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Abstract

The rise of deep learning approaches for building and change detection have increased in the

recent years. The accessibility and quality of high resolution satellite images have opened a wide

variety of possibilities for practical applications and business problems. Temporal change

detection using high resolution satellite images, have played an important role in mapping

different changes on Earth’s surface. Due to increasing interest in building and change detection,

a range of different approaches in this field have become readily available. This thesis introduces

a novel neural network, U-PSP-Net, specifically designed for building detection. The network is

used to detect changes of buildings in Trondheim Municipality. The thesis also covers the

creation of a novel building data set covering 2.3 square kilometers and 3784 buildings.

U-PSP-Net is a convolution neural network made by combining parts from U-Net and PSPNet,

two other image segmentation networks. An ablation study was performed to optimize the

network, exploiting the advantages of each network while also minimizing their weaknesses. The

resulting network is four layers deep with a pyramid pooling module, consisting of the two

smallest kernels, connecting the encoder and decoder structures. Reducing the depth makes

U-PSP-Net a more efficient network, using only half as many weights as U-Net. The network

achieved almost 98% recall and precision and a IoU of almost 97 %.

As part of the thesis, an experimental study in Trondheim was conducted. The goal was to use

U-PSP-Net to, as accurately as possible, extract buildings from aerial images. The network was

used to extract buildings from two data sets. Despite the high accuracy of the results, some

misclassifications were made on the data sets. The classified images were later used for change

detection analysis. The analysis encounters issues caused by differences in the data sets due to

variation in the image collection phase. In conclusion, the U-PSP-Net proved to be efficient at

building detection. However, the training data set could be expanded, and the images should be

exposed to more augmentation. The change detection method was also proven to work, although,

for automatic detection, true orthophotos are required.

The complete source code developed for this thesis can be found at this GitHub repository
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Sammendrag

Fremveksten i bruken av dyplæringsmetoder for bygning- og endringsdeteksjon har økt jevnt de

siste årene. Tilgjengeligheten og kvaliteten til høyoppløselige satellittbilder har tilrettelagt for en

rekke muligheter innenfor praktiske bruksomr̊ader og forretningsproblemer. Deteksjon av

endringer ved hjelp av satellittbilder med høy oppløsning har hatt en viktig rolle i å kartlegge

endringer p̊a jordas overflate. P̊a grunn av økende interesse for bygning og endringsdeteksjon, har

en rekke forskjellige tilnærminger p̊a dette feltet blitt lett tilgjengelige. Denne oppgaven

introduserer et nytt nevralt nettverk, U-PSP-Net, spesielt designet for bygningsdeteksjon.

Nettverket brukes til å oppdage endringer av bygninger i Trondheim kommune. Oppgaven dekker

ogs̊a etableringen av et nytt bygningsdatasett som dekker 2,3 kvadratkilometer og 3784 bygninger.

U-PSP-Net er et konvolusjonalt nevralt nettverk laget ved å kombinere deler fra U-Net og

PSPNet, to andre bildesegmenteringsnettverk. En ablasjonsstudie ble utført for å optimere

nettverket, og å utnytte fordelene ved hvert nettverk samtidig som de minimerte deres svakheter.

Det resulterende nettverket er fire lag dypt med en pyramidepoolingsmodul, best̊aende av de to

minste kjernene, som forbinder koder- og dekoderstrukturene. Redusering av dybden gjør

U-PSP-Net til et mer effektivt nettverk, som bruker bare halvparten s̊a mange vekter

sammenlignet med U-Net. Nettverket oppn̊adde nesten 98% dekning og presisjon og en IoU p̊a

nesten 97%.

Som en del av oppgaven, ble det gjennomført en eksperimentell studie i Trondheim. Målet var å

bruke U-PSP-Net til å s̊a nøyaktig som mulig kunne detektere bygninger fra flybilder. Nettverket

ble brukt til å detektere bygninger fra to ulike datasett. Resultatene var svært nøyaktige, men

med noen feilklassifiseringer p̊a det ene datasettet. De klassifiserte bildene ble senere brukt til

analyse av endring. Under analysen, oppstod det problemer for̊arsaket av forskjeller i datasettene

p̊a grunn av variasjon i bildeinnsamlingsfasen. For å konkludere, viste U-PSP-Net seg å være

effektivt ved bygningsdeteksjon, men treningsdatasettet burde utvides og bildene bør eksponeres

for mer behandling. Metoden for endringsdeteksjon har ogs̊a vist seg å fungere, selv om det

kreves sanne ortofoto for en automatisk deteksjon.

Den komplette kildekoden utviklet for denne oppgaven ligger p̊a GitHub.
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Chapter 1

Introduction

Problem Definition

There are many reasons detecting building changes is imperative, such as for urban management,

disaster assessment, illegal building identification, and updating geographic information

databases [1]. The ability to detect buildings is a crucial component of cartography, and it has

been used extensively in many applications. Economic development and analysis of urban

expansion, for instance, can supply urban planners with relevant and crucial information for

emergency management. Building changes can also be detected and used to update maps when

buildings are expanded or demolished.

The fact that high-resolution aerial imagery is available makes efficient building detection

achievable. Currently, remote sensing information is primarily extracted manually through visual

inspection, which is time-consuming, tedious, and extremely dependent on becoming automated.

Automating and semi-automating building change detection is becoming increasingly popular

because of the potential productivity increase. [1]

1



1.1 Change Detection

Change detection is by Singh [2] described as ”the process of identifying differences in the state of

an object or phenomenon by observing it at different times”. Deforestation, damage assessment,

disaster monitoring, urban expansion, planning, and land management are just a few of the

various applications of change information. Research is being conducted to develop methods for

detecting changes in remote sensing. Change detection relies on remote sensing data because

changes in the object of interest alter the spectral behavior (local texture or reflectance value)

independent of other factors [3]. Many factors affect change detection in remote sensing data,

including spatial, spectral, thematic, and temporal constraints, radiometric resolution,

atmospheric conditions, and soil moisture conditions [4].

Change detection procedures are intended to detect and, if possible, interpret changes in objects

or phenomena over different acquisition times t1, t2, t3, ...tn. To determine the degree of change,

remote sensing image data can be compared with the value of an image pixel or object time t1

and t2 based on multi-temporal remote sensing image data. Various digital image processing

methods, depending on the image’s resolution, spectral properties, and temporal characteristics,

have been developed throughout the last 30 years. [5]

Determining the most suitable algorithm or approach for change detection is a significant

challenge in practice [6]. Researchers have expended great effort to develop different change

detection methodologies that cover both traditional pixel-based and object-based methods [3].

The traditional pixel-based change detection methods are not considered appropriate for Very

High-Resolution Remote Sensing (VHR RS) data, which object-based approaches may be more

effective. In addition to the pixel- and object-based approaches, various algorithms have been

developed to provide a wider range of choices. [7]

Change can be detected through a bi-temporal building map or by using two images in a change

detection network. Bi-temporal building map is used by Ji et al. [8] as input into the change

detection network, where the building extraction networks are used to produce binary maps of

buildings and backgrounds. Change detection is based on concatenating maps of different

periods, then incorporating them into the change detection network to filter out noise caused by

the imperfect building extraction [8]. Due to complex combinations of factors such as structural

changes and varying lighting conditions from different vantage points, it is hard to determine

changes in buildings from bi-temporal images [9].

1.1.1 Classifying Building Changes

When detecting building changes, the changes can be organized. Within our task, four different

building changes can be classified. New buildings, expanded buildings, demolished buildings, and

partially demolished buildings. A new building is a separate building, while an expanded building

is connected to an already exciting one. Demolishment of a building can either be total or partial.
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1.1.2 Object-Based Detection

Increasing advances in computing hardware and algorithms have enabled accurate segmentation

and classification of very high-resolution satellite images. The increasing advances have enabled a

new method for detecting changes, object-based change detection. [10]

In essence, Object Based Change Detection (OBCD) is based on object-based image detection.

OBCD is a development from object-based image analysis, which combines segmentation, spatial,

spectral, and geographic data with the competence and experience of the analyst to create

models of geographic entities from image files [11] [12]. To detect objects in images, pixels are

grouped to form groups of pixels. Object detection is a whole field in its own right. In OBCD,

objects are identified in two or more images, and changes in the same area are detected [10].

According to Mäkelä and Pekkarinen [13], image-object segmentation is less sensitive to

misregistration errors compared to the traditional pixel-based methods.

Visual Inspection

Depending on the resolution of the images in question, detecting change can be seen as both

pixel-based and object-based change detection. According to Lu et al. [6], visual analysis is

helpful for a task where size, shape, texture, and patterns are vital elements. It is beneficial with

a visual inspection in situations where the resolution is coarse. For example, when detecting a

change in forest cover over larger areas or the development of weather phenomena, a visual

inspection might be considered more effective than any other method. To this date, the

municipality of Trondheim still uses visual inspection for change detection. One example of this

is the same task this master’s thesis wants to solve. The municipality of Trondheim uses manual

labor, outsourced to other countries, to detect changes in buildings. This process is very accurate

but, on the other hand, immensely time-consuming. An inaccurate map serves no purpose.

Hence the municipality of Trondheim still uses manual labor for change detection. It might be

some time before this process can become entirely automatic. Nevertheless, more and more, the

process will take advantage of machine learning to save time and money.

Classification

Methods that use classified images to detect change are often known as classification methods.

This category includes methods like post-classification comparison, unsupervised change

detection, expected maximization algorithm, and artificial neural networks. A big advantage of

these methods is that they provide a change detection matrix. The methods can also minimize

the effect of atmospheric and environmental differences between the images. As with any

method, there are also drawbacks. These methods heavily rely on training data. An accurate

data set, sufficient in size, is required to achieve adequate change detection. Which is both

time-consuming and difficult to create. [6]
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Direct change detection

Although not a widespread method, it is possible to detect change directly. Deep learning

networks can be trained to detect virtually anything as long as there is training data. By feeding

a network sets of bi-temporal images with annotated changes, the network can learn to detect

change. Wang et al. [14] proposes a method using a novel network, named GETNET, to detect

change directly. The network is tested and used to identify changes in land cover and geographical

objects like rivers or lakes. The proposed network achieved well above 90% Overall Accuracy

(OA). Although detecting change directly is not the most common method for change detection

right now, this might change in the future as networks and training data sets improve [14].

1.1.3 Pixel Based Detection

Pixels have been fundamental to image analysis since the beginning of remote sensing. The

spectral properties of pixels are exploited in these techniques, allowing measurements and

detecting changes independent of their spatial arrangement. In general, remote sensing images

can be categorized into simple binary changes or detailed ”from-to” changes. Several change

analysis studies require detailed information on the ”from-to” change, but a binary change versus

no change will suffice. [3]

According to studies performed by Cleve et al. [15], Corcoran and Winstanley [16] and Hájek

[17], object-based methods produce more accurate and robust classifications using high-resolution

imagery than using pixel-based methods. However, for certain land cover categories, pixel-based

land cover classification techniques have shown to be the most effective classification technique

[18]. It may be beneficial to combine the best classification results from both methods. An

analysis by Wang et al. [19] applied very high-resolution (VHR) IKONOS imagery to the

classification of a mangrove ecosystem showed that combinations of pixel-based and object-based

classification improved the classification accuracy.

Various accuracy assessments are commonly used in pixel-based change detection, including

overall accuracy, producer accuracy, user accuracy, and kappa coefficient [6]. Using pixels as the

basic unit for assessment makes it reasonable to evaluate the change results based on pixels-level

truth data. [10]

Algebra Methods

Change Vector Analysis (CVA), image differencing, background subtraction, vegetation index

differencing, image rationing, and image regression are some of the methods classified as algebra

methods. All these methods share the same approach, in which they apply mathematical

operations on each pixel to detect change [20]. A drawback of these methods is only allowing

processing of one band of data at a time and the task of choosing a suitable threshold. Results

heavily depend on the threshold; therefore, using an appropriate threshold is crucial [6] [2]. Of
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the methods already mentioned, image differencing is the most commonly used.

Transformation Methods

The use of transforms on image pixels to detect changes in an image falls under the category of

change detection. The most common of these transform methods are Gramm-Schmidt and

Chi-squared transform, Principal Component Analysis (PCA), and Kauth–Thomas

transformation (KT). The essential advantage of employing a transform-based change detection

method minimizes redundant information between the bands. On the other hand, a disadvantage

of using this method is the lack of a detailed change matrix. Similar to the algebra methods, it

requires a threshold, which can be challenging to set. Since the images are transformed,

identifying and labeling the change can be complicated.

Although these methods have some flaws, they are simple and easy to use. Before the turn of the

millennium, transformation methods were popularized and used to detect change. Due to the fact

that they are not complex and give satisfactory results, PCA and KT were the most popular [6].

Geographic Information System (GIS)

Integrated GIS and remote sensing methods is another way to detect change using GIS. Contrary

to other methods, you can incorporate different sourced data when using a GIS. A problem that

must be avoided with additional sourced data is the difference in accuracy and format which will

affect the result if it is not taken into consideration [6].

1.1.4 Change Detection Conclusion

Change detection is historically more used for land-use and land-cover changes. This is a field

where extreme accuracy is not essential to get satisfactory results, and the difference is possible

to detect even without actual high resolution. The change detection area of objects like buildings

is less available than building detection. Change detection of things like buildings is mainly done

by comparing bi-temporal images that are already classified — a so-called post-classification

change analysis. Change detection is therefore done pixel-based by comparing masks containing

said objects. Understanding this method clarifies that the change detection accuracy is directly

related to the building detection. The comparison method can not affect the results or the

accuracy. It is, however, only a method to be able to visualize and contextualize the change.

Hence the actual task of building change detection is to classify the buildings as accurately as

possible. This thesis will primarily focus on building detection methods and how to get the best

possible results from building detection. Furthermore, the experiment optimizes existing building

detection methods to improve their results.
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1.2 Our Main Contribution

Our task in this master thesis has been to develop our deep learning network based on two

state-of-the-art approaches for image segmentation. The report consists of a literature review of

the excising methods for building detection, annotating methods for creating training data, as

well as an ablation study for constructing our model. Apart from explaining some of the latest

and advanced algorithms within this field, the report evaluates the results from our model and

compares it to already existing image segmentation approaches.

