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ABSTRACT

ABSTRACT

The transition from a conventional energy system to a decarbonized energy system
requires an increasing penetration of intermittent renewable energy sources, which
brings more fluctuations to the electricity grid. Therefore, increased flexibility is
required on the demand side.

This thesis focuses on the energy flexibility of residential buildings by activating their
thermal mass. Model predictive control (MPC) is acknowledged to be an appropriate
control method for this purpose. The thesis addresses MPC using grey-box linear
models of the building thermal dynamics. The research is split into two main parts,
namely modeling and control. The modeling part can also be further split into data
collection and model identification subsections.

In the data collection part, the experiments for collecting the data are designed for
both virtual and field experiments. The experimental design includes the selection of
the excitation signal, the training period, and for field experiments, the influence of
the sensor location and dynamics. Thus, different experiments with various excitation
signals and training periods have been executed. The results show that the identified
parameters are strongly dependent on the types of excitation and the training period
for deterministic grey-box models. On the contrary, the identified parameters are less
dependent on the excitation signal for stochastic grey-box models. Furthermore, there
is no specific period of the space-heating season that is more suited to train a linear
time invariant (LTI) grey-box model since weather conditions including solar
radiation vary significantly during the entire space-heating season.

In the model identification part, a suitable model structure is first investigated using
different resistance-capacitance (RC) networks based on existing standards for
building energy modeling (like the EN13790 and VDI 6007 standards) and the
knowledge of building physics. The model selection is based on the structural and
practical identifiability, the physical plausibility and the prediction performance of
the grey-box model. The results show that for a mono-zone grey-box model, the
second-order model is an appropriate trade-off between overfitting or poor model
fidelity. The optimizer for the training of the model parameters is also investigated
by comparing the parameters identified using traditional gradient-based optimization
routines and global optimization routines. Results reveal that global optimization
performs better than gradient-based optimization. The influence of data pre-
processing on the grey-box modeling is investigated by using a low-pass filter as well
as the influence of input data alignment using anti-causal shift (ACS). Results show
that the pre-processing of data does not have a large influence on deterministic
models. However, for stochastic models, the parameter values are significantly
influenced by the data pre-processing. The identified parameters are strongly
correlated with the sampling time (Ts). ACS can prevent the parameter value and
variance from getting non-physical for large Ts. Pre-filtering only has a limited
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ABSTRACT

influence with ACS, while the pre-filtering influence without ACS does not have a
clear trend. Some research is done in this thesis to compare the performance between
grey-box and black-box models in the case of deterministic models. Results show that
the second-order black-box model shows a similar performance to the second-order
grey-box model. However, the physical interpretation of the hidden states and
parameters is unknown for black-box models.

In the control part, the performance of conventional MPC based on LTI models and
adaptive MPC that are able to recalibrate the model parameters during operation is
compared. The adaptive MPC is designed to overcome the influence of varying
weather conditions during the heating season. Two different candidates for this
adaptive control are investigated. Partially Adaptive MPC only updates the effective
window area of the grey-box model. The Fully Adaptive MPC updates all the
parameters of the grey-box model. Results show that the Partially Adaptive MPC is
not able to deliver satisfactory prediction performance due to the limited number of
parameters updated. The Fully Adaptive MPC outperforms the conventional MPC
based on LTI models, especially in avoiding thermal discomfort. Different types of
models (e.g., ARX, NARX, SVM) are also compared in an MPC experiment in a
supporting paper of this thesis. Results show that the seven states black-box state-
space model has the best performance among the MPCs in the study. Using multi-
step ahead prediction error as the objective function when training the model is
beneficial for guaranteeing its prediction performance.

Keywords

Energy flexibility; demand response; demand side flexibility; model predictive
control; model complexity; data pre-processing; time varying electricity prices; co-
simulation
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INTRODUCTION

1 INTRODUCTION

The transition of the current conventional energy system to a decarbonized energy
system leads to more volatility in the power grid as power generated from renewable
energy sources (RES) is often decentralized and intermittent. The power imbalance
on the supply and demand sides can have severe implications for power quality and
reliability [1]. Therefore, more flexibility is needed from the demand side to enable
increasing penetration of intermittent RES. An important energy consumer on the
demand side is buildings. They could play a very important role in providing energy
flexibility and better utilizing the energy generated from RES. Model predictive
control (MPC) enables operating the energy system close to an optimal way by
shifting some load to synchronize more with the RES generation.

1.1 Background and motivation

The energy consumed by buildings accounts for 20% to 40% of the total energy used
in developed countries and the proportion is still increasing at the rate of 0.5% to 5%
every year [2]. The proportion of the building sector accounts for 36% of the energy
consumption in Norway. Electricity is the dominant energy carrier since most of the
buildings use direct electric heating [3] and the heating season is long and relatively
cold.

In Norway, 96% of domestic electricity is generated by hydropower plants [3]. The
Scandinavian power system is strongly integrated, allowing electricity trading
between bidding zones in Scandinavia and the continental European power grid. In
general, Norway plays the role of a net exporter, but it also imports energy from other
countries at various times (e.g., during the period when wind energy production from
Denmark is very high). Thus, the fluctuating electricity price of the market becomes
an important driver for optimally operating the building energy system. In cold
climate countries like Norway, space heating is dominant compared to cooling
demands, which makes the optimal control of space heating an important approach
to provide flexibility to the grid.

Demand response (DR) is the interaction and responsiveness from the demand side
end-users based on a penalty signal (e.g., price signal, CO, intensity factor for
electricity signal) [4,5]. DR is closely related to the concept of energy flexibility
defined by the IEA EBC Annex 67 as the ability of a building to manage its demand
and generation according to local climate conditions, user needs and grid
requirements [6]. It provides flexibility for smart grids [7], which enables higher
exploitation of the electricity generated from intermittent RES. Building thermal
mass can be considered as short-term heat storage, which makes it appropriate to
perform DR [8-10]. Deploying DR with building thermal mass requires the heating
system to be operated optimally while keeping the indoor temperature comfortable
constraint for the occupants. Model predictive control (MPC) is an advanced method
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INTRODUCTION

of control that is used to control a system while satisfying a set of constraints, which
perfectly fits the requirements of performing DR in buildings.

In MPC applications in buildings, the dynamic model in the MPC controller is used
to predict the thermal response of the building exposed to the prediction of future
boundary conditions (e.g., weather forecast and energy usage). The optimal control
sequence is then calculated based on future prediction and system constraints. Thus,
the MPC controller performance strongly relies on the accuracy of the prediction
model. Models of poor quality could cause undesired control results (e.g., increased
energy cost, violation of thermal comfort). Due to the complex implementation
procedure and hardware requirements, MPC is currently only applied to a limited
number of existing buildings. Therefore, the cost of identifying the prediction model
should be limited, especially for small residential buildings where the investment into
an MPC should be low to make it cost-efficient. There are two main parts for reducing
the cost. One part is to reduce the hardware cost for implementing MPC in buildings.
The ongoing implementation of smart meters, like the Advanced Metering System
(AMS) in Norway [11] and the rule “Key principles for the package of ordinances
governing smart grids” in Germany” [12], makes the implementation of MPC in
buildings in a large scale with lower cost more feasible in the future. The emergence
of small, low-cost and wireless sensors with data collection functions in recent years
[13] will also accelerate the implementation of MPC in buildings. The other part is
the most time-consuming part of implementing MPC in a building, which is
identifying an appropriate prediction model for MPC [14,15]. Thus, the model
identification process should also be made more automated to reduce the cost.

Dynamic control-oriented models can be divided into three main categories, namely
white-, black- and grey-box models. White-box models are based on physical laws
(e.g., mass-, energy- and momentum balance equations), which require exhaustive
information about the building including underlying physical processes and
parameters. It is generally mathematically complex but has high accuracy. This type
of model is widely used in building performance simulation (BPS) software like
Modelica[16], EnergyPlus [17] and IDA[18]. White-box models are generally the
most time-consuming among the three modeling methods, which need detailed
information on the parameters and need to be updated during the lifetime of the
building. Further, the mathematical complexity of white-box models requires
extensive computational power [19], which makes the white-box models not suitable
for MPC implementation of buildings in many cases. Black-box models are pure data-
driven methods based on measured time-series data from the system. Statistical
regression and artificial neural network (ANN) are common mathematical techniques
for black-box modeling [20], which requires sufficient training data to guarantee the
quality of the model [21]. The quality of the data can also significantly affect the
black-box model performance. A grey-box model is a combination of a white-box
and a black-box model. It takes the dominant physical process of the system to build
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up the model structure and then the model parameters are fitted with measurement
data. In the building engineering field, lumped resistance and capacitance models
(i.e., RC models) are a common approach to creating the structure of grey-box
models, which means that the building thermal dynamics are expressed using an
electric circuit analogy [22,23]. It is claimed that grey-box models have better
extrapolation properties compared to black-box models [24]. They have been widely
applied to solve recent problems in building science, such as building load estimation,
optimal control, and building-grid integration [25,26].

This thesis uses grey-box models to investigate the DR of heating systems in energy-
flexible residential buildings. The thesis focuses on two main applications of grey-
box models, which are MPC and the characterization of the thermal properties of
buildings using field measurements [25,27].

1. Model predictive control (MPC) is considered a suitable advanced optimal
control method to perform DR in a building [14,26] or to activate the building
energy flexibility [6]. This study uses the building thermal mass as short-term
thermal energy storage (e.g., by pre-heating of the building thermal mass) by
controlling the operation of the space-heating system optimally using MPC
[8,19,28-30]. The exploitation of such thermal storage requires the indoor
temperature to stay within the thermal comfort limits for occupants. Existing
studies have confirmed the significant DR potential of MPC activating the
thermal mass of residential buildings [31-33]. The grey-box models should
enable adequate prediction to achieve decent control performance.

2. Developing a proper grey-box model with physically plausible (i.e.,
interpretable) parameters is beneficial for evaluating the real building
performance based on field measurements during the operational phase [29].
Physically plausible parameters in grey-box models could contribute to
characterizing the thermal properties of a building using field experiments, such
as its overall heat transfer coefficient (HTC).

Electric heating is the most common space-heating strategy for residential buildings
in Norway. The time constant of the electric radiator is relatively short, so its thermal
mass can be neglected for the time steps used in this thesis (i.e., typically 15 minutes).
Thus, the research mainly focuses on modeling the building thermal dynamics, not
the dynamics of the space-heating system.

1.2 Knowledge gap

Grey-box models have already been used in the literature to activate the building
thermal mass using MPC. Several model structures have been used [28,34-38], but
limited studies have been performed in Norway. As the model performance depends
on the construction type, most often in lightweight wooden structures in Norway, and
the climate (including the latitude for the solar gains), it is worth investigating the
best grey-box model structures for small residential buildings in the Norwegian
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context. Secondly, many studies identified the grey-box models using an ideal
excitation signal, typically a PRBS signal. As will be explained in the thesis, a PRBS
signal can lead the indoor temperature to deviate outside the thermal comfort limits
for the occupants. Therefore, these signals may not be applicable over a long period
with occupancy, limiting their practical implementation. It is therefore worth
investigating if normal operating conditions corresponding to comfortable conditions
for the occupants can excite the building dynamics in a sufficient way to identify
reliable grey-box models.

In reality, the temperature field in a room is not uniform. Two important effects
should be considered. Firstly, the room air can present significant temperature
stratification, especially when the heat emitter is close to maximum power. Secondly,
the sensors are usually mounted on a wall in a casing. For sudden changes in the
indoor temperature, the measured value with a wall-mounted sensor may thus differ
from the real air temperature. The thermal dynamics of the sensor due to the casing
can also be seen as a form of implicit data pre-treatment if the sensor dynamics are
not modeled. Thus, the influence of temperature sensor location and thermal
dynamics on the grey-box model results needs to be investigated so that a reliable
grey-box model can be developed.

Data pre-processing (or data pre-treatment) is acknowledged to have a key influence
on the model identification results [39]. However, this topic has hardly been
addressed in the field of grey-box models for buildings. Ljung and Wills [40] revealed
several issues when applying a long sampling time to estimate continuous-time
models with stochastic disturbances. However, the analysis of Ljung and Wills is
illustrated using a theoretical example. Therefore, this thesis also investigates the
influence of long sampling times in building applications.

Creating a suitable model is acknowledged to be the most important and time-
consuming part of MPC implementation [15]. For the grey-box models, the model
structure should not be too simple so that the model accuracy can be guaranteed. On
the other side, the model structure should not also be too complicated to ensure the
identifiability of the model and save computational costs for the MPC. Hence, the
appropriate grey-box model structure is investigated in this thesis.

In the parameter identification stage, the default function (greyest) in the MATLAB
identification toolbox uses gradient-based optimizers. Consequently, the optimizer
may converge to a local optimum if the problem is not convex. As shown in Arendt
et al. [41], Genetic Algorithm (GA) combined with a gradient-based method could be
used to solve non-convex optimization problems used to identify the parameters of
grey-box models. The influence of the optimizer on the grey-box modeling results is
also inspected in this thesis.

In existing buildings' MPC research, it has been demonstrated that linear time-
invariant (LTI) models can approximate the heat dynamics of buildings with
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sufficient accuracy for MPC [42—46]. Thus, the prediction performance of grey-box
models is compared to black-box models (e.g., ARX, NARX) under the MPC
operation (virtual experiments). However, the limitation of MPC with an LTI model
is that a model trained from one period is not able to provide decent prediction in
another period due to time-varying weather conditions throughout the year. The
performance of the MPC controller cannot be guaranteed when using an LTI model
over a long period of time. Consequently, developing an adaptive MPC controller
that updates the parameters during operation becomes a potential solution. Adaptive
MPC has been widely applied in engineering in general, but it has surprisingly been
rarely investigated in building energy control. Yang et al. [47] developed an adaptive
robust model predictive control for indoor climate optimization, and the model is
based on a detailed grey-box model and updates the parameters every 24 hours. Yang
et al. [48] also introduced an adaptive machine-learning-based model for building
control based on an artificial neural network (ANN). Fux et al. [49] used an extended
Kalman filter-based self-adaptive thermal model for passive house demand prediction
with the model updating the parameters at each time step. Choi et al. [50] used an
adaptive neural network model to perform the optimal control for a data center. Maree
et al. [51] proposed an adaptive control for heating demand-response in buildings that
incorporates a reinforcement learning (RL) strategy. Zhang et al. [52] proposed a
time-dependent solar aperture estimation method based on B-splines, which could be
considered an adaptive grey-box model of buildings. Merema et al. [34] and Wolisz
et al. [53] also applied adaptive control strategies for long-period control, which
updates the coefticients of ARX models during operation. Therefore, this thesis also
compares the performance of a conventional MPC based on an LTI grey-box model
to the adaptive MPC using virtual experiments (i.e., co-simulation).

This thesis focuses on residential buildings. The defined research questions are
considered to contribute to filling the knowledge gaps to enable the deployment of
MPC using grey-box models in real buildings.

1.3 Research questions and research tasks

The context thesis is the use of residential buildings to provide flexibility so that the
penetration of renewable energy can be increased and the current energy system
becomes more sustainable. In order to achieve this goal, this thesis focuses on the
thermal dynamics modeling of residential buildings and the implementation of MPC
for the heating system of residential buildings. Grey-box models and related modeling
techniques are mainly investigated in this study. The following original research
questions are investigated:

Q 1: Which type, period and duration of the excitation signal are suitable for grey-
box model identification of residential buildings?
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Task 1.1: Different types of excitation signals are applied to the heating system
in the experiment.

Task 1.2: Different periods and durations of data are taken to train the model
parameter of models.

Q 2: What is the influence of temperature sensor location and thermal dynamics
on the grey-box model results?

Task 2.1: The grey-box models trained using the volume-averaged indoor
temperature, a single indoor temperature sensor and the temperature
measurement of exhaust air are compared.

Task 2.2: The grey-box models trained using a single wall-mounted sensor with
casing and a single sensor in the air without casing are compared.

0 3: What is the influence of data pre-processing on the grey-box modeling results?

Task 3.1: Training datasets with different data pre-processing are taken to
investigate the influence of sampling time and data alignment (here
using anti-casual shift) on the performance of grey-box models.

Task 3.2: Training datasets with different low-pass filters are taken to
investigate the influence of pre-filtering on the performance of grey-
box models.

Q 4: What are the most suitable grey-box model structures for residential
buildings?
Task 4.1: Develop a set of grey-box model structures with different levels of

complexity.

Task 4.2: Evaluate the model performance based on the trade-off between
model accuracy and complexity.
0 5: What is the influence of the optimizer on the grey-box modeling results?

Task 5.1: Compare the model performance of grey-box models trained using
traditional gradient-based optimization and global optimization
routines.

Q 6: Prediction performance of grey-box compared to black-box models?

Task 6.1: The prediction performance of grey-box and black-box models is
compared.
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Q 7: What is the performance MPC using LTI and adaptive grey-box models and
other types of data-driven models?

Task 7.1: The performance of MPC controller with conventional LTI grey-box
models and adaptive grey-box models are compared.

Modeling (data preparation) Modeling (train parameters)
6: Influence of excitation signals, periods and duration Q Q4: What are the most suitable grey-box model structures

suitable for grey-box model identification of residential for residential building?

buildings?

Q5: Influence of the optimizer on the grey-box modeling
Q2: Influence of temperature sensor location and dynamics results?

on the grey-box modeling results? Q6: Prediction performance of grey-box compared to black-
Q3: Influence of data pre-processing on grey-box the box models?

modeling results?

\ J

Control
7~ n

Q7: Performance of LTI grey-box MPC, adaptive grey-box De man d Respo nse
MPC and other types of models?

Figure 1-1: Research questions grouped by categories.

Figure 1-1 puts the above research questions connected logically in context to the
different sections.

1.4 Structure of the thesis

The remainder of the thesis is structured as follows. Chapter 2 presents the research
methodology, including a review of grey-box modeling for residential buildings and
the data pre-processing, optimization methods and other setups of grey-box modeling
used in the PhD research work. Chapter 3 illustrates the setup for the MPC
implementation and control scenarios of the case studies. The main results of the
papers are presented, explained, and discussed in Chapter 4. Chapter 5 outlines the
main conclusions, addresses the limitations of current work and gives
recommendations for future research.

1.5 List of publications

Three journal papers and four conference papers construct this PhD thesis. An
overview of the papers is presented in Table 1-1 and Figure 1-2. The papers are
distinguished between primary papers and one supporting paper. The primary papers
address and answer the main research questions of the thesis, and the supporting paper
presents preparative and supporting work for the primary papers. The papers included
in this thesis are listed below, together with my personal contribution to each paper.
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Primary papers:

Paper 1:

Yu X, Georges L, Knudsen MD, Sartori I, Imsland L. Investigation of the Model
Structure for Low-Order Grey-Box Modelling of Residential Buildings.
Proceedings of Building Simulation 2019 16th Conference IBPSA, International
Building Performance Simulation Association (IBPSA), 2019 Rome, Italy.

Contribution: The conceptualization was done together with Laurent Georges and
Igor Sartori. I structured the data and developed the methodology in collaboration
with Laurent Georges and Michael Dahl Knudsen. The results were analyzed and
visualized by me. I wrote the majority of the paper draft. Revision and editing were
done in collaboration with all co-authors.

Paper 2:

Yu X, Georges L. Influence of Data Pre-Processing Techniques and Data Quality
for Low-Order Stochastic Grey-Box Models of Residential Buildings.
International Conference Organised by IBPSA-Nordic, 13th—14th October 2020,
OsloMet. BuildSIM-Nordic 2020 (BSN2020). Selected papers. SINTEF Academic
Press.

Contribution: 1 did the conception and virtual experiment design of the paper
together with Laurent Georges. I also did the modeling work, data processing and
analysis for the paper and wrote the original draft of the paper. Editing and revision
were done in collaboration with Laurent Georges.

Comment: This contribution got the best conference paper award of BSN2020.

Paper 3:

Yu X, Georges L, Imsland L. Data pre-processing and optimization techniques for
stochastic and deterministic low-order grey-box models of residential buildings.
Energy and Buildings. 2021; 236: 110775.

Contribution:

This paper is based on Paper 2, which is an extension by adding more case studies
and explanations. Regarding the extended part, I developed the models, analyzed
the data, visualized the results and wrote the original draft of the article.
Conceptualization and methodology were done in collaboration with Laurent
Georges. Editing and revision were done in collaboration with Laurent Georges.

Paper 4:

Yu X, Skeie KS, Knudsen MD, Ren Z, Imsland L, Georges L. Influence of data
pre-processing and sensor dynamics on grey-box models for space-heating:
Analysis using field measurements. Building and Environment, 2022; 108832.

Contribution: This paper is a continuation work of Paper 3 by moving from virtual
experiments to field experiments to validate the conclusions from Paper 3. Most of
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the research methodology originates from Paper 3. The additional conception and
design part was done together with Laurent Georges. Revision and editing were
done in collaboration with all co-authors.

Paper 5:

Yu X, Georges L, Imsland L. Adaptive linear grey-box models for Model
Predictive Controller of Residential Buildings. Accepted to [International
Conference  Organised by IBPSA-Nordic, 22nd-23rd  August 2022,
CopenhagenMet. BuildSIM-Nordic 2022 (BSN2022).

Contribution: The conceptualization and virtual experiment design was done
together with Laurent Georges. I also did the modeling work, MPC controller
design and wrote the original draft of the paper. Revision and editing were done in
collaboration with all co-authors.

Paper 6:

Yu X, Ren Z, Georges L, Imsland L. Comparison of Time-Invariant and Adaptive
Linear Grey-box Models for Model Predictive Control of Residential Buildings.
Submitted to Applied Energy

Contribution: This paper is based on Paper 5, which is an extension by adding
more case studies and scenarios. I did the conception and design of the paper
together with Laurent Georges. I also wrote the initial draft of the paper. Revision
and editing were done in collaboration with all co-authors.

Supporting paper:

Paper 7:
Erfani A, Yu X, Kull TM, Bacher P, Jafarinejad T, Roels S, Saelens D. Analysis of
the impact of predictive models on the quality of the model predictive control for
an experimental building. Proceedings of Building Simulation 2021 17th

Conference IBPSA, International Building Performance Simulation Association
(IBPSA), 2021 Bruges, Belgium.

Contribution: 1 did part of the modeling work in this paper and worked together on
the MPC controller. Revision and editing were done in collaboration with all co-
authors with A. Erfani as the main writer.
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The thesis is written in the form of a collection of articles. The interconnections of all
the papers included in this PhD thesis are shown in Table 1-1 and Figure 1-2.

Table 1-1: Relation between research questions and papers.

Involving Papers Experiment Type Topic
Ql Paper 3 Virtual Experiment Modeling
Q2 Paper 2 and Paper 4 Field Experiment Modeling
Q3 Paper 3 and Paper 4 Virtual and Field Experiment Modeling
Q4 Paper 1 and Paper 4 Field Experiment Modeling
Q5 Paper 2 and Paper 3 Virtual Experiment Modeling
Q6 Paper 1 Field Experiment Modeling
Q7 Paper 5, Paper 6 and Paper 7 Virtual Experiment MPC

Paper 2 Paper 1 ]

l l

Paper 3 )———> Paper 4

Paper 6

/ N

Paper 5 Paper 7

Figure 1-2: Interconnections of the papers included in this thesis.
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2 RESEARCH CONTEXT AND BACKGROUND

This chapter introduces the research context and background of this thesis. Section
2.1 introduces the existing research on applying DR with MPC in buildings. Section
2.2 gives a review of the existing literature for the grey-box modeling of the building
thermal dynamics.

2.1 Demand response with MPC

In building automation, MPC is a more advanced control strategy to perform DR
compared to the conventional ones such as predictive rule-based control (PRBC). It
is a promising approach for DR strategies in buildings with different control
objectives such as peak shaving and load shifting.

A large number of existing researches have investigated the potential of performing
DR in buildings using MPC. Knudsen et al. [43] propose an economic model
predictive control strategy (EMPC) for the heating system with solar shading as an
additional control variable. An experimental test of a black-box EMPCfor residential
building space heating has been carried out in [54]. Results show that MPC with
black-box models and constrained excitation signals for training can also provide
good indoor air temperature control. Freund et al. [29] implement MPC in a large-
sized, low-energy office building by controlling the supply temperature of heating
circuits for thermally activated building systems (TABS). Awadelrahman et al. [33]
deploy EMPC with a stratified thermal energy storage tank in the smart building.
Wang et al. [30] use data-driven models which have universal approximation ability
by utilizing a hybrid optimization algorithm, namely BSAS-LM, for the MPC
implementation. Hedegaard et al. [55] use a grey-box model as the prediction model
for an EMPC of space heating in residential buildings for multi-market demand
response. Coninck et al. [56] also use a grey-box model-based MPC for an office
building in Brussels. The results show that the MPC controller can provide a similar
or better thermal comfort than the reference control and reduce energy costs by more
than 30%. Privara et al. [57] use the subspace black-box approach to obtain the model
for the MPC controller. Hazyuk et al. [36] present a comparison of conventional PID
and MPC, and the MPC also uses a grey-box model. The results show that MPC can
reduce occupant discomfort by up to 97% and energy consumption by up to 18%.
Pedersen et al. [58] present a scenario-based MPC of space heating in residential
buildings taking a two-state grey-box model as the base. The above researches prove
the benefits of using MPC in buildings to perform DR in the current grid system. In
conclusion, all these studies demonstrate the large DR potential using MPC in
buildings.

However, the investment in implementing MPC is more expensive. The model
identification part is acknowledged as the most critical and time-consuming part of
deploying an MPC [14]. All measures to reduce the modeling part of the MPC are
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thus of prime importance. Therefore, the thesis aims to increase the knowledge of
control-oriented modeling for MPC in buildings. Smart meters and the building
management system (BMS) for signals collection and communication are also
prerequisites for deploying MPC in buildings. More and more communication
technologies, sensing, and computing devices at affordable prices have emerged on
the market in recent years. The ongoing projects, like the Advanced Metering System
(AMS) in Norway [11] and the rule “Key principles for the package of ordinances
governing smart grids” in Germany” [12], make the implementation of MPC in
residential buildings in a large scale a reachable target in the future. Thermal energy
storage is commonly adopted to exploit the flexibility of residential buildings. Water
storage tanks and the building thermal mass are the typical thermal storage. This study
mainly focuses on utilizing the building thermal mass with MPC. In Nordic countries
like Norway, the space-heating season is long and relatively cold, which makes the
heating system a suitable candidate for performing DR. The thermal mass of the
building is temporarily loaded to higher temperatures or unloaded by letting the
indoor temperature decrease to maximize the control objective. Increasing the indoor
temperature above the minimal temperature providing an equivalent thermal comfort
usually leads to increased energy use for heating, but the summed objective function
is decreased (e.g., the energy costs). The thermal comfort under a dynamic thermal
environment is investigated in Favero et al. [59].

This operation is the aforementioned DR with buildings. It requires a proper model
and appropriate control design so that the DR target can be approached, which are the
main two parts of this thesis.

2.2 Review of grey-box modeling for building thermal dynamics

The performance of an MPC controller is significantly related to the prediction model
accuracy of the control-oriented model. As the thesis focuses on MPC with a grey-
box model as the prediction model, a short literature review of grey-box modeling of
thermal dynamics of the building is given in this section. The review starts with
mono-zone models and then considers multi-zone models.

Freund et al. [60] describe the thermal zone by a grey-box model consisting of three
capacitances and four resistances (R4C3 model). The model is extended by a
thermally activated building system (TABS) model with one capacitance and two
resistances and a resistance for the air-handling units (AHU) (Figure 2-1).

The heat exchange between the external walls and the outdoor environment is
evaluated using an equivalent outdoor temperature defined by the VDI 6007 standard
[61], which takes the influence of short-wave radiation into consideration.

4 (2-1)

A

T;:,eq = 7; + Qirrad
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Figure 2-1: Thermal network representation of the used grey-box model [60].

The short-wave absorption coefficient of the exterior surface a , is set to 0.5 and the

exterior heat transfer coefficient a4 is set to 25 W/(m2K). The coefficients are
determined according to DIN 6946 [62]. The solar heat gains Qsol are determined by

O, = four*Llon (2-2)

where fio1 is a factor that should be estimated during the identification process. fsi is
usually interpreted as the effective window area, which translates how much of the
outdoor total solar irradiation on a horizontal plane is converted into solar gains. The
internal gains are calculated by multiplying the occupancy signal, which is detected
by presence sensors, and a constant internal heat gain Qoc, Which is part of the
identification. The convective part of internal gains is assumed to be 40 %. The model
was applied in one office building in the city of Hamburg in Northern Germany. The
model showed a decent prediction performance for the indoor temperature with a
TABS system.
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Figure 2-2: 5R3C Grey-box model structures: (a) Model I: model trained from detailed
building simulation tools, and (b) Model II: model modified from ISO 13790 [63].

Two different single-zone SR3C models are presented in [63]. The model structures
are shown in Figure 2-2. The first model structure (Model I) is trained from detailed
building simulation tools. The solar gains and internal gains are directly accessible
from the building simulation. The second model structure (Model II) is a modification
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of the ISO13790 standard [64]. Solar and internal gains are distributed amongst
different temperature nodes as described in the standard [64]. The model was applied
to a cluster of representative Belgian residential buildings to investigate the
aggregated load flexibility.

Hedegaard et al. [65] present a 4R2C model to predict the response of the building
for operating the heating system. The model structure of this study includes two
lumped capacities: one for room air and another for building construction. The
internal heat gains and solar heat gains are directly accessible from the simulation in
Energy Plus.

Hedegaard et al. [37] introduce a modified model based on the standard ISO 13790
(Figure 2-3). An additional node corresponding to the interior thermal inertia (for the
room air, furniture, etc.) is added to the original massless air temperature node
according to ISO 13790 with the thermal capacity (C;). The results indicate that the
modification significantly improves the model prediction ability under dynamic
operating conditions.
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Figure 2-3: Modified RC network of the model used in ISO 13790 [37].

Hedegaard et al. [66] propose several model structures to estimate the grey-box model
parameters to characterize the thermal properties of buildings (see Figure 2-4). The
initial model is a 2R2C model, which considers the thermal inertia of the wall and air.
The solar gains are calculated by the effective window area times the solar irradiance.
The heat gain from the heating system is directly injected into the air node. The 3R2C
model adds one transmission heat loss resistance based on the 2R2C model. The
4R3C model contains an interior capacity representing the internal elements that only
interact with zone air. The 4R3Cw model adds the third thermal mass node in the
envelope to better model the distribution of capacity in the envelope. Mathematical
dependencies between the parameters were introduced to the third-order models to
ensure identifiability. The results show that the 2R2C model is not able to estimate
individual heat loss coefficients due to the structures. It is also clear that the 4R3C
model lack consistency and accuracy. The 3R2C and the 4R3Cw models show close
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estimates of all characteristics, and the accuracy and consistency across all datasets
are decent.
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Figure 2-4: Model structures depicted as RC-networks. Red text denotes inputs, blue
highlights the assumptions made for third-order models [66].

Hu et al. [38] use a SR4C grey-box model to predict the temperature of the room
(Figure 2-5). The model contains more physical principles of the room thermal
dynamics. The building's external building envelope is made up of opaque walls and
transparent windows. Because of the climate of Hong Kong, most residential
structures are made of lightweight wall and roof materials. Therefore, the external
wall was considered as one thermal resistance and two equal thermal capacitances.
Another two capacitances are for the nodes of indoor air and the internal mass. For
the solar radiation, Qsolar,w, Qsolar,i, a1d Qsolarm are solar heat gains absorbed by external
wall surface, indoor air and internal mass, respectively. For the internal gains, Qinter;,
Qinter,m are internal heat gains absorbed by indoor air and internal mass, respectively.
All the heat gains information and splitting factor is a prior knowledge in this study.
Only the R and C are free parameters to be identified in this study.
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Figure 2-5: Schematic of the grey-box thermal model of residential buildings (5R4C) [38].
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O,irm = SHGCof. . eA T . 2-4)
Oootari = SHGC [ 10y 1* Ay ot (2-5)
Oivieron = Sinter mQiner (2-6)
Qinter,i = fimer,iszer (2-7)

Reynders et al. [67] investigate the quality of grey-box models of different levels of
complexity with data generated from the energy assessment simulation (IDEAS)
package in Modelica (Figure 2-6). They take the different components of the building
envelope (e.g., walls and windows) into account. Measurements of the indoor air
temperature and the heat flux to the different building components are accessible for
this study. The ambient air temperature, the heat emitted by the radiators, the effective
internal and solar gains are used as inputs. Solar and internal gains are also modeled
based on more realistic measurements like the global horizontal irradiation for solar
gains or the electricity consumption from a smart meter for internal gains. The
distribution coefficients for the solar gains, internal gains and heating are assumed to
be constant and are identified as part of the parameter identification process.
Reynders claims that 1% order models are unable to describe the thermal conditions
in buildings under dynamic operating conditions. The 3™ order is the highest order
leading to acceptable performance if only the indoor temperature is measured and
included in the model. Above 3™ the 4" and 5% order models require the
measurements of the heat flux through the building components to improve the
identifiability of the model.
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Figure 2-6: RC-analogy of reduced-order building models [67].
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Figure 2-7: Model structure of the 3R2C model and 4R2C model [19].

Harb et al. [19] propose several grey-box models for predicting the thermal response
of occupied buildings (see Figure 2-7). The heat exchange between the interior and
the exterior environment and the solar heat gains is described as the same equations
below based on the standard VDI 6007 standard [2]. For the 3R2C model, the solar
gain and heat gains are directly injected into the interior node. The 4R2C model
extends the 3R2C by considering the indoor air as a separate temperature node with
no thermal capacity. According to the EN ISO13790 standard [64], the convective
contribution of the solar heat gains can be assumed at fconv= 9%. The allocation of the
heat gain on different nodes is carried out according to the following equations.

¢h,ia = ¢h .(1 - ﬁzeat,rad) (2_8)
¢h,in = (¢h - ¢h,ia ).(l - ﬁleat,md,ext ) (2_9)
Pre = (D = Pria)* Sheat.rad ex (2-10)

with fheatrd being the radiation contribution of the heat flux from the heater (with a
value of 0.2) and fheatrad,ext = Ole,floor/Qin floor beiNg the share of the radiation contribution
to the exterior walls. 0O foor and Oinfoor are empirical values which are 2.5 and 1.5,
respectively.

nterior Ambience R”
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Figure 2-8: Model structure of the 1R1C model and 8R3C model [19].

In addition to the second-order models, the simple 1RIC model and a more
complicated model 8R3C are also proposed in this paper (see Figure 2-8). This last
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model is an extension of the 4R2C model by considering the heating system with a
separate thermal capacity Cy and a temperature node Ty. The model considering the
heating system as a separate thermal capacity is reasonable due to the high thermal
inertial of the underfloor heating system. Thus, the heating system not only transmits
heat to the interior and exterior through the radiative thermal resistances Ry in and Ry
but also to the indoor air through convection resistance R ja.

The model comparison results revealed that the two capacity model with an additional
mass-less node of indoor air (4R2C) perfectly integrated the accurate prediction
performance (mean forecast error of 0.2 K) and the clear physical interpretation of
the assessed parameters within constraints.

Blum et al. [68] compare three grey-box model structures in their study (see Figure
2-9). The extra resistance is in parallel with the wall for model SR4C to account for
infiltration and window conduction gains separately. The model inputs, like the
radiative and convective internal heat gains qoccsr, Qocec [W/m2], the HVAC heating
(qn) and cooling (qc) power gwac = gn — qc [W] are directly accessible in this study.
Regarding the solar gains of the building, it is calculated as the total global horizontal
irradiance Hg,o [W/m?] incident on the floor a, and exterior walls (for 3R3C and
5R4C), ae. The results show that 3R3C model performs best among the three models
considering 1-day and 7-day validation periods. In addition, the SR4C model shows
a lower training error than the 1R1C model but a higher 1-day and 7-day validation
error. It indicates that the SR4C model maybe overfitted for the training data.
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Figure 2-9: RC thermal network models in the study: (a) RICI, (b) R3C3, (c) R5C4 [68].

Berthou et al. [69] propose four grey-box models to predict the heating and cooling
demand and indoor air temperature (Figure 2-10). The study used the data from a
multi-zone building simulation (TRNSYS). Thus, all the related physical inputs, the
occupancy heat gains and the ventilation mass flow are accessible. The 4R2C model
is an extension of the normal 3R2C model with a supplementary resistance. The
additional resistance is used to characterize variable airflow ventilation. The model
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has the disadvantage of not being able to capture the solar flux coming on external
walls, which is problematic during the summer. The 6R2C, 6R3C and 7R3C use the
additional nodes (Tx and Ts) to enable the split of the solar heat flux into two parts.
The split solar gains are calculated with the adopted Kasten model [70]. The
simplified representation of the solar gain model is presented in Figure 2-11.

Model name Thermal network

R4C2

Source 3

Source 1

R6C2

R6C3

R7C3

Figure 2-10: Thermal network representation of the four tested grey-box models [69].
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Figure 2-11: Simplified representation of the solar radiation model [70].

