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Abstract

Acquiring access to the true roof structures of buildings as digital 3D models is a much-needed and

natural next step from the current state of digital cities, as it enables several new applications within

fields like visualization, simulation, and smart cities. Conventionally, the process of creating such

models can be done by reconstructing 3D roof models from airborne laser scanning point clouds

in five main steps: building roof detection, roof plane segmentation, outline extraction for roof

segments, regularization and topological adjustment of polygons of roof segments, and modeling in

CityGML. This thesis proposes a new data-driven framework that directly extracts the edge points

of building roof structures from airborne laser scanning point clouds and thus mitigates the step

of plane segmentation. In mitigating this step, we heavily reduce the computational cost and the

required training dataset size. Our framework is also much more generalizable, as it is not limited

by any predetermined set of segmentation primitives.

Twenty methods for feature extraction from point clouds were studied and explored, and the

first part of our framework is based upon a subset of these features. Feature values for each point

in building roof point clouds are calculated in a multi-scale manner, with an additional mean value

for each feature. Together, all the feature values form what we call a feature matrix that represents

each point as a higher-order entity. The last part of the proposed framework leverages this feature

matrix as input to detect edge points by using CatBoost, a popular machine learning algorithm

that uses gradient boosting on decision trees to classify data.

To test and validate our framework, an experiment was conducted on dense airborne laser scan-

ning point cloud data provided by Trondheim Municipality. A small set of building roof structures

was manually segmented for the basis of this experiment. The results showed that for the purpose

of edge point detection of building roofs from airborne laser scanning point clouds, the proposed

point features in concatenation with the proposed framework could successfully discriminate be-

tween edge points and other points. It achieved good scores on the manually segmented building

roof dataset, with 83% Intersection over Union and 90% Overall Accuracy being reported. All the

code used in this thesis can be found at https://github.com/appfr3d/TBA4925-Masters-thesis.
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Sammendrag

Å anskaffe tilgang til sanne takkonstruksjonener av bygninger i form av digitale 3D-modeller er

et sårt tiltrengt og naturlig neste skritt fra dagens tilstand av digitale byer, siden det muliggjør

flere nye applikasjoner innen felt som visualisering, simulering og smarte byer. Konvensjonelt kan

prosessen med å lage slike modeller gjøres ved å rekonstruere 3D-takmodeller fra flybårne laserskan-

ningspunktskyer i fem hovedtrinn: bygningstakdeteksjon, takplansegmentering, kantomriss utvin-

ning fra taksegmentene, regularisering og topologisk justering av polygoner fra taksegmentene,

og modellering i CityGML. Denne masteroppgaven foreslår et nytt datadrevet rammeverk som

direkte trekker ut kantpunktene til bygningstakkonstruksjoner fra flybårne laserskanningspunkt-

skyer og dermed fjerner trinnet med takplansegmentering. Ved å fjerne dette trinnet reduserer vi

de beregningsmessige kostnadene og den nødvendige størrelsen på treningsdatasettet kraftig. Ram-

meverket vårt er også mye mer generaliserbart, siden det ikke er begrenset av et forhåndsbestemt

sett med segmenteringsprimitiver.

Tjue metoder for å utvinne attributter fra punktskyer ble studert og utforsket, og den første de-

len av rammeverket vårt er basert på en undergruppe av disse metodene. Attributtverdier for hvert

punkt i bygningers takpunktskyer beregnes på en skalert måte, med en ekstra gjennomsnittsverdi

for hver attributt. Sammen danner alle attributtverdiene det vi kaller en attributtmatrise som

representerer hvert punkt som en enhet av høyere orden. Den siste delen av det foreslåtte rammev-

erket utnytter denne attributtmatrisen å detektere kantpunkter ved å bruke CatBoost, en populær

maskinlæringsalgoritme som bruker gradientforsterkning på beslutningstrær for å klassifisere data.

For å teste og validere rammeverket vårt ble det utført et eksperiment på flybårne laser-

skanningspunktskydata levert av Trondheim kommune. Et lite sett med takkonstruksjonener av

bygninger ble manuelt segmentert som grunnlag for dette eksperimentet. Resultatene viste at for

formålet med kantpunktdeteksjon av bygningstak fra flybårne laserskanningspunktskyer, kunne de

foreslåtte punktattributtene i sammenheng med det foreslåtte rammeverket lykkes med å skille

mellom kantpunkter og andre punkter. Det oppnådde gode resultater på det manuelt segmenterte

takkonstruksjonsdatasettet, der 83% IoU og 90% OA ble rapportert. Hele kodebasen som ble laget

og brukt under denne masteroppgaven finnes tilgjengelig på https://github.com/appfr3d/TBA4925-

Masters-thesis.
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Chapter 1

Introduction

1.1 Motivation

Acquiring access to detailed 3D digital models of the buildings in a city is essential in many

aspects. The models can be used to perform a number of different simulations to calculate features

like daylight conditions, heat loss, and damage by flooding. A recent trend for navigation maps

uses detailed 3D building models for more straightforward navigation, as the orientation to the

environment is improved by recognizable key landmarks on the map [25]. Several applications in

line with the notion of smart city are also enabled by such models, like urban planning, disaster

preparation and management, digital twin a wide range of other applications [6].

Digital 3D models of buildings are defined in several levels of detail (LOD), and which tasks, as

well as how well these tasks can be performed, depends on the LOD. Open Geospatial Consortium

(OGC) includes roof structures as part of LOD 2 in their CityGML standard [10], which ranges

from LOD 0-4. This means having access to the geometry of building roofs is an important step

in achieving good 3D models of cities.

Accurate representations of roof structures also enable several new applications. It allows for

highly accurate calculation of solar energy potential of individual buildings and cities as a whole

[52]. Solar power distributors are interested in such calculations since knowing where to find the

best solar conditions allows them to optimize development and energy output. Governmental

institutions also finds this information valuable, as it can enable them to make informed decisions

in city planning and to know how to utilize renewable energy in the future.

3D models are commonly built up of a mesh of connected polygons that together form the

outline of the modeled shape. These polygons are constructed of vertices and edges that are

placed and connected to each other in 3D space. Due to the highly labor-intensive task of manually

creating 3D building models, it would be preferable to find an automatic way to reconstruct roof
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structures. Luckily, 3D point clouds could do just that [2] as they are the basis for virtual 3D

models representing real-world scenes.

There are three popular methods for performing automatic reconstruction of roof structures

from 3D point clouds: model-based, data-based, and a hybrid of the two. In the model-driven

approach, one tries to find the best match between a set of primitives and the given data and then

combines the primitives to get a complex model [14]. Examples of such primitives are the eight

roof types proposed by Kada [29] and the flexible face models proposed by Xiong et al. [55]. One

of the limitations of the model-based approach is that a set of primitives is limited, which means

they are unable to capture all roof structure scenarios. This limitation is especially the case for city

centers, as they often consist of buildings with different architectural styles of roofs from several

different decades or even centuries. If one were to accommodate the wide array of different roof

structures, model-based methods would be very complex to build.

The hybrid and data-driven methods are multi-step methods that start by segmenting out roof

planes from the data and determining their topology. The outline is then extracted from the

planes and used in conjunction with the topology to reconstruct the roof as a 3D mesh model

[14, 37]. Hybrid methods usually use a set of predetermined plane shapes to segment the different

roof planes. Mo and Orre [35] proposed a roof structure point cloud dataset for deep learning

algorithms, where six predetermined geometric shapes were used as the basis for the roof plane

labeling. If models based on this dataset are generalizable enough is questionable, as the selected

geometric shapes are only based on common roof structures found in Norway.

This master thesis proposes a new data-driven framework that directly extracts the outline

edge points of roof structures in Airborne Laser Scanning (ALS) point clouds without the need

for plane segmentation. While some techniques exist for detecting edges in point clouds, they are

either designed for closed objects only or do not detect edges efficiently enough. By developing a

new framework specifically for the purpose of building roof edge detection in ALS point clouds, we

can achieve better results and a solution that accommodates the specific needs of this task.

The proposed framework calculates several features for each point using both new and com-

monly used point cloud edge detection algorithms. These feature values are then passed through

a machine learning algorithm that uses gradient boosting on decision trees to classify each point

as an edge point or a non-edge point. This combined method is not limited by any predetermined

set of primitives, which model-based and hybrid methods are. It only needs a few labeled roof

point clouds as training data to converge, compared to the vast amount of training data required

for data-driven methods using deep learning. Lastly, the method only takes minutes, not hours, to

both compute and train.
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1.2 Defining the Scope

The scope of this master thesis is restricted to the development and testing of a data-driven edge

point detection framework, meant to be used to detect edge points in ALS 3D point cloud data of

roof structures.

The thesis does not address the collection and segmentation of the original raw point cloud.

The collection is done by the company Terratec on the behalf of Trondheim Municipality, and the

roof structure segmentation for the experiment is done manually. Automatic extraction of roof

structures from the collected 3D point cloud should be explored in further works, as well as 3D

model reconstruction from the segmented roof point cloud.

1.3 Outline of the Thesis

The reminding of this thesis is structured as follows: Chapter 2 covers fundamental principles and

technical background, preliminary literature concerning techniques, methods and features used for

edge point detection, and specific edge point detection problems on roof structures.

Chapter 3 describes twenty methods for feature extraction from point clouds, which are either

based on preliminary work, or specifically designed based on specific attributes found on building

roofs. Both voxel based and point based features are investigated in detail and visualized.

In Chapter 4, the proposed framework for detection of edge points of building roofs from ALS

point clouds is presented. Each step in the framework, which includes preprocessing, feature

calculation and feature combination, is thoroughly explained.

To test and validate our framework, an experiment is conducted on a manually segmented

dataset in Chapter 5. Metric results are presented for each individual feature, and the combined

framework is validated both metrically and visually. A discussion concerning the advantages and

disadvantages of the proposed frameworks ends the chapter.

Finally, Chapter 6 summarizes and concludes the work done in this thesis, and suggest further

works based on its findings.
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Chapter 2

Background and Related Work

This chapter gives the reader enough background and knowledge to understand the technical

content of the thesis and the reasoning for the choices that are made later on. It starts by explaining

relevant principles and processes for this thesis in Section 2.1. Then it goes in detail on relevant

previous work on the field of edge detection in 3D point clouds in Section 2.2.

2.1 Fundamental Principles

This section is meant to introduce essential concepts necessary to understand the rest of this thesis.

It presents theoretical information about the structure and the acquisition of the point cloud used

in this thesis. Additionally, a description of decision trees is given, and edges in 3D building roof

point clouds are clearly defined.

2.1.1 Airborne Laser Scanning

Airborne Laser Scanning (ALS) is a highly accurate remote sensing technique used to map ground

topography, urban areas, vegetation, ice, and infrastructure. It is a method for acquiring range

measurements and the precise location and orientation of these measurements. Short and frequent

laser pulses, usually with a size of 4-10ns and a frequency of 50-200kHz [27], are rapidly emitted in

various scanning patterns from a LiDAR scanner mounted under an airborne vehicle, like a plane,

helicopter, or drone [20]. When the pulses hit the ground underneath, it illuminates the surface,

and a photodiode next to the laser emitter registers the backscatter radiation.

The position and rotation of the sensor are continuously measured during the flight using a

Global Positioning System (GPS) and an Inertial Measurement Unit (IMU). The recorded mea-

surements of sensor position and orientation, beam backscatter, and range can be converted to a
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georeferenced 3D point cloud representing the surface of the targets that reflected the laser signal.

ALS has several features that make it advantageous over traditional Image-derived techniques

and Red Green Blue -Depth (RGB-D) cameras. The main advantage is that ALS uses active

systems, meaning they provide their own energy to measure the target and do not rely on the sun

for illumination. This means that, given the right flying conditions, surveying can occur at any

given time of day. It also means that the interpretation of the generated data is not altered by

shadows created by clouds, large buildings, or trees.

The size of the laser footprint can cause the beam to hit several objects, which each return their

own reflected radiation. This phenomenon is called multiple echoes and is another distinguishing

feature. Most modern LiDAR scanners can read up to 4-5 such echoes, meaning one laser beam can

create multiple measurements at different heights. Using the last recorded echo from each beam,

one can create accurate surface models even in dense forest areas. This is possible because a part of

the laser pulse can travel uninterrupted back and forth through small openings between branches,

causing a ground echo large enough to be captured by the photodiode [32]. However, having a too

large footprint is not advantageous because it results in a more inaccurate measurement.

2.1.2 Point Cloud Data

A point cloud is the most common representation of acquired 3D data [30]. It is a collection of

points located in 3D space that is represented by their X-, Y-, and Z-coordinates. Additional

attributes like intensity, Red Green Blue (RGB) color values, normal-vector, time of capture,

and classification labels can be applied to each point, depending on the method of collection and

post-processing. Together with the coordinates, they provide valuable information and can jointly

represent real-life objects or scenes. Several data formats exist to store point clouds, with .las,

.laz, and .ply being the most common ones.