Performing a literature study and an experiment in our Specialized project with U-Net and

SegNet in advance of our master thesis gave us a fundamental insight into how the various

state-of-the-art approaches within this field behaved. U-Net gave the best results in the

experiment, which is why we chose U-Net as the backbone of our model. Precisely investigated

theory in our Specialized project provided us the opportunity to experiment with different

settings and parameters, which was a huge advantage when starting our master thesis. The

process of developing our own model was simplified since the preparatory work had already been

executed in advance.

The problem of change detection is often a problem of detecting building objects from aerial

images at different time stamps and comparing the results with each other. Consequently,

buildings in two images need to be precisely detected to find the correct change. Considering our

master thesis focuses on change detection on buildings from high-resolution aerial images in

Trondheim, the process of extracting buildings is paramount to assure satisfying results. Thus,

accurate building extraction is requisite. Pixel-based change detection is then executed to find

changes that have occurred. Pixel-based change detection is highly dependent on building

extraction accuracy, so our primary emphasis is to implement and create an accurate building

detection method.

A throughout assessment of the results of our model was done based on selected criteria. The

intersection of Union, precision, recall and visual comparison were considered when evaluating

our model results. As we called our model, U-PSP-Net got an IoU, precision and recall of 98%.

1.3 Motivation of Creating a new Data Set

The world of machine learning is constantly developing and is gaining popularity and

acknowledgment by the day. Guides, forums, communities, and data sets are just something of

what the internet has to offer when it comes to machine learning. In the last ten years, there has

been a massive jump in the search term ”Machine Learning”, and the same is true for ”Machine

Learning Data Set” [21]. Machine learning would be impossible without data sets, in the same

way, the task in question would not be possible. As mentioned, many publicly available data sets

exist for all types of problems, including building segmentation. One of them is a data set over

Massachusetts. The before mentioned data set was used in earlier work for preliminary testing.
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However, this data set is not up to the standard required for this task. The lack of adequate data

set has been the limiting factor for scientific progress and improvements in machine learning [22]

[23]. The most significant breakthroughs in the field have their foundation in large benchmark

data sets like ImageNet [24], and GLUE [25]. Sun et al. [22] emphasizes that the size of the data

set is directly linked with the model’s performance. There is a logarithmic relationship between

the performance and the volume of the data set. Jain et al. [26] also underlines the importance of

data quality and how the results are upper bound by its quality.

Another contribution of this master thesis is establishing a training data set for the deep learning

based approach. Large amounts of open-source data sets are available with labeled rooftops. The

reasons for our choice of labeling our data set are many. First of all, the results are required to be

highly accurate. Creating a new data set guaranteed high resolution and precise annotations.

One purpose of identifying change is to update maps. Accordingly, an accurate data set over

Trondheim is required. Precise training data over Trondheim equals better building detection,

which leads to more accurate change detection. As of now, there exist no viable building data

sets over the municipality of Trondheim. Data layers with buildings exists, however they are not

attached to images. Fusing the data layer and images would not result in anything usable either.

Data sets with accurate annotations and high-resolution images already exist and are available,

nevertheless, this is not the only reason a new data set is required. A good deal of other traits

with a data set will affect the results. The machine learning model acquires knowledge by

identifying distinct features for the given object. These features are easier to identify in a

prediction setting if the prediction data set is as similar as possible to the training data set. This

includes the buildings’ shape, type, and texture, the surrounding nature and environment, and

lighting and contrast conditions.

By creating a new data set over the study area, the best possible conditions are given for the

model to perform. The machine learning model will learn what buildings in the local area look

like and not anywhere else. This, of course, makes the model worse at segmenting buildings that

are not similar to those in Trondheim. However, this is not an issue because the model only

needs to perform over the given area. It is possible to train a network to be able to be accurate

on any building. However, creating a general model will require an immense amount of training

data. Buildings in Trondheim are pretty homogeneous. A consequence of this is that creating a

data set based on the local area will benefit the results as the network will benefit from a specific

data set for the local buildings.

It was crucial to label buildings in a proper annotation tool to achieve good results. Annotating

buildings is not complicated, but the process was time-consuming and required accuracy and

precision. The effect of a precise and large amount of training data was remarkable better results.

Approximately 4000 roof planes were annotated and labeled, which only covered 25% all the

images included in the data set. Since the annotation was time-consuming, a decision was made

to stop the process and would instead continue if more training data was required.
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1.4 Structure of the Thesis

The report starts with a chapter including a literature review of building detection and

associated methods. The chapter will go through different methods for building detection and

will be divided into unsupervised and supervised approaches. Furthermore, related works and

their results will be presented in short. The advantages and disadvantages of different techniques

will be discussed, and brief reasoning for choosing the detection method for this thesis. The

following sections of this chapter will present knowledge essential for understanding, using, and

optimizing a deep learning network. The general workings and concepts of a Convolution Neural

Network (CNN) will be explained. An explanation will also be given about parameters in the

network that are important for tuning and optimization later on. As well as an introduction of

ablation study and its importance. Lastly, two specific neural networks, architecture and

properties will be presented.

In the third chapter, our method is presented in general terms, followed by the development and

an architecture description of our U-PSP-Net model. The reason for combining U-Net and

PSPNet and their advantages and disadvantages are considered in this chapter. The models’

different parts are described and discussed in detail, from the encoder and decoder to the

Pyramid Pooling Module (PPM). Further on, the process of change detection is thoroughly

explained. Diverse settings like batch size and learning rate must be configured when training a

CNN or a deep learning model. The last step of our method is the change analysis. Evaluation of

the building detection results is also included in the chapter. This part mentions the different

parameters on which the results will be evaluated. Additionally, a brief argumentation of why

each parameter is included in the evaluation will be given.

The data utilized is presented in Chapter 4, where information regarding cameras and flight is

explained in detail. The chapter starts with general information about the image collection and

expands on the process of creating a novel building data set. The preprocessing process is also

explained, including the area of interest and the different preprocessing techniques such as

cropping, annotation, creation of masks, image augmentation, and patching.

Chapter 5, Experimental study in Trondheim, starts with the results from the ablation study to

develop our model and the belonging results. Further on, the hyperparameter optimization is

addressed, followed by the outcome. Our model’s result is then compared to the original U-Net

and U-Net with PPM based on binary IoU, precision, recall, and training and validation loss

graph. The result shown is evaluated and discussed, and how different factors may have affected

our final result. Further on, the process of building detection is accounted for, and a presentation

of some good and worse detected buildings in Trondheim using our model is then presented and

discussed the possible reasons for the result. The change detection result is then presented,

followed by a discussion of the change detection result. Lastly, a discussion regarding the data set

used and the process of making our training data set.

8



Chapter 2

Background

Background knowledge is essential in every field of research. To be able to use and understand

advanced methods, you have to know the fundamentals that underlie the processes. Therefore, it

is vital to research the underlying topics that this thesis is built upon. Hence this chapter will

present the most outstanding issues, methods, and theories to conduct an accurate building

detection.

Fundamental knowledge is crucial when developing a deep learning network. Recent research has

focused on the automatic and semiautomatic extraction of cartographic features from aerial and

spatial images. Among the many cartographic features to be spotted, buildings are perhaps the

most noteworthy. Building detection approaches are accounted for, followed by CNN theory. The

elements of CNN’s and different hyperparameters are defined, and how to execute an ablation

study is explained. Further, a deeper analysis of the Convolution Neural Networks, U-Net, and

PSPNet is conducted. The architecture, as well as advantages and disadvantages, are accounted

for in this chapter.
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2.1 Building Detection

Detecting cartographic features from aerial and spatial images has been a major research focus.

Buildings are among the most visible and complex cartographic features. [27]

For various reasons, automating the extraction of buildings is a challenging process. Spectral and

geometric characteristics of each region can differ, building structures can include intricate

architectural details, and disturbing objects surround the building. Roofs and ground may have

similar spectral characteristics and can be difficult to differentiate [28] [27]. Various forms of

single structures and/or building blocks can be found in dense urban areas. A single building is a

stand-alone structure with a fixed height, shown in Figure 2.1 (a). Figure 2.1 (b) depicts a

building block, which is a collection of single buildings with varying roof materials and heights.

In densely populated places, the fundamental problem is the low contrast between buildings and

non-buildings. Courtyards, parking lots, bare soil, roads, pavements, and cars are examples of

non-buildings. Buildings range in size, colors, and forms and can be hard to distinguish. The

building height can also vary from single-floor to towers, as illustrated in Figure 2.1 (d). [29]

Figure 2.1: Buildings of various types: (a) Single buildings, (b) Building blocks, (c) Buildings of

different sizes, (d) Buildings of different elevations. [29]
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Figure 2.2: Building extraction using deep learning semantic segmentation. [30]

Deep learning and semantic segmentation methods that enable autonomous object extraction

from high-resolution satellite images have grown in prominence in recent years. It is critical to

extract buildings from high-resolution aerial imagery for geospatial applications, including urban

planning, telecommunications, disaster monitoring, navigation, updating geographic databases,

and dynamic urban monitoring. Figure 2.2 depicts the buildings that were retrieved using deep

learning semantic segmentation. [28]

In land cover classification, pixel-based classification is widely used and is divided into

Unsupervised and Supervised. The unsupervised classification technique, also called clustering, is

used for classifying imagery without pre-defining classes. In contrast, supervised classification is

designed to classify pixels after a user defines the number of classes and characteristics of each

category. A more thorough explanation of unsupervised and supervised are executed in the

following sections. [31]
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2.1.1 Unsupervised

The most common method for clustering pixels in a data set is a technique called unsupervised

classification that relies on statistics based on no user-defined training classes [31]. Neither prior

knowledge of the area under investigation nor previous statistics of the previously defined classes

are required to apply the classification technique [32]. The output consists of unclassified clusters

and labeling change trajectories, which is a significant drawback with unsupervised classification

[6]. After clustering, each cluster is manually assigned a class label. Another drawback is the

selection of the number of clusters. The outcome is influenced dependent on the choice of an

appropriate number of clusters [33]. The two most frequently used unsupervised classification

algorithms are ISODATA and K-means [31].

ISODATA is an iterative method and utilizes minimum distance as a measure of similarity to

cluster data elements into distinct classes [34]. In order to achieve this, the mean value is

recalculated, and all of the pixels are then reclassified until all of them fit into the threshold

input [31]. K-means is also an iterative method using minimum distance to cluster pixels into

different categories. K-means requires several classes to be defined before the calculation, unlike

ISODATA. Distinguishing between obvious categories like water, snow, and clouds and detecting

differences between two images taken with different time stamps are K-means areas of

application. [35] [31]

In a paper written by Aytekin et al. [36] a novel automatic and unsupervised method to extract

buildings is presented. The technique uses mean shift segmentation and PCA to filter out

shadows, vegetation, and roads in an urban area. The method can extract buildings, however,

not without including a lot of false positives. Wei et al. [27] proposes another method using

unsupervised clustering and edge detection for building detection. The method first clusters the

image before detecting shadows. Building candidates are then picked based on the detected

shadows before refined with edge detection and Hugh transform. The method is reported as

successful, although it over-classifies to some degree.

2.1.2 Supervised

Supervised classification is a commonly used pixel-based classification method [34]. Maximum

Likelihood, Mahalanobis distance, and Spectral Information Divergence are some classifiers that

were in the early years of remote sensing data processing software widely used [37] [38] [39].

Machine learning-based classifiers like Classification and Regression Tree, Support Vector

Machine, and Random Forest have recently been proven to perform better, which made them

frequently used in land cover classification [31].

In a paper from 2014, Ghaffarian and Ghaffarian [40] proposes a novel supervised method for

building detection which exploits the fact that 3D building objects cast a shadow. With this

approach Ghaffarian and Ghaffarian [40] achieved an F1-score of 84.8%. Senaras and Vural [41]

are using another supervised method to detect buildings. Their self-supervised decision fusion
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method achieved promising results with an F1 score of 81.9%. Grigillo and Fras [42] presents a

novel method for building detection which combines supervised and unsupervised detection.

Initially, buildings are detected by applying a supervised method. Later an unsupervised method

is applied to enhance the initially detected building, using region growing and unsupervised

classification. The study does not calculate any pixel-level metrics, solely object by object. Given

this, the detection percentage for the buildings came out to 85%.

2.1.3 Region-Based Segmentation

Region-based segmentation is a set of approaches for segmenting various areas based on their

commonalities. Homogeneous regions are formed, and their outlines are retrieved. Looking at the

intensity of each pixel is a frequent strategy. On the other hand, noisy segmentation often occurs

even though this method is widely used. This phenomenon is accentuated by high-definition

satellite imagery. Newer segmentation algorithms utilize features like texture and context to

improve segmentation. The image is divided into different segments in the segmentation process

based on their features. This process separates the components based on similarities, but no

classes are formed, and each segment is treated as unique. A classification step is therefore

executed to extract different categories from the image. On that account, the following

approaches presented combine segmentation and classification methods to extract useful

information.

A region-based segmentation approach is a fuzzy segmentation. This method assigns each pixel

with a probability of belonging to a segment, in contrast to crisp segmentation, which gives each

pixel to a single segment [43]. The method presented by Lizarazo and Elsner [43] consists of three

steps. The three steps include assigning pixels with a degree of membership to each land cover

class, feature analysis, and assigning regions to land cover class based on their contextual indices

and membership value. The overall accuracy of the complete segmentation was 82%. However,

the method had almost 90% accuracy when only considering buildings and background.

One thresholding technique, Otsu’s Method, is presented by Yohannes and Utaminingrum [44] is

used to separate pixels into two classes. In order to achieve this, both the in-between class

variance and the class variance between pixels need to be maximized. In essence, the algorithm

maximizes differences between classes and minimizes differences within each class to determine

the best threshold. The method considered the most humble of the region-based approaches is

region growing. During the initialization phase, the system includes seed pixels, making the

method pixel-based [44]. The fundamental principle of the algorithm is to take into account the

similarity of adjacent pixels before including or excluding them from the segmented area.