Brastein et al. [71] use the randomized initial parameter value to investigate the
dispersion of parameter estimates (see Figure 2-12). Results show that there is a
significant dispersion in the parameter estimates when using randomized initial
conditions. The 3R2C model is used in this paper. The results show that when the
parameter Ry is set to a fixed value, the identifiability of the model is significantly
improved. This conclusion can be observed from the shape of the Monte Carlo
simulations in the parameter space. Further, the parameters show much better
convergence for the case of 5 degrees freedom compared to the case of 4 degrees
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Figure 2-12: The R3C2 thermal network model [71].

freedom when randomized initial parameters are applied.
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Figure 2-13: RC model of a single-room building [30].
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Wang et al. [30] use the RC model of Figure 2-13 as the control model for the MPC.
The model is very similar to the other 4R3C models in the literature. The solar
radiation is assumed to be absorbed by the air node and interior thermal mass (for
internal walls and furniture). A split coefficient o (ranging from 0 to 1) is used to
determine how the heat flux of solar radiation is distributed between the Ti, and Tim
nodes.

Qsalur = Q.mlur,in + anlur,im (2-1 1)

qular = a.Qvolar (2_12)

Figure 2-14: Heat dynamics RC-network of the PowerFlexHouse3 [10].

Zong et al. [10] propose a multi-zone grey-box model for a residential building in
Denmark called PowerFlexHouse3 (Figure 2-14). The model takes a second-order
model as the basic structure for each floor. The inputs of the model include the ground
temperature (for the basement), ambient temperature, heating power from the electric
heater and the solar heat gain from the solar radiation. The heat gain from solar
radiation is also modeled using an effective window area times the solar irradiance.
The results show that the second-order model can provide a relatively detailed
knowledge of the building thermal dynamics of each floor for the EMPC controller
design.

Arroyo et al. [72] presented a method to identify multi-zone grey-box building
models (Figure 2-15). A forward selection process increasing the model complexity
is implemented at the first stage to select the most suitable model for each individual
zone without any coupling with the other zones. The inputs of each individual zone
include the heat released to each zone, the internal gains, ambient temperature and
the global horizontal irradiation. For the centralized case (see Figure 2-16), the
obtained grey-box model for each zone is merged and coupled together. For the
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decentralized case, the zone model works independently without interaction among
zones. The simulation performance of the models shows that the centralized multi-
zone model slightly outperforms the decentralized model and has similar accuracy to
the single-zone model. Regarding the control performance of the MPC controller, the
centralized model performs much better than the decentralized model by achieving
minimum comfort violations. The single-zone model also shows a surprisingly good
performance. The results of this study show that the thermal interactions among zones
should be modeled properly. The single-zone models can also be suitable if the heat

distribution to the zones is balanced correctly.
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Figure 2-15: Grey-box model structures used for the forward selection [72].
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AYAYAY e WA

Figure 2-16: Example of a centralized three-zone grey-box building model [72)].

Agbi et al. [73] discuss the parameter identifiability for multi-zone grey-box models
(see Figure 2-17). Each zone has a thermal capacity to represent the thermal mass of
the zone. Unlike Arroyo et al. [72], the interaction between zones is not simply
represented by thermal resistances. An additional thermal capacity is added to the
partition walls to account for the thermal mass.

Wall Temp. (Tw)
.‘ Zone 1l zZ 2
11 " Heat Gain Rw Rw Heat Gain 12
2 2
T1 ——1 VWV WA NV T2
R1 R2
C1 l ICW - C2
ZONE 1 WALL ZONE 2

Figure 2-17: RC Model for a boundary wall [73].

Kim et al. [74] also propose a similar approach as [10] and [73] to identify a suitable
grey-box model for multi-zone buildings. The second-order model is used as the base
model for each zone. Figure 2-18 is the example RC network for a two-zone system.
Each zone has two thermal capacitances and two thermal resistances. The two zones
are connected at the zone air nodes with a single thermal resistance R, 2.
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Figure 2-19: (a) The complex three-zone model structure, and (b) the simplified three-zone
model structure [75].
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Wang et al. [75] propose a multi-zone RC model for the thermal dynamics analysis
in buildings by model structure simplification method. A complex model structure
based on physical principles is first created and then simplified by progressively
removing parameters. The genetic algorithm is employed during the training phase to
obtain satisfactory fitting ability for large model structures. In the model
simplification stage, the asymptotic standard errors are used to quantify the
identifiability of the parameters. The original complex model is a 22R13C (see Figure
2-19 (a)) for the three-floor residential buildings, and the model is progressively
simplified to a 10R6C (see Figure 2-19 (b)) model by removing the non-identifiable
parameters. The results show that the simplification does not cause a significant loss
of training or validation accuracy in terms of RMSE and Fitting. Further, the results
also show that the simplified model is able to capture the temperature differences
between adjacent zones.

The review gives a review of the state-of-the-art of existing grey-box models of the
building thermal dynamics, which covers both single-zone and multi-zone situations.
All the models in this review are summarized in the table below.

Table 2-1: Summary of grey-box models for the building thermal dynamics.

RC o . . Other Standards Multi-zone or
application Solar gains Internal gains i Reference
Model used single-zone
Qsol = foot* I DIN 18599 DIN 6946
4R3C office buildings DIN 52016 construction VDI6007 single-zone [60]
data
residential .
5R3C(1) buildings (cluster) precalculated precalculated - single-zone [63]
residential .
5R3C(2) buildings (cluster) precalculated precalculated EN13790 single-zone [63]
. precalculated precalculated .
4R2C dormitry (simulation) (simulation) - single-zone [65]
Qsolw = AAwIsolar
SRAC residential %So}ar'mzsﬁ(_:'? Qinter.m=finter,m ASHRAE single-zone [38]
buildings solarm” Fwin’solar “Qinter Handbook g
Qsolari = SHGC-
fiolari® Awinlsolar
residenial precalculated EN12831
1R1C o precalculated 4 single-zone [67]
buildings domestic NBN50-001
electricity
residential precaleulated EN12831 .
3R2C o precalculated . single-zone [67]
buildings domestic NBN50-001
electricity
precalculated
residential precaleulated EN12831 .
4R3C o Qsol = fso I : single-zone [67]
buildings domestic NBN50-001
Quo1 = faorTov electricity
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6R4C

8R5C

5R2C

3R2C

4R2C

4R2C

6R2C

6R3C

2R2C

3R2C

4R3Cw

1R1C

3R3C

5R4C

4R3C

4R3C

3R2C

8R6C

36R20C

18R18C

10R6C

22R13C

residential
buildings

residential
buildings

residential
buildings

residential and
office buildings

residential and
office buildings

office buildings

office buildings

office buildings

office buildings

residential
buildings

residential
buildings

residential
buildings

residential

buildings

office buildings

office buildings

office buildings

buildings

buildings
residential
buildings

residential
buildings
residential
buildings
residential
buildings
residential
buildings

residential
buildings

precalculated
Qsol = ol I
Qsol = fso1'Tov
precalculated
precalculated
Qsol = fsol'IH
Qsol = ol IH
adopted Kasten
model
adopted Kasten
model
adopted Kasten
model
adopted Kasten
model
Qsol = WaQs
Qsot = Wa Qs
Qsot = Wa'Qs
Qsol = War Qs
Qsol = Hglo" 0l
Qsol = Hglo"0le
Qsol = Hglo" 0l
Qsol = Hglo"0le
Qsol = Hglo" 0l
Qsol = Hglo" 0l
precalculated
Qsol = AwIgu
Qsol = gA-Icn
Qsot = gA-Ign
Qsol = ol I
Qsol = fool*Iou

precalculated

domestic
electricity

precalculated

domestic
electricity

precalculated

not included

not included

precalculated

precalculated

precalculated

precalculated

not included

not included

not included

not included

precalculated

precalculated

precalculated

precalculated

precalculated

precalculated

precalculated

precalculated

EN12831

NBN50-001

EN12831

NBN50-001

1SO13790

ISO13790

1SO13790

ISO13790

1SO13790

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

single-zone

multi-zone

single-zone

multi-zone

multi-zone

multi-zone

multi-zone

multi-zone

[67]
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[37]

[19]

[19]

[69]

[69]

[69]

[69]
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[66]

[66]

[66]

[68]

[68]

[68]

[30]

[73]

[71]

[10]
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Most studies select a single-zone model for the MPC implementation due to the
consideration of computational cost (high computation cost requires more expensive
hardware). The results of those studies show that a first-order model is not enough to
capture the thermal dynamics of the building. The second-order and third-order model
models are the most popular selection for the single-zone case. The main difference
between the second-order model and the third-order model is the additional
capacitance for the internal thermal mass (e.g., furniture and internal walls). The
model order selection also depends on the availability of the measurement data in the
field. Higher-order models (i.e., higher than third-order) with insufficient
measurements could easily cause overfitting problems.

For multi-zone models, most studies take the second-order model as the base model
for each thermal zone. Thermal resistances and sometimes capacitances are then used
to connect those thermal zones. The combination of thermal resistances and
capacitances to connect the thermal zones also depends on the availability of the
measurement data. For the same order, different model structures present good
prediction performance. This indicates that there is some flexibility in the model
structure selection due to variable building types and structures. The model structures
reviewed in this study are a good reference for the model selection in grey-box
modeling work of the thesis. This grey-box modeling work is presented in Paper 1,
Paper 2, Paper 3 and Paper 4.
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3 METHODOLOGY

This chapter briefly explains the experimental platform and setup. Furthermore, the
modeling and control methods are also introduced in this section. The description of
the experiments platform is given in Section 3.1. Section 3.2 presents the system
identification process of the thesis. Section 3.2 introduces the setup for the MPC using
virtual experiments.

3.1 Description of experiments

This thesis has one physical experimental building called the ZEB Living Lab and
one virtual experimental building implemented in the building performance
simulation (BPS) packaged IDA ICE. This section introduces the details of the two
experimental platforms and their corresponding experiments.

3.1.1 ZEB Living Lab

The ZEB Living Lab is a Norwegian residential single-family, zero-emission house
with a heated floor area 105 m? located on the Gleshaugen campus in Trondheim
(Norway). The appearance and the internal floor plan are shown in Figure 3-1. The
building has a highly-insulated envelope with lightweight timber construction with
mineral wool inside external walls. It is also equipped with energy-efficient windows
(glazing ratio equals 0.2). Furthermore, the ZEB LivingLab contains phase change
material in the ceiling to limit peak indoor temperatures. The space heating can be
floor heating, a single radiator, or ventilation air. The ventilation system is equipped
with a heat recovery unit. By closing the doors in the building, four zones can be
created (i.e., the bedroom west, bedroom east, the bathroom and living areas).

limuE T

West Bedm‘on}ﬁ [ ] el East Bedroom
M

®

LI ..

@ South wall-mounted temperature sensors © Wireless temperature sensors

(a) (b)
Figure 3-1: The appearance and floor plan of the ZEB Living Lab.

This thesis mainly uses two sets of experiments done in this building with different
space-heating emission systems and different periods of the space-heating season.
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Data using two different heat emitters are used to make the conclusions more general.

The first set of experiments (from the 18" April to 15% May 2017) used an electric
heater for space heating. Detailed information on the measurement setup and data can
be found in previous work [46,76]. The corresponding length of these three
experiments are 6 days, 11 days and 7 days, respectively. The electric heater of 2.6
kW was placed in the center of the building (the heater is marked in red in Figure 3-1
(b)). A pseudo-random binary signal (PRBS) has been applied to the electric heater
to excite the thermal dynamics of the building. PRBS is a periodic and deterministic
signal which has white noise properties and no correlation with other inputs. The
PRBS signal activates the dynamic system at a broad range of frequencies with a high
signal-to-noise ratio (SNR). The basic period of the signal is A and the maximum
length sequence N (N = 2"-1) with the total duration of the PRBS signal is T = N A.
Four experiments were carried out, and only the last three were successful. The
successful experiments are named Experiments 2, 3, and 4 (i.e., Experiment 1 was
discarded). The dataset has a time interval of 5 minutes. The measurements include
the outdoor temperature, indoor air temperatures, global solar irradiation and
electricity consumption, including the radiator power (Qn). To avoid modeling the
air-handling unit (AHU), the ventilation losses from the mechanical ventilation are
introduced as one input. These ventilation losses are explicitly pre-calculated with the
measured temperature difference between the supply and exhaust ventilation air
combined with the measured airflow rate (constant air volume, CAV). The electric
heating system has negligible thermal inertia compared to the building envelope, so
it is assumed that the dynamics of the radiators play a limited role. Experiments 2 and
4 were conducted with internal doors opened, which theoretically should lead to a
more uniform spatial distribution of the air temperature inside the building while all
the doors were closed in Experiment 3. Air was pre-heated using a heating coil in
Experiment 4 only. The building is unoccupied in all the experiments, but electric
dummies operated by a control schedule have been used leading to realistic internal
gains.

The experiment with the hydronic radiator was initially performed to investigate cost-
effective MPC implementation (E-MPC) in a Norwegian zero-emission building
(Living Lab) [54]. The experiment lasted for approximately one month (from mid-
February to mid-March 2019, with an 18-day excitation phase and an E-MPC
operation phase of two weeks. A randomly generated binary signal switching the
radiator temperature set-point between 21 °C and 24 °C was created to excite the
thermal dynamics of the building and collect measurements for training the model.
This new training dataset is based on six days in February and is named here as
Experiment 5. The dataset has a time interval of 5 minutes. The hydronic radiator has
a rated power of 4.7 kW (at a rated temperature 75 °C/65 °C) and is in the same place
as the electric heater of the first set of experiments. The supply water temperature
was maintained at about 55 °C leading to a maximum radiator power of 2.5 kW. The
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thermostatic valve in the radiator adjusts the mass flow using a proportional-integral
(PI) controller to track the set-point temperature. Compared to the electric heater, the
thermal mass of the hydronic radiator with 113 kg of steel cannot be neglected. The
power delivered to the hydronic radiator (Qn) is measured by an energy meter based
on the difference between supply and return temperatures. When the hydronic
radiator is switched on, the initial water temperature in the radiator is close to the
indoor air temperature. Due to the thermal mass of the radiator, it takes time for the
return temperature to heat up and reach steady-state (when the power delivered to and
emitted by the radiator is equal). This makes a large difference in supply and returns
temperatures at the beginning, leading to a very high start-up peak for Qu. The
maximum emitted power of the radiator in steady-state is around 2.5 kW, while the
maximum delivered power during start-up periods is around 4.0 kW. This confirms
that the thermal dynamics of the hydronic radiator are significant.

Table 3-1: Summary of the four experiments. “Full set” means all measurements of volume-
averaged, single sensor (no casing), wall-mounted sensor are available.

Experiments  Radiator Door Sampling time Period Use Temperature
Sensor
. . 18/04-24/04 i
2 Electric Open 5 min 2017 Validation Full set
. . 27/04-08/05 S
3 Electric Closed 5 min (2017) Validation Full set
4 ElectrictAHU  Open 5 min 08/05-15/05 Training Full set
(2017)
5 Hydronic Open 5 min 22/(%20_12 97)/ 02 Training Wall-mounted

In the experiments with the electric heater, PT100 sensors with an accuracy of + 0.1
K are placed at different locations in the building; see details in [76]. This leads to
the definition of three datasets:

o Two available datasets correspond to different placements of PT100 temperature
sensors without casing and with wireless transmitters. They are placed in a
vertical bar in the middle of the two living rooms (see green dots in Figure 3-1
(b) and Figure 3-2 (a)). For each bar, the height of the six sensors is 0.18 m, 0.95
m, 1.6 m, 1.7 m, 2.3 m and 3.4 m, respectively. The volume-averaged temperature
of the building is calculated using the measurement from all the sensors placed
in the vertical bars and evaluated using the volume average at each horizontal
layer. The single sensor without casing dataset corresponds to the measurement
at 1.6 m in the living room south. The height of 1.6 m is close to the middle height
of the building, where the influence of stratification is expected to be minimal
(meaning that the measured temperature at 1.6 m is the closest to the volume-
averaged temperature).
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o The third dataset is based on PT100 sensors mounted on the wall in a casing (see
the orange dot in Figure 3-1 (b) and Figure 3-2 (b)). The height of the wall-
mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m, respectively. The third
dataset corresponds to the measurement of a single wall-mounted sensor mounted
in the south of the living room at the height of 1.6 m.

In the experiments with the hydronic radiator, only the temperature measurements
from the wall-mounted temperature sensor are available.

@ (®)

Figure 3-2: Wireless temperature sensors (a) and wall-mounted temperature sensors (b).
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Figure 3-3: Comparison of different indoor temperature sensors, global solar irradiation on
a horizontal plane and heating power of the electric heater for Experiment 4.
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Figure 3-3 shows the temperature reading from the wireless temperature sensors with
different heights (0.18 m, 1.6 m and 3.4 m) and the wall-mounted temperature sensor
(1.6 m) against the volume-averaged temperature. The stratification of the
temperature of the wireless temperature sensors at different heights can be observed.
The stratification gets larger when the solar radiation or the radiator power is large.
The reason for choosing the sensor in the south was to capture the influence of solar
radiation. The thermal dynamics of the wall-mounted sensor can also be observed.
The reading from the wall-mounted sensor is smoother compared to the volume-
averaged temperature and the readings from the single wireless temperature sensors.

3.1.2 IDA ICE building model and corresponding experiments

IDA ICE is a detailed dynamic simulation tool to study the indoor environment and
the energy consumption of buildings. In this thesis, an IDA ICE building model is
used as a virtual experiment to generate data for system identification. It is a two-
story detached house located in Oslo with a heated floor area of 160 m?. The building
is constructed in wood, meaning a lightweight construction, and complies with the
requirement of the Norwegian passive house standard, NS 3700 [77]. The three-
dimensional geometry of the building is shown in Figure 3-4. The building is
equipped with balanced mechanical ventilation with a heat recovery unit. A cascade
ventilation strategy is applied. This heat exchanger is modeled using constant
effectiveness of 85% without bypass (like a plate heat exchanger) to promote the
linearity of the model. This is done because the research focuses on the thermal
dynamics of the building envelope and does not aim at modeling the air handling unit
(AHU) in detail. Other detailed information regarding the BPS software model can
be found in [78].

Figure 3-4: 3D geometry of the building model in IDA ICE (showing the southwest facade).
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Figure 3-5: Floor plan of the test building (ducts for the supply air are in blue and in red
for extraction).

The detailed building model is multi-zone and the zoning follows the floor plan
presented in Figure 3-5. For the sake of simplicity, the grey-model models considered
in our study are mono-zone to ensure that the model performance is not polluted by
other phenomena, such as overfitting or poor model fidelity. Consequently, the indoor
temperature in our virtual experiments should be as uniform as possible. This is done
by opening all the internal doors inside the building. IDA ICE has an embedded
ventilation network model, which accounts for the large bidirectional airflow through
open doorways. Thus, the air temperature inside the building computed by IDA ICE
is relatively uniform due to the large convective heat transfer between rooms. The
volume-averaged temperature is selected to represent the measured indoor air
temperature. The mean air temperature of the extract ventilation air is also a common
choice. However, based on preliminary investigations, the volume-averaged
temperature proved to give better grey-box models for this test case. The building is
heated using electric radiators as these are the most common space-heating systems
for residential buildings in Norway [79]. This heating system has smaller thermal
inertia than the building envelope, so the dynamics of the radiators are expected to
play a limited role. Hourly profiles for internal gains generated by artificial lighting,
electric appliances and occupancy are taken from the Norwegian technical standard
TS3031:2016 [80]. The typical meteorological year (TMY) of Oslo with a resolution
of one hour is used for the IDA ICE simulations. Like internal gains, solar gains thus
have a resolution of one hour.

The Pseudo-Random Binary Signal (PRBS) is also used to activate the heating system
in the virtual experiments. The excitation signal is simultaneously applied to all the
electric radiators in the BPS model. Following the guidelines of the [EA EBC Annex
58 [27], the excitation signal is in fact the combination of the two PRBS signals. One
sequence to identify the short-time dynamics with a period (T) of 10 minutes and with
an order (n) of 8. The second sequence aims at identifying the long time constant of
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the building with a period (T) of 3.5 hours and n equals 5. The PRBS signal can be
applied to four different weeks in the space-heating season. These weeks are
characterized by different weather conditions, as described in Table 3-2.

Table 3-2: Weather conditions in four PRBS experiments.

Type Outdoor Temperature Sky Date Duration
Very Cold -10°C Clear sky 12/13/2019 One week
Cold 0°C Overcast 12/24/2019 One week
Cold 0°C Clear sky 3/23/2019 One week
Mild 5°C Overcast 11/23/2019 One week

However, it is not always desirable to apply a PRBS signal to the space-heating
system as large variations of the indoor temperature may occur and lead to thermal
discomfort for the occupants. Therefore, conventional controls of heating systems are
also investigated. Intermittent heating with a temperature setpoint changing between
daytime and night-time is considered (i.e., a night setback). Two different local
controllers are tested to track the set-point temperature in each room: a Proportional-
Integral (PI) control and an on-off control (with a differential of 1K). The last one is
the most common control strategy for electric radiators in buildings. When a PRBS
signal is applied over a long period of time (i.e., longer than one week), it is difficult
to design the signal so that the indoor temperature is kept within comfortable
temperature limits for the occupants. By definition, conventional heating controls
enable to have normal occupancy of the building during the experiments used to
collect data for model identification. It is thus possible to collect data over a longer
period of time than one week without impacting the thermal comfort of building
users. The full space-heating season (FHS) starting in November and finishing at the
end of March can be used to train the model. However, it is also interesting to test
whether a shorter training period of one month would be sufficient to train the grey-
box models. It is also interesting to check whether specific months are more suited
for this task. Therefore, the model parameters are also identified using each of five
different months of the space-heating season (i.e., Month 1 to 5). 20 different datasets
have been generated using different excitation signals, duration of the experiment and
weather data. The detailed description of each case can be found in Table 3-3 below.
IDA ICE assumes that variables are piecewise linear during one-time step. The model
equations are integrated numerically using a variable time-step so that data is not
generated at constant time intervals. Consequently, conservative interpolation has
been used to interpolate IDA ICE data on a uniform grid of 2.5 min. This time step is
significantly smaller than the shortest period of the PRBS (i.e., 10 min).
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Table 3-3: Description of the datasets and their corresponding abbreviation.

Case Case description Period/
Abbreviation
(dataset) (excitation) Duration

1 PRBSI1 Week 1 W1-PRBS
2 PRBS2 Week 2 W2-PRBS
3 PRBS3 Week 3 W3-PRBS
4 PRBS4 Week 4 W4-PRBS
5 Intermittent on-off Week 1 W1-Inter /O
6 Intermittent on-off Week 2 W2-Inter /O
7 Intermittent on-off Week 3 W3-Inter /O
8 Intermittent on-off Week 4 W4-Inter I/O
9 Intermittent on-off Month 1 MI-Inter /O
10 Intermittent on-off Month 2 M2-Inter I/O
11 Intermittent on-off Month 3 M3-Inter I/O
12 Intermittent on-off Month 4 M4-Inter I/O
13 Intermittent on-off Month 5 MS5-Inter I/O
14 Intermittent on-off Full heating season FHS-Inter /O
15 Intermittent PI Month 1 MI1-PI

16 Intermittent PI Month 2 M2-PI

17 Intermittent PI Month 3 M3-PI

18 Intermittent PI Month 4 M4-P1

19 Intermittent PI Month 5 MS5-PI
20 Intermittent PI Full heating season FHS-PI

3.2 System identification for the building

3.2.1 Grey-box modeling
3.2.1.1 Grey-box model structure

The structure of the grey-box models is derived from the conservation of energy. The
physics modeled by the grey-box models is the heat transfer between the building and
its outdoor environment, the solar radiation and internal gains.

In this thesis, a mono-zone model structure is taken to fit the ZEB Living Lab and
IDA ICE data for the following reasons. In IDA ICE virtual experiments, the air
temperature inside the building computed by IDA ICE is relatively uniform due to
large bidirectional airflow through open doorways and the large convective heat
transfer between rooms. In the ZEB Living Lab experiments, the building is super-
insulated with an efficient heat recovery of the ventilation air. These two points lead
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to limited temperature differences between rooms [33] (compared to the temperature
difference between indoor and outdoor air) even if internal doors are closed.
Consequently, the ZEB Living Lab can be modeled as one thermal zone (i.e., the
mono-zone model with a unique node to represent the indoor temperature). The
studies [29,32,34] confirmed that a mono-zone grey-box model is able to make an
accurate prediction of the air temperature in the ZEB Living Lab, for closed and open

internal doors.

An example model structure SR3C is shown in Figure 3-6. Other model structures
are presented in Paper 1, Paper 3, Paper 4 and Paper 6. The physical meaning of the
model parameters is listed in Table 3-4.
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Figure 3-6: Structure of the SR3C model.
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T,(1)
y@)=[0 1 0]| Z,(2) (3-2)
T,(1)

Table 3-4: The physical interpretation of the parameters of all grey-box models.

Parameters Physical interpretation and unit

Ti Temperature of the internal node (i.e., indoor air, furniture) [°C].

Te Temperature of the external walls [°C].

Ts Temperature of the internal wall surfaces of external walls [°C].

Tm Temperature of the internal walls [°C].

Ta The outdoor (or outdoor) temperature [°C].

Ci Heat capacity including the thermal mass of the air, the furniture [kWh/K].

Ce Heat capacity of the node external wall for the second-order and third-order models
[kWh/K].

Cm Heat capacity of the node internal wall for the third-order model [kWh/K].

UA Overall heat transfer coefficient (HTC) between Tiand Ta [kW/K].

Udie Heat conductance between the building envelope and the interior [kW/K].

UAea Heat conductance between the outdoor and the building envelope [kW/K].

UAinf Heat conductance between the outddoor and the interior node (components with

negligible thermal mass, like windows and doors) [kW/K].

UAim Heat resistance between the internal thermal mass and the interior node [kW/K].
UAis Heat resistance between the indoor wall surface and the interior node [kW/K].
Qint Internal heat gain from artificial lighting, people and electric appliances [kW].
Oh Heat gain delivered to the heat emitter [kW].

Ovent Heat gain from the ventilation (pre-computed using measurements) [kW].

Lot Global solar irradiation on a horizontal plane [W/m?].

A; The effective window area of the building corresponding to Ti [m?].

Ae The effective window area of the building corresponding to Te [m?].

Am The effective window area of the building corresponding to Tm [m?].

As The effective window area of the building corresponding to Ts [m?].

a Fraction of internal gains injected to the internal node.
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3.2.1.2 Model identification tool and method

The MATLAB system identification toolbox is used in this thesis. Madsen et al. [27]
illustrated how stochastic models could be formulated as an extension of
deterministic models. In the stochastic form, a system noise (or noise term) is added
to the deterministic model equations to better account for the modeling
approximations, unrecognized inputs and measurement of inputs corrupted by noise.
The generic equations of the stochastic linear state-space model in innovation form
can be expressed as:

% = Ax(t) + Bu(t) + Ke(t) (3-3)

() =Cx(t)+e(t) (3-4)

where x is the state vector, A, B and C are the system matrices, u is the input vector
(i-e., Taeq> Qsolar, Qint, Qn) and y is the output (i.e., indoor temperature, Ti). K is the
disturbance matrix of the innovation form (Kalman gain) [81]. The matrices A, B, C
and K are functions of the model parameters (#). The continuous-time model is first
discretized so that discrete measurement data can be used to identify the model
parameters. Unlike IDA ICE, the time discretization in the MATLAB identification
toolbox assumes piecewise-constant input data during each time interval (i.e., zero-
order hold).

At the beginning of the identification procedure, the initial guess of the model
parameters and their region of feasibility (i.e., lower and upper bounds for each
parameter) should be defined by the user as input parameters. Then, the optimizer
iterates within the feasibility region to find the value of the parameters that minimize
the prediction error criterion f(x)

f@= Yl -3 O (3-5)

where y;, is the measurement output while ¥} (6) is the one-step ahead prediction.

The default function (greyest) in the MATLAB identification toolbox uses gradient-
based optimizers. Four different iterative search methods are used in sequence.
Consequently, the optimizer may converge to a local optimum if the problem is not
convex. As shown in Arendt et al. [41], Genetic Algorithm (GA) combined with a
gradient-based method could be used to solve non-convex optimization problems
used to identify the parameters of grey-box models. Likewise, a global optimization
algorithm has been implemented in our work to avoid a local optimum. A
metaheuristic Particle Swarm Optimization (PSO) is applied at the first stage,
followed by the default greyest function to refine results during the second stage. The
PSO algorithm begins by creating the initial particles and assigning them initial
velocities. It evaluates the objective function at each particle location and determines
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the best (lowest) function value and the best location. In the next step, new velocities
are chosen based on the current velocity, the particles’ individual best locations, and
the best locations of their neighbors. The optimizer then iterates the particle locations,
velocities, and neighbors until the algorithm reaches a stopping criterion. Detailed
information on the PSO algorithm can be found in [82,83]. For each test case, both
optimization procedures are used in sequence: the default greyest and the global
optimization. The method giving the lowest error for the prediction error criterion is
selected to provide the model parameters. The flow chart of the identification routine
is summarized in Figure 3-7.

[ e e e e e mme s e e e e e R e e e e e e e e e e e e e
Global optimization Compare Out
. oen put the
routine pl‘CdIC.tlﬂl.l error — better model —
criterion
Formulate the Default optimization Model selection of two
inptimimtinn problem routine routines

Figure 3-7: Flow chart of the optimization procedure to identify the model parameters.

3.2.1.3 Data pre-processing techniques

Extended sampling time (Ts) can lead to a non-physical value and variance for the
identified parameters of grey-box models (see e.g., [40]). In real-life applications, it
can seldom be guaranteed that measurement data is recorded at a sampling time (Ts)
shorter than the shortest time of the system (Tmin). Thus, three distinct data pre-
treatments are investigated in this thesis. They are sampling, low-pass filtering and
anti-causal shift (ACS). The original dataset has a sampling time (T;) that is always
faster than the highest frequency of the input signal (Tmin), such as the PRBS signal.
Ljung et al. [40] demonstrated that longer sampling time with Ts > Tmin can lead to
non-physical value and variance for the identified parameters. To investigate this
effect, sampling times of increasing duration are considered in our investigations,
namely 15, 30 and 60 minutes. Before resampling the data, a low-pass filter can be
applied. This leads to three scenarios:

o The first approach is direct sampling (DS) at T, without pre-filtering. This may
cause a high aliasing error.

e The second approach applies a moving-average (MA) filter of length T, before
sampling. With MA, the aliasing error is significantly decreased but, in theory, it
can still occur.

e The third approach applies a finite impulse response (FIR) filter with a cut-off
frequency of 1/Ts before sampling. The FIR would lead to negligible aliasing
error (if it is designed in a sufficient order).

39



METHODOLOGY

By analyzing the performance of the three methods, it is possible to understand the
influence of aliasing. It is known that these low-pass filters introduce a time delay
[39]. Therefore, The low-pass filters are applied to all input and output variables in
the dataset. Thus, theoretically, no delay will be introduced in the dataset, which
could influence the final results. The conclusion would be different if the low-pass
filter was applied to a subset of the input and output data.

Finally, time labeling plays a role in aligning inputs and outputs for the identification
application [40]. As shown by Ljung et al. [40], a time shift, called anti-causal shift
(ACS), of the input (Input Delay = -Ts) is beneficial for model identification with
large Ts. However, the study of Ljung et al. is theoretical and uses a generic example.
This effect has been barely analyzed in the context of buildings.

3.2.1.4 Sensor dynamics

Figure 3-3 shows that the wall-mounted sensors have non-negligible thermal
dynamics. Consequently, the grey-box model structures introduced in Section 3.1
should be adapted to account for the effect of the time constant of sensor dynamics
and thus avoid potential mistakes in the model identification process. As proposed in
Bacher et al. [45], it is possible to add an additional node for the temperature sensor,
leading to an extra resistance (Rs) and capacitance (Cs). However, the authors also
pointed out that it was not possible to give a physical interpretation of the value of
Cs. This was also found in our preliminary tests based on our data. Therefore, we
rather introduced an adaptation of the model with a single additional parameter, the
time constant of the sensor T = RsC;. The model decreased the number of parameters
compared to the version in the study [45] to increase the identifiability of the model.
The dynamics for the sensor node are expressed by the following equation:

dT. 1

sensor __ (
i

3-6
” (3-6)

- SEHSOI”)
where T;is the temperature of the internal node, Tsensor is the temperature measurement
from the wall-mounted temperature sensors.

3.2.2 Structural and practical identifiability

Checking structural identifiability is the prerequisite in the model identification
process [84-86], which refers to the theoretical possibility of determining the
parameter values from the input and output data. This property guarantees that the
parameters can be uniquely determined from the input-output data under ideal
conditions of noise-free observations and error-free model structure. The structural
identifiability of the candidate models in this study is verified using DAISY software
[84]. However, field measurement data always contain noise and error, which
challenges the practical identifiability of the model. Therefore, the prediction
performance and the physical plausibility of parameters are taken as the criteria for
the model selection (see Section 3.2.3 for more details). Finally, for stochastic
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models, a cumulative periodogram is used as an additional criterion to prove that the
model is complex enough to capture the building dynamics.

3.2.3 Key performance indicators

Several key performance indicators (KPIs) are defined to evaluate the model
performance. They can be divided into two categories: the physical plausibility of the
identified parameters and the prediction performance of the model.

Physical plausibility means that the calibrated value of the model parameters should
give a physically reasonable estimate of the thermal properties of the building. For
conciseness in our study, it is not possible to report the value and variance of all the
model parameters. However, the key parameters that are enough to support our
conclusions are presented: the overall heat transfer coefficient (HTC) and the
capacitances (Cjand Cc). In addition, one parameter modeling the influence of the
solar radiation, the effective window area (A;), will also be taken as KPI when the
influence of the data pre-processing is discussed.

The overall heat transfer coefficient (HTC) is the total heat loss of the building in
steady-state. Heat transfer by convection and long-wave radiative heat transfer is
nonlinear. However, heat conduction is dominant and has good linear properties if
the building is highly insulated and airtight. The combination of several resistances
of the grey-box model forms the HTC, which is defined by Equation 3-7 for the 3R2C
model. Therefore, only the value of the HTC is shown in the later discussion, not its
variance.

1
C=——7—+U4 3-7
1/UA, +1/UA, & G7
For the IDA-ICE experiment, the HTC has been estimated to be about 85 W/K
(identified by applying a step function of the space-heating to the IDA ICE model).
The C. can be compared to the effective thermal capacitance Ces. This one has been

evaluated using one daily periodic excitation for the IDA ICE model according to the
standard 13786:2017 [87] (see Paper 3) with a value of 3.9 kWh/K.

For the ZEB Living Lab, Claup et al. [88] evaluated the HTC value of the ZEB Living
Lab to be 83 W/K, which is used as the reference value for the HTC. The Ce range
is taken from the recommended value based on Norwegian NS3031 standard [80],
which gives the typical C. per square meter for lightweight Norwegian construction.

The long-term prediction performance is of the utmost importance if the main
application of the grey-box model is being employed in an MPC. Equation 3-8 gives
the method of calculating the normalized root mean squared error (NRMSE).

NRMSE = ||yk_yk|| (3—8)
| v, —mean(y,) ||
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The NRMSE fitting, defined in Equation 3-9, is used to evaluate prediction
performance. It translates how well the response of the predicted model matches
measurement data. If the fit is 100%, the model perfectly matches the measurement
data, whereas a low or negative fit is a model of lower quality. The NRMSE fitting
value is calculated based on simulation for the deterministic model and one-day ahead
prediction for the stochastic model. In other words, for the stochastic model, the
model selection is made using the one-step ahead prediction while the ability to
perform MPC is evaluated using a one-day ahead prediction.

NRMSE ;, = (1— NRMSE)x100% 3-9)

In addition to the NRMSE fitting value, the mean bias error (MBE) defined by
Equation 3-10 is also used as a complementary index. Theoretically, an MBE value
close to zero is best as this means that the residual of the model has a lower mean bias
error.

1 <« A
MBE = ;ZH =) (3-10)

In practice, the results show that all our models have good MBE properties.
Therefore, this index has been used but is not reported in the thesis.

3.3 MPC experiments setup

The MPC experiments are done with MATLAB and IDA ICE. The co-simulation of
the virtual experiments uses the IDA ICE model in Section 3.1.2 as the emulator. The
time step in the co-simulation is set to 15 min. At each step, IDA ICE first sends the
calculated volume-averaged indoor temperature (T;) of the building to MATLAB.
The MPC controller then takes the prediction of the weather data and the internal heat
gains into the MPC optimization. It generates the optimal control sequence (i.e., the
optimal heating power, Qn) over the prediction horizon. Only the first time step of the
control sequence is sent to IDA ICE to be executed during one time step. After the
first time step is completed, the new state of volume-averaged indoor temperature is
sent back to MATLAB again and a new round starts. The process keeps iterating
within the co-simulation framework until the predetermined simulation period is
completed. A sketch of the co-simulation process is presented in Figure 3-8. Khatibi
et al. [89] have used a similar co-simulation setup in IDA ICE in their study to
investigate the flexibility of the air heating and ventilation system. IDA ICE requires
an initialization period before the temperature difference between the zone to be
realistic. Therefore, a PID control is taken at the beginning of the co-simulation
before starting the MPC. The length of this initialization of the virtual experiment is
set to be a half-day before switching to MPC.
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Figure 3-8: co-simulation experiment setup between IDA ICE and MATLAB.