The density of a point cloud describes the average number of points per unit area and is most

often measured in points/m2. Point clouds have varying densities, depending on parameters like

the distance from the capturing sensor and capture angle. Xie et al. [54] classify point clouds as

sparse if containing less than 20 pts/m2 and dense if containing more 20 pts/m2 and up to than

hundreds of pts/m2. Unlike images that are represented in dense regular grids, 3D point clouds

are irregular and unordered. In conjunction with the varying density, this makes it hard to apply

algorithms that are created for image data directly on 3D point clouds [53].

While point clouds are the most common 3D data representation, they do not inherit any

connectivity or relationship between the points. Some intermediate data structures have tried

to solve this problem in various manners. Voxel Grids encapsulate the point cloud into equal

volumetric objects, called voxels, in a grid that gives the point cloud a regular structure. Due

to point clouds being locally dense but generally sparse, voxels can be categorized as occupied
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or not occupied, depending on whether there is a point located whit in its bounds or not. Voxel

grids can reduce their memory consumption by only storing the occupied voxels. kD-threes are

binary threes in which every node is represented by a point in the point cloud. Every non-leaf node

splits the cloud into two half-parts that each represent the two children of the node. Using this

representation, it is magnitudes faster to compute neighborhood searches than in a novel brute

force manner. While both voxel grids and kD-trees offer improvements to point cloud structure,

both suffer from high creation costs and are incapable of point structure changes, leaving them as

intermediate structures in most applications.

2.1.3 Decision Trees

A Decision Tree (DT) is a simple supervised machine learning method for classification or regression

by sorting instances based on their feature values [7]. More specifically, the tree is hierarchically

structured. Each node represents a boolean condition on one of the provided feature values, and

edges represent the path down the tree depending on whether the expression asserted true or false.

Re-representing these conditions as if-then rules allows for improved human readability and deeper

understanding. Classification of an instance is done by sorting the instance from the root node

down to a leaf node which represents a classification label. By iteratively updating the weights

used in the conditions based on a provided training dataset, the resulting DT can approximate a

discrete-valued target function and thus be used for classification tasks.

DTs are perfect for solving problems where instances are represented with attribute-value pairs

and when the training dataset contains errors or missing data [33]. They can do so by leveraging

statistical techniques to create default pathways for erroneous or incomplete instances. However,

one of the weaknesses of DTs is that they are prone to high variance, which some techniques try

to reduce by employing the notion of ensemble learning. Ensemble learning in the context of DTs

means that several DTs, called weak learners, are combined as an ensemble to create one robust

model. The technique is based on the hypothesis that combining multiple weak models can often

produce one much stronger model.

One way to apply ensemble learning on decision trees is to use a technique called bagging, which

is short for bootstrap aggregation. In this technique, the training data for each DT is randomly

selected, with replacement, in a process called bootstrapping. Each DT is trained independently

in parallel, and the majority vote is chosen as the classification prediction. Implementing bagging

improves the overall variance and robustness compared to using a single DT. However, the training

and prediction speeds suffer as one effectively has to train several DTs.

Boosting is another technique to apply ensemble learning on decision trees, introduced by

Friedman [19]. Here, DTs are trained in sequence instead of parallel. Subsequent DTs leverages

the residual errors from all the previous DTs in a process called boosting so that weak learners are
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modified to strong ones. It is worth noticing that once a tree is created, it is not altered or removed

but is continuously used to modify the initialization of the next tree in the sequence. Gradient

boosting uses the loss function’s gradient as the basis for boosting. While gradient boosting creates

robust DTs that achieve great scores in several machine learning competitions, they are prone to

overfitting on outliers, and the final model can be hard to interpret. This is because new trees are

constantly updating based on the residuals created from the training set, and the number of trees

complexifies the classification result.

2.1.4 Definition of Edge Points in Roof Point Clouds

Edges in 3D point clouds are hard to define properly. In a study where artists were asked to draw

line drawings intended to convey specific 3D shapes, the result tended to be feature lines with

complex rules that varied from artist to artist, with only 75% consistent overlap [9]. This tendency

transfers to selecting 3D edges, as the edge segmentation process occurs on a 2D computer screen.

This lack of a general consensus on a theoretical definition of an edge hence creates a problem

when creating algorithms to extract them. Even though any ground truth may be subjective, an

edge definition has to be specified. The definition must be created on a fit-for-purpose basis, and

must thus be defined based on the roof point clouds used in this thesis.

As stated by Bendels et al. [5], the edge property is a property of the local neighborhood of

p rather than of point p itself. Hence, any further definition must rely on the properties of the

neighborhood and the relationship that point p has to it. Ryde and Delmerico [43] argues that

the definition of an edge in 3D must be based on the underlying geometry and not appearance,

as texture and lightning are not always captured by 3D sensors. Further, they describe surface

normal change as the only pose invariant feature based on geometry. The surface normal changes

abruptly where two planes intersect, and since roof structures are generally built up by planes, it

is a good description of where to locate edge points. Due to the unstructured nature of the data

in point clouds, it is highly unlikely for points to be located precisely on the line defined by the

intersection of two planes. Therefore, these edge points are defined as points that are sufficiently

close to this intersection line. This definition only accounts for edge points that are surrounded

by enough points to create the planes that intersect, and will hence be called inner edges, as they

must be located inside a cluster of points in the point cloud.

For convenience sake, these inner edges can further be split into two groups of edges, namely

upper and lower edges. Inner-upper edges are inner edges where the normals of the intersection

planes generally face away from each other. For Inner-lower edges, the normals generally face in

towards each other.

As mentioned, points on inner edges are surrounded by enough points to create the planes that

intersect. To avoid leaving out edge points on the outer edges of these planes from the roof edge
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definition, another definition is needed in conjunction with the prior. These edge points lie on

the end of the roof planes, normally where the gutters on the roof are located. Therefore, these

outer edge points are defined as points that are sufficiently close to the edge of a plane that has

no connected plane on this edge. From these findings we can conclude with three different kinds

of edges: "Inner, upper edges", "Inner, lower edges" and "Outer edges". Figure 2.1.1 illustrates

examples of the three edge definitions.

Figure 2.1.1: Illustration of roof edge definitions.

It is important to keep in mind that this definition leaves out some feature lines that could be

defined as edges in other circumstances. Especially curved and smooth edges are left out of this

definition. However, large man-made objects are mostly composed of planar surfaces, and roofs

are no exceptions [16]. Very few roofs consist of these edges, and leaving them out is a necessary

sacrifice to create a model for general roof structures.

2.2 Existing Edge Detection Methods

Even though a 3D point cloud is generally much more informant than a 2D image, extracting edges

and corner features in 3D is considered challenging. Existing 2D edge and corner detection methods

cannot directly be used in 3D point clouds as they rely on the regularity in the structure of 2D

images, while 3D point clouds are unstructured and can vary greatly in density. Despite regular

advancement over the years, edge detection in 3D point clouds remains an open, very challenging

problem [26]. This section explores and discusses existing techniques and methods for detecting

edges and corners on 3D point clouds. Additionally, problems related to edge detection in roof

structures is discussed.
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2.2.1 Point Cloud Edge Detection

Edge and sharp feature detection in point clouds is a problem that researchers have worked on for

over two decades. The first methods focused on creating good algorithms for surface reconstruction

that could preserve the underlying sharp features when constructing a mesh from the point cloud.

This was because the lack of any normal and connectivity information in the point cloud model

made feature detection a more challenging task than in meshes [49]. For instance, Attene et al.

[3] proposes a method to restore sharp features in 3D triangle meshes that are reconstructed from

point clouds. They detect triangles close to points with non-flat neighborhoods and then perform

a subdivision on these triangles. Then new vertices are repositioned to the sharp feature and

connected to the triangle mesh, which repairs the sharp features.

Recreation of surfaces can also be done based on mathematical formulas. Fleishman et al. [17]

uses a moving least-squares (MLS) technique for constructing such smooth mathematical surfaces,

in a piecewise manner. The word piecewise is key, as they identify sharp feature points as points

close to the intersection of multiple surfaces. They can define multiple local smooth surfaces in

the point cloud by leveraging a robust statistic technique called the forward-search paradigm. An

extension to this work was proposed by Daniels et al. [11]. They extracted feature curves on the

reconstructed MLS surface, with the advantage being more resistance to noisy and rough input

data.

Ni et al. [37] proposes AGPN, which fits a local mathematical plane among each point k nearest

neighbors (kNN) using the RANdom SAmple Consensus (RANSAC) algorithm. By filtering out

all the points that are not inliers on its calculated plane, they are left with candidate points to

investigate further. By doing a normal optimization and computing the maximum angular gap

amongst the neighboring inlier points, they provide a final classification by comparing it to a fixed

threshold. Such fixed thresholds depend on the underlying data, and finding the optimal values

for every new dataset is a process that is desired not to be performed in a fully automated process.

Mitropoulou and Georgopoulos [34] also leverages the RANSAC algorithm but takes a more

novel approach. They calculate all the mathematical planes by using RANSAC and the intersection

lines between each non-parallel plane. Points lying on or close enough to such straight intersection

lines are then considered edge points. However, it does not address the problem of dealing with

point clouds that include more than two planes. Processing point clouds with an uncertain number

of planes create the problem of when to stop searching for new planes. Both aforementioned

RANSAC-based methods also forego conveying the inherit flaws of using RANSAC, which is the

difficulty of determining its necessary initial parameters.

Another popular intermediate representation of point clouds is voxels. Voxels are the 3D equiv-

alent to 2D pixels, meaning they are regular volumetric elements, usually in the form of cubes [15].

Voxels can be divided into two categories, occupied and unoccupied, depending on whether there
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are one or more points located inside in 3D space. Ryde and Delmerico [43] extract volumetric

edges as voxel lists by applying a structure tensor operation to a voxelized representation of the

point cloud. They argue that edge detection in volumetric 3D space is the same operation as corner

detection in 2D grid space and hence view their contribution as an extension to the Harris corner

detection method for images [24]. The implementation of the structure tensor operator is thus also

an analysis based on eigenvalues from principal component analysis (PCA) on the occupied voxel

grid and claims that this method is more robust to noise than PCA methods working directly on

points. Classification is done by manually creating thresholds that fit the thermolab dataset [13].

Whether these thresholds are generalizable enough for unseen data is unclear.

Not every method uses an intermediate representation when detecting sharp features in 3D point

clouds. A direct approach is to use the underlying geometry of the points and their neighborhood

to compute each point’s geometric descriptor. This can, for instance, be done by analyzing the

eigenvalues of the covariance matrix, which is normally created via PCA. Gumhold et al. [21] uses

the eigenvalues to assign penalty weights to the edges in a neighborhood graph. By building a

subgraph that minimizes these weights, they create crease patterns that represent sharp features.

Pauly et al. [39] introduces the concept of surface variation, which is based on the eigenvalues and

used as classification. However, this method tends to over classify points to the edge category

as they detect points with high curvature, which does not necessarily correlate with edge points.

While well established, they also suffer from sensibility to noise, and they perform at a given scale

with a strong dependence on a decision threshold.

Weber et al. [49] also presents a technique for detecting sharp features directly on point clouds

without an intermediate representation. They compute a discrete Gauss map for each point based

on its kNN by estimating the normals of the neighborhood points and mapping these normals onto

the unit sphere. A flatness test is performed to discard all points belonging to planar regions before

a more precise selection process is done by Gauss map clustering. Points containing neighborhoods

with multiple concentrated clusters are selected as sharp feature points, as they are located between

two or more planar regions. This technique can only detect inner edges and classifies outer edges

as non-edges as they are located on a single plane. Both normal estimation and point clustering

are expensive operations, so the method also suffers from scalability issues.

Another method that purely evaluates the underlying neighborhood geometry is proposed by

Ahmed et al. [1]. They evaluate the local neighborhood symmetry and use an adaptive density-

based threshold to extract 3D edge points. This is done by employing a mean-shift algorithm [8]

to select the points having the largest shift from the centroid of their local neighborhood. This

method exploits the fact that edge points are located with most of their neighboring points in one

general direction, while non-edge points have a more evenly distributed neighborhood. However,

it is also dependent on variable parameters but provides guidelines on how to set them. In the

context of edge detection on roof planes, this method works well on outer edges and sharp, acute
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inner edges but falls short on edges with an obtuse angle between its planes as the centroid does

not shift enough from the query point.

In recent years, new methods have tried to solve sharp feature detection as a discriminative

learning problem using machine learning (ML) techniques. Hackel et al. [22] proposes a two-step

process based on what they call the hypothesize-and-verify strategy. They first predict a binary

contour score for each point based on a set of features extracted from the neighborhood of the

point. The extracted features extend the features proposed by [50] but are calculated at several

scales by changing the neighborhood size. They claim that several scales help to enrich the feature

set and make the method scale-invariant. These multi-scale features are fed into a binary random

forest to predict the contour score. By design, it is meant to over predict points as contours so

that the second stage can select an optimal subset of points as actual contours from the candidate

points. This selection process is done by selecting seed points using a voxel-grid down sampling

and non-maxima suppression technique and using a modified version of Dijkstra’s algorithm with

a special graph edge cost to construct a candidate graph of contours. Wireframe edges are lastly

extracted from the candidates as the final output.