Yohannes and Utaminingrum [44] only conducted a small experiment to detect buildings, and the

accuracy achieved was 70%.
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2.1.4 Deep Learning

Deep learning techniques are gaining popularity due to their remarkable outcomes. Not just in

geomatics but also biomedicine, finance, and various other fields. Deep learning is most

commonly employed in geomatics for autonomous segmentation of aerial and satellite images.

Over the last few years, deep-learning-based semantic segmentation classification as a pixel-based

classifier has performed exceptional results. According to the state-of-the-art systems, semantic

segmentation networks could be divided into two categories: encoder-decoder and multi-scale

pyramid pooling [45]. Within the two categories, U-Net, SegNet, and PSPNet are the most

commonly used and comparable architectures [31].

Deep learning models can be used for a variety of tasks. Li et al. [46] presented a novel deep

learning framework that enables automated extraction of building footprint polygons from very

high-resolution aerial imagery. From very high-resolution remote sensing images, U-Net, Cascade

R-CNN, and Cascade CNN deep learning models were used to obtain building segmentation

maps, building bounding boxes, and building corners, respectively. Delauney triangulation was

used to construct building footprint polygons. Building corners were triangulated using building

boundary boxes and segmentation maps as constraints. [46]

By using Res-U-Net combined with guided filters Xu et al. [47] detected buildings using the

Potsdam [48] and Vaihingen [49] data set. They were able to achieve 96% accuracy on their

building detection and stated that their method could achieve better results than other methods.

Zhao et al. [50] combined R-CNN with building boundary regularization to extract buildings.

The method achieved an average F1 score over four different areas of 71%. Although the

relatively low score is affected by the different characteristics of the four areas, it is still a good

score compared to other methods. An advantage of the method is using building boundary

regularization, which creates regularized polygons that greatly use cartography.

2.1.5 Conclusion of Literature Study

High-resolution satellite imagery can be difficult to classify because of the high information

content and detail level. When pixels within an object area have different texture features, an

effect called salt and pepper occurs. The result is a reduction in the accuracy of pixel-based

classification. To address these concerns, an object-based solution was proposed, where

corresponding pixels are first aggregated into an object through segmentation to avoid the salt

and pepper effect [31]. Different and more traditional image classifiers applied for building

detection have proven to be quite effective. However, they are not able to achieve the same

results as the state-of-the-art deep learning methods. Since the introduction of AlexNet, CNNs

have achieved better classification results than any other method [51]. The salt and pepper effect

is one of the main concerns with traditional per-pixel classifiers used for image classification [52]

[53]. As well as not being advanced enough to consider as many features as CNN’s, the less

advanced model falls short of deep learning methods.
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Consequently, the focus further on will therefore be on deep learning approaches, where CNN,

U-Net, and PSPNet will be accounted for. Deep learning has shown remarkable outcomes

throughout the years compared to other traditional approaches. To be able to achieve accurate

enough results that could be used further on in a change detection analysis, it is, therefore,

necessary to use a deep learning approach.

2.2 Convolution Neural Network

A CNN is a class of Artificial Neural Network (ANN). Most commonly, CNNs are used for image

analysis, but they can also be used for voice recognition and natural language processing. In

contrast to ANNs, CNNs require significantly fewer parameters, allowing for the construction of

larger models that are capable of solving more complex tasks [54]. Additionally, the amount of

pre-processing required is significantly lower in comparison to other classification algorithms.

This is a consequence of the network learning to optimize its filters through learning, rather than

the traditional algorithm of hand-engineered filters.

CNN’s history began in 1988 when Fukushima released the first paper introducing CNN’s [55]. It

was not frequently utilized at the time due to the limited computational power available. CNN’s

were refined throughout the following few decades, and researchers were able to accomplish

state-of-the-art results with them. Nevertheless, it was not until 2012, with the release of

AlexNet, that CNN achieved wide recognition. AlexNet participated in the ImageNet Large Scale

Visual Recognition Challenge and outperformed all other traditional machine learning, and

computer vision approaches [51]. The network outperformed the runner-up by more than 10.8%

points, achieving top-1 and top-5 test set error rates of 37.5% and 17.0%, respectively. Following

this, the advancements and evolution of CNNs did not seem to slow down, and there are now a

plethora of networks capable of almost perfect classifications. [56] [57]

A CNN consists of several elements and layers to execute the image segmentation. The different

elements play an essential role for the network to work properly. The subsequent sections will go

more thoroughly through the various aspects of a CNN. Further on, different CNNs like U-Net

and PSPNet will be accounted for.

2.2.1 Elements of Convolutional Neural Networks

Convolution Layer

Convolution is a procedure in a CNN that is used to reduce the number of parameters.

Throughout most situations, CNNs get input in the form of images, which are typically three

layers deep. Depth is determined by the number of distinct bands employed in the collection of

images. RGB images have a depth of three containing red, green, and blue bands. Considering

this, multi-spectral imaging can be used with layers anywhere between 3 to 15. Combine the
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depth, height, and number of pixels to get the dimensions of the CNN’s input.

Matrix multiplication links each input and output unit in traditional neural networks. In other

words, each output unit needs to interact with each input unit, resulting in a vast number of

connections. CNN’s exploit sparse interactions, which indicates that not every unit is connected

and fewer parameters have to be saved [58]. This is achieved by applying a kernel and performing

a convolution. Kernels are matrices that can be slid over an image to blur or detect edges based

on their size. The method is known as convolution and produces a feature map.

Figure 2.3: Multiple layers corresponding to a different filter, but the same spatial reference [54]

If a 100 x 100-pixel RGB image is processed in a fully connected feedforward neural network,

each neuron on the second layer must include 10 000 weights. In contrast, regardless of picture

size, a CNN with a 5 × 5 kernel and equal weights only requires learning just 25 x 3 weights.

Rather than treating each pixel in the image as dependent on every other pixel, all pixels in the

kernel become dependent on each other. Additionally, each convolution can result in features

that can be used in the classification problem, making them an effective way to limit parameters.

Figure 2.5 depicts a simplified illustration of this approach.

Convolution is done repeatedly with various kernels where each kernel generates a unique feature

map. When various features are discovered, the network learns which filters to activate. Using

this strategy, the network will recognize which kernels to utilize and which to avoid in specific

problems after the learning phase [59]. Through the convolution process, the network uses the

same size kernels, and the location of the output is maintained regardless of which kernel is used.

This enables stacking of the output images, as seen in Figure 2.3. The depth dimension is used to

stack the output images, which forms the complete output from the convolutions. As a result of

arranging the outputs in this manner, another interpretation of the results can be made. Each

output can now be viewed as an output from a single neuron that focuses a small portion of the

input, all with the same parameters as the kernel’s neurons. [54]

Stride

Stride is another method for reducing network parameters. When the kernel goes from pixel to

pixel during convolution, there is a lot of overlap between nearby pixels. The overlap may be
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adjusted by changing the stride. Stride is the number of pixels the kernel moves for each iteration.

Albawi et al. [54] provided an example applying a 3 x 3 kernel on a 7 x 7 image. Increasing the

stride value from 1 to 2 reduced the overlap and limited the output from 5 x 5 to 3 x 3.

Padding

There is a disadvantage in the loss of information at the edges of the input during convolution. A

certain amount of information will always be lost at the edges depending on the kernel size. An

input image of 7 x 7 will result in an output image of 5 x 5 by using a 3 x 3 kernel. Padding can

be used to prevent information from being lost. This simple method of placing zeros around the

edge will ensure that no data is lost. This procedure will not only keep all of the information

around the edges, but it will also keep the output dimension. [59]

Convolutional Formula

In Equation 2.1, the convolution of a specified pixel in a subsequent layer is calculated.

Sij = (I ∗K)ij =

⌊m
2 ⌋∑

a=⌊−m
2 ⌋

⌊n
2 ⌋∑

b=⌊−n
2 ⌋

Ii−a,j−b Km
2 +a,n2 +b (2.1)

With a and b being the rows and columns of the matrix of weights, K represents the matrix of

weights. Input pixel values are represented by matrix I, where Sij is the output pixel.

Nonlinearity

Non-linearity is the second stage of the convolutional network. In this stage, the output can be

adjusted or cut off [54]. To saturate or limit the generated output, each linear activation is sent

through the non-linear activation function. In non-linear transform stage of convolution neural

networks, Sigmoid and Tanh functions are typically used as saturated activation functions [60].

The gradient signal fades as the neural network architecture becomes more complicated, a

phenomenon known as vanishing gradient. As illustrated in Figure 2.4, the gradient of those

functions is nearly always close to zero except for those in the center. On the other hand, the

activation function named Rectified Linear Units (ReLU) has a constant gradient for positive

inputs. Despite the fact that the function is not differentiable, it is often neglected in practice. A

common type of non-linearity is shown in Figure 2.4, with ReLU and Softplus being unsaturated

activation functions and constant gradients for positive inputs. Deep convolutional neural

networks using ReLUs train multiple times faster than with Tanh units [51]. The concept of

ReLU and its gradient are shown in Equation 2.2 and 2.3. [54]

ReLU(x) = max(0, x) (2.2)
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Figure 2.4: Common types of non-linearity [54]

d

dx
(x) = 1 if x > 0 ; 0 otherwise (2.3)

Pooling

The pooling function is the third stage, where the output of the layer is modified, and the image

output is substituted at a given location with a summary of adjacent outputs [58].

Down-sampling is a fundamental principle behind pooling that reduces complexity and yields

typical features for further layers. Maximum and average pooling are two types of pooling. The

most prevalent type of pooling is max pooling, which outputs the maximum value from the area

of the image covered by the kernel. On the other hand, average pooling returns the average of all

the values from the kernel-covered portion of the image. [54]
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Fully-Connected layer

Figure 2.5: Fully Connected Neural Network vs. Convolutional Neural Network

In the final segmentation, the layers are fully connected. Traditionally, fully connected layers are

found in neural networks [54]. Nodes are connected to each other in the next and previous layers,

as the name implies. Figure 2.6 illustrates the connection. Because of the large number of

parameters in these layers, training them is the most expensive aspect of CNN. There can be

numerous layers in a network, depending on how complex it is. AlexNet, for example, has three

levels fully connected layers. [51]

Figure 2.6: Fully connected layer, each node corresponds to a feature.

2.2.2 Hyperparameters

The structure of a CNN is extremely complex, making it difficult to build an efficient network

configuration which is a challenging but necessary task. Decisions such as how many convolution

kernels to employ in the convolutions layer and how large the kernel should be? Which type of

activation function is the most beneficial? How can you modify the CNN’s learning rate in a way
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that it learns faster? In order to define these parameters, the hyper-parameters of the neural

network must be set [61]. The CNN structure is almost always fixed, and then hyper-parameters

are set based on the network designers’ previous experiences [62]. The network designers modify

the parameters through extensive trial-and-error experiments before determining how the final

model would be employed. [61]

Deeper models with a greater number of filters on each layer might require a long time to

evaluate given hyper-parameter values for CNNs. When optimizing for comparable data sets,

hyper-parameters that are suited for a given data set may be a good place to start. Although the

same hyper-parameters from various data sets cannot be utilized in the same way but must be

evaluated to determine proper value ranges. [63]

The number of layers and nodes, batch size, learning, and dropout rates is all examples of

hyper-parameters [64]. According to Smith [65], there is no simple and quick method to adjust

the hyper-parameters, specifically learning rate, batch size, momentum, and weight decay. The

relevance of various hyper-parameters can be assessed using Analysis of Variance (ANOVA). The

relevance of a subset of hyper-parameters is defined as the amount of variance that a subset of

hyper-parameters provides to the validation error. A selection of hyper-parameters that describe

the validation error with the greatest variance will have greater significance. According to Hinz

et al. [63] studies using a Cohn-Kanade data set, the importance of the different hyper-parameters

is more or less consistent across the different input sizes. Figure 2.7 illustrates how the 18 most

significant hyper-parameter subsets of the Cohn-Kanade data set affect validation error. [63]

Figure 2.7: The 18 most important hyper-parameter subsets of Cohn-Kanade data set [63].
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Learning rate

Learning rate is one hyper-parameter that is broadly utilized. Optimization algorithms use

learning rates as tuning parameters to determine the step size at each iteration as they work

toward a minimum loss function. In other words, it’s an indicator of how fast a machine learning

model learns since it reflects the amount of newly acquired information that overwrites previously

learned information. When the model slows down its improvements, learning rate decay is used

to reduce the learning rate. If the validation loss does not change for a set number of epochs, the

learning amount will be reduced by a fixed percentage. Given that the weights the network has

learned during the training are an average of multiple steps, it is favorable to reduce the learning

rate to prevent learning from anomalies.

Figure 2.8: The graphs above show examples of learning curves. The blue graph indicates training

error, and the orange graph indicates validation error. From left to right, a model that requires

further training, an overfit model, and a perfectly fitted model. [66]

Batch Size

The batch size is also a hyper-parameter and controls the number of samples to process before

updating the internal parameters. In essence, a batch is a loop that iterates over multiple

samples to make predictions. An error is calculated by comparing the predicted output variables

to the predicted output variables at the end of the batch. In order to improve the model, the

algorithm also uses this error to move down the error gradient.

Epochs

Epochs are the number of times the learning algorithm traverses the complete training data set.

Epochs are typically large, enabling the learning procedure to continue until the model’s error

has been reduced to a reasonable level. Learning curves are line charts where epochs are assigned

to the x-axis as time, and the model’s error or skill is displayed on the y-axis. A plot like this can

be used to determine whether a model is overlearned or under learned or whether it is suitably

fitted to the training data set. Figure 2.8 illustrates these effects in detail.
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Input Shape

Another hyper-parameter is the input shape. CNN’s need to be fed a 4D array as input, so the

shape of the input is (batch size, height, width, depth). The image’s dimensions are represented

by its height, breadth, and depth. The color channels of the picture are represented by depth.

For example, RGB images have a depth of 3, while greyscale images have a depth of 1.

