fully operating GNSS constellations providing services for both civilian and mil-
itary use. The constellation consists of nominally 24 operational satellites in medium
altitude earth orbit (MEO) [75]. It is designed as a receive-only passive system, with
the capacity to handle an unlimited number of users utilizing the system simultaneously
[29]. The Russian GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS)
is another constellation that has been fully operational since 2012, with 24 operational
satellites [75, 26]. Other GNSS constellations include the European Union’s Galileo,
China’s BeiDou, and India’s IRNASS/- NavIC.

2.1.1 GPS Signal Structure

Because of the numerous functions a GNSS system needs to perform in order to provide
the desired functionality, the structure of the transmitted GPS and other GNSS constel-
lation signals is somewhat complex. Before deriving how the transmitted GPS signal is
composed and modulated, it is worth mentioning how the navigation signals propagate
through space. To circumvent the effect of changes in polarization that may occur during
transmission, all current satellite navigation systems use right-handed circularly polar-
ized (RHCP) signals [75]. This is because a linear polarized wave would turn elliptical
or circular when traversing through ionized gases or the magnetic field of the Earth, res-
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ulting in a change of polarization. The consistent use of RHCP signals limits possible
losses caused by orientation mismatch between a receiving antenna and the incident elec-
tromagnetic field. In addition, it allows simple receivers with linear antennas to receive
signals from different satellite navigation systems with minimal loss while reducing the
effect of multipath [60].

The signals being transmitted from the satellites in the GPS constellation are generated
using direct sequence spread spectrum (DSSS) modulation. Such a signal can be formed
as the product of three components. The base component is the radio frequency (RF)
carrier wave. Having RF carrier waves with frequencies within the L-band spectrum,
GPS satellites utilize three different frequencies for signal transmission, all derived from
the 10.23 MHz fundamental frequency f0 [75]. The choice of L-band carrier frequen-
cies was thoroughly studied and made based on several requirements, such as weather
independency and to facilitate civilian use. Frequencies above 2 GHz would require spe-
cific receiver antennas for signal reception. Furthermore would ionospheric delays cause
errors for frequency ranges below 1 GHz, making L-band frequencies advantageous for
GPS signal transmission [55]. The oldest batch of the still operational satellites trans-
mits what is known as legacy GPS signals. These satellites broadcast coarse/acquisition-
(C/A-) code on the L1 carrier frequency of 154 f0 and precision ranging (P(Y)-) code on
both L1 and the L2 carrier frequency of 120 f0 simultaneously. The carrier wave is a pure
sinusoid modulated with a digital pseudo random noise (PRN) code and a binary data
message, as presented in Figure 2.1. The message contains useful information related
to satellite identification, range measurements, and parameters for data processing [75].
However, as the P code can be encrypted before it is transmitted from the GPS satel-
lites, the broadcasted P(Y) code is only available to military equipment with a proper
decryption key, and therefore inaccessible for civilian users [37].

Figure 2.1: Direct sequence spread spectrum modulation.

Source: [75]

The GPS modernization initiative recently introduced a new civil GPS signal transmitted
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on a new carrier frequency of 115 fo, referred to as L5. Modern satellites launched from
2010 and onward support this additional L5 signal, in addition to other civilian signals
added to the already existing L1 and L2 frequency bands. These include the L1C and
L2C, where the C implies civilian signals, combined with the inclusion of the military
M-code signal [75].

With modulation of RF carrier waves, a general GPS signal can be expressed as in Equa-
tion 2.1,

Y (t) = A(t)C(t)D(t)coswt, (2.1)

where A(t) is the amplitude modulation function representing the received signal power,
C(t) is the code modulation, D(t) is the data modulation, and w is the carrier frequency
[37].

Extension of Equation 2.1 makes it possible to express L1 and L2 signals directly. The
L1 signal contains both C/A- and P(Y)-code modulated onto the carrier wave in phase
quadrature, resulting in a 90-degree offset between the two codes, as expressed in Equa-
tion 2.2,

Y (t) = Ap(t)P(t)W (t)D(t)coswpt +AC/A(t)C/A(t)D(t)sinwC/At, (2.2)

where CA(t) is the modulation function of the civil PRN codes, P(t) is the modulation
function of the military PRN codes, and W(t) is an encryption modulation used for the
P-code to ensure signal resistance to spoofing.

Because L2 solely contains the military P(Y)-code, the signal is defined as the first com-
ponent in Equation 2.2, presented in Equation 2.3.

Y (t) = A(t)P(t)W (t)D(t)coswt (2.3)

As mentioned earlier, the C/A- and P(Y)-codes provide important information related to
satellite identification and ranging measurements. Each satellite transmits unique PRN
sequences on L1 and L2, enabling the possibility of satellite identification. Within the
data message, users obtain information such as the ephemeris and almanac used for satel-
lite positioning, GPS week number, and a measurement of the satellite health, all used
during the user position acquisition.
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2.1.2 Signal Acquisition and Processing

When a GNSS receiver is turned on, the receiving antenna detects electromagnetic waves
from the available satellites on the horizon and converts them to an electronic signal.
This signal is then used for further processing to obtain the desired position, velocity, and
timing of the user [75]. Detection of transmitted signals from satellites closer to the zenith
angle will travel a shorter distance than signals coming from lower elevation angles. As a
result, signals from lower elevation angles suffer from higher attenuation, introducing the
importance of antenna gain patterns. The antenna gain is the ratio between the amount
of power radiated in a specific direction and the power density of an isotropic source
radiating the same power uniformly in all directions. The ratio is measured in isotropic
decibel watts (dBWi). GPS satellites are designed in a way that makes the antenna gain
along lower elevation angles higher than the antenna gain along the zenith angle. This
results in the same received signal power independent of the user position as long as
the satellite is above 5 degrees elevation [75]. The principle of reciprocity discussed by
Neiman, stating that the transmitting and receiving properties of an antenna are identical,
provides knowledge suggesting that the receiving antenna gain also plays an important
role in signal retrieval. In addition, different antenna gain patterns can be constructed
based on the desired application of the receiver [53].

When the signals are received, along with additional noise and interference, they are
processed in the processing unit of the GNSS receiver, having dedicated channels to
process signals from individual satellites and frequency bands [75]. Measurements of
the SNR in the reduced receiver intermediate frequency bandwidth are important in this
aspect, representing the quality of the incoming signal [29]. Since GPS signals are spread
spectrum signals, meaning that the transmitted C/A code spreads the total signal power
over a wide bandwidth, the received signal power usually drops as low as -130dBm. This
is well below the power density of a receiver’s thermal noise, resulting in the GPS signal
being undetectable unless it is despread to a narrower bandwidth [30].

By generating a copy of the transmitted code, the receiver is able to utilize cross-correlation
between the precisely time-aligned replica and the received signal to elevate the received
signal detectability. In addition, the receiver determines from which satellite the signal
originates. As the time alignment is unknown when receiving the GPS signal, searching
through all possible time alignments for the generated replica is required. The channels
within the receiver are capable of handling signals from different satellites. During this
alignment process, keeping the receiver accurately tuned to the received carrier frequency
is key to avoid poor code alignment. As GPS signal transmitters operate with frequen-
cies at the L-band, uncertainties related to receiver position and reference oscillator, or
clock, are present. Combined with uncertainties related to satellite motion, this can affect
the alignment tuning. Hence, the GNSS receiver will have to also search in frequency.
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±6kHz is considered a standard search space, as satellite motion alone is responsible for
approximate changes in frequency of 4.2 kHz utilizing the L1 signal [75]. The cross-
correlation function for a satellite p can be formulated as in Equation 2.4,

Cp(Dt) =
1
t

ˆ t0+t

t0

"
n

Â
i=1

Yi(t)Di(t)+noise

#
Yp(t +Dt)dt, (2.4)

where n is the number of satellites whose signals are being received. This cross-correlation
must be carried out for each satellite p, with i running from 1 to n.

Because of the unique PRN codes transmitted from each satellite, integrating the product
of the received signal and various PRN code replicas based on different delays and fre-
quencies will result in a correlation peak. This peak indicates the desired parameter
values for both code delay and Doppler frequency shift. An example of such a peak in
correlation is presented in Figure 2.2.

Figure 2.2: GPS C/A correlation function computed for PRN1 during signal acquisition.

Source: [75]

A typical GNSS receiver use code and carrier tracking loops to generate error signals
that keep the receiver tuned to the correct frequency as changes in Doppler occurs. If the
signal power drops below a certain threshold, the channel can then declare the signal as
lost, before restarting the acquisition process. However, as long as the receiver monitors
the signal, the tracking channel synchronizes to the broadcaster navigation data message
and decodes it. The parameters obtained with the data message are then used to generate
the main measurements of GNSS, ultimately leading to the receiver obtaining its position,
velocity, and timing.
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2.1.3 Utilization of Reflected GNSS Signals

In addition to being considered a service for user positioning and navigation, transmitted
GPS and other GNSS constellation signals can be useful in a number of other applica-
tions. GNSS signals transmitted through space are prone to several potential error sources
such as multipath and interference [75]. However, as opposed to solely focusing on redu-
cing the effects of error sources, Martin-Neira suggested a low-cost and efficient system
to perform Earth observations through a set of simultaneous remote sensing observations
[48]. Further development of the remote sensing technique has made what is commonly
known as GNSS reflectometery (GNSS-R) emerge as a popular field of research, provid-
ing information about the reflecting surface covering broad geographical zones [75].

2.2 GNSS Reflectometry for Remote Sensing of

Soil Moisture

GNSS-R aims to utilize the scattered GNSS signals off the Earth’s surface to derive in-
formation of the reflected medium. The transmitting satellite and receiver are separated
by a considerable distance and form a bistatic radar system, as shown in Figure 2.5 [3].
On the contrary, a mono-static radar is constructed such that the transmitter and receiver
are colocated [71]. The concept of bistatic radar systems allow remote sensing, i.e. ob-
taining information without being physically present [47].

2.2.1 Scattering

In bistatic remote sensing systems, the scattering distribution depends on the type and
roughness of the reflecting medium, vegetation canopy, and the soil dielectric proper-
ties [13, 21]. Coherent scattering occurs when the electromagnetic wave is reflected in a
single direction. On the other hand, if the outgoing distribution of the wave is spread, the
phenomena of incoherent scattering occurs [3]. The surface point in which the incident
and reflected angles are equal is known as the specular point. This is the point that usu-
ally contributes to the peak value of the reflected signal [72]. Surrounding this point is
an area called the glistening zone. The size of this zone is, among others, determined by
the roughness of the surface. If a completely smooth surface is illuminated by an electro-
magnetic wave, all scattering will occur in the coherent direction, as shown in Figure 2.3
(a). As the surface roughness increases, an incoherent component of the scattered signal
appears, which is shown in Figure 2.3 (b). This incoherent component increases with the
surface roughness, as demonstrated in Figure 2.3 (c).

A practical demonstration of this phenomenon is shown in Figure 2.4. In the absence
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of wind, the water surface is smooth and coherent scattering of the visible light creates
a clear image of the reflected scene. A slight presence of wind introduces roughness to
the water surface, which increases the incoherent scattering and prevents the creation of
clear reflection images.

Figure 2.3: The scattering distribution of coherent scattering of a smooth surface (a), and inco-
herent scattering of a slightly rough (b) and a more rough surface (c).

Source: [21]

Several criteria exist to classify a surface as rough or smooth. One of the most commonly
used criteria is the Rayleigh parameter and is calculated using Equation 2.5,

Ra =
2p
l

hcosqinc, (2.5)

where Ra represents the Rayleigh parameter, l is the wavelength of the electromagnetic
wave, h is the root mean square (RMS) of the surface heights, and qinc is the incident
angle. The surface is classified as rough if the Rayleigh parameter is larger than one and
smooth if it is smaller than one [3].

(a) (b)

Figure 2.4: Coherent scattering of visible light on a smooth water surface (a) and incoherent
scattering on a rougher water surface (b).

Source: [3]

15



Chapter 2 – Theoretical Background

2.2.2 Delay Doppler Maps

Delay Doppler Maps (DDMs) are scattering images where the Radar Cross Section
(RCS) is varied with different time delays and Doppler shifts. Time delay and Dop-
pler shifts form the coordinate axes in DDMs, as shown in Figure 2.6. The differences in
time of arrival between the direct and the scattered GPS signal constitutes the delay, and
the difference in frequency between the two signals makes the Doppler shift [62].

Both delays and Doppler shifts are varied in ranges that include the specular point to
create the DDM. The geometry of the delay and Doppler shift in a GNSS-R bistatic
radar system is shown in Figure 2.5. Variations in delay shorter than the one for the
specular point correspond to locations above the surface of the Earth. Approximately no
scattering occurs in these regions [62]. On the other hand, longer delays can be mapped
to iso-delay contours, illustrated with a blue color in Figure 2.5. This also applies to
Doppler shift, where different frequency shifts are mapped into iso-Doppler lines, drawn
in black in Figure 2.5. The DDM thus illustrates the incoherent scattering in adjacency
to the specular point.

Figure 2.5: The geometry of a GNSS-R bistatic radar system with delay and Doppler shift.

Source: [38]

A noticeable property of the DDMs is the ambiguity of some DDM cells. Each individual
cell in the DDM domain does not necessarily correspond to a single cell in the spatial
domain. This is illustrated in Figure 2.6, where two cells in the spatial domain map to a
single cell in the DDM domain. However, the specular point is located in the center of
the spatial domain and is therefore unambiguous [62]. The line of equal distance between
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the transmitter and the receiver forms an unambiguous line in the spatial domain. The
receiver measures raw uncalibrated units called counts. However, these values do not
only depend on the signal itself but include noise from thermal emissions by the Earth
and the receiver. Therefore, the raw measured counts are processed to produce values in
the desired unit of watts. Firstly, the measured signal is the product of all input signals
and the receiver gain. This is shown in Equation 2.6,

C = G(Pa +Pr +Pg), (2.6)

where C is the DDM values in counts at each bin, Pa is the thermal noise power generated
by the antenna, Pr is the thermal noise power generated by the receiving instrument, Pg is
the scattered signal power at the instrument, and G is the instrument gain. Pa, Pr and Pg
are measured in watts and G has the unit counts per watt. The DDMs are then corrected
so that the remaining DMM is only influenced by the signal. The corrected DDM counts
can then be expressed as in Equation 2.7,

Cg =C�CN = GPg, (2.7)

where CN is the thermal noise power of the antenna and the instrument multiplied with
the instrument gain. CN is assumed independent of delay and Doppler shifts, meaning
that the pure noise contribution to the raw counts can be estimated [62]. Cg is thus the
raw counts produced by only the scattered GPS signal.

The instrument gain can be estimated periodically when the receiver passes over open
oceans, using a global open ocean mask [62]. This results in the following equation:

CB = G(PB +Pr) (2.8)

In Equation 2.8, CB is the blackbody target measurement in raw counts, G is the instru-
ment gain, PB is the blackbody target power and Pr is the receiver noise power.

Solving Equation 2.7 and Equation 2.8 for the instrument gain, G, and also combining
the two, an expression for the scattered signal power, PG, is obtained and shown in Equa-
tion 2.9.

Pg =
(C�CN)(PB �Pr)

CB
(2.9)

Due to the fact that C is dependent on both delay and Doppler shift, Pg has the same
property. In conclusion, these steps convert the raw counts acquired by the receiver to
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Figure 2.6: Delay Doppler Map in relation to the spatial domain.

Source: [21]

power in watts, while removing unwanted noise occurring from thermal emissions from
the Earth and the instrument [62].

2.2.3 Normalized Bistatic Radar Cross Section

The Radar Cross Section (RCS) is a measure of an object’s ability to scatter incident
energy into a certain direction [40]. In a bistatic radar system the value is referred to as
Bistatic RCS (BRCS) and is calculated using Equation 2.10,

s̄t̂, f̂ =
Pg,t̂, f̂ (4p)3La1La2It̂, f̂

PT l 2GT
SPGR

SPRTotal
SP

, (2.10)

where the individual parameters are described in Table 2.1.

The BRCS accounts for surface-related terms and must be normalized in order for geo-
physical parameters to be estimated [62]. Calculating the Normalized Bistatic Radar
Cross Section (NBRCS) is done using Equation 2.11,

s̄0 =
s̄total

Ātotal
=

N
Â

i=1

M
Â
j=1

s̄ti, f j

N
Â

i=1

M
Â
j=1

Āti, f j

, (2.11)

where N and M represent the delay and Doppler bins and Āti, f j is the effective scattered
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Table 2.1: The parameters used in calculation of Bistatic Radar Cross Section.

Parameter Description

s̄t̂, f̂ The BRCS for a given delay (t̂) and Doppler shift ( f̂ )

Pg,t̂, f̂
The signal power at a given delay (t̂) and Doppler shift ( f̂ ). This
value is presented in Equation 2.9.

La1
The estimated atmospheric loss corrections from the transmitter
to the surface.

La2
The estimated atmospheric loss corrections from the surface to
the receiver.

It̂, f̂
The correction for losses introduced by the Delay Doppler Map-
ping Instrument (DDMI).

PT The GPs satellite transmit power.

l The signal wave length.

GT
SP The GPS antenna gain at the specular point.

GR
SP The receiver antenna gain at the specular point.

RTotal
SP

The total range loss from the transmitter to the surface and the
surface to the receiver at the specular point.

area of the respective DDM bin. Standard practice distinguishes between the physical and
effective area of a DDM bin. The actual physical area can be calculated by integrating
over the area, as shown in Equation 2.12.

At̂, f̂ =

¨
A

dxdy (2.12)

A DDM using only the physical scattering area contains no scattering for delays shorter
than the specular point delay. However, power in these cells occurs due to the spreading
of the power by the GPS ambiguity function from physical bins adjacent to the specular
point. The effective scattering area is given in Equation 2.13,

Āt̂, f̂ =

¨
A

L2
t̂;x,yS2

f̂ ;x,ydxdy, (2.13)
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where L2
t̂;x,y is the delay spreading function and S2

f̂ ;x,y is the Doppler spreading function.
These two functions are integrated over the physical area to get the effective scattering
area.

2.2.4 Fresnel Coefficients

In addition to offer information about a medium’s ability to reflect signals, the Normal-
ized BRCS (NBRCS) may also be further calibrated to provide surface characteristics
such as the mean square slope (MSS). The MSS is an important quantity, especially of
the ocean surface, and is crucial for understanding the physical process at the air-sea
interface and interpreting altimeter and scatterometer measurements [82].

As an alternative to the representation of the NBRCS presented in Equation 2.11, the
geometric optics limit of the Kirchhoff approximation represents the term as shown in
Equation 2.14,

s0 = p|R|2 (q/qz)
4P(�q?/qz), (2.14)

where ~q is the scattering vector as a function of the coordinate ~r in the mean surface
plane, and R is the complex Fresnel coefficient. The Fresnel coefficient is an important
parameter in GNSS-R as it describes the reflection and transmission of electromagnetic
radiation when incident on an interface between different mediums occurs. Accordingly,
the coefficient is dependent on the signal polarization, the local incidence angle, and the
complex dielectric constant of the reflecting surface, e .

GNSS-R mainly operates with reflected signals, resulting in the polarization state of the
signals mostly being left-handed circular polarized (LHCP). The final factor P(~s) is the
probability density function of large-scale smoothed surface slopes. Combining the ap-
proximation of P(~s) by the use of the anisotropic bivariate Gaussian distribution given
in the wind direction along the x- or y-axis, Equation 2.14 can be extended to the one
presented in Equation 2.15, connecting the MSS components to the NBRCS measure-
ments.

s0(~q) =
|R|2 (q/qz)4

2
q

mssxmssy(1�b2
x,y)

exp

"
� 1

2q2
z (1�b2

x,y)

 
q2

x
mssx

�
2bx,yqxqypmssxmssy

+
q2

y

mssy

!#

(2.15)

In this equation, mssx and mssy are mean square slopes of the sea surface for the denoted
axis along and across the wind direction, and bx,y is the correlation coefficient between
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the two slope components. Equation 2.16 presents the formula for computing the MSS
components, solely determined by the wave-number integral from the ocean elevation
spectrum, Y(~k) times k2

x,y, also known as the slope spectral density.

mssx,y =

¨
k<k⇤

k2
x,yY(~k)d2k (2.16)

Further simplification of Equation 2.15 can be done by assuming that mssx = mssy =
mss/2, b2

x,y = 0 and the use of s0(q) in the specular point where q1 = q2 = q and f = 0.
The assumptions results in Equation 2.17 with the Fresnel coefficient described by the
incidence angle q , presenting the important relation between the NBRCS and the MSS
[82].

s0(q) =
|R(q)|2

mss
(2.17)

Separating co- and cross-polar Fresnel coefficients, Semmling et al. defined the coeffi-
cients as in Equation 2.18 and Equation 2.19, where Rk and R? are the components
parallel and perpendicular to the incidence plane [64].

Rco =
1
2
(Rk+R?) (2.18)

Rcross =
1
2
(Rk �R?) (2.19)

Because GNSS-R mostly operates with reflected, and hence LHCP signals, the com-
plex cross-polar Fresnel reflection coefficient presented in Equation 2.19, at the interface
between air and another medium with a complex dielectric permittivity emed , can be de-
scribed as in Equation 2.20. This equation can then be utilized to highlight the importance
of parameters such as incidence angle and the electric permittivity of a medium affecting
its ability to reflect electromagnetic signals.

R(q) = 1
2

"
emed sine�

p
eairemed � (eair cose)2

emed sine+
p

eairemed � (eair cose)2
� eair sine�

p
eairemed � (eair cose)2

eair sine+
p

eairemed � (eair cose)2

#

(2.20)
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2.3 Machine Learning

Machine learning is a subset of artificial intelligence (AI) and can be defined as com-
putational methods and algorithms programmed to utilize past experience to improve
performance or predict outcomes [51]. Another definition was formed by the American
professor and computer scientist Tom Mitchell. He defined it as a computer program,
learning from experience, with respect to some class of tasks and performance measure
[28]. Common for both definitions is that some computer model or algorithm attempts
to discover patterns in available data, referred to as experience. This experience can be
structured in different ways, which again affects the machine learning task. Firstly, if
all data points are stored with their corresponding ground truth value, the machine learn-
ing task is defined as supervised learning. The goal is to train based on the labeled data
to be able to predict the correct value for unlabelled and unseen data. On the contrary,
data points in unsupervised learning tasks do not contain ground truth values. Within the
field of supervised learning, there exist several subclasses of tasks. Supervised regres-
sion refers to the set of tasks where the target value, i.e. the ground truth, is a continuous
number. Furthermore, supervised classification appears when the target value belongs to
one of a finite set of classes [28].

Since the 1950s, AI and machine learning have experienced several periods of hype and
skepticism. However, due to the increased computational power of modern computers,
as well as the emergence of e.g. graphical processing units (GPUs), several new applic-
ations of machine learning have seen their light in the 21st century. These applications
belong among others within the public sector, healthcare, finance, and logistics, where
two concrete examples are cancer diagnostics and improved sustainability in smart pro-
duction [41, 14].

Machine learning has also been applied to the field of soil moisture estimation [61, 65,
36], which will be further elaborated in chapter 3. This can be approached as a supervised
regression task if sufficient ground truth data is available. In-situ measurements or other
GNSS-R data sources can be colocated both in the spatial and the temporal domain, thus
serving as ground truth for the model. Due to the fact that soil moisture values range
continuously from zero to one, the problem is defined as a regression task.

2.3.1 Supervised Regression

Despite different supervised machine learning algorithms using distinct procedures when
solving tasks, there exist several common traits which will be elaborated in this section.
Common for all models is their goal of inferring a mathematical function to map input
to output before utilizing this function on unseen data. Furthermore, the models need
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to quantify the correctness of their prediction function in order to evaluate their per-
formance. This is done by using a problem-specific cost function. This cost function is
then minimized with respect to the parameters in the prediction function and the training
data. The minimization process is referred to as training because the model adapts to the
provided data, thus attempting to learn from past experience [19].