In the MPC, the minimum indoor temperature limit is set to 20 °C and the maximum
limit is set to 24 °C. There is a night setback for the minimum temperature limit
decreasing from 20 °C to 16 °C from 11 PM to 7 AM. The room temperature bounds
are defined as Equation (3-11). The indoor temperature limits are used as thermal
comfort constraints for the MPC. For the sake of simplicity, the radiator in the IDA
ICE model is assumed to be able to modulate its power by adjusting its part load ratio
(PLR). The total heating power of all the radiators is 3220 W. Thus, the power
constraint of the heating system is from 0 to 3220 W in the MPC.
16T <24ifte(23:00,24:00)

room

T —=<16<T <24ifte(0:00,7:00) (3-11)

room room

20<T, <24ift<(7:00,23:00)

room

3.3.1 Optimal Control Problem Formulation

The thesis investigates the performance of the MPC controllers with three different
control objectives to make sure conclusions do not depend on the objective function.

1) Objective 1 (Energy Savings): Minimize the total electricity use of the heating
system while limiting indoor thermal discomfort at the same time.

2) Objective 2 (Energy Cost Saving): Minimize the total electricity cost of the
heating system while maintaining indoor thermal comfort. The electricity spot
price from Nordpool and the historical weather data for 2019 are used.

3) Objective 3 (Energy Cost Saving with Peak Reduction): Minimize the total
electricity cost and reduce the electricity use during the peak hour of the grid
while limiting indoor thermal discomfort.

The second and third types of MPC are usually called economic model predictive
control (EMPC) in other studies.
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With these control objectives and the defined constraints, the optimal control problem
can be formulated. As previously mentioned, the time step of each control decision is
15 minutes. The prediction horizon of the MPC controller is set to be 24 hours (96
slots, N = 96). The prediction length is a typical value in building MPC
implementation [43,56,58]. The prediction length is also acceptable considering the
computational cost. The equations of the optimization problem are given below.

N-1

Case 1: néinZQh[k] +&[kLe[k]+&,[k1Le, k] (3-12)
k=0

Case 2: néin fch (K10, [k]+ & [k]Le[k]+ &,[k]Le,[k] (3-13)
Case 3: ng)infch[k]Qh[k] +p,[K10,[k]+ & [k]Le [k]+ &, [k]Lé, k] (3-14)
Subject to

x[k +1]= Fx[k]+ Gul[k]+ Kelk], k N(;V*l (3-15)
T, ..[kl1=Cxkl,ke N, (3-16)
Il‘(}]ﬂ/[k] - 81 [k] S 7;}1(1()(}}‘ [k]7 k e N(;V71 (3-17)
Tt KIS T, [K]+ £,[k],k € N (3-18)
0<Q,[k]< O, nunlk]. ke Ny (3-19)
0<g[k];0< e[kl ke N (3-20)

where x[k] is the state vector in discrete-time, F, G and C are the discrete system
matrices trained from the system identification process, u[k] is the input vector in
discrete-time and y[k] is the output. K is the tuned steady Kalman gain of the model.
Q[ k] is the calculated optimal heat power at each step in the prediction horizon, while
Ohmax| k] 1s the max power of the heating system. ¢, [k] and &2[k] are the slack variables
of the soft constraints on the thermal comfort band. L is the weighting factor that is
set to penalize thermal discomfort in the objective function. The soft constraints
enable the solver to avoid infeasible optimization problems by allowing thermal
comfort bands to be violated. ch[k] is the electricity price profile at each slot generated
from the historical electricity price from Nordpool. ph[k] is the penalty cost for using
electricity during peak hours, which is a predefined arbitrary profile that has two
levels.
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Figure 3-9: Electricity and Peak Hour Penalty Cost Profile.

The electricity price profile and the peak hour penalty cost profile are given in Figure
3-9 given in Norwegian Krone [NOK/kWh]. Tino[k] is the predicted indoor
temperature from the prediction model. T).[k] and T,,[k] are the corresponding
temperature boundaries inside the prediction horizon. The receding horizon is
implemented in the MPC, so the above optimization problem is solved at each step
(every 15 minutes) to get the optimal control decision. Then, the initial states of the
control model and weather forecasts are updated with the receded prediction horizon.
Thermal discomfort is not desirable. Thus, the penalty weight factor L of the slack
variables is given with a large value. The baseline penalty weight factor L is set to
108 in this study, but L is also set at 10° in the sensitivity analysis. A solver that can
solve quadratic programming optimization problems is needed due to the quadratic
form of the slack variables ¢; and &. The toolbox YALMIP [90] in MATLAB is used
for the optimization problem formulation, and Gurobi [91] is used to solve the
optimization problem.

3.3.2 Conventional and Adaptive MPC

Two months of simulation are used to investigate the performance difference between
the conventional and adaptive MPCs. The second-order 3R2C grey-box model has
proven to be a suitable trade-off between model complexity and accuracy. Therefore,
this thesis takes 3R2C as the prediction model structure, and details can be found in
Paper 6. The conventional MPC is based on an LTI model and the parameter values
are kept unchanged during simulation. The conventional MPC using three different
LTI models is compared. The FullWinter model is trained with the entire winter
season data where the building is heated using intermittent temperature setpoints. The
two other LTI models are trained using the data from PRBS experiments of
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November and December, respectively, called PRBSNOV and PRBSDEC. Two
candidate adaptive MPC controllers are designed. The two adaptive MPCs take the
FullWinter model as the initialization model. The Partially Adaptive MPC only
updates the effective window area (A;) parameter during the simulation. The effective
window area is a model parameter which is the ratio between the solar gains injected
in a node of the RC model and the total solar irradiation measured on a horizontal
plane (Is1). The main reason to focus on the effective window area is that solar gains
are a dominant factor that influences the model accuracy. Due to cloud cover,
changing altitude and zenith angles of the sun, the effective window area is expected
to change significantly during the space-heating season, especially for high latitudes.
The corresponding pseudo-code for updating the effective window area is presented
in Algorithm 1. The Fully Adaptive MPC updates all seven parameters of the model
during simulation. It gives more degrees of freedom as more parameters can be
calibrated compared to the other adaptive MPC. However, the Fully Adaptive MPC
theoretically takes more time to converge to update the model parameters.
Furthermore, there is a risk of obtaining a set of unphysical parameters due to
insufficient training data (meaning that the model is practically non-identifiable). The
pseudo-code for the Fully Adaptive MPC is presented in Algorithm 2. The summary
of the different cases is given in Table 3-5.

The sliding accumulated error (ErrorS) is used as the index to determine whether a
parameter update is required. The sliding accumulated error is defined as the sum of
absolute prediction error (i.e., the difference between the measurement and the model
prediction at each time step) over the last 12 steps (i.e., 3 hours). The parameter
updating routine is activated when ErrorS exceeds a predetermined threshold. The
threshold is called Errorlndex and is set to 5. A lower Errorlndex means a lower
tolerance for error, which can be tuned based on the application scenario.

Algorithm 1: Pseudo-code for the partially adaptive MPC.

Algorithm 1: Partially Adaptive MPC

Initialize: Set FullWinter as the prediction model for the
Partially Adaptive MPC;

Input: ErrorS;
if ErrorS> Errorlndex
‘ Update the parameter Ai.

else

Keep Ai unchanged.

end
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Algorithm 2: Pseudo-code for the fully adaptive MPC.

Algorithm 2: Fully Adaptive MPC

Initialize: Set FullWinter as the prediction model for the
fully Adaptive MPC;

Input: ErrorS;
if ErrorS > ErrorIndex

‘ Update all parameters of the model.
else

‘ Keep parameters unchanged.

end

It is unreasonable to use short training period data to update the model parameters as
it leads the parameters to be completely unphysical or have large uncertainty. On the
other hand, taking a long period of historical data for retraining is also not optimal
since the adaptive MPC should be able to adapt the parameters for changing operating
conditions. Pushed to the extreme, a very long retraining period will make the
adaptive model converge toward an LTI model. Therefore, the length of the retraining
period for updating the parameters is set to seven days. Preliminary tests have shown
that seven days of data using intermittent on-off heating leads to a model with
physically plausible parameters and fair prediction performance. Given the duration
of the retraining period, the adaptive MPC routines are not able to update parameters
during the first seven days of co-simulation.

Table 3-5: Cases summary of experiments.

Case Excitation Training Period
FullWinter Intermittent on—off 11/1/2019 - 3/31/2020
PRBSNOV PRBS 11/23/2019 - 11/30/2019
PRBSDEC PRBS 12/24/2019 - 12/31/2019

Partially Adaptive MPC MPC operation During operation
Fully Adaptive MPC MPC operation During operation

In the preliminary experimental operation, the deterministic model shows better
prediction performance than the stochastic model when updating parameters with
MPC operation data, which fits the conclusion from the previous study [92]. The
physical plausible properties of the parameters are also monitored in this study, but
the prediction performance of the model is of more importance for MPC
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implementation. Therefore, the deterministic model is used to train the model
parameters to obtain better MPC performance.
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4 RESULTS AND DISCUSSION

This chapter presents the key results of the papers (from Paper 1 to Paper 7) and
answers the corresponding research questions of this thesis. The results have three
main parts, namely modeling (data collection), modeling (model identification) and
control.

Section 4.1 presents the results regarding collecting data for modeling. Paper 1 to
Paper 4 covers the content of this topic, which answers Question 1 to Question 3.
Section 0 shows the results of the grey-box model identification. The content of Paper
1 to Paper 4 answers Question 4 to Question 6. Section 4.3 considers MPC virtual
experiments of the residential building, which answers Question 7. The
interconnections of all the listed papers are shown in Table 1-1 and Figure 1-2.

4.1 Modeling (data preparation)

Q I: Which type, period and duration of the excitation signal are suitable for grey-
box model identification of residential buildings?

In Paper 3, 20 different datasets have been generated using different excitation
signals, duration of the experiment and weather data. Paper 3 is based on virtual
experiments so that parametric runs can be performed only by varying the excitation
signal and leaving the other inputs and boundary conditions unchanged. A description
of the experiments and their abbreviation is given in Table 3-3. Results show that the
intermittent heating with on-off control of the electric radiators is also a good
excitation signal in addition to the PRBS signal. Furthermore, It enables normal
occupancy of the building and the collection of long data series as well as contains
both slow daily and fast dynamics. Results of 3R2C model are taken to answer this
question and more details are illustrated in Paper 3.
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Figure 4-1: Identified HTC of the 3R2C deterministic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.

Figure 4-1 shows the value of HTC for the deterministic model, which is close to the
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reference value of 85 W/K. The data pre-processing technique has no significant
impact on HTC.

As shown in Figure 4-2, the period and type of excitation signal of the training dataset
have the largest influence on C. while data pre-processing has a limited impact. The
value of C. is similar between the four datasets using PRBS excitation (i.e., cases 1
to 4) and is plausible compared to the Cesr of 3.9 kWh/K determined using standards.
However, it differs for case 14, corresponding to the intermittent on-off heating
during the entire space-heating season that generates a higher value, well above 3.9
kWh/K. To further illustrate the influence of the dataset, the values of C. identified
using an intermittent on-off excitation during each month of the space-heating season
are compared, i.e., cases 9 to 13, in Figure 4-3. Even though the excitation signal is
generated from the same control (i.e., intermittent on-off control) and has the same
duration of one month, the identified C. strongly depends on the selected period used
to train the model, meaning the specific month of the space-heating season.
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Figure 4-2: Identified C. of the 3R2C deterministic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.
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The stochastic model is less dependent on the excitation signals. Figure 4-4 shows
that as long as the sampling time is shorter than the system dynamics (i.e., Ts equal
2.5 min depicted by the first black points on the left), the value of C. is independent
of the training period and its variance is limited. The identified values are close to the
Cefr of 3.9 kWh/K, the value of C. is meaningful from a physical point of view. The
same phenomenon is observed for the value and variance of C; in Figure 4-5.
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Figure 4-4: Identified C. of the 3R2C stochastic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.
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Figure 4-5: Identified C; of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different
sampling times and pre-filtering techniques; cases with ACS are shown by triangles in
lighter colors.

Even the parameters of the stochastic model are less dependent on the datasets. The
parameters trained from different periods are not identical, which will cause the
simulation performance from different sets of parameters will be different. This is
also confirmed by the results from Paper 1 and Paper 4. The NRMSE fitting of the
training dataset is always higher than the validation dataset. Thus, there is no period
that is better than others for training the model parameters. It is impossible to use only
one set of parameters for the grey-box model that can cover the full winter due to
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large variations of complex weather conditions. This conclusion supports the need to
investigate adaptive models (Q 7).

In conclusion, the identified parameters are strongly dependent on the types of
excitation and the training period for deterministic models. Both the type of excitation
(e.g., PRBS and intermittent on-off excitation) and the selected period during the
space-heating season influence results. However, the identified parameters are less
dependent on excitation signals for stochastic models.

Q 2: Influence of temperature sensor location and dynamics on the grey-box
modeling results?

Paper 2 and Paper 4 present the results of the influence of temperature sensor location
and dynamics on the grey-box modeling. All the datasets used and their
corresponding abbreviations are given in Table 4-1.

Table 4-1: Description of the datasets and their corresponding abbreviations from ZEB

Living Lab.
Case Sensor St?nsor node Dataset Use
in model
T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation
T1Exp3 Volume-averaged temperature (T1) No Experiment3  Validation
T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training
T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training
T3Exp4 Single wall-mounted temperature sensor (T3) No Experiment 4 Training
T4Exp4 Single wall-mounted temperature sensor (T4) Yes (1) Experiment 4 Training
T5Exp5 Single wall-mounted temperature sensor (T5) No Experiment 5 Training
T6Exp5 Single wall-mounted temperature sensor (T6) Yes (1) Experiment 5 Training

Paper 2 is based on multi-zone virtual experiments in IDA ICE. It compares the model
performance when the indoor temperature is taken as the volume-averaged air
temperature or the exhaust ventilation air temperature. Simulation results from
extracted air temperature show a slightly higher simulation NRMSE fitting value for
the original training dataset. However, models trained with extracted air temperature
show much worse simulation NRMSE fitting compared with volume-averaged
temperature for the entire space-heating season data (FHS dataset). Thus, the volume-
averaged air temperature is a more balanced choice of representative indoor
temperature. In conclusion, even though this is a common choice in the literature, the
exhaust air temperature is not always the best option to train the model and this
conclusion could be even more severe if all the internal doors inside the building were
closed. Then, large temperature differences can be created between the thermal zones

52



RESULTS AND DISCUSSION

in the building and the exhaust ventilation air temperature may not be a good
approximation of the average indoor temperature between the rooms.

Paper 4 identifies deterministic and stochastic models with data from ZEB Living
Lab. Most of the results presented are based on the datasets with the electric heaters
(i.e., Experiments 2 to 4) with the 3R2C model.
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Figure 4-6: Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto) models
using Experiment 4 and different types of temperature measurement (Smin).

In the description of experiments, it has been shown that the indoor temperature is
dependent on the type of measurement, see Section 3.1.1. Consequently, Figure 4-6
and Figure 4-7 compare the identified value of two key indicators (HTC and C.) for
the different types of temperature measurement, still using a sampling time of 5
minutes. For the deterministic model, the difference in temperature measurements
has a limited influence on the identified model parameters. However, for the
stochastic model, the identified HTC value using the baseline 3R2C model and the
single wall-mounted temperature sensor is much larger than the reference HTC value.
Furthermore, the variance of C. is also extremely large. Thus, the time constant of the
wall-mounted sensor dynamics has a large impact on the stochastic 3R2C model. This
conclusion is also confirmed by the cumulative periodogram of the residuals in Figure
4-8, which shows that the baseline 3R2C model with the wall-mounted sensor does
not describe the system dynamics (between 0.4-1.4 x 102 Hz). As introduced in
Section 3.4, an adapted model with a time constant for the sensor is added to the
original 3R2C model. This adapted model improves the results since the parameters
become physically plausible again. In addition, the cumulative periodogram of the
residuals confirms this conclusion (see dataset T4Exp4). Furthermore, the one-day
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ahead prediction comparison in Figure 4-9 also shows a significant improvement
from the 3R2C adapted with a sensor time constant compared to the original baseline
3R2C model. The identified time constant (t) has a value of 8.28 minutes, thus being

larger than the sampling time.
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Figure 4-7: Comparing the Ce of the 3R2C deterministic (det) and stochastic (sto) models
using Experiment 4 and different types of temperature measurement (5 min).
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Figure 4-8: Cumulative periodogram of the residuals of the model 3R2C for different types
of indoor temperature measurement.
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Figure 4-9: Comparing the one-day ahead prediction of the 3R2C stochastic (sto) models
with different types of temperature measurement, trained using Experiment 4 and validated
using Experiments 2, 3.

The air temperature was only measured using the wall-mounted sensors for the
experiment using the hydronic radiator (i.e., Experiment 5). As it has been proven
that the sensor node was necessary for the modeling, only the performance of the
adapted model with the T parameter is analyzed. Unlike the electric heater, the thermal
dynamics of the hydronic radiator are significant. The analysis of the measured inlet
and outlet temperatures of the hydronic radiator showed that its time constant is about
7 minutes. A priori, like the wall-sensor, it is expected that the hydronic radiator
dynamics should influence the model performance, at least for a sampling time of 5
minutes (< 7 minutes). However, the wall-mounted temperature sensor has a time
constant of about 8 minutes. Consequently, the dynamics of the hydronic radiator
cannot be properly captured by a grey-box model since the time constant of the wall-
mounted sensor is comparable (or slightly larger) than the time constant of the
hydronic radiator. The analysis of the cumulative periodogram (not reported here for
the sake of conciseness) shows that the adapted 3R2C can model the building heated
using the hydronic radiator without the need to add a specific capacitance to model
the hydronic radiator. In addition, preliminary results with an additional capacitance
proved that the resulting model would be overfitted.

The experiments with the hydronic radiator and the electric heater have been
performed in different years and different months of the heating season, leading to

55



RESULTS AND DISCUSSION

different sun elevations between the experiments. The identified effective window
area A; is thus expected to be significantly different for Experiment 5 and
Experiments 2 to 4. However, thermal properties that are intrinsic to the building
fabric and less dependent on the outdoor conditions are used to analyze the model
performance in Experiment 5, namely the HTC and C. (Figure 4-10). The identified
HTC is still close to the reference value. Unlike the experiments with the electric
heater, there is no significant difference between the baseline and adapted 3R2C
models.
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Figure 4-10: HTC and C, for the 3R2C stochastic model using Experiment 5 and different
data pre-processing techniques.

The improvement resulting from the adapted model and ACS is more visible when
analyzing C.. Again, the HTC translates into a steady-state performance while the
capacitances are inherently related to the building dynamics. With the baseline 3R2C
model, the estimated Ck is entirely non-physical. The results are noticeably improved
with the adapted 3R2C model with a sensor node. The experiment with the hydronic
radiator confirms the positive influence of the adapted model with 1. In conclusion,
the thermal dynamics of the temperature should be modeled, but the dynamics of the
hydronic radiator are due to its shorter time constant.

Q 3: Influence of data pre-processing on the grey-box modeling results?

Paper 3 and Paper 4 answer this question by applying a low-pass filter, resampling or
a time shift of the input data, called anti-causal shift (ACS), with data from IDA ICE
and the ZEB Living Lab, respectively.

The results of Paper 3 (Figure 4-1 to Figure 4-5) have proved that data pre-processing
has limited influence on the deterministic model with virtual experimental data from
IDA ICE. The results based on the data from ZEB Living Lab also confirm this
conclusion (Paper 4). Figure 4-11 presents the identified parameters results for the
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deterministic model using different types of temperature measurement and data pre-
processing in the ZEB Living Lab.

The identified values of HTC show that no matter which type of temperature sensor
is used for the identification, the HTC value is not significantly influenced by the pre-
filtering method and ACS. The value is close to the reference value of ~83 W/K. The
sampling time (Ts) does not have a noticeable impact on the HTC value.
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Figure 4-11: Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4
with different types of temperature, data pre-processing techniques.

The identified values of C. give similar conclusions as the HTC value. The value of
C. is plausible for most of the cases since it is within the typical range (i.e., 3.4-6.5
kWh/K) given in standards [93]. The low-pass filtering and the ACS only have a
slight impact on the results. With direct sampling, the C. values are slightly outside
the reference range when the sampling time is large (from 30 minutes). These
conclusions are confirmed by the analysis of the effective window area A; (related to
the influence of solar radiation).
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In conclusion, the pre-processing of data does not have a large influence on
deterministic models. Neither the ACS, the pre-filtering technique nor the sampling
time leads to a significant change in the parameter values. The only exception appears
with very large Ts. Then, the pre-filtering can prevent the parameter value from
becoming non-physical. The HTC characterizing the steady-state performance of the
building has rather stable values while the other parameters characterizing the thermal
dynamics of the building, here C. and C;, are more strongly impacted by the training
dataset and the sampling time.

Data pre-processing has a more significant influence on the stochastic model. Based
on Paper 3 and virtual experiments, the value for HTC for the 3R2C stochastic model
in Figure 4-12 is similar to the deterministic model in Figure 4-1. As for the
deterministic model, large sampling time can lead to a non-physical value of the HTC.
While all the pre-filtering prevented the value from becoming non-physical for the
deterministic model, only the moving-average filter and the ACS have the same effect
for the stochastic model.
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Figure 4-12: Identified HTC of the 3R2C stochastic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.

The value and variance of Ce from Paper 3 are shown in Figure 4-13. As long as the
sampling time is shorter than the system dynamics (i.e., Ts equal 2.5 min), the value
of Ce is independent of the training period and its variance is limited. Close to the
Cefr of 3.9 kWh/K, the value of C. is meaningful from a physical point of view. When
the sampling time increases, the behavior should be distinguished with and without
the application of an ACS. When the ACS is applied, the value and variance of C. are
regular even with large sampling time. The ACS has a strong positive effect on the
physical plausibility of C.. With ACS, pre-filtering has a limited influence on the
results. Without ACS, the parameter value and variance become erratic with
increasing Ts. Some values are so high that they fall outside the y-axis limit of the
graph. In addition, no clear trend can be found on the influence of the pre-filtering
and training period.
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Figure 4-13: Identified C. of the 3R2C stochastic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.
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Figure 4-14: Identified C; of the 3R2C stochastic model for the cases 1,2,3,4 and 14,
different sampling times and pre-filtering techniques, cases with ACS are shown by
triangles in lighter colors.

The same phenomenon is observed for the value and variance of C; in Figure 4-14.
Nonetheless, there is one aspect that differs from C.. As for the deterministic model
with ACS, the values of C; with the corresponding stochastic version also tend to
increase with the sampling time. However, C; is related to the fast dynamics of the
building with a time constant below one hour. Therefore, it is not surprising that C; is
influenced by the sampling time when it is changed from 5 minutes to one hour.

From all the results of the stochastic models, several conclusions can also be drawn.
First, the identified parameters are strongly dependent on the sampling time. The
identified parameters are always consistent if the T; is taken small compared to the
shortest time of the system Twmin (influenced by the excitation). It is only when T gets
equivalent or larger than the building dynamics that the parameters get non-physical
without ACS, especially the thermal capacitances. The second conclusion is that ACS
prevents the parameter value and variance from getting non-physical for large Ts.
With ACS, the uncertainty of the parameters remains limited and their value remains
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physically plausible. Pre-filtering only has limited influence with ACS while the pre-
filtering influence without ACS does not show a clear trend, sometimes improving or
degrading results. Finally, like the deterministic model, the steady-state
characteristics HTC are less influenced by the dataset and pre-processing than the
thermal capacitances. The conclusions are also validated by the field experiments of
Paper 4.
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Figure 4-15: Comparison of the simulation performance of the deterministic and stochastic
3R2C models trained on the dataset 14 without ACS and validated using the other datasets.

The simulation performance of the grey-box models, analyzed here using the NRMSE
fitting, is another important aspect of system identification. Figure 4-15 from Paper
3 compares the simulation performance of the deterministic and stochastic models
without ACS. For different Ts and pre-filtering approaches, the deterministic model
has a more constant simulation performance than the corresponding stochastic model.
For the deterministic model, the NRMSE fitting tends to decrease slightly with
increasing Ts while it tends to increase for the stochastic models (except for the
PRBS3 case). The deterministic model generally has a better simulation performance
than its corresponding model in stochastic form even though this difference tends to
disappear for large T;. This conclusion is noteworthy as for deterministic models the
value of the parameters is significantly influenced by the training period and some of
the values are not even physically plausible. In other words, identifying a model with
parameters that have a more physical value does not necessarily lead to a model with
better simulation performance. If one is not interested in the characterization of the
thermal properties but rather the simulation performance (like in MPC), results
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suggest that deterministic models can be more robust than stochastic models as they
are less sensitive to the data pre-processing. As it will be shown in the answer of Q5
in Section 4.2, this also makes the resolution of the optimization problem to calibrate
the model easier (as both local and global optimizers lead to the same parameters). In
addition, it has been shown that pre-filtering techniques and T, have a limited effect
on model performance. This conclusion is important in the context of the design of
MPC for small residential buildings where a control model should be identified at a
low cost, potentially using a fully automated procedure.
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Figure 4-16: Comparison of the simulation performance of the stochastic 3R2C model with
and without ACS, trained with the dataset 14 and validated with datasets 1 to 4.

Figure 4-16 of Paper 3 compares the simulation performance of the stochastic model
with and without ACS. While the ACS tends to improve the physical plausibility of
the model parameters and positively influence the optimization problem (as it will be
shown in Section 4.2), the influence of ACS on prediction performance is not
systematic for the stochastic model. It generally has a negative influence on the
simulation performance of the model for the data from virtual experiments. As
already mentioned, the NMRSE fitting generally increases with Ts for the stochastic
models without ACS. This increase is less pronounced for the stochastic model with
ACS even though the physical plausibility of the parameters has been improved. Two
conclusions can be given. Firstly, it confirms that parameters that are more physically
plausible do not necessarily lead to better simulation performance. Here, with large
Ts and without ACS, the value of some parameters, such as Ce in Figure 4-13, is non-
physical but it nonetheless leads to better simulation performance. Secondly, the ACS
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showed to be a robust solution to characterize the thermal properties of the building
and the resolution of the optimization problem. However, it appears from our
investigations that the ACS comes at the price of lower simulation performance.
Finally, none of the approaches investigated here manages to combine high physical
plausibility and the highest simulation performance at large Ts. This is partly
confirmed by the ZEB Living Lab field experiments in Paper 4, the ACS is beneficial
to get physically-plausible parameters for large T but its influence on the prediction
performance is not systematically negative unlike virtual experiments (i.e.,
sometimes positive or negative). The details of the results can be found in Paper 4.

4.2 Modeling (train parameters)

Q 4: What are the most suitable grey-box model structures for residential
buildings?

The best trade-off between model accuracy and overfitting for a mono-zone model is
second-order with the available data of our case study. This is in line with the
conclusions from the literature review in Section 2.2. Even though the literature
review also suggests that third-order models should also be appropriate.

Paper 1 and Paper 4 investigate the performance of grey-box models based on the
knowledge of the building physics or using a generic model structure based on the
standards EN 13790 and VDI 6007.

The discussion is first based on Paper 4 using experimental data from the ZEB Living
Lab for both deterministic and stochastic grey-box models. Results are summarized
in Table 4-2. The results show that the first-order 1R1C model is not enough to
describe the heat dynamics of the building for neither the deterministic nor the
stochastic models. This is confirmed by the cumulative periodogram of the residuals
for the stochastic models in Figure 4-17. The cumulative periodogram falls largely
outside the confidence interval, which indicates poor white noise properties of the
residuals. The building thermal dynamics typically has two times constants for the
fast (< 1h) and slow (> 24h) dynamics. A first-order model with a single time constant
cannot reproduce both dynamics.

However, the second-order models, namely the 2R2C and 3R2C, show significant
improvement in the NRMSE fitting compared to the first-order 1R1C model. The
cumulative periodogram of the residuals also stays strictly within the confidence
interval (see Figure 4-17). The difference between the 2R2C and 3R2C model lies in
the thermal resistance Uinr that connects the interior node directly to the outdoor
temperature (T.). This resistance account for the heat transfer of envelope
components with negligible thermal mass, such as doors and windows, and the
ventilation losses. When using experimental data in the ZEB Living Lab, the
ventilation losses were precomputed using measurement data and injected directly
into the interior node. Therefore, ventilation losses do not contribute to Uixrin this
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situation. In addition, the windows and doors of the highly-insulated ZEB Living Lab
also have low conductance. Consequently, the value of Ui, remains relatively limited.
This explains why 2R2C model is competitive for the ZEB Living Lab. However,
this conclusion should be carefully generalized to other insulation levels of the
building envelope or if ventilation losses are part of Uins.

Although the third-order models (3R3C to 5SR3C) sometimes present better NRMSE
fitting with the deterministic model, the identified parameters are not physically
plausible for the deterministic model. The capacitance of the interior node C; has a
larger value than the value of the internal walls node Cp,, which does not translate the
actual physics. Furthermore, for the 4R3C and 5R3C stochastic models, the UAc,
value is identified as close to 0, which also violates reality (as external walls are not
perfectly insulated). Regarding the cumulative periodogram of the residuals, the
5R3C is outside the confidence interval while the 3R3C and 4R3C models remain
within the confidence interval but do not perform better than the second-order
models. The variance of the key parameter C. also shows that the third-order models
could lead to large values with deterministic models, which implies that the third-
order models may be overfitting. Furthermore, the variance of C. for the stochastic
model also shows that the component UAjx¢is necessary to be modeled. Finally, the
objective function during the successive PSO iterations is plotted along with the
parameter value in Paper 4. The scatter plots for parameters C. and A; for second-
order and third-order models can also be found in the supplementary material of the
paper. It is observed from the scatter plots that the optimum is flatter with third-order
models, which corresponds to lower practical identifiability of the models. It can be
concluded that the third-order models are (or are close to being) overfitted. The fitting
of validation NRMSE fitting also confirms that the second-order model is the best
trade-off between model complexity and accuracy.

The discussion is not extended with the results of Paper 1, also using the ZEB Living
Lab but only considering deterministic models. Regarding grey-box models based on
standards, the EN 13790 is a first-order model. The results show that the EN 13790
model is able to follow the general evolution of the indoor temperature and provides
meaningful values of the parameters. However, the simulated temperature has
significantly higher fluctuations directly corresponding to the start and stop cycles of
the electric radiator. It is consistent with the previous conclusions that a first-order
model is not able to capture the fast dynamics of the building. The VDI 6007 model
is a second-order model but has six nodes and a relatively high number of parameters
(i.e., resistance to connect the node and factors to distribute the internal, heating and
solar gains between the nodes). It has a good prediction performance, but it generates
parameter estimates that are physically not plausible. Consequently, the number of
parameters of this model needs to be reduced to make the model identifiable.

On the one hand, Paper 4 demonstrated that a relevant model structure could be
derived based on the knowledge of building physics without resorting to structures
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defined in building energy simulation standards. On the other hand, Paper 1 showed
that the model structure of two important standards, the EN 13790 and VDI 6007,
should be adapted to give good performance. Based on these conclusions, it suggests
that there is no need to resort to existing model structures from building energy
simulation standards to identify good structures for grey-box models.

Table 4-2: The values and the corresponding variance of C..

Ce C. NRMSE NRMSE C. Ce NFI.?SE NRMSE
Model Value Variance Fitting Fitting Model Value Variance 11 1ng Fitting
[KWhK] [KWWK] (simulation)  (validation) [kWhK]  [kWHK] gh‘:;fg (validation)
IR1Cdet 5.62 0.754 72.7% 55.1% IR1Csto 478 0437 99.0% 65.7%
2R2Cdet 6.11 0.369 93.0% 75.3% 2R2Csto 6.37 1.77 99.2% 79.2%
3R2Cdet 528 0.284 93.6% 79.7% 3R2Csto 422 0.748 99.2% 81.8%
4R2Cdet 5.40 0.430 93.5% 72.4% 4R2Csto 428 0.726 99.2% 81.5%
3R3Cdet 6.08 0.689 95.0% 78.6% 3R3Csto 119 3.92 99.2% 71.1%
4R3Cdet 3.94 0.609 95.3% 75.6% 4R3Csto 4.02 0.709 99.2% 82.7%
5R3Cdet 3.99 0.613 95.3% 76.0% 5R3Csto 573 0.718 99.2% 79.8%
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Figure 4-17: Cumulative periodogram of the residuals for the stochastic models.
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In conclusion, second-order grey-box models are most suitable for our study as the
prediction performance and the physical plausibility are good. In addition, the
dominant physical processes are properly modeled as proven by the cumulative
periodogram. The second-order models are selected in the thesis as they are accurate
but not overfitted.

0 5: Influence of the optimizer on the grey-box modeling results?

Paper 2 and Paper 3 mainly address this question by comparing the performance of
grey-box models calibrated using the default gradient-based optimization and a global
optimization routine. The question is discussed in detail in Paper 3 with low-order
grey-box models. The performance of both optimizers defined is compared for a
selected number of datasets (i.e., cases 1 to 4 and 14), with and without ACS, for both
deterministic and stochastic models. Table 4-3 shows the optimizer that leads to the
lowest prediction error for each test case. The symbol “D” represents the default
greyest function, “G” represents the two-stage global optimization algorithm. The
symbol “~” is used when both optimizers lead to extremely close results in terms of
prediction error and estimation of the model parameters. Only results for the sampling
times of 2.5 and 30 min are presented in Table 4-3. However, the same conclusions
are found for the other two sampling times (i.e., 15 and 60 minutes).

Table 4-3: Optimizer leading to the lowest prediction error: each cell of the table has two
symbols, one for the case without ACS (left) and the other with ACS (right); the symbol “D”
means default greyest, “G” means global optimization and “=” means equal performance.

1IRIC 1RIC 1R1C 3R2C 3R2C 3R2C 1RIC 1RIC 1RIC 3R2C 3R2C 3R2C

Time Case DS MA FIR DS MA FIR DS MA FIR DS MA MA
a9 (det) (det) (det) (det) (det) (det) (sto) (sto) (sto) (sto) (sto) (sto)
2.5min 1 == - - /= - - G/= - - G/=
2 = - - o - - Gl= - - G~
3 == - - /= - - Gl= - - Gl=
4 == - - =/~ - - G/~ - - G/~
14 == - - == - - G/= - - G/=
30min 1 /= /= /= /= /= == G/= G/= G/= G/= G/= G/=
2 /= /= /= /= /= /= G/= G/= G/= G/= G/= G/=
3 =/= =/= == == =/= == G/= G/~ G/= G/= G/= G/~
4 /= /= /= /= /= =/ G/= G/= G/= G/= G/= G/=
14 /= /= /= /= /= /= G/= G/= G/= G/= G/= G/~
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It is observed that the two optimizers have identical results for all the cases using a
deterministic model, regardless an ACS is applied or not. However, global
optimization generally performs better than the default greyest optimization for
stochastic models without ACS, even if the model is first order. On the contrary, both
optimizers have similar performance when ACS is applied. It means that ACS tends
to preserve the physical plausibility of the model parameters when T is large, but it
also positively influences the convexity of the optimization problem. In general,
results confirm that it is better to use global optimization. Otherwise, the obtained
sets of parameters are possibly located at a local minimum which mainly depends on
the initial guess of the parameters.

Q 6: Prediction performance of grey-box compared to black-box models?

Some results of Paper 1 can give some indications to this question for deterministic
models. The second-order subspace linear black-box model shows a good simulation
performance equivalent to the second-order linear grey-box model. Nevertheless,
with black-box models, the physical meaning of the states is unknown. However, the
estimate of the overall heat transfer coefficient is similar between the second-order
black-box and the best grey-box models. It is worth mentioning that these
investigations were performed with high-quality input-output data. In addition,
experiments corresponding to the validation data set took place a few days after the
training period. The relative performance of black-box and grey-box models could be
different if these experimental conditions were not fulfilled. The results nonetheless
suggest that black-box models deserve to be investigated in detail to create a control-
oriented model with limited knowledge of the building and a limited amount of time.
In this respect, it is worth mentioning that Knudsen et al. [54]successfully tested an
economic MPC in the ZEB Living Lab using a linear black-box model identified
using the subspace method (n4sid in MATLAB).

4.3 Model Predictive Control

Q 7: What is the performance MPC using LTI and adaptive grey-box models and
other types of data-driven models?

This question is mainly answered in Paper 5 and Paper 6 based on grey-box MPCs.
Limited results in Paper 7 are given based on the comparison between different types
of data-driven models for MPC.

4.3.1 MPC based LTI vs adaptive grey-box models

Paper 6 answers the question by comparing the performance of the different MPC
controllers for the three different control objectives. Therefore, the co-simulation
results are evaluated successively based on the control objectives. The co-simulation
virtual experiment lasted for 61 days (from November 1 to December 31%). The
trained parameter values of the three LTI models are shown in Table 4. As can be
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seen, the HTC and A are significantly different for the LTI model identified using
the FullWinter data than the two LTI models using the PRBS excitation signal.

Table 4-4: Trained parameter values of the LTI models

Case HTC [W/K] Ce [KWhH/K] Ci [KWh/K] Ai[m?]
FullWinter 81.42 4.03 0.33 6.09
PRBSNOV 96.43 4.81 0.42 16.96
PRBSDEC 94.25 4.93 0.41 15.94

Energy savings (ES)

Energy savings is the most basic control objective of this study. Figure 4-18 presents
the indoor temperature profile under the operation of the different MPC controllers
using the energy savings control objective. Figure 4-19 is a close-up section of Figure
4-18, for both L = 10® and L = 10° penalty factors. The total energy use and the thermal
discomfort of those different MPC controllers with different penalty factors are
calculated so that the MPC controller performance can be quantitatively compared in

Table 4-5.