2.2.3 Image Augmentation

Deep Learning models that are trained on big data sets are generally considered to be more

accurate [23]. It can be very challenging to assemble enormous data sets due to the manual effort

involved with collecting and labeling data [67]. Therefore, image augmentation is a technique for

expanding the data set and improving learning with minimal work.

Simple transformations such as horizontal flipping, color space augmentations, and cropping are

often used to illustrate the effectiveness of Data Augmentation. Horizontal axis flipping is far

more common than vertical axis flipping. This is one of the simplest augmentations to build and

has proven beneficial on data sets such as CIFAR-10 and ImageNet. Rotation, translation and

noise injection, and color space transformation are other image augmentation methods for

expanding the data set. Besides the simple augmentation methods, there are many other

methods ranging in complexity.

2.3 U-Net

U-Net is a CNN designed for biomedical image segmentation developed by researchers at the

University of Freiburg [68]. The model’s architecture consists of skip connections connecting the

encoder and decoder, including convolution and pooling layers. Despite a lack of labeled training

data, the network has shown excellent results in segmenting medical images and has become the

de-facto standard for segmenting medical images. [69] Although U-Net is mostly used for medical

images, its versatility allows for other uses as well. The way it is constructed makes it adaptable

to the training set it is given, allowing it to be able to segment everything from buildings to

urban scenes to plant leaf disease [70] [71] [72].

2.3.1 Architecture

Encoder

A symmetric representation of U-Net’s architecture is illustrated in Figure 2.9. The model

includes an encoder and decoder. The spatial features are extracted from the image during the

encoding phase by performing two 3 x 3 convolution operations followed by max-pooling. The

max-pooling stage gets out the most typical features by using a max filter, as shown in Figure
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2.10. For each region covered by the filter, the max of that region is used to create a new output

matrix. The output matrix represents the max of a region in the original input. Using a pooling

window size of 2 x 2 and a stride of 2 avoids overlapping. This sequence is repeated a number of

times, and the filters in the convolutional layers are doubled with each down-sampling. Then the

progression of two 3 x 3 convolution operations connects the encoder to the decoder. [69]

Figure 2.9: U-Net architecture [73].

Decoder

Using a 2 x 2 transposed convolution operation, the decoder constructs the segmentation map

from the encoded features [74]. As a result, the features are cut in half, and another sequence of

two 3 x 3 convolution operations is performed. Like the encoder, the decoder repeats

up-sampling and convolution multiple times, halving the number of filters at each stage. The

final step to get the final segmented map is a 1 x 1 convolution operation executed. The U-Net

architecture uses the ReLU activation function for every layer with convolutional, except for the

final layer, which uses the Sigmoid activation function [69].

Figure 2.10: Max-pooling of an 4 x 4 image with a window size 2 x 2 and stride 2 [75].
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2.3.2 Advantages and Disadvantages with U-Net

One of the most ingenious aspects of the U-Net architecture is its implementation of skip

connections. The output of the convolutional layer is transferred to the decoder in all four layers

before the pooling operation of the encoder. Feature maps are concatenated with up-sampled

output, and the resultant map is transmitted to the subsequent layers. The network can regain

details and spatial information lost during pooling operations when down-sampling through skip

connections. The data is sent to the encoding phase while up-sampling is taken place so that all

spatial information is retained [69] [76]. Another way the information is retained during the

up-sampling is by using a large number of feature channels. This allows for context information

to be kept when propagating upwards in the layers.

An immediate disadvantage with U-Net is the number of trainable weights. Compared to other

CNNs, U-Net, with its U-shape and symmetry, is a lot bigger than other networks. This is

something that will affect the training time and, to some degree, the prediction time. This will

also affect the GPU memory footprint. For larger images, this will limit the batch size unless one

has unlimited GPU memory. According to Zhou et al. [77] despite U-Net’s success, it has two

main limitations. Firstly the optimal depth for a specific problem is not known prior to test it.

Finding the optimal depth requires either researching similar segmentation problems or

performing extensive architecture testing. Secondly, U-Net’s skip connections do not allow for the

fusion of features that are not of the same scale.

Figure 2.9 shows the architecture consisting of many layers, where each layer executes max

pooling. For each max-pooling, the image resolution decreases, as depicted in Figure 2.10.

Considering the number of layers, the model takes a significant amount of time to train.
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2.3.3 Visualization

Figure 2.11: U-Net predictions on aerial imagery over Dubai’s landscape. The prediction is com-

pared to ground truth and original image. [78]

Figure 2.11 illustrates an example of a U-Net segmentation prediction of an aerial image over

Dubai, United Arab Emirates. The columns show the aerial photo compared to the ground truth

and the prediction from the U-Net model defined in TensorFlow. The different colors mark the

different areas segmented from the aerial image. As the Figure depicts, the model can predict

each area quite well. The more significant areas seemed uncomplicated, and the model

distinguishes between them well. As the U-Net model utilizes max-pooling in several layers, the

most essential and typical values are extracted. This results in the most significant areas being

detected easier than the slightly smaller areas, which is shown in Figure 2.11.
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2.4 PSPNet

Pyramid Scene Parsing Network (PSPNet) is a semantic segmentation model that utilizes a

pyramid parsing module that exploits global context information. PSPNet provides an effective

global contextual prior for pixel-level scene parsing. With a PPM, you can collect levels of

information that are more representative than a global pooling module. PSPNet’s encoder

consists of different CNNs, which are used as the backbone with dilated convolutions, as well as

the PPM. [79] [80]

Figure 2.12: PSPNet architecture [80].

2.4.1 Architecture

The model’s architecture is depicted in Figure 2.12. A feature map is pooled from the CNN

backbone at different sizes and then passed through a convolution layer. Thereafter, the different

sizes are upsampled to the same size as the original feature map. A final step is to concatenate

the upsampled maps with the original feature map before passing them to the decoder. Through

this technique, features from different scales are combined to create an overall context. [80]

PSPNet is composed of a PPM of four levels, which is used to gather context information. By

utilizing the 4-level pyramid, the pooling kernels cover the entire image, half of it, and small

portions. All the layers are fused as the global prior, which is concatenated with the original

feature map in the final part. Then a convolution layer is followed to generate the final prediction

map. [80]

Four pyramid scales are combined in the pyramid pooling module for four different scales. The

different scales, depicted in Figure 2.12, are 6, 3, 2, and 1 for the colors green, blue, orange, and

red, respectively. The coarsest level, indicated by red, is global pooling for a single bin output

and captures all the information in just 1 x 1 spatial location. The smaller the pyramid size is,

the smaller area the model captures. A bigger pyramid size equals bigger features, and the model

is able to capture higher resolution features. [80]

The following pyramid layer separates features into sub-regions, and pooled representations for

different locations are derived. Each level of the PPM produces a feature map that contains

varying sizes of features. To preserve the weight of the global feature, Zhao et al. [80] applies a
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convolution layer of 1 x 1 after each pyramid level of a pyramid of size N in order to reduce the

original dimension of context representation to 1/N of what it originally was. The low-dimension

feature maps are directly up-sampled through bilinear interpolation to obtain the same size

features as the original feature map. To complete the pyramid pooling global feature, different

levels of features are concatenated. [80]

2.4.2 Advantages and Disadvantages with PSPNet

The main advantage of PSPNet is the model’s ability to set up hierarchical global prior and take

information with varying scales from different subregions into account. It is crucial for CNN to

have a big receptive field to see the image in a global context. Increasing the receptive field

without decreasing the final conversion is, on the other hand, a challenge. The PPM in PSPNet

increases the receptive field without a momentous decrease in the output resolution or increase in

parameter or layer count. Dilated convolution is also used in PSPNet in order to increase the

receptive field and retain the resolution.

A drawback with PSPNet is its risk of losing small features compared to the ground truth. Shi

et al. [81] reported after testing PSPNet that the model lost some details, especially those within

other objects. Shi et al. [81] experiments with PSPNet, and concludes that the model is better

than other semantic image segmentation models such as Deeplab [82] and Fully Convolutional

Network (FCN) [83] in especially classes like walls, fences, poles, traffic lights, and so forth.

Classes with massive areas like sky, road, and building are not giving remarkable results

compared to other methods.

2.4.3 Visualization

Figure 2.13 illustrates an example of the Cityscape data set, which contains 5000 images collected

from 50 cities in different seasons. Column (a) shows the original image, and (b) shows the

ground truth, followed by (c), which shows the predictions done by using PSPNet. As the Figure

shows, the PSPNet is able to detect small objects like humans, lampposts, cars far away, and

traffic signs. The model also detects more significant objects like roads, sidewalks, cars, and

trees. The reason for this is the different sized kernels in the PPM in the PSPNet. The different

scaled kernels capture differently sized features, making the network detect more small and

significant objects.
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Figure 2.13: PSPNet predictions compared to ground truth and original image. [84]

2.4.4 Ablation Study

When building a machine learning model, you commonly add various concepts to improve the

overall model performance. A component of a system can be investigated by breaking it and

seeing what changes. This is called an ablation study. When conducting an ablation study, you

remove sections of the network system to determine which elements that are significant to the

result.

Machine Learning (ML) and Artificial Intelligence (AI) use ablation to remove a component of an

artificial intelligence system. During an ablation study, specific elements of an AI system are

removed from the system to determine how they contribute to the system’s performance. It is an

analogy to biology (the process of removing components of an organism) and is predominantly

used in analyzing artificial neural nets by analogy with ablative brain surgery.

For ablative study to be successful, a system must display graceful degradation: it must be able

to perform even when some of its components are missing or degraded [85]. Ablation techniques

are commonly employed where the total system is known, but uncertainties exist about the

relationship between various compositions and functioning. By damaging and/or removing

certain components in a controlled setting, ablation studies can investigate the effectiveness of

each action on the performance and capabilities of the system. [86]
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Research on ablation is crucial for deep learning. To create trustworthy knowledge, which is any

researcher’s goal, one must first understand causality in your system. Ablation is, therefore, a

low-effort method of investigating cause and effect.

2.5 Conclusion

From earlier reasearch and testing U-Net has proven to give great results in building detection.

Although U-Net’s impressive results, it is a deep network with a lot of weights. Therefore the

choice was made to take U-Net further and develop a model in combination with PSPNet. The

reason for our choice of combining two different convolution neural networks was to exploit the

Pyramid Pooling Module to handle all the different scales in PSPNet as well as U-Net’s ability to

classify roof planes. The challenging task was how to integrate the models in an appropriate way

that would give better results than the models individually. An ablation study was necessary

when combining, and different numbers of layers in U-Net, as well as different numbers of pooling

layers, were experimented with.
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Chapter 3

Method

This chapter will explain the process of developing a new deep learning network and the reason

behinds its architecture. The advantages and disadvantages of both U-Net and PSPNet are

considered and discussed to be used to our benefit. The encoder, decoder, and the PPM of our

new network are described in detail. Further in the chapter, the selected method for change

detection is presented. The procedure for creating a new network is accounted for, including

parts like training and optimizing the model, followed by the final change analysis. Lastly, the

various evaluation methods for building detection are explained. Parameters like precision, recall,

IoU, training, and validation loss followed by time and space are factors the detection are

evaluated after.
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3.1 Model

The main contribution of our work is the novel network presented in this thesis. The network is

an improvement of state-of-the-art image classifiers, specifically developed for remote sensing

classification, in our case, trained to detect buildings. Our network is created by combining

U-Net and PSPNet, as depicted in Figure 3.1. The encoder-decoder part is similar to the original

U-Net, but a PPM inspired by PSPNet is added between the encoder-decoder. Consequently, our

model combines U-Net and PSPNet, which is now called U-PSPNet. Combining two quite

different networks takes advantage of each network’s superiority while mitigating their

disadvantages. Both U-Net and PSPNet have widely used image segmentation networks, each

with advantages and disadvantages.

U-Net includes layers of convolution and max-pooling. The max-pooling layer target the most

typical and essential features by ignoring the lower pixel values. This efficient way of extracting

the most distinct features eminent in classification. However, in a high-level network, the

information becomes more and more abstract in the deeper layers, which means that important

information may get lost. Nevertheless, U-Net, five layers deep network, has been proven to be

one of the most efficient architectures for image segmentation [68].

PSPNet is used for handling objects of different scales and mainly for scene segmentation. Scene

segmentation is associated with an environment with multiple classes, often with an uneven

distribution. By utilizing PSPNet’s PPM, the model is able to distinguish between minor and

prominent features. Another consequence of the PPM module is that the model is more stable,

meaning the model can learn and contain more global context information with the help of global

information. The network will, for that reason, not make mistakes when classifying at a pixel

level.
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3.1.1 Network Structure

Figure 3.1: Our model combined by U-Net and PSPNet, now called U-PSP-Net.

Figure 3.1 illustrates the proposed network. Initially, the characteristically U-shaped architecture

associated with U-Net comes into sight. The difference is adding a part of the PPM from

PSPNet. The network can be divided into three parts, the encoder, the PPM, and the decoder.

Combining two networks instead of using another established network is to exploit each network’s

advantages and mitigate its disadvantages.

3.1.2 Encoder and Decoder Module

The encoder part of the network consists of convolution and max-pooling layers, with ReLU as

the activation function. The encoder is four layers deep, compared to U-Net’s five layers of

depth. The decoder is structured similarly to the encoder, except that it is inverted, which means

that instead of the max-pooling layer, the decoder part uses an up-convolution layer. In addition,

an additional convolution is added at the end to create the binary prediction. As mentioned,

U-Net is proven to be an effective image classifier. However, this comes at a cost. U-Net’s depth

with multiple convolutions results in significant quantities of weights. This again affects the

memory and time consumption when training and applying the model. Furthermore, it can also

restrict particular possibilities when choosing hyperparameters.
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3.1.3 Pyramid Pooling Module

PSPNet’s PPM gathers contextual information by utilizing a 4-level pyramid. The different sized

kernels extract information at different levels of context. In the original PSPNet, two larger

kernels are in addition to the two kernels in our model. The larger kernels are used to extract

more preeminent information in a global context. The two smaller kernels are used to extract

more local information. Owing to the fact that the buildings are roughly the same size and cover

an equally small area of an image, only the two smallest kernels of the PPM are needed. The

bigger kernels might have been considered and contributed to a greater extent if the building

roofs had covered a larger area of the images. This was also emphasized in the ablation study

conducted in Section 5.1.2. In order to take full advantage of the pyramid pooling module, the

convoluted images should not be too abstract. This is a delicate balance and is one of the reasons

we have chosen to only include four depth layers in the encoder and decoder modules. Using an

average pool for downsampling before the PPM, information about the general context of a block

is retained and assists in capturing more context information.