One important goal of the machine learning model is the ability to generalize based on
the provided data. A lot of models can perfectly learn every detail of their training data,
thus providing a training cost of zero, while still being useless on unseen data. This
phenomenon is called overfitting and occurs when the training loss is significantly lower
than the test loss. On the other hand, underfitting occurs when the model is too simple
to capture the trends in the dataset. In addition to the cost function, variance and bias are
also used to evaluate the performance of the model. Variance describes the change in the
model when using different parts of the training set, and bias is the systematic error of a
model, which tends to draw the results in a certain direction. Models with high variance
are prone to overfitting. Several measures can be taken to avoid this unfavorable trait.
Firstly, the dataset should be separated into one training set and one test set, with a low
bias distinguishing them. Furthermore, it is possible to impose a constraint of regularity
on the cost function, which is called regularization. This can be interpreted as a way of
limiting the complexity of the model to avoid overfitting [19].

Every machine learning model has its own set of hyperparameters, which can be defined
as parameters affecting the learning process. This includes parameters regarding regular-
ization, optimization, and the architecture of the model, like the number of neurons and
hidden layers in an artificial neural network. The domain of one single hyperparameter
can be continuous numeric, integer, or binary based on what it describes. Selecting the
optimal set of hyperparameters is one important and often time-consuming challenge.
Early approaches based the selection on human engineering to manually select the best
parameters. This procedure is still used at present, but more recent approaches include
grid search, black box optimization, and Bayesian Optimization [24].

2.3.2 Regression Models

There are many different approaches on how to perform and solve regression problems.
Linear regression is the most simple form of regression, finding the best linear fit to
the provided data points. Solely reducing the distance between a linear fit and provided
data makes this method prone to outliers, possibly causing the linear fit to deviate from
the overall trend. The development of more robust forms of regression has therefore been
thoroughly studied within the field of statistics, with both linear and non-linear regression
methods having been presented in recent time [34].
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Distributed Random Forest (DRF) is one of the recently presented methods for classific-
ation and regression. Developed as an extension to the easy-to-use and high-performing
Random Forest algorithm introduced by Breiman in 2001, DRF generates a forest of re-
gression trees as opposed to the single tree produced using random forest. Each tree is
then built on a subset of the data before the average of all trees is computed and used
to perform the desired prediction [6, 49]. Another regression method is the Gradient
Boosting Machines (GBM), which is an ensemble method sequentially building fully
distributed regression trees on all relevant features in parallel. This means that a GBM
model is obtained by training different regression trees based on modified versions of the
original dataset before returning the best combination of weights to different variables
found during training. The Extreme Gradient boosting (XGBoost) algorithm is an ex-
ample of a highly rated GBM model. Designed to be flexible and efficient, XGBoost has
become a popular machine learning algorithm due to its tendency to yield high accuracy
results in a variety of applications [8].

2.3.3 Automated Machine Learning

Automated machine learning (AutoML) addresses a difficult decision when applying ma-
chine learning to solve real life problems, namely model selection. As of today, there ex-
ists no single model that outperforms every other model in every task, nor any algorithm
that is guaranteed to select the best model for a given task. AutoML approaches this
problem by providing an interface to train a variety of different machine learning models
without making compromises on the performance. A single function, rather than poten-
tially long and demanding implementation processes, is utilized to easily be able to run
and compare several models [45]. This approach can be used both as a replacement for
manually selecting models but also as an indication of which model types that outper-
forms others for the given task. In addition to the performance assessment of different
machine learning models, some AutoML libraries also include a stacked ensemble of the
tested base models. This is a similar concept to that already being performed in DRF and
GBM, where the model finds the optimal combination of different ensembles. However,
stacking differs from the mentioned methods as it utilizes multiple regression algorithms,
possibly resulting in improved performance compared to the usage of a single algorithm
[57]. Another important feature of AutoML is its aim of providing automatic hyper-
parameter selection for the machine learning models, using different search algorithms
[24].
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Previous Approaches

Soil moisture estimation has been performed for several decades. The earliest approaches
utilized handheld measurement units that were placed in the soil before measuring the
direct contact of water as opposed to soil. While being useful in e.g. farming, hand-
held measurements have severe limitations in terms of spatial coverage and timeliness.
Measuring the soil moisture over large fields or monitoring the changes over time is un-
favorable using this method.

The utilization of scattered GNSS signals originates from the late 1980s. Hall and Cordey
was the first to propose the usage of reflected GNSS signals for scatterometry purposes in
1988 [31]. A few years later, in 1993, Martin-Neira presented the idea of using reflected
GNSS signals as signals of opportunity in an ocean altimetry application [48]. Using
these signals for surface reflectivity computations was first mentioned in 1998 by Kavak
et al.. This study used the Interferometric Pattern Technique (IPT) by measuring both the
direct and the reflected GPS signals. The two signals create either constructive or disrupt-
ive interference patterns that cause an oscillator in the apparatus to vibrate, whereas the
difference between the maximum and the minimum interference pattern can be related to
the surface reflectivity [39].

Several studies and experiments have later been performed to develop the theory and
equipment necessary to obtain high enough SNR to be able to perform remote sensing of
soil moisture over land. Among the used apparatus in these studies is the digital mobile
radio. It has been mounted on top of tall stationary towers and airplanes to calibrate
and develop the understanding of parameters affecting the remote sensing during the
beginning of the 2000s [81, 76]. The research has continuously improved with, among
others, NASA taking part. NASA launched a space mission called Soil Moisture Active
Passive (SMAP) in 2015 with the aim of utilizing both passive and active remote sensing
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techniques to estimate soil moisture on a global scale. While being developed to estimate
wind speeds in cyclones, the space mission CYGNSS has also formed the possibility of
improving the results in this field.

In 2020, the available soil moisture products were limited to passive or active microwave
data whose temporal revisit time are 2-3 days or more than a week, respectively. An
example of such a product is SMAP. In an attempt to reduce this revisit time when us-
ing remote sensing in soil moisture investigation, Chew and Small developed a product
providing soil moisture estimates gridded to 36 km on both daily and sparsely sampled 6-
hour intervals starting from 2017. The authors called this product the UCAR/CU product
[10]. This soil moisture product was developed by calibrating CYGNSS reflectivity ob-
servations to soil moisture retrievals from SMAP and validating the retrievals against
observations from 171 in-situ soil moisture probes. Based on the assumption that the
signal power measured from CYGNSS observations is linearly related to SMAP soil
moisture, the algorithm calculates the soil moisture based on linear regression in 3km
x 3km sub-cells between SMAP and CYGNSS measured on the same calendar day. All
sub-cell soil moisture values were then averaged within each 36km SMAP pixel cell, pro-
ducing the resulting CYGNSS soil moisture value. Both the SMAP and UCAR/CU data-
sets were validated against in-situ measurements, where SMAP produced an ubRMSE
of 0.045cm3/cm3 and UCAR/CU 0.049cm3/cm3. Furthermore, the need to upscale
CYGNSS data to match the SMAP 36km resolution leads to the available CYGNSS
data not being utilized to its full potential. For these reasons, the dataset should only be
considered complementary to SMAP and be used in applications where the importance
of improved revisit time outweighs the slightly higher noise. The temporal resolution of
UCAR/CU is 63.4% better than the likes of SMAP. Finally, the authors used time series
analysis to show that the UCAR/CU product might has the ability to capture events oc-
curring too rapidly for SMAP, thus highlighting the difference in temporal resolution
[10].

With the historical background in context and available soil moisture products described,
the remaining of this section will take a closer look at some of the most recent contribu-
tions within this field. First, four studies focusing on data quality assessment and data
processing will be presented. The next part focuses on comparisons between CYGNSS
and other data sources, where time series is a widely used technique. Then, several
machine learning approaches to soil moisture estimation will be presented before a con-
clusion on the state of the art follows.
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3.1 Data Pre Processing

With the discovered possibility to utilize CYGNSS measurements also over land, Gleason
et al. proposed a new processing algorithm used to geolocate CYGNSS L1 measure-
ments from the WGS84 reference ellipsoid to the actual surface topography in 2020.
This would allow for correction of topographical effects during measurements of the re-
flected GNSS signals. Ocean surface RMS heights are usually large compared to the 19
cm electromagnetic wavelength within the L-band, which leads to incoherent scattering.
Hence, CYGNSS L1 ocean calibration can focus on incoherent scattering alone, unlike
CYGNSS land observations exhibiting both coherent and incoherent scattering due to
varieties in topography and surface cover. Besides differences in scattering mechanisms,
Gleason et al. highlighted the increased complexity of geolocating land reflections com-
pared to those measured over the ocean due to local terrain variations. In an attempt to
assess this issue, the authors proposed a land geolocation algorithm using three criteria
for identifying the dominant scattering location on the surface of the Earth, rather than on
the WGS84 ellipsoid. These criteria were focused on delay iso-surface range agreement,
Doppler iso-surface frequency agreement, and forward reflection Snell angle geometry.
As a result, Gleason et al. found it possible to accurately estimate the geolocation point
of the land reflected signal over more than 77.2% of the Earth’s land surface [27].

Two other recent studies have investigated the effect of interpolation in the extraction
of soil moisture estimates. In 2021, Senyurek et al. applied three different interpola-
tion techniques to the CYGNSS L1 data from March 2017 to December 2019 [67]. The
methods were linear interpolation, cubic interpolation, and natural interpolation. Meas-
urements with less than �30 decibel (dB) and with an incidence angle greater than 65�

were excluded, as they were considered significantly affected by noise. SMAP Enhanced
L3 Radiometer Global Daily 9-km EASE-Grid SM was used to analyze the performance
of each method. The interpolation was applied both spatially, i.e. in two dimensions,
and spatiotemporally in three dimensions. For the 2D interpolation, one interpolation
function was produced for each day, which means that nearest neighbour interpolation
of one day was applied in the temporal domain. This means that the overall resolution
in this study was one day temporal and 9km x 9km spatial. Two main findings occurred
when evaluating the performance of the interpolation techniques. Firstly, performing the
interpolation only in two dimensions performed slightly better than in 3D, with a RMSE
of 0.0309 m3/m3. Secondly, natural interpolation performed best, being slightly better
than the linear interpolation, both in 2D and 3D [67].

In 2021, Chew proposed a method to interpolate CYGNSS observations. Spatial gaps
are normally handled in two ways in the literature, either by aggregating the CYGNSS
data over a longer period or by increasing the size of the spatial grid boxes. Neither of
these options is optimal as they lower the spatiotemporal resolution, thus limiting the de-
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sired potential of CYGNSS. Furthermore, traditional interpolation techniques like linear,
cubic, and spline interpolation assume the property of smoothly changing observables,
which may be inadequate for CYGNSS measurements. For these reasons, the author
proposed a novel interpolation technique, namely the Previously-Observed Behavior In-
terpolation (POBI) [12].

The POBI uses a combination of historical data and linear regression to compute the cor-
relation between the surface reflectivity in different grid cells. The general idea is to use
the correlations to discover cells that follow similar patterns. If a cell lacks a measure-
ment at the desired point in time, the historically computed correlation with nearby cells
can therefore be utilized compute a weighted average by using Equation 3.1,

Ginterpolated =
Ân

i=1 wi(aiGi +bi)

Ân
i=1 wi

, (3.1)

where i represents the neighboring grid cells, Gi is the surface reflectivity of grid cell
i, and wi is the weight for cell i, which is equal to the correlation coefficient squared.
Finally, ai and bi are the slope and the intercept of the best fitting line between cell i and
the cell of interest [12].

The researchers implemented the interpolation algorithm, where neighboring cells were
defined as being located within eight cells from each other, and concurrent measure-
ments were defined as occurring within one week. The spatial resolution was 3km x 3km.
CYGNSS data from January 2018 until December 2020 was used as calibration data to
calculate the historical correlations and then validated on data from 2017 in a region cov-
ering the northern parts of India and Pakistan. This area was chosen due to its significant
variety in soil moisture before and after the monsoon season. Furthermore, the interpol-
ated values were compared to 30 day averaged CYGNSS soil moisture values to retrieve
information regarding the compliance of the two methods. The mean error between the
30 days aggregation and POBI was 0.17 dB with a standard deviation of 1.96 dB, sug-
gesting that POBI can be applicable in applications where keeping a high spatial-temporal
resolution is important. In other words, if the necessity of having high spatial-temporal
resolution outweighs the cost of uncertainty and expensive computational power, POBI
can be a suitable interpolation technique [12].

Another study focusing on processing the data before applying other models was per-
formed in 2022. Tang and Yan highlighted the importance of data quality in data driven
methods, such as machine learning, for soil moisture prediction. The authors suggest
that increasing the quality of the input data will lead to improved performance of the soil
moisture estimates. Based on this assumption, a quality control method was developed
for assessing and eliminating poor CYGNSS data. After implementing this method, the
data was further processed using a support vector machine (SVM) to produce soil mois-
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ture estimates. Ancillary data, such as normalized difference vegetation index (NDVI),
elevation, and slope of the surface specular point was also used as input to the SVM.
These results were compared with in-situ soil moisture in Baoxie, which is located in
Wuhan in China [74].

The quality control process consisted of four steps. CYGNSS data comes with different
quality flags that describe the conditions at the CYGNSS receivers and the quality of
the data. The first step in the quality control evaluated different flags and discarded the
CYGNSS data with poor quality flags. The next step excluded measurements where the
incidence angle was above 50�. The third step evaluated the distribution of the power in
the produced DDMs. A DDM over land should only have one peak, hence DDMs with
more than one peak were removed. This was evaluated by examining the ratio between
average power around the specular point and the average power elsewhere in the DDM.
If this ratio was larger or equal to 0.25, the DDM was removed. Finally, impervious
surfaces were excluded by creating a spatial filter using ancillary data from the Gaofen-1
satellite (GF-1) in Baoxie. This final step removed measurements falling on buildings
and inland water bodies [74].

After the quality control method was applied, 46.2% of the dataset was removed. The
researchers tested different parameter combinations as input to the SVM, and the best
performing model achieved a correlation coefficient of 0.87 with the in-situ soil mois-
ture data. This value increased from 0.67 without using quality control, highlighting the
importance of data quality. However, the RMSE of 0.23 cm3/cm3 is higher than other
studies have shown. These will be presented in section 3.3. Finally, the researchers con-
clude that this approach should be applied to different soil types in the future to assess a
global usability [74].

3.2 CYGNSS Performance Investigation

Several studies have compared the performance of CYGNSS surface reflectivity with
ancillary soil moisture data products. This includes both remote sensing applications,
such as SMAP, and other in-situ stations.

An early comparison between CYGNSS and SMAP was conducted in 2018 by Chew
and Small [11]. The study aimed to investigate the relationship between the power of
the forward scattered GNSS signals and colocated soil moisture. The power of the re-
flected GNSS signals, i.e. the surface reflectivity, was calculated using data produced
by the CYGNSS constellation, and SMAP soil moisture was used as ground truth in
the performed analysis. Initially, surface reflectivity was calculated for an area covering
north India and Pakistan for May 2017 and August 2017 and compared with SMAP soil
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moisture. The surface reflectivity was calculated using Equation 3.2,

Pr,e f f = 10logGrl µ 10logPc
rl�10logN�10logGr�10logGt �10logPt

r +20log(Rts+Rsr),
(3.2)

where Pc
rl is the coherent contribution of the surface scattered signal power, Pt

r is the
transmitted RHCP power, Gt and Gr is the gain of the transmitting and receiving antenna,
respectively, Rts is the distance between the transmitter and the specular reflection point,
Rsr is the distance between the specular reflection point and the receiver, and N is a
correction for background noise. The contribution of incoherent scattering was omitted
in this study [11].

The correlation between the direct magnitude of the two variables showed a correlation
of 0.45 in May and 0.65 in August. However, the temporal differences between the two
months showed a stronger correlation of 0.84. This result formed the foundation of fur-
ther investigation of temporal differences in CYGNSS surface reflectivity in the form of
time series analysis. The time series started on the 18th of March 2017 and lasted until
the 17th of February 2018. The area of interest was divided into a grid of 36 km by
36 km. Daily averaged surface reflectivity was computed for each cell before the dif-
ference from the mean value of that specific time period was extracted. This value was
compared to SMAP soil moisture calculated the same way and Cosmic-ray Soil Mois-
ture Observing System in-situ soil moisture data. The resulting correlation varied with
the type of climate on the observing site. Climates with more significant fluctuations in
soil moisture showed the strongest correlation of 0.74. However, despite drier climates
illustrating a weaker correlation, these areas have the lowest ubRMSE of 0.017 cm3/cm3.
The comparison with in-situ soil moisture requires that the surface reflectivity is conver-
ted to a standard soil moisture unit. This conversion was achieved using linear regression
with SMAP values as ground truth, and the correlation was between 0.04 cm3/cm3 and
0.06 cm3/cm3. Finally, based on these analyses the researchers conclude that CYGNSS
is sensitive to variations both in the spatial and temporal domains. This was true both for
the comparison with SMAP and in-situ soil moisture. However, the researchers conclude
that a soil moisture extraction method independent of SMAP is preferable and should be
investigated further [11].

Clarizia et al. attempted to utilise ancillary data to describe surface related terms in their
attempt to produce soil moisture estimates [17]. The approach is named the Reflection-
Vegetation-Roughness (R-V-R) algorithm and it utilizes a trilinear regression to to com-
pute the soil moisture estimates. The function will therefore depend on CYGNSS surface
reflectivity, SMAP vegetation opacity, and SMAP roughness coefficient, calculated using
Equation 3.3,
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uCY GNSS = aG0
dB +bt 0+ cs 0+d, (3.3)

where G0
dB is the standardized reflectivity in the unit of dB, t 0 is the standardized veget-

ation opacity, and s 0 is the standardized roughness coefficient. The standardization is
performed to directly compare the coefficients after the regression, allowing a better un-
derstanding of the effect of different surface conditions. CYGNSS level 3 data from April
2017 to August 2017 was used to implement the regression, where half of the dataset was
used for training and the other half for testing by randomly splitting the dataset. This was
done to minimize possible biases. The whole CYNGSS footprint was included, meaning
that the R-V-R algorithm will operate semi globally after the training and testing steps
are performed [17].

Table 3.1: Globally computed R-V-R coefficients, where a is the coefficient for surface re-
flectivity, b is for vegetation opacity, c is for surface roughness, and d is the constant term.

a b c d

0.88 0.54 -0.18 -0.43

The coefficients for the globally computed R-V-R algorithm are presented in Table 3.1
[17]. The coefficient for the surface reflectivity is positive and the largest. This means
that an increase in surface reflectivity implies an increase in soil moisture, which is ac-
cording to expectations. The vegetation opacity also obtained a positive coefficient, as
the algorithm has to compensate for the reduction in coherent scattering that increased
vegetation opacity causes. Finally, it is noted that the surface roughness has a smaller
coefficient. The semi globally RMSE was 0.07 cm3/cm3 [17].

Another study performed in 2019 used the NBRCS computed from CYGNSS measure-
ments to estimate soil moisture in time series. The results were evaluated against the
SMAP soil moisture product. The NBRCS property was computed using Equation 3.4,

s0 =
GLR(es,qi)

MSS
e�tvsecqi , (3.4)

where s0 is the NBRCS measured at incidence angle qi and GLR(es,qi) is the Fresnel re-
flectivity of the surface. The LR subscript represents the left-handed circular polarization
of the scattered signal, and es is the surface relative complex permittivity. Finally, MSS is
the mean square slope of surface roughness. The authors perform two filtering steps on
the CYGNSS data before computing the time series. Firstly, measurements with low SNR
are excluded as they are considered affected by considerable noise. Furthermore, inland
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water bodies contribute to unwanted coherent scattering, and are filtered out. This is per-
formed by computing the correlation with the CYGNSS Woodward ambiguity function
(WAF). Coherent scattering leads to a strong correlation, and measurements with high
correlation are excluded. The thresholds for the SNR and correlation were calculated
location-specific, meaning that they were calibrated to minimize the error. Despite ve-
getation attenuation influencing the measured SNR of CYGNSS, the researchers did not
correct this effect. They concluded that the error caused by this phenomenon was limited
to below 1%. Finally, the NBRCS was scaled for incidence angle by using a simple curve
fit [2].

The time series were computed for the whole CYGNSS footprint on a spatial resolution
of 0.2� by 0.2� with a temporal resolution of one day between December 2017 and May
2018. Because SMAP has a temporal resolution of three days, the computed time series
values were averaged over three days to make them comparable with SMAP. This led
to a correlation of 0.82 and a RMSE of 0.040 cm3/cm3, yielding promising results for
this type of analysis given the increased temporal resolution of CYGNSS. However, the
method is dependent on SMAP data to solve the underdetermined system of equations
used to compute the time series. This dependency is a weakness because SMAP is the
same dataset used to evaluate the time series. It is therefore concluded that further work
should focus on reducing the dependence of SMAP, as well as compensating for the effect
of vegetation attenuation [2].

Three years later, in 2022, Al-Khaldi and Johnson published a study aiming at improving
the work from 2019. The study replaced the location specific thresholds for SNR and
CYGNSS WAF correlation with an improved Level-1 coherence detector as an attempt
to reduce the computational complexity without significantly increasing the errors in soil
moisture estimation. Furthermore, Al-Khaldi and Johnson investigated the possibility
of limiting the method’s dependency on SMAP. The importance of selecting optimal
thresholds from SMAP to solve the underdetermined system of equations was analyzed.
It was shown that this factor plays a significant role in the performance of the method.
Al-Khaldi and Johnson then suggests that fixing the boundaries year-to-year can remove
the dependency of contemporary SMAP data while also maintaining high performance.
The time series was computed for 27 months from January 2018 to May 2020 on a 36km
grid, leading to a RMSE of 0.06 cm3/cm3. Compared to the results presented in [2], this
is slightly higher, but the computational improvements to the algorithm and the reduced
dependency of SMAP can compensate for these limitations [1].
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3.3 Machine Learning

In order to convert the CYGNSS produced surface reflectivity or SNR to actual soil mois-
ture values, a geophysical model function is needed. This task can be approached in
different ways, where e.g. linear regression has been presented [17]. Another approach
involves training machine learning models for this purpose. As will be elaborated in this
section, using machine learning allows for non-linear transformations between surface
reflectivity and soil moisture to be developed.

A common approach when using machine learning to estimate soil moisture has been
to utilize SMAP soil moisture data as the ground truth in supervised learning. As an
attempt to avoid the dependency of SMAP, Senyurek et al. presented a study were in-
situ soil moisture was used as ground truth instead of SMAP, in 2020 [65]. The resulting
models where then evaluated against SMAP soil moisture. The approach built on findings
presented in a previous publication by the same authors, suggesting that random forest
trained using a least-squares boosting (LSBoost) ensemble strategy provided enhanced
the compared to other tested ML techniques. This model was therefore used in further
studies [66]. Instead of utilizing SMAP values for ground truth soil moisture values,
Senyurek et al. used daily averaged in-situ SM data of 170 sites selected from the Inter-
national Soil Moisture Network (ISMN), with the measured value assumed representative
for a 9km x 9km area around a given ISMN site.

SMAP values with a standard spatial resolution of 36km x 36km and the enhanced SMAP
soil moisture product with a resolution of 9km x 9km measured over nearly three years
(18 March 2017–31 December 2019) were used for evaluation of the results. The mean
unbiased RMS difference (ubRMSD) between all 3-day averaged CYGNSS and SMAP
soil moisture 9km-cells globally was found to be 0.049cm3/cm3. In addition, regions that
were flagged by SMAP as being poor quality, such as the Amazon rainforest and central
Africa, showed a higher ubRMSD. Because these areas are less represented by the ISMN
site networks used in the model training, the results coincided with the initial expecta-
tions. Excluding the grid values measured in areas that did not meet the recommended
SMAP quality control factors reduced the ubRMSD to 0.041cm3/cm3, despite the model
being trained independently of SMAP data. The results presented by Senyurek et al. in-
dicate that accurate CYGNSS soil moisture estimation is possible in regions with little to
light vegetation cover. However, CYGNSS soil moisture estimation in dense vegetation
areas requires further research to produce results with higher accuracy [65].