While the method proposed by Hackel et al. [22] allows for fast computation, it leverages an

old implementation of the random forest ML technique as its classifier. Exchanging this method

with a newer implementation or a modern ML algorithm could be beneficial to achieving better

results. Random forests use the ensemble ML concept, where multiple models are trained using

the same learning algorithm. Additionally, random forests use the notion of bagging on its DTs,

meaning the trees are generated in parallel and trained with a random, independent subset of the

training data, and the result is based on a majority vote of the results received from each individual

decision tree.

As explained in Section 2.1, another ensemble learning method for DTs is called gradient boost-

ing, which is an iterative technique that creates new DTs which minimize the error by adjusting

the integrated weights based on the classification of the last trees. A popular algorithm within

boosting is CatBoost [40], which is an algorithm that supports both numerical and categorical

features. Using an algorithm that has optimized support for categorical features opens the door

for a new range of features. Examples of simple categorical features could be each point’s echo

return number or the number of neighbors in a ball query with a small predefined size. More

advanced categorical features could be explored for the purpose of edge detection. CatBoost also

has the ability to report feature importance, which can help develop and select such features. To

our knowledge, feature importance has not been leveraged to analyze features in the context of

edge point detection in any preliminary literature.

Leveraging the pioneering work of Qi et al. [41, 42] the recent PIE-Net from Wang et al.

[48] trains two deep learning based PoinNet++ networks for detecting edge and corner points

respectively. Using the same ideas as Hackel et al. [22] they use non-maxima suppression and
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clusters by feature using a third layer of PointNet++, and finally, a resulting set of curves is

generated. Even though PIE-Net takes advantage of newer, more advanced ML backbones, the

architecture is a concatenation of several deep hierarchical networks. It is thus prone to both high

computational resource demand in combination with a need for a large training set. With this in

mind, Himeur et al. [26] very recently proposed a shallow neural network, named PCEDNet, that

inputs stable, multi-scale, discriminative geometric descriptors as proposed by [22]. They create

a Scale-Space Matrix as input for the network, which is based on features calculated using the

Growing Least Squares approach. With its shallow architecture, the network is fast and scalable

and only needs a small training set to converge. Because of the difficulty regarding point cloud edge

definition, as discussed in Section 2.1.4, PCEDNet splits the edge definition into sharp-edges and

smooth-edges. They leave the ambiguous definition of the smooth-edges open for interpretation

by the user who labels the training data while leaving the sharp-edges stricter. However, the

precomputation of the Scale-Space Matrix is done on the CPU, making it a bottleneck for processing

speed.

As the reader can understand from this literary study, edge detection in 3D point clouds has

seen major interest over the last decades. Even so, there are many different solutions still being

explored, and no consensus has been found as of yet. Also, as mentioned in Section 2.1.4, the

definition of an edge is not consistent, which leaves many implementations essentially solving

different problems.

2.2.2 Edges Detection Problems in Roof Point Clouds

Detecting edges in roof point clouds might seem like a novel problem, given that common roof

structures consist of a set of large planes with clear edges in between. However, roof structures

possess some unique challenges, which will be discussed here. First of all, while it is not uncommon

for a roof structure to include large planes, it is equally common to include smaller planes. Such

planes include the ones created by dormer windows, porticos located over doors, other overhangs,

and small balconies. The difference in roof plane size creates a scaling issue when detecting edges,

as some edges are long and with clear boundaries, while others are short and built up by points

that overlap with other edges.

The sheer size of each building roof causes another scaling problem. There is a large difference

in the number of points captured on building roofs between individual residential houses and the

number of points on large apartment buildings or even factories. Since every building size must

be adapted for, the method must be invariant to the number of points presented for prediction.

Besides, architectural styles change over the years and vary greatly depending on other parameters

like culture, geographical location, and building purpose. Being able to generalize to such a large

variation in building geometry will pose a challenge.
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Roof planes also come in all sorts of angles to the ground, ranging from almost vertical to

completely flat. Thus, an edge detection algorithm is required to differentiate between edges

formed by roof planes with both acute and obtuse angles in between them. In addition, point

clouds of roof structures are open objects, meaning they have no volume. Unlike most of the

previous work done on 3D point cloud edge detection, the algorithm must thus be able to detect

both inner and outer edges, as defined in Figure 2.1.1.
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Chapter 3

Feature Engineering

In this master thesis, we study and compare twenty methods, both new and existing, for feature

extraction from point clouds. Based on this, we propose a framework to utilize the advantages of

a selected feature group for edge point detection in ALS roof point clouds. This chapter presents

the outcome of the exploration by detailing each feature and showcasing some contributions of this

thesis.

We base our framework on a concatenation of principles of previous works. These principles

can be summarized as (i) to use discriminative learning with rich feature sets instead of the raw

geometry, (ii) to create informative features based on their neighborhood and represent points as

higher-order entities using these features, and (iii) to calculate these features in a multi-scale fashion

instead of trying to find one general, optimized scale. The studied features are not necessarily

meant to be able to detect all edge points at once individually. However, they are chosen for their

ability to either consistently discriminate the same types of edges defined in Section 2.1.4 or to

present consistent information to weigh the importance of the other features. Using a perfomant

ML algorithm as our discriminative learning method, it can benefit from both of these types of

features to classify points correctly.

Most of the previous literature focuses on creating general edge detecting methods. This thesis

is specifically interested in ALS point clouds of roof structures, which allows for specifically designed

features that might not be usable in other contexts. A combination of voxel-based and point-based

features will be both explored and proposed, which can be found in Section 3.1 and Section 3.2

respectively.
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3.1 Voxel-based Features

As mentioned in Section 2.2.1, voxels is a popular intermediate representation of point clouds. They

are the 3D equivalent of 2D pixels, and they make the otherwise unstructured point cloud more

manageable by sectioning the cloud into a regular volumetric grid [15]. Many algorithms created

for 2D imagery pixel data take advantage of the regular structure it inherits, which is methods

like fast pixel selection, defining neighborhoods, and measuring pixel distances. Regularizing 3D

point cloud data into a voxel grid is thus the easiest way to translate such algorithms into the 3D

domain.

One positive side effect of voxel grids is that the size of the voxels can be controlled and changed,

which restructures the sectioning of the cloud. In line with the views of [22], features based on voxel

grids can hence be calculated at different scales to make them scale-invariant. When classifying

points using voxel grids, each point is assigned the classification label given to its parent voxel.

The main disadvantage with voxel grids in regards to point cloud segmentation is the loss of

resolution, which can lead to the segmentation labeling looking patched. Calculating features in a

multi-scale manner also helps to reduce this bias. The following subsections present voxel-based

features used in the proposed edge point detection model.

3.1.1 Lower Voxels

This feature directly exploits how roofs are designed to use gravity to transport rainwater down

and away from the building. This design lets us confidently say that all the lowest parts of a roof

point cloud will be the outer edges, usually where the roof gutters are located.

For every voxel, the neighborhood of voxels directly below is checked to see if it is occupied. The

neighborhood is created by placing points in a 7x7 grid spaced out with the current scale between

each point. Every point is padded one scale length below the center of the query voxel. For each

of these points, the correct voxel grid index is selected, and an occupancy test is performed by

using the check_if_included() function in the Open3D open3d.geometry.VoxelGrid class. If

no occupied voxels are found below the current voxel, then the voxel is classified as an edge-voxel.

Figure 3.1.1 visualizes this neighborhood query on a part of an upside-down voxel grid of a roof

plane. The green voxel represents the current voxel, and the red points underneath represent the

neighborhood query.
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Figure 3.1.1: Illustration of Lower Voxels query.

Once all occupied voxels in the voxel grid have been assessed, the voxel classification values

are transferred to the corresponding points inside the voxel. An example of the algorithm running

at three different scales is shown in Figure 3.1.2. Since the classification is binary, candidate edge

points are represented in red with the value 1, and points that are not activated by this feature

are represented in purple with the value 0.

Figure 3.1.2: Visualization of Lower Voxels calculated at different

scales.

3.1.2 Upper Voxels

As with LowerVoxels (Section 3.1.1), this feature also exploits the nature of how roofs are designed.

The highest point on a roof will most cases, necessarily be an inner, upper edge, or a chimney.

The implementation for UpperVoxels is essentially the same as LowerVoxels, but looking up-

wards instead of downwards. For every voxel, the neighborhood of voxels directly above is checked
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to see if it is an occupied voxel or not. The neighborhood is also a 7x7 grid spaced out with the

current scale between each point. Every point is padded one scale length above in z-direction above

the center of the query voxel. For each of these points, the correct voxel grid index is selected, and

an occupancy test is performed by using the same check_if_included() function. If no occupied

voxels are found above the current voxel, then the voxel is classified as an edge-voxel. Figure 3.1.3

illustrates this neighborhood query on a part of a voxel grid of a roof plane. The green voxel

represents the current voxel, and the red points underneath represent the neighborhood query.

Figure 3.1.3: Illustration of Upper Voxels query.

Points are then classified in the same manner as with LowerVoxels, and an example of the

algorithm running at three different scales is shown in Figure 3.1.4. This figure also includes a

visualization of the mean of point values from eight scales. In addition to the binary values provided

by each scale, the mean value for each point is provided as a new scalar feature.

Figure 3.1.4: Visualization of UpperVoxels calculated at different

scales, and the average value over the scales.
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3.1.3 Around Voxels

The AroundVoxels feature builds on the same principles as LowerVoxels and UpperVoxels regarding

uniformly placing out query points to check the occupancy state for the voxel neighborhood. Unlike

LowerVoxels and UpperVoxels, this feature does not revolve around the Z-axis but rather around

both the X- and Y-axis. This dimensional increase needs a more advanced rule set.

The goal of this feature is mainly to find outer edges. It does so by observing several directions

around the neighborhood of the query voxel and counting the number of directions without any

occupied voxels on one side but that have occupied voxels on the opposite side. If this is the case,

we could confidently say that the query voxel is located on an outer edge.

The neighborhood consists of an open cylinder around the query voxel, and Figure 3.1.5 (a)

and (b) show an illustration of what the query looks like. Using a cylinder with a width of two

voxels and a height of nine worked best with our definition of scales. The feature observes all the

eight directions around the query point as shown in Figure 3.1.5 (c). A xor operation matches the

opposite sides to tell if the query voxel is laying on an edge along with one or more of the four

observation lines.

(a) Cylinder of query points (b) Overview of cylinder (c) Observed directions

Figure 3.1.5: Visualization of the query in Around Voxels method.

(a) and (b) shows two different angles of the query, where the green

voxel represents the current voxel and the red points represents the

neighborhood query. (c) illustrates an overview of the directions this

feature observes.

Points are then classified in the same manner as with the two previously explained voxel features,

and an example of the algorithm running at three different scales is shown in Figure 3.1.6. The

figure colors indicate how many observation lines recognize that the voxel is lying on an edge,

effectively giving a degree of certainty for each voxel.
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Figure 3.1.6: Visualization of Around Voxels calculated at different

scales.

3.1.4 Edge Voxels

This feature is based on the proposed method by Ryde and Delmerico [43], which employs statistical

analysis of voxels. More precisely, they calculate a structure tensor based on eigenvalue analysis

for the occupied voxels in a voxel grid which then is used as the basis for voxel classification. The

creation of this structure tensor is a multi-step process and is based on the following formula:

A =
∑
v∈V

w(v)


I2x IxIy IxIz

IxIy I2y IyIz

IxIz IyIz I2z

 (3.1)

where A is the structure tensor, w is some weighting function defined over each voxel v. Ix,

Iy, and Iz are the partial derivatives of an occupancy grid I at a voxel in the sub-volume. More

formally, after smoothing a binary occupancy grid with a multivariate Gaussian filter having a

half-width h kernel, the partial x derivative at voxel p = (xp, yp, zp) can be computed with
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where x2
p, y2p, and z2p are the relative locations of the neighborhood voxels. A 3D Gaussian

weighting is chosen for w and is defined as:
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)]
(3.3)

The eigenvalues 0 ≤ λ0 ≤ λ1 ≤ λ2 from the structure tensor A are then analyzed to classify each

voxel. One would expect edge-like structures in the voxel grid to have two orthogonal directions

with large gradients and one direction with a small gradient along the edge. Ryde and Delmerico
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[43] leverages this by creating thresholds for each eigenvalue based on empirical experiments on

the thermolab dataset [13], where they expect one small eigenvalue and two larger eigenvalues.

Instead of trusting such thresholds, our method instead compares λ0 with λ1 and returns the ratio

between them. If λ1 is sufficiently large enough compared to λ0, then λ2 necessarily also has to

be. While Ryde and Delmerico [43] tries to manually create a threshold for this ratio, we take

another approach. This ratio becomes the feature value for each voxel and is left as a new threshold

variable for the ML algorithm to optimize based on the given training data.