3.1.4 U-PSP-Net

The network is developed for building segmentation from remotely sensed images. The whole

development process is based on creating a network that outperforms generalized networks.

Considering our goal in the first place was to detect buildings, which are a relatively small part of

an image, the pyramid scales of a larger size, were assumed only to affect the results to a small

degree. For that reason, the model was tested with all the pyramid scale resolutions and removed

convolutions from green to yellow one by one. The optimal solution was using only the two

smallest pyramid kernels and reducing the original depth of U-Net by one. The network has

fewer weights by adding the reduced PPM and removing the deepest layer of U-Net before the

decoder part. This mitigates the issue with U-Net and its large amount of weights caused by the

deepness of the network. By reducing the network by one layer, only half as many weights make

up the network, significantly affecting the time and memory used.
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3.2 Method for Change Detection

Figure 3.2: Flowchart describing our proposed method for change detection.

The method for change detection includes several steps to get the final segmented map with

change. The flowchart in Figure 3.2 visualizes our proposed method, from the input image to the

final change detection map. Preprocessing includes cropping, annotation, mask creation, image

augmentation, and patching. Further on, buildings are extracted using our new network,

U-PSP-Net. When the buildings in two time-stamps are detected, the change is caught in a

change detection map.

3.2.1 Creating a Network

When using neural networks for change detection, it is essential to use a network that will benefit

your task. This is not always an easy task. Over- and under-fitting are issues that you want to

avoid. The characteristics of the problem itself should give clues to what type of model that is

beneficial. However, an ablation study targeting to decide the best composition is recommended.

Our project utilized two popular CNN in order to detect buildings. A novel network for detecting

buildings has been created using an ablation study to optimize the architecture.

3.2.2 Training, Optimizing and Applying the Network

Diverse settings must be configured when training a convolution neural network or deep learning

model. Following the last step, where the network architecture is created, the network needs to

be trained. This can be accomplished by feeding the network image pairs corresponding to

building images and binary masks.
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Batch size

Larger batch size can reduce the training time but also has other advantages. One of those is

that the network handles more samples from the data set simultaneously. This is beneficial for

the reason that it prevents the network from learning potential anomalies and errors in the data

set. Furthermore, the batch size is highly constrained by the computer’s computational power,

and a larger batch size requires more data to be processed in the RAM simultaneously.

Learning rate

There is no consensus that implementing a learning rate decay is the best way to optimize a

network [87] [88]. According to You et al. [87] learning rate decay can help optimize and

generalize the network. Smith et al. [88] claims that instead of decaying the learning rate, one

should increase the batch size. As already mentioned, increasing the batch size is not an option,

so learning rate decay was implemented.

Loss function and Optimization Function

When picking a loss function and optimizer function, one should have excellent knowledge of a

neural network’s different possibilities and inner workings. Consequently, for the network in

question, the loss function and optimizer function are the standard for binary classification

problems. Binary cross-entropy loss is used to calculate the loss. This function compares the

predicted probabilities to the classes [0,1], calculates the distance, and subsequently scores the

prediction based on the distance.

Applying the Model

During the training, the weights through the network will be continuously adjusted, enabling the

network to detect buildings. After sufficient training and the network is saturated. Then the

model needs to be verified with the test data set before the model can be used for detecting

buildings. After applying the model, you are left with a segmented data set consisting of building

masks.

3.2.3 Change Analysis

Following the last step of building detection, the images are now segmented. The next step in the

process is to extract the change in buildings between years. A matching pair of bi-temporal

images are then compared pixel to pixel, analyzing if any change has occurred.

Image subtraction
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The comparison is made by subtracting each image from the other. This will produce two new

images, each displaying a different type of change. Image subtraction removes each corresponding

pixel, as seen in the example Listing 1. Since the images are building masks, they only consist of

black (0,0,0) or white (255,255,255), indicating buildings. As a consequence, the resulting image

will also be black and white.

for each pixel:

new_pixel_value = image1_pixel_value - image2_pixel_value

Listing 1: Code for image subtraction

Mass will be left when subtracting the youngest image from the oldest new building. In the

opposite example, demolished buildings will be left where the oldest image is removed from the

latest image. The new change images can be added together to visualize the total change.

Visualization

To be able to differentiate between a positive and negative change in building mass, the changes

will be marked in individual colors. Green indicates a positive change, an increase in building

mass. In contrast, red indicates a negative change, a decrease in building mass. The images can

be added together afterward to include both types of change in one singular image. Resulting in

an image depicting both types of change visualized in a distinct color.
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3.3 Evaluation

As with any machine learning model, obtaining a good fit is extremely important. The aim is to

balance biases and variances, or in other words, to find a balance between under-fitting and

over-fitting. A machine learning prediction is usually categorized in four ways: True Positives

(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

Convolutional neural networks are used to solve a wide range of computer vision tasks, such as

image classification, object detection, and semantic segmentation. A thorough evaluation is

required to justify the need for another model by developing a new model for building detection.

Different factors will be considered when evaluating the model.

3.3.1 Precision and Recall

There is often tension between precision and recall. The recall is usually reduced when precision

is improved, and vice versa. In essence, precision is the ratio of True Positives to all Positives.

Using recall, you can determine to what degree the model has covered the True Positives. The

recall parameter gives the number of pixels from each building that have been correctly

identified. Precision and recall by themself can give misleading numbers of the classification

results. It is therefore important to view them in light of each other. This can both be used to

understand the model’s performance directly. However, if the values differ significantly, the

values can be used to understand why the model is underperforming. A high recall and low

precision indicate over-classification and vice versa. Equation 3.1 and 3.2 shows the formulas for

calculating precision and recall respectively.

Precision =
True Positives (TP )

True Positives (TP ) + False Positives (FP )
(3.1)

Recall =
True Positives (TP )

True Positives (TP ) + False Negatives (FN)
(3.2)

3.3.2 Intersection over Union

By using the Intersection over Union (IoU) metric, or Jaccard index, we can calculate the degree

of overlap between our prediction output and the target mask. In Equation 3.3, the area of

overlap between predicted and ground truth building pixels is calculated. IoU is often used in

classification problems and gives a good indication of the results in itself. It is therefore a good

benchmark to compare different models.

IoU =
True Positives (TP )

True Positives (TP ) + False Negatives (FN) + False Positives (FP )
(3.3)
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3.3.3 Training and Validation Loss

Throughout the training, multiple metrics are calculated and monitored. Two of those values are

training and validation loss. The development of these losses over time is widely used in machine

learning. In the process of training the network, losses can be plotted to monitor the progress.

The most important part of evaluating training and validation loss is their relationship. If the

training loss is much greater than validation loss, this is a sign of underfitting. And the opposite

case is a sign of overfitting. Both over- and underfitting are to be avoided as it indicates that the

model is not optimized. Therefore the plots of training and validation loss will be looked at

during the development of the network.

3.3.4 Time and Space

Another essential factor that should be taken into account when comparing models is the time of

both the training and prediction. This is closely related to the number of trainable weights in the

network. The more weights in the network, the longer it takes to update them after each epoch.

Additionally, feeding images through the network is time-consuming, and this directly influences

prediction time. In a small-scale experiment, the time factor is not that relevant. However, the

time factor is important if the experiment is scaled up with larger data sets for training and

prediction. By this account, it is essential to consider the number of parameters in the network.
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Chapter 4

Data Set over Trondheim

Municipality

Images can display information about objects frozen in a specific moment. There have existed

cameras that can capture images since the early 19th century. Still, it was only later in the start

of the 20th century that remote sensing became a viable method to collect data over the earth.

During World War I, remote sensing became inevitable and shifted towards more aerial

photography. Evidently, the images collected were of value to the military. Due to this, resources

and recognition have been directed toward aerial photogrammetry specifically. The need for

remote sensing only increased as the world went through World War II and the cold war. Yet

again, the equipment kept improving, and researchers started using the same equipment for other

uses. As early as the 1950s, aerial photography was used for cartographic purposes. In the 1960s,

satellites were used for meteorological purposes. The 1970s saw the launch of Landsat 1, the first

of many satellites whose sole purpose was to collect images of the earth systematically. Time

progressed, as did the cameras, software, and collection methods. Everything is nearly perfect,

from high-resolution images taken today with satellites and images collected with air crafts with

extreme quality to images and laser scanned data from drones. This project utilizes images

collected with an airplane with a 0.1 x 0.1 meters resolution. [89]
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4.1 General information

4.1.1 Camera and Flight

Figure 4.1: Illustration showing how the data was collected [90].

The images were collected using a Commander 690C airplane in April and June 2019. In total,

976 images were captured during 31 flight strips. The resolution of the collected images was

17.004 x 26.460 pixels. Five different bands were collected, red, green, blue, panchromatic, and

infrared. The overlap of the images was, on average, 39% for the lateral overlap and 60% for the

forward overlap. Camera constants are shown in Table 4.1, where type, focal length, calibration

date, FMC and spectral bands are shown. The airplane was traveling at a height of

approximately 2500 meters above sea level during the flight. The chosen camera for the job was a

Vexel UltraCamEagle M3 mounted on a Leica PAV80 gyro mount. The camera has a footprint of

450 megapixels with four different interchangeable lenses. The camera calibration was done only

a few months earlier in the same year. The way the images are collected can be seen in Figure

4.1, and this specific case corresponds to the airplane second furthest to the right.

Camera constants

Type Vexcel UltraCamEagle M3

Focal length (mm) 100, 500

Calibration date 11.02.2019

FMC YES

Spectral bands PAN, R, G, B, IR. 14 bit

Table 4.1: Camera constants of the camera used for the aerial images
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4.1.2 Processing

After the collection of the images, the images were all processed using different softwares and

methods. The collected images do not necessarily need to be processed. However, this is done to

improve their quality and the ability to extract information from them [91]. Various algorithms

and methods can be applied to enhance the images, and the methods will reflect the intended use

at a later stage. In order to train the model, images were orthorectified, radiometrically

processed, and contrast and color corrected for defects caused by rectification and mosaicing.

4.1.3 Orthorectification

Orthorectification is the process of geometrically correcting the images by projecting them onto

the terrain model. This process makes the images more accurate as they consider the terrain’s

slope. The software used for rectification is OrthoMaster which is the most precise method.

Instead of using high values in certain intervals, this method uses high values for each pixel.

Using this method when projecting the image onto the terrain model ensured the most accurate

representation. Although this process properly projects the images on the elevation model, it

does not mitigate all relief displacement, which means that the images used are orthophotos and

not true orthophotos.

4.1.4 Radiometric processing

Following the standard, it was emphasized to achieve the best possible contrast and color in each

image. Additionally, keep the set of images as homogeneous as possible. Radiometric features

from the camera were calculated during the calibration and used to correct the images. In this

process, information from the overlapping area between sub-images is also utilized, thus

obtaining the most homogeneous composite image possible. The software used for this process

was OrthoVista. A function called ”Global tilting adjustment” was used to observe differences in

intensity, contrast, and color between overlapping images and flight strips and calculate relative

corrections that compensate for the differences.
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4.2 Preprocessing

The following section will describe the process of choosing an area and preprocessing the data

distributed by Trondheim municipality. The preprocessing of the data set, including steps like

cropping, annotation, mask creation, image augmentation, and patching, are considered.

4.2.1 Area of Interest

All images used are from the greater area around Trondheim, Norway. There exist publicly

available imagery of most of Norway. However, our city, Trondheim, is an excellent

representation of a town in Norway, so it was chosen for this project. Since the task relies on

data from multiple years, selecting an area that meets these requirements is necessary. This is

also true for Trondheim and emphasizes the choice of picking Trondheim. It should be noted that

Trondheim is a large city compared to other Norwegian cities but becomes microscopic compared

to large metropolitan areas like Tokyo or Los Angeles.

Trondheim municipality extends almost 350 square kilometers, and a large part is uninhabited or

sparsely inhabited. Because of this, specific areas for the data set had to be manually selected,

and those areas had to meet particular criteria in order to be included. Appendix A depicts the

area of images distributed by Trondheim municipality divided into several map sheets.

• Densely populated

• Limit the amount of relief displacement

• Not include buildings with rare features

Choosing the most suitable map sheets was highly reliant on finding the areas with enough roofs

of our interest. The criteria were chosen to aid the network’s ability to learn. An image sparsely

covered with buildings will have difficulty learning the relevant features. This is a consequence of

the uneven distribution of the different classes, buildings, and backgrounds. An uneven

distribution will lead to good artificial results early on and a hurdle for further learning. Relief

displacement is avoided for the same reason. The facades will not be included in the annotation,

but seeing as they are so closely related to the roofs of the buildings, this can influence the

results, especially if the data set is not big enough. In this setting, buildings with rare features

are defined as buildings that are uncommon in the area of research. Buildings with rare features

include downtown areas with urban structures, the port area, and industrial areas. These are

avoided because they are too rare for the network to learn their features reliably. Which again

would result in misclassifications and worse results. This issue is a consequence of the research

area and not a deficiency in the model.
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4.2.2 Preprocessing and Data set

A training data set with high quality is a crucial prerequisite for a precise classification result.

Multiple factors need to be considered, for example, the resolution, the accuracy of the

annotations, and the area. The steps during the preprocessing are essential for the results, and

multiple courses of action can enhance the outcome. Some frequently used preprocessing methods

are image augmentation, cropping, and color correcting. The primary focus of this step in the

procedure is to create the best foundation for the model to perform later stages in the process.

Preprocessing will make the images easier to interpret and assists the network in the learning

phase.