Random forest was also used by Lei et al. in 2021 to estimate soil moisture based on a
combination of CYGNSS data and extensive use of ancillary data. The researchers com-
bined ancillary data from several remote sensing sources to complement the CYGNSS
data. The goal was to allow the random forest to use the information about the surface
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conditions to better isolate the soil moisture estimates and thereby increase perform-
ance. The soil moisture estimates were performed quasi-globally, meaning for the entire
CYGNSS footprint between March 2017 and December 2019 in 3 km by 3 km grid cells
[46].

A large part of the preprocessing in this approach consisted of gathering, merging, and
colocating the data sources. The data included elevation from the DEM GTOPO30, soil
texture data from the 250 m Global Gridded Soil Information (SoilGrids), NDVI from the
Moderate Resolution Imaging Spectrometer (MODIS), vegetation water content (VWC),
and dominant land cover for each grid cell from the MODIS 2018 yearly land cover type
product (MCD12Q1). Common for all datasets is that they were upscaled or averaged to
3km x 3km grid cells. After the data collection, clustering was used to classify the soil
type of each grid cell, where one random forest model was trained for each soil type.
Furthermore, the random forest models, using 60 decision trees each, were trained with
80% of the data randomly selected and tested on the remaining 20%. The validation
function was 5-fold cross-validation, and SMAP soil moisture data was used for testing.
The global median correlation coefficient was 0.3502, and the median ubRMSD was
0.0426 m3/m3. A discovery made in this study is that regions with high vegetation cover
lead to higher ubRMSD, up to 0.08 m3/m3. The impact of VWC is also significant,
where the ubRMSD was reduced to 0.034 m3/m3 in regions containing a VWC of less
than 4 kg/m2. For this reason, the authors suggest that further work should pivot towards
reducing the error in these regions [46].

Another study attempting to obtain global CYGNSS soil moisture estimates was done
in 2021 by Jia et al.. This work wanted to investigate the possibility of using min-
imal ancillary data, to limit their approach’s dependency on other products. Their ap-
proach was based on machine learning regression and preclassification. Furthermore, the
study included testing and comparisons between the overall performance of CYGNSS
soil moisture estimation utilizing different machine learning algorithms with and without
preclassification. The obtained results were also compared to those presented in previous
studies. In this way, Jia et al. were able to map the influence of the proven performance-
enhancing ancillary data, known to be both heavy-loaded and technically challenging to
obtain [36].

The preclassification strategy employs resampling and submodeling procedures based
on a machine learning regression approach to minimize the influence of different land
types. First, all samples of varying land types were grouped according to the Interna-
tional Geosphere-Biosphere Programme land type classification provided by SMAP in
the resampling step. Then, distinct submodels were trained to estimate soil moisture for
each land type. The estimations were based on CYGNSS measurements and SMAP soil
moisture as ground truth from June 2018 to June 2020, combined with SMAP surface
roughness and vegetation opacity as the only ancillary data. In addition, both SMAP and
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CYGNSS soil moisture estimations were compared to in-situ soil moisture measurements
from 301 different stations [36].

The results presented in the study show strong indications that the soil moisture estima-
tions using different machine learning algorithms all show substantial improvement using
the preclassification strategy. XGBoost turned out to be the model with the highest per-
formance, obtaining a RMSE of 0.052 cm3/cm3. Comparing the CYGNSS and SMAP
soil moisture estimates to the in-situ networks resulted in median ubRMSEs of 0.049
cm3/cm3 and 0.046 cm3/cm3 respectively. The study also presents results further indicat-
ing that reflectivity plays the primary role in soil moisture estimation. It also highlighted
the effect of vegetation, as the RMSE increased in areas with dense vegetation, while
surface roughness could be of more importance in dry areas [36].

A novelty to the field of research related to soil moisture estimation utilizing GNSS-R
was proposed by Shi et al. in 2021. The authors referred to the absence of real-time met-
eorological data considered used in previous work, introducing the inclusion of precipita-
tion and soil moisture temperature as relevant variables in soil moisture inversion. Using
the so called Genetic Algorithm-Back Propagation neural network, Shi et al. combined
surface reflectivity obtained from CYGNSS, surface environmental elements, meteoro-
logical data, and soil moisture data to analyse the effect the two real-time meteorological
variables have on soil moisture inversion [69].

Another difference between most of the previous work being presented and the work
performed by Shi et al. is the surface reflectivity value used in the analysis. In this case,
the surface reflectivity was calculated from the BRCS, as expressed in Equation 3.5.

t(q) = s(rst + rsr)2

(4p)r2
st r2

sr
, (3.5)

where s is the peak value of the BRCS, and rst and rsr are the distances between the spec-
ular point and the GNSS transmitter and receiver, respectively. The authors highlight
the increased correlation with soil moisture as the reasoning behind the choice of sur-
face reflectivity value. In addition, the researchers utilized ancillary data to estimate soil
moisture. This included incidence angle, NDVI, land cover type, rainfall, temperature,
and four types of topographic data - slope, slope direction, shading, and elevation. Us-
ing CYGNSS L1 and ancillary data collected over the western continental United States
for January and February 2019, the finalized result showed indications of meteorological
data improving the soil moisture estimations. A RMS error of 0.0344 cm3/cm3 was ob-
tained when including rainfall and temperature, compared to 0.0395 cm3/cm3 when no
meteorological data was considered [69].

Another novelty within this research field was presented by Roberts et al. in 2021. In
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contrast to existing machine learning analyses relying on single-valued feature extraction
from CYGNSS DDMs, this approach has the potential to extract additional information
from the entire two-dimensional DDM using convolutional neural networks (CNNs). The
introduction of CNNs made it possible to achieve improved soil moisture measurements,
especially in regions where simple linear relations yield high uncertainty [61].

The complete neural network used in the work by Roberts et al. consisted of three parts.
As the main input to the network was a 2D DDM, the first part consisted of a stand-
alone CNN processing the DDM input and returning one of two different land covers
as provided by the GlobCover 2009 data product. The information returned from the
CNN was then combined with other ancillary data related to spacecraft and different
surfaces. These include range and antenna configurations and geometry of a given meas-
urement, incidence angle, latitude and longitude, land type, and surface topography. In
addition, surface reflectivity calculated from CYGNSS measurements, as displayed in
Equation 3.6, was provided as input, where P is power, G is gain, R is separation, and
the t, r, and s subscripts represent the transmitter, receiver, and specular reflection point,
respectively. The data was then concatenated and used to estimate soil moisture utilizing
findings of modern CNN architectures like ResNet, VGG, and AlexNet, adding dropout
layers, image augmentation, and the usage of smaller kernels in order to improve model
performance [61].
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(Rts +Rsr)2
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The use of a CNN compared to an artificial neural network (ANN) is justified by com-
paring model performance when classifying bare or forested land cover areas. Using
an ANN with the single-valued peak power as input yielded an F1-score of 76%, while a
flattened DDM input resulted in an F1-score of 87% using a similar network. On the con-
trary, a CNN taking the original DDM as an input obtained an F1-score of 89% and was
therefore used throughout the presented analysis, with a goal of making direct compar-
isons between the proposed method and mature CYGNSS-based soil moisture products
like SMAP and UCAR.

Global comparisons were made between the three products on the lowest possible com-
mon resolution, being a 36km averaged daily soil moisture distribution. Overall global
trends showed similarities. However, the CNN estimated less soil moisture variation in
areas with exceedingly high soil moisture content measured by SMAP. This is a result of
SMAP and UCAR values in the respective regions being considered of low quality and
were removed from the training process in the network of Roberts et al.. Another ad-
vantage of the proposed approach is the obtainable resolution of 3km, being a significant
improvement from the 36 km used in the other products. Even though the predictions are
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inherently limited to the accuracy of SMAP measurements, having an unbiased RMSE
of 0.04 m3/m3, the network showed trends of better soil moisture estimations in areas
where SMAP and UCAR are prone to low quality values, such as over the Amazon and
central Africa [61].

3.4 State of the Art in Remote Sensing of Soil Moisture

The research area of soil moisture estimation using remote sensing has developed over
the last decades. The spatial and temporal resolution of the data products continues to
improve with the inclusion of new research projects. However, recent studies tend to
focus on specific areas of the problem, resulting in isolated improvements that have not
been investigated combined.

One major challenge in global soil moisture estimation is the lack of global ground truth
measurements. Previous studies have used a variety of datasets derived from ground
based methods or other remote sensing missions like SMAP. The main issue when com-
paring ground based measuring methods to CYGNSS soil moisture estimates is the dif-
ference in spatial coverage. One of the main benefits of using CYGNSS is the semi
global coverage, which is difficult to assess when compared to in-situ measurements.
This problem can be dealt with by using SMAP as the basis for performance evaluation.
However, SMAP has its sources of errors and configurations that will lead to differences
compared to CYGNSS. Therefore, it is challenging to determine which of the sources are
wrong when they differ from each other. Products like UCAR/CU are mainly based on
CYGNSS measurements and should therefore not be used to evaluate CYGNSS.

Gleason et al. discussed the challenges regarding varying topography. As CYGNSS satel-
lites initially were designed to measure reflections over the ocean, land topography has
not been taken into account. Therefore, the study proposed an algorithm for geolocating
the measurements over land to the actual surface topography, which can lead to improved
performance in remote sensing applications [27].

The work by Tang and Yan showed that performing data quality assessment before ap-
plying data driven methods in soil moisture estimation can improve the resulting errors.
Their models did not produce state of the art RMSEs but demonstrated an improvement
when filtering the CYGNSS data based on different criteria. The effect of interpolation
when colocating data sources or filling data gaps was also discussed. POBI was proposed
as state of the art, but the algorithm requires immense computational power. Natural in-
terpolation, or even linear interpolation, can therefore be considered for practical reasons.

Several studies comparing CYGNSS with other sources were also presented. The studies
differed in their approaches to converting the CYGNSS measurements to soil moisture,
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varying from linear regression to more complex methods. However, the trends in these
results indicate a correlation between CYGNSS and other soil moisture products. Some
studies also focused on the parameters affecting the CYGNSS measurements, where ve-
getation opacity was one of the more important. Areas like the Amazon rainforest proved
challenging due to their dense vegetation cover. In drier regions, the surface rough-
ness proved to be of greater importance. In conclusion, analyzing the optimal CYGNSS
conditions proved to be challenging due to the large variety of dependencies that exist.
Therefore, analyzing this area can be helpful not only for CYGNSS but for improving
future space missions.

Machine learning has been the most adopted method to create a geophysical model func-
tion capable of converting CYGNSS measurements to soil moisture estimates. These
techniques are also considered to be state of the art. Different approaches, such as ran-
dom forest, ANNs, CNNs, and gradient boosting algorithms have all been tested and
produced RMSE of similar magnitude. The choice of the model itself seems to be of
less importance than which parameters and ancillary data are selected. Furthermore, op-
timal machine learning approaches should be applied in combination with data quality
assessment to feed the models with the most accurate data.
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Data Products and Data Processing

The datasets used to investigate GNSS-R for remote sensing of soil moisture are presen-
ted below. CYGNSS data is the primary source, which will be evaluated against SMAP
and ERA5. In addition, a DEM is presented and used as ancillary data. All data sources
use the WGS84 reference ellipsoid to define the surface of the Earth.

4.1 Cyclone Global Navigation Satellite System

The Cyclone Global Navigation System (CYGNSS) is a space mission conducted by
NASA, initially with the primary goal collecting space-based measurements of wind
speed in tropical cyclones to support and improve hurricane forecasting. CYGNSS space
segments are designed to utilize signals transmitted from operational satellites in the
American GPS constellation, in addition to the reflection of the same satellite’s signals
reflected of the surface of the Earth to gather information about the Earth’s surface. On
the 15th of December 2016 NASA launched eight LEO micro-satellites, which in com-
bination with already transmitting GPS satellites, form bistatic radar systems as previ-
ously explained in section 2.2. Prior to CYGNSS, a typical technique when conducting
spaceborn wind speed measurements over oceans was scatterometry. It consisted of a
radar instrument aboard a satellite sending a signal to the ground and then measuring the
strength of the reflected signal. However, building both sending and receiving capabilit-
ies into a single instrument is considerably more expensive than the CYGNSS approach.
Signal degradation of the transmitted microwave pulses when passing through intense
rainfall is also a well-known limitation of traditional scatterometry, causing difficulties
in retrieving observations of high wind speeds in critical regions of tropical storms. On
the other hand, reflected GPS signals operate at lower microwave frequencies, enabling
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the possibility to penetrate thick clouds and precipitation. Thus, utilization of CYGNSS
satellites will result in both a more robust measuring technique and significant cost sav-
ings [63].

In addition to providing ocean wind speed measurements at a reduced cost, with a total
mission cost of 150 million USD, the CYGNSS constellation contributes to an improved
spatiotemporal resolution compared to traditional single, polar-orbiting satellites. Using
an orbital inclination of 35 degrees from the equator, CYGNSS measures ocean surface
winds between approximately ± 38 degrees latitude and ± 180 degrees longitude, rep-
resenting the critical latitude band for tropical cyclone formation and movement. The
predefined inclination results in CYGNSS providing nearly gap-free Earth coverage of
the ± 38 ° latitude band, with a mean revisit time of 7.2 hours, a median revisit time of
2.8 hours, and a spatial resolution of 25x25 km over rough surfaces such as the ocean
[62, 16].

Figure 4.1: Visualization of a CYGNSS micro-satellite deployed in space above a hurricane.

Source: https://www.nasa.gov/

4.1.1 CYGNSS Satellites

Figure 4.1 presents a visualization of a CYGNSS micro-satellite deployed in space. The
CYGNSS satellite is a three-axis-stabilized, nadir pointed vehicle using a star tracker for
primary altitude knowledge and a reaction wheel triad for control. The spacecraft con-
sists of a micro-satellite platform hosting a DDMI used to generate relevant data from
the measurements made by the satellite. In addition to the DDMI, CYGNSS satellites
are equipped with one RHCP antenna on the zenith side of the spacecraft and one LHCP
antenna on the nadir side of the spacecraft. The RHCP antenna receives signals directly
from the transmitting GPS satellites, and the LHCP receives the scattered signal. While
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the direct signal is used for positioning of the DDMI, the reflected signal can be used
to derive properties of the reflecting medium [7, 11, 17]. Each DDMI measure signals
at 2 Hz and can receive four signals simultaneously. This means that the eight LEO
DDMIs of CYGNSS conduct 64 measurements per second in total [62]. Even though the
CYGNSS micro-satellite was designed for ease of manufacture and integration to provide
a cost-effective solution across the constellation, the satellite structure and shape are spe-
cifically configured to allow a clear nadir and zenith field of view for DDMI antennas on
board. Besides the LHCP and RHCP L-band antennas used for scientific measurements,
CYGNSS satellites are also equipped with an S-band (2GHz) transceiver providing a
low-cost, radiation-tolerant communication system developed not to interfere with ongo-
ing science operations [42].

The electrical power subsystem is designed to perform battery charging without inter-
rupting science data acquisition and is based on a 28±4 V dc primary power bus with
electrical power generated by fixed solar arrays. Using triple junction solar cells, with
most panels facing outwards, CYGNSS satellites can generate 70 W of power, result-
ing in a 30% margin of the power necessary to operate. A simplified overview of a
CYGNSS micro-satellite and where the different components are located on the space-
craft is presented in Figure 4.2. Because the figure is viewed from underneath, some
presented components such as the S-band and RHCP L-band antennas are not visible.
The DDMI is also hidden inside the lightweight 25kg spacecraft [63].

Figure 4.2: A simplified overview of a CYGNSS micro-satellite.

Source: [62]

It is also important to highlight how Figure 4.2 is only a simplified overview of a CYGNSS
micro-satellite and its components. A more technical description of the satellites and the
science behind the mission operations can be found in official mission documents [62] or
related work [42].
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4.1.2 CYGNSS Data Products

The main objective of the CYGNSS mission is to obtain more accurate information re-
lated to tropical cyclones and ocean wind speed. Hence, returned data from CYGNSS
satellites are expected to expand previous knowledge of the rapidly changing environ-
ment in the core of these tropical cyclones under development. CYGNSS produces four
levels of data products, of which all are publicly available, and the CYGNSS science
operations center is responsible for the processing, development, and dissemination of
these. The different levels are referred to as level 0 to level 3 data products. Levels
1, 2, and 3 are available in the format Network Common Data Form (NetCDF) and
are published through the NASA Physical Oceanography Data Active Archive Center
(PO.DAAC) at maximum data latency from spacecraft downlink to availability of six
days [62]. NetCDF is a set of software libraries and machine-independent data formats
that support the creation, access, and sharing of array-oriented scientific data and has
proceeded to be a community standard in the latter. Developed and maintained by the
Unidata Program Center, the netCDF format has become popular for its many beneficial
attributes. These include the format being self-describing, easily accessible, and scal-
able [59]. A more descriptive presentation of the advantageous attributes of the netCDF
format is found in Table 4.1.

The level 1 data product includes calibration DDMs of received power and calibrated
DDMs of BRCS. The values have been converted from the measured raw counts (level 0)
via received power in watts to unnormalized BRCS, as explained in subsection 2.2.2 and
subsection 2.2.3. In order to calculate the NBRCS using Equation 2.11, the data product
also includes a DDM of effective scattering areas. The spatial resolution of both DDMs
is 17 delay x 11 Doppler, corresponding to a physical surface area of approximately 50
km2. In addition to the DDMs, the data product also contains metadata used to convert
the level 0 data to level 1 data.

Data available in the level 2 data product contains spatially averaged wind speed and
MSS over a 25km x 25km region, centered at the specular point geolocated in spacecraft
time and space coordinates. This data product will not be used in this study. However,
the fully calibrated data product of this level is commonly used by the CYGNSS science
team for their own research, as MSS and wind speed are important variables in tropical
cyclone investigation [62, 18].

Level 3 includes surface wind speed averaged in space and time on a 0.2° x 0.2° latitude
and longitude grid and will not be used in this study. An overview of the different data
products and latency is found in Table 4.2.
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Table 4.1: Important attributes of the netCDF format.

Attribute Description

Self-Describing A netCDF file includes information about the data it con-
tains.

Portable
A netCDF file can be accessed by computers with differ-
ent ways of storing integers, characters, and floating-point
numbers.

Scalable
Small subsets of large datasets in various formats may be
accessed efficiently through netCDF interfaces, even from
remote servers.

Appendable Data may be appended to a properly structured netCDF
file without copying the dataset or redefining its structure.

Sharable One writer and multiple readers may simultaneously ac-
cess the same netCDF file.

Archivable Access to all earlier forms of netCDF data will be suppor-
ted by current and future versions of the software.

Source: [59]

4.1.3 CYGNSS Data Download and Processing

After the launch at the end of 2016, CYGNSS satellites have produced vast amounts of
data available for public users since early 2017, and the data products are continuously
updated. This study will use the level 1 data product with the intention of utilizing calib-
rated DDMs to obtain better knowledge related to soil moisture at a higher spatiotemporal
resolution than existing methods. The data product is structured in at most eight netCDF
files each day, corresponding to a unique DDMI in the CYGNSS constellation, with six
to eight CYGNSS micro-satellites retrieving data each day under normal conditions. In
addition to the DDMs calibrated into received power and BRCS, each file from the level
1 data product contains a large number of other engineering and science measurement
parameters, such as sets of quality flags and indicators, error estimates, and a variety of
orbital, spacecraft/sensor health, timekeeping, and geolocation parameters.

CYGNSS satellites measure different parameters every half a second, resulting in a huge
amount of data being accumulated and available in each file. Downloading and pro-
cessing this data over several years on a global scale require immense time- and storage
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Table 4.2: CYGNSS data products and publication latency.

CYGNSS Product Description Latency

Level 0 Raw data of total system power (received
signal + instrument noise). 6 days

Level 1 Calibrated DDMs of receiver power and bi-
static radar cross section. 6 days

Level 2

Spatially averaged mean square slopes and
wind speed over a 25 km x 25 km region
centered at the specular point, geolocated in
spacecraft time and space coordinates.

6 days

Level 3a Wind speed, gridded in space and time (1/4°
latitude and longitude, 3 hours). 6 days

Level 3b
Wind speed, gridded and optimized for ob-
serving system experiment data assimilation
(optimized spatial and temporal resolution).

6 days

Source: [42]

capacities, which in most cases is adverse for individual users. However, PO.DAAC has
made all data available through the Open-source Project for Network Data Access Pro-
tocol (OPeNDAP) data access framework. This makes it possible to remotely request
specific parts of the available data, depending on the application. An approach to retrieve
data from the PO.DAAC storage drives using OPeNDAP, and avoid having to download
all available data, is to generate specific retrieval-URLs based on a specific year, month,
day, satellite number, and the desired parameters. In combination with the Pydap cli-
ent, being a Python library implementing OPeNDAP used to access scientific datasets in
an efficient way, the generated URLs are used to access and download the desired data.
Code 4.1 presents how the URLs are generated in this study.

def generate_url(year: int, month: int, day: int, satellite_nr: int):

day_of_year = datetime(year, month, day).timetuple().tm_yday
date_string = str(year) + str(month).zfill(2) +

str(day).zfill(2)

base_url = 'https://podaac-opendap.jpl.nasa.gov/opendap/'
'hyrax/allData/cygnss/L1/v3.0/'
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specific_url = str(year) + '/' + str(day_of_year).zfill(3)+
'/cyg0' + str(satellite_nr) + '.ddmi.s' +
date_string + '-000000-e' + date_string +
'-235959.l1.power-brcs.a30.d31.nc'

data_url = base_url + specific_url

return data_url + '?sp_lat,sp_lon,ddm_timestamp_utc,ddm_snr,'
'gps_tx_power_db_w,gps_ant_gain_db_i,rx_to_sp_range,'
'tx_to_sp_range,sp_rx_gain,spacecraft_num,'
'prn_code,track_id,quality_flags,quality_flags_2,'
'sp_inc_angle', day_of_year

Code 4.1: Code for generating specific URLs for optimized data retrieval. The Pydap client is
then used to retreive data based on the generated URL.

With code for generating URLs based on different dates and satellites, data for the years
2019, 2020, and 2021 is collected for use in this study. Due to the introduced normality
of not receiving data from all eight satellites, a complete overview of missing satellite
measurements and at what time these were measured is found in Table A.1 in Appendix
A. As displayed in the base_url variable in Code 4.1 version 3.0 of the data product is
collected. The reasoning behind this is that version 3.0 is the most recent version of
level 1 data available at PO.DAAC. It supersedes version 2.1 with improvements related
to changes in calibration and processing, including adjustments to level 1 calibration
parameters and allowance for BRCS calibration to be corrected for variations in GPS
transmit power.

Specific parameters were chosen based on the desire to investigate surface reflectivity and
soil moisture. As to be presented in section 5.1, Equation 5.5 highlights six important
parameters in the computation of surface reflectivity from CYGNSS level 1 data. These
include the peak received signal power, the power of the transmitted GPS signal, and
distances from the reflecting surface to both the transmitting GPS satellite and the orbit-
ing CYGNSS satellite receiving the reflected signal. In addition to the parameters used
in surface reflectivity calculations, the features selected and downloaded for processing
purposes are presented in Table 4.3.

To facilitate data filtration and manipulation based on desired locations, time intervals,
and data quality, all collected data was stored and processed in Pandas Data Frames.
Data Frames are two-dimensional data structures containing tabular data. Using this data
structure simplified the introduction of additional data columns constructed based on
the already available data to be used in further analysis. This includes features such as
ddm_channel, day_o f _year, time_o f _day, and hours_a f ter_ jan_1st_2019 represent-
ing one of four DDM measurement channels located on each spacecraft, the overall day
number to when the measurement is made, the time of day of the measurement, and the
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Table 4.3: The additional CYGNSS parameters downloaded for processing purposes.

Parameter Description

sp_lat The latitude coordinate of the specular point.

sp_lon The longitude coordinate of the specular point.

ddm_timestamp_utc The number of seconds since the start of the day.

spacecra f t_num The CYGNSS spacecraft number of the received signal.

prn_code The PRN code of the satellite transmitting the received reflected
signal by CYGNSS.

track_id The id of the track, or line of continuous measurements being
made each half second, the reflected signal is a part of.

quality_ f lags A bit string indicating the presence of different conditions hav-
ing affected the measured values.

quality_ f lags_2 A bit string indicating the presence of a number of additional
conditions having affected the measured values.

sp_inc_angle The specular point incidence angle.

total number of hours since January 1st, 2019 at the time of measurement respectively.