Empirical testing showed that this feature performed best on the small scales defined in Sec-

tion 4.2 due to the loss of resolution preventing useful eigenvalue analysis at larger scales. Fig-

ure 3.1.7 illustrates how the method would be performed on three increasing scales.

Figure 3.1.7: Visualization of Edge Voxels calculated at different

scales.

3.2 Point-based Features

As described in Section 2.2.1, not every method uses an intermediate representation like voxel grids

when detecting sharp features in 3D point clouds. The features described in this section uses a

direct approach and leverages the underlying geometry of the points and their neighborhood to

compute geometric descriptors for each point.

3.2.1 Upper and Lower Points

Like LowerVoxels and UpperVoxels, this feature is directly aimed at exploiting the nature of how

roofs are designed and is thus not a general-purpose edge detection feature. It does so by positively

weighing points that are either a large distance above or below the point cloud centroid. During

preprocessing, a normalization of the point cloud is conducted in both size and shift. Thus, each

roof point cloud has its center in the origin, and the maximum point distance from this origin is

a length of one, effectively constraining each cloud inside the unit sphere. A side effect of this
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normalization is that the highest and lowest points along the Z-axis should be correspoinding to

inner, upper and outer edges. If directly looking at the Z-value the method would have to learn

two separate thresholds; one for the points below the centroid and one for above. Grouping the

highest and lowest points together with an absolute operator instead, could reduce this down to

one threshold. Using the Z2 as the absolute operator separates the extreme Z-values even more,

thus making it easier for the learning algorithm to converge at a threshold.

Though a novel and simple implementation, this feature should inherit discrimination power to

separate specific outer edges and inner upper edges lying on the extreme values of the Z-axis. As

this feature does not use any neighborhood relationships, it is the only global feature and is hence

not calculated at multiple scales. An example of the algorithm running at three different scales is

shown in Figure 3.2.1.

Figure 3.2.1: Visualization of the Z2 feature

3.2.2 Normal Cluster

The Normal Cluster feature is based on computing a Gaussian map for each point based on its

kNN. The creation of the discrete Gauss map is done much like Weber et al. [49] proposes, by

mapping each point’s normal to the unit sphere. This is done by translating all the normal vectors

to the origin and then translating all the points to the end of their corresponding normal vector.

In practice, this translates all the points onto the unit sphere. If point normals do not exist in the

input cloud, the preprocessing step will estimate them. By using this representation of the point

cloud, points are clustered with the DBSCAN algorithm implemented in Open3D.

Recalling the definition of inner edges from Section 2.1.4, the surface normal changes abruptly

where two planes intersect. Points not included in a cluster do not have any similarity with

normal vectors from other points. Thus it does not belong to a plane and is classified as an edge.
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Figure 3.2.2 illustrates how the method would be performed on a global scale.

(a) The input point cloud (b) Points replaced with normals

(c) Result from DBSCAN (d) Grouping and translating back to points

Figure 3.2.2: Visualization of normal cluster method where (a) shows

an example input point cloud, (b) shows the points after they have

been translated to the end of their normal vector, (c) shows result

from DBSCAN on this translated cloud, where purple points are clas-

sified as noise and other colors are separate clusters, and (d) shows

the result after the clusters are grouped and colored gray, and the

noise that corresponds to inner edges are colored in green.

This feature would not work for all point clouds on a global scale. If many edges are directed in

the same direction, enough edge points would be gathered on the unit sphere to create a cluster and
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therefore not get classified as an edge. This feature should rather be used locally by only looking

at a subset of points each time. Thus, the feature creates clusters from the kNN of each point and

only classifies the query point with the result. The feature is made multi-scale by changing the k

number of neighbors. We found that the best definitions for k was values increased in multiples of

ten, starting from the smallest scale, which is ten neighbors.

Unfortunately, while having great visual results and an implementation matching perfectly with

the definition of inner edges, our implantation was too computationally heavy to be used as one of

the selected features. The feature has an exponentially growing time complexity, and computing

the feature values for larger point clouds at the highest scales would hence take an unreasonably

amount of time.

Figure 3.2.3: Visualization of Normal Cluster calculated at different

scales.

3.2.3 kNN Centroid Distance

This feature is another method that purely evaluates the underlying neighborhood geometry. It

is based on the method proposed by Ahmed et al. [1] which is discussed in Section 2.2. The

method is based on a mean-shift algorithm [8] which is employed to calculate the shift distance

from the centroid of each point’s local neighborhood. In practice, this is done by first looking at a

set number k of nearest neighbors from a query point and calculating the centroid point of these

neighbors. To make this into a multi-scale feature, k is selected to have the same definition as in

the Normal Cluster feature. Then the Euclidean distance from the query point to the centroid

point is calculated and stored as the feature value. Figure 3.2.4 illustrates a query point located

in a corner, its neighborhood, and the neighborhood centroid, all in different colors.
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Figure 3.2.4: Illustration of kNN Centroid Distance query. The blue

point is the query point, the green points are the k nearest neighbors

and the red point is the centroid of the neighborhood points.

Before returning, all the feature values are multiplied with the down sampling factor introduced

during the normalization of the point cloud. This scales the distances back to the original point

cloud-scale and is done to solve a density issue. Since the size of different roof structures is different,

the density of normalized point clouds is also different. The mean distance between points will

be smaller for large point clouds compared to smaller normalized roof structures. Using the shift

distance based on the normalized point clouds will therefore require different classification threshold

values for different sized point clouds, but multiplying the distance with the down sampling factor

solves this density issue.

This method exploits the fact that edge points are located with most of their neighboring points

in one or more non-parallel general directions. In contrast, non-edge points have a more evenly

distributed neighborhood. Hence, large distance values indicate that there are many points on one

side of the query point and few on the opposite side, which translates to the point being located at

an edge. As Figure 3.2.5 illustrates, this feature is good at finding most of the outer edges, while

only some of the inner edges are located, and thus only discovered, at large scales.

One of the downsides of the proposed approach this feature is based on is that their method

is heavily influenced by the selection of the two variable parameters k and λ. While [1] proposes

guidelines on how to set these values, we deal with this problem by calculating the feature over

several scales of k to make the algorithm scale-invariant and gracefully leave the classification

threshold variable λ as a subject for the ML algorithm to optimize. However, one problem still

remains is that this feature trusts the ALS data to be equally dense for different buildings.
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Figure 3.2.5: Visualization of kNN Centroid Distance calculated at

different scales.

As an experiment, a similar feature to kNN Centroid Distance is added to the selected features.

It is built on the same principles but uses the distance to the furthest neighbor in a kNN instead of

the centroid. The feature is given the name kNN Max Distance and intends to be an approximation

of kNN Centroid Distance with the benefit of being much faster to compute as several mean

operators are removed.

3.2.4 Covariance Eigenvalue

Based on the spatial information of all 3D points within a local neighborhood, the respective 3D

covariance matrix can be calculated for each point. This matrix is often referred to as the structure

tensor, and analyzing its eigenvalues λ0, λ1, and λ2 can be used to describe the local 3D structure.

Furthermore, supplementary geometric properties can be derived based on λ0 ≤ λ1 ≤ λ2, which

encapsulates useful information for the purpose of edge point detection. Such features are, by and

large, different arithmetic combinations and ratios between the eigenvalues.

In practise, the structure tensor is calculated on a local neighborhood using the Open3D func-

tion estimate_point_covariances() in the PointCloud class. To make this a multi-scale feature,

the radius of the ball-query neighborhood for covariance estimation is changed according to the de-

fined scales. The eigenvalues of the structure tensor are then calculated using the NumPy function

linalg.eig().

Due to the nature of these eigenvalues, they explain the orthogonal directions of greatest vari-

ance in the local point cloud data. Geometrically, this would mean that point noise would have

three small eigenvalues, as the data is scattered around in all three orthogonal directions. Plane-like

structures would be expected to have two small eigenvalues in orthogonal directions of the spread

of the plane and one large facing along the plane’s normal vector. Lastly, edges would therefore

be expected to have one small eigenvalue in the direction of the edge while leaving the other two

eigenvalues large [43]. By using the above analogies, several derived geometric features to explain
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Table 3.2.1: Distribution of the roof types in the original and updated

datasets.

Eigenvalues λ0, λ1, λ2

Sum Σλ λ0 + λ1 + λ2

Omnivariance Oλ
3
√
λ0 · λ1 · λ2

Eigentropy Eλ −
3∑

i=1

λi · ln(λi)

Anistropy Aλ
λ2 − λ0

λ2

Planarity Pλ
λ1 − λ0

λ2

Linearity Lλ
λ2 − λ1

λ2

Surface variation σλ
λ0

λ0 + λ1 + λ2

Sphericity Sλ
λ0

λ2

the underlying geometry have been proposed over the years. The derived eigenvalue features in

this section are an expansion of the collection proposed by Weinmann et al. [50]. These features

are named and formulated in Table 3.2.1 and further explained and visualized below.

Eigenvalues

Several proposals show an analysis of the individually sorted eigenvalues of the structure tensor

[43, 4]. However, the literature seldom uses eigenvalues as unique features. From the individual

description of each eigenvalue, one could argue that letting the ML algorithm directly access the

sorted eigenvalues would be beneficial and could create value by calculating variable thresholds for

each eigenvalue individually. Even though points laying on both planar and edge-like objects should

possess one small eigenvalue, one would expect the smallest eigenvalue λ0 in edge-like objects to

be slightly larger due to higher irregularities around edges in point clouds. By scaling the smallest

eigenvalues to exaggerate the differences, Figure 3.2.6 (a) shows this small difference.

Significant values in the middle eigenvalue λ1 indicate either flat or spherical regions, as at

least two eigenvalues are large. Edge points should hence have smaller values than points on roof

planes. Figure 3.2.6 (b) show some of these inner edges; however, the visibility of such inner edges

is neglected by the much smaller outer edges. In the context of roof edge detection, this eigenvalue

should be an important feature, as it possesses the discriminating power to separate edges from
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planes.

Lastly, the largest eigenvalue λ2 should inherit the same discriminating features as λ1 in one

dimension higher. High values of λ2 could represent both planes and edges as the two smallest

eigenvalues could be either large or small. However, if λ2 is small, the two other eigenvalues also

have to be. This only happens if the data is scattered around in all three orthogonal directions,

which geometrically corresponds to outer corners. Figure 3.2.6 (c) visualizes these corners in blue

and also indicates that some features do not provide any useful information at the smallest scales.

(a) The smallest eigenvalue λ0

(b) The middle eigenvalue λ1

(c) The largest eigenvalue λ2

Figure 3.2.6: Visualization of each eigenvalue at tree different scales.

The values are scaled between 0 and 1 to exaggerate the differences

visually.
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Sum of eigenvalues

Σλ = λ0 + λ1 + λ2 (3.4)

The sum of eigenvalues Σλ combines the attributes of the three eigenvalues into one feature.

This means that a threefold threshold on this feature could, in theory, separate points as being

located in either noise, a plane, an edge, or a corner. On perfectly sampled geometrically shapes,

its properties would be equivalent to the three eigenvalues, but with the errors included by ALS

and the uneven sampled roof surfaces, it is expected that this feature performs worse than the

eigenvalues alone. This is especially the case when compared to λ1. It has the discriminative

power to create a threshold in its whole range of values, where Σλ is divided into four intervals.

Real edge points can overlap with the other classification intervals because of the aforementioned

errors, which removes some of the feature’s ability. However, as it is a normally adopted feature

with a degree of discriminative power and very low computational overhead, the sum of eigenvalues

is included in the set of features.

Figure 3.2.7: Visualization of the sum of the eigenvalues calculated

at different scales.

Omnivariance

Oλ = 3
√
λ0 · λ1 · λ2 (3.5)

Niemeyer et al. [38] describe low values of omnivariance corresponding to planar regions and

linear structures, whereas higher values are expected for areas with a volumetric point distribution

like vegetation. In the case of roof point detection, roof planes will have low values, edges between

planes will have higher values as their neighborhoods are more scattered, and finally, noise points

will have the highest values as their neighborhoods are randomly scattered. This discriminate

property of omnivariance will make it an optimal feature for the ML algorithm.
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Figure 3.2.8: Visualization of the omnivariance calculated at different

scales.

Linearity, Planarity and Sphericity

Lλ =
λ2 − λ1

λ2
(3.6)

Pλ =
λ1 − λ0

λ2
(3.7)

Sλ =
λ0

λ2
(3.8)

Linearity Lλ, Planarity Pλ, and Sphericity Sλ are described as dimensionality features as

they represent the degree to which a point exists in a one-dimensional, two-dimensional, or three-

dimensional neighborhood. More specifically, the dimensionality features Lλ, Pλ, Sλ ∈ R which are

bound to the interval Lλ, Pλ Sλ ∈ [0, 1] sum up to 1 and thus satisfy two of three probability

axioms according to Kolmogoroff [31]. The third axiom addresses the joint junction of disjoint

random events and can generally be relaxed when considering the quasi-probability distribution

introduced by ALS. Thus, the dimensionality features Lλ, Pλ, Sλ can be considered the probability

of a 3D point being labeled a one-dimensional, two-dimensional, or three-dimensional structure

according to Demantké et al. [12].
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(a) Linearity

(b) Planarity

(c) Sphericity

Figure 3.2.9: Visualization of (a) linearity, (b) planarity and (c)

sphericity calculated at different scales.