A data set is divided into a training data set used to train the model, a test data set to test the

data set, and a validation data set. The validation set is used for validation during the training,

and it calculates metrics like recall, precision, and intersect over union and can be monitored

during and after the training. Likewise, training loss and validation loss are also valuable metrics

to monitor the training.

4.2.3 Cropping

Images can be captured in various sizes, meaning the images needs to be processed to get the

correct dimensions. The images must be cropped to establish a base size for all images fed into

the network. Earlier research showed that the ideal area covered by an image was about 60 x

60m. According to this argument, there should be a balance between the classes.

Cropping was done directly in Python, and the image size was set to 1024 x 1024 pixels. Each

cropped image covered an area of about 100 x 100m and would later be patched in even smaller

images. The reason for dividing the images at two different steps in the prepossessing process was

to save labor. Even though the general area the original image covered was densely inhabited,

some areas might not be. To prevent the work of manually going through 4 times as many

images to check if they all met the requirements. All images sized 1024 x 1024 pixels were

checked to see if they contained a fair amount of buildings.

4.2.4 Software

An annotation tool is required when creating one’s data set for a classification task. The

possibilities are endless, and one can use everything from Microsoft Paint to V7. Paint only

allows drawing on top of an image, whereas V7 is a fully integrated annotation tool that allows

for model training, inference, and statistics. The most advanced annotation tools are either

expensive or require a subscription. As a consequence, several open-source annotation tools exist

as well. The annotation tool of choice became Labelbox, a state-of-the-art annotation tool [92].
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Labelbox

For annotating the data, Labelbox was used. Labelbox gives modern artificial intelligence teams

access to data-centric infrastructure. In addition to enabling AI teams to build and operate

production-grade machine learning systems efficiently, Labelbox provides rapid training data

creation in a unified platform. Four products constitute Labelbox’s unified platform, where the

former has been used; Annotate, Model Diagnostics, Catalog, and Boost (service layer that

includes integrated data labeling service).

Data set

Images 223

Buildings labeled 3784

Covered area 2.3 sqkm

Table 4.2: Numbers of labeled roofs in the different roof type categories

4.2.5 Annotating

The eight most common roof types in Europe depicted in Figure 4.2 were used for the different

labels. In addition, a category termed Other was used for uncategorized roof types. Labelbox

allowed you to mark the different roof planes through a simple click and drag method, shown in

Figure 4.4. All annotations have been done with the greatest precision to ensure the highest

possible quality. During annotating, it was prioritized to annotate images with houses over taller

and bigger buildings. The area of the annotated buildings can be seen in Figure 4.3. The orange

covers the area which is used. More detailed images of the area can be seen in Appendix G.

Figure 4.2: The eight most common roof types in Europe [93].
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Table 4.3 shows the number of the various types of roofs that are labeled in our training data set,

and Table 4.2 presents the total number of labeled roofs and the covered area. Several roof

planes consisted of a combination of several types of roof types. All continuous buildings were

classified as one building and therefore categorized as Other. An overview of which types of roofs

excising in Trondheim municipality would give an impression of which roof types were a minority.

Some categories lacked labeled buildings, resulting in incomplete training data. The consequence

of insufficient and lacking training data in some special categories impacts the models’ ability to

detect that type of roof. The roof type categories were, for that reason, not used in training.

Nevertheless, they could be used when inspecting the results in case some roof-type categories

were misclassified.

Roof type #

Gabled 1450

Other 778

Flat 624

Shed 414

Hipped 331

Corner element 122

Asymmetric hipped 43

T-element 24

X-element 17

Table 4.3: Numbers of labeled roofs in the different roof type categories.

Figure 4.3: Overview over the data set distribution.

Initially, the annotation process focused on different roof planes and how to identify them. Prior

to starting the project, a decision was made to concentrate on roofs in the suburb and leave out

tall and prominent buildings. Additionally, interconnected buildings, of which there are more
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downtown, were also left out. The reason for this choice was the lack of training data on these

kinds of buildings. As the tall buildings may have a lot of relief displacement, it will not be

beneficial to include them as a part of the training data set. The overall result might improve by

including structures with more relief displacement, but a significant amount of buildings with

relief displacement would have been necessary. Trondheim does not have enough tall buildings,

with considerable relief displacement for our model to thoroughly learn their features. The

number of connected buildings in the city is also small, which results in a lack of training data

and the unique features of the buildings, making them hard to categorize.

4.2.6 Creating masks

Building masks are created based on the assumption that building annotation data exists. The

annotated data from LabelBox is exported as a nested list consisting of lists of label-coordinates

corresponding to each image. The labels are then drawn on a blank black image, the same size as

the original annotated image, and saved. The code to create masks can be seen in Listing 2.

for each annotated_image in list of annotations:

Create a blank image of same size as the annotated_image

for each label in annotated_image:

Draw label on blank image

Save mask

Listing 2: Code for creating masks.

Before the annotated data could be made into binary masks, they had to be exported from

Labelbox. To export all labeled images, a modified version of Labelbox’s own Jupyter notebook

to visualize data was used. The notebook is linked in the Github repository, which is linked in

the Abstract.

The script returns a nested list of all annotations and their class belonging to each image. To

clarify, it was only the image coordinates of the labels and not the images that were exported. As

the network does not read data in this format, it had to be further processed. All images had the

exact dimensions, so no consideration had to be put into the sizes. Firstly a fully black image of

the specific size was created. Then the points of the labels were projected onto the black image

to create polygons of the buildings.

4.2.7 Image augmentation

To easily expand the data set, all images were geometrically augmented. Image augmentation is a

technique applied to expand the data set and improve learning by increasing the amount of

training data. There exist multiple ways of achieving this. Some of them are geometrical

transformations, color space transformation, and random erasing [67]. Shifting is one of the
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multiple techniques to modify an image, to expand the number of training data. When working

with small data sets, it is necessary to create variations of the desired pattern to avoid overfitting

[94]. The image augmentation script is shown in Listing 3.

for image in data set:

flip_vertical = flip image vertically

flip_horizontal = flip image horizontally

flip_both = flip images both vertically and horizontally

contrast = Randomly adjust the contrast

brightness = Randomly adjust the brightness

color_intensity = Randomly adjust the color intensity

Add all new images to data set

Listing 3: Code for augmenting the images and expanding the data set

The same augmentation was done to each image. The simplest of the augmentation methods are

geometric transformations, some of which got used to expand the data set. And thus making the

data set four times larger in a matter of seconds. The augmentation methods for expanding the

data set also included a random change of contrast, brightness, and color intensity. The data set

now included six copies of each original image, each with its augmentation.

4.2.8 Patching

As previously mentioned, the images are yet to be the ideal size for the network, and all images

still need to be cropped once more. However, in this step, it is done differently. Two benefits

come with dividing an image into patches. Firstly, the CNN handles the patched image with a

reasonable size instead of the whole image. A second advantage of dividing images into patches is

the increased number of samples, which is generally ideal when training a CNN [95].

Patching was used to minimize the amount of data stored locally and keep as much of the process

in the pipeline as possible. This is a feature in Tensorflow that lets you extract patches of the

images. Four patches were extracted from each image, and all patches are stacked in the depth of

the output tensor. At this point in the preprocessing, images are at a dimension of 512 x 512

pixels and cover an area of 51 x 51m.
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(a) Overview of unlabeled image. (b) Selecting roof type and belonging corners.

(c) Labeled roofs. (d) Overview of labeled image.

Figure 4.4: Roof type annotation using Labelbox. Different colors represent different roof types,

where orange represent Hipped and pink Shed.
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Chapter 5

Experimental Study in Trondheim

In this chapter, the method described in Chapter 3 is adapted to the image data set over

Trondheim municipality. The process of the experimental study, as well as the following results,

will be presented in this chapter. The experimental study takes place in Trondheim, Norway,

focusing on buildings in the suburb. Prominent, unusual buildings and buildings in urban areas

were left out of our research because of the lack of that particular type of buildings in Trondheim.

The experimental study aimed to test the various approaches in practice and how the different

models behaved over the same area. Firstly the ablation study and the belonging result are

presented. Tuning and testing different model hyperparameters and the reasons for our choice are

accounted for in this chapter. Considering our model uses U-Net as the backbone, we found it

appropriate to compare the results from our U-PSP-Net model against the original U-Net and

U-Net with PPM. This chapter will present graphs and tables with every 5th epoch to give an

impression of how the models behave. Lastly, the building and change detection results are

presented, followed by a discussion of the outcome.
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5.1 Ablation Study

An ablation study was executed step by step from the already working U-Net model. To achieve

the best possible model, depth and convolution layers were added and removed before being

compared against each other. The ablation study allowed us to begin with a functioning model

and, step by step, remove parts and tweak it to a better version.

To perform the ablation study, components were gradually removed from the network. As part of

the ablation study, different sized convolutions were removed from the Pyramid Pooling module

to obtain the best possible network. Additionally, a deeper network than initially was set up

when testing the depth, so layers gradually could be removed to find the ideal depth.

At the beginning of the ablation study, the network was five layers deep as the original U-Net and

included all four convolution sizes from the PSPNet architecture. Considering earlier work, the

network would most certainly overfit the data, and this might not be true for all circumstances.

The model used U-Net’s architecture as a starting point, illustrated in Figure 2.9, with a depth of

5 layers. Different depths and numbers of convolutions were experimented with during the

ablation study to get the best result possible. Table 5.1 and 5.2, shows the varying results of the

different number of layers and convolutions. The optimal combination was four layers deep and

the two smallest convolutions from PSPNet. Table 5.5 shows the ten first epochs and their

respecting values.

5.1.1 Evaluation during the Ablation Study

As is for everything else, to guarantee a fair comparison between the different runs of the

network, every factor was the same. The only aspect that differentiated between the runs was

which components were included. Each configuration of the network was trained for at least ten

epochs and was later compared at this stage. Multiple metrics were used to compare the results

of the different compositions of the network. Intersect over union, precision, and recall was used,

as well as a visual comparison of the training and validation loss graphs.

Gradually during the ablation study, the depth decreased until the result started getting worse.

All test runs were executed under the same conditions, including the same training data and

hyperparameters. When the optimal depth was found, the next step was checking the number of

convolutions and sizes that would provide the best results. Since buildings and edges, in

particular, are relatively small, it was assumed that the smallest convolutions would have the

most significant impact. Therefore a decision was made to exclude a single convolution after each

test, starting with the largest.
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5.1.2 Results of Ablation Study

In determining U-PSP-Net’s architecture, the number of Pyramid Pooling Layer (PPL) was

considered. As mentioned, the original PSPNet has four convolutions for the various resolutions,

respectively, in the colors red, orange, blue, and green. Table 5.1 shows the different results of

various convolutions after ten epochs. There is no considerable difference between the different

configurations, but the best result is with the two smallest kernels.

Layers Binary IoU Precision Recall

ROBG 0.8798 0.9128 0.9073

ROB 0.8747 0.9094 0.9023

RO 0.8822 0.9147 0.9091

R 0.8810 0.9166 0.9046

Table 5.1: Results of U-PSP-Net during ablation study were different Pyramid Pooling layers from

PSPNet are included.

Depth Binary IoU Precision Recall

5 layers 0.8801 0.9102 0.9103

4 layers 0.8822 0.9147 0.9091

3 layers 0.8364 0.8851 0.8600

Table 5.2: Results of U-PSP-Net with different depths.

When testing the depth, the network started with five layers of depth. As for the number of

Pyramid Pooling layers from PSPNet, the various configurations did not significantly differ. Both

5 and 4 layers gave a binary IoU of 88% and precision and recall of approximately 90-91%.

However, a four layer deep model consisting of the two smallest sized kernels gave the overall best

results. The outcome of our ablation study results in the model depicted in Figure 3.1.
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5.2 Hyperparameter Optimization

There are numerous ways of improving a network. In addition to refining or expanding the data

set, contextualizing the data, changing the model architecture, cross-validating during training,

and tuning hyperparameter, there are many other options. This section explains how the

hyperparameters were tuned during the project, why it was done that way, and the limitations

and obstacles encountered in the process. The environment used in this process was kept the

same through all tests. Each hyperparameter was tested independently, a measure to quickly

identify each change’s effect. Preliminary tests have already been conducted in earlier work, so

most of the testing is just done to confirm our assumptions.

5.2.1 Batch Size

There was a limitation to how much we could test the maximum batch size cause of the RAM

size. Therefore, the batch size was 4, which was the maximum possible considering the RAM.

Ideally, a larger batch size would have been preferred, be that as it may, this was impossible

without causing an overflow in the RAM.

5.2.2 Learning Rate and Reduction of the Learning Rate

Based on research and earlier work, the learning rate was initially set to 0.0001. The value was

both increased and decreased to measure any improvement. However, it was anticipated that the

initial value gave the best results. One value that did change after experiments was the learning

rate decay patience. To begin with, the patience was set to 10 epochs. Following experiments

with different values, the decision fell to change it to 5 epochs. The consequence of this change

was that the learning rate would be reduced by a factor of 0.1 after 5 epochs. The reduction is

triggered after 5 consecutive epochs without a difference more significant than 0.0001 in the

validation loss. This change gave better results and made sense observing that the network quite

rapidly became saturated.

5.2.3 Loss Function and Optimizer Function

Adam optimizer was used as the optimizer function. The name Adam is derived from adaptive

moment estimation, and the function is a stochastic gradient descent function. The optimizer

function is used when updating the weights throughout the network and is an iterative function

to find the best fit.
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5.2.4 Epochs and Early Stopping

The number of epochs is highly dependent on the size of the data set and the speed at which the

network acquires knowledge.

As mentioned earlier, an epoch is when the network has passed through the entire data set once.

This project aimed to get the best possible results; thus, the network trained until it was

saturated. In other words, disregarding the testing, there was no upper limit for how many

epochs the network would train for. The network, however, only terminated if the early stopping

function was triggered.

The patience of the function was set to 10 epochs, and the default value of 0.0001 was used as the

threshold. It became evident early on that the network became saturated relatively fast, and the

number of epochs for comparing later ended up at 27. This function ends the training after a

given amount of epochs without a set amount of change in validation loss, similar to how learning

rate decay works.