Table 4-5: Summary of the MPC performance for the energy saving case

Calculated  FullWinter PRBSNOV PRBSDEC  Lartially Fully — Penalty
Index MPC MPC MPC Adaptive Adaptive  Factor
MPC MPC (L)
Energy Use 800.15 829.26 853.42 799.14 864.22 106
kWh] . . . . .
Thermal
Discomfort 554.52 279.51 120..81 567.95 103.99 10
[Kh]
Consumed 803.73 855.18 875.60 804.06 893.62 108
Energy [kWh] ’ ’ ’ ’ ’
Thermal
Discomfort 534.39 194.37 99.47 528.87 72.04 108
[Kh]
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Figure 4-18: Indoor temperature profile under the operation of different MPC controllers
with energy saving objective (L = 10°).

Results show that the FullWinter model makes inaccurate indoor temperature
predictions, which causes the thermal comfort constraint to be frequently violated.
The Partially Adaptive MPC shows a similar inaccurate prediction compared to the
FullWinter MPC. The thermal comfort constraint is still frequently violated. With the
lower penalty factor 10°, the thermal discomfort of Partially Adaptive MPC is even
larger than the FullWinter MPC. These two models consume less energy compared
to the other models (i.e., the Fully Adaptive MPC and the PRBS MPC) because they
are less accurate, which causes the indoor temperature to drop below the minimum
indoor temperature threshold. The heating system is switched on far too late in the
morning, resulting in significant thermal discomfort. It indicates that the LTI grey-
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box model trained using the data from the full space-heating season may not be

suitable as the prediction model in MPC. Only updating the effective window area of

the FullWinter model cannot correct the model to reach a satisfactory prediction.
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Figure 4-19: Close-up of the indoor temperature profile under the operation of different
MPC controllers with energy savings objective (Upper figure corresponding to 10°, Lower
figure corresponding to 10°).

PRBSNOV MPC and PRBSDEC MPC perform better than the FullWinter and
Partially Adaptive MPC models in terms of avoiding thermal discomfort, which can
be clearly seen in Figure 4-18 and Figure 4-19. PRBSDEC MPC performs slightly
better than PRBSNOV MPC in terms of thermal comfort leading to slightly higher
energy use. The influence of the penalty factor on PRBSNOV MPC is more evident
than the PRBSDEC MPC. The better performance of PRBSNOV MPC and
PRBSDEC MPC over the FullWinter MPC proves that it is important to use a model
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that is trained with data generated from weather conditions similar to the period when
the MPC will be operated.

The Fully Adaptive model performs the best among the MPCs in avoiding thermal
discomfort, which can be clearly seen in Figure 4-19. The PRBSDEC MPC performs
slightly better than the Fully Adaptive MPC with a lower penalty factor 10° mainly
because the Fully Adaptive MPC operates with the FullWinter model in the first
seven days. The Fully Adaptive MPC performs much better than the Partially
Adaptive MPC due to more degrees of freedom to fit the model parameters.

Energy cost saving (EMPC)

An hourly electricity price profile is applied to the energy cost saving case. The total
energy cost is the consumed energy at each time slot multiplied by the corresponding
electricity price. Figure 4-20 shows the indoor temperature profile under the operation
of different MPC controllers with the energy cost saving objective (with a penalty
factor L = 10%). Figure 4-21 is a close-up section of Figure 4-20 for the two penalty
factors. The summary of the results of the total energy cost and the thermal discomfort
for these different MPC controllers with different penalty factors is presented in Table
4-6.
Table 4-6: Results summary of MPC controllers' performance for energy cost saving
(EMPC) case

Calculated  FullWinter PRBSNOV PRBSDEC  rartially Fully — Penalty
Index MPC MPC MPC Adaptive Adaptive  Factor
¢ MPC MPC (L)
Energy Cost 6
INOK] 319.54 327.15 336.93 319.56 341.75 10
Thermal
Discomfort 453.93 216.76 96.84 462.61 79.74 106
[Kh]
Energy Cost 328.56 334.77 342.51 326.32 353.89 108
INOK] . . . . .
Thermal
Discomfort 210.74 164.93 86.30 247.05 50.68 108
[Kh]

The results of the EMPC cases show that all the EMPCs can respond to the variable
electricity price. The sharp drop in the indoor temperature during high electricity
price periods (e.g., around 460 and 770 hours) reveals that the heating system is
switched off to decrease the energy cost. However, the performance differs between
the controllers due to different levels of prediction accuracy.
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Figure 4-20: Indoor temperature profile under the operation of different MPC controllers
with energy cost saving objective (L = 10°).

Like the energy savings case, the FullWinter MPC and the Partially Adaptive MPC
perform the worst. The thermal comfort constraint is frequently violated, which
indicates that the prediction from the model is not accurate enough. It confirms that
only updating the window area of the FullWinter model is not enough to reach good
MPC performance. Although they have a relatively lower energy cost compared to
the other models, this is a direct result of the large thermal discomfort of the two MPC
controllers. Regarding the sensitivity to the penalty factor for these two cases,
increasing L can decrease the discomfort of the two models, but it still remains at a
comparatively high level. Furthermore, the Partially Adaptive MPC generally has a
higher discomfort level than the FullWinter model, no matter whether a high or a low
penalty factor is used. The reason is that the estimated effective area A; of Partially
Adaptive MPC is higher than the FullWinter MPC in most of the operation time,
which leads to a higher heat gain from solar radiation. The HTC value of the
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FullWinter MPC is lower than the reference true HTC value of the IDA ICE building
is higher than the HTC value of the FullWinter model, causing an underestimated
heating demand. However, the A; value of the FullWinter MPC is also lower than the
other LTI MPC, which corresponds to lower estimated solar heat gains. It neutralizes
the effect of underestimated heating demand to a certain degree. Therefore, the
correction of solar heat gain from Partially Adaptive MPC has a negative impact on
thermal comfort for this case study. Partially Adaptive is not able to preheat the
building enough because of the higher prediction of the solar gain compared to the
FullWinter model, which causes a higher thermal discomfort level.
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Figure 4-21: Close-up of the indoor temperature profile under the operation of different
MPC controllers with energy cost saving objective (Upper figure corresponding to 109,
Lower figure corresponding to 10°).

The PRBSNOV MPC and PRBSDEC MPC models perform better than the previous
two models in reducing thermal discomfort. The PRBSDEC MPC performs better
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than PRBSNOV MPC for the EMPC case, which is similar to the energy savings
case. The results of PRBSNOV MPC and PRBSDEC MPC confirm that it is
preferable that use a model trained on data from similar weather conditions to the
operation period.

The advantage of the Fully Adaptive model is more evident in the energy cost saving
case. The thermal discomfort is lowest among the controllers, though it leads to a
higher electricity cost. It can be clearly seen from Figure 4-20 and Figure 4-21 that
the minimum indoor temperature constraint is less frequently violated. This proves
that the Fully Adaptive MPC functions well for the control objectives of this case.

In general, the results of the energy cost saving case are very similar to the energy
savings case. It is also not suitable to use the FullWinter model as the prediction
model for EMPC, and only updating the effective window area of the model is not
enough to correct the prediction model. The two PRBS models perform worse than
the Fully Adaptive model due to less accurate prediction. In other words, the building
is not preheated enough in the low electricity price period. The results of the Fully
Adaptive MPC with L = 10° and the best LTI model (namely the PRBSDEC MPC)
with L = 10® also confirm that if the energy cost is at the same level, the Fully
Adaptive MPC has lower thermal discomfort. It proves the extra higher energy cost
of the Fully Adaptive MPC is used for reducing thermal discomfort.

Energy cost saving with peak reduction (EMPCPR)

The energy cost saving with the peak reduction case is simply generated by adding a
penalty for energy use during the peak hour to the EMPC case. Figure 4-22 shows
the indoor temperature profile using the different MPC controllers with the energy
cost saving and peak power reduction objective (with a penalty factor L = 10®). The
peak hour penalty is added to the hourly electricity price profile to reconstruct the
new cost profile, which is also shown in Figure 4-23. The electricity energy cost is
still the energy used at each time step multiplied by the corresponding electricity
price. The total cost is the electric energy cost plus the peak hour penalty cost.

The MPC controllers are switched off in the heating system during high price periods
(e.g., at about 460, 770 and 950 hours) to decrease the total cost, which can be seen
from the decrease in the indoor temperature.
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Table 4-7: Results summary of MPC controllers' performance for energy cost saving
(EMPCPR) case.

Calculated  FullWinter PRBSNOV PRBSDEC ia”‘a.“y AF“HY l;e“a“y
Index MPC MPC MPC daptive daptive actor
MPC MPC L)
Energy Cost 6
[NOK] 328.67 330.36 338.94 328.17 350.06 10
Total Cost 6
[NOK] 405.38 384.13 403.31 408.80 379.77 10
Thermal
Discomfort 312.18 169.55 81.12 311.81 45.13 100
[Kh]
Peak Hour 6
Energy [KWh] 38.36 26.89 32.19 40.31 14.86 10
Energy Cost 3
[NOK] 327.53 345.13 348.70 325.81 355.80 10
Total Cost 3
[NOK] 396.37 420.98 430.05 397.32 410.36 10
Thermal
Discomfort 200.11 96.51 44.98 220.24 30.51 108
[Kh]
Peak Hour 3
Energy [kWh] 34.42 37.92 40.67 35.76 2728 10

Results show that the FullWinter and the Partially Adaptive MPCs are still
performing poorly in the case of EMPCPR. Large thermal discomfort is still
occurring due to the inaccurate prediction of the model. It can be clearly seen in
Figure 4-23 that the two MPC controllers choose to switch off the controller at the
high price periods, even though the minimum indoor temperature constraint is
violated. It consolidates the conclusion based on the previous two cases. An LTI
model trained from full winter data is not appropriate to be used as the prediction
model for MPC control. Only updating the effective window area of the FullWinter
model leads to higher thermal discomfort, which is similar to the previous EMPC
case. The explanation for this phenomenon is the same as the EMPC case. Increasing
the penalty factor L can significantly reduce the thermal discomfort of these two
MPCs.

Similar to the previous two cases, the PRBSDEC MPC performs slightly better than
the PRBSNOV MPC in terms of thermal comfort. However, the PRBSDEC MPC
causes an increased total cost and more peak hour electricity usage. In general, the
two models generally have much better performance compared to the FullWinter and
the Partially Adaptive MPCs. It proves again that it is necessary to have training data
with similar weather conditions compared to the MPC operating period.
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Figure 4-22: Indoor temperature profile under the operation of different MPC controllers
with energy cost saving and peak reduction (L = 105).

The EMPCPR case clearly shows that the Fully Adaptive MPC outperforms the other
MPCs. For the previous test cases, the best MPC based on LTI that could compete
with the Fully Adaptive MPC was the PRBSDEC MPC. However, in the EMPCPR
case, the Fully Adaptive MPC gives better performance for all the KPIs than the
PRBSDEC. For both penalty factors: the thermal discomfort, the total cost and the
energy use during peak hours are lower. By comparing the results of the Fully
Adaptive MPC with L = 10° and the best LTI model (PRBSDEC MPC) with L = 108,
it can be seen that the total cost of the Fully Adaptive MPC has a much lower value
when the thermal discomfort level is almost identical.
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Figure 4-23: Close-up of the indoor temperature profile under the operation of different
MPC controllers with energy cost saving and peak reduction (Upper figure corresponding
to 10°, Lower figure corresponding to 10°).
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Figure 4-24: Profile of the emitted power by the electric radiators for the different MPC
controllers and the energy cost saving and peak reduction objective (L = 10%).

Figure 4-24 shows a close-up period of the emitted power profile with L = 10® for the
different MPC controllers. It can be clearly seen that all the MPC controllers have
shifted most of the energy use outside the peak period.

Time evolution of the parameters

This section presents the time evolution of the updated parameters with the high
penalty value L=10%. Figure 4-25 presents the history of the HTC value. The value of
the FullWinter MPC and the Partially Adaptive MPC are overlapped due to the
identical value. The results of the Fully Adaptive MPC have been distinguished with
different line styles for the three different test cases. It can be seen that the Fully
Adaptive MPC has two significant parameter updates during the simulation period,
but the time when these updates occur is not identical. The obtained HTC values for
the Fully Adaptive MPC are within the range to be physically plausible, the HTC
difference being within 10%. The results indicate that the Fully Adaptive MPC can
give satisfactory prediction performance with reasonable parameter values for a
relatively long period and does not need to update the parameters frequently.
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Figure 4-25: History of the HTC value update.
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Figure 4-26: History of the A; value update.

Figure 4-26 shows the history of parameter A;. The results of the three cases are also
distinguished with different line styles. The results show that the A; updating history
follows a similar trend to the Partially Adaptive MPC by first increasing in November
and then decreasing in December. However, the updating history of A; for the Fully
Adaptive MPC is larger in amplitude compared to the Partially Adaptive MPC.
Furthermore, parameter A; is updated very frequently by the Partially Adaptive MPC,
which indicates that the prediction error from the model is constantly large during the
simulation. This confirms the previous conclusion regarding the FullWinter MPC and
Partially Adaptive MPC: the FullWinter model cannot provide satisfactory prediction
performance and the model cannot be corrected by only updating parameter A;. The
Fully Adaptive only updates A; two times during simulation and the value is also
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changing significantly. It indicates that parameter A; may not play a dominant role in
the prediction performance over a long timescale, though it has a significant influence
on short-term temperature based on existing researches [45,52].
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Figure 4-27: History of the Cioa1 value update.

Figure 4-27 presents the updating history of the sum of capacitances C.and C;, named
Ciowal- Results show that the values of the Fully Adaptive MPC are within the physical
plausible range compared to the reference value Ccr of 3.9 kWh/K, although the
values are different for the three cases. However, it is worth mentioning that the value
of Ciota is also correlated with the value of the HTC and Ai. Considering the fact that
the model only takes seven days of data under normal operation to update the
parameters, it is reasonable that the obtained value of HTC and C. has some
variations in the value as long as it can deliver decent prediction performance.

4.3.2 Other types of data-driven models for MPC

Paper 7 is a cooperative paper in the framework of the IEA EBC Annex 71 entitled:
“Building energy performance assessment based on in situ measurements”. Some of
its results can give complementary information to Q7. The building model has been
modeled using the Modelica language in Dymola software and the OpenIDEAS
library. This simulation model in Dymola serves as the emulator in this study. The
case building is one of the test cases of Annex 71 project and is a two-storey
experimental dwelling located in Holzkirchen, Germany. Various data-driven models
for the investigated building have been developed in this study. An MPC setup has
been developed in which the performance of the predictive models could be evaluated
and compared. The MPC aims to optimize two objectives, namely thermal discomfort
and electricity costs. The controller has been developed in SIMULINK. Hence, a way
of communication is required to make the co-simulation between the SIMULINK and
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Dymola. An interface is applied to tackle this issue, which facilitates the connection
between Dymola and Matlab, which is called Functional Mock-up Interface (FMI).

Paper 7 compares the performance of different types of linear MPCs in addition to
grey-box models in an MPC experiment. These models range from single-state grey-
box models, state-space models to more advanced artificial intelligence models
Artificial Neural Networks (ANN) and Support Vector Machine (SVM).
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Figure 4-29: KPIs deploying different predictive models.

Figure 4-28 provides the boxplot accuracy of different modeling techniques used in
this study. The maximum in each box corresponds to the one-step ahead prediction
accuracy while the minimum corresponds to N (Control horizon) steps ahead
prediction accuracy. As it can be seen in Figure 4-28, NARX model and the SVR are
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the best performing models in terms of one-step ahead prediction accuracy.
Nevertheless, these two models are not the best performing models in the MPC
framework. This statement is especially more significant in the case of the NARX
model since it leads to the highest electricity cost compared to the other models.
Looking at Multi-Step ahead prediction error (MSPE), one can easily realize that,
although the NARX model has the second-highest one-step ahead R?, its multi-step
ahead prediction performance is the poorest amongst all the models. The reason for
this observation is explained by the fact that ANNs easily become over-fit to training
data if no regularization of some sort is used [94]. This issue should be tackled when
using ANNSs as predictive models otherwise one might end up with an ANN model,
which is highly accurate for one-step ahead prediction but provides poor forecasts for
multi-step ahead prediction.

Analyzing the results as illustrated in Figure 4-29, it could be concluded that the best
performing MPC (namely the state-space model with seven states) reduces electricity
cost from 11€ to 8.5 € compared to RBC, which corresponds to 22.7%. Comparing
different MPCs we can deduce that the difference between electricity costs resulting
from using different predictive models in the MPC is 7%: electricity cost of 8.5 € in
the SS7 model compared to 9.1 € achieved by using the NARX model. Considering
the 22.7% as the highest potential of MPC achieved by our models for this case study,
it could be inferred that the models used here vary by 24% in terms of activating the
potential energy savings achieved by MPC, which demonstrates the importance of
using models with high multi-step ahead prediction accuracy in the MPC.
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Figure 4-30: Building’s temperature profile due to MPC.

Results obtained by applying state-space model with seven states are presented in
Figure 4-30 and Figure 4-31. It is illustrated in Figure 4-30, the controller is able to
maintain the temperature within the thermal comfort band, although there are some
minor violations. These violations could have two main causes. First, the magnitude
of weight (L) scalar in the objective function, which allows thermal discomfort to
some extent, especially when the electricity cost is relatively high. The second reason
behind the minor thermal discomfort could be the mismatch between the predictive
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model and the emulator. The electricity price shown in Figure 4-31 is based on the
time of use pricing structure from a supplier in Belgium. As seen in Figure 4-31, the
load profile does not completely correspond with the time-of-use price. This
observation is expected since the MPC does not optimize the building’s behavior only
for one time-step but for the whole control horizon.
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Figure 4-31: Electricity use against electricity price.
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S CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the main findings of the PhD thesis. Key conclusions of
each part are presented in Section 5.1. Section 5.2 lists the limitations of the studies
while Section 5.3 gives recommendations for future research.

5.1 Concluding remarks

This thesis investigates the model-based control to unlock the energy flexibility of
residential buildings so that more renewable energy resources can be integrated into
the current energy system. The research mainly focuses on grey-box modeling and
MPC. The most important conclusions are as follows:

On the modeling side

This study is based on both virtual and field experiments. The field experiment
includes two experimental setups of the ZEB Living Lab using two different space-
heating emission systems, namely an electric heater and a hydronic radiator.

The pre-processing techniques include low-pass filtering (using MA or FIR), the
sampling time (Ts) and the application of anti-causal shift (ACS). Three different
types of temperature measurements are analyzed to investigate the influence of the
sensor location and dynamics (i.e., volume-averaged air temperature, single
temperature sensor without casing and single wall-mounted sensor with casing).

Different excitation signals have been considered to generate input-output data in this
thesis. Regarding the excitation signal, results showed that intermittent heating with
on-off control of the electric radiators is a good excitation signal. It enables normal
occupancy of the building and the collection of long data series as well as excites the
slow daily and fast building dynamics.

The research confirmed the conclusion of the literature review that second-order is a
good trade-off between modeling accuracy and overfitting. Based on this conclusion,
the subsequent analyses of the thesis are done mainly based on a second-order grey-
box model. The other conclusions regarding the modeling are presented separately
between deterministic and stochastic models.

Deterministic model:

e For the deterministic model, the identification results from the default gradient-
based and global optimization routines are almost identical (with and without
ACS).

e The data pre-processing has a limited influence on the model performance based
on virtual experiment results. This is confirmed using field experiments. In
addition, the sensor thermal dynamics also have a limited influence on the
deterministic model performance.
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Stochastic model:

For the stochastic model, the two-stage global optimization leads to lower
NRMSE than the default gradient-based optimizer and the resulting parameters
have significantly different values.

It is always recommended to sample the measurement data at a higher frequency
than the fastest dynamics of the system to be modeled (Tmin). The parameters
became non-physical without ACS for large sampling time (Ts). However, large
sampling times did not alter the simulation performance significantly. Although
the ACS tends to improve the physical plausibility of the model parameters with
Ts, it had in general a negative influence on the simulation performance of the
model.

Large T; can cause the parameters to become non-physical without ACS. ACS is
excessively beneficial in guaranteeing the physical plausibility of parameters,
making the identified parameters insensitive to the sampling time. This
conclusion is valid for both our virtual and field experiments. However, the
influence of ACS on prediction performance is different for virtual and field
experiments. ACS has in general a negative influence on the simulation
performance in the virtual experiment. In the field experiment, large Ts has a
limited effect on the prediction performance for the temperature sensors without
casing. However, for the wall-mounted sensor, pre-filtering and sometimes ACS
should be used to converse the prediction performance at large Ts. Pre-filtering
also has a beneficial influence on the model prediction performance for field
experiments, but not in a dominant way. Unlike the results based on virtual
experiments, the influence of ACS on prediction performance is most often
beneficial in our study. At this stage, it can be concluded that the influence of the
sampling time and ACS on the prediction performance is not systematic (i.e.,
sometimes positive or negative).

The results for stochastic models depend on the type of indoor temperature
sensor. Firstly, the cases with temperature sensors with negligible thermal
dynamics (i.e., free-standing air temperature sensors without casing) are
analyzed. Even though the vertical thermal stratification is significant, there is
only a slight reduction in the model performance when moving from a volume-
averaged measurement to a single sensor located at mid-height in the room.
Secondly, when the temperature sensor is the wall-mounted temperature sensor,
an adapted model with time constant dynamics for the sensor is needed to obtain
a physically plausible estimation of the parameters. This is an important
conclusion as most buildings are equipped with wall-mounted temperature
sensors. To limit the investment, the number of sensors should also be limited,
making a volume-averaged measurement expensive.
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e The dynamics of the hydronic radiator (with significant thermal mass) are not
necessary to be modeled if the time constant of the measurement device is larger
than that of the hydronic radiator.

On the control side

In this study, the MPC uses the thermal mass of the building as short-term thermal
storage to perform DR.

The performance of different MPC controllers based on a linear grey-box model of
the thermal dynamics of the building is first compared for three different control
objectives. The model performance is assessed from the degree of completion to
fulfill the defined objectives and the avoidance of thermal discomfort. This study uses
a highly-insulated detached house simulated using the BPS software IDA ICE as the
emulator. The IDA ICE model is coupled with MATLAB in a co-simulation setup.
The control signal is calculated by the MPC controller implemented in MATLAB
and sent to the heating system so that the indoor temperature of the building in IDA
ICE can be controlled.

Results show that an LTI model trained using the data from the entire space-heating
season (FullWinter model) is not suitable to be used as the prediction model for a
long period of operation in MPC. It shows that a longer training period is not always
a synonym for better model performance. Only updating the window area of the
model (Partially Adaptive MPC) is not enough to correct this LTI model and it
sometimes even has negative effects on the results. The MPC based on two LTI
models training using two short periods of data using a PRBS excitation
(PPRBSNOV MPC and PRBSDEC MPC) generally performs better than the
FullWinter and Partially Adaptive MPCs. This confirms that if an LTI grey-box
model is used in MPC, it should be trained with data generated during similar weather
conditions to the period when the MPC will be operated. The Fully Adaptive MPC
outperforms the two PRBS LTI MPCs. It demonstrates the need to update all the
model parameters if this model is to be used during the entire space-heating season.
The Fully Adaptive model gives a more accurate prediction, which causes the thermal
discomfort to be significantly reduced. It is worth mentioning that the number of
parameter updates in the Fully Adaptive MPC is limited (i.e., two to three for the two
months of MPC operation).

This thesis also implemented a parametric investigation of MPC performance based
on other types of data-driven models than grey-box models. Comparing the
performance of MPCs using different models shows that model trained based on
MSPE criteria reflects the better suitability of predictive performance compared to
models trained based on one-step ahead prediction. On the one hand, it has also been
shown that models with similar one-step ahead accuracy could lead to 24% difference
in terms of activating the potential cost savings achieved by MPC. On the other hand,
ANN-based NARX model yielded the highest electricity cost, which is due to its poor
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multi-step ahead prediction performance. Furthermore, MPC is compared to a well-
tuned Rule Based Controller (RBC). Best performing MPC (using state space model
with 7 states) yielded 22.7% decrease in energy cost compared to the RBC.

5.2 Limitations
On the modeling side

Many findings from the field experiments are based on a single test case, and these
findings provide practical guidelines for identifying the thermal dynamics of
buildings using grey-box models and field measurement data. Therefore, additional
research on real buildings is needed to generalize the conclusions. The occupants'
behavior based on a fixed schedule in the experiment is also very artificial with are
not close enough to real conditions. Our virtual experiment does not reflect the
stochasticity of the user behavior sufficiently, which may also need field tests to
validate the findings. The conclusion might change if the data is collected from a
building with (real) people living inside.

The thesis only considers mono-zone grey-box models. This is acceptable for the two
test cases considered in the thesis. These cases are highly-insulated with balanced
mechanical ventilation and a heat recovery which limits the temperature difference
between the rooms. In addition, the internals was open in most of the scenarios. Most
of the existing buildings in the Norwegian building stock are not well insulated. Many
Norwegian actually prefer colder bedrooms (with lower temperature setpoints for
bedrooms). In this case, residential buildings are inherently multi-zone, which
requires a multi-zone model for MPC. If the windows of bedrooms are open at night,
the natural ventilation should also be considered based on the multi-zone model.
However, this limitation does not significantly impact the conclusions of the thesis.
For example, the literature review has shown that second-order grey-box models are
typically selected as the basic element to model one zone in a multi-zone model.

It should be remembered that the pre-filtering and resampling performed on the data
from the two test cases are applied to all the variables (meaning the input data and
output data). Therefore, this does not introduce any delay between these variables.
This assumption is acceptable when the data preprocessing is a deliberate choice of
the modeler. However, some of the data pre-processing can be implicit and performed
by the sensor or hardware without the modeler's knowledge. Then, the exact data pre-
treatment is not known and can be different for the different variables measured. Then
a more detailed analysis of the delays between the variables should be performed.

The analysis is based on the MATLAB system identification toolbox, where the
stochastic equations are written in innovation form. For generalization, results should
be reproduced in other system identification tools and formulations, such as CTSM-
R [95].

86



CONCLUSIONS AND FUTURE RESEARCH

On the control side

The virtual experiment length of this thesis is set to two months due to the limitation
of the co-simulation framework. The co-simulation was operated on a workstation
with an Intel Xeon E5-2697 18-core CPU clocked at 2.30 GHz, 2301 Mhz, 64 GB
RAM running a 64-bit version of Windows 10 Enterprise. The co-simulation of two
months takes approximately 20 hours on average to finish. The EMPC case of the
Fully Adaptive MPC is taken as an example, and it takes 1130.4 minutes to complete.
The co-simulation for the Partially Adaptive MPC can take a much longer time due
to frequent updates of the parameters. It is interesting to see the testing be done in a
longer simulation period and different years so that the results can be more
generalized.

Due to the inherent modeling simplifications in BPS, the conclusion might be
different for real field experiments. The test building in our study is highly-insulated
so that solar gains contribute significantly to the space heating and the air infiltrations
are limited. With an older building, the situation would be the opposite (i.e., the
insulation level would be lower and air infiltrations higher), which would give a
different dependence on the variations in the weather conditions during the space-
heating season. This may impact the conclusions on the MPC based on adaptive grey-
box models that were derived for a highly-insulated building.

5.3 Future research

This thesis investigates the topic of model predictive control to activate the building
energy flexibility mainly based on grey-box modeling techniques. With all the
findings of this thesis and the limitations, the potential future research is outlined
below.

e For generalization purposes, results should be reproduced in other simulation
platforms or on a real experiment performed over a long period of time. Many
MPC studies using field measurements are based on a short experimental period,
see e.g., [54].

e The analysis can also be repeated for other building types or levels of thermal
performance of the building envelope. For instance, older buildings are typically
naturally ventilated and this phenomenon is intrinsically more non-linear. The
modeling of the air handling unit (AHU) with fixed effectiveness in IDA ICE can
also be improved.

e It will be interesting to do more testing with black-box modeling techniques. It
can significantly reduce the expertise in building physics of the modeler if the
black-box models can give robust predictions and avoid overfitting problems.

e [t is also interesting to make the adaptive control MPC test in a residential
building with human occupants to see if the control algorithm is still valid. In
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addition, a multi-zone version of the adaptive MPC should be developed in the
future for more advanced and precise control purposes of the building.

e This study mainly takes the spot prices of electricity into consideration for the
objective function design of the MPC. However, COiq intensities of the
electricity mix or COa¢q. intensities coupled with electricity prices could also be
considered as the index for the objective function design of the MPC.

e The model identification and the analysis of the data pretreatment have been
made manually in this thesis. In other words, parametric runs have been used, but
results have been mostly analyzed directly by the modeler. It should ideally be
automated to make the procedure less time-consuming and more cost-efficient
for market penetration, especially for small residential buildings. As previously
mentioned in the limitations, the data pretreatment is here applied for all input
and output variables. In future work, the effect of distinct data pre-treatment on
the different variables should be considered, which, for instance, requires
analyzing the delays (lag) between the variables.
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Abstract

Model Predictive Control (MPC) is a key technology to
activate the building energy flexibility. A reliable control-
based model should be developed for each specific
building. The structure of grey-box models is usually
based on the physical knowledge of the building. Firstly,
it is not certain that this information will be available for
all buildings, especially for small residential buildings.
Secondly, developing a specific model structure for each
building is most probably not affordable. Therefore, the
paper investigates the dependency on the model structure
to create reliable control-oriented model for the thermal
mass of residential buildings. Using a test case, the
performance of grey-box models based on the physical
knowledge of the building are compared to grey-box
models based on a generic structure taken from building
standards (EN 13790 and VDI 6007) as well as black-box
models where no knowledge of the building is required.

Introduction

Renewable energy plays an increasingly important role in
economy growth and to limit CO, emissions. However,
the increasing penetration of renewables in the grid poses
a challenge for balancing the demand and supply of
electricity. Electricity generated from renewables may not
be consumed optimally and this mismatch can also cause
challenges in the power system. Thus, multiple types of
flexibility are needed in the energy sectors for smart grid
integration (You, Jin, Hu, Zong, & Bindner, 2015).
Buildings accounts for more than one-third of the total
final energy consumption worldwide (Transition to
Sustainable Buildings, 2013). A considerable portion of
the energy consumed by buildings is used for heating,
especially in Nordic countries where the space-heating
season is long and cold. It has been shown that the thermal
mass of buildings can be a significant heat storage (Le
Dréau & Heiselberg, 2016; Glenn Reynders, 2015; Zong
et al., 2017) to perform demand response (DR). Model
predictive control (MPC) is often considered to be a key
technology to activate the thermal energy flexibility. The
control will take the predictions of future disturbances and
system constraints into the optimization so that an optimal
control decision could be made at each time step to
perform DR. The typical disturbances taken into account
are the ambient temperature, solar radiation and internal
heat sources. The objective of the optimization using
MPC is usually to minimize energy use, power, energy

costs or CO, emissions while subjected to thermal
comfort constraints (Dahl Knudsen & Petersen, 2016).

An effective implementation of a MPC requires a specific
control model of the thermal dynamics of the building.
Methods are typically divided into white-, black- and
grey-box models. White-box models are almost entirely
based on physical laws. Therefore, they require detailed
knowledge of the system to be modelled and its
parameters (such as the geometry). It is often difficult and
very time-consuming to obtain this information in
practice. Some parameters may also change during
operation and deviate from the original design. In
addition, the mathematical complexity of white-box
models makes them unsuited for MPC due to the
computational cost to optimize a large non-linear system
of equations in real time. Model reduction techniques can
nonetheless be applied to white-box models. Black-box
modelling is a data-driven method only considering
system inputs and outputs. It can be applied even if a
limited physical knowledge of the system is available.
Since the data is the only information for the modelling
process, the quality and amount of data will significantly
influence the precision of black-box models. Their ability
to predict the system dynamics outside operating
conditions considered during the model training is also
critical. Grey-box modelling is a combination of the
previous two approaches. The physical knowledge of the
system is used to determine a general model structure (a
low-order model) and the model parameters are identified
using experimental data. Due to the model structure based
on physical grounds, grey-box models require less
experimental data than black-box models and are less
sensitive to the data quality. In addition, they should be
more robust to extrapolate outside the operating
conditions used during the period of the model training.

A single residential building will not provide a large
amount of energy flexibility to the grid. In the context of
smart grids, a large number of residential buildings needs
to be considered. However, the thermal dynamics is
different for each single building. Creating a suitable
control-oriented model is also acknowledged as the most
time-consuming part of the MPC implementation (Atam
& Helsen, 2016), especially when physical knowledge
specific to the building is required (such as in grey-box
models). For grey-box models, the typical approach is to
progressively increase the complexity of the model
structure and to perform a forward selection process to
identify the optimal configuration.

Proceedings of the 16th IBPSA Conference
Rome, Italy, Sept. 2-4, 2019

5076
https://doi.org/10.26868/25222708.2019.211209



%%Q/} 16th IBPSA
A CONFERENCE

ROME

INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

Some research work has been recently done to develop a
tool that can automatically identify the grey-box models
based on a BIM (Andriamamonjy, Klein, & Saelens,
2019). However, it is still worth investigating if generic
model structures can be an acceptable option to lower the
cost of modelling in MPC. For this purpose, three
modelling approaches are compared on a test case. It is
here assumed that model should be identified using indoor
temperature measurements only. Firstly, a traditional
grey-box modelling approach is used where models of
increasing complexity are created based on the physical
knowledge of the building (i.e. forward approach).
Secondly, the model structures of building standards EN
13790 and VDI 6007 are considered. These models are
low-order white-box models that are able to successfully
predict space-heating needs for various building types.
For instance, some studies have also been done to
compare the simulation results of the two standard white-
box models with TRNSYS simulation (Bruno, Pizzuti, &
Arcuri, 2016; Vivian, Zarrella, Emmi, & De Carli, 2017).
Their structures, even not optimal for a specific building,
may nonetheless be a good candidate for a generic
structure of grey-box models. Finally, these two methods
to create grey-box models are compared to black-box
models identified using a subspace method and then
refined using numerical minimization of simulation
errors. The long-term predictions (i.e. simulation without
a disturbance model) of these models are evaluated as
well as their estimates of some major building thermal
characteristics (such as overall heat loss coefficient and
thermal capacities).

Dataset and platform description

The ZEB Living Lab is a zero-emission single-family
house located in the campus of the Norwegian University
of Science and Technology (NTNU) in Trondheim. The
total floor area of the building is about 100 m2 The
envelope is a wooden frame insulated with 35-40 cm
mineral wool and with a glazing ratio of 0.2. Photovoltaic
panels installed on the roof has been designed to provide
enough onsite renewable energy production to reach a
zero COaz¢q emission balance over the building lifetime.
The water-based heating system consists of a ground
source heat pump. The space-heating can be either
performed by floor heating, a central radiator or the
ventilation air. However, the current study is based on
measurement data from a previous experiment where
space heating was performed using an electrical heater (P.
Vogler-Finck, ClauB}, & Georges, 2017; P. J. C. Vogler-
Finck, ClauB3, Georges, Sartori, & Wisniewski, 2018). The
electric heater was located in the middle of the building
while a Pseudo-Random Binary Signal (PRBS) was used
to excite the thermal dynamic of the building in a large
spectrum of frequencies. The floor plan of the building is
shown in Figure 1 along with the location of the electric
radiator and the temperature sensors.

The dataset contains three successful experiments, which
are named experiment 2, 3 and 4 (experiment 1 being
omitted). The data includes measurements every S5
minutes of the ambient temperature, indoor air operative

temperatures as well as the global solar radiation on a
horizontal plane and the electricity consumption. In this
study, the ventilation losses are not identified but directly
introduced in the model as heat losses. These losses have
been evaluated using the measured temperature difference
between the supply and exhaust ventilation air combined
with the measured airflow rate (constant during
experiments). This research focuses on data from
experiments 2 and 4 since both experiments were
conducted with the building unoccupied and internal
doors opened. This leads to an almost uniform spatial
distribution of the air temperature inside the building.
However, there is some temperature stratification and all
air temperature sensors are therefore volume-averaged to
represent the mean indoor air temperature 7;. Experiment
2 is used to train the model while experiment 4 is used for
validation.
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Figure 1: Picture and Floor plan of the ZEB Living Lab
(P. J. C. Vogler-Finck et al., 2018)

Grey-box models

As mentioned in the introduction section, grey-box
modelling is a combination of measurement data and
physical knowledge. The thermal dynamics of the ZEB
Living Lab is assumed to be linear and time invariant
which is a common approximation for building
envelopes. It can then be approximated by low-order
resistance-capacitance (RC) networks. The model order is
defined by the number of heat capacitances included in
the model. This paper considers two categories of
structure for the grey-box model: seven structures derived
from our prior knowledge of the Living Lab and two
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generic structures derived from standards for energy
calculations (EN 13790) and (VDI 6007).

Knowledge-based models

The simplest model structure is a 1% order model. The
other models are created by progressively adding more
components, the most complex structure being a 3™ order
model. Only the most complicated 3" order model is
presented in Figure 2 since the other models are
simplifications of this structure as described in Table 1.

1/UAia
1/UAih 1/UAie 1/UAea
. AAT—1 :

—T W\
@ L —|~ciG

“' Awi'Ps( %vennq,.,pg 2\,,.,,5 =Ce

Figure 2: Most complex model structure (3C).