Eigenentropy

Eλ = −
3∑

i=1

λi · ln(λi) (3.9)

Several works have been conducted to find the optimal neighborhood size for feature extraction.

As Shannon [44] proposes, this task can be transferred to mostly favoring one of the dimensionalities

defined in Section 3.2.4. This problem, in turn, corresponds to minimizing the unpredictability of

the neighborhood, which can be measured by the Shannon entropy [44] as defined in Equation 3.9.
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For eigenvalues identical to zero, an infinitesimally small value ϵ is added to avoid errors in the

logarithmic function. Thus, the optimal dimensional feature scale corresponds to the radius that

yields the minimum eigenentropy [51].

More specifically, by giving the ML algorithm access to per point optimal neighborhood scales,

which may be different for each individual 3D point, the dimensionality features are expected to

provide better distinctiveness and discriminativeness for edge point detection.

Figure 3.2.10: Visualization of the eigenentropy calculated at differ-

ent scales.

Anisotropy

Aλ =
λ2 − λ0

λ2
(3.10)

The Anisotropy feature explains the degree to which the neighborhood exhibits properties with

different values when measured along axes in different directions. It is a commonly used structure

tensor feature, even though it can be considered equivalent to sphericity [47]. This is because,

in spherical neighborhood structures, the feature values will not depend on the axes you have

measured. Thus there is an inverse relationship between the two. We still include this feature due

to the mainstream adoption and slight implementation differences. Visually, we see in Figure 3.2.11

that Anisotropy segments out planes efficiently as planes have different features depending on the

axes of measurement.
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Figure 3.2.11: Visualization of the anisotropy calculated at different

scales.

Surface variation

The notion of surface variation is introduced in [39], and is as follows:

σk(p) =
λ0

λ0 + λ1 + λ2
(3.11)

As with the other structure tensor-based features, it reduces the three independent eigenvalues

into one feature, which is scaled by setting the radius k for the query ball used to estimate point

covariances. The minimum surface variation value σk(p) = 0 means that all the points lie on a

plane, and where the maximum value σk(p) = 1/3 means the points are completely isotropically

distributed.

Figure 3.2.12: Visualization of the surface variation calculated at

different scales.
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Chapter 4

Edge Detection in Roof Point Clouds

This chapter covers the flow of the proposed framework for detecting edge points in ALS roof point

clouds. Necessary preprocessing steps are presented, which are based on specific demands for the

feature extraction methods selected in Chapter 3. Once the input data is labeled and preprocessed,

feature values are calculated at increasingly larger scales and joined to create a complete feature

matrix. Finally, the feature matrix is passed to a proposed discriminating learning algorithm that

outputs a predicted classified point cloud. Figure 4.0.1 shows a flowchart of the proposed method,

where N is the number of points in the roof point cloud, K is the number of features, and S is the

number of scales for each feature.

Figure 4.0.1: Flowchart of the proposed method

4.1 Manual Data Labeling

In most detection and segmentation tasks, manually labeling enough data for a representable

training set is considered labor-intensive and heavy. However, our framework needs only a few
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labeled point clouds of roof structures. While this reduces the work and effort needed to apply our

framework, it also means the framework is heavily dependent on the data provided. To generate

the best results for each specific city, we thus argue that manual labeling of data is a necessary

step and propose some guidelines on how to do so.

Specifically, three main recommendations are proposed, starting with the need for a consistent

edge width. Edges should be labeled with a uniformly sized edge width, and the width should be

large enough for the edge points to create a clear and connected path. This uniformly sized edge

width is essential for inner edges, as they can be harder to segment. Secondly, for the method

to be generalizable enough, both building roofs with simple and complex structures should be

represented in the dataset. By including most edge cases at least once in the dataset, the method

quickly learns how to adapt.

For the same reason as the second recommendation, the dataset should include both large and

small building roof structures. This also helps the framework achieve even more scale invariance.

To segment the ALS data, we use the software CloudCompare [45], but any modern segmentation

tool supporting 3D point clouds would be sufficient.

4.2 Preprocessing

Some processes must be run before feature computation to allow the features to run correctly.

First of all, the point cloud is shifted so that the center of the cloud aligns with the origin. ALS

point clouds are often georeferenced, and the coordinates for each point are large number values.

Such large values with a high precision number stored in the decimals can cause floating point

precision loss, and shifting the center of the cloud to the origin solves this problem. Open3d has

a built-in function called get_center() that calculates and returns the center point of the point

cloud. Subtracting the center point coordinate values from every point in the cloud efficiently

shifts the cloud around the origin.

After the shift, the point cloud coordinates are normalized within the unit sphere. This is done

because some features require that the points are located within a specific interval, which helps to

keep the features scale-invariant. The distance from every point to the origin is calculated to obtain

the furthest point distance. Dividing every point with this most significant distance achieves the

correct downscaling. This downscaling factor is stored so the process can be reversed at a later

stage.

As described in Section 2.1.4, the property of being an edge is a property of the local neigh-

borhood of p rather than of point p itself. All the point-based features described in Section 3.2

must therefore have an efficient way of finding neighborhoods. A common approach to this prob-

lem is storing the point structure in the kD-tree data structure. Open3D has a built-in imple-
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mentation based on FLANN [36]. A kD-tree is thus created by passing the point cloud to the

open3d.geometry.KDTreeFlann() constructor.

Point normals are commonly used in descriptive features for 3D point clouds. Despite their

popularity, ALS does not generate point normals during point cloud creation. While there exists a

cluster of methods to estimate such normals, the Open3D function estimate_normals() is applied

for the sake of simplicity. This function implements normal estimation based on eigenvectors

generated from estimated per-point covariances from each point’s neighborhood.

A key takeaway from Hackel et al. [22] is that calculating features over several scales help to

enrich the feature set and make the algorithm scale-invariant. Every feature, except one, used

in this thesis is thus a multi-scale and calculates the feature values for each point in the roof

structure point cloud at different scales. This results in n feature values for each point, where n

is the number of scales. This scale changes linearly from the smallest size to the largest size. The

definition of these scales is taken from [26]. The smallest scale is defined as the mean distance that

each point has to its ten nearest neighbors. The largest scale is defined as 10% of the diagonal

of the surrounding point cloud bounding box. To get enough useful information from the concept

of scaling, we use eight scales internally. Using fewer scales gives less information, while using

more generates similar feature values between the scales, increasing the computational processing

time and memory consumption. Some features, however, only generate useful information at the

smallest scales. These features use the definition of the smallest scale described above as a baseline,

and it is multiplied by 0.5, 1, and 1.5 to have three useful small scales. For features leveraging

kNN neighborhoods, we found that the best definitions for k was values increased in multiples of

ten, starting from the smallest scale, which is ten neighbors.

4.3 Feature Calculation

The feature value extraction can begin once the input cloud has been preprocessed. This is the first

step in a two-step classification method. As explained in Chapter 3, several methods are chosen

to extract information from the point cloud in the form of a numeric or boolean value, called a

feature value. Each point is assigned its individual feature value as a higher-order representation

of the point. For each feature, the algorithm is run at multiple scales, meaning each feature returns

several feature values for every point in the point cloud.

Seeing that the feature algorithms can be run as disjoint operations, the total computational

time of the feature value extraction could be reduced by calculating each feature in a parallel

manner. Suppose the computer in question can support it, running the parallel operation in a

multi-process way is recommended, as it empirically runs faster than linear and multi-threaded

methods. Once a feature is finished running at all scales, one additional feature value can be

calculated for each point by taking the mean of the feature values of all the other scales. We call
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this the "Combined" scale, representing the most important properties of the feature as a whole.

To our knowledge, combining scales like this is not done in any prior litterateur concerning feature

extraction for edge point detection.

All the feature values, including the combined values, are then joined as one large feature

matrix. Included in this feature matrix are the original X-, Y-, and Z-coordinates, so visualization

of the point cloud can still be conducted. Additionally, suppose the roof point cloud in question

is part of the training dataset. In that case, the boolean target value, representing if the point is

an "Edge" or a "Non-edge", is also included. This feature matrix thus represents the roof point

cloud as a higher-order entity and is stored as a .csv file for later use.

4.4 Feature Combination

As mentioned in the introduction of the last chapter, one of the principles our work is based

upon is that the framework should use discriminating learning with rich feature sets instead of

the raw geometry. In this section, the second part of the proposed framework concerning feature

combination using discriminating learning for ALS roof point cloud edge detection is presented.

This method is responsible for the final labeling of the points in the roof point cloud and uses the

calculated feature matrix as its basis. None of the features described in Chapter 3 can effectively

and accurately detect all edges, as defined in Section 2.1.4, satisfactorily. They are deliberately

designed to either consistently discriminate the same types of edges defined or present consistent

information to weigh the importance of the other features.

To select a suitable edge point classification method, this thesis proposes a set of requirements.

First of all, the method must be capable of processing wast amount of data since each point is

represented by more than one hundred feature values that will be passed to the method as input

parameters. Secondly, these values are both scalar and categorical, depending on the feature.

Thus the method should not only be able to handle both types of input data efficiently but also

leverage the differences. Finally, the method has to detect quality edges for the purpose of line

reconstruction, based on the feature matrix as input. Without this last ability, the method would

provide no value.

Beyond these necessary attributes, two more requirements for the method are proposed specif-

ically for the execution of this thesis. To be able to test and evaluate several feature combinations

and scale representations, the method had to be fast in both terms of training speed and prediction

speed. Lastly, to be able to evaluate how important each feature and scale is to the method, it

had to be able to output some notion of individual feature performance.

While countless methods could support the necessary requirements, the requirements specifi-

cally designed for this thesis narrow the scope significantly. The choice of edge point classification
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method was decided to be CatBoost [40] for a number of reasons. CatBoost is a machine learning

algorithm that uses gradient boosting on decision trees to perform classification tasks. It is specif-

ically designed from the ground up to support both scalar and categorical features and can handle

several hundred feature values as input data. Comparing CatBoost to similar gradient boosting

decision tree methods [28], it either has the best or comparable performance metric scores on suit-

able publicly available datasets and has fast time consumption in regards to both training and

prediction. As with other gradient boosting decision tree methods, CatBoost has the ability to

present a ranking of each feature by the importance it provides to the model, thus completing the

list of requirements. In addition, it has great documentation, a very good set of default hyperpa-

rameters, and guides on how to set them according to a specific task. Thus CatBoost allows for

fast integration and implementation.

However, recent years have seen extreme growth in the popularity and abilities of ML algo-

rithms. This growth will undeniably continue in the coming years, and another algorithm will most

likely outperform CatBoost. In that case, we recommend using the greedy approach and choosing

the best model for the purpose. The proposed necessary requirements listed above can be used to

choose such a model in the future.

To train CatBoost, we first read the stored .csv files for the segmented point clouds in our

training dataset containing the feature matrices. These matrices are then concatenated into one

large matrix before the target values are removed and stored in a separate array. The unnecessary

feature values, such as the X-, Y-, and Z-coordinates, are dropped from the matrix before splitting

training data into a training and testing split with an 80-20 relationship. The CatBoost classifier

is then trained using the training split and tested using the test split. After this step, the model

can report the importance of each feature individually.

Metric scores can only be calculated for the CatBoost classification model if tested on an

evaluation set. We thus read the stored .csv files for the evaluation set and combine them like

the training set. A set of "Non-edge" points is randomly removed so that the evaluation set is

balanced between the two classes to get reliable and accurate scores. The evaluation feature matrix

can then be fed into the model for prediction. Using the predicted class for each point allows us

to calculate the metric scores.

For visual inspection, the feature matrix of each cloud in the evaluation set can be fed to

the same model for prediction. Using the stored X-, Y-, and, Z-coordinates and coloring only

the points classified as the class "Edge", the cloud can be presented. We use the Open3D func-

tion visualization.draw_geometries() for visualization, which allows for tilting, zooming in all

directions, and the change of properties such as point size.
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Chapter 5

Experimental Results and Discussion

This chapter presents the conducted experiments and the results thereof, including a detailed

discussion. Section 5.1 showcases the provided LiDAR data, experimental setups such as hardware,

software, and model settings, and introduces the metrics for evaluation. Section 5.2 reveal the

experimental results, first focusing on the individual features and then on the framework as a

whole, using both numeric metrics and visual inspection. Lastly, Section 5.3 covers every step in

the proposed framework with a detailed discussion.