As some of the collected features were used to calculate surface reflectivity values, all
rows containing pre-determined fill values were removed. These are added if a CYGNSS
spacecraft fails to measure a specific value and could preferably, as a result, be neglected
in order to prevent results affected by wrong input.

Furthermore, measurements containing bad quality values were removed. The CYGNSS
L1 data product includes quality control flags designed to indicate potential problems
with the measurements [62]. These quality flags made it possible to filter out measure-
ments with specific quality notations to produce better results in terms of quality and
reliability. The most intuitive quality flag to take into account would be flag 1, indicating
bad overall quality. However, as the CYGNSS project initially was designed for data
collection and use over the ocean, most land data would be removed if filtered by quality
flag 1. As a consequence, the measurements indicating bad overall quality remained,
while the specific quality flags used to filter available data were 2, 4, 5, 8, 16, and 17.
These flags are related to the S-band transmitter being powered up, spacecraft attitude
error, black body DDM, DDM being a test pattern channel, the direct signal in DDM and
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low confidence in the GPS EIRP estimate, respectively, and measurements consisting of
any of these flags were removed as suggested by the work done by Rajabi et al. [58].
The quality flags are stored as binary bit strings. For example, a measurement with the
quality flags 2 and 4 will have the number 1 on positions two and four of its correspond-
ing quality flag bit string and zeros elsewhere. By applying the bitwise AND operator
between the quality flag and a mask containing ones on locations 2, 4, 5, 8, 16, and 17,
the unwanted observations can be filtered out.

The provided track ids are only unique for each satellite within one day only. Therefore,
overall unique track ids were computed using the provided track id, PRN code, satellite
number, and the day of the year to distinguish between different tracks. The PRN codes
were also used to categorize the satellites into different blocks based on satellite config-
uration and type. This made it possible to e.g. filter out data obtained from aging legacy
satellites, analyze potential differences in transmitting power due to satellite blocks, or
inspect modernized satellites only. A complete list of which PRN codes belong to each
satellite block type is presented in Table 4.4, retrieved from the U.S. Coast Guard Navig-
ation Center1.

Table 4.4: A complete overview over the transmitting GPS satellites and what kind of satellite
block, representing the satellite generation and configuration, they belong to. As of 20th January
2022 satellites with PRN 11, 22 and 28 are unavailable as 28 is retired, 22 is unhealthy and 11 is
testing in preparation for operation.

Satellite Block Satellites PRNs

IIR 2, 13, 16, 19, 20, 21, 22, 28
IIR-M 5, 7, 12, 15, 17, 29, 31

IIF 1, 3, 6, 8, 9, 10, 25, 26, 27, 30, 32
III 4, 11, 14, 18, 23, 24

Lastly, surface reflectivity values were scaled down by subtracting the minimum surface
reflectivity value from all other values, as done in previous work by Rajabi et al. and
Chew et al. [58, 13]. The processed data was then filtered based on desired location and
time interval to facilitate comparison and in-depth analysis in combination with other
datasets.

1https://www.navcen.uscg.gov/?Do=constellationStatus
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4.2 Soil Moisture Active Passive

Soil Moisture Active Passive (SMAP) is a NASA conducted space mission consisting
of one spacecraft, launched on 31st of January 2015. Initially, the mission lifetime was
three years, thus SMAP has been in extended operation since 2018 and is still operational
at present. NASA’s budget was slightly below one billion USD, which includes design,
development, launch, and operations [22].

One of the main goals of SMAP is to develop enhanced flood prediction and drought
monitoring capabilities, which includes spaceborne remote sensing of soil moisture over
land. Furthermore, classifying soil in colder areas of the Earth as frozen or thawed is
another output of SMAP.

The orbital design is near-polar, Sun-synchronous at 685 kilometers altitude, and uses
98.5 minutes for one complete Earth orbit. As a consequence of the orbital design, the
temporal resolution differs near the poles and at the equator. While two days at the poles,
the temporal resolution is three days at the equator.

Figure 4.3: Overview of the SMAP satellite.

Source: [22]

4.2.1 SMAP Satellite

The SMAP satellite, shown in Figure 4.3, consists of two instruments, a radar and a
radiometer, which makes the satellite capable of performing both active and passive re-
mote sensing of the surface of the Earth. Active measurements possess the attribute of
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high spatial resolution but lower soil moisture sensibility. On the other hand, passive
measurements are sensitive to soil moisture but are limited to a coarse spatial resolution.
By joint processing of these two techniques, the goal was to develop a product sensit-
ive to changes in soil moisture with an improved spatiotemporal resolution compared to
existing sources.

The radar emits RF signals at L-band (1.26 GHz) to limit the impact of weather condi-
tions and vegetation cover, thus being responsible for the active measurements. After the
signals backscatter off the Earth’s surface, the radar measures the amount of returned sig-
nal. The radiometer is a sensitive receiver that measures the naturally emitted RF energy
of the Earth at L-band. It works similarly to an infrared camera, where warmer objects
appear brighter than colder ones. At the specific operating frequency, water appears
cold and dry soil appears warm, distinguished by a significant distance of approxim-
ately 200K. This makes it possible to measure soil moil moisture with higher accuracy
than the radio. Both the radio and the radiometer share one common antenna, shown in
Figure 4.3. The antenna is six meters and is tilted 40 degrees such that the actual meas-
urement distance to the Earth is 500km instead of the 685km orbital altitude. The antenna
feed horn illuminates the large golden plated mesh at the reflector, creating a beam that
reaches the Earth. The whole antenna system, including the feed horn and the boom,
rotates around its own axis, thus illuminating a larger area on the Earth. In addition to the
above mentioned components, the satellite carries a solar array that transforms sunlight
into electrical power and S- and X-band radio antennas used to communicate with the
Earth.

4.2.2 SMAP Data products

SMAP produces data on five different levels, made publicly available through Alaska
Satellite Facility and National Snow and Ice Data Center. The data products are described
in Table 4.5, where the latency is the time from observation acquisition of instrument data
unit it is publicly available.

In this thesis, the Level 3 data will be used as ancillary data to evaluate the performance
of CYGNSS. This level contains soil moisture measurements of the top 5cm of the soil,
re-sampled to a spatial resolution of 36km by 36km and a temporal resolution of 1 day.
The dataset covers ±85° latitude and the whole range of longitudes [22].

In addition to soil moisture, SMAP also produces ancillary data products, which con-
tribute to describing geophysical conditions on the surface of reflection. Two such fea-
tures are vegetation opacity and surface roughness. Vegetation opacity is a global daily
composite description of the density of vegetation gridded on the same spatiotemporal
resolution as the soil moisture product [22]. SMAP’s roughness coefficient represents a
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Table 4.5: SMAP data products and publication latency.

SMAP Product Description Latency

Level 0 Reconstructed, unprocessed instrument data. n/a

Level 1 Time referenced, geolocated, calibrated, and
corrected level 0 data. 12h

Level 2 Geophysical parameters, such as soil mois-
ture, derived from the Level 1 data. 24h

Level 3

Geophysical parameters, such as soil mois-
ture, derived from the Level 1 or Level 2
data, that have been spatiotemporally re-
sampled to a global grid.

50h

Level 4
Geophysical parameters derived by assim-
ilating the lower level data and land surface
models.

7 days

daily global composite description of the surface roughness coefficient as a scaled value
between 0 and 1. The coefficient is identical to the h parameter in the tau-omega model,
commonly used in soil moisture retrieval algorithms, representing irregularities in the
soil surface [68, 23].

4.2.3 SMAP Data Processing

Similar to the CYGNSS data, SMAP soil moisture was downloaded as NET-CDF files.
However, each day of data was separated into different files. This meant that traversing
file structures were necessary before acquiring the data, as shown in Code 4.2. First, all
subfolders are explored to retrieve the path of all SMAP netCDF files. Then, the data
in all these files are gathered in one Pandas DataFrame and returned. Each filename is
time referenced, and this is used to validate that the correct files are processed. After the
data was read, the processing continued similar to the one of CYGNSS, as explained in
subsection 4.1.3.

def get_smap(root_path: str, years: list, months: list, days: list):
first = True
sub_dirs = []
filenames = []
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for dir_name, sub_dir_list, file_list in os.walk(root_path):
if first:

sub_dirs = sub_dir_list
first = False

else:
filenames.append(file_list[0])

smap_df = pd.DataFrame()

for i in progressbar(range(len(sub_dirs))):
current_day = int(filenames[i].split('_')[5][6:8])
current_month = int(filenames[i].split('_')[5][4:6])
current_year = int(filenames[i].split('_')[5][:4])

if (current_day in days) and (current_year in years)
and (current_month in months):

current_path = root_path + '/' + sub_dirs[i] + '/'
+ filenames[i]

current_df = get_smap_df(current_path)
smap_df = smap_df.append(current_df)

return smap_df

Code 4.2: Code for reading and processing SMAP data.

4.3 ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF) uses retrospect-
ive analysis (reanalysis) to produce a dataset of the global atmosphere, land surface,
and ocean waves from 1950 until the present. This means that the method differs from
CYGNSS and SMAP by not being a method solely dependent on spaceborne remote
sensing. The final product is available with a latency of two to three months, but a
preliminary product with higher uncertainty is published after five days. This dataset
contains global coverage soil moisture estimates on a regular latitude/longitude grid with
a spatial resolution of 0.25 by 0.25 degrees and a temporal resolution of one hour [32].

The reanalysis in the ERA5 soil moisture product is re-sampled over areas covering lakes.
These areas were removed using another dataset from ECMWF called Land Sea Mask.
This dataset contains values for the proportion of land as opposed to the ocean or inland
water bodies in grid boxes with the resolution of 0.1° x 0.1°. Because lakes remain
constant in the spatial domain, the dataset is considered invariant in time. Each value
ranges from zero to one and is dimensionless.
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Figure 4.4: Reanalysis overview.

4.3.1 Reanalysis

Reanalysis combines unevenly distributed measurements, both in the temporal and spatial
domain, and physical models to produce e.g. climate models. A schematic overview of
the approach is illustrated in Figure 4.4, where the assimilation of numerous observation
techniques and models makes it possible to not only produce climate data for recent years
but also to have a valid representation of the situation several decades in the past. This
property allows e.g. monitoring long-term consequences of natural catastrophes such as
earthquakes and volcanic eruptions. However, the data assimilation often includes heavy
numerical computations, which require intense computing power.

4.3.2 ERA5 Data Processing

ERA5 soil moisture data was collected as NET-CDF files2, similar to the likes of CYGNSS
and SMAP. All data was downloaded as one single file, making file traversing unneces-
sary. The main variable is volumetric soil water level 1 (vswl1), which gives the amount
of water in the top seven centimeters of the soil in the unit m3/m3. Furthermore, soil
moisture values over lakes were filtered out by applying the Land Sea Mask dataset. All
areas with a Land Sea Mask value larger than 0.5, meaning that the grid cell contains

2Downloaded from https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-land?tab=form
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more water than land, were removed, resulting in a dataset to evaluate the performance
of CYGNSS.

4.4 SRTM’s Digital Elevation Model

The Shuttle Radar Topography Mission (SRTM) is a joint project between the National
Geospatial-Intelligence Agency and NASA. Launched aboard the Endeavour space shuttle
in February 2000, the 11 days lasting mission aimed to collect digital elevation data for
all Earth land areas between 60° north and 56° south latitude. SRTM used a technique
called radar interferometry for data collection, meaning that two radar images are taken
from slightly different locations before the differences between these allow calculation
of surface elevation. Orbiting the Earth 16 times each day, SRTM collected 12 terabytes
of raw radar echo data during the up-time period. This data was later used to provide a
gridded DEM with a spatial resolution of 1-arc-second, equivalent to approximately 30
meters, and a vertical accuracy of 16 meters with 90% accuracy [80].

4.5 Data Demonstration

4.5.1 Spatiotemporal Resolution Comparison between CYGNSS and SMAP

One of the essential differences between the CYGNSS and SMAP space missions is their
spatiotemporal resolutions, as described in section 4.1 and section 4.2. To demonstrate
this difference, CYGNSS measurements from the first 90 minutes, seven hours, and 24
hours of 2020 have been plotted against SMAP measurements from the first day, the first
two days, and the first three days of 2020 in Figure 4.5. The spatial coverage is slightly
worse around the equator than nearer the poles for both CYGNSS and SMAP. This is
a result of the orbital inclination of 35� and 90� for CYGNSS and SMAP, respectively.
Furthermore, it is clear that the spatial coverage of CYGNSS is considerably better than
SMAP between ±38� latitude.

4.5.2 CYGNSS Surface Reflectivity Demonstration

To provide an intuition of how CYGNSS surface reflectivity responds to different surface
types, this value was plotted over Kenya for the first three days of 2020. The surface
reflectivity computation will be elaborated in section 5.1. This specific region, which
is shown in Figure 4.6 (a), was selected because it contains a large lake that makes it
possible to observe the behavior of surface reflectivity moving from land to water bodies.
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(a) (b)

Figure 4.5: CYGNSS spatial coverage during the first day of 2020 (a) and SMAP spatial cover-
age during the first three days of 2020 (b).

Figure 4.6 (b) shows the plotted CYGNSS measurements. Areas covering lakes and
rivers experience an increase in surface reflectivity, indicated by the yellow color in the
figure. On the other hand, the northwest corner suggests dryer land.

4.6 Programming Language

One of the necessities of the selected programming language is its performance on ex-
tensive datasets. During the analysis in this thesis, data exceeding 1 TeraByte will be
downloaded and processed, which will be difficult without a programming language cap-
able of performing well on such tasks. Furthermore, the language must allow rapid code
development to make it possible to achieve the desired results within this thesis’ time
frame.
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(a) (b)

Figure 4.6: The selected area for the demonstration of the behaviour of CYGNSS (a) and the
measured surface reflectivity in the unit of decibels (b), using measurements that were collected
from January 1st to January 3rd 2020.

The dynamic and interpreted programming language Python was selected to suit the
needs mentioned above. Dynamic programming languages perform numerous operations
at run time that static languages perform at compile time [56, 44]. Consequently, dynamic
languages lack the possibility of performing several performance optimization steps re-
lied on by static languages. However, numerous Python packages, such as Numba, Pan-
das, and Numpy, have been developed to overcome this issue, which again has increased
Python’s popularity in scientific programming. These packages allow high-performance
programming in Python. A study conducted in 2019 compared more than 20 Python
libraries to evaluate the performance of Python as a tool for data mining and big data
analysis and concluded that Pandas is a well suited option for data preparation [73]. In
addition, Python is well documented and, web pages like Stack Overflow provide support
if needed. These reasons made Python a fitting choice for the analysis.

4.7 Interactive Web Page

In collaboration with the department of civil and environmental engineering at NTNU an
interactive web page with the aim of publishing GNSS-R related results was developed.
This web page is a toolbox providing the opportunity to download NASA’s CYGNSS
data for a selected area and time frame, visualise data related to each individual satellite
track, and a selection of ground based GNSS-R data visualizations. As a part of this
thesis, the toolbox was extended with an option for visualizing CYGNSS- and SMAP
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Figure 4.7: A screenshot of the web page showing the time series data filtering where the 5° x
5° area in India is selected.

time series.

The web page is written using Python Django, which is a high-level framework that
allows rapid development of web applications. One advantage of using Python for web
development is the uncomplicated process of adding packages to support additional func-
tionality. Basemap and Leaflet were used to plot maps, where e.g. the interactive map
was possible due to Leaflet. Leaflet provides the opportunity for users to draw a rect-
angle over the desired area instead of manually typing the coordinates. GDAL was used
to translate between raster and vector geospatial data. Furthermore, Chart.js is a JavaS-
cript based library enabling the creation of interactive charts.

The home page presents the users with the different GNSS-R tools. The additional time
series tool allows the user to select a spatial and temporal filter before being presented
with both CYGNSS surface reflectivity and SMAP soil moisture time series for the se-
lected region. A screenshot of the data selection page is shown in Figure 4.7, where time
series over 5° x 5° area in India from 2019 until 2021 is selected. After the user submits
the form, the time series graph containing both CYGNSS and SMAP appears, as shown
in Figure 4.8.

Due to performance challenges regarding the download of CYGNSS data, the server has
been extended with a processed CYGNSS dataset from 2019 to 2021 on a 0.5° x 0.5°
spatial resolution. The same applies for SMAP, which means that it is only possible to
produce time series in this period.

56



Chapter 4 – Data Products and Data Processing

Figure 4.8: A screenshot of the web page showing time series over the 5° x 5° area in India
from 2019 until 2021.

The version control software Git was used to enable cooperation with the previous de-
veloper of the web site. The project had a dependency to the Python package Basemap
that was installed locally on the previous contributor’s computer, which makes it difficult
for others to continuously add functionality to the web page. Significant effort was there-
fore put into making it easier for future developers to start working with the source code.
This included removing the local Basemap dependency and replacing it with the pos-
sibility of downloading it from the internet. Because the Python package installer, PIP,
has issues with downloading Basemap, an alternative process of downloading it through
Anaconda is proposed in the projects ReadMe. Another package dependency that can
be troublesome to download, both through PIP and Anaconda is GDAL. The project
ReadMe was therefor also extended with a paragraph explaining how to use Homebrew
for this specific package. These changes to the project reduce the necessary effort needed
to start contributing to the web site.
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Chapter 5

Methodology

Figure 5.1 presents the general overview of the performed analysis in this thesis. Data
was collected from four independent sources and stored in an external hard drive. The
total amount of downloaded data exceeded 1 TeraByte in total. After the data was down-
loaded, it was processed and prepared for the upcoming analysis. One step of the pro-
cessing includes a novel approach for incidence angle optimization, which will be presen-
ted in section 5.3.

The above-mentioned flowchart formed the basis for the analysis performed in this thesis.
The initial parts of the analysis will focus on developing a thorough understanding of the
parameters affecting the CYGNSS measurements. This includes an investigation of the
effect of the differences between CYGNSS and SMAP in spatiotemporal resolution by
applying Gaussian smoothing, explained in section 5.4. Furthermore, the consequences
of different mission configurations and noise impacts between CYGNSS and SMAP are
discussed before a time series analysis is performed and elaborated in section 5.5. Then,
the resulting insight from these studies will be gathered in an attempt to utilize machine
learning for soil moisture prediction, as further elaborated in section 5.6.

5.1 Surface Reflectivity Computations

An approach to obtain information related to soil moisture is to analyze the surface re-
flected signal power using bistatic radar equations [58]. Assuming coherent surface re-
flections, Rajabi et al. presented how the coherent component of scattered power can be
expressed from observations derived from DDMs as in Equation 5.1,
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Figure 5.1: Flow chart showing the approach overview.

Pcoh
RL =

Pt
RGtGr

(dts +dsr)2

✓
l
4p

◆2

GRL, (5.1)

where Pcoh
RL is the peak value of the coherently received power, and R and L denote the

RHCP transmitting antenna and the LHCP of forward-scattered signals receiving an-
tenna, respectively. Furthermore, Pt

R is the transmitted RHCP power, Gt and Gr are the
transmitter and receiver antenna gain, l is the GPS L1 wavelength (⇠ 0.19m), while dts
and dsr are the distances from the specular reflection point to the GPS transmitter and
the GNSS-R receiver. Lastly, GRL represents the surface reflectivity along the incidence
angle. Solving Equation 5.1 for surface reflectivity results in Equation 5.2 as presented
below.

SR = GRL =
(dts +dsr)2

Pt
RGtGr

✓
4p
l

◆2

Pcoh
RL (5.2)

For easier compatibility during processing, comparisons, and analysis, all parameters in
Equation 5.2 are converted to the unit of dB, resulting in Equation 5.3.

SR= 20log(dts +dsr)+20log(4p)+10logPcoh
RL �10logPt

R�10logGt �10logGr�20logl
(5.3)

The value of the received power, Pcoh
RL , is calculated from the SNR observations of DDMs

available in the CYGNSS L1 data. However, the SNR value has shown to be related, but
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not exactly equal, to the received power. This is due to factors such as system noise levels,
receiver instrument gain settings, and fluctuations in signal strength due to atmospheric
effects [25]. As a result, surface reflectivity is considered proportional to the CYGNSS
observations as presented in Equation 5.4 [13].

SR µ SNR�10logPt
R �10logGr �10logGt �20logl +20log(dts +dsr)+20log(4p)

(5.4)

Even though the obtained SNR values from CYGNSS are solely related to Pcoh
RL , but

not equal, Equation 5.4 is used to calculate the surface reflectivity based on the strong
relations the values have to the hydrological conditions of the land surface [52].

As a result of some values obtained from the CYGNSS L1 data already being in the unit
of dB, combined with the wavelength l being the GPS L1 carrier, Equation 5.5 presents
the final representation of the equation used for surface reflectivity calculations in this
study.

SR = SNR�Pt
R �Gr �Gt �20log(0.19)+20log(dts +dsr)+20log(4p) (5.5)

5.2 Presentation of the Analysed Areas

Figure 5.2: Presentation of the areas used in the analysis. The red rectangle shows the area used
in the initial analysis and the five blue squares show the latter used areas.
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Several areas have been selected to conduct the analysis in this thesis. They are mainly
divided into two groups, where the initial research targets a larger region in northern India
and eastern Pakistan, shown in red in Figure 5.2. In this area, a case study spanning 7.8°
latitude and 9.9° longitude is chosen for the comparison and performance assessment of
the three missions CYGNSS, SMAP, and ERA5. Furthermore, this region contains vari-
ous soil types and areas with different slopes, making it suitable for an initial evaluation
of the available data products related to soil moisture.

In addition to the initial exploration of the datasets in northern India and eastern Pakistan,
five smaller regions spanning 5° latitude and 5° longitude will be analyzed. These were
selected based on their geophysical conditions and are located in India, Iran, Australia,
Brazil, and Congo. The areas will be referred to as the country they fall within throughout
this thesis and are marked in blue in Figure 5.2. The geophysical conditions deciding
which regions to select were scaled surface roughness and vegetation opacity, and the
values for each area are presented in Table 5.1. Congo, Iran, and India have a relatively
high scaled surface roughness of approximately 0.615, whereas the vegetation opacity
varies from close to zero in Iran to 0.43 in Africa. The two final regions in Brazil and
Australia have a lower surface roughness, while the vegetation opacity varies similarly to
the three former mentioned areas.

Table 5.1: Scaled surface roughness and vegetation opacity for the five 5° x 5° areas used to
conduct parts of the analysis in this thesis.

Scaled Surface Roughness Vegetation Opacity

Congo 0.615 0.431
Brazil 0.465 0.313
Australia 0.407 0.032
Iran 0.614 0.007
India 0.614 0.311

It is also worth noting that each area consists of sub-regions with distinct geophysical
conditions. For example, despite possessing a relatively large vegetation opacity value,
the 5° x 5° area in India also contains savannas with open landscapes. This means
that even smaller sub-regions within the presented areas can be used to isolate differ-
ent ground conditions, but these will be introduced when describing the concrete results.
To summarize, performance assessment of GNSS-R based soil moisture estimates in dif-
ferent geophysical conditions will lead to further insight into how numerous parameters
affect the measurements.
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5.3 Effects of Surface Roughness and Fresnel Coefficients

One of the reasons why Equation 5.2 and CYGNSS data are used for surface reflectivity
computations in this study, in contrast to the surface reflectivity term presented in Equa-
tion 5.6, is related to the highly demanding computational power required to perform the
estimations.

G = a |R|2 (5.6)

Equation 5.6 represents the coherent surface reflectivity term along the specular direction,
where R is the Fresnel reflection coefficient as introduced in subsection 2.2.4, and a
denotes the loss of coherent power due to diffused scattering.

a = exp(�4k2h2 cos2 q), (5.7)

Equation 5.7 highlights the effects of surface roughness and incidence angle in computa-
tions of reflected signal power loss, where k is the electromagnetic wavenumber, h is the
RMS surface height, and q is the incidence angle [79].