O

The 1% order model has one heat capacitance (C;), the 2™
order model has two heat capacitances (C; and C,) while
the 3" order model has three heat capacitances (C;, C. and
Cp). The physical meaning of these components is
described here below.

Table 1: Structure of the different knowledge-based
grey-box models.

IMODEL 1C 2Cs 2C 3Cs 3C 3Csd 3Cd
Rin x X X v v v v
Rie x v v v v v v
Rea x v v v v v v
Ria v x v X v x v
C x v v v v v v
Ci v v v v v v v
Ch x x x v v v v
A v v v v v v v
Awe x v v v v x x

T Temperature of interior heat capacity [°C].

T. Temperature of the building envelope [°C].
Ty Temperature of the electric heater [°C].
Ta The outdoor/ambient temperature [°C].

Ci Heat capacity of the interior which is
assumed to be the combination of the
thermal mass of the air, the furniture,
internal walls and the first centimeters of the
internal surface of external walls [kWh/K].

C. Heat capacity of the building envelope,
(external walls and windows) [kWh/K].

Ch Heat capacity of the heater which is assumed
to the combination of its thermal mass and
some air around the heater [kWh/K].

Rie  (1/UAi) Heat resistance between the
building envelope and the interior of the
building [K/kW].

Rew  (1/UA..) Heat resistance between the
ambient and the building envelope [K/kW].

Rie  (1/UAi;) Heat resistance between the
ambient and the interior of the building

[K/kW].

Py Heat gain from the electric heater [kW].

Py Global solar irradiation on a horizontal
plane [kW].

Oup Heat gain from internal loads (appliances)
[kW].

QOvenr Heat gains from the ventilation [kW].

Ay Effective window area for the solar gain that
enters directly the interior node [m?].

Aye  Effective wall area for the solar gain directly
applied to the envelope of the building [m?].

Standard models

The structure of the two RC-models is taken from the
standards EN 13790 and VDI 6007 (Vivian et al., 2017)
The EN 13790 model has originally five resistances and
one capacitance, as shown in Figure 3. The heat
capacitance represents the heat capacity of the building
envelope. Since the ventilation heat loss is directly
injected as a heat gain in our model, the specific resistance
of EN 13790 related to ventilation is removed. The
resulting grey-box model has therefore four resistances.
Detailed physical explanation of the RC components in
EN 13790 are described below.

AV

1/UAas
Ti Ts Te

AN

\
1/UAis 1/UAes 1/UAea

OJORORORRO

Quent |Ph Qappiz | (1-a)*Qappiz [(1-a)*Aw*Ps

a*Aw*Ps a*Qapp/2

OO T

Figure 3: Model structure of EN 13790.
T;  Interior temperature (as previously defined)
[°C].
T.  Temperature of the building envelope [°C].
The temperature of the internal surface of the
building envelope [°C].
T.  The outdoor/ambient temperature [°C].

C. Heat capacity of the building envelope
[kWHh/K].

Res  (1/UA.) Heat resistance between the building
envelope and the internal surface of the
building envelope [K/kW].

Rea  (1/UA.q) Heat resistance between the ambient
and the building envelope [K/kW].

Ras (1/UA.s) Heat resistance between the ambient
and the internal surface of the building
envelope [K/kW].
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Ris  (1/UA;s) Heat resistance between the internal
surface of the building envelope and the
internal node [K/kW].

P, Heat gain from the electric heater [kW].

P;  Global solar irradiation on a horizontal plane
[kW].

Qup Heat gain from internal loads (appliances)
[kW].

Qe Heat gains from the ventilation [kW].

A,  Effective window area for the solar gain [m?].

According to EN 13790, half of the internal gains Oy is
directly entering the internal node (7;) while the heat
emitted by the radiator is fully entering this node. Thus, a
coefticient of 1/2 is applied to Q. and a coefficient of 1
to the space-heating power Pj. In EN 13790, the fraction
of internal and solar gains entering the internal surface
(75) and the envelope nodes (7.) should be evaluated using
the detailed geometry of the building. Therefore, one
model parameter (@) is added and should be identified. In
order to guarantee energy conservation, the sum of the
two fractions of O, applied respectively to nodes 7 and
T. is constrained to 1/2. Solar radiation only enters at
nodes T and T, so the sum of the two fractions of solar
gains at T and 7. is constrained to 1.

The VDI 6007 model originally has seven resistances and
two capacitances. Like EN 13790, the heat resistance
related to the ventilation heat losses is substituted by the
measured ventilation heat gains. Detailed physical
explanations of the RC components of VDI 6007 are
shown below.

Te2 Ts2 Tv Tst Tet
f/\fv ‘v’VvIWv AM—
1/UAes2 1/UAis2 1/UAis1 1/UAes1 1/UAeat
@O O "z OO O SFCet T
b2*Ph [Awi*Ps[a2*Qapp n b1*Ph |JAwe*Ps| a1*Qapp
DO O
€*Ph |d*Qapp|Qvent

Figure 4: Model structure of VDI 6007.

T;  Interior air and furniture temperature [°C].

T, Interior “star” node [°C].

Ts;  The internal surface temperature of building
envelope (meaning external walls and
windows) [°C].

T;> The internal surface temperature of internal
walls [°C].

Te;  Temperature of the building envelope [°C].

T.> Temperature of internal walls [°C].

T.  The outdoor/ambient temperature [°C].

C.; Heat capacitance of the building envelope
[kWh/K].

C.> Heat capacitance of internal walls [kWh/K].

Resi (1/UAes;) Resistance between the building
envelope and the internal surface of the
envelope [K/kW].

Resz  (1/UAes2) Resistance between the internal walls
and their surface [K/kW].

Risi  (1/UA;s;) Heat resistance between the internal
surface of the envelope and the star node
[K/kW].

Ris>  (1/UAeqr) Heat resistance between the ambient
and the building envelope [K/kW].

Rea; (1/UAeqr) Heat resistance between the ambient
and the building envelope [K/kW].

Riv  (1/UAeqr) Heat resistance between the star node
and the indoor air and furniture node [K/kW].

P, Emitted heat from the electric heater [kW].

Py Global solar irradiation on a horizontal plane
[kW].

QOup Heat gain from internal loads (appliances)
[kW].

QOvenr Heat gains from the ventilation [kW].

A,  Effective window area for the solar gain [m?].

The coefficient for internal heat gains (Qy) and the
emitted power by the radiator (P;) are estimated by the
grey-box modelling approach. It results in six parameters
ay, az, by, by, d and e. To guarantee the conservation of
energy, additional constraints for these variables are
applied: the sum of the coefficients of a;, a2 and d and the
sum of coefficients of b;, b, and e are set to 1.

Black-box models

In black-box modelling, data is used to train mathematical
models with parameters that cannot be given an
immediate physical interpretation. In this study linear
time-invariant state-space models with model orders from
one to three are examined:
X =A xk +B uk (1)
y=Cx* @

where x is the state vector and 4, B and C are system
matrices. u is the input (outdoor temperature, solar
radiation and heat gains) and y is the output (indoor
temperature). Note that no disturbance term K (Kalman
gain) is included because we focus on long-term
predictions. All coefficients in the system matrices are
free and unconstrained which gives the optimizer
maximum freedom (for a given model order) to adjust the
coefficients to fit to the training data. The downfall is that
the model cannot be guaranteed to always comply with
physical laws (i.e. conservation of energy). In case of poor
training data, the model might have a very poor
performance on new data.

This study has trained the black-box models in two steps.
Firstly, subspace system identification estimates an initial
model using the n4sid function in MATLAB (Ljung,
2011). Secondly, the model is refined through numerical
simulation-error minimization using the pem function of
MATLAB.
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It should be noted that, even though the black-box
parameters do not have an immediate physical meaning,
it is in fact possible to extract some insight on the thermal
characteristics of the building. For instance, the overall
heat loss coefficient can be estimated as the inverse of the
steady-state output (i.e. the room temperature) for a step
response of the heat input. This value is also shown in
Tables 2 and 3 for the 2™ order black box model (2B).

Results

Tables 2 and 3 show some of the most important physical
parameters identified and the simulation results for all
models, respectively for the original sampling time of 5
minutes and a data subset based on 15-minutes averaging.
Since this paper mainly focuses on the long-term stable
prediction of the model, no disturbance model is included
to correct the current state based on prediction errors.
Other studies on grey-box modelling often focus on the
one-step ahead predictions (Bacher & Madsen, 2011), but
for MPC implementation it is important to have good
performance for a longer prediction horizon. Since there
is no human occupancy during experiments and since
energy consumption and the indoor temperature are
accurately measured, the data quality is considered to be
relatively high compared to what can be expected in real
building operation: the signal-to-noise ratio (SNR) is
expected to be high. The model performance is evaluated
using the NRMSE (fitting), RMSE and the range of
magnitude taken by the physical parameters (which
should be related to the building physics to a reasonable
degree). AIC (Akaike information criterion) and BIC
(Bayesian  information criterion) are used as
complementary performance criteria to judge if the model
is over-fitting.

Knowledge-based models are first analysed. The fitting of
the 1% order model is relatively low: the NRMSE fitting
is 58% for the training dataset while the fitting decreases
to only 23% for the validation dataset. This implies that
only one state is not enough to describe the thermal
dynamics of this building. The 2" order model has a new
state related to the building envelope which can
significantly improve the model prediction performance
compared to the 1% order model. This is confirmed by the
results reported in Table 2. The fitting of the 2" order
model 2Cs increases significantly to 81% for the training
dataset and 79% for the validation dataset, RMSE values
confirms this trend with decreasing values (from 0.5502
to 0.2489 in the training dataset). The 2" order model 2C
has one additional resistance (R;,) compared to the model
2Cs. R;, represents the heat losses from infiltrations and
heat conduction through components of the building
envelope with negligible thermal mass (such as windows
or external doors of the building). However, results show
that the value of /R, is zero so that the model collapses
into the 2Cs models (with parameters being exactly the
same). The AIC and BIC values of 2C are slightly higher
than the 2Cs. The ZEB Living Lab is a super-insulated
building envelope with limited infiltrations. It was
therefore anticipated that the contribution of infiltrations
should be negligible. However, the building has a large

amount of glazing. An infinite R, was therefore
unexpected based on prior physical knowledge. In
conclusion, for this test case, the resistance R, is not
necessary for the 2™ order model. Based on the simulation
performance and the value of the parameters, the model
2Cs could be a reliable control model for the ZEB Living
Lab. Comparing the 2Cs model for 5- and 15-minutes
time intervals, it shows very similar physical parameters
and simulation performance. The 2" order black-box
model 2B has an 83% fit on training data and 88% on
validation data. It is thus the best performing 2™ order
model.

In order to investigate whether the 2™ order model could
be further improved, a new state corresponding to the
heater is introduced in the grey-box model. The physical
reason for adding this additional state is to compensate for
the potential time delay related to the thermal dynamics
of the electric heater. Four 3™ order models are tested in
this paper. Model 3Cs shows a good fitting of 81% for the
training dataset (with a RMSE value of 0.248) while the
AIC and BIC values are lower than for the 2Cs model.
However, the heat capacity of the interior (C;) is
extremely low while the heat capacity of the heater (C)
is estimated to be 1.496 kWh/K, which is too high for an
electric radiator. As the value of these parameters has
limited physical meaning, the model 3Cs is discarded.
The fitting of model 3C is low compared to the others. Its
AIC and BIC values are also much higher so that this
model is also discarded. As for 3Cs, model 3Csd has a
relatively good fitting of 79% on the training dataset but
the values for the parameters related to the building
envelope and heater are far from reasonable. This model
is also rejected. Model 3Cd has a fit of 81% and an RMSE
value of 0.253 on the training data. However, the fit for
the validation dataset is 70%, which is not as good as the
2™ order model 2Cs. The parameter values of model 3Cd
are within a reasonable range. However, the value of the
AIC and BIC criteria increases noticeably. Therefore, the
model 3Cd could also be kept for further investigations.
Nevertheless, when analyzing results for the 15-minutes
time interval, the values of the heat capacitances
completely change. The parameters of model 3Cd vary
significantly with the time step which can be considered
as a lack of reliability. The overall conclusion regarding
3" order models is that none of them are completely
satisfactory. Two possible reasons are that the heat
capacitance (C;) was probably not required for the electric
radiator and the increasing the number of parameters
leads the model to be over-fitting. The 3 order black-box
model has a fit of 88% on the validation data which is
equivalent to the 2™ order model (2B). The 2B model is
therefore the appropriate order for a linear model of this
building based on the current dataset.

Secondly, the performance of the two standard models is
investigated. The 1% order EN 13790 model has much
better fit compared to the knowledge-based 1% order
model: the NRMSE fitting can reach 71% for the training
dataset but the fitting drops to 37% for the validation
dataset. Accordingly, the RMSE value increases
drastically to 1.509 for the validation dataset. This
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confirms the previous conclusion that one state is not
enough to describe the thermal dynamics of this building.
From the Figure 5, it is very clear that the EN 13790
model can predict the general trend of the indoor air
temperature. However, there are obvious excessive
fluctuations in the indoor temperature prediction. This can
be easily explained. In the EN 13790 model, the heat
emitted by the radiator (P;) is directly injected in the node
T; while no capacitance is allocated to this node.
Therefore, the indoor air will immediately respond to the
heat injection of the electric heater (P;), without delay. It
again proves that only one capacitance is not enough for
capturing all the dynamics of the building. The conclusion
regarding EN 13790 is that it could be a good candidate
for a generic model but it needs to be adapted to capture
the faster thermal dynamics of the air, furniture and the
first centimeters of the walls. For instance, an extension
of'the EN13790 model to a 5SR2C model has been recently
proposed (Hedegaard, Kristensen, Pedersen, Brun, &
Petersen, 2019) showing much better prediction
performance compared to original EN13790.

25 - Measured and fitted data (training set)

Measured temperature
24 - - - - Grey-box(2Cs): 81.02%
- - - - Black-box(2B): 82.56%
Grey-box(EN13790): 78.73%
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Figure 5: Comparison of the simulation performance of
the most representative models

The 2" order model VDI 6007 has decent fitting results
(i.e. 71% for training and 81% for validation).
Nevertheless, the values of the two heat capacitances and
the overall UA-values are extremely small. These
parameters do not have physical meaning. In conclusion,
the VDI 6007 structure contains many physical
phenomena but is too complicated to be correctly
identified only wusing indoor air temperature
measurements. This is confirmed by the high AIC and
BIC values evaluated for this model. To be a potential
candidate for a generic model structure, the number of
parameters needs to be decreased to increase the
identifiability of the model (Hedegaard & Petersen, 2017).
Alternatively, additional measurements could be made
inside the building in order to make the model identifiable
(such as wall surface temperature and/or heat flux) (G.
Reynders, Diriken, & Saelens, 2014). However, it is here
assumed that these measurements will not be made
available for all existing residential buildings.

Conclusion and future work

This paper investigates the performance of grey-box
models based on a physical knowledge of the building to
grey-box models using a generic model structure (based
on the building standards EN 13790 and VDI 6007) as
well as black-box models. Their performance is evaluated
on the long-term prediction of the thermal dynamics, here
using a single-family house as a test case (the ZEB Living
Lab). The model identification is based on the
measurement of the indoor air temperature resulting from
the space heating using an electric radiator controlled by
a PRBS. The building was unoccupied during
experiments.

For knowledge-based grey-box models, results show that
the 2" order model has reasonable parameter estimates
and the prediction error is small (within the range of +/-
1°C). The prediction performance varies significantly
between the investigated 3™ order models. However, in
all cases, the estimated parameters do not have reasonable
values. In addition, none of the 3™ order models
investigated were able to significantly improve the
prediction performance of the 2™ order model. Therefore,
the 2" order model is considered as a good candidate for
this test case.

Regarding grey-box models based on standards, results
show that the 1% order EN 13790 model is able to follow
the general evolution of the indoor temperature and
provides meaningful values of the parameters. However,
the simulated temperature has significantly higher
fluctuations directly corresponding to the start and stop
cycles of the electric radiator. As recently proposed by
Hedegaard et al., the EN 13790 is a potential candidate for
a generic model structure but it should be adapted by
adding a state corresponding to the fast dynamics of the
building (< 1h). The 2™ order grey-box model based on
VDI 6007 has good prediction performance, but it
generates parameter estimates that cannot be explained
from a physical point of view. The number of parameters
of this model needs to be reduced to make it identifiable.
In future work, it should be investigated whether this
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simplification can be done without impairing significantly
the model universality.

The 2" order black-box model shows a good performance
equivalent to the 2™ order grey-box model. Nevertheless,
with black-box models, the physical meaning of the states
is unknown. However, the estimate of the overall heat
transfer coefficient is similar between the 2™ order black-
box and the best grey-box models. It is worth mentioning
that these investigations were performed with high-
quality input-output data. In addition, experiments
corresponding to the validation data set took place a few
days after the training period. The relative performance of
black-box and grey-box models could be different if these
experimental conditions were not fulfilled. This research
nonetheless suggests that black-box models deserve to be
investigated in detail to create control-oriented model
with a limited knowledge of the building and limited
amount of time.
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Table 2: Results of the grey- and black-box identification using 5 minutes time interval.

Model 1C 2Cs 2C 3Cs 3C 3Csd 3Cd EN13790 VDI6007 2B
Ce - 8.032 8.032 8.224 0.303 10.000 7.638 8.451 - -
Ci 7.115 1.366 1.366 1.24*107  1.48*107 1.781 2.158 - - -
Ch - - - 1.496 6.445 4.822 0.028 - - -
Cer - b - - - - - - 1.77*10°° -
Ce2 - - - - - - - - 3.49%10° -
Awe - 3.158 3.158 3.185 3.815 11.806 - - 1.928 -
Awi 8.375 4.163 4.163 4.071 5.955 0.186 4.923 9.152 1.656 -
UAtor 0.125 0.115 0.115 0.114 0.117 0.186 0.102 0.125 5.17#107 0.114
RMSE: 0.55 0.25 0.25 0.25 0.40 0.27 0.25 0.36 0.28 0.23
RMSEy 1.84 0.49 0.49 0.40 1.33 1.07 0.70 1.51 0.47 0.29
NRMSE: 58% 81% 81% 81% 69% 79% 81% 73% 79% 83%
NRMSEy 23% 79% 79% 83% 44% 55% 71% 37% 81% 88%
AIC 2.847%10° 113.4166 1154166 102.8692 1.775*10° 450.2877 177.9489 1.371*10° 522.9770 -
BIC 2.869%10% 157.0543 164.5091 162.8711 1.841*10% 504.8349 237.9508 1.414*10° 599.3430 -
t: training data
v: validation data
Table 3: Results of the grey- and black-box identification using 15 minutes time interval.
Model 1C 2Cs 2C 3Cs 3C 3Csd 3Cd EN13790 VDI6007 2B
Ce - 8.038 8.038 8.154 3.481 10.000 7.802 8.339 - -
Ci 7.122 1.346 1.346 2.87*%10°  4.88*10°® 1.764 2.04*107 - - -
Ch - - - 1.5978 5.1958 4.8375 2.2863 - - -
Cel - - - - - - - - 1.55*107° -
Ce2 - - - - - - - - 2.38*107 -
Awe - 3.213 3.213 2.776 14.380 - - - 2.042 -
Awi 8.394 4.152 4.152 4.197 1.617 11.780 4.893 8.872 1.511 -
UAtor 0.125 0.115 0.115 0.113 0.108 0.186 0.102 0.124 3.99*1077 0.114
RMSE: 0.55 0.25 0.25 0.24 0.37 0.27 0.25 0.39 0.28 0.23
RMSEy 1.84 0.51 0.51 0.31 0.79 1.06 0.73 1.45 0.43 0.29
NRMSE: 58% 81% 81% 81% 72% 79% 81% 70% 79% 83%
NRMSEy 23% 79% 79% 87% 67% 56% 70% 39% 82% 88%
AIC 953.9709  51.3763 53.3763 34.8207  519.5818 163.0977 419178  598.7925 201.7279 -
BIC 971.3953  86.2252 92.5813 82.7379  571.8551 206.6588  93.8350  633.6413 262.7134 -
t: training data
v: validation data
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Abstract

Model Predictive Control (MPC) has proved to be a key
technology to activate the energy flexibility of buildings.
A reliable control-based model should be developed to
implement an efficient optimal control. Grey-box models,
as a combination of physical knowledge and experiment
data, have been widely used in the literature. However, in
the identification process of grey-box models, many
factors affect the results. This paper uses data from virtual
experiments in IDA-ICE to investigate the influence of
the optimization methods, the filtering methods, the
training dataset and the sampling time interval on
stochastic grey-box models. It shows that global
optimization increases the chance to avoid a local
minimum. Pre-filtering methods have a small influence
on the model quality. Larger data sampling time will
cause the identified parameters to become non-physical.
However, the simulation performance of the model is kept
almost unchanged.

Introduction

The share of Renewable Energy Sources (RES) is
increasing constantly in today’s energy system. The
volatile property of RES generation has brought notable
challenges to the grid. Thus, flexible loads become a
requirement to further increase the penetration of RES.
Demand response (DR) is considered to be one of the key
components to provide flexibility in smart grid [1]. DR
can be described as the interaction and responsiveness of
the end-use customer to a penalty signal (e.g. price signal,
CO; intensity factor for electricity) [2]. In addition, due to
the continuous increase of the electric consumption of
households and the introduction of electric vehicles, DR
can be used for peak-shaving in order to avoid congestion
in the distribution grid [3]. Consequently, peak-shaving
would enable to minimize or postpone the reinforcement
of these grids.

About 25% of the final energy consumption is consumed
by buildings and more than 65% of this energy is used for
heating and cooling demand in European households,
which makes HVAC systems a promising candidate for
demand response [4]. In Nordic countries, the space-
heating season is long and cold, the energy consumption
is mainly related to space-heating. The thermal mass of
buildings can be a significant heat storage [5,6]. When
using the thermal mass to perform DR, the heating
demand will be shifted optimally, while the thermal
comfort constraints can still be respected [7]. The targets

of DR in buildings are usually the reduction of peak load,
lower CO, emissions, maximize the use of RES or
minimize energy cost [8]. Model predictive control (MPC)
is often considered as an important technique to perform
demand response (DR) using the thermal mass of the
building. The logic of MPC in a building is that the control
agent (computers, built-in intelligent devices, etc.) takes
the predictions of future disturbances (weather data,
power generation from RES, etc.) and the system
constraints into an optimization problem and generate an
optimal control decision at each control time step. Thus,
it is important that the dynamic model embedded in the
MPC controller has decent prediction accuracy. A poor-
quality model could lead to suboptimal performance, such
as increased energy costs, violation of the thermal comfort
or even be counterproductive for the electricity grid. In
addition, the model identification should also be low-cost
to make the investment costs of MPC sufficiently low.

Control models for MPC controller can be divided into
three main categories, namely white-, black- and grey-box
models. White-box models are based on physical laws,
which require detailed knowledge of the system, the
underlying physical process and parameters. In practice,
it is too complicated and time-consuming to access all the
information and to keep it updated during the building’s
operational lifetime. This type of model usually has
higher accuracy but is mathematically more complex,
which may cause challenges for the MPC optimizer. This
fact makes this kind of model sometimes too complex for
MPC [4]. Black-box models are pure data-driven methods
considering only measured inputs and outputs from the
system. The physical knowledge of the system is not
needed. However, this method requires a larger amount of
data for training and the precision of black-box models is
significantly influenced by the data quality. Black-box
models are known to have lower generalization
(extrapolation) properties. Grey-box modelling is a
combination of physical knowledge and statistical
methods. Since the grey-box models have a model
structure based on physical knowledge, grey-box models
usually require less experimental data compared to black-
box models and are hopefully less sensitive to data quality
[9].

A common way to create Linear Time Invariant (LTI)
grey-box models for buildings is to use lumped
capacitance models (RC models). The thermal conditions
of the building are expressed with an electrical circuit
analogy [10]. This paper mainly focuses on five specific
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factors influencing the grey-box modelling of the building
thermal dynamics. The first aspect (Ql) is data
preprocessing. Few publications are addressing the
importance of data preprocessing for building thermal
dynamics. The topic is discussed in other disciplines, like
[11] in process engineering, but not in building science.
The second aspect (Q2) is the convexity of the
optimization problem. Except for models with an
extremely simple structure like first-order models, the
optimization problem for identifying parameters of the
grey-box models is not convex. Therefore, grey-box
models are very sensitive to initial guess and the search
method (i.e. the optimizer). For instance, Generic
Algorithm (GA) combined with gradient-based
optimization is used in the paper [12] to avoid the
identification results ending up in a local minimum. The
selection of the optimization algorithm to avoid the local
minimum will be discussed in this paper. The third aspect
(Q3) is how data quality (e.g. level of excitation signal
and amount of data) influences the identification results.
It is often said that the temperature of the ventilation
extract air is a good image of the average building
temperature and is reliable to identify a grey-box model,
see e.g. [13]. Thus, the fourth aspect (Q4) is about the
selection of the representative indoor temperature for
system identification. The last aspect (Q5) considers the
sensitivity of the grey-box parameters to the selection of
the data sampling time (Ts). The theoretical analysis of
Ljung showed that the continuous grey-box models are
sensitive to the selection of the sampling time that should
be taken lower than the shortest time of the system to be
investigated [14]. This analysis needs to be repeated for
building applications. All the research in this paper is
performed using stochastic grey-box models in
innovation form using the disturbance matrix K and the
MATLAB identification toolbox.

Methodology
Dataset and virtual experiments

IDA ICE is a detailed dynamic simulation tool for
studying thermal indoor climate as well as the energy
consumption of buildings. A two-storey detached house
with a heated floor area of 160 m? is used as virtual
experiment for our case study. The three-dimensional
geometry of the building from IDA ICE is shown in Fig.
1. The building is constructed in wood (i.e. lightweight
construction) and complies with the requirement of the
Norwegian passive house standard, NS 3700 [15]. The
detailed description of the building construction can be
found in [16]. The building is equipped with balanced
mechanical ventilation with a heat recovery unit. The heat
exchanger is here modelled using a constant effectiveness
of 85% without bypass, like a plate heat exchanger.

Figure 1: 3D geometry of the building model in IDA ICE
(showing the southwest fagade).

The building is simulated with a multi-zone model with
open internal doors. IDA ICE has an embedded
ventilation network model which accounts for the large
bidirectional airflow through open doorways. This large
convective heat transfer leads to relatively uniform air
temperatures in the entire building. However, bathrooms
are kept separated with closed doors. Following the
cascade ventilation principle, ventilation air is supplied in
living areas and bedrooms and mostly extracted in wet
rooms (i.e. bathrooms and the laundry). The space-
heating was performed using an electrical heater in this
case study. Direct electricity is a most common way to
heat small residential buildings in Norway [17] . The
hourly profiles of internal heat gains for artificial lighting,
electric appliances and occupancy is taken from a
Norwegian standard [18].

Two types of excitation signals are used to activate the
thermal mass of the building in order to collect data for
system identification. The first signal is called Pseudo-
Random Binary Signal (PRBS) with a minimum and
maximum step of 10 and 80 min, respectively. The reason
for choosing a PRBS signal is that it approximates white
noise, which can activate the dynamic system in a large
spectrum of frequencies [19,20]. The other excitation
signal is an intermittent set-point, which means that the
temperature set-point changes between daytime and
night-time (i.e. night setback). In this case, an on-off
control is implemented in IDA ICE to track the
temperature set-point, like in real direct electric radiators.
Both excitation signals are applied to an electric radiator
placed in each zone, except for bathrooms as these rooms
are relatively small and typically heated by floor heating
(with significant thermal inertia). Five different periods
with specific weather conditions are implemented in the
virtual experiments, as described in the table below.

IDA ICE uses a time-varying time-step so that the data is
not generated at constant time intervals. The data output
from IDA ICE is therefore interpolated on a uniform time
discretization of 2.5 min (thus well shorter than the 10 min
time interval of the PRBS).

-278 -



BuildSim-Nordic 2020

Table 1: Weather condition of four PRBS experiments.

Type Outdoor Sky Date Duration
Temperature

Very -10 °C Clear 12/13 One week
Cold sky /2019

Cold 0°C Overcast  12/24 One week
/2019

Cold 0°C Clear 3/23/ One week
sky 2019

Mild 5°C Overcast  11/23 One week
/2019

Grey-box model structure and identification

The main purpose of this paper is not to investigate the
grey-box model structure. This topic is already discussed
in previous works [21-23]. Only first-order (1R1C) and
second-order (3R2C) grey-box models are considered in
this paper with a single temperature node inside the
building (i.e. mono-zone model). Preliminary tests have
shown that a third-order model would be over-fitted for
this test case. Higher-order models can cause over-
parameterization more easily, which has been shown in
the papers [23,24]. The structure of the two grey-box
models follows a RC-formalism. The lumped resistance
and capacitance as well as the physical interpretation of
these parameters can be found in Figures 2 and 3 below.
The free parameters of these grey-box models are
calibrated using the IDA ICE data. The ventilation
exhaust air temperature or the volume-averaged
temperature can be selected to represent the measured
interior node Ti and their respective model performance
will be compared.

Figure 2: First-order model (1R1C)
T Temperature of interior heat capacity [°C].
T, The outdoor (or ambient) temperature [°C].
C; Heat capacity of the building [kWh/K].
R (1/UA) Overall heat resistance between the

building and the
ventilation [K/kW].

QOin  Internal heat gain from artificial lighting,
people and electric appliances [kW].

ambient, including

Osolar  Heat gain from solar radiation [kW].
On  Heat gain from the electric heater [kW].

Figure 3: Second-order model (3R2C)
T.  Temperature of the building envelope [°C].
T.  The outdoor temperature [°C].

C;  Heat capacity of the building combining the
thermal mass of the air, the furniture, internal
walls and, potentially, the first centimetres of
external walls [kWh/K].

C.  Heat capacity of the node Te [kWh/K].

Rie  (1/UAi.) Heat resistance between the building
envelope and the interior [K/kW].

Rea  (1/UAcq) Heat resistance between the ambient
and the building envelope [K/kW].

Ryene  (1/UAyen;) Heat resistance between the ambient
and the interior [K/kW].

o Fraction of solar gains to air node.

The internal gains and solar gains are computed exactly
by IDA ICE. In this work, they are not identified and are
introduced directly in the grey-box model. Consequently,
in the 3R2C model, only the coefficient a to distribute the
solar gains between the two temperature nodes needs to
be identified regarding gains. In real application, gains are
not known exactly. However, simplifying the problem
enables to emphasize the specific research questions of
the article.

The MATLAB identification toolbox is used for model
identification. In grey-box models, the continuous time
model is first discretized in order to identify the model
parameters using discrete measurement data. The
discretization assumes the input data to be piecewise
constant during each time interval (i.e. zero-order hold).
Regarding the optimization problem, the initialization
value of the model parameters and their corresponding
range (i.e. minimum and maximum values) should be
defined. The optimizer will then iterate to find the
parameters that minimize the Normalized Root Mean
Square Error (NRMSE) of the one-step ahead prediction.
Then, the toolbox covert the discrete time model back to
continuous time:

%(1) =A x()+B ut)+K e(t) )
Y1) =C x(t)*e(t) 2
where x is the state vector and A, B and C are the system

matrices. u is the input vector (7s, Osolar, Qin, On) and y is
the output (indoor temperature, 7;). K is the disturbance
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matrix of the innovation form (Kalman gain). It is a
transformed representation from the general process [25].

Influence of the optimizer

In MATLAB, the function greyest identifying the model
parameters has four different gradient-based iterative
search methods, used in sequence. However, preliminary
tests using the 3R2C model show a quick converge to a
local minimum close to the initial estimate of the
parameters. A similar behavior is also reported in the
paper [12]. The authors used GA combined with gradient-
based optimization to overcome the non-convexity of the
optimization  problem.  Consequently, a  global
optimization algorithm has been implemented in this
paper. Instead of the GA method, the first stage
optimization uses particle swarm optimization (PSO)
while the second stage uses the default greyest function to
further polish the results. Each optimization method is
able to identify the parameters’ value and their
corresponding variance. For each case, the optimizer
giving the lowest NMRSE for the one-step ahead
prediction is selected and provides the selected model
parameters.

Pre-filtering methods

In real-life applications, it is difficult to guarantee that the
measurement data will be sampled at a higher frequency
(Ts) than the highest frequency of the system (here 10
min, imposed by the PRBS). For instance, the Advanced
Metering System (AMS) in Norway has a typical time
interval of 15 min [26]. It is important to investigate the
influence of data pre-processing by low-level digital
measurement devices before they log the data at an
appropriate time interval. Temperature sensors can
register data at a very high frequency (here 2.5 min). This
data can be pre-processed before being sampled and
logged at a longer time interval (Ts > 2.5 min). A low-
pass discrete filter can first be applied, such as a moving
average (MA) or a finite impulse response (FIR). Without
this low-pass filter (i.e. direct sampling), the aliasing error
may be high. With MA, the aliasing error is smaller but
still present while the FIR (applied with a sufficient order)
would lead to negligible aliasing. By comparing the
performance of (MA + sampling), (FIR + sampling) and
the direct sampling on the parameter identification, it is
possible to understand the influence of aliasing. The low-
pass filter is applied to all the input and output variables
of the model. If the filter introduces a time delay (like
MA), this delay is the same for all variables and will thus
not affect the model. The situation would be more
complex if the low-pass filter is only applied to a subset
of the input or output variables.

Results
Influence of the optimizer (Q2)

Five datasets using the four PRBS signals and the
intermittent on-off heating during the full heating season
(FHS) are used to investigate the influence of the
optimizer. The two optimization methods do not show

much difference for the IR1C model. In most cases, the
two optimization methods converge to the same
parameter values. However, the identified parameters
from greyest function are not identical for the 3R2C
model. This implies that the optimization is already non-
convex from the second-order model, this conclusion is
also confirmed in Arendt et al. [12]. The best optimizer
leading to lowest NRMSE for the second-order model can
be found in Table 2 (with different time intervals,
excitation signals and filters). The figure shows that
global optimization is selected for all cases no matter the
time interval or filtering method.

Table 2: Best optimizer for the four PRBS and FHS

experiments.
Sampling Type Direct Averaging FIR filter
time sampling filter

2.5min PRBS1 Global Global Global
PRBS2 Global Global Global

PRBS3 Global Global Global

PRBS4 Global Global Global

FHS Global Global Global

15min PRBS1 Global Global Global
PRBS2 Global Global Global

PRBS3 Global Global Global

PRBS4 Global Global Global

FHS Global Global Global

30min PRBS1 Global Global Global
PRBS2 Global Global Global

PRBS3 Global Global Global

PRBS4 Global Global Global

FHS Global Global Global

60min PRBS1 Global Global Global
PRBS2 Global Global Global

PRBS3 Global Global Global

PRBS4 Global Global Global

FHS Global Global Global

Since the datasets contain different excitation signals and
weather conditions, it is a strong proof that global
optimization can give more robust and higher-quality
results when the optimization problem is not convex. In
other words, the global optimization algorithm can
increase the chance to avoid a local minimum in the grey-
box identification process.

Influence of the selection of input (Q4)

While the one-step prediction is used to train the models,
the simulation performance is more relevant for MPC
applications. Therefore, the simulation NRMSE fitting is
mainly used as the performance index in this subsection.
Table 3 and Table 4 compare the cross-validation
simulation performance using the volume-averaged air
temperature and the extracted air as representative indoor
temperature respectively. Only datasets trained with the
original 2.5 min sampling time is used to avoid the
influence of other factors (e.g. dataset, discretization error
and pre-filtering method).
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Table 3:Simulation NRMSE fitting using the volume-averaged
air temperature (Ts = 2.5min)

Training Validation dataset and si NRMSE fitting
dataset PRBSI1 PRBS2 PRBS3 PRBS4 FHS
PRBS1 84.25% 74.96% 0.53% 72.34% -17.72%
PRBS2 77.10% 74.16% 24.25% 60.58% 9.49%
PRBS3 39.36% 34.03% 64.20% 14.41% 33.24%
PRBS4 82.19% 69.36% -17.69% 78.45% -42.34%

FHS 45.95% 41.11% 69.06% 20.59% 39.17%

Table 4:Simulation NRMSE fitting using the extracted
ventilation air temperature (Ts = 2.5 min)

Training Validation dataset and simulation NRMSE fitting
dataset
PRBS1 PRBS2 PRBS3 PRBS4 FHS
PRBS1 90.21% 70.83% 16.97% 79.05% -94.10%
PRBS2 73.51% 81.86% 29.88% 7.77% -74.10%
PRBS3 30.44% 43.28% 68.02% 25.09% -15.82%
PRBS4 78.70% 73.55% -10.68% 83.63% -155.32%
FHS 78.11% 71.50% 52.43% 64.46% 25.33%

In general, simulation performance with the two different
representative temperatures are following the same trend.
The simulation NRMSE fitting is higher for the original
training dataset and lower for the validation datasets. The
model identified from the intermittent set-point and on-

off control dataset during the FHS presents higher
performance on the validation datasets: the validation
fitting is acceptable at each period never completely
collapsing. Models trained from the PRBS excitation
signals of one week have a good simulation NRMSE
fitting on their own training data but largely fail in some
cross-validation ~datasets. Simulation results from
extracted air temperature show a slightly higher
simulation NRMSE fitting value for the original training
dataset. However, models trained with extracted air
temperature show worse simulation NRMSE fitting
compared with volume-averaged temperature when they
are trained and validated with the FHS dataset (values in
red in Table 3. Thus, the volume-averaged air temperature
is a more balanced choice of representative indoor
temperature. The exhaust air temperature is not always the
best option to train the model and this conclusion could
be even more severe if all the internal doors inside the
building were closed.