5.1 Experiments

5.1.1 Data Used

The original LiDAR data used in this thesis was provided by Trondheim Municipality in Norway

and was obtained on 13. July 2020 by the company Terratec AS. Georegistration was performed

with the coordinates represented in the European Terrestrial Reference System 1989 (ETRS89),

while the projection used was the Universal Transverse Mercator (UTM) zone 32N. Normal Null

2000 (NN2000) and Href2018B were used for the vertical datum and geoid model. The LiDAR

data consist of both urban and rural areas, as it was obtained over a vast amount of Trondheim

Municipality. The topology of the captured area consists of both flat and uneven terrain and varies

between the two. The density at which the data was collected is 30pts/m2, which is considered a

high density, especially when covering such a large area.

Before delivery, RGB color values were attached to each individual point. It was done using

aerial photos collected by COWI AS on the 7th and 10th of August, 2022. The color of the corre-

spondent’s closest pixel was attached to the points. Using seven predefined classes, a classification

label was attached to each point in the point cloud. This segmentation process was done using

both automatic and manual methods. These labels consist of the classes: Unclassified, Terrain,
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Short Vegetation, Medium Vegetation, High Vegetation, Noise and Bridge. The delivered LiDAR

data was split into several files consisting of patches in the shape of rectangles with size 800x600m.

This conforms to the Norwegian map sheet division standard, while the delivery’s overall technical

specification follows the Norwegian FKB-Laser-B (DTM10).

Even though data was delivered covering a large area over Trondheim Municipality, only a

small amount of data is needed for this thesis. Due to the fact that around a handful of roof point

clouds needed to be annotated, one single patch of data was selected. The patch is located in a

western district of Trondheim city center called Ila and was selected because it consists of both

individual residential houses and large apartment buildings. Figure 5.1.1 visualizes an overview of

the selected patch.

(a) Overview of selected point

cloud patch
(b) Residential houses (c) Larger buildings

Figure 5.1.1: Visualization of the selected point cloud data patch

where (a) shows the overview of the whole point cloud, (b) zooms

in on some residential buildings and (c) zooms in on some larger

buildings.

From this patch, fourteen roofs were segmented out by hand using the segmentation tool in

the program CloudCompare [45]. The roof was selected among both individual residential houses

and large apartment buildings to create diversity in the dataset. Each roof point cloud was man-

ually segmented into two classes, "Edge" and "Non-edge", using the same segmentation tool and

arithmetic on the classification scalar field label. The fourteen segmented roof point clouds were

split into a training set and an evaluation set, once again with an equal distribution between large

complex buildings (>20 000 points) and smaller simpler buildings (<10 000 points). Table 5.1.1

shows this distribution, as well as the distribution of "Edge" and "Non-edge" points in the training

and evaluation set.
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Table 5.1.1: Dataset training and evaluation split

Small buildings Large buildings Edge points Non-edge points

Total 10 4 31266 155991

Training set 6 3 21893 120499

Evaluation set 4 1 9373 35492

When training, the training data is split into a training and a test set and is done using the

train_test_split() function in the sklearn.model_selection library. The split is done using

80% for training and 20% for testing.

5.1.2 Experimental Setup

Hardware

All experiments were conducted on a MacBook Pro laptop computer from 2021. Opposite to what

most computers are equipped with today, this laptop does not include a separate CPU and GPU.

The main processing unit in this computer is a System on a Chip (SoC) using the ARM architecture

instead of the more common X86 architecture. The computer is equipped with:

• Apple M1 Pro SoC

– 10 CPU cores (8 performance and 2 efficiency)

– 16 GPU cores

• 32GB of unified LPDDR5 RAM

Software

The proposed edge point detection method is implemented in the programming language Python3

[18]. Several libraries have been used, and the most important ones are listed below:

• Open3D: A modern library for 3D data processing. Used for its several built in point cloud

processing functions, as well as for visualization [57].

• CatBoost: A machine learning algorithm that uses gradient boosting on decision trees [40].

• NumPy and Pandas: Fundamental packages for scientific computing and data analysis in

Python [23, 46].

To use the publicly available versions of these libraries with the architecture of the SoC equipped

on the device performing the experiments, Apple has created a translation layer called Rosetta 2.
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This translation layer enables computers equipped with ARM processing units to run native X86

code. This means that, in theory, any modern computer should be able to run the implementation

of the proposed method in this thesis.

Model

Most of the model settings were the default settings implemented in the CatBoostClassifier class.

As one can see in Table 5.1.1, there is a great imbalance between the number of "Edge" and "Non-

edge" points in the dataset. To help the model overcome this imbalance, the two classes were

weighed by the imbalance factor in the training pool that was passed to the model. To combat

overfitting, the early_stopping_rounds parameter was set to 30. The model ran for 500 iterations

for all the experiments and used a learning rate of 0.05. The random_seed parameter was set to

a constant so that consistent results could be produced and the performance could be tested from

the changes in individual parameters and features. Thus the experiments were recreational, and a

change in other parameters would not be affected by the randomness otherwise introduced by the

CatBoost model.

5.1.3 Evaluation Metrics

Several criteria for evaluating the accuracy of segmentation and classification models have been

proposed. The two most essential measures for evaluating the output of point cloud semantic

segmentation are Intersection over Union (IoU) and Overall Accuracy (OA) [56].

IoU is a useful metric for assessing the precision of semantic segmentation. As the name

states, it is a calculation of the intersection over the union of two sets, and is, in intuitive words,

the overlapping ratio between the target points in the segmentation and the predicted points. IoU

can be calculated with the following equation:

IoU =
TP

TP + FP + FN
(5.1)

where TP is the number of true positive predicted points, FP is the number of false-positive

predicted points and FN is the number of points falsely predicted as not being part of the class.

OA is a simple form of evaluation metric, that calculates the probability that a predicted

value of a point is consistent with the segmentation label. It compares all the number of correct

predictions with all predictions and can be calculated with the following equation:

OA =
TP + TN

TP + TN + FP + FN
(5.2)
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where TN is the number of true negative number of points predicted as not being present in

the instance. OA works best when the classes are balanced, as a large overweight in one class could

report good scores for a one-sided model.

Besides these two metrics, two additional and more classical metrics, precision (Prec) and

recall (Rec), are reported. Prec measures how many of the retrieved points are relevant, and Rec

measures how many relevant points are retrieved. Prec and Rec are calculated with the following

equations:

Prec =
TP

TP + FP
(5.3)

Rec =
TP

TP + FN
(5.4)

By themselves, Prec and Rec can be misleading metrics in detection tasks. With few but correct

edge point detections, it will present an unreasonably high score for Prec as there will be few FP,

but a very low score for Rec because of the high number of FN. In the opposite case, where edge

points are overpredicted, we will often get an unreasonably high Rec as every actual edge point is

detected, but a low score for Prec due to the large number of FP. However, because every point is

predicted as either edge or non-edge, these metrics will provide more reliable results. In addition,

knowing the reason for their weaknesses can be beneficial to understanding the model’s results.

In addition to the metrics presented above, a visual inspection of the predicted edge points

can be conducted. To do so, two important aspects can be measured visually. The first is to

inspect if all the edges are detected with enough points to perform line reconstruction. Secondly,

the uniformity of the line thickness should be evaluated.

5.2 Results

In this section, the results of the proposed method are presented. First, every feature is presented

with its IoU and Prec scores, which are based on an optimized threshold in Section 5.2.1. The time

consumption of the different feature calculations are presented next in Section 5.2.2. Lastly, the

final performance of the jointly proposed method is presented in Section 5.2.2, including metric

and visual results.

5.2.1 Feature Performance

To have some sense of how performant each individual feature is, the IoU score is calculated

independently. This is done using a naive method, by selecting a classification threshold for each
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feature at each scale and calculating the IoU score bade on this classification. The classification

threshold is selected and optimized by calculating the IoU at ten values selected linearly over an

interval and recursively reducing the size of the interval around the best performant IoU until the

IoU score converges. Table 5.2.1 shows the result from the individually calculated IoU scores with

an optimized threshold for each feature at each scale.

Table 5.2.1: IoU scores for individual features at different scales with

optimized threshold. Bold represents best IoU for each scale.

Feature name S1 S2 S3 S4 S5 S6 S7 S8 Comb. Mean

LowerVoxels 49.35 50.68 50.38 45.73 44.39 42.78 41.49 40.2 53.27 45.62

UpperVoxels 48.91 47.58 51.39 50.51 49.69 50.99 46.62 45.91 51.38 48.95

AroundVoxels 58.97 61.79 60.75 57.93 56.43 55.5 53.31 51.84 62.01 57.07

EdgeVoxels 50.7 53.1 52.8 - - - - - 52.38 52.2

kNN C D 53.93 57.67 60.6 63.39 65.33 66.77 67.86 68.33 64.93 62.98

kNN Max D 51.24 51.81 52.02 52.08 52.17 52.27 52.31 52.36 52.21 52.03

z2 52.79 - - - - - - - - 52.79

Eigenvalue λ0 50.96 59.24 55.5 53.91 51.45 50.79 50.58 50.09 51.88 52.81

Eigenvalue λ1 50.96 58.88 61.72 60.72 60.08 59.35 59.09 58.57 57.49 58.67

Eigenvalue λ2 50.96 50.43 50.94 51.51 51.81 52.04 52.03 51.69 50.96 51.43

Eigenvalue sum 50.96 53.48 54.7 54.44 54.52 54.42 54.43 54.5 50.96 53.93

Omnivariance 50.96 54.38 53.48 51.42 51.45 51.12 50.97 50.75 51.07 51.82

Eigenentropy 50.0 53.61 54.96 54.85 54.53 54.47 54.45 54.58 54.18 53.93

Anisotropy 50.96 59.77 55.7 53.5 52.0 51.3 50.0 50.07 53.78 52.91

Linearity 50.96 61.34 65.21 62.56 61.01 59.75 59.2 58.54 62.03 59.82

Planarity 50.0 63.71 67.54 65.54 63.59 60.71 60.05 59.3 65.21 61.3

Sphericity 50.96 59.77 55.7 53.5 52.0 51.3 49.99 50.07 53.78 52.91

Surface variation 50.96 61.55 56.03 54.01 52.48 51.96 51.4 50.75 54.28 53.64

In the binary case of classifying, IoU scores are calculated by applying Equation 5.1. A common

way to measure the performance of features is to compare IoU scores with a random binary sample

and a uniformly positive predictive sample. Since the predicted value is binary and the classes are

balanced in the evaluation set, the random sample will predict points to the "Edge" class half the

time and thus get 25% TP, TN, FP, and FN. The IoU is thus calculated to 33.33% for the random

sample. In the case of a uniformly positive predictive sample, every prediction is positive, meaning

50% for TP and FP, and 0% for TN and FN. This yields an IoU score of 50%.

Considering these two lower boundaries, we observe that all the features perform better than

random guessing. Most of the features give more value than classifying all points as edges, with

the exception being the LowerVoxels and UpperVoxels features, which are individually performing

worse at most scales. Surprisingly, AroundVoxels perform very well, especially on the smaller

scales. This shows that the voxel representation is capable of extracting useful information on its
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own.

Planarity is the overall best performant individual feature for the smallest scales, and kNN

Centroid Distance is the best performant for the largest scales and has the highest mean over all

the scales. Even though otherwise well performant, all the features based on the structure tensor,

described in Section 3.2.4, seem to give no information at the smallest scale.

Seeing that most features are not created with the intention to detect every edge individually, it

might be unfair only to evaluate them using IoU. Some features, like LowerVoxels and UpperVoxels,

are created to detect specific types of edges, and for this purpose, another measuring metric must

be calculated. Since Prec measures how many of the retrieved points are relevant, it is presented for

each feature and at every scale in Table 5.2.2. Here, the same technique as with IoU is adopted to

optimize the individual classification threshold for each feature and scale. However, the threshold

is bound to include at least a minimum of 10% of the true edge points. Without this rule the

metric will show a misleading result, as discussed in Section 5.1.3.

Table 5.2.2: Prec scores for individual features at different scales with

optimized threshold. Bold represents best Prec for each scale.