To perform accurate computations based on Equation 5.6, detailed information related
to surface roughness and topology would be required, such as a high resolution DEM.
Measuring surface reflectivity values on a global scale would hence lead to slower, more
computational heavy methods compared to the utilization of available CYGNSS data
used within a set of assumptions. Surface reflectivity values are dependent on surface
roughness, incidence angle, and permittivity [7, 11, 17, 58, 33]. Because this study fo-
cuses on changes in permittivity due to the presence of water, power loss caused by
surface roughness, permittivity, and incidence angle should preferably be reduced. An
assumption used in similar studies is that Fresnel coefficients do not change too much
within smaller variations of incidence angles. Figure 5.3, as presented by Hoseini et al.,
visualize how the power loss due to permittivity of a reflected signal is affected by the el-
evation angle, which is 90°�q [33]. The figure shows trends of smaller changes in power
loss with incidence angles below 60 degrees, or equivalently, elevation angles larger than
30 degrees.

Another underlying assumption in previous studies worth mentioning is that changes in
surface roughness within smaller areas are considered so small that they do not affect
the power loss to a large extent. With a power loss less affected by surface roughness
and incidence angle, it is reasonable to assume that differences in measured SNR by
CYGNSS are solely due to changes in water content, thus forming the foundation of
using SNR to estimate soil moisture.
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Figure 5.3: Fresnel coefficients calculated using the permittivity of seawater at the Onsala
GNSS-R station. Based on the average permittivity, the blue and orange lines denote the mag-
nitude of the copolarization and cross-polarization reflection coefficients in dB, respectively.

Source: [33]

In an attempt to better understand how surface roughness and permittivity actually affect
the CYGNSS measurements, the mentioned assumptions are considered insufficient in
this study. Instead, the resulting power losses due to the two parameters will be mapped
in relation to different incidence angles. The desire of doing this is to obtain optimal
incidence angle intervals specific for different areas where the mentioned effects are re-
duced to a minimum. As a result, the CYGNSS measurements made at incidence angles
within a selected range and area would have smaller uncertainties, forming a foundation
for more realistic and accurate models and analyses.

5.3.1 Power Loss due to Fresnel Coefficients

Along with the incidence angle parameter, Fresnel coefficient computations include the
permittivity of the reflecting medium. Figure 5.3 presented how power loss due to per-
mittivity is affected by the angle of the reflected signal. However, the figure visualizes
the behavior of power loss using only the permittivity of seawater measured at the Onsala
GNSS-R station. Surface reflectivity measurements over land are performed on various
soil types and saturation levels, and the power loss representation changes accordingly.
To be able to showcase an overall trend in power loss based on differences in the reflect-
ing surface permittivity, Figure 5.4 presents the power loss per incidence angle for six
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different surface permittivities. As introduced in subsection 2.2.4, the Fresnel coefficient
is computed using Equation 2.20, inserting permittivity values ranging from dry soil rep-
resentations with a permittivity of 2, to wet and saturated soil, with permittivity values as
high as 30. In addition, the inclusion of a value of 80, representing an arbitrary sea water
permittivity, is also illustrated for comparison reasons. The trend in Figure 5.4 is then
comparable to that presented in Figure 5.3, with both figures showing clear indications
of almost constant power loss independent of incidence angle before a severe increase is
experienced at incidence angles higher than 60 degrees.

Figure 5.4: Experienced power loss in decibels due to Fresnel coefficients.

Furthermore, Figure 5.4 also highlights how dry soil experience greater power loss than
wet and saturated soil, further strengthening the reasoning that an increase in surface
reflectivity suggests an increase in soil moisture.

5.3.2 Power Loss due to Surface Roughness

The roughness of different magnitudes in the reflecting surface is already known to cause
power loss in CYGNSS measurements. However, in contrast to the common assumptions
mentioned in section 5.3, these effects are not circumvented but rather closely studied
in an attempt to acquire better data utilization when dealing with CYGNSS measure-
ments. To visualize how surface roughness affects power loss based on different incid-
ence angles, a surface roughness coefficient, S, is first presented in Figure 5.5 using pre-
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selected incidence angles ranging from 0 to 60 degrees, with intervals of 10 degrees. The
coefficient S relates the standard deviation of surface height, s , as a measure of surface
roughness to the resultant power loss and is defined as in Equation 5.8. A higher value of
S would indicate a smoother surface and hence lower power loss than rougher surfaces
represented by a smaller values. Additionally, l represents the signal wavelength, being
19 cm at L-band, and e represents the elevation angle. S is also independent of polar-
ization and is therefore highly representative in the intended use of CYGNSS GNSS-R
measurements [54].

S = exp
✓
�1

2
(2p)2

l 2 s2 sin2 e
◆

(5.8)

Figure 5.5: The effect of surface roughness on CYGNSS measurements for different incidence
angles.

A noticeable feature in Figure 5.5 is how the standard deviation of the surface height only
presents values between 0 and 0.2 meters. The reason is simply due to how the seven
lines representing different incidence angles all converge towards a surface roughness
coefficient of 0. Hence, computations for higher values of standard deviations would not
result in more information of interest but highlight a severe power loss. Additionally,
Figure 5.5 showcases how the standard deviation of the surface height determines the
obtainable range of surface roughness coefficients in measurements made within areas
with differences in surface roughness. As introduced in subsection 4.2.1, SMAP consists
of measurements made at a constant angle of 40 degrees. Due to the fact that SMAP
surface roughness coefficients range from 0 to 0.17, where the scaled representations are
presented in section 5.2, a standard deviation of 7-8 cm can be assumed for most of the
land within the chosen areas.
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Furthermore, in order to more clearly express what differences in surface roughness coef-
ficients means in terms of power loss, Equation 5.8 is converted to the unit of decibels.
The resulting expression is presented in Equation 5.9.

Sdb = 10log10(S) (5.9)

Using Equation 5.9 for the same seven incidence angles used to produce Figure 5.5 results
in the alternative representation presented in Figure 5.6.

Figure 5.6: Experienced power loss in decibels due to surface roughness.

Figure 5.6 shows clear indications of an increase in power loss with a higher standard
deviation of surface height. However, this loss is highly dependent on which incidence
angle is used during the measurement. Lower incidence angles tend to experience a sig-
nificantly higher power loss at higher standard deviations of surface heights than those
at higher incidence angles. Given the mentioned standard deviation of 7-8 cm in most
parts of the areas chosen for further analysis, these differences become somewhat smal-
ler. Accordingly, combining the results presented in Figure 5.6 with those presented in
Figure 5.4 enables data selection based on a minimization in power loss and measurement
uncertainty.

5.3.3 Optimizing Incidence Angle Intervals in Data Selection

With a deeper insight into how both Fresnel coefficients and surface roughens affect
power loss of CYGNSS measurements, distinct methods to reduce these impacts can
be developed based on desired user applications. On a general note, it is desirable to
have as many measurements as possible available for analysis purposes. However, it is
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also preferable that these experience minimum uncertainties in power loss to ensure the
sole utilization of high accuracy measurements. Based on this reasoning, an optimization
function to maximize the number of available measurements while minimizing the power
loss uncertainty is defined, as presented in Equation 5.10.

F(X0) =
Uncertainty[X0]

N_obs[X0]
(5.10)

The function to be minimized takes an incidence angle interval, represented by the start-
and end incidence angle, as input and returns the resulting F-value. The F-value is calcu-
lated by dividing the uncertainty by the number of observations. Both the uncertainty and
number of observations are computed by dividing the selected 5° x 5° area into smaller
0.2° x 0.2° grid boxes, where the median uncertainty and median number of observations
at a certain incidence angle and incidence angle interval are computed. The final val-
ues representing the entire 5° x 5° area are the medians of the resulting values, ensuring
representative values being returned.

Even though minimization of the F-value provides reasonable estimates of optimal in-
cidence angle intervals when selecting CYGNSS measurements to be used in analyses,
these intervals depend on the intended user application. Because the proposed minimiz-
ation function pays equal weight to the two parameters, different applications can value
the parameter accordingly. High accuracy soil moisture estimation studies would prefer
to exclusively use measurements of low uncertainty at the expense of the number of ob-
servations available. On the contrary, applications focusing on bigger, unnatural changes
in soil moisture, such as flood- or drought detection, can sacrifice uncertainty for a higher
number of observations. Because such an application-specific formula compensates for
the effects of surface roughness or Fresnel coefficients directly, data is filtered based on
the computed F-value, in combination with representations of relevant parameters in this
study.

Using the area of Iran as an example, such an optimized incidence angle interval selec-
tion can be made. Figure 5.7 presents the uncertainty in power loss over the area using
different incidence angle ranges. The incidence angle value represents the interval of ±
half the incidence angle range. As the figure is based on real CYGNSS observations, the
presence of fluctuations occur. In order to reduce the effect of sudden fluctuations, the
graphs are smoothed using a Savitzky-Golay filter with a moving window of 13 degrees
and a polynomial order of 3. Accordingly, smoothed representations are visualized as
dotted lines of the same color as the initial result.

Notable features in Figure 5.7 include smaller uncertainties at lower incidence angles and
that smaller incidence angle intervals reduce the uncertainties. Based on the presented
figure, measurements at lower incidence angles would hence be characterized as more
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Figure 5.7: Median standard deviation of power loss in decibels due to incidence angle and
incidence angle interval for the entire area of Iran.

accurate than those measured above 20 degrees. However, as mentioned above, high ac-
curacy is not always prioritized above the number of available measurements. Figure 5.8
presents the median number of observations available at each incidence angle and in-
cidence angle interval. Smaller fluctuations are still occurring for the same reasons, so
smoothed values are computed using the same Savitzky-Golay filter as used in Figure 5.7.

Figure 5.8: Median number of observations measured at each incidence angle and incidence
angle interval for the entire area of Iran.

Figure 5.8 highlights how the number of observations increases with higher incidence
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angles, with most measurements being made at 30 to 40 degrees. Combined with Fig-
ure 5.7, Figure 5.8 confirms the need of an application-specific methodology when se-
lecting data based on incidence angles, as there are less high-accuracy measurements
than those being less accurate. Employing the F-function introduced in Equation 5.10
using the smoothed uncertainty- and number of observations values, Figure 5.9 presents
the resulting F values in the area of Iran.

Figure 5.9: The resulting F value at each incidence angle and incidence angle interval for the
entire area of Iran. The value is computed using Equation 5.10, with the smoothed representa-
tions of uncertainty and number of observations.

In the case related to the area of Iran, incidence angle intervals of 10 degrees seem to
provide better data when giving equal weight to accuracy and number of measurements.
In addition, incidence angles between 30 and 40 degrees appear to indicate a local min-
imum for all incidence angle ranges. A proposed interval for use in data selection could
therefore be all measurements made at 33 ± 5 degrees. Even though the visualisations
presented in Figure 5.7, Figure 5.8, and Figure 5.9 apply for the presented area of Iran
only, similar F value visualisations can be used to select data based on incidence angle in-
tervals representing local minimums. An analysis related to the exclusion of less accurate
measurements being utilized will be elaborated in section 5.6.

5.4 Gaussian Smoothening Analysis

The spatial resolution of the two space missions CYGNSS and SMAP are different. As
explained in chapter 4, CYGNSS possesses a high spatiotemporal resolution compared
to SMAP. The higher spatial resolution of CYGNSS enables the possibility to capture
small fluctuations in surface reflectivity, thus providing the opportunity of producing soil
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moisture estimates with increased spatial resolution. However, this difference can also
impact the correlation between the two data sources in a negative manner. Previous
approaches to soil moisture estimation using CYGNSS have produced correlations with
SMAP that possibly suffer from this fact. In reality, the produced correlations could have
been even higher if CYGNSS and SMAP shared the same resolution, hence increasing
the reliability of CYGNSS as a source for soil moisture estimation. In order to analyze
this effect, a Gaussian filter will be applied to the CYGNSS data. The Gaussian filter in
two dimensions is given in Equation 5.11,

G(x,y) =
1

2ps2 e�
x2+y2

2s2 , (5.11)

where s is the standard deviation of the Gaussian distribution, x and y is the distance
from origin on the horizontal and vertical axis respectively.

This analysis will be performed on five areas in the region covering northern India
and Pakistan. The five areas are chosen based on different soil moisture characteristics
to evaluate the consequences of different spatial resolutions under different conditions.
Measurements from January 2020, both for CYGNSS and SMAP, will be used. Each
area is grid boxed with a spatial resolution of 0.1 x 0.1 degrees before each grid box
will be assigned the median of the CYGNSS measurements and the mean of the SMAP
measurements.

Furthermore, the standard deviation of the Gaussian distribution, s , will be varied. If
applied to an image, more blur will be introduced if a larger s is used. The sigma
determines which points to include in the calculations of the current point. Larger sigmas
mean that each point will be affected by points located further away, thus reducing the
spatial resolution. Finally, the correlation between CYGNSS and SMAP will be used to
evaluate the results.

5.5 Time Series Analysis

In order to analyze the change of surface reflectivity and soil moisture over longer peri-
ods, time series analysis will be conducted for the five regions presented in section 5.2.
As discussed by Chew and Small, the temporal differences in spaceborne GNSS-R data
have the potential to reduce error sources such as vegetation cover and different soil
types. This is because such factors remain approximately constant over time, thus leav-
ing changes in soil moisture as the primary factor of variations in surface reflectivity
[9].

The time series is performed by re-sampling the CYGNSS and SMAP data within each
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area to a spatial resolution of 0.5° x 0.5°. Then, the time series will be computed for each
grid cell from the 1st of January 2019 until the 31st of December 2021. Each data point
in the time series will be an average of the upcoming three days to match the temporal
resolution of SMAP. The temporal step size is one day.

Next, the correlation between CYGNSS surface reflectivity and SMAP soil moisture will
be computed for each time series in every grid cell. The time series of the grid cell
with the highest correlation and the one with the lowest correlation will be presented and
further analyzed, in addition to the time series of the entire 5° x 5° area.

Time series can contain underlying properties, like periodic signals, which are difficult
to detect for the human eye. The Lomb-Scargle periodogram is an algorithm developed
for this case. The algorithm’s objective is to detect and characterize periodicity in un-
evenly sampled time series data [78]. Because the time series last for a period of three
years, they include the same seasons at least three times, thus allowing the Lomb-Scargle
periodogram to possibly detect seasonal soil moisture variations. The algorithm accepts
the surface reflectivity or soil moisture data and a list of frequencies as input. Then, the
periodic power of each frequency is returned, and peaks in this data will reveal seasonal
variations in soil moisture.

5.6 A Machine Learning Approach to Soil Moisture Estima-

tion

Lastly, a machine learning approach to create a geophysical model function (GMF) will
be conducted. In remote sensing, the variable of interest is often observed through some
other observable. Therefore, GMFs are created to convert the observables to estimates
of the variable of interest. In this section, this will be done using machine learning
models capable of converting reflected GNSS signals, with ancillary data, to soil moisture
estimates.

As introduced in section 3.3, previous work within the field has presented promising res-
ults. These show indications of the possibility to perform accurate soil moisture estima-
tions on a global scale based on CYGNSS level 1 measurements using machine learning.
In contrast to the work presented by Senyurek et al., Lei et al. and Jia et al., this study
will focus on estimation within smaller areas [65, 46, 36]. The reason why selective areas
are used is the desire to obtain more information on how different parameters and surface
conditions affect the estimation performance. Potential findings can then be utilized in
further work to develop methods with higher performance and accuracy than those for
larger areas existing today.

The CYGNSS L1 data used in the soil moisture estimation analysis will first undergo the
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same initial data processing step as that used in the other presented analyses, elaborated
in subsection 4.1.3. Furthermore, the data is filtered based the five 5° x 5° areas presented
in section 5.2. Soil moisture values from SMAP are then retrieved from the same area,
in addition to SMAP vegetation opacity and surface roughness coefficients. SMAP data
also include quality flags with quality assessments of successful soil moisture retriev-
als. Because quality flag values of 0 or 8 indicate high-quality retrievals, SMAP data
containing any other flag is intentionally filtered out.

In order to create a colocated dataset of relevant CYGNSS and SMAP parameters at
the highest possible spatiotemporal resolution, SMAP values for soil moisture, vegeta-
tion opacity, and surface roughness are interpolated. Interpolation is a statistical method
by which known values located in sequence are used to estimate unknown values in
other subareas [43]. As this study aims to utilize the high spatiotemporal resolution of
CYGNSS, the interpolation has to be performed both in space and time. The work presen-
ted by Senyurek et al. showed that both linear and natural neighbor interpolation perform
well in the three-dimensional interpolation and is therefore tested in this thesis [67]. The
linear interpolation is performed using a linear N-dimensional interpolator. Provided by
the python library, SciPy, the interpolation is conducted by triangulating input data before
a variant of the fast and reliable Lagrange polynomial interpolation is performed on each
triangle. Interpolation of CYGNSS points outside the convex hull, being the smallest
area that contains all available SMAP values, returns Not a Number (NaN) fill values,
and these are filtered out before further use [4].

First proposed by Sibson in 1981, natural neighbour interpolation utilizes Voronoi dia-
grams to interpolate scattered data, resulting in smoother approximations compared to
other methods [70]. As presented in Figure 5.10, a Voronoi diagram can be defined as the
partitioning of a plane with distinct points into convex polygons such that each polygon
contains a single reference point, and other points within that polygon are closer to its
reference point than any other [5]. Natural neighbors can then be defined as two sites
whose Voronoi cells share a common edge. To determine the natural neighbors of an
interpolation point, one can imagine this point is virtually inserted into the Voronoi dia-
gram, as illustrated in Figure 5.10. This virtual insertion modifies the original Voronoi
diagram and creates a new Voronoi cell with a set of points now closer to the inserted
reference point. A weighted average of the resulting natural neighbours and respective
weights then provide an interpolated value at the inserted reference point [5].

In addition to the interpolated SMAP geophysical parameters, SRTM’s DEM is used to
generate two additional parameters related to surface topography. As introduced in sec-
tion 3.1, CYGNSS measurements over land can benefit from additional consideration of
terrain variations compared to ocean measurements. Surface roughness affects the co-
herency of the reflected signals received at CYGNSS spacecrafts. CYGNSS uses the
WGS84 ellipsoid to represent the surface of the Earth and does not account for local
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Figure 5.10: An example of a Voronoi diagram, illustrating the insertion of a new point and
the resulting Voronoi cell highlighted in green. The points marked in red represents the natural
neighbours and their respective weights in natural neighbour interpolation.

Source: [77]

terrain variations [27]. This results in the provided incidence angle not always being rep-
resentative of the angle in the reflection geometry. Therefore, a correction for this angle
will be computed by utilizing a DEM and 0.01° x 0.01° partitioning of the analyzed area.
The angular difference between the normal vector of the partitioned area and the vector
to the center point of the same area will be used as correction. This parameter will be
referred to as elevation steepness and is represented by the Df parameter in Figure 5.11
(a). In addition, the RMSD between all elevation points and the averaged plane is com-
puted for each patch. Higher values represent larger variations in the topography within
a single patch, illustrating an additional attribute of the surface. This parameter will be
referred to as height deviation and is illustrated in Figure 5.11 (b).

To analyze the effects of the generated elevation steepness and height deviation, and
whether or not the inclusion of these improves soil moisture estimation accuracy, the 5°
x 5° areas are divided into smaller 0.5° x 0.5° grid cells as done in section 5.5. Based
on the obtained results from the time series analysis, grid cells that experienced distinct
correlations or surface conditions are selected. The AutoML library H2O is then utilized
to generate various soil moisture estimation models based on different combinations of
parameters, using data from January 2019 to June 2021 as training data and the latter part
of 2021 for testing. In this way, visualization of the estimation performance is also more
relatable to the conducted time series in the same areas. Because soil moisture estimation
is considered a form of regression, the methods GBM, DRF, and XGBoost will be tested.
In addition to these, H2O’s deep learning model based on a multi-layered feed-forward
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(a)

(b)

Figure 5.11: Illustrations of how the proposed Df (a) and RMSD (b) are computed in this
thesis. These parameters will be referred to as elevation steepness and height deviation for the
remaining study.
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artificial neural network trained with stochastic gradient descent using back-propagation
is attempted. In addition, a stacked ensemble of the tested methods will be applied.

Lastly, data selection based on proposed optimal incidence angle intervals, as introduced
in subsection 5.3.3, is performed. By doing this in areas with differences in topography,
vegetation, and climate, this study aims to highlight how different parameters are im-
portant in different areas, combined with an assessment of different machine learning
methods and performance. Potential findings can then contribute to potential improve-
ments in global soil moisture estimation models in future research.
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Results and Discussion

The previously described methodology was applied to the presented areas to derive in-
formation related to soil moisture. These results will be presented in the following sec-
tion.

6.1 Preliminary Analysis

Initially, the signature of soil moisture in the three datasets described in chapter 4 is in-
vestigated. A case study spanning a region of 7.8° latitude and 9.9° longitude in northern
India and Pakistan is chosen for the comparison and performance assessment of GNSS-
R measurements. An areal photo of the selected region is presented in Figure 6.1. The
surface reflectivity and soil moisture for the months of January and August 2020, in ad-
dition to the temporal differences between them and standard deviations, are presented
and discussed.

Figure 6.2 (a) and (b) plot the average CYGNSS surface reflectivity with a spatial resol-
ution of 0.1° by 0.1° for January and August respectively, in the unit of dB. Figure 6.2
(c) and (d) plots the average soil moisture from SMAP measurements with the same spa-
tial resolution for January and August. The northeast corner of Figure 6.2 (c) is missing
because the SMAP constellation was unable to cover that specific area in January, high-
lighting the difference in temporal resolution between SMAP and CYGNSS. Figure 6.2
(e) and (f) plot the average soil moisture values from ERA5 with the same spatial resol-
ution and period as mentioned above. Common for all plots is that the x-axis shows the
longitude coordinates, the y-axis shows the latitude coordinates, and the color bar shows
the target value range.
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Figure 6.1: An areal photo of the analyzed region covering northern India and Pakistan.

Overall the three datasets show good agreement with each other. In January, the plots
illustrate drier regions in the northeast corner and in the western parts. In addition to this,
all plots show significantly increased surface reflectivity or soil moisture values in the
more lush regions in Figure 6.1.

Table 6.1 shows the average surface reflectivity for CYGNSS and the average soil mois-
ture for SMAP and ERA5. The values are averaged over the whole region for the two
months. CYGNSS demonstrates increased soil moisture from January to August as the
average surface reflectivity increases. The same applies both for SMAP and ERA5, in-
dicating that the temporal change in soil moisture follows similar patterns for all three
datasets. By inspection of Figure 6.2, similar trends occur. This is reasonable as the
monsoon season takes place between June and September in India, hence the analysis
demonstrates reasonable behavior in terms of temporal changes.

Table 6.1: Average CYGNSS surface reflectivity for January and August 2020 and average
soil moisture for the months of January and August 2020 for SMAP and ERA5. The values are
calculated over northern India and eastern Pakistan.

January August Relative Change

CYGNSS 9.36 dB 10.5 dB +12.2 %
SMAP 0.21 cm3/cm3 0.23 cm3/cm3 +9.5 %
ERA5 0.21 m3/m3 0.25 m3/m3 +19.1 %

An important difference between the three datasets is the more smooth properties of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Average surface reflectivity for CYGNSS in January (a) and August (b), average
soil moisture for SMAP in January (c) and August (d), and average soil moisture for ERA5 in
January (e) and August (f).
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ERA5. Within small regions of the analyzed area, CYGNSS and SMAP demonstrate
more variations than ERA5. This can be seen in the eastern part of the plots between
27.3° and 29.9° longitude in Figure 6.2, where ERA5 shows significantly smaller changes
compared to CYGNSS and SMAP. This phenomenon might occur due to ERA5 being
a global model produced by the assimilation of different spaceborne or ground-based
observations, while CYGNSS and SMAP are based on direct measurements of the Earth’s
surface. This is also illustrated in Table 6.2, where CYGNSS shows a significantly higher
correlation with SMAP than it does with ERA5. CYGNSS has an average correlation
with SMAP of 0.774 for January and August, while the correlation with ERA5 is only
0.353 for the same months.

Table 6.2: Correlation between CYGNSS and the two ancillary datasets SMAP and ERA5 for
the months of January and August in 2020 in northern India and eastern Pakistan.