Influence of pre-filtering methods and data-quality
(Q1, Q3 and Q5)

Figures 4 to 6 show three key identified parameters for the
second-order model. For the value of the total heat
transfer coefficient in Figure 4, the estimated value from
a step-response of the heating power applied in IDA-ICE
is about 85 W/K. Figure 4 shows that most of the results
are close to the estimation from IDA-ICE. When the Ts is
increased to 60 min, some values using the FIR filter or
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Figure 6: Identified Ci of the 3R2C model

direct sampling starts to depart from the estimated value.
Figure 5 shows the value and variance of the heat
capacitance of the external wall C.. Regarding the value
of C., direct sampling has the tendency to generate a
larger capacitance value with increasing sampling time.
Some values are not visible because completely outside
the y-axis limits of the graph. The same problem is even
more pronounced for the value of the heat capacitance C;
in Figure 6. The value of C; diverges quickly when Ts is
increased for every pre-filtering method. Although it
shows that the low-pass filter, especially the moving-
average, can improve the results of identified value for
these key parameters. Regarding the variance of the
parameters, it is very limited for the sampling time of 2.5
min. Like the parameter value, the parameter variance
increases with the sampling time. However, this increase
of the variance is less systematic and regular than for the
parameter value.

Regarding the influence of filters, FIR does not show a
significant advantage over the moving-average for the
identification even though the FIR filter is theoretically
better. On the contrary, FIR filter sometimes has worse
results than the moving-average filter when Ts is large.

Another important conclusion can be found. The FHS
dataset has more stable identified parameters (both values
and variance) than the PRBS datasets. This shows that a
dataset generated from a normal building operation over
a long time period with comfortable indoor temperatures
(and thus possible occupancy) can give equivalent or even
better parameter identification than a short training period
using a better excitation signal (here PRBS) but leading
to uncomfortable indoor temperatures, probably
preventing occupancy.

The simulation performance is shown in Figure 7 taking
the FHS period to train the model. For the sake of the
conciseness, the other cases using the other training
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Figure 7: Simulation performance of the models trained using the FHS dataset.
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periods are not reported but they give similar conclusions.
Unlike, the parameter value and variance, it is clear that
the increase of the sampling time (Ts) does not degrade
the simulation performance. In some cases, even though
the identified parameters have non-physical value or
variance, this does not alter the simulation performance.
The simulation performance is the main property of
interest for the application of MPC. This demonstrates
that training of a model for MPC application or
characterization of the building thermal properties does
not require the same quality of the input data. For
instance, the pre-filtering methods (MA, FIR or direct
sampling) do not affect much the simulation performance
as well. It is difficult to rank the three pre-filtering
methods as their relative performance changes between
the validation cases.

Conclusions

The sampling time (Ts) of data should be limited to
guarantee the physical meaning of the parameter value
and variance. Larger Ts can result in non-physical
parameter values and variance (QS5). If a small Ts is not
applicable, the data should be low-pass filtered before
being sampled even though this measure alone does not
guarantee that the parameters will be physical for all Ts.
This answers the first question in the introduction (Q1).
More than the data pre-filtering, the selection of the right
sampling time is the dominating factor to guarantee the
physical meaning of the parameters. Nevertheless,
sampling time and pre-filtering do not seem to affect the
simulation performance of the identified models, which is
a positive conclusion for MPC applications.

Even if a grey-box model has good simulation
performance, having meaningful physical parameters in
the model remains interesting. Firstly, it increases the
physical understanding of the system, it enables to create
benchmark values for other buildings of the same
category. Secondly, if the parameters have not physical
meaning, the model may have no additional value
compared to a pure black-box model. However, to
conclude this, the simulation performance of black-box
models should be compared as well.

Regarding the selection of the optimizer (Q2), the results
show that only the oversimple structure of the first-order
model shows convexity property. Significant non-
convexity already emerged from the second-order grey-
box model. When applying the four different gradient-
based iterative optimizers, the trained second-order grey-
box model has lower NRMSE for the one-step ahead
prediction compared to the model from global
optimization. Therefore, it is better to use global
optimization to increase the chance of avoiding a local
minimum.

It is hard to say whether PRBS or FHS is a better option
from the results that we observe. Since it also depends on
the target period of the model (better fitting on a certain
period or longer period of the FHS). However, it is clear

that with a larger amount of data (longer observation
period or more samples with smaller sampling time), the
chance to identify a model with higher fitting and more
physical parameters can be increased. This answers the
third question (Q3) of the introduction. The data quality
does influence the identified results of the grey-box model.
Nevertheless, it is not always realistic to use the PRBS
signal to excite the building’s thermal mass with normal
occupancy in the residential building. Data from normal
operation (here intermittent on-off heating) over long
periods seems more accessible. The results of this paper
also show that an acceptable model can be obtained with
normal building operations if large amount of data is
accessible.

The selection of the correct input and output is also
important for system identification (Q4). In the case study,
the identified results from volume-averaged temperatures
are better than those from the extracted air temperature.
This proves that the correct selection of the representative
indoor temperature of the building can increase the model
quality and that choosing the extracted air temperature
does not systematically give the best performance.

This work has answered some questions for the
identification of stochastic grey-box models. However,
the data in this paper is based on the results of virtual
experiments without measurement noise. For future work,
it will be worth investigating the influence of the
measurement noise on the identification results. In
addition, complementary pre-processing methods to
increase the chance to identify parameters with a physical
value is also an interesting topic.
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ABSTRACT

Grey-box models are data-driven models where the structure is defined by the physics while the param-
eters are calibrated using data. Low-order grey-box models of the building envelope are typically used for
two main applications. Firstly, they are used as a control model in Model Predictive Control (MPC) where
the thermal mass of the building is activated as storage (for instance in demand response). Secondly, they
are used to characterize the thermal properties of the building envelope using on-site measurements. The
influence of the data pre-treatment on the performance of grey-box models is hardly discussed in the lit-
erature. However, in real applications, information about data pre-processing by sensors or data acquisi-
tion systems is expected to be limited. Therefore, the influence of the sampling time, low-pass filters and
anti-causal shift (also called data labeling) are analyzed for grey-box models in deterministic and stochas-
tic innovation form. The influence on the optimizer performance is also investigated. The datasets are
generated from virtual experiments using multi-zone building performance simulations of a residential
building (in lightweight wooden construction) heated using different types of excitation signals. Results
show that the parameters of deterministic grey-box models are significantly influenced by the training
data while the data pre-treatment has a limited impact on the model and optimizer performance.
Depending on the training data, the value taken by some parameters is not physically plausible. On
the contrary, stochastic models are significantly influenced by the data pre-treatment, especially the
sampling time, and less by the training data. The parameters can become non-physical for large sampling
times. However, the anti-causal shift proves to be efficient to keep the parameters almost constant with
increasing sampling times. Even though the parameter values of the deterministic model are less phys-
ically plausible, the simulation performance of deterministic models is higher than using the equivalent
stochastic models. These results suggest that deterministic models seem better suited for MPC while
stochastic models are better suited for the characterization of thermal properties (if suitable data pre-
treatment is applied).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

response (DR) is the interaction and responsiveness of the end-
use customer to a specific penalty signal (e.g. price signal, CO,

The share of Renewable Energy Sources (RES) is increasing con-
stantly in today’s energy system. Power generation from RES is
often decentralized and intermittent, such as solar and wind
energy, which brings considerable volatility to the electric grid.
The supply and demand sides in the power system have to be bal-
anced at each time step. Any power imbalance can cause severe
consequences for power quality and reliability (e.g. voltage fluctu-
ations and power outage) [1,2]. Therefore, more flexible loads are
needed to further increase the share of intermittent RES. Demand
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intensity factor for electricity signal) [3,4]. It is considered to be
an important component to provide flexibility for smart grids [5].
In addition, DR can also be used for peak-shaving to avoid conges-
tion [6,7] in the distribution grid so that the reinforcement of these
grids can be postponed.

The share of the total final energy consumed by buildings is 20—
40% and this is increasing at the rate of 0.5-5% per year in devel-
oped countries [8]. In Nordic countries, the building energy con-
sumption is dominated by space-heating due to the long and
cold heating season. Building thermal mass can be considered as
short-term heat storage and be used to perform DR [9-11], which
can contribute to providing flexibility to the smart grid. Model
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Nomenclature

DR Demand Response

MPC Model Predictive Control

BPS Building Performance Simulation
AMS Advanced Metering System

RC Resistance and Capacitance

PRBS Pseudo-Random Binary Signal

PI Proportional Integral

NRMSE Normalized Root Mean Squared Error
FHS Full Heating Season

GA Genetic Algorithm

PSO Particle Swarm Optimization
ACS Anti-Causal Shift

DS Direct Sampling

MA Moving Average

FIR Finite Impulse Response

det Deterministic Model

sto Stochastic Model

HTC Heat Transfer Coefficient

Predictive Control (MPC) is considered a promising technique to
apply DR. In an MPC, a dynamic model is used to predict the
response of the building to future boundary conditions (e.g. fore-
cast of weather conditions, and production of the energy system).
The MPC control agent (computers, built-in intelligent devices,
etc.) will take the optimal control decisions based on the predic-
tions of the model and system constraints. In buildings, the con-
straints for the MPC are usually the power limitation of the SH
system, and thermal comfort. The performance of the MPC con-
troller thus strongly relies on the quality of the dynamic model
of the system to be controlled. Poor quality models could result
in undesired control outcomes (e.g. increased energy cost, violation
of thermal comfort, or even be counterproductive for the grid). In
practice, MPC is currently applicable for only a small fraction of
existing buildings due to cost criteria [12]. However, the ongoing
implementation of smart meters, like the Advanced Metering Sys-
tem (AMS) in Norway [13] and “Key principles for the package of
ordinances governing smart grids” in Germany [14], will make
the MPC control concept more accessible in the future. The recent
emergence of small, low-cost and wireless sensors with a data col-
lection function [15] will also contribute to accelerate the imple-
mentation of MPC in buildings. Finally, creating a suitable model
is acknowledged to be the most time-consuming part of MPC
implementation [16]. Therefore, the cost related to the identifica-
tion of the control model should also be limited to reduce the total
investment cost of the MPC controller. The need to identify a con-
trol model at a low cost is even more severe for small residential
buildings.

The modelling methods for MPC can be divided into three main
categories, namely white-, black- and grey-box models. White-box
models are based on physical laws. They require exhaustive infor-
mation about the building including underlying physical processes,
and parameters. This type of model is usually mathematically com-
plex but has high accuracy. This approach is often used in Building
Performance Simulation (BPS) software like Modelica [14], Energy-
Plus [14] and IDA [17]. However, white-box models are time-
consuming to calibrate as a lot of input parameters have to be
defined and they need to be updated during the operational life-
time of the building. Moreover, the mathematical complexity
requires extensive computational power [9] or the white-box
model has to be simplified using linearization and model reduction
techniques [18]. All these factors challenge the feasibility of white-
box models for the MPC of the existing building. Black-box models
are pure data-driven methods based on the measured input and
output time-series data from the system. Statistical regression
and Artificial Neural Network (ANN) are common mathematical
techniques for black-box models [19]. However, this method
requires sufficient data for training to guarantee the accuracy of
the model [20]. The precision of black-box models is also signifi-
cantly influenced by data quality. Grey-box modelling is an

intermediate strategy between white- and black-box models. It
exploits the dominant physical properties of the system to con-
struct the model structure and uses measurement data to estimate
the model parameters. Grey-box models have better generalization
(extrapolation) properties [21] and usually require less experimen-
tal data compared to black-box models [22]. Lumped resistance
and capacitance models (i.e. RC models) are a common approach
to create grey-box models, which means the thermal conditions
of the building are expressed with an electric circuit analogy
[23]. Existing work has already applied grey-box models for MPC
in buildings. For instance, Coninck et al. [24] made use of a grey-
box model identified by monitoring data to implement MPC. Zong
et al. [25] used an economic MPC with a multi-zone grey-box
model to control the power of heating radiators in a three-story
Danish residential house.

This study mainly focuses on the grey-box modelling of the
building thermal dynamics. A significant amount of research has
already addressed the question of the structure of grey-box mod-
els. Viot et al. [26] gave a detailed list of research papers using
RC models for the MPC In the study by Fux et al. [27], a one-
capacitance model was used to forecast the indoor temperature
of a residential building and it gave satisfactory results. Bacher
and Madsen [28] used the data collected from an unoccupied office
building to identify a suitable model. Models of different orders
were evaluated based on likelihood ratio tests. These showed that
from third-order, increasing the model order cannot lead to signif-
icant improvements in the results. Palomo Del Barrio et al. [29]
concluded that a second-order model is sufficient for forecasting
results for both indoor temperature and heating power. The study
of Reynders et al. [30] also confirmed that the second-order model
is enough to deliver decent prediction performance. Moreover,
Reynders et al. concluded that heat flux measurements were
needed to guarantee observability for higher-order models (i.e.
fourth and fifth-order models) since overfitting and convergence
problems occurred. Yu et al. [31] compared two grey-box model
structures generated from VDI 6007 [32] and ISO 13,790 [33].
The results revealed that with limited measurements and a large
number of unknown parameters, the parameters of the identified
model can easily become non-physical. Brastein et al. [34] showed
that deterministic grey-box models at second-order can already
face the problem of practical identifiability. Based on these previ-
ous findings, our paper only uses first- and second-order grey-
box models to address the research questions so that the chal-
lenges related to overfitting can be eliminated from the study.
When space-heating power is used as input and the indoor tem-
perature is used as an output, previous works showed that
second-order models are a good trade-off between accuracy and
identifiability. Therefore, our paper only resorts to first- and (sim-
ple) second-order grey-box models to eliminate challenges related
to overfitting from the study.
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Data pre-processing (or data pre-treatment) is acknowledged to
have a key influence on the model identification results [35]. How-
ever, this topic has hardly been addressed in the field of grey-box
models for buildings. Ljung and Wills [36] revealed several issues
when applying a long sampling time to estimate continuous-time
models with stochastic disturbances. However, the analysis of
Ljung and Wills is illustrated using a theoretical example. There-
fore, our paper investigates the influence of long sampling times
in building applications. The time-series data is generated using
virtual experiments using the BPS software IDA ICE. In addition
to the sampling time, the influence of the data pre-processing
using a low-pass filter is investigated as well as the influence of
shifting the input data in time, called anti-causal shift (ACS). In this
context, the performance of grey-box models in the deterministic
and stochastic innovation forms is compared using the MATLAB
identification toolbox [37]. To analyze the model performance,
the ability to characterize the thermal properties of the building
envelope and the simulation performance are clearly distin-
guished. The simulation performance is a good indicator of the
model accuracy for MPC applications. Finally, these research ques-
tions are important as data can be processed (or altered) by sen-
sors, the data acquisition system or by the building modeler
prior to the model identification.

The remainder of the paper is structured as follows. Section 2
provides information on the virtual experiment using BPS soft-
ware, which includes detailed information about the virtual build-
ing, the excitation signals and the boundary conditions. Section 3
describes the grey-box model structure used for this study. The
model identification tool and method are also outlined, followed
by the data pre-processing method. Section 4 shows results split
into three aspects. The model performance to characterize the
building thermal properties is first discussed. Then, the analysis
of the optimizer performance and the simulation performance is
analyzed. Section 5 gives some complementary discussions based
on the results. Conclusions are presented in Section 6.

2. Virtual experiments
2.1. Detailed multi-zone dynamic simulations

IDA ICE is a detailed dynamic simulation tool to study the
indoor environment and the energy consumption of buildings. In
this study, an IDA ICE building model is used as a virtual experi-
ment to generate data for system identification. It is a two-story
detached house located in Oslo with a heated floor area of
160 m2 The building is constructed in wood, meaning a light-
weight construction, and complies with the requirement of the
Norwegian passive house standard, NS 3700 [38]. The three-
dimensional geometry of the building is shown in Fig. 1. The build-
ing is equipped with balanced mechanical ventilation with a heat
recovery unit. A cascade ventilation strategy is applied. This heat
exchanger is modelled using constant effectiveness of 85% without
bypass (like a plate heat exchanger) to promote the linearity of the
model. This is done because the research focuses on the thermal
dynamics of the building envelope and does not aim at modelling
the air handling unit (AHU) in detail. Other detailed information
regarding the BPS software model can be found in [39].

The detailed building model is multizone and the zoning fol-
lows the floor plan presented in Fig. 2. For the sake of simplicity,
the grey-model models considered in our study are mono zone:
it is not necessary to use multi-zone grey-box models to address
our research questions. Consequently, the indoor temperature in
our virtual experiments should be as uniform as possible. This is
done by opening all the internal doors inside the building. IDA
ICE has an embedded ventilation network model which accounts
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Fig. 1. 3D geometry of the building model in IDA ICE (showing the southwest
facade).

for the large bidirectional airflow through open doorways. Thus,
the air temperature inside the building computed by IDA ICE is rel-
atively uniform due to the large convective heat transfer between
rooms. The volume-averaged temperature is selected to represent
the measured indoor air temperature. The mean air temperature of
the extract ventilation air is also a common choice. However, based
on preliminary investigations, the volume-averaged temperature
proved to give better grey-box models for this test case. The build-
ing is heated using electric radiators as these are the most common
space-heating systems for residential buildings in Norway [40].
This heating system has smaller thermal inertia than the building
envelope so that the dynamics of the radiators are expected to play
a limited role. Hourly profiles for internal gains generated by arti-
ficial lighting, electric appliances and occupancy are taken from the
Norwegian technical standard TS3031:2016 [41]. The typical mete-
orological year (TMY) of Oslo with a resolution of one hour is used
for the IDA ICE simulations. Like internal gains, solar gains have
thus a resolution of one hour.

2.2. Excitation signals of the building thermal dynamics

The system needs to be perturbed to obtain data for model
identification. It is often recommended to use excitations having
no correlation with the other inputs [28]. The Pseudo-Random Bin-
ary Signal (PRBS) is a periodic and deterministic signal which
approximates white noise properties [42]. The PRBS signal can acti-
vate the dynamic system in a large spectrum of frequencies with a
high signal-to-noise ratio (SNR) [28,43,44]. In this study, the exci-
tation signal is simultaneously applied to all the electric radiators
in the BPS model. Following the guidelines of the IEA EBC Annex
58 [45], the excitation signal is in fact the combination of the
two PRBS signals, see Fig. 3. One sequence to identify the short-
time dynamics with a period (T) of 10 min and with an order (n)
of 8. The second sequence aims at identifying the long time con-
stant of the building with a period (T) of 3.5 h and n equals to 5.
The resulting time profiles for the space-heating are shown in
Fig. 2. The PRBS signal can be applied to four different weeks in
the space-heating season. These weeks are characterized by differ-
ent weather conditions, as described in Table 1.

However, it is not always desirable to apply a PRBS signal to the
space-heating system as large variations of the indoor temperature
may occur and lead to thermal discomfort for the occupants.
Therefore, conventional controls of heating systems are also inves-
tigated. Intermittent heating with a temperature setpoint changing
between daytime and night-time is considered (i.e. a night set-
back). Two different local controllers are tested to track the set-
point temperature in each room: a Proportional-Integral (PI) con-
trol and an on-off control (with a differential of 1 K). The last
one is the most common control strategy for electric radiators in
buildings. When a PRBS signal is applied over a long period of time
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Fig. 3. Time profile of the PRBS signal applied to electric radiators.

(i.e. longer than one week), it is difficult to design the signal so that
the indoor temperature is kept within comfortable temperature
limits for the occupants. By definition, conventional heating con-
trols enable to have normal occupancy of the building during the
experiments used to collect data for model identification. It is thus
possible to collect data over a longer period of time than one week
without impacting the thermal comfort of building users. The full
space-heating season (FHS) starting in November and finishing at
the end of March can be used to train the model. However, it is also
interesting to test whether a shorter training period of one month
would be sufficient to train the grey-box models. It is also interest-
ing to check whether specific months are more suited for this task.
Therefore, the model parameters are also identified using each of

five different months of the space-heating season (i.e. Month 1 to
5).

To investigate the influence of data pre-processing techniques
and the grey-box modelling approaches, 20 different datasets have
been generated using different excitation signals, duration of the
experiment and weather data. The detailed description of each case
can be found in Table 2 below. IDA ICE assumes that variables are
piecewise linear during one-time step. The model equations are
integrated numerically using a variable time-step so that data is
not generated at constant time intervals. Consequently, conserva-
tive interpolation has been used to interpolate IDA ICE data on a
uniform grid of 2.5 min. This time step is significantly smaller than
the shortest period of the PRBS (i.e. 10 min).

3. Methodology for grey-box modelling
3.1. Grey-box model structure

Based on the literature review (see the introduction section),
only first-order and second-order grey-box models are considered
in this paper. Preliminary tests using our virtual experiments con-
firmed that a third-order model would be overfitted. The structure
of the grey-box model expresses the conservation of energy. As
mono zone grey-box models are considered (with a single node
related to the indoor air temperature), the dominant process to
be integrated is the heat transfer between the building and its out-
door environment. The influence of solar radiation and internal
gains are also included in the grey-box models. Two model struc-
tures are studied: a one-resistance, one-capacitance (1R1C) in
Fig. 4, and a three-resistance, two-capacitance (3R2C) model in
Fig. 5. The physical interpretation of their respective parameters
can be found in Table 3.

The internal and solar gains can be computed accurately by BPS.
For the sake of simplicity, these gains have been introduced
directly in the grey-box models rather than identified. For the

Table 1

Weather conditions in four PRBS experiments.
Type Outdoor Temperature Sky Date Duration
Very Cold -10TC Clear sky 12/13/2019 One week
Cold 0T Overcast 12/24/2019 One week
Cold 0c Clear sky 3/23/2019 One week
Mild 5T Overcast 11/23/2019 One week
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Table 2
Description of the datasets and their corresponding abbreviation.

Case Case description Period/Duration Abbreviation
(dataset) (excitation)
1 PRBS1 Week 1 W1-PRBS
2 PRBS2 Week 2 ‘W2-PRBS
3 PRBS3 Week 3 W3-PRBS
4 PRBS4 Week 4 W4-PRBS
5 Intermittent on-off Week 1 W1-Inter I/O
6 Intermittent on-off Week 2 W2-Inter 1/O
7 Intermittent on-off Week 3 W3-Inter I/O
8 Intermittent on-off Week 4 Wi4-Inter 1/O
9 Intermittent on-off Month 1 Mi1-Inter 1/0
10 Intermittent on-off Month 2 M2-Inter 1/0
11 Intermittent on-off Month 3 M3-Inter 1/0
12 Intermittent on-off Month 4 M4-Inter I/O
13 Intermittent on-off Month 5 M5-Inter I/O
14 Intermittent on-off Full heating FHS-Inter I/
season (o)
15 Intermittent PI Month 1 M1-PI
16 Intermittent PI Month 2 M2-PI
17 Intermittent PI Month 3 M3-PI
18 Intermittent PI Month 4 M4-PI
19 Intermittent PI Month 5 M5-PI
20 Intermittent PI Full heating FHS-PI
season
T 1/UA T ey
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Fig. 4. First-order 1R1C model.
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Fig. 5. Second-order 3R2C model.

3R2C model, only the coefficient o that distributes the solar gains
between the two temperature nodes needs to be identified. In real
applications, the gains are not known exactly. However, simplify-
ing the problem enables us to emphasize the specific research
questions in this paper. To obtain a more physical representation
of the heat exchange between the building and its outdoor envi-
ronment, an equivalent outdoor temperature is applied as
described in Harb et al. [9]. This temperature is calculated using
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Equation (1) with a short-wave absorption coefficient of the exte-
rior surface (ay) of 0.5 and an exterior heat transfer coefficient (os)
of 25 W/(m?K):

q
Ta,eq =T+ Qirmd*f (1>
O
The heat dynamics of the 1R1C model is expressed in the fol-
lowing differential equation:
: dT1
tdt

The heat dynamics of the 3R2C model is expressed by the fol-
lowing differential equations:

G =UA (TaAeq = Ti) + Qn + Qine + Qsotar )

dT;
Ciditl = UAz/enr (Ta,eq - Tx) + UAiE (TE - T,) + Qh + Qin[
+ o Qsolar (3>
dT.
Ceﬂ = UAea (Ta,eq - Te) + UAe (Tz‘ - TE) + (1 - O() Qsolur (4>

3.2. Model identification tool and method

The MATLAB system identification toolbox is used in our study
[37]. Madsen et al. [45] illustrated how stochastic models can be
formulated as an extension of deterministic models. In the stochas-
tic form, a system noise (or noise term) is added to the determin-
istic model equations to better account for the modelling
approximations, unrecognized inputs and measurement of inputs
corrupted by noise. The generic equations of the stochastic linear
state-space model in innovation form can be expressed as:

% = AX(t) + Bu(t) + Ke(t) (5)
y(t) = Cx(t) +e(t) (6)

where x is the state vector, A, B and C are the system matrices, u is
the input vector (i.e. Taeq Qsolar Qint. Qn) and y is the output (i.e.
indoor temperature, T;). K is the disturbance matrix of the innova-
tion form (Kalman gain) [46]. The matrices A, B, C and K are func-
tions of the model parameters (0), in our case defined by
Equations (2) to (4). The continuous-time model is first discretized
so that discrete measurement data can be used to identify the
model parameters. Unlike IDA ICE, the time discretization in the
MATLAB identification toolbox assumes piecewise-constant input
data during each time interval (i.e. zero-order hold). For stochastic
models, both the value and variance of the model parameters are
identified. In the case of deterministic models, the K matrix is set
to zero. The parameter variance is not clearly defined for the deter-
ministic model in the MATLAB system identification toolbox. There-
fore, it has been decided to only consider the parameter value.

At the beginning of the identification procedure, the initial
guess of the model parameters and their region of feasibility (i.e.
lower and upper bounds for each parameter) should be defined
by the user as input parameters. Then, the optimizer iterates
within the feasibility region to find the value of the parameters
that minimize the prediction error criterionf (x)

N
F@) =3 1 =01 7)
k=1

where y, is the measurement output while y,(0) is the one-step
ahead prediction.

The default function (greyest) in the MATLAB identification tool-
box uses gradient-based optimizers. Four different iterative search
methods are used in sequence. Consequently, the optimizer may
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Table 3
The physical interpretation of the parameters of the grey-box models.

Energy & Buildings 236 (2021) 110775

Parameters Physical interpretation

T; Temperature of interior heat capacity [°C].

Te Temperature of the building envelope [°C].

Ta The outdoor (or ambient) temperature [°C].

Toeq The equivalent outdoor (or ambient) temperature [°C].

G Heat capacity of the building combining the thermal mass of the air, the furniture, internal walls and, potentially,
a fraction of the thermal capacitance of external walls: the first centimeters for the second-order model and a

larger fraction for the first-order model [kWh/K].

Ce Heat capacity of the node external wall for the second-order model [kWh/K].

Overall heat transfer coefficient (HTC) between the building and its ambient, including ventilation [KW/K].

UA;e Heat conductance between the building envelope and the interior [kKW/K].
UAca Heat conductance between the ambient and the building envelope [KW/K].
UAvent Heat conductance between the ambient and the interior node [kW/K].

Qine Internal heat gain from artificial lighting, people and electric appliances [kW].
Qirrad Global solar irradiation on horizontal surface [K/m?].

Qsolar Heat gain from solar irradiation [kW].

Qn Heat gain from the electric heater [kW].

o Fraction of solar gains to air node.

converge to a local optimum if the problem is not convex. As
shown in Arendt et al. [47], Genetic Algorithm (GA) combined with
a gradient-based method could be used to solve non-convex opti-
mization problems used to identify the parameters of grey-box
models. Likewise, a global optimization algorithm has been imple-
mented in our work to avoid a local optimum. A metaheuristic Par-
ticle Swarm Optimization (PSO) is applied at the first stage,
followed by the default greyest function to refine results during
the second stage. The PSO algorithm begins by creating the initial
particles and assigning them initial velocities. It evaluates the
objective function at each particle location and determines the best
(lowest) function value and the best location. In the next step, new
velocities are chosen based on the current velocity, the particles’
individual best locations, and the best locations of their neighbors.
The optimizer then iterates the particle locations, velocities, and
neighbors until the algorithm reaches a stopping criterion. Detailed
information on the PSO algorithm can be found in [48,49]. For each
test case, both optimization procedures are used in sequence: the
default greyest and the global optimization. The method giving
the lowest error for the prediction error criterion is selected to pro-
vide the model parameters. The flow chart of the identification
routine is summarized in Fig. 6.

To determine the search space for the optimization, a first set of
limits for the parameter values have been selected based on the
thermal properties of the building in IDA ICE. Then, these mini-
mum and maximum limits have been refined manually by trial
and error. Several simulations (i.e. optimizations) have been run
with different limits for the parameter values. It has been checked
whether the solution (meaning the parameter values computed by
the optimizer) hit the pre-defined parameter limits The limits of
the parameter values leading to the smallest range without the
optimizer hitting these limits have been selected. The PSO algo-

Greyest

Global optimization
routine

Greyest

Formulate the

_npllmization problem

Default optimization
routine

rithm populates this range randomly to generate the initial condi-
tion. A sensitivity analysis has been done on the number of
particles in the swarm as well as the number of iterations.

3.3. Data pre-processing method

Extended sampling time (T) can lead to a non-physical value
and variance for the identified parameters of grey-box models
(see e.g. [36]). In real-life applications, it can be seldom guaranteed
that measurement data is recorded at a sampling time (T;) shorter
than the shortest time of the system (Tp,;,). In our test case, T, iS
related to the shortest period of the PRBS signal (T) as the other
model inputs (namely the internal and solar gains) have a resolu-
tion of one hour. Ty, is therefore 10 min and the sampling time
(Ts) applied to the BPS data has been taken at 2.5 min to avoid
aliasing. As Ts < Tpin, it is therefore possible to identify the param-
eters of the grey-box model without facing the above-mentioned
issues. However, the measurement data at 2.5 min can be resam-
pled at longer sampling times, namely 15, 30 or 60 min, so that
the case where T < T; can be directly compared to the cases where
Ts > T;. In real applications, it is difficult to guarantee that the data
logging is done at a sampling time shorter than the system dynam-
ics. In addition, the measurement data can be pre-processed before
being logged at Ts. Two methods are considered here: low-pass fil-
tering and anti-causal shift.

Regarding low-pass filtering, three approaches are compared:

e The first approach is direct sampling (DS) at T, without pre-
filtering. This may cause a high aliasing error.

e The second approach applies a moving-average (MA) filter of
length T, before sampling. With MA, the aliasing error is signif-
icantly decreased but, in theory, it can still occur.

Compare
o Output the
prediction error P Nbetter niodel

criterion

Model selection of two
routines

Fig. 6. Flow chart of the optimization procedure to identify the model parameters.
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o The third approach applies a finite impulse response (FIR) filter
with a cut-off frequency of 1/Ts before sampling. The FIR would
lead to negligible aliasing error (if it is designed at a sufficient
order).

By analyzing the performance of the three methods, it is possi-
ble to understand the influence of aliasing. It is known that these
low-pass filters introduce a time delay [35]. However, as the
low-pass filters are here applied to all input and output variables
of the dataset, the delay does not affect the final identification
results. In the paper, we don’t distinguish between the low-pass fil-
tering deliberately introduced by the data engineer before training
the grey-box model and the low-pass filtering done internally in
the sensor. If grey-box models of small residential buildings should
be developed at low cost, there is most likely no time to take the
technical specifications of each sensor into account. Therefore,
the type of data pre-treatment performed by the sensor can be
unknown. The analysis is thus generic.

Ljung and Wills [36] pointed out that time labeling plays a role
in the alignment of inputs and outputs for the identification appli-
cation. The results of Ljung and Wills’s paper show that a time shift
(ACS) of the input (Input Delay = -Ts) is beneficial for the model.
The method is going to be tested with the data from IDA ICE model.

3.4. Key performance indicator

One main application of the grey-box model is MPC. In this con-
text, the long-term prediction performance (i.e. the simulation per-
formance) is paramount. In our work, the NRMSE fitting, defined in
Equation (9), is taken as the key performance indicator (KPI) to
evaluate the simulation performance. It is based on the normalized
root mean squared error (NRMSE) quantifying how well the simu-
lated or predicted model response matches the measurement data,
see Equation (8). If the fitting is 100%, this means the model fits the
measurement data perfectly, while a low or negative fitting corre-
sponds to a worse model. There are no outliers in the measurement
data that will skew the NRMSE KPI, so there is little reason to use
KPIs handling outliers better, such as Mean Absolute Error (MAE).

A
[y — mean(y,)l|
NRMSEjp;; = (1 — NRMSE) x 1 00% 9)

Regarding the characterization of the building thermal proper-
ties, the performance of the grey-box is evaluated using the phys-
ical plausibility of the identified parameters. The calibrated value
of the model parameters should give a physically-reasonable esti-
mate of the thermal building properties.

o The overall heat transfer coefficient (HTC) is the total heat loss
of the building in a steady-state. Convective and long-wave
radiative heat transfer are non-linear. However, in the case of
a highly insulated building, the heat conduction is dominant
and often assumed linear in BPS (like in IDA ICE). In addition,
the heat recovery effectiveness is constant, making its model
linear. Specifically, each resistance R (or conductance) of the
grey-box model will be dependent on the excitation signal.
However, their combination to form the HTC is a steady-state
performance parameter. Consequently, the HTC does not
depend much on the excitation signal used for the identifica-
tion. For the first-order model, the HTC is equal to the conduc-
tance UA. For the second-order model, the formula of the HTC
for the 3R2C model is defined by Equation (10). In conclusion,
to be physically plausible, the identified HTC should be close
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to steady-state heat losses of the IDA ICE model. These losses
have been evaluated at 85 W/K (identified by applying a step
function of the space-heating to the IDA ICE model).

HTC = + UAyent (10)

1/UAi, + 1/UA

e The capacitances (C; and C.) are strongly related to the building
thermal dynamics. Defining their physical plausibility is more
challenging because their value depends on the excitation sig-
nal. The effective heat capacitance of the building (Ce¢) based
on the ISO 13786:2017 [50] is taken as a reference value for
the capacitances mostly related to the walls (meaning C; in
the 1R1C model and C. in the 3R2C models). C. is evaluated
assuming daily fluctuations (i.e. 24 h) and using the thermal
properties of each layer in the building walls (i.e. physical-
based approach). Ces is here equal to 3.9 kWh/K. To be physi-
cally plausible, it is expected that the identified values, also con-
sidering their variance, have the same order of magnitude as
Cesr. Indeed, none of the excitation signals used in our investiga-
tions have fluctuations significantly longer than one day. For the
3R2C model, there is no point of comparison for the identified
value of C;,. However, as it is related to the fast dynamics of
the building, it is expected to be smaller than Ceg. In addition,
the value of C; should decrease with increasing frequencies in
the excitation signal.

4. Results

In this section, the model performance to characterize the
building thermal properties is first discussed, followed by the anal-
ysis of the optimizer performance. Finally, the simulation perfor-
mance, important for MPC applications, is investigated. The
comparisons of this section are mainly based on the performance
criteria defined in the previous section. However, there are 20 dif-
ferent training datasets (see Table 2), four different models, four
different sampling times, two different optimizers and three pre-
filtering methods of the virtual experiments, with and without a
causal shift. It corresponds to a total of 4320 different test cases.
Thus, only the most representative test cases are taken to illustrate
the results and support the conclusions.

4.1. Characterization of the building thermal properties

The physical plausibility of the identified grey-box model
parameters is verified. It means the ability to identify values for
the parameters that are in line with physics. For the sake of the
conciseness, we mainly focus on datasets 1 to 4 with a short train-
ing period but strong excitation as well as dataset 14 which has the
largest amount of data, see Table 2. These datasets can be seen as
extreme scenarios so that it makes them representative to illus-
trate the model performance. Other datasets are also occasionally
used to better illustrate how the input data influences the identifi-
cation results. As has been mentioned previously in Section 3.2, it
has been demonstrated theoretically that ACS of the input signal
can be beneficial for model identification [36]. Therefore, the influ-
ence of the ACS is tested. The 3R2C model is used to illustrate the
results. Some of the results of the 1R1C model are given in Appen-
dix A. Regarding the physical plausibility of parameters, the overall
heat transfer coefficient (HTC) of the building and heat capaci-
tances (Ce and G;) are used to illustrate the results.

All the figures in this section are based on the same layout, see
e.g. Fig. 7. In each figure, five cases or datasets are considered. The
abbreviation for each case on the horizontal axis follows the
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description given in Table 2. The influence of increasing sampling
times on these five cases is reported from the left to the right of
the figure. Each figure also distinguishes the cases as a function
of the data pre-treatment. Firstly, the colors of markers correspond
to the different pre-filtering techniques. The cases in red, blue and
black represent the MA filter, the FIR filter and the direct sampling,
respectively. Secondly, cases without ACS are shown by circles in
normal colors while cases with ACS are shown by triangles in
lighter colors.