5.2.5 Visualization and Measurement tool

There exist numerous tools to track and measure the network during experimentation. Tools like

Neptune, TensorBoard, Guild AI, and Sacred are all viable options, where TensorBoard, by far, is

the most popular. The tool is of great help in visualizing the contribution of each

hyperparameter, tracking the progress of the model, and the development in the training and

validation loss. This tool was unfortunately not used in this task, and will be discussed later in

the discussion.

5.3 Our Results

Our model was tested against U-Net and U-Net with the original pyramid pooling module to

evaluate the characteristics of our model. Based on the comparison shown in Table 5.6, our

model, U-PSP-Net appears to be the best choice both when it comes to binary IoU, precision,

and recall regarding building detection. The evaluation of change detection highly depends on

the assessment of the detection of buildings. The model is dependent on getting a precise

building detection to get an accurate change detection. The U-PSP-Net’s Binary IoU is 97%,

which is excellent.

Binary IoU, training loss, learning rate, precision, and recall were essential factors in presenting

the results from the different models. As a consequence of early stopping, all the models are

compared at their 27th epoch to make a fair comparison. A graph showing the training and

validation loss is also a significant factor when evaluating other models. A big gap between the

validation and training loss indicates an overfitted model.
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5.3.1 U-Net

Table 5.3 shows every fifth epoch to 27, where you can see that the binary IoU, precision and

recall slowly increases. The loss and learning rate is decreasing which indicates a slow down in

knowledge acquisition. Graph in Figure 5.1 shows some outliers in the validation loss, and a

small gap between the training and validation curve. The complete result of each epoch from the

original U-Net are showed in Appendix B.

Epoch Binary IoU Loss Learning Rate Precision Recall

5 0.8487 0.1437 0.0001 0.8901 0.8769

10 0.9010 0.0907 0.0001 0.9289 0.9262

15 0.9189 0.0731 0.0001 0.9434 0.9395

20 0.9610 0.0354 0.00001 0.9715 0.9739

27 0.9668 0.0300 0.000001 0.9756 0.9781

Table 5.3: Result of U-Net to 27th epoch.

Figure 5.1: Training and validation loss graph for U-Net.
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5.3.2 U-Net + Pyramid Pooling Module

Table 5.4 presents the results of U-Net with Pyramid Pooling Module from PSPNet added

between the encoder and decoder. As in U-Net, the binary IoU, precision, and recall increase, and

the loss and learning rate decrease. In Figure 5.2, the training and validation loss are presented.

Compared to the U-Net graph in Figure 5.1, there are fewer outliers and an even smaller gap

between the curves. Nevertheless, two quite significant outliers are still shown in the plot.

Epoch Binary IoU Loss Learning Rate Precision Recall

5 0.8329 0.1591 0.0001 0.8795 0.8598

10 0.8870 0.1031 0.0001 0.9199 0.9126

15 0.9094 0.0814 0.0001 0.9362 0.9326

20 0.9395 0.0537 0.00001 0.9562 0.9577

27 0.9645 0.0317 0.000001 0.8742 0.9764

Table 5.4: Result of U-Net with Pyramid Pooling Module from PSPNet to 27th epoch.

Figure 5.2: Training and validation loss graph for U-Net with Pyramid Pooling Layers.
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5.3.3 U-PSP-Net

Our final models result, presented in Table 5.5, consists of U-Net with PPM from PSPNet with

only the two smallest kernels. The final results end with a higher binary IoU, precision, and

recall than the other models presented. Figure 5.3 shows the training and validation loss graph

where the gap between the curves is approximately the same as in U-Net with PPM but without

the significant outliers. The validation loss lies closer to the training loss. The complete result of

U-PSP-Net, with every epoch, is shown in Appendix B.

Epoch Binary IoU Loss Learning Rate Precision Recall

5 0.8344 0.1586 0.0001 0.8797 0.8618

10 0.8845 0.1068 0.0001 0.9164 0.9117

15 0.9222 0.0704 0.0001 0.9436 0.9439

20 0.9581 0.0377 0.00001 0.9691 0.9719

27 0.9675 0.0290 0.000001 0.9762 0.9786

Table 5.5: Result of U-PSP-Net to 27th epoch.

Figure 5.3: Training and validation loss graph for U-PSP-Net.

5.3.4 Comparison of the models

Table 5.6 shows the comparison of the above mentioned models after the 27th epoch. U-PSP-Net

achieves the best binary IoU, precision, and recall. However, U-Net is not far behind. Appendix

B shows the entire process of both U-Net and U-PSP-Net.
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Model Binary IoU Loss Learning Rate Precision Recall

U-Net 0.9668 0.0300 0.000001 0.9756 0.9781

U-Net + PPM 0.9645 0.0317 0.000001 0.9742 0.9764

U-PSP-Net 0.9675 0.0290 0.000001 0.9762 0.9786

Table 5.6: Comparison of U-Net, U-Net with pyramid pooling modules and our U-PSP-Net after

27 epochs.

5.3.5 Parameters

Table 5.6 illustrates our model’s different results, versus the original U-Net and U-Net with

PPM. The table shows the 27th epoch with belonging values for binary IoU, loss, learning rate,

precision, and recall. The different models’ binary IoU on the 27th epoch is respectively 96.8%

and 96.7%. This is not an enormous difference, but the number of parameters is not considered.

Table 5.7 illustrates that the number of total parameters in U-Net is doubled compared to

U-PSP-Net. Precision and recall are pretty much the same, but U-PSP-Net is a fraction better.

U-PSP-Net U-Net

Total parameters 16 168 513 31 055 297

Trainable parameters 16 160 833 31 043 521

Non-trainable parameters 7 680 11 776

Table 5.7: Parameter comparison of U-PSP-Net and U-Net.

The final results do not show significant differences between the different models. However, as

seen in the results in Table 5.6 and 5.7, the model proposed in this thesis outperformed U-Net by

only using half as many trainable parameters. Any model will benefit by using a good training

data set over a homogeneous area. Nevertheless, the results speak for themself when our model

outperforms one of the most recognized CNNs available using far fewer parameters. The novel

model proposed in this thesis might not be as versatile as U-Net, yet it can predict buildings more

accurately than what it is up against, which is the model’s sole purpose, to detect buildings. The

building detection was immaculate when only considering building detection is done on the same

data set as the model was trained on. A 100% perfect automatic building detection is almost

impossible. Nevertheless, it is possible to get close. This is exactly what we achieved, near-perfect

results. There were, of course, some issues with the building detection, which will be discussed.
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5.3.6 Building Detection

Figure 2 in Appendix C, depicts the building detection results over U-PSP-Net from different

areas in Trondheim. The predicted buildings are white with the background being the aerial

image. Most of the buildings are fully covered, and the polygons have sharp edges that

distinguish the different buildings.

Some of the areas of building detection were not as good as the rest. Figure 3 in Appendix C,

shows examples of building detection with misclassifications. Areas with more unusual buildings

and urban areas seem to give worse building detection results. The detected buildings are

incomplete roof planes, include small holes and does not have sharp edges to distinguish each

roof clearly. Other objects like roads, landscapes, and facades are also in some cases detected as a

buildings.

Figure 2 and 3 in Appendix C, shows the results of the building detection. As the image depicts,

the results are outstanding. The great results are caused by a combination of a well-made model,

a homogeneous area, sufficient training data, and a high-resolution data set. Our model is

thoroughly developed and tweaked to get the best possible outcome. The area from which the

training data is from, is homogeneous and is similar to the general area where the predictions

were made. This is an essential factor for our outcome. Additionally, the high-resolution data set

is a beneficial factor in producing good results.

Figure 5.4: Struggling with detecting image in the edge of an image.

Nevertheless, such a positive result has not been without its problems. The prediction result had

some misclassifications, and the worst results are shown in Figure 3 in Appendix C. Some roofs

were left out, while some facades were classified as rooftops. Urban areas seemed hard to

predicate, as the image shows roads and facades classified as buildings. Unusual buildings were

also hard to distinguish, as the training data did not include enough distinctive buildings. Cause

of insufficient training data in these particular areas, the building detection did not consist of

filled polygons or sharp and distinct edges. Again, this is a problem with the area since such
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unique structures and areas do not exist to the same extent. As Table 4.3 presented, the different

roof types were not balanced when labeling. The unique structures were often classified as Other,

indicating various unique roof types, making it hard for the network to learn their features.

The model also seemed to struggle to detect smaller roofs and roofs cut by the edge of the image,

partly existing in both photos. Figure 5.4 illustrates a prediction that shows this instance. The

left image is a fusion of four images, where you clearly can see that our model misses out on the

roof in the bottom right image compared to the bottom left. It is a clear distinction between the

cut marked in the red circle, where the images split, and the prediction does not cover the whole

roof. The right image shows a closer look at the missed corner. The model recognizes roofs, but

it’s easier to identify the bigger and most significant ones. Smaller roofs such as garages and

sheds were more problematic, as Figure 5.4 presents some examples. Predicting smaller surfaces

or parts of a roof that disappear at the edges seems to be a weakness of our model.

After getting a prediction of rooftops, minor anomalies appeared in addition to the predicted

rooftops. Our deep learning model learns what roofs look like and how they are shaped by going

through all the labeled tops. The final result may look cleaner by removing the anomalies, but

errors may occur. The anomalies are a part of the result of the training and can therefore affect

the outcome as well as the IoU, precision, and recall if not removed. Three examples of anomalies

in our prediction are depicted in Figure 5.5, where it is predicted roofs where it does not exist.

Figure 5.5: Small anomalies in the prediction.

Buildings are regularly square-shaped in some way, with sharp edges. The desired outcome of the

building detection was complete polygons covering the roof planes with sharp edges. In some

cases, the prediction had more irregular shapes, holes, and not equally straight edges. This is

caused by, for example, trees covering the building, unusual roof shapes, or different lighting.

Appendix D presents examples of irregular shapes from the result of the building detection.

Some roofs were covered by trees when annotating roof planes for training data. Although we

were only two persons annotating the buildings, these types of occurrences may have caused some

inconsistency when labeling.

Using the model to predict buildings on the data set from 2019 went well. The buildings were

consistently detected with only a few exceptions. The prediction did not go as trouble-free when
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using the images from 2020. The first effort resulted in a failure. Almost no predictions were

made at all, indicating that something was wrong. The different color properties of the data sets

had been overlooked, which was now causing an issue. The model was far too specialized on the

data set from 2019 to be able to predict any buildings in the images from 2020. The steps to

minimize this problem will be further discussed later in Section 5.3.8 Data Set. Succeeding

minimizing the problem, the building detection became more than acceptable. The detection

results from 2019 are superior to 2020. However, both results were good enough to conduct a

change detection analysis.

5.3.7 Change Detection

The final change detection result using our model, U-PSP-Net, is depicted in Appendix F where

the left column shows aerial images from 2019, the column in the middle 2020, and the right

column shows our predicted change. The green areas represent parts added from 2019 to 2020,

and the red is removed.

The two data sets were images from 2019 and 2020 over the same areas in Trondheim. There

were only a few changes during one year, making it more challenging to detect changes over such

a large area. Additionally, the images were not true orthophotos, meaning that objects that are

not flat will lean in the opposite direction from the nadir of the camera. Therefore, it was hard to

observe the changes when putting images together since a change was detected in several places

where only the buildings had moved slightly. Figure 5.8 shows what the predicted change

detection images looked like on some buildings. All the building’s outlines are classified as

change, even though no change had occurred. This is because of the difference in camera position

between the years. To find which areas change had happened, we had to create a method. Two

corresponding images were subtracted from each other before they were added together. This

method resulted in an image that mainly looked dark in areas without change, and areas with

change had more color. The combined image is depicted in Figure 5.6, where the left image

shows the overall image, and the marked area highlights an area with change. The right image

presents a closer look at the significant area, where you can see that a change has occurred.

Figure 5.6: Overall image of change detected of a larger area.
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A consequence of the images not being true orthophotos is that there will be relief displacement

in the images. The images are created by mosaicing multiple images collected during a flight,

leading to some unusual-looking images seen in Figure 5.7. As a consequence of the image, the

tall buildings are seen leaning in different directions. The effect is exaggerated in taller buildings.

However, the result can be observed in every object with a height above the ground. The effect is

present in the complete data set, although varying between images. This can be seen in Figure

5.8 where all buildings are of similar type. Based on the thickness of the colored outline, we can

tell how much variation there is between images. The thickness is directly related to the distance

between the building and the nadir. The thin outline indicates that the nadir of the images

belonging to both years is close to each other. As a result of this thin outline, the same building

is oriented in the same direction and has the same relief displacement, if there is one.

Regarding the cases with a thicker outline, the nadir of the images was far apart. The image pair

was most likely taken from the opposite side of the buildings. Seeing that almost every building’s

exact location varies between the years, the task of automatic change detection becomes a lot

harder. An actual change will be harder to identify as the change caused by the dissimilarity in

the data sets are everywhere. Dissimilarity in the data sets is an unfortunate consequence of

using images that are not true orthophotos. True orthophotos require more images to be

collected, more post-processing, and more labor in general. Therefore there are fewer data sets

consisting of true orthophotos, and unfortunately, not many are available.

Figure 5.7: Relief displacement of images from 2019 and 2020.
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Another complication with the data set is that they are collected in consecutive years. The data

sets are collected within a period of 15 months. Considering the construction of buildings is a

process that often takes more than a year, the number of changes in the available images was

limited. In hindsight, a longer period of time between when the images were collected should be

used. However, only the sample size of changes is hindered by this, not the method. Combine the

lack of changes with the misclassification of changes, and a problem occurs. Automatic change

detection is impossible due to the imbalance of actual change compared to change caused by the

difference in the images. The changes then have to be observed manually. A task that also

proved to be complicated. Therefore a method to help identify areas with change was developed.

Subtracting and adding pairs of bi-temporal images created a new image where the change was

visible.

Figure 5.8: Change detected. Red shows parts that are removed, and green are parts added.