January August Temporal Difference

SMAP ERA5 SMAP ERA5 SMAP ERA5

CYGNSS 0.777 0.368 0.770 0.337 0.686 0.463

Despite showing a high correlation, CYGNSS and SMAP differ in local variations. In the
southwest parts of Figure 6.2 (a) and Figure 6.2 (c), CYGNSS and SMAP differ in local
fluctuations. While SMAP demonstrates the whole southwest part to be uniformly dry
with small soil moisture changes, CYGNSS shows several local variations. A reason for
this deviation might be the elevation of that specific area. Figure 6.3 shows that several
locations in the analyzed region are located at high elevations. CYGNSS measurements
where the specular point is located in mountainous areas can be more prone to noise than
those measured at lower and less steep elevation [9]. Therefore, it is likely that the cor-
relation would increase further by filtering out high elevation CYGNSS measurements.

Figure 6.4 shows the standard deviations for each CYGNSS grid box presented in Fig-
ure 6.2 (a) and (b). There are several noticeable factors from these plots. Firstly, the
reflected signal power seems to affect the standard deviation. The drier regions, marked
in red in Figure 6.4 (b) and reflect less of the transmitted GPS signal, show a higher
standard deviation than elsewhere. The soil type can also affect these results. It might be
possible that different soil types generate different responses in terms of standard devi-
ation, which again can form a possible foundation for soil classification.

Furthermore, some CYGNSS tracks possess higher standard deviations than others. One
of these tracks is located in the southeast part of Figure 6.4 (b) and is marked in green.
Filtering out such tracks can help improve the quality of the surface reflectivity measure-
ments.

Figure 6.5 (a) shows the change in CYGNSS surface reflectivity between January and
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Figure 6.3: Digital elevation model with areas exceeding 600 meters above sea level.

(a) (b)

Figure 6.4: Standard deviation of the CYGNSS surface reflectivity measurements for January
(a) and August (b). The red lines in (b) show areas with higher standard deviations, whereas the
green line shows a CYGNSS track possibly affected by noise.

August 2020. Figure 6.5 (b) and (c) show the change in soil moisture for SMAP and
ERA5 respectively. Positive values indicate increased surface reflectivity or soil mois-
ture from January to August, and negative values imply the opposite. All three plots
show similar global trends over the region, where the northwest part demonstrates lower
surface reflectivity and soil moisture, and the southeast parts show increased surface re-
flectivity and soil moisture.
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(a) (b) (c)

Figure 6.5: Temporal difference in SR and soil moisture between the two months January and
August for CYGNSS (a), SMAP (b), and ERA5 (c).

The main difference between the plots in Figure 6.5 is the smooth transitions from in-
creased soil moisture to decreased soil moisture for the three data sources. It appears that
ERA5 continuously moves from increased soil moisture in the southeast to decreased
soil moisture in the northwest. This overall smooth trend is to a smaller degree present
for CYGNSS and SMAP. The spatial resolution of CYGNSS and SMAP can be one of
the reasons to why this pattern occurs. Because ERA5 uses reanalysis to create a global
model, it struggles to capture the local variations. Furthermore, CYGNSS varies slightly
more than SMAP, which might indicate the potential of using CYGNSS for high spatial
resolution soil moisture prediction.

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Correlation between surface reflectivity and soil moisture.
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The first row of Figure 6.6 shows two-dimensional histograms of CYGNSS surface re-
flectivity and SMAP soil moisture for January (a), August (b), and the temporal differ-
ence between January and August (c). The bottom row shows similar histogram plots
between CYGNSS and ERA5. Each bin in these plots illustrates the number of obser-
vations falling into the surface reflectivity from CYGNSS and soil moisture from SMAP
using a logarithmic scale. A red color indicates more observations and blue indicate
less. The soil moisture, from either SMAP or ERA5, is plotted along the x-axis, and the
CYGNSS surface reflectivity is plotted along the y-axis, together forming a plot capable
of analyzing the compliance between the measurements.

Figure 6.6 (a), (b), and (c) show a linearly increasing trend between CYGNSS and SMAP.
This is reasonable as previous work show that increased soil moisture values lead to an
increase in surface reflectivity. However, the plots using ERA5 as ancillary data, shown
in Figure 6.6 (d), (e), and (f), do not possess the same clear pattern. The overall trend
of these histograms is still somehow linearly increasing but showing a clearly weaker
correlation than SMAP. This is in agreement with the results presented in Table 6.2, where
CYGNSS and SMAP display a significantly higher correlation than what CYGNSS and
ERA5 do. It is worth noting that the linear trend in Figure 6.6 (f) is stronger than in
Figure 6.6 (d) and (e), which is also suggested by the values in Table 6.2.

These results suggest that ERA5 is infeasible as an ancillary data source in comparis-
ons with CYGNSS due to its inability to capture local variations. Therefore, ERA5 is
excluded in the upcoming analyses, and SMAP will be the primary ancillary data source.

6.2 The Effect of Noise and Spatiotemporal Resolution

CYGNSS and SMAP are two space missions with different orbits, antenna gain, and
design. This leads to two different spatiotemporal resolutions and possible deviations
in systematic noise affecting the measurements. The effect of these differences will be
investigated to gain a better understanding of using the correlation between CYGNSS
and SMAP as a performance measure.

Two 3° x 3° areas with different soil moisture distributions were selected to conduct this
analysis. These are shown in Figure 6.7, where the average CYGNSS surface reflectivity
is plotted for January 2020 on a 0.1° by 0.1° spatial resolution. The black square covers
an area where the soil moisture is uniform and contains few large changes. This area will
be referred to as the "uniform soil moisture" area. Furthermore, the blue area represents
an area with a significant increase in soil moisture going from south to north and will
be referred to as the "variable soil moisture" area. The correlation between CYGNSS
and SMAP is computed for January 2020 and August 2020 to illustrate the effect the soil
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Figure 6.7: The two areas selected to analyse the effect of noise and spatial resolution of
CYGNSS and SMAP.

moisture footprint has on the correlation between CYGNSS and SMAP.

Figure 6.8 and Figure 6.9 show the surface reflectivity and soil moisture for January
2020 and August 2020 respectively. The left side of both figures illustrates the variable
soil moisture area, and the right side shows the uniform soil moisture area. The top row
is CYGNSS surface reflectivity, while the bottom row illustrates SMAP soil moisture.

Table 6.3: Correlation between CYGNSS and SMAP for one area containing uniform soil mois-
ture and one area containing variable soil moisture located in northern India and Pakistan.

Area Correlation Coefficient

Uniform SM January 2020 0.453
Variable SM January 2020 0.924
Uniform SM August 2020 0.813
Variable SM August 2020 0.914

The correlations between CYGNSS and SMAP for the two analyzed areas in the two se-
lected periods are presented in Table 6.3. In January 2020, the uniform soil moisture area
demonstrated a weak correlation between CYGNSS and SMAP. This can result from a
lack of general trends in the soil moisture footprint, meaning that factors such as different
spatiotemporal resolution and the impact of noise contribute to lowering the correlation
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(a) (b)

(c) (d)

Figure 6.8: Average CYGNSS surface reflectivity (a) and (b), and average SMAP soil moisture
(c) and (d) for two 3 by 3 degree areas in January 2020.

between the two data sources. However, in August 2020, the uniform soil moisture area
demonstrates larger variations in soil moisture. This can be seen in Figure 6.9 (b) and
(d), where the southwest parts are significantly drier in August than in January 2020.
As a result, the correlation between CYGNSS and SMAP in the "uniform soil moisture"
area increased from 0.453 in January to 0.813 in August, demonstrating the impact of
different spatiotemporal resolutions and noise between CYGNSS and SMAP.

CYGNSS and SMAP show a good agreement with each other, both in January 2020 and
August 2020, for the variable soil moisture area. Areas like this one are less impacted by
the difference in spatiotemporal resolution and noise because the significant variations in
soil moisture dominate these other factors.
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(a) (b)

(c) (d)

Figure 6.9: Average CYGNSS surface reflectivity (a) and (b), and average SMAP soil moisture
(c) and (d) for two 3 by 3 degree areas in August 2020.

These results also enlighten aspects of the correlation between CYGNSS and SMAP
as a performance measure. Despite the uniform soil moisture area demonstrating a low
correlation in January 2020, the fact that CYGNSS possesses a higher spatiotemporal res-
olution compared to SMAP means that CYGNSS might capture fluctuations unavailable
to SMAP. The low correlation is therefore not necessarily a sign of weak performance
but a sign of the improved capabilities of producing high spatiotemporal resolution soil
moisture products using the CYGNSS constellation.
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6.3 Smoothening Analysis

To demonstrate the effect of smoothening, a Gaussian filter was applied to the CYGNSS
measurements in the region covering northern India and Pakistan used in the previous
section. This is shown in Figure 6.10, where Figure 6.10 (a) shows the data without
performing smoothening. Figure 6.10 (b) shows the same area with smoothening using
sigma = 0.5, (c) with sigma = 1 and (d) with sigma = 2. All plots have been grid boxed
with a resolution of 0.1 by 0.1 degrees and retrieving the median of each grid box.

As discussed in section 6.2, CYGNSS shows the potential to capture high-frequency fluc-
tuations of surface reflectivity within areas containing uniform soil moisture. This can be
seen in Figure 6.10 (a), where small changes in soil moisture occur both in dry and wet
regions. Furthermore, applying smoothening reduced these high-frequency fluctuations.
The use of larger sigmas in the Gaussian kernel limits the local variations, thus lowering
the spatial resolution. Increasing the values for sigma, smoothening of CYGNSS meas-
urements results in lower spatial resolution, approaching SMAP’s resolution of 36km x
36km.

Five areas in northern India and Pakistan will be used to conduct this analysis. The
regions were selected based on the CYGNSS surface reflectivity footprint and will be re-
ferred to as areas one through five. Figure 6.10 (a) shows the average surface reflectivity
in January 2020 with the five areas marked in different colors. Area 3, area 4, and area 5
were selected because they possess relatively uniform surface reflectivity. Whereas area
2 has high surface reflectivity values, area 5 covers low values, and area 4 is between
the latter regions. Furthermore, area 2 was selected due to its large variation in surface
reflectivity moving from south to north. Finally, area 1 also contains large surface re-
flectivity oscillations, but the variations are more distributed inside the area than in the
case for area 2.

Figure 6.11 shows the development of the correlation between the CYGNSS surface re-
flectivity and the SMAP soil moisture when varying the sigma of the Gaussian kernel.
The x-axis shows the different sigmas used in the smoothening, ranging from 0 to 20.
The y-axis shows the unitless Pearson correlation coefficient between the smoothened
CYGNSS data and SMAP. All areas demonstrate an increase in correlation after the
smoothening is performed. Area 1, 3, and 4 demonstrate similar patterns with a rapid
increase in correlation using sigmas between 0.2 and 2.7 before slowly decreasing to-
wards the maximum sigma. This pattern is also present for area 5. However the increase
is less rapid than the case for the formerly mentioned areas. Area 2 distinguishes itself
from the other areas in such a way that the correlation slowly increases during the whole
range of applied sigmas.

The analysis was conducted using a spatial resolution of 0.1° x 0.1°. In northern India
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(a) (b)

(c) (d)

Figure 6.10: Surface reflectivity for the region covering northern India and Pakistan without
smoothening and the five areas used to conduct the spatial resolution analysis (a). The same area
with smoothening using sigma = 0.5 (b), sigma = 1 (c) and sigma = 2 (d).
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Figure 6.11: The distribution of correlation between CYGNSS and SMAP when applying
Gaussian filters with different sigmas on the CYGNSS data.

and Pakistan, 0.1° corresponds to approximately 11.1 km. This means that using a sigma
of 2.7 results in a spatial resolution of 11.1km⇤2.7 = 30km. This is close to the original
spatial resolution of the SMAP dataset, which is 36km x 36km.

Table 6.4: Correlation between CYGNSS and SMAP after applying Gaussian smoothening for
five areas in northern India and Pakistan.

Area Start Peak Relative Best

Correlation Correlation Change [%] Sigma

Area 1 0.764 0.929 21.6 2.6
Area 2 0.902 0.970 7.5 19.9
Area 3 0.570 0.710 24.6 2.0
Area 4 0.682 0.835 22.4 2.7
Area 5 0.418 0.798 47.6 13.5

The start correlation, peak correlation, relative correlation change, and the best sigma for
the five analyzed areas are presented in Table 6.4. Areas with initially lower correlation,
such as area 5, show a more considerable relative change than the latter areas. The
opposite is true for e.g. area 2, experiencing the lowest relative change, but the initial
start correlation is highest. Area 1, 3, and 4 show smaller changes, but the same pattern
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is also present here.

(a) (b) (c)

Figure 6.12: CYGNSS area 1 without smoothening (a), with the best smoothening sigma = 2.6
(b), and SMAP (c).

Figure 6.12 (a) shows Area 1 without smoothening, (b) shows Area 1 when smoothening
using the highest correlated sigma was performed, and (c) shows SMAP soil moisture
for the same region. The best sigma was 2.6, which illustrates the increased similarities
between CYGNSS and SMAP as their spatial resolution approaches each other.

6.4 Time Series Analysis

Time series were produced for all five regions presented in section 5.2. However, some of
them demonstrate similar patterns and do not contribute significantly to increased insight
into the use of CYGNSS for soil moisture estimation. Therefore, only the time series
analysis for India, Iran, and the Democratic Republic of the Congo is presented and
discussed in this section. The results from Australia and Brazil are shown in Appendix
B.

6.4.1 Time Series Analysis in India

Figure 6.13 (a) shows the correlation between the CYGNSS time series and the SMAP
time series for each grid cell in India. Darker green colors indicate higher correlation, and
the exact correlation is written inside each cell. The blue cell has the highest correlation,
and the red possesses the lowest correlation. The figure shows a trend where high and
low correlation areas form clusters with similarly performing cells. This can result from
geophysical conditions at the surface affecting the scattering of the signals. Figure 6.13
(b) shows a satellite image of the same region. The marked red box covers parts of the
Eastern Ghats, a discontinuous chain of mountains along the east coast of India. The
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(a) (b)

(c)

(d)

(e)

Figure 6.13: Overview of time series correlation for each grid cell in India (a). Overall Time
series for India (b). Time series for the best (c) and worst (d) correlated grid cell.
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(a) (b)

Figure 6.14: Lomb-Scargle periodogram in India for CYGNSS (a) and SMAP (b).

tallest mountains in this area exceed 1700 meters above sea level and contribute to signi-
ficantly increased surface steepness. This can be one reason for the lower correlation in
these grid boxes. Furthermore, the yellow box in Figure 6.13 (b) shows that the Indian
Ocean is present in the south-easternmost grid box, which can also contribute to inaccur-
ate GNSS-R measurements. This can happen if e.g. parts of the satellite footprint cover
water during a single measurement. It can also occur when large inland water bodies are
present. The Hirakud Reservoir is a 55 km long lake, which is marked in orange in the
satellite image. This area corresponds to the grid cell with a center point at 21.75 latitude
and 83.75 longitude, with a relatively low correlation of 0.378, where the presence of
the Hirakud Reservoir can explain this performance. On the other hand, the cluster of
grid cells with high correlation surrounding the blue grid cell share similar geophysical
surface conditions, with relatively low steepness and little vegetation cover.

Furthermore, the three years dual-axis time series for the entire 5° x 5° area in India is
shown in Figure 6.13 (c), where the red line shows the CYGNSS surface reflectivity and
the blue line shows the SMAP soil moisture. CYGNSS has its corresponding y-axis to
the left and SMAP to the right. The x-axis shows the day after the 1st of January 2019.
This region demonstrates a correlation of 0.812 and displays clear seasonal variations.
During the summer months between June and September, India is affected by heavy
precipitation from the southwest monsoon. This results in periods where increased soil
moisture emerges, thus creating the pattern shown in the time series.

Figure 6.13 (d) and (e) plots the time series for the blue and red cell respectively. Be-
cause the spatial resolution is higher for these plots, they demonstrate larger variance
compared to Figure 6.13 (c). This is partly due to the fewer measurements located within
a small grid cell than for the whole region. However, the same seasonal pattern occurs
for the highest correlated cell as in the overall time series. The larger differences between
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CYGNSS and SMAP takes place in Figure 6.13 (e). SMAP still demonstrates the same
seasonal pattern for this area, which is not equally present in the CYGNSS time series.

The seasonality also reveals itself in Figure 6.14, which plots the Lomb-Scargle periodo-
gram in the entire India-region for CYGNSS (a) and SMAP (b). Figure 6.14 (a) suggests
that CYGNSS follows a clear seasonal pattern with a period of 333 days, which is slightly
less than one year. The sharp peak at a period of 333 days is also present for SMAP in
Figure 6.14 (b). However, the SMAP time series appears to possess other periodic signals
with different periods, although they are less significant than the close to annual signal.

6.4.2 Time Series Analysis in Iran

Figure 6.15 shows the time series analysis between 2019 and 2021 in Iran. The altitude
in this area varies greatly, with the lowest areas being located at sea level and the highest
points exceeding 1900 meters above sea level. Furthermore, there is little to no vegetation
cover in the entire region. The correlation between CYGNSS and SMAP for the overall
area is 0.347, being considerably lower compared to India. The SMAP soil moisture is
usually low, with a few peaks occurring during extreme precipitation. This means that the
general seasonal trend in soil moisture seen in India is absent. In this case, the differences
between the CYGNSS and the SMAP space missions affect the measurements to a larger
extent, similar to what was discussed in section 6.2.

Between the mountains in this region, there exist several sand basins. These basins are
prone to flooding during extreme rainfall due to the lower altitude location compared to
their surroundings. The water flows down the mountains and accumulates in the sand
basins. One such sand basin is marked in the blue rectangle in Figure 6.15 (b). This is
also the grid cell with the highest correlation, marked in blue in Figure 6.15 (a). Between
the 8th and 14th of January 2020, this region experienced a flood after days of heavy
precipitation [58]. The same reason caused another flood to occur at the beginning of May
2021. These flooding events are present in the time series in Figure 6.15 (d), where both
the surface reflectivity and the soil moisture increase significantly during the flooding
periods. The presence of major changes in soil moisture is captured by both CYGNSS
and SMAP, which leads to a correlation of 0.753. This is significantly better than for the
region as a whole. Finally, in the worst-performing time series shown in Figure 6.15 (e),
CYGNSS and SMAP seem to be uncorrelated. This can again result from a lack of clear
soil moisture patterns, leading to noise and different mission configurations dominating
the measured fluctuations.
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(a) (b)

(c)

(d)

(e)

Figure 6.15: Overview of time series correlation for each grid cell in Iran (a). Satellite image of
the same region (b). Overall Time series for Iran (c). Time series for the best (d) and worst (e)
correlated grid cell.
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(a) (b)

Figure 6.16: Lomb-Scargle periodogram in Iran for CYGNSS (a) and SMAP (b).

The Lomb-Scargle periodogram for the entire Iran area is shown in Figure 6.16, based on
the CYGNSS (a) and SMAP (b) time series respectively. Similar to the same periodogram
for India, CYGNSS reveals a seasonal period of 333 days. However, the 333 days period
is less visible in the time series in Figure 6.15 (c) compared to the India time series.
SMAP shows three significant peaks. The first peak is located at 44 days, the second at
290 days, and the final and most dominant at 333 days. This means that both CYGNSS
and SMAP share the same overall periodicity of 333 days also in Iran.

Figure 6.17 takes a closer look on the surface reflectivity during the flood in May 2021,
using a spatial resolution of 0.1° x 0.1°. Figure 6.17 (a) shows the average surface re-
flectivity from the 27th to the 29th of April 2021 and Figure 6.17 (b) shows the same
values for the 7th to 9th of May 2021. The flooded area is marked in the black rectangle
and shows an increase in surface reflectivity after the heavy precipitation. The surface
reflectivity is overlaid MODIS images, where the extensive water is visible as a darker
color in the flooded area. CYGNSS appears to be able to capture the flooded area with
an increase of between 5 and 10 dB.

6.4.3 Time Series Analysis in the Democratic Republic of Congo

The time series analysis conducted in DR Congo is shown in Figure 6.19. DR Congo
introduces a new pattern in terms of clustering of similar performing grid cells. The grid
cell with the lowest correlation, marked in red in Figure 6.19 is positioned close to a
cell with a correlation of 0.612. The adjacency of differently correlated grid cells was
not present in India or Iran. Figure 6.19 (b) shows that this region is characterized by
two major inland water bodies, namely the Upemba Lake and the Kisale Lake, and is
marked in orange. In India, regions containing lakes caused a lower correlation between
CYGNSS and SMAP. However, despite the grid cell with a correlation of 0.612 covering

95



Chapter 6 – Results and Discussion

(a) (b)

Figure 6.17: CYGNSS surface reflectivity before flooding in Iran 2021 (a) and during flood in
Iran 2021 (b).

parts of the Kisale Lake, the geophysical conditions in the remaining cell is a relatively
flat swamp with little to no vegetation cover. These conditions appear to be favorable for
GNSS-R measurement, leading to a high correlation. Inland water bodies still seem to
create unpredictable behavior in terms of CYGNSS and SMAP correlation and need to
be taken into account when performing remote sensing of soil moisture.

Furthermore, the 5° x 5° region in DR Congo contains several forests characterized by
dense vegetation cover. One such forest is marked in purple in Figure 6.19 (b), which
leads to a low correlation between CYGNSS and SMAP. The low correlation indicates
that vegetation cover is unfavorable for GNSS-R measurements. African savannas are
ecosystems with mostly grassland and small or dispersed trees, creating favorable condi-
tions to avoid interrupting the reflection of GNSS signals. Two such regions are marked
in yellow in the satellite image of DR Congo. These areas also correspond to a higher
correlation, again highlighting the importance of vegetation cover. Less vegetation cover
tends to increase the correlation between CYGNSS and SMAP.

The overall time series shown in Figure 6.19 (c) demonstrates a correlation of 0.554.
Both CYGNSS and SMAP appear to change with seasonality. The surface reflectivity
varies between 148 dB and 154 dB, and SMAP varies between 0.15 cm3/cm3 and 0.35
cm3/cm3. The same pattern is present in Figure 6.19 (d), which is the time series for
the highest correlated grid cell. However, in the time series for the lowest correlated cell
shown in Figure 6.19 (e), the same pattern is only present in the SMAP data. This led to
the two datasets being close to uncorrelated in this region, as also occurred in the lowest
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correlated grid cell in India.

The Lomb-Scargle periodogram for the CYGNSS surface reflectivity in DR Congo is
shown in Figure 6.18 (a) and for SMAP in Figure 6.18 (b). The periodogram for CYGNSS
is similar to the likes of India and Iran, with a seasonal pattern of 333 days. However,
SMAP has its highest peak at 44 days, revealing a different dominating period than India
and Iran.

(a) (b)

Figure 6.18: Lomb-Scargle periodogram in DR Congo for CYGNSS (a) and SMAP (b).
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(a) (b)

(c)

(d)

(e)

Figure 6.19: Overview of time series correlation for each grid cell in DR Congo from 2019-
2021 (a). Satellite image of the area (c). Overall Time series for DR Congo (b). Time series for
the best (c) and worst (d) correlated grid cell.
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6.5 Machine Learning for Soil Moisture Estimation

A machine learning approach for the estimation of soil moisture from CYGNSS surface
reflectivity was conducted using grid cells in India, Iran, and DR Congo. The cells were
selected based on distinct surface characteristics or stand-out correlation values, which
were presented in the previous section.

Initially, the effect of using different interpolation methods was investigated by applying
AutoML using solely surface reflectivity as input. In the data preprocessing, both lin-
ear and natural neighbor interpolation was utilized to colocate the CYGNSS and SMAP
measurements. The implementation of the natural neighbor algorithm was restricted to
return a regular 3D grid, with interpolated values for all combinations of latitude, longit-
ude, and time. To interpolate a region spanning 1.5° x 1.5°, using a spatial resolution of
0.5km x 0.5km and a temporal resolution of 12 hours, more than 238 million interpolated
values would have to be generated. In addition, nearest neighbor interpolation would
then have to be performed in order to fully colocate the CYGNSS measurements to the
regular grid. These limitations for natural neighbor interpolation, both with respect to
computation complexity and spatiotemporal resolution, caused linear 3D interpolation to
outperform natural neighbor. Consequently, linear interpolation is used in the remaining
study.