4.1.1. Deterministic 3R2C model

In Fig. 7, the value of HTC is close to the reference value of 85 W/
K. The same conclusion is obtained for the 1R1C deterministic
model, see Fig. 18 in Appendix A. The sampling time (Ts) does
not have a noticeable influence on the HTC. Likewise, the pre-
filtering method and ACS have no significant impact on HTC.

As shown in Fig. 8, the training dataset has the largest influence
on C. while the sampling time, the pre-filtering technique and the
ACS have a limited impact. The value of C. is similar between the
four datasets using PRBS excitation (i.e. cases 1 to 4) and is plausi-
ble compared to the Ces of 3.9 kWh/K determined using standards.
However, it differs for case 14 that generates a higher value, well
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above 3.9 kWh/K. Comparable results are observed for the 1R1C
deterministic model (see Fig. 19 in Appendix A). To further illus-
trate the influence of the dataset, the values of C. identified using
an intermittent on-off excitation during each month of the space-
heating season are compared, i.e. cases 9 to 13, in Fig. 9. Even
though the excitation signal is generated from the same control
(i.e. intermittent on-off control) and has the same duration of
one month, the identified C. strongly depends on the selected per-
iod used to train the model, meaning the specific month of the
space-heating season.

As shown in Fig. 10, similar results are obtained for the values of
C;. The case with ACS shows a progressive increase of C; with the
sampling time. A possible reason is that C; represents the thermal
capacitance of the building combining the air, the furniture, inter-
nal walls and, potentially, the first centimeters of external walls.
With increasing T, the high frequencies of the inputs and the
output are reduced while the low frequencies, corresponding to a
longer penetration depth in the walls, have more importance in
the evaluation of the thermal capacitance. With longer penetration
depths, more thermal mass is activated leading to a higher C;.

Several conclusions can be drawn. Firstly, the value of the
parameters strongly depends on the dataset selected to train the

WrTrrrr—rrrrT T T T T T T TTTT T TTTT T T T TT T TTTT T T T T T TTTTT TTTTT
& Averaging filter (without ACS)
160 L $ FIR filter (without ACS) a
$ Direct sampling (without ACS)
Averaging filter (with ACS)
140 H FIR filter (with ACS) -
< Direct sampling (with ACS)
E HTC reference value
=120 - -
]
=
T
100 — -
ee © oo ° ce © e e a ° e s ° 5 e 4 ° e 2
e Q ° e L o o ° o ° e °
80— T -
41 e e e e
DNDNVNNO VDNNNDO NDNDNO DNDNVDNO VNNNDO NDDNO DNDNDNO DNNNDO NDDNDO DNDNDNO
ooom= oOooo= ooom= oo = oooom= ooom= oo = oOooom= ooom= oo =
rryry. Xrrr. XXX XXXXs KXXX: XXX XXX XXX XXX XXX s
naan® aacoo® oooal ooaad aacoo8 aoooal® ooaaf aacaocog aooal ooaad
SdS3E Idd3E SdSIE SdSIE SAHIE SAIFIE SASIE LdATE LdSIE LdagE
883y 3553 35334 3535 35835 35535 E533g 35534 35835 38235
ceecef cccef c£ccef g£ee£cf c£e£cef c£ccef gee£sf £e£scef e£ceef egeegsk
EEEEY EEEEY EEEEYL EEEEY EEEEY EEEEYL EEEEY EEEEL EEEEYT EEEEL
lnlDlDLDé mmmmé IOL{)LDLOE u')lnlnnné [=N=NeN-— [=N=N=ie— o0 00O = [=N=N=N-R o O 0O E [=N=N=N-—3
NN B R - == DOOME OOOME OOOODE OCOOOE OCOOOE ©OOO®E
@ © © e 8 3 8 3 3 8
Fig. 7. Identified HTC of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by
triangles in lighter colors.
T T T TT T T o1ttt -1t rrrr rrrrr rrrr1r_ rrrr1r._rrrr1r_rrrrn1r_ T rrr1r T T1TT1TT9
9 Averaging filter (without ACS)
3 FIR filter (without ACS)
20 H [ Direct sampling (without ACS) —
Averaging filter (with ACS)
FIR filter (with ACS)
< 15 Direct sampling (with ACS) _
= B
; e
= e e e ° ° 9 °
Iy e = e
8o .
) [ a a e ° e ° ° o6 ® & 3 °
5 o © o o e o & e s s ® e ° ° e 2 e 8 ® e ® ° s
3 e e o
DODNDNO DODNNO DDNDNNO NDDDNO NDNDNDNO NVDNDNDNDO NDNVNDNDO NVNDNDO NDNDNO NDNDDNDO
NNON0S 0ON0N0= 0000= 0000D= 00N00= 0000= 0O00N0= 0000= 0000= 0000=
Yrreeg. Xrerr- Frryrr Frryrr XXX r XXXy XXX KEXX: XXX : XXX o
0002 gaaag agoao0onf ogooo goaa 4444 4000 g gaoag gaaaf ogoood
SdATE SdAFE LdDTE SdATE SdAFTE LdSTE SdAIE SdSTE SdSFE LdoSE
882 5553y 35539 55534 35839 35534 35539 35534 35539 355345
cccel csccef ££cs£f s£E£s£E£f ££E£sf £s£csf £E£££f £eE£sf ess£ecef segssk
EEEEY EEEEY EEEEY EEEEY EEEEY EEEEY EEEEY EEEEL EEEEL EEEEL
ll'JLOlnLOE mmmmé IDIOIDIDE mmmmé [elele e [eNeNoNe [=NeNeNe [=N=Nee o 00O E [=N=N=NeR—
PRI B - - - DOOOE OOOO®E OOOODE OCOOOE OCOOOE ©OOOE
wn wn el w o o o o o o
o -~ -~ -~ (] 2l «© © © ©

Fig. 8. Identified C. of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles

in lighter colors.



X. Yu, L. Georges and L. Imsland

Energy & Buildings 236 (2021) 110775

SO rrrr—rrr Tt 11T TT TTTTT T T T T T T T T T T T T T T T T T TTT T TTTT TTTTTI
9 Averaging filter (without ACS)
3 FIR filter (without ACS)
40+ & Direct sampling (without ACS) —
Averaging filter (with ACS)
FIR filter (with ACS)
< 30 - Direct sampling (with ACS) s 9 _
= ° °
E‘ 4 o s 2 b b
Jol — —
820
* e
. o e e
10F° e e e e + a8 e L e e 2 e e L e e 2 o © o e 2 2 —
° e e e e o e e e
7 e e e A e e o e e e e s e e e s o
00000 Q20000 00000 QQQ0Q0 Q00Q0Q Q00QQQ ©QQ0Q0 QQ000Q Q00QQQ QQQQQ
55555 55555 55555 55555 55555 55585 5EEEE 55B5EE BEEEE BEEES
£cccc ccccecc £ecccc ccccc £ecccc £ ceccc £ecccc £cccc ccccc £cccc
cdogw tdogyw tdoTw tdoTw tdoTw tAOTY TANTY TANTY TIOTYL T ADTY
33333 3333 33332 =332 22332 2333z =322 353232 =2=232= ==2=2=-=
R eececece eEeecece eececece eEeceee eEececee eececece eEeecece cececee eeecee
EEEEE EEEEE EEEEE EEEEE EEEEE EEEEE EEEEE EEEEE EEEEE EEEEE
Naadaa TFrrrsrrs Frrrrs rrrre O0O0O0HO0H OOHOO0H OnOHom 00000 OO0 ©OO 00
Fig. 9. Identified C. of the 3R2C deterministic model for cases 9 to 13, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in lighter
colors.
BAlllll||\||\II\\I\\II\II\II\II\II\\I\III\I\\II\II\I,
] Averaging filter (without ACS)
21 & FIR filter (without ACS) a
& Direct sampling (without ACS)
6 Averaging filter (with ACS) |
FIR filter (with ACS)
< 5k Direct sampling (with ACS) _
=
s l
= s B °
037 7 ? ? e e e e |
2 T . e
e °
° °
1% °6e oo o LRC RN LI co s s 66 o0 7. 1t _l L4 -
0\\II\II\II\II\\I\\II\II\II\II\II\\I\I]A\I\\II\II\I
NDDDNDO DDNDNO NDNDNNDNO NDNDDNO NDDNDNO NDNNDNDO NDNDDNO DDNDNO NDNNDNDO DNDADANO
o= [aa e lyaa iy s =y [aa s Yo Jyaa =y ooonm= [aa e lyaa iy a =y [aa s ayaa yaa sy [aa e yaaliya s =y [aa s Yo yaa sy ooOoonm= [aalaalyaa iy o =y
redrers KXY XXX XXX : XXX XXXy XXX :. XXX XXXX:y XXX =
cnoaoag aaoag aonaoag aoaag aaoaog aaoag aaaog aaoaaog aooaag oaoaond
AT E SdOTE SdOFE ST E SAATE SANTE SdNTE SdAFTE SddFE SdosE
$£82, 5588, 35835 3534 5583, 35835 355 58835 35835 5234
cccef cccef cscegsf secsef cceef cegcsf scecef gegsef cceef ssesft
EEEEY EEEEY EEEEY EEEEYL EEEEL EEEEY EEEEL EEEEY EEEEY EEEEX
mmu‘)mé mmmmg LOLOLOLDE L{)l{)LﬁL{)é Q00 Q= 0 O QO = 000 Q = 000 Q= o000 = (o=l R
o oo ed - - - e - - - - m>®momo E mom®m® E mmo®E ©©®©®E ©©®©©®E ©©©®E
wn w w wn o o o o o o
o~ -~ -~ -~ 3] (] 3] © © ©

Fig. 10. Identified C; of the 3R2C deterministic
triangles in lighter colors.

model. Both the type of excitation (e.g. PRBS and on-off intermit-
tent excitation) and the selected period during the space-heating
season influence results. Secondly, the pre-processing of data does
not have a large influence. Neither the ACS, the pre-filtering tech-
nique nor the sampling time leads to a significant change in the
parameter values. The only exception appears with very large Ts.
Then, the pre-filtering can prevent the parameter value from
becoming non-physical. Finally, the HTC characterizing the
steady-state performance of the building has rather stable values
while the other parameters characterizing the thermal dynamics
of the building, here C. and C;, are more strongly impacted by
the training dataset and the sampling time.

4.1.2. Stochastic 3R2C model

For stochastic models, the value and variance of the model
parameters are available. However, as the HTC is the combination
of the three conductances in the 3R2C model, only the value of the
HTC can be shown, not its variance. The value for HTC for the 3R2C
stochastic model in Fig. 11 is similar to the deterministic model in
Fig. 7. The same conclusion can be made for the 1R1C stochastic
model, shown in Fig. 20 in Appendix A. As for the deterministic
model, long sampling time can lead to a non-physical value of
the HTC. While all the pre-filtering prevented the value to become

model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by

non-physical for the deterministic model, only the moving-average
filter and the ACS have the same effect for the stochastic model.

The value and variance of C. are shown in Fig. 12. As long as the
sampling time is shorter than the system dynamics (i.e. Ts equal
2.5 min), the value of C. is independent of the training period
and its variance is limited. Close to the Ces of 3.9 kWh/K, the value
of C, is meaningful from a physical point of view. When the sam-
pling time increases, the behavior should be distinguished with
and without the application of an ACS. When the ACS is applied,
the value and variance of C. are regular even with long sampling
time. The ACS has a strong positive effect on the physical plausibil-
ity of C.. With ACS, pre-filtering has a limited influence on the
results. Without ACS, the parameter value and variance become
erratic with increasing Ts. Some values are so high that they fall
outside the y-axis limit of the graph. In addition, no clear trend
can be found on the influence of the pre-filtering and training
period.

The same phenomenon is observed for the value and variance of
C; in Fig. 13. Nonetheless, there is one aspect that differs from C.. As
for the deterministic model with ACS, the values of C; with the cor-
responding stochastic version also tends to increase with the sam-
pling time. A possible explanation for this phenomenon has been
given in the previous subsection.
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Fig. 11. Identified HTC of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS

in lighter colors.
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Fig. 12. Identified C. of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in

lighter colors.

From all the results of the stochastic models, several conclusions
can also be drawn. First, the identified parameters are strongly
dependent on the sampling time. The identified parameters are
always consistent if the Ts is taken small compared to the shortest
time of the system T, (influenced by the excitation). It is only
when T gets equivalent or larger than the building dynamics that
the parameters are getting non-physical without ACS, especially
the thermal capacitances. The second conclusion is that ACS pre-
vents the parameter value and variance to get non-physical for
large T,. With ACS, the uncertainty of the parameters remains lim-
ited and their value remains physically plausible. Also with ACS, the
values identified are mainly based on the training dataset but to a
much smaller extent than the deterministic model. Pre-filtering
only has limited influence with ACS while the pre-filtering influ-
ence without ACS does not show a clear trend, sometimes improv-
ing or degrading results. Finally, like the deterministic model, the
steady-state characteristics HTC is less influenced by the dataset
and pre-processing than the thermal capacitances.

4.2. Performance of the optimizer

The performance of both optimizers defined in Section 3.2 is
compared for a selected number of datasets (i.e. cases 1 to 4 and

14), with and without ACS, for both deterministic and stochastic
models. Table 4 shows the optimizer that leads to the lowest pre-
diction error for each test case. The symbol “D” represents the
default greyest function, “G” represents the two-stage global opti-
mization algorithm and the symbol “~” is used when both opti-
mizers lead to extremely close results in terms of prediction
error and estimation of the model parameters. Only results for
the sampling times of 2.5 and 30 min are presented in Table 4.
However, the same conclusions are found for the other two sam-
pling times (i.e. 15 and 60 min).

It is observed that the two optimizers have identical results for
all the cases using a deterministic model, regardless an ACS is
applied or not. However, global optimization generally performs
better than the default greyest optimization for stochastic models
without ACS. On the contrary, both optimizers have similar perfor-
mance when ACS is applied. It means that ACS tends to preserve
the physical plausibility of the model parameters when T is large
but it also positively influences the convexity of the optimization
problem. In general, results confirm that it is better to use global
optimization. Otherwise, the obtained sets of parameters are pos-
sibly located at a local minimum which mainly depends on the ini-
tial guess of the parameters.
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Fig. 13. Identified C; of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques;
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Table 4
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cases with ACS are shown by triangles in

Optimizer leading to the lowest prediction error: each cell of the table has two symbols, one for the case without ACS (left) and the other with ACS (right); the symbol “D” means

default greyest, “G” means global optimization and “~" means equal performance.

Time Case 1R1CMA 1RICFIR 3R2CMA 3R2CFIR 1R1CDS 1R1CMA 1R1CFIR 3R2CDS 3R2CMA 3R2CMA
(Ts) (det) (det) (det) (det) (sto) (sto) (sto) (sto) (sto) (sto)
25min 1 - - - - G/~ - - G/~ - -
2 - - - G/~ - - G/~ - -
3 - - - - G/~ - - G/~ - -
4 - - - - G/~ - - G/~ - -
14 - - G/~ - - G/~ - -
30 min 1 ~~ G/~ Gl~ G|~ G/~ Gl~ G/~
2 ~|~ G/~ G/~ G/~ G/~ G/~ G/~
3 ~|~ G/~ G/~ G/~ G/~ G/~ G/~
4 ~|~ Gl~ G/~ G/~ Gl~ G/~ G/~
14 ~|~ G/~ G/~ G/~ G/~ G/~ G/~

4.3. Simulation performance of the models

The simulation performance of the grey-box models, analyzed
here using the NRMSE fitting, is another important aspect of the
system identification. As expected, the second-order 3R2C model
has better simulation performance than the first-order model
and is used to illustrate the results. Again, only a limited set of
results can be shown. The simulation performance of the 3R2C
model trained on the FHS intermittent on-off dataset (i.e. case
14) is taken. This training period covers the whole space-heating
season and leads to the lowest variance of the identified parame-
ters in Section 4.1. Then, the simulation performance of the model
trained on the case 14 is evaluated on cases 1 to 4, as cross-
validation test cases. In simulation, the full length of each dataset
is taken as the prediction horizon for both the deterministic and
stochastic models. Fig. 14 and Fig. 15 illustrate the influence of
the number of steps ahead on the NRMSE fitting for the 3R2C
stochastic model and datasets 1 and 2. The NRMSE fitting for long
k-step ahead prediction (i.e. more than two days) is slightly higher
than that in a simulation. To study the influence of the data pre-
treatment, the 3R2C is trained on case 14 with different sampling
times as well as with and without pre-filtering.

Fig. 16 compares the simulation performance of the determinis-
tic and stochastic models without ACS. For different Ts and pre-
filtering approaches, the deterministic model has a more constant
simulation performance than the corresponding stochastic model.
For the deterministic model, the NRMSE fitting tends to slightly
decrease with increasing Ts while it tends to increase for the
stochastic models (except for the PRBS3 case). The deterministic

model has generally a better simulation performance than its cor-
responding model in stochastic form even though this difference
tends to disappear for large T,. This conclusion is noteworthy as
for deterministic models the value of the parameters is signifi-
cantly influenced by the training period and some of the values
are even not physically plausible. In other words, identifying a
model with parameters that have a more physical value does not
necessarily lead to a model with better simulation performance.
If one is not interested in the characterization of the thermal prop-
erties but rather the simulation performance (like in MPC), results
suggest that deterministic models can be more robust than
stochastic models. This makes the resolution of the optimization
problem to calibrate the model easier (as both local and global
optimizer lead to the same parameters). In addition, it has been
shown that pre-filtering techniques and T, have a limited effect
on model performance. This conclusion is important in the context
of the design of MPC for small residential buildings where a control
model should be identified at a low cost, potentially using a fully
automated procedure.

Fig. 17 compares the simulation performance of the stochastic
model with and without ACS. While the ACS tends to improve the
physical plausibility of the model parameters and positively influ-
ence the optimization problem, it has in general a negative influence
on the simulation performance of the model. As already mentioned,
the NMRSE fitting generally increases with T for the stochastic mod-
els without ACS. This increase is less pronounced for the stochastic
model with ACS even though the physical plausibility of the param-
eters has been improved. Two conclusions can be given. Firstly, it
confirms that parameters that are more physically plausible do not
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Measured Temperature

— 2C3R Deterministic model 76.5205%

~ —2C3R Stochastic model (1 day) 70.67%
2C3R Stochastic model (2 days) 56.387%

~ = —2C3R Stochastic model (3 days) 49.5266%

— — —2C3R Stochastic model (4 days) 46.1966%

50

100 150

Time [h]

Fig. 14. Simulation performance of the deterministic and stochastic 3R2C models with different simulation length for the stochastic model, trained with the dataset 14 and

validated with dataset 1.

Temperature [°C]

28

Measured Temperature

= 2C3R Deterministic model 73.7711%

= = 2C3R Stochastic model (1 day) 63.1309%
2C3R Stochastic model (2 days) 50.964%

= = = 2C3R Stochastic model (3 days) 45.9753%

— — —2C3R Stochastic model (4 days) 42.3645%

50

100 150

Time [h]

Fig. 15. Simulation performance of the deterministic and stochastic 3R2C models with different simulation length for the stochastic model, trained with the dataset 14 and

validated with dataset 2.

necessarily lead to better simulation performance. Here, with large
Ts and without ACS, the value of some parameters, such as Ce in
Fig. 12, is non-physical but it nonetheless leads to better simulation
performance. Secondly, the ACS showed to be a robust solution to
characterize the thermal properties of the building and the resolu-
tion of the optimization problem. However, it appears from our
investigations that the ACS comes at the price of lower simulation
performance. Finally, none of the approaches investigated here man-
ages to combine high physical plausibility and the highest simula-

tion performance at large T..

12

5. Discussions

Based on the analysis of the results, some complementary dis-
cussions can be given:

e Even though ACS has a beneficial effect on the performance of
the stochastic grey-box model, the fundamental reason for
explaining this phenomenon is not given in the paper. From
the authors’ knowledge, no clear explanation has been given
in the literature as well.
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e The simulation performance is a good indicator of modeling
accuracy in MPC applications. In Fig. 14, it can be seen that
the k-step ahead prediction of two days (or more) has a NRMSE
fitting close to simulation mode. It shows that the simulation
performance is a good indicator even though the prediction
horizon used in MPC is well shorter than the entire simulation
period. However, even though it is a good indication, it is no
mathematical proof that a model with higher simulation perfor-
mance would systematically outperform another model with
lower simulation performance when implemented in an MPC.
It should be tested using an MPC test case and conclusions will
most probably depend on the MPC test case selected.

The results and conclusions of this paper are based on the
stochastic grey-box model in innovation form. It is not proven
that the results can be directly extrapolated to all formulations
of the stochastic differential equations (for instance, the statis-
tical grey-box modelling toolbox of CTSM-R [28]).

The results and conclusions of this paper are based on the first-
and second-order models. It is not guaranteed that the results
can be extrapolated to a higher order. For instance, previous
investigations have shown that overfitting may occur in third-
order models which may lead to more complex analysis. In
addition, the exact solar and internal gains have been applied
to the grey-box models (i.e. they have not been identified). Fur-
thermore, except for the solar gains, the distribution of the
internal gains and the space-heating power between the two
nodes of the 3R2C model has been fixed, based on the literature.
If all these fixed parameters had also to be identified, it would
have significantly increased the number of degrees of freedom
and overfitting may have already appeared at second order [34].
In real applications, the measurements would have some noise
due to the sensor precision or the resolution of the data loggers.
For some additional test cases not reported in the paper, artifi-
cial noise has been added to the IDA ICE measurements. For
these cases, this artificial noise did not lead to changes in the
conclusions. However, there are many different ways to define
this measurement noise. For future work, a sensitivity analysis
of the measurement noise should thus be performed in more
systematic way to better understand how it affects the conclu-
sions of this paper. Even though our study does not have mea-
surement noise, it does have process noise. For instance, the IDA
ICE model is multi-zone with a complex non-linear convective
heat transfer between zones while the grey-box model is only
mono-zone. Finally, in real applications, the air temperature
measurements can be impacted by complex heat flows such
as the building fabric, solar irradiation, low ventilation in the
thermostat casing or occupant behavior. Such influences on
the conclusions should also be analyzed in future work.

The data series in this paper are based on virtual experiments
using detailed dynamic simulations of one test case. As future
work, it would be interesting to generalize results to other test
cases and also using field measurements in real buildings.

6. Conclusions

The main objective of this paper is to investigate the influence
of data pre-processing techniques and optimization approaches
on the performance of grey-box models. Both the deterministic
model and stochastic grey-box model in innovation form are inves-
tigated using the MATLAB system identification toolbox. The anal-
ysis is limited to first- and second-order grey-box models. Different
excitation signals have been considered to generate input-output
data. Three main aspects of grey-box models have been investi-
gated: (1) the physical plausibility of the identified model param-
eters, (2) the performance of gradient-based compared to global
optimizers and (3) the simulation performance. Among pre-
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processing techniques, the influence of the data pre-filtering (using
an MA or an FIR), the sampling time (T) and the application of anti-
causal shift (ACS) have been investigated. In general, it is shown
that pre-filtering only has a limited influence so this is not dis-
cussed in detail in the conclusions. The conclusions appear to be
distinct for the deterministic and stochastic models. Regarding
the excitation signal, results also showed that the intermittent
heating with on-off control of the electric radiators is a good exci-
tation signal. It enables normal occupancy of the building and the
collection of long data series as well as contain both slow daily and
fast dynamics.
Regarding the physical plausibility of parameters:

e For deterministic models, the data pre-processing has a limited
influence on the identified results. The identified parameters
are strongly dependent on the types of excitation and the train-
ing period. The value taken by some of the parameters, espe-
cially the thermal capacitance, is not always physically
plausible (even for the first-order model).

For stochastic models, the identified parameters are physical if
the sampling time (T;) is much smaller than the higher fre-
quency of the system to be identified.

For large T, and stochastic models, the parameters become non-
physical without ACS (even for the first-order model). ACS is
extremely beneficial to guarantee the physical plausibility of
parameters, making the identified parameters not sensitive to
the sampling time anymore.

Regarding the performance of the optimizer:

For the deterministic and stochastic models, the sampling time
(Ts) does not influence the optimizer performance.

For the deterministic model, the identification results from the
default gradient-based and global optimization routines are
almost identical (with and without ACS). It seems non-
convexity does not play a prominent role in this case.

For the stochastic model, noticeable non-convexity effects
already emerged from the first-order grey-box model (if ACS
is not used). The two-stage global optimization leads to lower
NRMSE than the default gradient-based optimizer and the
resulting parameters have significantly different values. The
non-convexity effects disappear if ACS is applied.

Regarding the the model

application:

simulation performance and

e The deterministic model has in general a higher simulation per-
formance compared to the corresponding stochastic model. In
our investigation, this difference tends to disappear for long
sampling times. If one is not interested in the characterization
of the thermal properties of the building but rather the simula-
tion performance (important for MPC), results show that deter-
ministic models can be a robust strategy as the simulation
performance is not influenced much by the sampling time and
the pre-filtering. In addition, the optimization problem appears
more convex than the corresponding stochastic model. All these
aspects can be valuable for the development of inexpensive
control models for MPC applications where the identification
procedure needs to be (partly) automated and where the infor-
mation on the measurement accuracy and data acquisition sys-
tem is limited. Finally, if the only focus is on simulation
performance, it is worth questioning whether a grey-box model
with parameters that have limited physical meaning have any
added value compared to a black-box model. Therefore, in
future work, it would be worth comparing the simulation per-
formance of grey-box and black-box models.
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e The ideal situation would be to combine physical plausibility
with the highest simulation performance. Using stochastic
models, a robust evaluation of the thermal properties requires
the application of ACS which tends to reduce the simulation
performance of the stochastic model. In this study, stochastic
models appear more suitable for the characterization of the
thermal performance of the building and results suggest this
can be difficult to combine with the best simulation perfor-
mance. However, it remains to be investigated whether the sim-
ulation performance of the stochastic model with ACS leads to
acceptable accuracy when applied to an MPC.
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ARTICLE INFO ABSTRACT
Keywords: A grey-box model is a combination of data-driven and physics-based approaches to modeling. For applications in
Data pre-processing buildings, grey-box models can be used as the control model in model predictive control (MPC) or to characterize

Grey-box modeling
Building thermal mass
Model identifiability
Sensor measurement

the thermal properties of buildings. In a previous study using data generated from virtual experiments, the in-
fluence of data pre-treatment on the performance of grey-box models has been demonstrated. However, field
measurement differs from data generated using building performance simulation (BPS). This is because the
precision and accuracy, the location, and the dynamics of the sensors could be different. Consequently, this paper
extends previous results and conclusions using a real test case of a highly-insulated residential building. The
results confirm that data pre-processing has a minimal influence on the identified results (parameter values and
simulation performance) for deterministic models. On the contrary, data pre-treatment influences the perfor-
mance of stochastic models as follows. Firstly, large sampling time (T,) can cause the parameters to become non-
physical and can sometimes reduce the one-day ahead prediction performance. With large Ts, the anti-causal
shift (ACS) proves to be beneficial to keep the parameters physically plausible while low-pass filtering can
also contribute but to a lesser extent. With large Ts, ACS does not guarantee a higher one-day ahead prediction
performance for stochastic models, whereas pre-filtering generally has a positive impact. Secondly, for the
stochastic model, the sensor dynamics should be modeled if the sensor has a noticeable time constant to guar-
antee the physical plausibility of the parameters. Thirdly, the dynamics of the hydronic radiator do not need to be
modeled if the time constant in the temperature sensors is larger than the radiator. These findings provide
practical guidelines for grey-box modeling of buildings with field measurement data.

time-series data from the system. This method needs sufficient training
data to guarantee the accuracy of the model [2]. Grey-box modeling is a
combination of these two techniques. This method takes the dominant
physical processes to construct the model structure of the system and
then fits the model parameters with the measurement data. Lumped
resistance and capacitance models are used (i.e. RC models) to construct
the grey-box model structure of a building, which means the thermal
dynamics of the building are expressed by an electric circuit analogy [3,
4]. Grey-box models are said to have better extrapolation properties

1. Introduction

The mathematical modeling of the thermal dynamics of a building is
typically divided into three main categories [1]: white -, black-, and
grey-box models. White-box models are based on physical laws (e.g.
mass-, energy- and momentum balance equations). The white-box
models are generally mathematically complex but have high accuracy.
Black-box models are pure data-driven methods based on the measured
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Nomenclature
RES Renewable Energy Sources
DR Demand Response
MPC Model Predictive Control
BPS Building Performance Simulation
RC Resistance and Capacitance

SNR Signal to Noise Ratio
PRBS Pseudo-Random Binary Signal
PI Proportional Integral

NRMSE Normalized Root Mean Squared Error
MBE Mean Bias Error

PSO Particle Swarm Optimization
ACS Anti-Causal Shift

DS Direct Sampling

MA Moving Average

FIR Finite Impulse Response

Det Deterministic Model

Sto Stochastic Model

HTC Heat Transfer Coefficient

HC Heat Capacitance

than black-box models [5]. In addition, they have been widely applied to
solve problems in building technologies, such as building load estima-
tion, control and optimization, and building-grid integration [6,7]. The
paper focuses on two main applications of grey-box models which are
model predictive control (MPC) and characterization of the thermal
properties of buildings using field measurements [6,8].

1. The emergence of MPC in buildings is related to the concept of en-
ergy flexibility and demand response (DR). The conventional electric
energy system is undergoing dramatic changes due to the steadily
rising share of renewable energy sources (RES). Power generation
from RES is often decentralized and intermittent, which may cause
considerable volatility to the electric grid. The power imbalance in
the supply and demand sides can have severe implications for power
quality and reliability [9]. Therefore, more flexible resources are
needed to enable increasing penetration of intermittent RES. De-
mand response (DR) is gaining more attention in power system op-
erations recently, driven by the smart grid concept [10]. Demand
response means changes in energy use by the end-use customer from
their normal consumption patterns in response to a specific penalty
signal (e.g. price signal, CO; intensity factor for electricity signal)
[10-13]. DR is closely related to the concept of energy flexibility
defined by the IEA EBC Annex 67 as the ability of a building to
manage its demand and generation according to local climate con-
ditions, user needs and grid requirements [14]. Model predictive
control (MPC) is considered a suitable technique for performing DR
in a building [7,15] or for activating building energy flexibility [14].
Regarding space-heating, the thermal mass of a building can be a
significant short-term heat storage to perform DR [16-20]. The
exploitation of such thermal storage requires the indoor temperature
to fluctuate within limits that are acceptable for the occupants.
Previous studies have identified significant DR potential in using
economic model predictive control (E-MPC) to exploit the thermal
mass of residential buildings, see e.g. Refs. [21-23]. In these appli-
cations, grey-box models should enable adequate prediction to ach-
ieve good control performance.

2. Developing a suitable grey-box model with physically plausible
(interpretable) parameters is appreciated from the building analysis
point of view [19]. Physically reasonable parameters in grey-box
models could contribute to characterizing the thermal properties of
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a building using field experiments, such as the overall heat transfer
coefficient (HTC).

Data can be processed (or altered) by sensors, the data acquisition
system (DAQ) or by the modeler before being used for model identifi-
cation. Data pre-processing (or data pre-treatment) is acknowledged to
have a key influence on the model identification results [24]. For
instance, Ljung et al. [25] have analyzed this theoretically and demon-
strated the strong influence of the sampling time. However, this topic
has hardly been addressed in the specific field of grey-box models for
building thermal dynamics. One exception is Madsen et al. [8] that
mentioned the importance of data pre-processing in their guidelines, but
they did not discuss the topic in detail in their report. Therefore, the
main objective of the paper is to systematically investigate the influence
of different data pre-processing techniques on the performance of
grey-box models for the building thermal dynamics, with MPC and the
physical plausibility of parameters in focus. In the past, this effect has
been studied in Yu et al. [26] with deterministic and stochastic models.
However, they used data generated by virtual experiments, namely
multi-zone simulations using the building performance simulation (BPS)
software IDA ICE [27]. The data pre-processing methods applied in this
study are the sampling time, low-pass filtering and the anti-causal shift
(ACS) [25]. ACS corresponds to a shift of the input data one step ahead
(also equivalent to a backward shift of the output). Several main con-
clusions have been demonstrated in this previous study [26]:

e For deterministic models, the data pre-processing has limited influ-
ence on the identification results. However, the values of the pa-
rameters are strongly dependent on the training dataset and can
sometimes be physically non-plausible.

For stochastic models, the parameters are less dependent than the
deterministic models on the training dataset. However, they become
non-physical without ACS for large sampling time (Ts > 15 min).
Large T does not alter the simulation performance of the stochastic
model. ACS proved to be extremely beneficial to guarantee the
physical plausibility of parameters with large Ts. Nevertheless, it
generally has a negative influence on the simulation performance of
the model.

As these important conclusions are based on virtual experiments, the
first objective of the paper is to compare these conconclusions to a real
test case based on field measurements. Field measurements deviate from
virtual experiments in the following way:

e In reality, sensors have finite precision and accuracy, while the
temperature and power data exported from BPS is perfect (i.e., noise-
free observations).

In most BPS software, the air volume of each room is supposed to be
isothermal. In reality, the temperature field in a room is not uniform.
Two important effects should be considered. Firstly, the room air can
present significant temperature stratification, especially when the
heat emitter is close to maximum power. Secondly, the sensors are
usually mounted on a wall in a casing. For sudden changes in the
indoor temperature, the measured value with a wall-mounted sensor
may thus differ from the real air temperature. The thermal dynamics
of the sensor due to the casing can also be seen as a form of implicit
data pre-treatment if the sensor dynamics are not modeled.

This paper uses measurement data from an experimental building,
the ZEB Living Lab [28,29] to compare the conclusions that were orig-
inally based on virtual experiments [26]. Three complete datasets of the
indoor temperature corresponding to different sensor locations are
available:

e Several temperature sensors without casing are mounted at different
heights on a vertical bar located in the middle of different rooms. The
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averaging of these measurements gives an approximation of the
volume-averaged indoor air temperature, which is a good represen-
tation of the indoor air temperature T; of a mono-zone model (i.e. one
zone for the entire building). In addition, the volume-average indoor
temperature is less sensitive to the vertical temperature stratification
than the measurement from a single sensor.

For market penetration, it is better to limit the number of tempera-
ture sensors to one in each room. Thus, it is important to investigate
the possibility of identifying a proper grey-box model with mea-
surements from a single temperature sensor. Firstly, one temperature
sensor is located on a vertical bar at a medium height in the living
room. The stratification effect at mid-height should be lower than the
top and low locations in the room. Secondly and probably the most
realistic configuration, another temperature sensor is mounted on a
wall at the same mid-height location as the previous sensor (placed
on the bar).

The second objective of the paper is to analyze how the type of in-
door temperature measurement influences the performance of the grey-
box models.

The main objective is to identify the specific influence of different
data pre-processing techniques on the grey-box model performance.
Other phenomena that could have an impact on the model performance,
such as overfitting, should be removed from the analysis. Therefore,
model structure selection is performed in detail in this paper before
starting to analyze the influence of the data pre-treatment. It starts with
a review of the literature regarding the structure of grey-box models.
This results in the selection of a set of structures to be evaluated. The
evaluation includes the analysis of structural and practical identifiability
of the selected models, their prediction performance and physical
plausibility of the parameters. Checking structural identifiability is the
prerequisite in the model identification process [30,31]. This property
guarantees that the parameters can be uniquely determined from the
input-output data under ideal conditions of noise-free observations and
error-free model structure. The structural identifiability of the candidate
models in this study is verified using DAISY software [30]. However,
field measurement data always contain noise and error, which chal-
lenges the practical identifiability of the model. Therefore, the predic-
tion performance and the physical plausibility of parameters are taken
as the criteria for the model selection. Finally, for stochastic models, a
cumulative periodogram is used as an additional criterion to prove that
the model is complex enough to capture the building dynamics.

The remainder of the paper is structured as follows. Section 2 pro-
vides information on the experimental setup, which includes the
building geometry, measurement devices, the definition of test cases and
the boundary conditions. Section 3 describes the methodology of this
study, including the grey-box model structure and data pre-processing
techniques used for this study. The algorithm to identify the grey-box
model parameters is also outlined, followed by the definition of key
performance indicators (KPIs). Section 4 gives the results and is divided
into three main aspects. The most suitable model structure is selected
with the original data with 5 min sampling time and the volume-
averaged temperature. Then, the influence of data pre-processing and
the sensor selection is presented. Finally, conclusions are presented in
Section 5.

2. Description of experiments
2.1. Case building

The experiments performed in this study were carried out in the ZEB
Living Lab, a single-family, zero-emission house with a heated floor area
of about 100 m? on the campus of the Norwegian University of Science
and Technology (NTNU) in Trondheim. The building envelope has a
wooden frame with mineral wool measuring 35-40 cm and a glazing
ratio of 0.2. The space-heating can be floor heating, a central radiator, or

Building and Environment 212 (2022) 108832

ventilation air. The ventilation system is equipped with a heat recovery
unit. By operating the doors in the building, four zones can be created
(bedroom west, bedroom east, bathroom, and living areas). The
appearance of the building and the internal layout of the Living Lab is
shown in Fig. 1. This study is based on two sets of experiments in this
building with different space-heating emission systems and different
periods of the space-heating season. Data from using two different heat
emitters are used to make the conclusions more general.