Not having true orthophotos makes automatic change detection more challenging to perform.

When detecting change, the model does not distinguish between an already existing or new roof

when they occur in the same place. An example of this is presented in Figure 5.9 from 2019,

where a typical Gabled roof rebuilds into three smaller Gabled roof planes. The building’s

overlap is detected as no change and a mix of red and green parts from where the 2020 roofs have

changed compared to 2019. For the visual aspect of the change detection, buildings detected that

are unchanged from previous years should be marked to make it clear that the building still

stands. More significant changes would be more noticeable by filling the buildings with bigger

polygons.
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Figure 5.9: Aerial images from 2019 and 2020, and the change detected.

The results from the change detection analysis do not include any accurate measurements. The

simple reason for this is that there does not exist any ground truth data set over the given area.

To correctly calculate any metrics, the results need to be compared to the ground truth, which

was impossible. The ground truth data set also had to be made from true orthophotos. These, as

mentioned, are unavailable images, neither for the building training data set nor for a possible

change data set. Without a ground truth data set, this would not have been of any use to us

either. Since the detected images are not true orthophotos, it would make no sense to compare

them to a ground truth data set created with true orthophotos.

5.3.8 Data Set

Creating our data set has resulted in more accurate results, which is crucial for our problem.

Several factors could have affected our outcome if we had avoided making our data set. Since our

task involved change detection in Trondheim, training data from a different place would result in

an unsatisfactory product. There was no data set with labeled rooftops in Trondheim. Building

roofs are different and unique and have particular characteristics for each place you go. The most

common roof types in Europe are not the same as in Asia, and some areas may contain more

urban areas or taller buildings than in Trondheim. Different regions will lead to variance in roof

types and, for example, nature, sunlight, shadow, contrast, and resolution. Training our model on

a data set with a lower resolution than the data set distributed from Trondheim municipality

would have influenced the change detection accuracy. Accordingly, training data from the right

area is crucial.

Images collected at different times of the day, during different seasons, or during different weather

will have divergent color properties. The color hue might be more intense, the sun might increase

the brightness of the objects captured, or the season will shift the landscape’s color. Accordingly,

when creating a data set, images are color corrected relative to each other, which is not the case

for different data sets. Meaning that data sets, although they cover the same area, will not have

the same color properties. A network trained on a data set with specific color properties will

perform worse when predicting on a data set with other color properties.
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The training data for our model were images from May 2019. To detect the change, a comparison

with another year was necessary. Trondheim municipality gave us images over the same area

collected in August 2020. This color difference is shown in Appendix E, where the same area of

2019 and 2020 are depicted. We did not consider this when starting to detect buildings, but the

result was surprisingly bad. The consequence of images taken from different years and times of

the year was a variation of colors. The brightness, saturation, and contrast were all different.

Our network had only trained on images from that specific data set. The model did not perform

satisfactorily when applying the model to a new data set with different colors. By visual

inspection, it was soon detected that the bi-temporal images had other color properties, causing

the lack of performance. This was a surprising effect that we had not considered when creating

the data set. Given that we made a data set over the area of interest, we anticipated that the

color variance in the images would not affect the results to that degree.

Two measurements were taken to mitigate the issues stemming from the color variance between

the data sets. Firstly the data set was further augmented. Three copies of each image were added

to the data set where contrast, brightness, and color hue were randomly tuned in the copies. A

common reason for data augmentation is to make the model invariant to any difference in the

color properties when predicting. Expanding the training data set with images with random

contrast, brightness, and color hue will increase the model’s ability to identify buildings in images

from different years. This follows the simple argument that the model is exposed to images that

are not homogeneous and will learn to identify buildings in more conditions. The prediction

results improved after training the network with the new training data. However, we were not yet

satisfied with those predictions. The building detection was still superior on images from 2019

and not good enough on the images from 2020. The second measure we took to improve the

building detection was to color correct the images from 2020 to be more similar to those from

2019. This process was done manually in an image editing software. During this operation, the

images were tuned by adjusting the saturation, contrast, shadows, highlights, exposure, tint, and

temperature. As this was done manually by comparing the image pairs while adjusting, it was

not a perfect way of color-correcting the images. Nevertheless, this gave us good enough results

to be able to detect buildings in both years reliably.

More measurements could have improved the model if we had sufficient time. Firstly, and most

obvious method is to include images from multiple years in the training data. It could be as

simple as to include data only from the years in question for the change analysis or to include

every year with available data. This would make the model even more general. This is a simple

method to mitigate the issue. Still, it is incredibly time-consuming and was therefore not a viable

option. Secondly, it is possible to use Generative Adversarial Network (GAN) to transfer the

image style and directly generate new training images to generalize the model. Similar to the

first option, this method would be too time-consuming. A third option that could have

generalized the model is to use black and white images. This would not have fully mitigated the

differences between the bi-temporal images. Nevertheless, some of it would be removed. This

method would only include changing all the images to greyscale. Yet this was not done, even
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though it is not that time-consuming, considering that a benefit was not guaranteed.

Another consequence of using the data set we created was that the network saturated

surprisingly quickly. From experience, we anticipated that training the network would use more

epochs and, therefore, more time. We suspect this is because of the homogeneous nature of the

data set. Since all the images were almost similar, the amount of knowledge the network needs to

obtain is severely reduced.
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Chapter 6

Conclusion

The final chapter of the thesis summarizes the work and experiment. It will cover an overall

conclusion of the network’s performance regarding building detection and a conclusion regarding

conducting a change detection analysis based on the results from the building detection. Lastly,

the chapter will cover recommendations for further work.

6.1 Conclusion

The main objective of this thesis was to create a method for automatic building detection that

had to produce highly accurate detections. From a precise building detection, change detection

analysis would make a change detection map over the given area. To test the proposed method,

an experimental study was conducted. The study started with preprocessing the data set before

the images were classified, and lastly, pairs of images were compared to detect change. The thesis

also included the creation of a novel network and data set.

This thesis provides a novel deep learning network for building detection used for change

detection of buildings. The network was created by combining parts from U-NET and PSPNet.

By performing an ablation study, the optimal combination of the two networks was discovered,

and U-PSP-Net was created. U-PSP-Net consists of four layers of U-Net’s encoder/decoder

module and the two smallest kernels from PSPNet’s PPM. The architecture proved to be highly

effective by exploiting the advantages of both U-NET and PSPNet while diminishing their

downsides. U-PSP-Net provided above 97% IoU for building detection by only using half as

many weights as U-NET.

The network was trained on a novel building data set created of images over Trondheim, Norway.

The new data set was also created as a part of this thesis. By annotating accurate aerial images,

the data set was made. The data set covers 2.3 square kilometers and includes over 3700

buildings, making it the first of its kind in Trondheim. The data set is suitable for training neural

networks used for building detection. However, it only includes buildings over a local area in
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Norway. The network showed excellent results when detecting buildings on images from the same

data set as the novel data set was created. That said, the network did not prove to be as effective

on other data sets. Building detection on another data set over the same area gave worse results

than the novel data set. The network was only trained on the novel data set, a data set that was

not general enough.

There are two main reasons why automatic change detection was impossible with the method and

data set used in this thesis. Firstly the data set was not suitable for change detection. To perform

change detection, images from at least two years are required. A minimum requirement we

discovered for those data sets is that they are true orthophotos. As seen in the results, not using

true orthophotos creates a lot of false positives due to the difference in nadir when collecting the

images. This inhibits an algorithm from reliably detecting changes since most detected change is

just a difference in the data sets. The second reason automatic change detection was not possible

was the accuracy of the building detection. The building detection from both years has to be

highly accurate. In our case, buildings detected on the data set on which the network was not

trained were not accurate enough. This also leads to false positives in the change detection.

6.2 Further Work

Change Detection with True Orthophotos

Considering the issues caused by relief displacement, executing automatic change detection was

not viable. There were too many misclassified changes caused by relief displacement to filter out

the actual modifications in buildings properly. There must be considerably fewer false-positive

detected changes to perform automatic change detection. To test the ability of the network and

method, we recommend that the method should be tested with true orthophotos. With true

orthophotos, the difference in relief displacement will be mitigated, and the change analysis will

give more correct results. As long as the building detection is accurate enough, we see no reason

why an automatic building detection would not be feasible using our network and method.

Test Method with Generalized Data Set

The network should be trained on a data set consisting of images from multiple years and areas

to enhance the method further. This would make for a more reliable building detection, even

considering the difference in color properties and the area of interest. Therefore, it is

recommended to use the method with an expanded data set that allows for more accurate

building detection in both bi-temporal images. This change in the method would most certainly

result in a more precise outcome for building detection and, therefore, in the overall change

detection.
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Further Testing with U-PSP-Net

To test the network’s full potential as a general network that can detect buildings in any

condition or location, it needs to be tested on another data set from a different area. Our model

is only tested in one specific area, which it is also trained on. Different data sets for training and

testing should be used for further testing, development, and improvement of U-PSP-Net. The

network has proven to be accurate and efficient for building detection. It would also be interesting

to see the network applied in other contexts and for other uses would grant similar results.

Expanding and Improving the Data Set

This thesis covered the creation of a novel training data set for building detection. As mentioned

in the discussion, the data set was not general enough and only included images from one year

and over a homogeneous area. However, the data set is highly accurate both in the annotations

and resolution and would benefit from an expansion. We recommend that the data set should be

further expanded with more images. Firstly the data set should include more images from

different periods, still covering the same area. If the data set is proven to be effective for both

building and change detection, the data set could be further expanded. This expansion should

include images covering other areas in Norway and internationally.
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Appendix

A Kartblad Trondheim

Figure 1: Trondheim
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B Results

U-PSP-Net

Epoch Binary IoU Loss Learning Rate Precision Recall

0 0.6299 0.3589 0.0001 0.7333 0.6063

1 0.7521 0.2530 0.0001 0.8273 0.7499

2 0.7818 0.2175 0.0001 0.8421 0.7984

3 0.8060 0.1915 0.0001 0.8588 0.8301

4 0.8272 0.1676 0.0001 0.8734 0.8545

5 0.8344 0.1586 0.0001 0.8797 0.8618

6 0.8492 0.1436 0.0001 0.8896 0.8778

7 0.8617 0.1297 0.0001 0.8982 0.8915

8 0.8687 0.1225 0.0001 0.9036 0.8977

9 0.8822 0.1095 0.0001 0.9147 0.9091

10 0.8845 0.1068 0.0001 0.9164 0.9117

11 0.8960 0.0956 0.0001 0.9249 0.9214

12 0.9059 0.0857 0.0001 0.9312 0.9309

13 0.8940 0.0972 0.0001 0.9246 0.9191

14 0.9173 0.0749 0.0001 0.9391 0.9407

15 0.9222 0.0704 0.0001 0.9436 0.9439

16 0.9281 0.0651 0.0001 0.9475 0.9492

17 0.9288 0.0642 0.0001 0.9485 0.9487

18 0.9369 0.0565 0.0001 0.9542 0.9559

19 0.9541 0.0413 0.00001 0.9666 0.9685

20 0.9581 0.0377 0.00001 0.9691 0.9719

21 0.9600 0.0360 0.00001 0.9705 0.9733

22 0.9614 0.0346 0.00001 0.9715 0.9743

23 0.9629 0.0332 0.00001 0.9728 0.9752

24 0.9641 0.0321 0.00001 0.9735 0.9762

25 0.9655 0.0308 0.00001 0.9747 0.9771

26 0.9670 0.0293 0.000001 0.9758 0.9786

27 0.9675 0.0290 0.000001 0.9762 0.9786

28 0.9677 0.0288 0.000001 0.9763 0.9788

29 0.9679 0.0287 0.000001 0.9766 0.9787

30 0.9680 0.0285 0.000001 0.9766 0.9789

31 0.9682 0.0283 0.0000001 0.9766 0.9792

32 0.9682 0.0283 0.0000001 0.9767 0.9792
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U-Net

Epoch Binary IoU Loss Learning Rate Precision Recall

0 0.6549 0.3419 0.0001 0.7711 0.6140

1 0.7590 0.2429 0.0001 0.8384 0.7537

2 0.7919 0.2056 0.0001 0.8508 0.8093

3 0.8203 0.1757 0.0001 0.8691 0.8471

4 0.8332 0.1614 0.0001 0.8777 0.8608

5 0.8487 0.1437 0.0001 0.8901 0.8769

6 0.8637 0.1294 0.0001 0.9015 0.8911

7 0.8696 0.1213 0.0001 0.9071 0.8956

8 0.8818 0.1095 0.0001 0.9150 0.9086

9 0.8887 0.1029 0.0001 0.9206 0.9136

10 0.9010 0.0907 0.0001 0.9289 0.9262

11 0.9031 0.0886 0.0001 0.9305 0.9270

12 0.9148 0.0774 0.0001 0.9393 0.9369

13 0.9165 0.0756 0.0001 0.9410 0.9382

14 0.9222 0.0701 0.0001 0.9446 0.9436

15 0.9189 0.0731 0.0001 0.9434 0.9395

16 0.9384 0.0556 0.0001 0.9556 0.9565

17 0.9537 0.0419 0.0001 0.9663 0.9684

18 0.9574 0.0386 0.00001 0.9689 0.9713

19 0.9594 0.0369 0.00001 0.9703 0.9728

20 0.9610 0.0354 0.00001 0.9715 0.9739

21 0.9625 0.0340 0.00001 0.9725 0.9750

22 0.9639 0.0326 0.00001 0.9736 0.9760

23 0.9658 0.0308 0.000001 0.9749 0.9776

24 0.9662 0.0306 0.000001 0.9752 0.9777

25 0.9665 0.0304 0.000001 0.9754 0.9779

26 0.9666 0.0302 0.000001 0.9755 0.9780

27 0.9668 0.0300 0.000001 0.9756 0.9781
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C Building Detection Results

Figure 2: Buildings detected from different areas in Trondheim
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Figure 3: Buildings detected from different areas in Trondheim
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D Building Detection, Irregular shapes
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E Difference in Color Properties

Aerial Image from 2019

Aerial Image from 2020
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F Change Detection Results
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G Area
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