Feature name S1 S2 S3 S4 S5 S6 S7 S8 Comb. Mean

LowerVoxels 52.54 55.88 55.08 54.61 57.33 57.0 56.75 55.67 57.2 55.61

UpperVoxels 51.53 50.3 52.41 51.83 52.75 51.55 51.99 51.11 52.59 51.69

AroundVoxels 61.09 63.61 64.82 64.0 64.12 63.17 63.37 61.8 65.64 63.25

EdgeVoxels 61.56 64.36 63.93 - - - - - 68.7 63.28

kNN C D 67.04 74.72 79.88 81.76 82.92 84.58 85.68 86.99 85.18 80.45

kNN Max D 63.91 68.57 70.06 70.9 71.91 72.75 72.81 72.94 72.39 70.48

z2 63.09 - - - - - - - - 63.09

Eigenvalue λ0 51.47 96.94 99.2 76.44 70.63 74.8 65.02 55.46 59.64 73.75

Eigenvalue λ1 51.47 64.59 77.36 80.42 82.05 79.61 79.35 79.69 70.15 74.32

Eigenvalue λ2 51.62 53.44 53.86 52.31 52.56 53.84 54.81 55.54 52.14 53.5

Eigenvalue sum 51.47 56.21 71.27 70.0 75.82 76.65 74.58 73.2 64.1 68.65

Omnivariance 51.47 65.23 62.76 63.25 61.14 58.26 53.92 52.59 57.37 58.58

Eigenentropy 52.31 55.32 67.74 67.88 74.1 74.89 73.4 72.45 74.06 67.26

Anisotropy 52.73 92.83 95.33 89.29 71.12 71.32 65.39 55.62 66.6 74.21

Linearity 51.47 77.01 83.95 83.99 86.11 77.38 74.1 71.33 75.58 75.67

Planarity 59.46 88.17 90.81 89.05 91.68 89.35 79.81 78.01 81.7 83.29

Sphericity 52.73 92.83 95.33 89.29 71.12 71.32 65.39 55.62 66.6 74.21

Surface variation 52.79 96.7 99.36 99.5 94.58 82.11 75.98 56.39 76.66 82.18

The baselines for Prec are slightly different, as both in the case of a random sample and the

case of a uniformly positive predictive sample, the resulting Prec is 50%. Examining the table of

Prec scores, we observe that every feature, at every scale, achieves a better score than this baseline.

This means that every feature provides some value when asked to find at least 10% of the edge
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points. The two worst performing features in this measure are UpperVoxels and Eigenvalue λ2,

measuring only a few percent above the baseline. As with the IoU scores, kNN Centroid Distance

is the best performing feature at the largest scales, while Surface Variation now shows better scores

than Planarity at the smaller scales.

CatBoost, as with many other decision tree-based algorithms, is capable of ranking each feature

by the importance it provides to the model. For each feature, the feature importance shows how

much, on average, the prediction changes if the corresponding feature value changes. The bigger

the value of importance is, the bigger, on average, the change is to the prediction value if this

feature is changed. Feature importance values are normalized so that the sum of the importance of

all features is equal to 100. This is possible because the importance values are always non-negative.

The feature importance ranking is shown in Table 5.2.3, which presents Sphericity at scale 2 as the

most important feature. Surface Variation is the most important feature across all scales, as it is

represented three times and has a maximum total accumulation in the top twenty most important

features. In general, point-based values are regarded as the most important. The most important

voxel features are generally represented in scalar values, not binary.
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Table 5.2.3: Feature importance for the top twenty most important

features, and the first entry for each feature

Feature name Importance

1 Sphericity @ scale 2 5.2416094785695915

2 Eigenvalue λ1 @ scale 3 4.924689480856757

3 kNN C D @ scale 7 4.381374622328241

4 Surface variation @ scale 1 3.7317235562406195

5 Surface variation @ scale 4 3.392289658260167

6 Surface variation @ scale 2 2.801161117653311

7 Z2 2.7539233551977698

8 kNN max dist. Combined 2.118427146095462

9 Omnivariance @ scale 2 1.869031733367526

10 Planarity @ scale 3 1.6759250009793352

11 Planarity Combined 1.6304901615444027

12 kNN C D @ scale6 1.5365236551248314

13 Sphericity @ scale 1 1.507692772048543

14 Anisotropy @ scale 2 1.3884786157652405

15 Eigenvalue λ1@ scale 4 1.3503773894070774

16 Sphericity @ scale 5 1.3016189069594928

17 Eigenvalue λ0 @ scale 5 1.2881492711089106

18 Planarity @ scale 2 1.2792522190800997

19 Eigenvalue λ2 Combined 1.2550834573754788

20 Anisotropy @ scale 4 1.2320097579356835

23 EdgeVoxels @ scale 2 1.1728738087112542

25 LowerVoxels Combined 1.1589845036217232

27 AroundVoxels Combined 1.142626881727385

43 Linearity Combined 0.8940686598661776

57 UpperVoxels Combined 0.6429547487584159

67 Eigenvalue sum @ scale 3 0.47859282632565314

77 Eigenentropy @ scale 7 0.32687889429966205

5.2.2 Feature Calculation Time Consumption

The values for each feature are calculated independently in a multiprocessing manner. This is al-

lowed by the multiprocessing Python library, using the starmap() function over all the features.

By calculating the features independently on its own process, the total time consumption is less

than the accumulated individual feature time, as it would have been had it run in an incremental
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fashion. The total time consumption for the feature calculation is thus only dependent on the

most time-consuming feature. Figure 5.2.1 shows us that the EdgeVoxels feature consumes the

most time. It was necessary to split the feature into its own graph to visualize the differences

among the other features. Additionally, the Z2 feature was removed, as it ran in sub milliseconds,

even for the largest clouds in the dataset.

Figure 5.2.1: Feature time consumption

We can see that the time consumption for the other voxel features is linearly growing with the

number of points in the cloud, although moderately compared to EdgeVoxels. The features based on

the structure tensor, described in Section 3.2.4, are grouped under the CovarianceEigenvalue label

as they share the same implementation for the eigenvalue construction. Together, they stand out

as the only feature with a non-linearly time consumption growth rate, having a polynomial growth

instead. Although EdgeVoxels is the bottleneck feature, for exceptionally large roof structures, such

as combined city apartment buildings or industrial buildings, the CovarianceEigenvalue features

might be slower to compute.

5.2.3 Model Performance

Once the CatBoost Classifier model has trained with the training set, it can predict individual

point labels for new unseen data. As it classifies points on a per-point basis, the evaluation data

can be passed to the model in one large batch. One can hence predict multiple clouds at once and

are not restricted to a certain amount of point, which most deep neural network methods are. The

IoU, OA, Prec, and Rec scores for the combined evaluation set are presented for the trained model

in Table 5.2.4.
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Table 5.2.4: Model prediction performance scores

Metric IoU OA Prec Rec

Score 83.89% 91.16% 90.46% 92.03%

The IoU is reported at a decent 83.89% while achieving 91.16% in OA. OA is a good metric for

this experiment, as the evaluation set used to calculate the scores is equally balanced. Both Prec

and Rec are reported above 90%, where Rec is 1.5% larger than Prec. This means that the model

slightly overpredicts points into the "Edge" class.
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(a) Overview of prediction 1 (b) Overview of prediction 2

(c) Overview of prediction 3 (d) Overview of prediction 4

Figure 5.2.2: Visualization of predicted edge points on four different

roof structures. Green points are predicted as "Edge", while gray

points are "Non-edge".

A visual inspection of the predictions has been conducted to understand more about how the

model performs and which attributes it has learned. Figure 5.2.2 visualizes the result of the model

predictions on four different roof point clouds. In general, all the edges are clearly visible and

detected in a satisfactory way. In all four visualizations, the outer edges are unmistakably detected

with a uniformly sized edge-width. In edge cases where the outer edges meet in corners, the edges

are not rounded and still inherit the same width. In addition, even though the data is damaged

in the upper left corner of (d) due to occlusion created by a large overhanging tree, the outer edge
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points are still detected reasonably.

Inner edges are also clearly represented in the model predictions. The edge-width in the detected

inner edges is, however, not as uniformly as the outer edges. The width seems dependent on the

angle between the planes of the inner edge, as the inner, lower edges, especially the corners found

in (d), are more obtuse than the inner, upper edges. The gaps found in the main inner, upper edge

in (c) and (d) are caused by points on individual chimneys correctly classified as "Non-edge". Two

similar chimes are found in both point cloud (a) and (b), however, they are not distinguished from

the edges in the predictions. Tilting the view of (b) and (d) shows both cases more clearly, and is

visualized in Figure 5.2.3.

(a) Tilted view of prediction 2 (b) Tilted view of prediction 4

Figure 5.2.3: Visualization of chimneys detected as both FP and TN.

Smaller structures are represented with sparse data, making it harder to define the edge cor-

rectly. The model seems to overpredict points into the "Edge" class when presented with such

smaller roof structures. Figure 5.2.4 visualizes one of the small roof structures in prediction 2. We

observe that the thickness of the edges bleeds into the small planes, almost classifying the whole

structure as an "Edge". However, the structure is not completely overpredicted, as some points

are actually classified as "Non-edge" on the smaller planes.
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Figure 5.2.4: A zoomed in visualization upper small roof structure

found in Figure 5.2.2 (b) with red lines as ground truth edges.

Another edge case where the model does not classify edges correctly is when there is a large

obtuse angle between two planes. As a thought experiment, one would have to set some upper

threshold angle between two planes for when one would stop classifying such inner edges as an

"Edge", due to the edge being too rounded off in the point cloud representation. Imagining that

the model has also defined such an angle, in the context of edge detection on roof structures, this

chosen threshold is too small. Figure 5.2.5 visualizes this edge cease occurring two times in the

largest point cloud in the evaluation set.
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(a) Overview of the large roof structure (b) Tilted view of the large roof structure

Figure 5.2.5: Visualization of predicted edge points on the larges roof

structure in the evaluation set. Inner edges composed by two planes

with an obtuse angle in between are not correctly classified as "Edge".

5.3 Discussion

The proposed dataset used in this thesis is, in many senses, very tiny when compared to pub-

licly available point cloud training sets for discriminative learning methods. Deep learning based

methods usually need at least one thousand different training samples to be able to converge and

show decent results. This is without the many other data augmentation techniques used on these

training sets that add computational overhead. Such methods need this much data because nor-

mal segmentation tasks describe classes as specified groups of points, where these groups have

some higher-order interpretation. These groups of points are often relatively positioned to other

types of groups in specific ways, meaning the learning algorithms need to have enough contex-

tual information to both learn both the higher-order interpretation and the relative connectivity

information.

The case of edge detection is a lot different, as the property of being an edge point is a lower,

geometrical interpretation based only on the neighborhood of the point. Thus, if one calculates all

the point features prior to sending the values to a discriminate learning algorithm, one can omit the

connectivity information from each point to its neighborhood and simply use each individual point

as its own training sample. In this regard, the dataset quickly becomes extremely rich and large,

as one cloud often contains several thousand points. However, how performant and discriminating

the learning model can be is thus highly dependent on the features provided to it and whether the

features are both representative and informative enough for the edge point segmentation task.
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One problem that still exists in this dataset is the notion of class imbalance, as, in total, only

around 17% of the points are represented in the "Edge" class. This imbalance is a consequence of

edge points in roof structures being a subset of plane points and that planes cover a greater surface

area than edges, leading to them containing more points than edges. Class imbalance is a common

problem faced in machine learning, and many techniques exist for the purpose of combating it.

The most common approach is to use data augmentation to artificially create more training data

for the minority class, often by synthesizing from the existing data in the dataset. This is a type of

data augmentation for the minority class and is referred to as the Synthetic Minority Oversampling

Technique (SMOTE). However, creating new edge data points with such techniques is not easy.

In cases where edges are created between two planes with an acute angle, a new synthesized point

could be placed in between two planes and not on the edge, thus being falsely labeled as an edge

in the training set when in fact, it should be filtered out as noise by the model. To use SMOTE

correctly, one would rater have to use it in feature space, directly on the feature matrix. SMOTE

and other techniques for combating class imbalance were not explored in this thesis due to time

constraints.

Analyzing the features at the conceptual level, it is apparent that the point-based features are,

in general, more performant than the voxel-based features. Especially the two novel voxel features,

LowerVoxels and UpperVoxels, underperforms in almost every individual metric score. That said,

the voxel features do provide some value, especially when the returned values are in scalar form and

not binary. We observe that for all the individual metric scores, IoU, Prec, and feature importance,

the Combined scale of LowerVoxels, UpperVoxels, and AroundVoxels is generally performing much

better or on par with all the other scales. Recalling from Section 4.3, the Combined scale is simply

the mean of the other scales passed to the learning model as a separate feature. It is thus a scalar

value, which the learning model seems to value. The point labels generated from voxel features

could maybe benefit from being smoothed out by a Gaussian filter after classification and thus

become scalar values.

Investigating each of the voxel features in more depth, it is evident that UpperVoxels is not a

performant feature. It is barely above the proposed baseline for the Prec metric and under the

baseline for most of the scales on IoU. Compared to LowerVoxels, it is regarded as less precise

and less important on every scale. This might be for two reasons. Firstly, there are often more

outer edges compared to inner, upper edges, resulting in LowerVoxels detecting more edge points

in general and thus being viewed as more important. Secondly, that chimney-like structures will

be detected as an FP edge by UpperVoxels, while the inner, upper edges on each side of chimneys

will be neglected as FN, making the feature less accurate. Without any prior noise removal algo-

rithm, the UpperVoxels should not be in the feature set, as, in its current state, it is adding both

computational and memory consumption overhead without adding any meaningful information.

It should be worth mentioning that LowerVoxels is leveraging the advantage of having each roof

structure manually segmented, which leaves the underside of the point cloud free from noise. In
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an automated process where the roof structures are being segmented without human interaction,

similar problems could occur for the LowerVoxels feature if noise points from the facade are not

segmented out.