6.5.1 Soil Moisture Estimation Using Solely Surface Reflectivity

Firstly, the performance of soil moisture estimation, solely using surface reflectivity as
model input, is investigated. Table 6.5 presents the RMSE obtained in each area of in-
terest. The grid cells with the highest and lowest time series correlation are inspected
for each area. In addition, a densely vegetated region in DR Congo, denoted Forest and
represented by the left-most grid cell highlighted in purple in Figure 6.19 (b), is selec-
ted. The table illustrates how some areas with a low correlation between CYGNSS and
SMAP achieve smaller RMSEs than areas with a higher correlation. Particularly the low-
est correlated grid cell in Iran shows a significant reduction in RMSE compared to those
obtained in other areas. One of the reasons why Iranian areas indicate high model per-
formance is the absence of significant soil moisture fluctuations, in contrast to India and
DR Congo.

Figure 6.20 (a) presents the estimated soil moisture values in the grid cell with the highest
correlation in India using XGBoost for the latter half of 2021. The values are plotted
against SMAP soil moisture, highlighting how the model struggles to capture the mag-
nitude of the seasonal patterns in soil moisture. A similar visualization for the lowest
correlated area in Iran is presented in Figure 6.20 (b). Scaled to represent the same soil
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Table 6.5: Obtained RMSE when solely using surface reflectivity in soil moisture estimation.
The values are calculated for grid cells obtaining the highest and lowest correlation in the time
series analyses, in addition to a densely vegetated area in DR Congo.

Area XGB GBM DRF Stacking DL

India - High Corr 0.06964 0.06958 0.07568 0.06974 0.07807
India - Low Corr 0.08622 0.08559 0.09441 0.08546 0.13314

Iran - High Corr 0.05222 0.05184 0.05994 0.05065 0.03827
Iran - Low Corr 0.01206 0.01206 0.01937 0.01163 0.00634

DR Congo - High Corr 0.09593 0.09604 0.10514 0.09700 0.12299
DR Congo - Low Corr 0.09613 0.09575 0.10429 0.09564 0.09236
DR Congo - Forest 0.09013 0.09011 0.09462 0.09007 0.10687

moisture variations as in (a), Figure 6.20 (b) shows how the absence of large soil mois-
ture fluctuations results in a lower RMSE. The small RMSE does not necessarily indicate
that the XGBoost would perform well in the event of sudden precipitation, as this phe-
nomenon is absent in the training data. However, Figure 6.20 enlightens the effects of
periodicity, especially in areas with seasonal variations in climate and precipitation.

6.5.2 Soil Moisture Estimation with Ancillary Data

In addition to the inclusion of time, represented by the day of year, the relevance of other
ancillary parameters were investigated. Therefore, the inclusion of geophysical paramet-
ers such as SMAP vegetation opacity and surface roughness coefficients, incidence angle,
time of day, and the transmitting satellite block were used as input to the AutoML.

Table 6.6 presents the resulting RMSE within the different areas when the mentioned
parameters were included. The table shows a decrease in RMSE in India, DR Congo,
and the highest correlated cell in Iran, except the neural network. Figure 6.21 shows
the predicted soil moisture utilizing the additional input parameters and XGBoost for the
highest correlated grid cell in India. As indicated by the obtained RMSEs, the XGBoost
model is now able to capture seasonal fluctuations in soil moisture, thus halving the
RMSE compared to the model solely based on solely surface reflectivity. The feature
importance of the XGBoost model, presented in Figure 6.22, highlights the contribution
of the additional parameters in soil moisture estimation. The categorical features are
one-hot-encoded, resulting in these values representing single instances of the specific
features. On the contrary, the Iranian areas show no clear improvements when adding
the ancillary data. This might result from noise being responsible for the majority of the
RMSE, which is not connected to surface-related terms.
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(a)

(b)

Figure 6.20: The predicted soil moisture in the highest correlated grid cell in India (a) and the
lowest correlated grid cell in Iran (b) for the latter half of 2021. The predictions, colored in red
and solely based on CYGNSS surface reflectivity, are compared to SMAP soil moisture shown
in blue.

Table 6.6: Obtained RMSE using eight relevant features in soil moisture estimation within the
grid cells obtaining the highest and lowest correlation in the time series analysis. A densely
vegetated area in DR Congo is also studied.

Area XGB GBM DRF Stacking DL

India - High Corr 0.03772 0.03255 0.03936 0.03252 0.04249
India - Low Corr 0.05032 0.05106 0.06063 0.04839 0.05260

Iran - High Corr 0.04705 0.03983 0.03495 0.03975 0.04815
Iran - Low Corr 0.02291 0.02711 0.01994 0.02417 0.02185

DR Congo - High Corr 0.04823 0.05397 0.04995 0.04936 0.05378
DR Congo - Low Corr 0.05934 0.06366 0.06504 0.06239 0.06922
DR Congo - Forest 0.04926 0.05137 0.05650 0.04872 0.06233
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Figure 6.21: A visualization of the predicted soil moisture estimations in the best correlation
grid cell in India for the last half of 2021 using XGBoost. The predictions, colored in red and
based on eight relevant parameters, are compared to the true SMAP values, colored in blue.

6.5.3 Correction for Topographical Effects

As introduced in section 5.6, elevation steepness and height deviation were computed.
The inclusion of such parameters in soil moisture estimation was based on observed
fluctuations in CYGNSS data, believed to be caused by steep topography. Feeding the
two parameters as additional input to the AutoML models already utilizing ancillary data
reduced the RMSEs in both the highly correlated cell and the densely vegetated cell in
DR Congo. The two cells obtained respective RMSEs of 0.04550 cm3/cm3 and 0.04890
cm3/cm3, despite the remaining areas experiencing a decrease in estimation accuracy.

The change in elevation steepness can contribute to reducing or strengthening the reflec-
tion of GNSS signals. This depends on the geometry between the transmitting GPS and
the receiver and the direction of the slope. However, the elevation steepness proposed
in this study only accounts for the magnitude of the angular difference. As a result, the
parameter provides no information on wether or not it contributes to strengthening or
reducing the reflections. This can be improved by including the positions of the GPS and
CYGNSS satellites so that the complete geometry is taken into account. In this way, it is
possible to determine the actual effect of different slopes.

6.5.4 Evaluation of the Incidence Angle Filtration Algorithm

As introduced in subsection 5.3.3, this thesis proposed a novel method to perform op-
timized data selection based on incidence angles. This algorithm aims to reduce the
measurement uncertainties while preserving a high amount of CYGNSS measurements.
By minimizing the F-value presented in Equation 5.10, two optimal incidence angles
were retrieved for each of the areas in India, Iran, and DR Congo. These are presented in
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Figure 6.22: Feature importance of the XGBoost model for the highest correlated grid cell in
India with ancillary data included as input parameters.

Table 6.7. In addition, Figure C.1 and Figure C.2 in Appendix C show how the F-value
fluctuate using different incidence angle intervals, from which the optimal intervals are
selected in India and DR Congo respectively.

Table 6.7: Proposed incidence angle intervals in India, Iran and DR Congo based the optimiza-
tion method introduced in this thesis.

Incidence Angle Interval 1 Incidence Angle Interval 2

India 22° - 32° 44° - 54°
Iran 7° - 17° 28° - 38°
DR Congo 11° - 21° 45° - 55°

The same machine learning approach, including all input parameters, was used to eval-
uate the change in model performance when filtering on the proposed incidence angles.
Whereas the RMSE in the two grid cells in Iran decreased, the cells in India and DR
Congo obtained larger RMSEs, as shown in Table 6.8.

A challenge with the proposed method is to obtain accurate approximations of the un-
certainties for the areas. As previously mentioned, Iran is mostly arid, meaning that the
uncertainty of the measurements can be approximated by computing the median standard
deviation of CYGNSS measurements made within uniformly dry periods. This leads to
an accurate estimate of the uncertainty for the region. However, in India and DR Congo,
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Table 6.8: Comparison of RMSEs with and without optimized data selection based on incidence
angle filtration.

RMSE Without RMSE With RMSE With

Filtration IA Interval 1 IA Interval 2

India - High Corr 0.03289 0.04384 0.04925
India - Low Corr 0.04870 0.06400 0.06447

Iran - High Corr 0.03645 0.03253 0.03353
Iran - Low Corr 0.02056 0.01281 0.00627

DR Congo - High Corr 0.04550 0.06203 0.06073
DR Congo - Low Corr 0.06034 0.06851 0.08163
DR Congo - Forest 0.04848 0.06458 0.06905

the seasonal variations in soil moisture make the same approach less accurate. This is
because fluctuations in soil moisture contribute to increasing the uncertainties instead of
noise being the primary factor. This can explain why the models performed better after
filtration in Iran but not in India and DR Congo.

Another possible limitation of the proposed algorithm is the reduction in the amount
of CYGNSS measurements fed to the machine learning models after filtration. Data-
driven methods, including machine learning, highly rely on large amounts of training
data to capture the trends. The Indian grid cells show a reduction in data of around 80%,
while the areas in Iran and DR Congo neglect up to 90% of the dataset. Figure 6.23 and
Figure 6.24 shows the data distribution before (a) and after (b) incidence angle filtration
in the grid highest correlated grid cell in India and the lowest correlated grid cell in Iran
respectively. The figures present how the proposed optimization of data filtration based
on incidence angle removes a significant amount of observable outliers.
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(a) (b)

Figure 6.23: Scatter plots of CYGNSS surface reflectivity and SMAP soil moisture values at
different incidence angles in the highest correlated cell in India measured between 2019 and
2021. The figures visualize the measurements before (a) and after (b) applying optimized data
filtration based on incidence angle.

(a) (b)

Figure 6.24: Scatter plots of CYGNSS surface reflectivity and SMAP soil moisture values at
different incidence angles in the lowest correlated cell in Iran measured between 2019 and 2021.
The figures visualize the measurements before (a) and after (b) applying optimized data filtra-
tion based on incidence angle.
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Chapter 7

Conclusion

In this thesis, the feasibility of soil moisture remote sensing using the Global Navigation
Satellite System (GNSS) Reflectometry (GNSS-R) technique is investigated. We used a
dataset of spaceborne GNSS-R observations from the NASA Cyclone GNSS (CYGNSS).
The data includes information about the strength of the reflected GNSS signals, en-
veloped in Delay Doppler Maps (DDMs) as one of the main CYGNSS data products.
Signal-to-noise ratio (SNR) observations from the DDMs were used in the calculation of
a parameter called surface reflectivity, which can reveal soil moisture variations.

For evaluation of the results, two ancillary data sources, namely European Centre for
Medium-Range Weather Forecast (ECMWF) ReAnalaysis-5 (ERA5) and Soil Moisture
Active Passive (SMAP), were colocated with the CYGNSS data. ERA5 uses retrospect-
ive analysis and physical models to produce global estimates of soil moisture, and SMAP
utilizes both active radio and passive radiometer instruments to produce soil moisture es-
timates based on observations.

We have developed a software package to download, process, store, and analyze CYGNSS
Level 1 data in combination with the ancillary data sources. The software, written in Py-
thon, is capable of handling large amounts of data, enabling the production of CYGNSS
surface reflectivity time series over longer periods. Additionally, it includes machine
learning models functioning as Geophysical Model Functions (GMFs), converting ob-
served surface reflectivity to soil moisture estimates.

Several case studies are included in this thesis. A case study in northern India and
Pakistan for January and August 2020 was analyzed to evaluate the performance of
CYGNSS compared to SMAP and ERA5. The average CYGNSS surface reflectivity
values for January and August demonstrated a significant correlation with the colocated
SMAP soil moisture dataset, reaching a Pearson’s correlation coefficient of 0.777 in Janu-
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ary 2020. The comparison between CYGNSS and ERA5 showed a significantly lower
correlation of 0.368 in the same time period. This can be due to ERA5’s inability to
capture small fluctuations in soil moisture and resulted in ERA5 being removed from the
remaining analysis.

Furthermore, we showed that CYGNSS is able to capture more detailed variations in
soil moisture compared to SMAP by applying Gaussian smoothening to the CYGNSS
surface reflectivity. Five smaller areas in northern India and Pakistan all demonstrated an
increase in correlation when CYGNSS approached the spatial resolution of SMAP.

Five areas of 5� x 5� in terms of latitude and longitude with different conditions related
to vegetation and topography were selected to analyze the geophysical parameters af-
fecting remote sensing of soil moisture. Time series of CYGNSS surface reflectivity
and SMAP soil moisture were computed for each 0.5� x 0.5� grid cell in all five areas
from 2019 until the end of 2021. The time series in Iran displayed a significant increase
in surface reflectivity and soil moisture during two known flooding events, occurring in
January 2020 and May 2021. This was evaluated against Moderate Resolution Imaging
Spectroradiometer (MODIS) images, visually displaying the flood. The results highlight
the potential of spaceborne GNSS-R for detecting and mapping floods even under severe
weather conditions

Time series of the individual grid cells also revealed that mountainous areas, densely
vegetated areas, and inland water bodies contributed to reducing the correlation between
CYGNSS and SMAP. We then utilized machine learning for soil moisture estimation,
which substantiated these results by obtaining higher root mean square errors (RMSEs) in
the same areas. The importance of seasonality and topography in soil moisture estimation
was also highlighted. The developed machine learning models in areas with significant
soil moisture variations and steep topography experienced an increase in performance
when these factors were taken into account.

We also presented a novel approach to perform optimal incidence angle filtration on
the CYGNSS data. The proposed method showed promising results in areas where an
accurate approximation of CYGNSS measurement uncertainties was producible. An area
in Iran highlighted this promising result, where the obtained RMSE was reduced from
0.0204 cm3/cm3 to 0.0063 cm3/cm3 after data filtering on the optimal incidence angle
interval was applied. This model used CYGNSS surface reflectivity, incidence angle, day
of year, time of day, and SMAP ancillary data as input from 2019 to 2021. However, areas
with larger soil moisture variation proved more difficult to produce accurate uncertainty
approximations, thus enlightening an area of improvement for the proposed method.
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7.1 Scientific Contributions

One of the objectives of this thesis was to make the most important findings from the
analysis available to the science community and public as an attempt to raise awareness
of this new remote sensing application. This goal accumulated in two different contribu-
tions, a web page allowing users to display time series of selected areas and a scientific
paper aimed at a Norwegian audience.

We developed a web page where users can obtain CYGNSS- and SMAP time series based
on a desired location and time frame. The graphical user interface (GUI) of the web page
enables users to either physically draw a region on a map or feed specific coordinates in
order to choose an area to analyze. Then, passing on the user-selected area, along with
the time frame chosen by the user, the backend software conducts the data processing
before delivering the final visualization to the users.

In addition, a Norwegian paper was written to introduce the possibility of using remote
sensing and GNSS-R to produce soil moisture estimates. This technique is relatively new
in Norway, and the goal of the paper was to give the readers an overview of the techno-
logy and describe two possible use cases. Initially, the article addresses the comparison
between CYGNSS, SMAP, and ERA5, which was presented in section 6.1. Next, time
series of the floods in Iran in 2020 and 2021 are presented to highlight the behavior of
surface reflectivity during extreme weather conditions.

The paper is submitted to the Norwegian journal Kart og Plan and is currently under
review for possible publication in the journal. Kart og Plan is a scientific journal estab-
lished in 1908, focusing on geomatics, including satellite mapping and remote sensing.
The Norwegian paper is attached in Appendix D.

Finally, in collaboration with the co-supervisor of this thesis, another article presenting
high spatiotemporal resolution time series and utilization of machine learning for soil
moisture estimation is in progress.

7.2 Future Work

The time series presented in this thesis showed significant increases in surface reflectivity
in the event of past floods. In order to generate relevant information from time series
analyses to be used in future flood detection, further research is advised to investigate
the possibility of developing an algorithm capable of automatically detecting anomalies
in time series. This can be utilized to indicate and alert regions endangered by extreme
weather hazards.
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Furthermore, accounting for the effect of topography and surface slopes can improve the
GMF performance. For this purpose, the vector of incident signal can be compared to
the normal vectors of local surface slopes for generating a correction term. The com-
parison would help machine learning models to infer if the angular change contributes
to reduced or strengthened signal reflection. This can be done by utilizing the geometry
of the transmitting GPS, the receiving CYGNSS satellite, and the specular point. These
modifications can improve the soil moisture estimation and continue to lower the RMSE
in future applications.

In addition, further investigation on how to approximate CYGNSS measurement uncer-
tainties used in the proposed incidence angle optimization method is advised. The ana-
lysis in this thesis shows promising results when uncertainties can be approximated, thus
highlighting the need for a good retrieval algorithm.

A possible addition to the generated software package would be extending the web page
with a map presenting the most recent surface reflectivity values available. Combined
with a geophysical model function for soil moisture conversion, generated using machine
learning, this extension could provide the public with close to real-time monitoring of soil
moisture on a global scale.
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Appendix A

Missing CYGNSS Satellites

Information

Table A.1: A complete list of satellites failing to provide daily CYGNSS measurements during
the downloading of data for the years of 2019, 2020 and 2021. The values of format X(Y, Z)
indicates missing data from satellites Y and Z on day X in that respective month.

Month 2019 2020 2021

Jan 12(6), 13(6), 14(6), 23(3), 24(4), 26(5, 6), 1(4), 2(4), 5(2), 6(2),
15(6), 21(7), 22(7) 29(3), 30(4), 31(4) 7(2), 12(2), 13(2), 14(2),

19(7), 20(1, 2, 3, 5, 6, 7),
21(5), 22(5), 23(5),
24(5), 25(5),
26(5), 27(5)

Feb 27(7), 28(4, 7) 1(4), 18(2), 20(7), 24(7)
21(7, 8), 22(6, 8),
23(6), 24(1),
25(1), 28(4, 5)

Mar 1(4), 12(8), 13(8) 31(6) 10(3), 11(3), 21(6),
22(6), 23(6, 7)

Apr 7(2), 8(2) 14(2), 15(2) 27(3), 28(3), 29(3)

May No satellites missing 15(6, 8), 16(6, 8), 13(7), 16(1), 17(1)
21(2, 3), 30(7, 8)
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Jun 1(5, 6, 7, 8), 22(7, 8), 1(4), 5(1), 6(1), 15(6), 16(5), 17(5),
25(1, 2, 3, 4) 7(1, 4), 8(4) 18(5), 28(6), 29(6),

30(6)

Jul 12(8), 13(8), 28(3, 7), No satellites missing 6(1), 7(1), 8(1), 9(1),
29(3, 7), 30(5), 31(5) 10(1), 11(1), 12(1),

17(5), 18(5), 25(1)

Aug 1(5), 16(3), 17(3), 6(4), 7(4), 10(4), No satellites missing
19(4), 20(4), 27(2), 11(1), 22(2), 25(2)
28(2), 29(2)

Sep 7(5), 8(5), 9(5), 14(6), 15(6), 16(6), No satellites missing
11(3), 12(3), 18(1), 17(6), 25(4), 26(4)
19(1), 20(1), 21(1),
24(1)

Oct 4(7), 9(7), 15(8), 3(4), 4(4, 7), 5(4, 7), No satellites missing
16(8), 17(8), 18(8) 6(4, 7)

Nov 14(7) 4(5), 5(5), 6(5, 6), 16(2), 17(2, 5),
7(5), 27(1) 18(5), 19(5)

Dec 14(7), 15(7), 16(7) 7(4), 8(4), 14(6), 1(2), 9(6, 7), 13(8),
15(2, 6), 16(2, 6), 23(5), 24(5), 28(8),
17(2), 18(2), 20(7), 29(8), 31(8)
21(7), 22(7), 23(7),
24(1), 25(1), 28(1),
29(1), 30(1), 31(4)
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Appendix B

Time Series in Australia and Brazil

(a) (b)

Figure B.1: Lomb-Scargle periodogram in Brazil for CYGNSS (a) and SMAP (b)
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(a) (b)

Figure B.2: Lomb-Scargle periodogram in Australia for CYGNSS (a) and SMAP (b)
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(a) (b)

(c)

(d)

(e)

Figure B.3: Overview of time series correlation for each grid cell in Brazil from 2019-2021 (a).
Satellite image of the area (c). Overall Time series for Brazil (b). Time series for the best (c) and
worst (d) correlated grid cell.
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(a) (b)

(c)

(d)

(e)

Figure B.4: Overview of time series correlation for each grid cell in Australia from 2019-2021
(a). Satellite image of the area (c). Overall Time series for Australia (b). Time series for the best
(c) and worst (d) correlated grid cell.
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Appendix C

Computed F-values in India and DR

Congo

Figure C.1: The generated F-value in India using different incidence angles and incidence angle
intervals.
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Chapter C – Computed F-values in India and DR Congo

Figure C.2: The generated F-value in DR Congo using different incidence angles and incidence
angle intervals.
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Appendix D

The Norwegian Paper Publication

The submitted Norwegian paper is shown below. The layout is made for submission
purposes, and will undergo further improvements.
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En ny fjernm̊alingsteknikk for naturfarer og miljøoverv̊aking
ved bruk av mikrosatellitter

Vegard Haneberg, Mads Engja Rindal

June 10, 2022

Sammendrag

De stadig økende konsekvensene av klimaendringer fremhever behovet for å overv̊ake jordens

vannsykler over land, spesielt med tanke p̊a økningen av naturkatastrofer som flom og tørke. Den-

ne studien viser at en ny fjernmålingsteknologi som kan overv̊ake variasjoner i jordfuktighet og

flomhendelser ved bruk av mikrosatellitter. Denne teknologien er basert p̊a konseptet Global Na-

vitagion Satellite System Reflektometri (GNSS-R). GNSS-R analyserer variasjoner i signalstyrke

etter refleksjon over land for å utlede informasjon om endringer i bakkens vanninnhold. To case-

studier i India og Iran ble gjennomført for å undersøke fjernmåling av henholdsvis jordfuktighet og

flomdeteksjon. Det benyttede datasettet i v̊are undersøkelser er hentet fra oppdraget kalt NASA

Cyclone GNSS (CYGNSS), som best̊ar av åtte mikrosatellitter med en gjenbesøkstid p̊a ca. 7

timer. I tillegg brukes to datasett med jordfuktighetsm̊alinger for valideringsformål. V̊are resul-

tater viser at målinger av overflaterefleksjon utledet fra GNSS-R-dataene e↵ektivt kan fange opp

romlige og tidsmessige variasjoner av jordfuktighet over casestudiet i India. Videre har studien

av to flomhendelser i Sør-Iran vist potensialet til GNSS-R-m̊alinger for å oppdage flom. Dette

lovende resultatet antyder at fremtidige konstellasjoner av små GNSS-R-satellitter kan bidra til

monitoreringen naturkatastrofer i nær sanntid.

Abstract

Climate change has caused an increase in the occurrence of natural disasters and hazards,

including flooding events and droughts. This study investigates the utilization of Global Nav-

igation Satellite System (GNSS) Reflectometry (GNSS-R) over land for remote sensing of soil

moisture. The NASA Cyclone GNSS (CYGNSS) mission provides a publicly available GNSS-R

dataset counting signal-to-noise ratio (SNR) observations of the reflected GNSS signal, with a re-

visit time of approximately 7 hours. We use these observations to calculate the surface reflectivity

as an indicator of soil moisture variations. Two ancillary datasets providing soil moisture estimates

are spatiotemporally co-located with the GNSS-R measurements and used for performance assess-

ment. The ancillary datasets are the data products of the European Center for Medium-Range

Weather Forecast (ECMWF) Re-Analysis-5 (ERA5) and the Soil Moisture Active Passive (SMAP)

mission. We conducted two case studies in India and Iran to assess the performance of remote

sensing for soil moisture estimation and flood detection. Our results show that CYGNSS-derived

surface reflectivity capture variations in soil moisture in the case study in Iran. Furthermore, time

series analysis demonstrates a significant increase in surface reflectivity during two known floods

in Iran in January 2020 and May 2021. These promising results suggest that microsatellites func-

tioning as receivers of reflected GNSS signals can contribute to the monitoring of natural hazards

close to real-time.

Nøkkelord: fjernmåling, GNSS-R, jordfuktighet, naturkatastrofer
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1 Introduksjon

Livet p̊a jorden er tilknyttet ulike klimasykler der vann ofte innehar en viktig rolle. Vann er en livs-
viktig entitet for alle levende organismer, og god vanntilgang er essensielt for helsen til blant annet
oksygen- og matproduserende planter. Mengden vann som er tilgjengelig i jorden avhenger av fak-
torer som årstid, jordtype og geografisk plassering. Likevel har målinger av jordfuktighet lenge vært
en viktig parameter da de kan si mye om klimasituasjonen i omr̊adet der målingen er gjort. Markan-
te globale klimaendringer er blitt en stort utfordring dette århundret, som blant annet har medført
hyppigere tilfeller av flom, tørke, skogbrann og andre hendelser som følge av ekstremvær [Trenberth,
2005]. Kontinuerlige målinger av jordfuktighet har derimot vist seg å bist̊a med relevant informasjon
i monitoreringen av klimaendringene, og er vurdert til å være en viktig parameter i utviklingen av
prognoser og skadeforebyggende arbeid relatert til vær og klima [Kerr, 2007, Entekhabi et al., 2014].

De tidligste metodene for innsamling av data tilknyttet jordfuktighet bestod av utstasjonerte
måleinstrumenter for overv̊akning av mindre omr̊ader som for eksempel jorder eller åkre. Slike me-
toder gjorde det mulig å måle jordfuktighet med høy romlig og tidsmessig oppløsning, men fungerte
kun for begrensede omr̊ader. Videre ble muligheten for å gjøre tilsvarende undersøkelser ved hjelp av
fjernmåling forsket p̊a. Fly ble utstyrt med teknologi for b̊ade transmittering og måling av elektromag-
netiske bølger som muliggjorde observasjoner av større omr̊ader enn utstasjonerte måleinstrumenter
[Dobson and Ulaby, 1986]. Denne tankegangen ble deretter utvidet til å utnytte allerede transmitterte
Global Positioning System (GPS) signaler for å utføre observering av jordfuktighet globalt [Kavak
et al., 1998]. De nyeste metodene bruker dedikerte satellitter til å motta reflekterte GPS signaler og
anvende disse til å utlede egenskaper om det reflekterte medium. Dette gjør det mulig å foreta globale
målinger av jordfuktighet med høyere tidsmessig og romlig oppløsning enn tidligere metoder.

Global Navigation Satellite System (GNSS) satellitter transmitterer signaler med frekvenser mellom
1.2 GHz og 1.6 GHz, tilhørende L-b̊andet. L-b̊andet ble tatt i bruk for dette formålet p̊a grunn at dets
gunstige oppførsel ved penetrering av jordens atmosfære, samt lav p̊avirkningsgrad av ulike værforhold.
For å sikre at GNSS skal kunne operere med ønsket nøyaktighet uavhengig av brukerplassering er det
avgjørende at de transmitterte signalene ikke p̊avirkes av ulike værforhold i for stor grad. Anvendelsen
av signaler med frekvenser innenfor L-b̊andet er dermed med p̊a å minimere disse feilkildene [Teunissen
and Montenbruck, 2017, Ogaja, 2011].

En annen kjent feilkilde ved GNSS-posisjonering er flerveisinterferens. Dette fenomenet oppst̊ar
n̊ar GNSS-signalene reflekteres før de tre↵er mottakeren. Da vil ikke signalet ha traversert korteste
vei fra satellitt til mottaker, noe som kan bidra negativt til posisjoneringens nøyaktighet. Ved nyere
forskningsprosjekter gjennomført av blant annet NASA, har det kommet frem at disse reflekterte
signalene kan brukes til andre formål enn å være en feilkilde i posisjonering. Geofysiske forhold ved
den reflekterende overflaten kan p̊avirke signalet p̊a ulike måter, og brukes til å utlede egenskaper om
jordens overflate [Martin-Neira, 1993].

GNSS-Reflektometri (GNSS-R) er en teknikk som kan utlede overflateegenskaper ved å analysere
reflekterte GNSS-signaler. I motsetning til monostatiske radarsystemer der transmitter og mottaker er
kolokalisert, benytter GNSS-R seg av bistatiske systemer hvor disse er separert. Refleksjon av elektro-
magnetiske (EM) signaler kan skje koherent eller inkoherent, avhengig av blant annet overflaterø↵heten.
Jevnere overflater, som defineres basert p̊a signalets bølgelengde, fører til koherent refleksjon hvor alle
reflekterte EM-signaler sendes ut i én retning. P̊a den annen side inntre↵er inkoherent refleksjon ved
ujevne overflater og dette fører til en spredning av de reflekterte EM signalene [Asgarimehr, 2020, Egi-
do, 2014]. Figur 1 viser hvordan synlig lys reflekteres over vann med ulik overflaterø↵het. Illustrasjon
(b) i figuren demonstrerer hvordan en rø↵ vannoverflate leder til inkoherent refleksjon av lysstr̊aler og
dermed hindrer dannelsen av klare refleksjonsbilder.

Fordelene med å bruke L-b̊andet er tilstedeværende ogs̊a i GNSS-R. Ved å utnytte allerede ope-
rerende GNSS-satellitter kan GNSS-R systemer benyttes til global overv̊akning av jordoverflaten med
forbedret romlig og temporal oppløsning enn det som tidligere har vært mulig. NASA har engasjert
romoppdrag hvor b̊ade monostatiske og bi-statiske GNSS-R systemer har vært i bruk. I desember 2016
ble Cyclone GNSS (CYGNSS) lansert med den hensikt å samle inn vær- og vinddata i forbindelse
med dannelsen og oppførselen til tropiske sykloner over hav ved bruk av GNSS-R [Ruf et al., 2016].
Anvendelsen av et flertall mikrosatellitter opererende som mottakere av reflekterte GPS signaler i
lav jordbane vil bidra til lavere gjenbesøkelsestid, og følgelig forbedret oppløsning p̊a vitenskapelige
målinger, sammenlignet med tidligere metoder. I tillegg til bedre oppløsning vil bruken av mikrosa-
tellitter redusere kostnadene tilknyttet oppdrag som omhandler innsamling av vitenskapelig data ved
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(a) (b)

Figur 1: Lysrefleksjon over en jevn vannoverflate (a) og over en ujevn vannoverflate (b).

Kilde: [Asgarimehr, 2020]

bruk av GNSS-R. De lavere utvikling- og brukskostnadede baseres blant annet p̊a at mikrosatellittene
er mindre og lettere å utvikle enn tradisjonelle satellitter, kombinert med muligheten for å utplassere
flere satellitter p̊a samme rakettoppskyting [Clarizia et al., 2016].

I denne artikkelen presenteres en ny anvendelse av romb̊aren GNSS-R. Først vil utnyttelsen av
GNSS-R målinger brukes til å overv̊ake variasjoner i jordfuktighet og detektere flom over to utvalgte
landomr̊ader. Denne bruken av GNSS-R er betraktet s̊a nyskapende og viktig at Den europeiske rom-
fartsorganisasjonen (ESA) i mars 2021 finansierte HydroGNSS, et oppdrag basert p̊a samme teknologi,
verdt 30 millioner euro. Oppdraget, som vil levere målinger av viktige hydrologiske parametere som
blant annet jordfuktighet, vil dermed komplementere eksisterende ESA oppdrag som SMOS og Bio-
mass, samt NASA sitt SMAP [Unwin et al., 2021]. I neste seksjon følger en beskrivelse av datasettene
brukt i denne studien. I tillegg til GNSS-R målinger inneholder de målinger fra to andre datakilder
brukt for validering.

2 Data

En oversikt over de ulike datasettene som er brukt i denne studien, samt relevante parametere,
oppløsning, gjenbesøkelsestid og ventetiden fra målinger er gjennomført til data er tilgjengelig for
o↵entligheten er presentert i Tabell 1 senere i seksjonen.

2.1 CYGNSS

CYGNSS-konstellasjonen, som er utviklet med et budsjett p̊a omtrent 150 millioner amerikanske dollar,
opererer som GNSS-R mottakere ⇠500km over jordoverflaten og best̊ar av åtte ⇠25 kg lettvekts
mikrosatelliter [Ruf et al., 2018]. Disse er omtrent 1.6 meter lange og er illustrert i Figur 2. I motsetning
til tyngre, tradisjonelle satellitter som g̊ar i bane over polene er CYGNSS-satellittene designet til å
benytte seg av en banehelling p̊a 35 grader fra ekvator. Dette fører til at CYGNSS kan tilby målinger
med en romlig oppløsning p̊a 25x25 km og en gjennomsnittlig gjenbesøkelsestid p̊a 7.2 timer mellom ±
40 breddegrader og ± 180 lengdegrader. Hver satellitt innehar et Delay Doppler Mapping Instrument
(DDMI) ansvarlig for å generere relevant data fra målingene gjort av satellitten med en frekvens p̊a
2Hz. Et DDMI er kapabelt til å motta fire reflekterte signaler samtidig, som p̊a tvers av CYGNSS-
konstellasjonen resulterer i at 32 målinger blir gjort hvert halve sekund.

CYGNSS produserer fire ulike dataprodukter som alle er o↵entlig tilgjengelig. Produktene, som
er referert til som niv̊a 0 til niv̊a 3 data, er publisert gjennom NASA’s Physical Oceanography Data
Active Archive Center (PO.DAAC) med en maksimal forsinkelse fra gjennomførte målinger til tilgjen-
gelighet p̊a seks dager. Data p̊a niv̊a 1, som benyttes i denne studien, inkluderer kalibrerte DDMer
basert p̊a den målte signalstyrken, konvertert fra r̊adata samlet inn av CYGNSS-satellitter (niv̊a 0).
I tillegg til DDMer inneholder ogs̊a dataproduktet metadata som er brukt i konverteringen fra niv̊a 0
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Kilde: [Ruf et al., 2016]

Figur 2: Illustrasjon av en CYGNSS-satellitt

til niv̊a 1 data. Niv̊a 2 data og dets representasjon i et rutenett levert i niv̊a 3 data, er de resteren-
de dataproduktene produsert av CYGNSS. Disse inneholder geofysiske parametere som blant annet
vindhastighet og konsentrasjon av mikroplastikk [Ruf et al., 2016]

2.2 SMAP

Soil Moisture Active Passive (SMAP) er et romoppdrag utført av NASA med mål om å måle jordfuk-
tighet over hele verden. Oppdraget ble startet i slutten av 2015 og er fortsatt i drift ved dags dato.
Det best̊ar av én satellitt som ble designet for å utnytte b̊ade aktive og passive målemetoder, med den
hensikt å utnytte det beste av hver metode. Det er derimot kun den passive metoden som fungerer
per dags dato. Uansett, SMAP gjør det mulig å produsere jordfuktighets-estimater med en tidsmessig
oppløsning p̊a to dager ved polene og tre dager ved ekvator, og romlig oppløsning p̊a 36 km. Budsjettet
til SMAP er rett i underkant av én milliard amerikanske dollar [Entekhabi et al., 2014], og satellitten
er vesentlig større enn de benyttede CYGNSS-satellittene. SMAP satellitten er illustrert i Figur 3.

En sammenlikning av oppløsningen til CYGNSS og SMAP er vist i Tabell 1, hvor CYGNSS er vist
(a) og SMAP er vist i (b).

2.3 ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF) bruker retrospektiv analyse
for å produsere et dataset best̊aende av informasjon om den globale atmosfæren, landoverflater og
havbøler fra 1950 til dags dato. Dette datasettet skiller seg fra CYGNSS og SMAP ved at romb̊arene
observeringer ikke er den eneste kilden til deres dataset. I stedet brukes en kombinasjon av direkte
observasjoner og globale modeller til å produsere et datasett som blant annet inneholder globale es-
timater av bakkens fuktighet i de øverste fem cm av overflaten. Den romlige oppløsningen er 0.25� x
0.25� og den tidsmessige oppløsningen en en time, men gitt at det ikke utelukkende er et romoppdrag
opereres det ikke med gjenbesøkelsestid som vist i Tabell 1.

3 Metode

3.1 Estimering av jordfuktighet

En fremgangsmåte for å oppn̊a relevant informasjon relatert til jordfuktighet er å analysere overflate-
refleksjon. Ved å anta koherent refleksjon n̊ar GNSS-signaler reflekteres av jordens overflate kan den
koherente komponenten i uttrykket for reflektert signalstyrke beskrives basert p̊a målinger utledet fra
satellittenes DDMer [Rajabi et al., 2020]. Styrken p̊a reflekterte signaler er beregnet basert p̊a verdier
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Kilde: [Entekhabi et al., 2014]

Figur 3: Illustrasjon av en SMAP satellitt

Tabell 1: En oversikt over de ulike datasettene som er brukt i denne studien, samt relevante parametere,
oppløsning, gjenbesøkelsestid og ventetiden fra målinger er gjennomført til data er tilgjengelig for
o↵entligheten

CYGNSS (niv̊a 1) SMAP (niv̊a 3) ERA5

Romlig dekningsgrad 40� N/S Global Global
Romlig oppløsning 25km x 25km 36km x 36km 0.25� x 0.25�

Tidsmessig dekningsgrad 01.08.2018 - d.d. 31.03.2015 - d.d. 1979 - d.d.
Gjenbesøkelsestid 7.2 timer 2-3 dager N/A
Dataforsinkelse 6 dager 50 timer 5 dager
Parameter i fokus SNR Jordfuktighet (SM) Jordfuktighet (SM)
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(a)
(b)

Figur 4: CYGNSS sin romlige dekningsgrad i løpet av de første 24 timene i januar 2020 (a) og SMAP
romlig dekningsgrad i løpet av de første tre dagene av januar 2020 (b)
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som representerer forholdet mellom signal og støy (SNR) tilhørende DDMene som er tilgjengelig i
CYGNSS niv̊a 1 data. Ligning 1 beskriver hvordan overflaterefleksjon målt i desibel (dB) er utregnet
basert p̊a SNR verdier og andre relevante variabler. Disse representerer signalstyrken p̊a transmitterte
GNSS-signaler (P t

R), avstandene mellom henholdsvis GNSS- og CYGNSS-satellitter og refleksjons-
punktet p̊a jordoverflaten (dts og dsr) og bølgelengden p̊a GNSS-signalene som transmitteres (0.19m)
med en frekvens innenfor L-b̊andet. Som ogs̊a andre studier har p̊apekt, er SNR kun proporsjonal
med P t

R, da SNR ogs̊a er p̊avirket av andre faktorer som systemstøy [Chew et al., 2018]. Da enkelte
variables i CYGNSS niv̊a 1 dataproduktet er oppgitt i ulike måleenheter, ble disse konvertert til dB
for å enklere kunne benyttes i Ligning 1.

SR SNR� P t
R �Gr �Gt � 20 log (0.19) + 20 log (dts + dsr) + 20 log (4⇡) (1)

Tilstedeværelsen av fuktighet i jorden er med p̊a å endre dens elektromagnetiske egenskaper, noe
som fører til endringer i landoverflatens respons p̊a innkommende GNSS-signaler. Denne responsen
kan representeres ved en parameter for overflaterefleksjon. P̊a denne måten kan GNSS-R målinger av
overflaterefleksjon tilføre verdifull informasjon om mengden vann som befinner seg i jorden. I forskning
relatert til bruken av CYGNSS-målinger for å oppn̊a estimater p̊a jordfuktighet er det nødvendig med
enkelte underliggende antagelser for at parametere, som den presentert i Ligning 1, skal kunne knyt-
tes til jordfuktighet. Det innebærer blant annet at refleksjonsomr̊adet der målingen er gjort antas å
ikke p̊avirkes bemerkelsesverdig av jordens overflaterø↵het. Den viktigste antagelsen som underbygger
sammenhengen mellom overflaterefleksjon og jordfuktighet er derimot at endringer i målt overflate-
refleksjon utelukkende er et resultat av endringer i andelen vann i jorden. Dersom dette viser seg å
stemme vil monitoring av overflaterefleksjon kunne bidra til generering av data og informasjon av
høyere presisjon og oppløsning for flere bruksomr̊ader som benytter målinger av jordfuktighet.

3.2 Detektering av flom

Flom kan forekomme som et resultat av stor nedbør, snø og issmelting og andre årsaker. Felles for alle
årsakene er at vannstanden tar seg over sitt vanlige niv̊a, som kan skape store farer og ødeleggelser
for nærliggende bebyggelse og infrastruktur. Ved forekomst av flom vil den økte mengden vann føre
til muligheter for økt overflaterefleksjon. Hvorvidt CYGNSS evner å fange opp slike hendelser kan
analyseres i tidsserieanalyser.

I b̊ade januar 2020 og mai 2021 for̊arsaket kraftig nedbør flom i Sistan- og Baluchestan-provinsen i
Iran. Dette omr̊adet best̊ar av flere fjellkjeder med sandlagre mellom seg som akkumulerer vann fra de
ovenforliggende omr̊adene. Dette gjør de lavtliggende omr̊adene utsatt for flom. En tidsserieanalyse i
dette omr̊adet vil bli gjort for å evaluere om CYGNSS fanger opp slike naturkatastrofer. Her vil den
gjennomsnittlige overflaterefleksjonen bli regnet ut for hver dag fra begynnelsen av 2019 til slutten
av 2021. Disse verdiene blir sammenliknet med jordfuktighetsverdier tilgjengelig i SMAP sitt niv̊a 3
dataprodukt for å evaluere resultatene. I tillegg vil resultatene evalueres basert p̊a om flommen gir et
avtrykk p̊a CYGNSS-tidsserien i form av økt overflaterefleksjon.

4 Resultater og diskusjon

4.1 En sammenligning av overflaterefleksjon og jordfuktighet i India

Overflaterefleksjon utledet fra CYGNSS-målinger vil bli sammenliknet med jordfuktighetsestimater
produsert av b̊ade SMAP og ERA5 over et omr̊ade som dekker nord-India og Pakistan i januar og
august 2020. Alle målingene har blitt konvertert til en oppløsning p̊a 0.1� x 0.1� ved å ta gjennomsnittet
av alle målingene i hver celle for hver respektive måned. Resultatet presenteres i Figur 5, hvor den
venstre kolonnen viser målingene i januar 2020 og den høyre kolonnen viser det samme for august.
Figuren illustrerer en ulempe ved bruk av SMAP n̊ar det gjelder romlig dekningsgrad. Det nordøstlige
hjørnet av Figur 5 (c) har ikke blitt dekket av SMAP i januar 2020 og demonstrerer den forbedrede
dekningsgraden til CYGNSS. Videre kommer det fram at ERA5 har glatte overganger fra tørre til v̊ate
omr̊ader, der det forekommer større variasjoner i CYGNSS-dataen. Dette kan tyde p̊a at den romlige
oppløsningen til CYGNSS er bedre og derfor fanger opp variasjoner som ikke plukkes opp av ERA5.

Tabell 2 viser gjennomsnittlig overflatereflektivitet for CYGNSS, samt gjennomsnittlig jordfuktig-
het for SMAP og ERA5 i januar og august 2020. I tillegg presenteres den relative endringen til alle de
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(a) (b)

(c) (d)

(e) (f)

Figur 5: Gjennomsnittlig overflatereflektivitet for CYGNSS i januar 2020 (a) og august 2020 (b),
gjennomsnittlig jordfuktighet for SMAP i januar 2020 (c) og august 2020 (d) og gjennomsnittlig
jordfuktighet for ERA5 i januar 2020 (e) og august 2020 (f)
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Tabell 2: Gjennomsnittlig overflatereflektivitet for januar og august 2020 for CYGNSS og gjennom-
snittlig jordfuktighet i de samme månedene for SMAP og ERA5. Verdiene er kalkulert over nord-India
og Pakistan.

Januar August Relativ endring

CYGNSS 9.36 dB 10.5 dB +12.2 %
SMAP 0.21 cm3/cm3 0.23 cm3/cm3 +9.5 %
ERA5 0.21 m3/m3 0.25 m3/m3 +19.1 %

Tabell 3: Korrelasjon mellom CYGNSS og SMAP og ERA5 for januar og august i 2020 i nord-India
og Pakistan.

Januar August Tidsmessig di↵eranse
SMAP ERA5 SMAP ERA5 SMAP ERA5

CYGNSS 0.777 0.368 0.770 0.337 0.686 0.463

tre datakildene. Tabell 3 viser den romlige korrelasjonen mellom de tre datakildene for de to månedene.
Her kommer det tydelig frem at CYGNSS og SMAP korrelerer i mye høyere grad enn det CYGNSS gjør
med ERA5. Dette er et resultat av de globale numeriske metodene som benyttes i ERA5, i motsetning
til de direkte observasjonene hos SMAP og CYGNSS.

4.2 Analyse av to nylige flommer i Iran

For hver 0.5� x 0.5� celle i det valgte omr̊adet i Iran ble det produsert tidsserier fra 2019 til og med
2021. Figur 7 (a) viser en oversikt over korrelasjonen mellom CYGNSS og SMAP for hver enkelt celle.
Mørkheten i grønnfargen til hver celle angir hvor høy korrelasjon cellen besitter. Figur 7 (b) viser
et satellittbilde av det samme omr̊adet. I begge figurene representerer den bl̊a boksen omr̊adet som
opplevde flom i januar 2020 og mai 2021. Figur 7 (c) viser tidsserien til den bl̊a cellen, med de to
flomperiodene markert i gr̊att. Videre viser henholdsvis Figur 7 (d) og (e) tidsseriene til den første og
den andre flomen. Alle disse tidsseriene har en rød linje som viser CYGNSS overflatereflektivitet og
en bl̊a linje som viser SMAP jordfuktighet. Korrelasjonen mellom de to linjene st̊ar oppført i tittelen
til hver figur.

Under begge flommene viser Figur 7 (c) en markant økning i b̊ade overflaterefleksjon og jordfuk-
tighet. Det samme mønsteret er synlig i Figur 7 (d) og (e), hvor SMAP sine verdier for jordfuktighet
øker raskere enn CYGNSS sin overflaterefleksjon.

4.3 Konklusjon

Vi har presentert en ny metode for å produsere kvasi-globale estimater av jordfuktighet med høy
romlig og tidsmessig oppløsning ved bruk at Global Navigation Satellite System Reflektometri (GNSS-
R). NASA sitt nye romoppdrag Cyclone GNSS (CYGNSS) tar i bruk denne teknikken for å produsere
Delay Doppler Maps (DDMs) med Signal to Noise Ratio (SNR) verdier av GNSS-signaler. Disse kan
brukes til å regne ut overflaterefleksjon og videre estimere jordfuktighet.

En studie i nord-India og Pakistan viste at CYGNSS overflatereklektivitet korrelerer sterkt med
Soil Mostire Active PAssive (SMAP) sine estimater av jordfuktighet. Deler av di↵eransene kan komme
av at CYGNSS demonstrerer høyere romlig og tidsmessig oppløsning, noe som kan gjøre at CYGNSS
fanger opp mindre variasjoner i jordfuktighet enn SMAP er kapabel til. ERA5 korrelerte d̊arlig med
CYGNSS sammenliknet med SMAP i samme omr̊ade.

Videre ble analyser av tidsserier i Iran gjennomført for å evaluere muligheten til å fange opp flom ved
bruk av CYGNSS-målinger. Det analyserte omr̊adet opplevde to flommer i henholdsvis januar 2020 og
mai 2021. I disse periodene fremhevet tidsseriene signifikante økninger i målt overflatereflektivitet. Det
er derfor rimelig å anta at resultatet bekrefter muligheten til å bruke CYGNSS-målinger i fremtidige
prognoser og deteksjon av flom, og det til reduserte kostnader sammenlignet med eksisterende metoder.
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(a) (b)

Figur 6: CYGNSS overflaterefleksjon før flommen i Iran 2021 (a) og under flommen i Iran i 2021 (b)
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(a) (b)

(c)

(d)

(e)

Figur 7: Oversikt over korrelasjon mellom CYGNSS og SMAP i hver 0.5� x 0.5� celle (a). Satellittbilde
over det analyserte omr̊adet i Iran (b). Tidsserie for den bl̊a ruten (c). Tidsserie over den første flomen
(d) og den andre flomen (e).
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