Although still simple in implementation, the AroundVoxels feature is much more performant

at detecting outer edges than LowerVoxels. Comparing the two, AroundVoxels achieves over 10%

higher IoU at almost every scale and 6-9% higher Prec at every scale while having the same reported

feature importance. This may be because the AroundVoxels does not classify too many FP voxels

as edges compared to LowerVoxels. It also has one more dimension to leverage, leaving it effectively

observing four directions compared to the one downward-facing observation LowerVoxels has.

EdgeVoxels has comparable Prec metric scores, but around 9% decrease in IoU scores compared

to AroundVoxels. By inspecting the example visualizations in Figure 3.1.7, it is apparent that

this feature overpredicts voxels into the "Edge" class because of the low density inherited in the

voxel downsample process. This inspection also unveils staircase-like lines that are created by the

boundaries of the voxels, which showcases why the feature overpredicts. EdgeVoxels inherits a bad

time complexity, as shown in Figure 5.2.1, however, in the context of 3D model reconstruction

of roof structures, we argue that it is not as important as in other contexts needing real-time

information extraction. With the current method of manually creating 3D models, it would take

several months of human labor to perform a similar task. Reducing the time needed to either hours

or days is a huge leap in time improvement and a reduction of human hours wasted on repetitive

work. Even though EdgeVoxels has the longest needed time consumption of all the features, it

clearly has a linearly scaling time complexity and should thus be manageable in our context, even

for larger buildings.

Taking a deeper look into each point-based feature, starting with kNNCentroidDistance, it

makes sense that it performs better at larger scales as it can utilize the neighborhood better to

get a more profound difference in centroid shift. Due to the variance in point distances created by

the small degree of randomness introduced in ALS, it is much harder to set a concrete threshold

for when to classify an edge as an "Edge" or a "Non-edge", as the classes may overlap when only

comparing centroid shift distance. For larger scales, the two classes are more distanced as the

incorporated point variance has less influence on the total distance measured. Noise points also

usually have a large distance to the neighborhood centroid, as their closest neighbors lay on the

actual roof structure. The distance is thus often longer than for edge points, placing the distances

created by the edge points in an interval between the distances created by points located at planes

and noise points. Thus the learning algorithm has to calculate two thresholds for this single feature,

one for separating the edge points from the plane points and one for dividing the noise points from

the edge points.

The same arguments can be made for kNNMaxDitance, as this feature builds on the same

principles as kNNCentroidDistance. Using the max distance of the neighborhood, however, seems
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to be much less robust than using the distance to the centroid, as this feature underperforms in

every measurable way compared to kNNCentroidDistance. This might be due to the fact that while

having to overcome the variance introduced by ALS, it also has to account for the randomness in

density.

The Z2 feature is built upon the same idea as LowerVoxels and UpperVoxels, leveraging the

fact that the upmost and lowest set of points most often is edges in roof point clouds. Still, it

performs better than both in all metrics. This is most likely due to this feature’s ability to detect

both the upper and lower points simultaneously. Also, for the upper points, this feature does not

neglect the inner, upper edges on each side of chimneys as UpperVoxels do.

The Normal Cluster feature was too computationally heavy to compute on the larger scales to

be used as a feature in the final model. This is most likely due to the heavy use of the DBSCAN

algorithm for clustering and outlier detection, as it includes a high computational overhead when

the neighborhood grows in size and number of points. The method was also tested using an

alternate labeling method leveraging voxel indexing in an effort to reduce computation complexity.

Instead of performing the clustering algorithm at every point neighborhood, only to label that single

point, the clustering was performed on points inside a voxel neighborhood, where every point in the

middle voxel was labeled. The classification given to each point individually, depended on whether

the point was recognized as noise or not. Labeling all the points inside the middle voxel thus

reduced the computations to once for every voxel instead of once for every point. However, this

either yielded a bad result due to the harsh border of voxels or was still too computationally heavy

when increasing the voxel neighborhood. Leveraging another, more efficient clustering algorithm

could greatly improve this method’s time complexity, as the DBSCAN algorithm currently is the

bottleneck holding it back from being used among the selected features.

The CovarianceEigenvalue features based on the structure tensor’s eigenvalues all perform badly

in the first scale, which is why this scale is omitted from the final model for these features. They

most likely perform badly because they lack enough points at the lowest scales to generate useful

information from the covariance matrix. Excluding the first scale, each independent eigenvalue

performs relatively well, especially on the other lowest scales.

An important finding in this thesis is that using the individual eigenvalues as separate features

in a discrimination learning algorithm has seen huge benefits. At no extra computational cost, the

interpretation and arithmetic combination of the three values have to be left up to the algorithm to

decide, resulting in good results in IoU, Prec, and feature importance. In roof structure edge point

extraction context, it also makes sense that the eigenvalue λ1 is the most important among the

three, as a change in this value also changes all the most relevant features based on the structure

tensor. As described in Section 3.2.4, plane-like structures would be expected to have two small

eigenvalues in orthogonal directions of the spread of the plane and one large facing along the plane’s

normal vector. In contrast, edge structures would be expected to have one small eigenvalue in the
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edge direction while leaving the other two eigenvalues large. Eigenvalue λ1 is thus the deciding

value for if a point is located in a plane or an edge, which are the two most common structures

found on roof structures.

Among the other CovarianceEigenvalue features, the three dimensionality features, Linear-

ity, Planarity, and Sphericity, stands out as individually performant. This makes sense, as they

represent the probability of a 3D point to be labeled a one-dimensional, two-dimensional, or three-

dimensional feature. The two first dimensions correspond to the two most common geometrical

shapes represented in the training data. In the final model, it seems like it values Planarity more

than Linearity, which may be because planes are much more represented in the training set com-

pared to lines regarding the number of points. The third dimension can detect large groups of

noise points but can also visually provide discrimination values for inner edges. This is especially

the case for acute angels, as Figure 3.2.9 shows.

While barley independently performant measured in IoU, Surface Variation is considered the

most important feature when looking at all scales. It is represented three times and has the highest

accumulated importance score in the top twenty most important features as reported by CatBoost

in Table 5.2.3. With a Prec score almost reaching 100% on scale 2-5, it can clearly detect specific

edges. Since Surface Variation correlates to the definition of inner edges, where the normals of

points abruptly change, it makes sense that it is informant and important after all.

Considering the combined method as a whole, using the defined features as a precalculated

feature matrix for input and dataset in a discriminating learning algorithm, it is clearly highly

performant at detection edge points in ALS roof point clouds, both in metric scores and in visual

inspection. It detects high-quality edge points to be used in an edge reconstruction method and

later in an automatic 3D modeling process of building roof structures. It is good that the model re-

ports a higher recall score compared to precision since it means that the model slightly overpredicts

the points in the "Edge" class. This is by both design and preference, as reconstruction methods

will have more information to work on when creating lines and connecting them with vertices. It

is also in line with the methods of Hackel et al. [22], as they aim to create an over-complete set

of contour candidate points in their Contour candidate generation step, which is similar to the

output we desire from our proposed method.

The method is, however, not without its flaws. Firstly, the model has not completely differ-

entiated chimney structures from edges. As Figure 5.2.3 visualizes, in some cases, chimneys are

perfectly-regarded as noise and not induced as edges. In other cases, the model cannot differentiate

between the two at all. This is because chimneys inherit many of the same properties as edges

and their feature values are often comparable to those calculated for edges. Several features return

feature values in the same interval discussed in the kNNCentroidDistance analysis, where the edge

values often lay between the values calculated for planes and noise.
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Three solutions for this problem can be proposed. Representing chimneys more in the training

set enables the discriminating learning algorithm to learn the differences between noise and edges

better. Alternatively, Chimneys could be predicted as their own separate predefined prediction

class. The training data would obviously need to be updated for this purpose, but it would relieve

the algorithm from learning two distanced and separate values into one single class as it has to

do now. The third proposed method would be to manually or automatically segment out chimney

structures from the training set. This segmentation process would, however, is also needed to be

done for every unseen point cloud before prediction.

The proposed method also struggles to clearly separate edges in small structures, as Figure 5.2.4

visualizes. Following the red lines in the figure and comparing the predicted edge width around it,

it seems like they have the same thickness as other predicted edges. The model would be wrong

to predict thinner edges on smaller structures, as a uniform edge-width is preferred in most other

cases. The model actually classifies some points as "Non-edge" on the small structure, meaning it

has managed to detect the occurrence of planes. Thus, this is a problem of the reduced sampling

rate rather than a problem with the model. Edge recreation for such structures will hence be

harder to perform and may need special care.

Lastly, the method is not able to detect inner edges between two planes with an obtuse angle.

Our belief is that such inner edges are underrepresented in the training data, resulting in CatBoost

not being able to learn these edges efficiently enough. Also, edges with obtuse angles calculate

as values much closer to plane-like points, making them harder to detect. Recalling the though

experiment in Section 5.2.3, one must be defined a threshold-angle in between two planes for when

one would stop classifying such inner edges as an "Edge", due to the edge being too rounded off

in the point cloud representation. Such a threshold would be hard to set, even for a human, and

especially when only presented with the points and not the mathematical representation of the

planes.
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Chapter 6

Conclusion and Further Works

In the final chapter of this thesis, the work done regarding the scope presented in Section 1.2 is

summarized and concluded. The final section provides suggestions for future works, both within

the scope of this thesis and for the remaining tasks concerning automatic 3D model reconstruction.

6.1 Thesis Summary and Conclusion

The main goal of this master thesis was to develop a framework for edge point detection in ALS

point clouds of roof structures for the purpose of solving one of the steps needed to achieve au-

tomatic 3D model creation of buildings in a city. The introduction to this thesis presented the

motivation for why such 3D models are valuable and outlined the purpose for why a new framework

should be developed.

Twenty methods for feature extraction from point clouds were studied and explored. An in-

depth explanation of each feature was given, including their relevance concerning edge point de-

tection in building roof point clouds. Both voxel-based and point-based features were investigated,

and the features were either selected based on results from preliminary work or specifically designed

based on specific attributes found on building roofs.

Our framework is based upon a subset of these features, and after four described preprocessing

steps, each selected feature is calculated. To make the framework feature-rich and scale-invariant,

we do this in a multi-scale manner by either increasing the neighborhood size in a ball query, the

voxel size, or the number of neighbors on a kNN search. The features are independent of each

other, so the calculation is sped up using multiprocessing. Once all the feature values for each

point in a roof point cloud are calculated, they are combined into what we call a feature matrix.

The last part of the proposed framework leverages this feature matrix as input and uses this

higher-order representation to detect edge points. For this purpose, we use CatBoost, a popular
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ML algorithm that uses gradient boosting on decision trees to classify data. The choice of this

classifier is clearly explained and is made based on a set of defined requirements.

To test and validate our framework, experiments were conducted on ALS point cloud data

provided by Trondheim Municipality, which was manually segmented into a small set of classified

building roof structures for training and evaluation. The results showed that for the purpose

of edge point detection on building roofs from ALS point clouds, the proposed point features in

concatenation with the proposed framework could successfully discriminate between edge points

and other points in most cases. It achieves good scores on the evaluation set, with 83% IoU and

90% OA being reported.

In conclusion, the proposed combined framework is highly generalizable, performs well even on

complex roof structures, and is not limited by any predetermined set of primitives. It only needs

a few labeled roof point clouds as training data to converge, in comparison to the vast amount

of training data needed for data-driven methods using deep learning. The feature computation

only takes minutes, even for large building structures, while training and prediction finish in mere

seconds.

6.2 Proposed Further Works

While many feature extraction methods are explored in this master thesis, there are still some

that should be investigated in further works. Especially, features that value the connectivity and

continuity of edge points should be developed. Using the directional properties inherited in the

eigenvectors of the structure tensor as a basis for such features could produce beneficial results.

Due to time restrictions and the complexity of such features, they were not tested in this thesis.

As Section 5.3 describes, two main limitations of the proposed framework should be addressed.

Firstly, chimney-like structures and noise are not consistently classified as "Non-edge" points.

The three suggested and discussed solutions to this problem, which include either automatic or

manual noise removal or segmenting chimneys as a separate classification class, should be tested

and evaluated.

Secondly, the framework struggles to detect edges between planes with obtuse angles. We

believe having a more significant representation in the training set is enough to address this problem

in a satisfactory way, however, this hypothesis should be tested and validated. If this experiment

finds the suggestion unsuccessful, another feature should be included in the feature matrix. This

feature should be focused on detecting the subtle distinction of inner edges between planes with

obtuse angels and the planes themselves.

Looking at the broader picture, several problems still need to be solved to achieve the automatic

creation of 3D models of city buildings. The next step in this process is to recreate the segmented
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edge points as line segments and create corner vertices where these lines are connected. From this,

a complete 3D mesh of the roof structure can be constructed. To fully automate the process, a

system for correctly locating and segmenting roof structures from an ALS point cloud must also

be developed and integrated.
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