The first set of experiments (from the 18th April to 15th May 2017)
used an electric heater for space-heating. Detailed information on the
measurement setup and data can be found in previous work [28,32]. The
corresponding length of these three experiments are 6 days, 11 days and
7 days, respectively. The electric heater of 2.6 kW was placed in the
center of the building (the heater is marked in red in Fig. 1 (b)). A
pseudo-random binary signal (PRBS) has been applied to the electric
heater to excite the thermal dynamics of the building. PRBS is a periodic
and deterministic signal with white noise properties and a high
signal-to-noise ratio (SNR). The PRBS signal activates the dynamic sys-
tem at a broad range of frequencies.

Four experiments were carried out, and only the last three were
successful. The successful experiments are named Experiments 2, 3, and
4 (i.e., Experiment 1 was discarded). The dataset has a time interval of 5
min. The measurements include the outdoor temperature, indoor air
temperatures, global solar irradiation and electricity consumption,
including the radiator power (Qp). To avoid modeling the air-handling
unit (AHU), the ventilation losses from the mechanical ventilation are
introduced as one input to the grey-box model in this study. These
ventilation losses are explicitly pre-calculated with the measured tem-
perature difference between the supply and exhaust ventilation air
combined with the measured airflow rate (constant air volume, CAV).
The electric heating system has negligible thermal inertia compared to
the building envelope, so it is assumed that the dynamics of the radiators
play a limited role. Experiments 2 and 4 were conducted with internal
doors opened, which theoretically should lead to a more uniform spatial
distribution of the air temperature inside the building while all the doors
were closed in Experiment 3. Air was pre-heated using a heating coil in
Experiment 4 only. The building is unoccupied in all the experiments,
but electric dummies operated by a control schedule have been used
leading to realistic internal gains.

2.2. Experiment with the hydronic radiator

The experiment with the hydronic radiator was initially performed to
investigate cost-effective MPC implementation (E-MPC) with control of
the hydronic radiator in a Norwegian zero-emission building (Living
Lab) [29]. The experiment lasted for approximately one month (from
mid February to mid March 2017), with an 18-day excitation phase and
an E-MPC operation phase of two weeks. A randomly generated binary
signal switching the radiator temperature set-point between 21 °C and
24 °C was created to excite the thermal dynamics of the building and
collect measurements for training the model. This new training dataset
is based on six days in February and is named here as Experiment 5. The
dataset has a time interval of 5 min.

The hydronic radiator has a rated power of 4.7 kW (at rated tem-
perature 75 °C/65 °C) and was in the same place as the electric heater.
The supply water temperature was maintained at about 55 °C leading to
a maximum radiator power of 2.5 kW. The thermostatic valve in the
radiator adjusts the mass flow using a proportional-integral (PI)
controller to track the set-point temperature. Compared to the electric
heater, the thermal mass of the hydronic radiator with 113 kg of steel
cannot be neglected. The power delivered to the hydronic radiator (Qy)
is measured by an energy meter based on the difference between supply
and return temperatures. When the hydronic radiator is switched on, the
initial water temperature in the radiator is close to the indoor air tem-
perature. Due to the thermal mass of the radiator, it takes time for the
return temperature to heat up and reach steady-state (when the power
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Fig. 1. View of the ZEB Living Lab (a) and floor plan of the ZEB Living Lab with temperature sensor location (b).

delivered to and emitted by the radiator are equal). This makes a large
difference in supply and return temperatures at the beginning, leading to
a very high start-up peak for Q. The maximum emitted power of the
radiator in steady-state is around 2.5 kW, while the maximum delivered
power during start-up periods is around 4.0 kW. This confirms that the
thermal dynamics of the hydronic radiator are significant. The summary
of all the experiments used in this study is given in Table 1.

2.3. Indoor temperature measurement

In the experiments with the electric heater, PT100 sensors with an
accuracy of +0.1 K are placed at different locations in the building; see
details in Ref. [28]. This leads to the definition of three datasets:

e Two available datasets correspond to different placement of PT100
temperature sensors without casing and with wireless transmitters.
They are placed in a vertical bar in the middle of the two living rooms
(see green dots in Fig. 1 (b) and Fig. 2 (a)). For each bar, the height of
the six sensors is 0.18 m, 0.95 m, 1.6 m, 1.7 m, 2.3 m and 3.4 m,
respectively. The volume-averaged temperature of the building is
calculated using the measurement from all the sensors placed in the
vertical bars and evaluated using the volume average at each hori-
zontal layer. The single sensor without casing dataset corresponds to
the measurement at 1.6 m in the living room south. The height of 1.6
m is close to the middle height of the building, where the influence of
stratification is expected to be minimal (meaning that the measured
temperature at 1.6 m is the closest to the volume-averaged
temperature).

The third dataset is based on PT100 sensors mounted on the wall in a
casing (see the orange dot in Fig. 1 (b) and Fig. 2 (b)). The height of
the wall-mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m,
respectively. The third dataset corresponds to the measurement of a
single wall-mounted sensor mounted in the south of the living room at
the height of 1.6 m.

In the experiments with the hydronic radiator, only the temperature
measurements from the wall-mounted temperature sensor are available.
Fig. 3 shows the temperature reading from the wireless temperature
sensors with different heights (0.18 m, 1.6 m and 3.4 m) and the wall-

Table 1
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West Bedroom ®

** East Bedroom

© South wall-mounted temperature sensors @ Wireless temperature sensors

(&)

mounted temperature sensor (1.6 m) against the volume-averaged
temperature. The stratification of the temperature of the wireless tem-
perature sensors at different heights can be observed. The stratification
gets larger when the solar radiation or the radiator power is large. The
reason for choosing the sensor in the south was to capture the influence
of solar radiation. The thermal dynamics of the wall-mounted sensor can
also be observed. The reading from the wall-mounted sensor is smoother
compared to the volume-averaged temperature and the readings from
the single wireless temperature sensors.

3. Methodology
3.1. Grey-box model structure

The structure of the grey-box models is derived from the conserva-
tion of energy. The physics modeled by the grey-box models is the heat
transfer between the building and its outdoor environment, the solar
radiation and internal gains.

The ZEB Living Lab is super-insulated with an efficient heat recovery
of the ventilation air. These two points lead to limited temperature
differences between rooms [33] (compared to the temperature differ-
ence between indoor and outdoor air) even if internal doors are closed.
Consequently, the building can be modeled as one thermal zone (i.e., the
mono-zone model with a unique node to represent the indoor temper-
ature). Previous studies [29,32,34] confirmed that a mono-zone grey--
box model is able to make an accurate prediction on the air temperature
in the ZEB Living Lab, for closed and open internal doors.

Grey-box modeling is a very common approach and a considerable
amount of research has already been applied to this method. In their
study, Viot et al. [35] provided a comprehensive list of research papers
on MPC that used RC models. Bacher and Madsen [36] identified a
suitable model using data obtained from an unoccupied office building.
The probability ratio tests were used to analyze models of different or-
ders. The results showed that increasing the model order from the
third-order does not substantially improve the results. In Ref. [37],
Berthou et al. found that the second-order model performs best for
occupied office buildings. Braun et al. [38], Hu et al. [39] and Goyal
[40] used the second-order model as the base component for the
multi-zone model of the building. It was concluded that the

Summary of the four experiments, “Full set” means all measurements of volume-averaged, single sensor (no casing), wall-mounted sensor are available.

Experiments Radiator Door Sampling time Period Use Temperature Sensor
2 Electric Open 5 min 18/04-24/04 (2017) Validation Full set

3 Electric Closed 5 min 27/04-08/05 (2017) Validation Full set

4 Electric + AHU Open 5 min 08/05-15/05 (2017) Training Full set

5 Hydronic Open 5 min 22/02-27/02 (2019) Training Wall-mounted
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Fig. 2. Wireless temperature sensors (a) and wall-mounted temperature sensors (b).
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Fig. 3. Comparison of different indoor temperature sensors, global solar irradiation on a horizontal plane and heating power of the electric heater for Experiment 4.

Fig. 4. Structure of the 5SR3C model.
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second-order model is sufficient for good prediction results for indoor
temperature and heating power by Palomo Del Barrio et al. [41] and
Reynders et al. [42]. Brastein et al. [43] showed that deterministic
grey-box models at second-order could face the problem of practical
identifiability. Yu et al. [34] proposed two grey-box model structures
derived from VDI 6007 [44] and ISO 13790 [45]. The results were that
with few measurements and a large number of unknown parameters, the
identified parameters could easily become non-identifiable. Further-
more, due to overfitting and convergence issues, Reynders et al. [42]
concluded that heat flux measurements were needed to ensure observ-
ability for higher-order models (i.e. fourth- and fifth-order models).
Thus, based on these previous studies, our paper only considers the
model structure up to the third-order.

As a result, seven mono-zone model structures limited to third-order
have been taken from the existing literature [36,42,46]. The selection
process will determine the best model structure to be used to investigate
the specific influence of data pre-processing. These seven models
correspond to different combinations of RC components and splitting
factors for the distribution of internal gains between the nodes. Ac-
cording to report [28], some sensors in the ZEB Living Lab at specific
locations were directly exposed to solar radiation at certain periods of
the day, which makes some of the measurements an unsatisfactory
representation of the air temperature. The dataset in Experiment 4 with
open internal doors is chosen as the training dataset for the case with the
electric heater. Only the 5 min dataset is used for the model selection to
avoid aliasing errors. The datasets in Experiments 2 and 3 were used as
the validation datasets to analyze the prediction performance of the
models. Structural identifiability is a prerequisite for system identifica-
tion [47], which refers to the theoretical possibility of determining the
parameter values from the input and output data. Thus, the structural
identifiability of the candidate model structures has been tested by the
DAISY software [30,48] before implementing the identification process.
The result is that all the seven grey-box model structures are structurally
identifiable. The most complex structure is the 5SR3C model and is shown
in Fig. 4. Other model structures are obtained by simplification and can
be found in the Appendix. The physical meaning of the model parame-
ters is listed in Table 2.

The corresponding state-space model of Fig. 4 is given by:
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Table 2
The physical interpretation of the parameters of all grey-box models.

Parameters  Physical interpretation and unit

T; Temperature of the internal node (i.e., indoor air, furniture) [°C].

T, Temperature of the external walls [°C].

Ts Temperature of the internal wall surfaces of external walls [°C].

Tm Temperature of the internal walls [°C].

T, The outdoor (or outdoor) temperature [°C].

G Heat capacity including the thermal mass of the air, the furniture
[kWh/K].

Ce Heat capacity of the node external wall for the second-order and third-
order models [kWh/K].

Cm Heat capacity of the node internal wall for the third-order model
[kWh/K].

UA Overall heat transfer coefficient (HTC) between T; and T, [kW/K].

UA;e Heat conductance between the building envelope and the interior
[kW/K].

UAea Heat conductance between the outdoor and the building envelope
[kW/K].

UAing Heat conductance between the outddoor and the interior node
(components with negligible thermal mass, like windows and doors)
[kW/K].

UAim Heat resistance between the internal thermal mass and the interior
node [kW/K].

UA;s Heat resistance between the indoor wall surface and the interior node
[kW/K].

Qint Internal heat gain from artificial lighting, people and electric
appliances [kW].

Qn Heat gain delivered to the heat emitter [kW].

Quent Heat gain from the ventilation (pre-computed using measurements)
[kw].

Lo Global solar irradiation on a horizontal plane [W/m?].

A The effective window area of the building corresponding to T; [m?].

A, The effective window area of the building corresponding to T, [m?].

An The effective window area of the building corresponding to Tp, [m?].

A The effective window area of the building corresponding to T, [m?].

a Fraction of internal gains injected to the internal node.

3.2. Model identification tool and optimization

Both the deterministic and stochastic models are investigated using
the MATLAB system identification toolbox [49]. The stochastic models
are formulated as an extension of deterministic models (K = 0) [8]. The
generic equations of the stochastic linear state-space model in innova-

(UA;e + UA.,) UA, UA;-UA; 0
. C. C.-(UAis + UA;e + UAirs) C.-(UAis + UAie + UAins)
T.(t T.(t
T '< ) _ UA;,-UA; (UAw + UA;) UA;5-UA; UAi, T. ((t))
i) Ci(UAic + UA. + UAuy) G Cr(UA; + UAi + UAw) G !
T, (1) T,(1)
m 0 UA;, UAin
Cn Con
UA., UA;eUAine UA;e-UAins 0 0
Co  Co(UAy+ UAie + UAine)  Cor(UA; + UAe + UAiy) T, (1)
UAy-Uhy UA,-A, a a 1| |La)
N Ci-(UAy + UA, + UAi) C-(UAs+UA.+UAw) G G G i (1) o
i is ie inf i is ie inf i i i var ([)
Ay l—a 1—-a Ou(1)
0 = 0
C, Cn Cn
tive form are expressed as:
T.(1) dx_
so=[0 1 0]| 7w @ = =Ax(t) + Bu(t) + Ke(t) 3)
T(1)
y(t) = Cx(r) + e(2) “4)
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where x is the state vector, A, B and C are the system matrices, u is the
input vector (i.e. Ta, Isol, Qint, Qn) and y is the output (i.e. indoor tem-
perature, Ty). K is the disturbance matrix of the innovation form (Kalman
gain) [50]. The matrices A, B, C and K are functions of the model pa-
rameters (0). The continuous-time model is discretized to identify the
model parameters using discrete-time series measurement. The time
discretization in the MATLAB system identification toolbox assumes
piecewise-constant input data during each time interval (i.e. zero-order
hold).

Yu et al. [26] proved that the global optimization routine is more
likely to avoid the local optimum compared to the pure gradient-based
optimization routine. Wang et al. [51] successfully used the
swarm-based optimization algorithm to estimate the parameters of
thermal dynamic models. Thus, this paper also takes the global opti-
mization routine to identify the parameters. The global optimization
routine resorts to the heuristic particle swarm optimization (PSO) at the
first stage. Then the default gradient-based optimization function
(greyest) in the MATLAB identification toolbox is applied in the second
stage to further polish the results. The objective function f(x) of the
optimization is defined as Equation (5).

5)

where yj is the measurement output, while y,(6) is the prediction of the
model (i.e., a simulation for the deterministic model and one-step ahead
prediction for the stochastic model).

3.3. Data pre-processing techniques

Three distinct data pre-treatments are investigated in the paper.
They are sampling, low-pass filtering and anti-causal shift (ACS). The
original dataset has a sampling time (Ts) of 5 min which is faster than the
highest frequency of the input signal (Tp;n), such as the PRBS signal.
Ljung et al. [25] demonstrated that longer sampling time with Ts > Tpin
can lead to non-physical value and variance for the identified parame-
ters, as confirmed by Yu et al. [26] in the context of the thermal dy-
namics of the building. To investigate this effect, sampling times of
increasing duration are considered in our investigations, namely 15, 30
and 60 min. Before resampling the data, a low-pass filter can be applied.
This leads to three scenarios:

o Direct sampling (DS): Sampling at T, without pre-filtering, which may
cause large aliasing errors for large Ts.

Moving-average (MA) filter: The original 5 min data is averaged over a
period T; in the past before sampling. This can significantly decrease
the aliasing error and it also conserves the integral of the physical
quantity, such as energy.

Finite impulse response (FIR) filter: A FIR with a cut-off frequency of 1/
T, is applied before sampling. The frequency content higher than the
cut-off frequency is removed, which leads to a negligible aliasing
error (if the FIR is designed at a sufficient order).

The low-pass filters are applied to all input and output variables in
the dataset. Thus, theoretically, no delay will be introduced in the
dataset, which could influence the final results. The conclusion would be
different if the low-pass filter was applied to a subset of the input and
output data.

Finally, time labeling plays a role in aligning inputs and outputs for
the identification application [25]. As shown by Ljung et al. [25], a time
shift, called anti-causal shift (ACS), of the input (Input Delay = -T) is
beneficial for model identification with large Ts.
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3.4. Dynamics of the wall-mounted sensor

Section 2.4 showed that the wall-mounted sensors have non-
negligible thermal dynamics. Consequently, the grey-box model struc-
tures introduced in Section 3.1 should be adapted to account for the
effect of the time constant of sensor dynamics and thus avoid potential
mistakes in the model identification process. As proposed in Bacher et al.
[361, it is possible to add an additional node for the temperature sensor,
leading to an extra resistance (R,) and capacitance (C;). However, the
authors also pointed out that it was not possible to give a physical
interpretation for the value of Cs. This was also found from our pre-
liminary tests based on our data. Therefore, we rather introduced an
adaptation of the model with a single additional parameter, the time
constant of the sensor T = RsCs. The model decreased the number of
parameters compared to the version in the study [36] to increase the
identifiability of the model. The dynamics for the sensor node is
expressed by the following equation:

AT sensor 1
&z (Ti — Tiensor) 6)

where T; is the temperature of the internal node, Tsensor is the temper-
ature measurement from the wall-mounted temperature sensors.

3.5. Key performance indicator

Several key performance indicators (KPIs) are defined to evaluate the
model performance. They can be divided into two categories: the
physical plausibility of the identified parameters and the prediction
performance of the model.

Physical plausibility means that the calibrated value of the model
parameters should give a physically reasonable estimate of the thermal
properties of the building. For conciseness in our study, it is not possible
to report the value and variance of all the model parameters. However,
the key parameters that are enough to support our conclusions will be
presented: the overall heat transfer coefficient (HTC) and the capaci-
tances (C; and Ce). In addition, one parameter modeling the influence of
the solar radiation, the effective window area (A;), will also be taken as
KPI when the influence of the data pre-processing is discussed.

The overall heat transfer coefficient (HTC) is the total heat loss of the
building in steady-state. Heat transfer by convection and long-wave
radiative heat transfer is nonlinear. However, heat conduction is
dominant and has good linear properties if the building is highly insu-
lated and airtight. The combination of several resistances of the grey-box
model forms the HTC, which is defined by Equation (7) for the 3R2C
model.

HTC = + UAine @)

1/UA, + 1/UA,,

Therefore, only the value of the HTC is shown in the later discussion,
not its variance. Claup et al. [52] evaluated the HTC value of the ZEB
Living Lab to be 83 W/K, which is used as the reference value for the
HTC in this work.

It is challenging to define a physically plausible range for the ca-
pacitances (C; and C,) since their values strongly depend on the exci-
tation signal. However, it is possible to obtain a rough indication of Ce.
According to NS3031 (2016) [53], the effective heat capacitance (Ceff)
of lightweight Norwegian buildings is typically within the range of
3.4-6.5 KWh/K. As the Ce is based on daily excitations of the thermal
mass of a building, it can be related to the thermal capacitance C (at
least, up to second-order RC models without a node for internal walls,
Tm).

The long-term prediction performance is of the utmost importance if
the main application of the grey-box model is being employed in an
MPC. Equation (8) gives the method of calculating the normalized root
mean squared error (NRMSE).
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The NRMSE fitting, defined in Equation (9), is used to evaluate
prediction performance. It translates how well the response of the pre-
dicted model matches measurement data. If the fit is 100%, the model
perfectly matches the measurement data, whereas a low or negative fit is
amodel of lower quality. The NRMSE fitting value is calculated based on
simulation for the deterministic model and one-day ahead prediction for
the stochastic model. In other words, for the stochastic model, the model
selection is done using the one-step ahead prediction while the ability to
perform MPC is evaluated using a one-day ahead prediction.

NRMSEy, = (1 — NRMSE) x 100% (9)

In addition to the NRMSE fitting value, the mean bias error (MBE)
defined by Equation (10) is also used as a complementary index.
Theoretically, an MBE value close to zero is best as this means that the
residual of the model has a lower mean bias error.

1 n A
MBE = ;Zk:. (yk - yk> (10)

In practice, the results show that all our models have good MBE
properties. Therefore, this index has been used but is not reported in the
paper.

4. Results

This section is divided into three parts. Firstly, the selection of the
best model structure is presented and discussed. With the best model,
the influence of data pre-processing and the type of indoor temperature
measurement are then studied. Finally, the results are analyzed for
deterministic and stochastic models. Most of the results presented are
based on the datasets with the electric heaters (Experiments 2-4). The
description of each case presented in this section is given in Table 3.

4.1. Model selection

The results for the electric radiator and the seven models using the
volume-averaged temperature and the baseline T of 5 min are sum-
marized in Table 6 in Appendix, while the key results are presented in
Table 4.

e The first-order 1R1C model is not enough to describe the heat dy-
namics of the building for neither the deterministic nor the stochastic
models. This is confirmed by the cumulative periodogram of the
residuals in supplementary material. The cumulative periodogram
falls largely outside the confidence interval, which indicates poor
white noise properties of the residuals.

The second-order models, 2R2C and 3R2C, show significant
improvement in the NRMSE fitting compared to the first-order 1R1C
model. The cumulative periodogram of the residuals also stays
strictly within the confidence interval.
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e Although the third-order models (3R3C to 5R3C) sometimes present
better NRMSE fitting with the deterministic model, the identified
parameters are not physically plausible for the stochastic model. The
capacitance of the interior node C; has a larger value than the value
of the internal walls node Cp,, which does not translate the actual
physics. Furthermore, for the 4R3C and 5R3C stochastic models, the
UAg, value is identified close to 0, which also violates the reality (as
external walls are not perfectly insulated). Regarding the cumulative
periodogram of the residuals, the 5R3C is outside the confidence
interval while the 3R3C and 4R3C models remain within the confi-
dence interval but do not perform better than the second-order
models. The variance of the key parameter C. also shows that the
third-order models could lead to large values with deterministic
models, which implies that the third-order models may be over-
fitting. Further, the variance of C, for the stochastic model also shows
that the component UAjys is necessary to be modeled. Finally, the
objective function during the successive PSO iterations is plotted
along with the parameter value. The scatter plots for parameters Ce
and A; for second-order and third-order models can also be found in
supplementary material. It is observed from the scatter plots that the
optimum are flatter with third-order models, which corresponds to
lower practical identifiability of the models. It can be concluded that
the third-order models are (or are close to being) overfitted. The
fitting of validation NRMSE fitting also confirms that the second-
order model is the best trade-off between model complexity and
accuracy.

In conclusion, second-order grey-box models are most suitable for
our study as the prediction performance and the physical plausibility are
good. In addition, the dominant physical processes are properly modeled
as proven by the cumulative periodogram. The second-order models are
selected for the study as they are accurate but not overfitted. This gua-
rantees that the conclusions will not be contaminated by overfitting.
Among second-order models, the 3R2C model is taken as the baseline
case in the remainder of the paper.

4.2. Influence of the temperature measurement

The model selection is based on the volume-averaged indoor tem-
perature at 5 min. In the description of experiments, it has been shown
that the indoor temperature is dependent on the type of measurement,
see Section 2.4. Consequently, Fig. 5 and Fig. 6 compare the identified
value of two key indicators (HTC and C,.) for the different types of
temperature measurement, still using a sampling time of 5 min. For the
deterministic model, the difference in temperature measurements has a
limited influence on the identified model parameters. However, for the
stochastic model, the identified HTC value using the baseline 3R2C
model and the single wall-mounted temperature sensor is much larger
than the reference HTC value. Furthermore, the variance of C, is also
extremely large. Thus, the time constant of the wall-mounted sensor
dynamics has a large impact on the stochastic 3R2C model. This
conclusion is also confirmed by the cumulative periodogram of the

Table 3

Description of the datasets and their corresponding abbreviations.
Case Sensor Sensor node in model Dataset Use
T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation
T1Exp3 Volume-averaged temperature (T1) No Experiment 3 Validation
T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training
T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training
T3Exp4 Single wall-mounted temperature sensor (T3) No Experiment 4 Training
T4Exp4 Single wall-mounted temperature sensor (T4) Yes (1) Experiment 4 Training
TSExp5 Single wall-mounted temperature sensor (T5) No Experiment 5 Training
T6Exp5 Single wall-mounted temperature sensor (T6) Yes (1) Experiment 5 Training
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Table 4
The values and the corresponding variance of Ce.
Model Ce Ce NRMSE Fitting NRMSE Fitting Model Ce Ce NRMSE Fitting (1- NRMSE Fitting
Value Variance (simulation) (validation) Value Variance step ahead) (validation)
[kWh/K] [kWh/K] [kWh/K] [kWh/K]
1R1Cdet  5.62 0.754 72.7% 55.1% 1R1Csto  4.78 0.437 99.0% 65.7%
2R2Cdet 6.11 0.369 93.0% 75.3% 2R2Csto 6.37 1.77 99.2% 79.2%
3R2Cdet 5.28 0.284 93.6% 79.7% 3R2Csto 4.22 0.748 99.2% 81.8%
4R2Cdet  5.40 0.430 93.5% 72.4% 4R2Csto  4.28 0.726 99.2% 81.5%
3R3Cdet 6.08 0.689 95.0% 78.6% 3R3Csto 11.9 3.92 99.2% 71.1%
4R3Cdet  3.94 0.609 95.3% 75.6% 4R3Csto  4.02 0.709 99.2% 82.7%
5R3Cdet  3.99 0.613 95.3% 76.0% 5R3Csto 5.73 0.718 99.2% 79.8%

(For the first-order 1R1C model, Ce does not exist and the value reported in the table is the value of Ci. Bold values inside the table indicates unphysical parameters.)
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Fig. 5. Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto)
models using Experiment 4 and different types of temperature measurement

(5 min).

residuals in Fig. 7, which shows that the baseline 3R2C model with the
wall-mounted sensor does not describe the system dynamics (between
0.4-1.4 x 1073 Hz). As introduced in Section 3.4, an adapted model with
a time constant for the sensor is added to the original 3R2C model. This
adapted model improves the results since the parameters become
physically plausible again. In addition, the cumulative periodogram of
the residuals confirms this conclusion (see dataset T4Exp4). Further-
more, the one-day ahead prediction comparison in Fig. 8 also shows the
significant improvement from the adapted 3R2C compared to the orig-
inal baseline 3R2C model. The identified time constant (t) has a value of
8.28 min, thus is larger than the sampling time. For the remainder of the
paper, the sensor node will only be analyzed for the stochastic model.

4.3. Influence of data pre-processing on grey-box modeling

Until now, the model performance has used a sampling time of 5 min
without data pre-processing, which is faster than the Nyquist sampling
frequency. The signal is sampled faster than the system dynamics so that
it is guaranteed that it does not influence the results. Consequently, the
specific influence of data-preprocessing can be identified in the present
section. The analysis of deterministic and stochastic models should be

clearly distinguished.
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Fig. 8. Comparing the one-day ahead prediction of the 3R2C stochastic (sto)
models with different types of temperature measurement, trained using
Experiment 4 and validated using Experiments 2, 3.

4.3.1. Influence of data-preprocessing on the deterministic model

Fig. 9 presents the identified parameters results for the deterministic
model using different types of temperature measurement and data pre-
processing.

The identified values of HTC show that no matter which type of
temperature is used for the identification, the HTC value is not signifi-
cantly influenced by the pre-filtering method and ACS. The value is close
to the reference value of ~83 W/K. The sampling time (Ts) does not
have a noticeable impact on the HTC value.

The identified values of C give similar conclusions as the HTC value.
The value of C. is plausible for most of the cases since it is within the
typical range (i.e., 3.4-6.5 kWh/K) given in standards [53]. The
low-pass filtering and the ACS only have a slight impact on the results.
With direct sampling, the C. values are slightly outside the reference
range when the sampling time is large (from 30 min). These conclusions
are confirmed by the analysis of the effective window area A; (related to
the influence of solar radiation).

Regarding the simulation performance of the deterministic model,
the influence of data pre-processing and the type of temperature mea-
surement are also limited as are the identified parameters. Conse-
quently, the simulation performance is only demonstrated for the
volume-averaged temperature (see Fig. 10).

Several main conclusions can be drawn concerning the deterministic
model. They are in good agreement with the findings of Yu et al. [26]
using virtual experiments. Firstly, the pre-processing of data does not
have a considerable influence on the deterministic model. Secondly, the
pre-filtering technique could slightly contribute to a more stable esti-
mation of the values if the sampling time Tj is large (>30 min). Thirdly,
the influence of data pre-processing on simulation performance is
negligible.

4.3.2. Influence of data-preprocessing on the stochastic model

As shown in Fig. 11, the data pre-processing has a more substantial
influence on the identified HTC value for the stochastic model. The ACS
can contribute to preventing the HTC value from becoming non-physical
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(stays close to the target reference value) for large sampling times. If the
filter and the ACS are applied together, the identified HTC value remains
stable and close to the reference value for the stochastic model. How-
ever, the identified HTC values are often non-physical using the baseline
3R2C model when the dynamics of the wall-mounted temperature sen-
sors are not modeled, even when the sampling time becomes large.
Again, only the adapted 3R2C model with a sensor node gives plausible
HTC values. This result is counterintuitive. In Section 4.2, the time
constant of the wall-mounted sensor has been estimated to be about 8
min. Therefore, it could be expected that the effect of the sensor dy-
namics would be filtered out by taking a larger sampling time (>15
min). However, this is not the case. This last conclusion is much clearer
when analyzing Ce.

The identified C, for the stochastic model without and with ACS are
shown in Fig. 11, respectively. This confirms the positive effect of ACS
for large sampling times. For cases without ACS, the identified C, value
and variance become non-physical when the sampling time is larger. The
C. values from volume-averaged temperature (T;) and the single wire-
less temperature (T3) sensors remain physically plausible for the large
sampling times if the filter and ACS are applied simultaneously.
Regarding the wall-mounted sensor, the baseline 3R2C model (T3) does
not give plausible C, values even for large sampling times. The low-pass
filtering or ACS does not improve the performance. This confirms that,
even though the sensor time constant (~8 min) is significantly shorter
than the sampling time, its influence is not filtered out and it still im-
pacts the performance of the stochastic model. For the adapted model
(T4), the C, value remains physically plausible for large sampling times
when the ACS and the low-pass filter are applied, just like the datasets Ty
and To. It is worth mentioning that the C, values from a single sensor are
generally larger than those identified from the volume-averaged
temperature.

At this stage, the influence of the ACS does not need to be further
demonstrated. Therefore, the A; values for the stochastic model are only
shown in Fig. 11 with ACS. The results for A; are consistent with the
results for C. and confirm the previous conclusions.

The identified t values for the adapted 3R2C model with a sensor
node can be found in Table 5. The sampling time (Ts) of 5 min is shorter
than the identified time constant of about 8 min. However, when the T;
becomes significantly larger than 8 min, T cannot understandably be
identified at a lower value than Ts. In other words, a sound conclusion is
that if the identified sensor time constant is to be physically plausible,
the data should be sampled at a higher frequency than the sensor
dynamics.

Fig. 12 compares the ability of the model to perform MPC using the
one-day ahead prediction performance for the stochastic model identi-
fied using the volume-averaged temperature (T;). Large sampling times
have a limited effect on the one-day ahead prediction performance. The
low-pass filter increases the one-day ahead prediction mainly for the
validation datasets using Experiment 2. While the ACS improves the
physical plausibility of the model parameters for large sampling times,
its influence on the one-day ahead prediction performance is not sys-
tematic: it has a slightly positive impact on Experiments 3 and 4 but a
negative influence on Experiment 2.

For the case of wall-mounted temperature sensors, the improvement
from the adapted model for the one-day ahead prediction performance is
significant. The results are shown in Fig. 13 and Fig. 14. If the same pre-
processing is applied (i.e., sampling time and filtering method), the
NRMSE fitting from the adapted 3R2C stochastic model with sensor
node (T4) is always higher than the baseline 3R2C stochastic model
without sensor node (T3). Using the wall-mounted sensor, the influence
of large sampling time is considerable. However, this effect is reduced
using low-pass filtering. The influence of ACS is still not systematic.
Nevertheless, for the adapted model, the ACS systematically improves
the prediction performance.

To sum up, except for wall-mounted sensors, large T have a limited
effect on the prediction performance, which is in good agreement with
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Fig. 9. Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4 with different types of temperature, data pre-processing techniques.

the findings of Yu et al. [26]. For the wall-mounted sensor, additional physical plausibility of the parameters.

measures should be taken to conserve the prediction performance with

large Ts. As for the physical plausibility, the low-pass filtering improves 4.3.3. Stochastic model with hydronic radiator

the prediction performance. However, the positive influence of the ACS As previously mentioned, the air temperature was only measured
for T is not as systematic for the prediction performance as it was for the using the wall-mounted sensors for the experiment using the hydronic
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Fig. 10. Comparison of the simulation performance of the deterministic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and
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Fig. 11. Identified HTC, Ce and Ai of
processing techniques.

radiator. As it has been proven that the sensor node was necessary for
the modeling, only the performance of the adapted model is analyzed.
Unlike the electric heater, the thermal dynamics of the hydronic radiator
are significant (see Section 2.4). The analysis of the measured inlet and
outlet temperatures of the hydronic radiator showed that its time

Table 5
Identified time constant (t) of the 3R2C adapted stochastic model for Experi-
ment 4 with different data pre-processing techniques.

Sampling DS MA FIR
time
. T T T T T T

[min] . . .
value variance value variance value variance
[min] [min] [min] [min] [min] [min]

5 8.28 0.420 - - - -

15 16.4 1.82 12.9 1.21 11.6 1.04

30 67.9 62.1 26.2 3.59 27.6 4.08

60 97.6 19,465 79.1 1031 76.5 223

12

the 3R2C stochastic model for Experiment 4 with different types of temperature measurement and data pre-

constant is about 7 min. A priori, like the wall-sensor, it is expected that
the hydronic radiator dynamics should influence the model perfor-
mance, at least for a sampling time of 5 min (<7 min). However, the
wall-mounted temperature sensor has a time constant of about 8 min.
Consequently, the dynamics of the hydronic radiator cannot be properly
captured by a grey-box model since the time constant of the wall-
mounted sensor is comparable (or slightly larger) than the time con-
stant of the hydronic radiator. The analysis of the cumulative periodo-
gram (not reported here for the sake of the conciseness) shows that the
adapted 3R2C can model the building heated using the hydronic radi-
ator without the need to add a specific capacitance to model the hy-
dronic radiator. In addition, preliminary results with an additional
capacitance proved that the resulting model would be overfitted.

The experiments with the hydronic radiator and the electric heater
have been performed in different years and different months of the
heating season, leading to different sun elevations between the experi-
ments. The identified effective window area A; is thus expected to be
significantly different for Experiment 5 and Experiments 2 to 4. Thermal
properties that are intrinsic to the building fabric and less dependent on
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Fig. 12. One-day ahead prediction of the stochastic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and validated using

Experiments 2, 3.
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Fig. 13. One-day ahead prediction of the baseline stochastic 3R2C model using a single wall-mounted sensor (T3), trained using Experiment 4 and validated using

Experiments 2, 3.

the outdoor conditions are used to analyze the model performance in
Experiment 5, namely the HTC and C, (Fig. 15). The identified HTC is
still close to the reference value. Unlike the experiments with the electric
heater, there is no significant difference between the baseline and
adapted 3R2C models and the HTC remains plausible for large sampling
times (with ACS).

However, the improvement resulting from the adapted model and
ACS is more visible when analyzing C.. Again, the HTC translates into a
steady-state performance while the capacitances are inherently related
to the building dynamics. Conclusions with the hydronic radiator are in
line with the conclusions using Experiment 4 with the electric heater.
With the baseline 3R2C model, the estimated C. is entirely non-physical
even using pre-filtering and ACS. The results are noticeably improved
with the adapted 3R2C model with a sensor node. If the pre-filtering and

13

ACS are applied, the C, value strictly stays within the reference range no
matter how large the sampling time is. For Experiment 5, it is worth
mentioning that the quality of the adapted 3R2C model is marginal as
the variance C. is sometimes very large. Nevertheless, this does not
impact the main conclusion. The experiment with the hydronic radiator
confirms the positive influence of the adapted model with 1, the low-
pass filtering and the ACS for large sampling times.

5. Discussion

This paper analyzes the influence of data pre-processing and sensor
dynamics on the grey-box modeling of the building thermal dynamics
using the MATLAB system identification toolbox. Some limitations to
the work can be listed and discussed:
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Fig. 14. One-day ahead prediction of the adapted stochastic 3R2C model using a single wall-mounted sensor (T4), trained using Experiment 4 and validated using

Experiments 2, 3.
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Fig. 15. HTC and C. for the 3R2C stochastic model using Experiment 5 and different data pre-processing techniques.

e Important conclusions based on virtual experiments have already
been drawn in the previous study of Yu et al. [26]. However, field
measurements are different from virtual experiments. The paper
succeeded in extending the conclusions from virtual experiments to a
real test case with field measurements. However, more test cases are
needed to have a generalization of the conclusions. It has been
decided to limit the paper to a single test case. The experimental
setup and the methodology should be sufficiently described to make
the results transparent and reproducible. For the sake of conciseness,
this limits the paper to a single test case.

The test case is a super-insulated building with balanced mechanical
ventilation and an energy-efficient heat recovery unit. This enabled
the building to be modeled as a single thermal zone. This test case is
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relatively specific as most of the existing houses in the Norwegian
building stock do not have these thermal properties. However, it is
expected that the conclusions of the paper regarding data pre-
treatment are not affected by the insulation level and type of
ventilation.

o The paper considers that the data pre-treatment is performed equally

for all input and output data. This is possible when the data pre-
treatment is performed explicitly by the modeler. However, when
the data pre-treatment is performed implicitly by the hardware (i.e.,
the sensor or the DAQ), this pre-treatment can affect the input and
output data differently. In this case, additional data pre-treatment
techniques should be considered (such as the identification of lag).
The conclusions of the paper need to be extended to this case as well.
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e The analysis is based on the MATLAB system identification toolbox,
where the stochastic equations are written in innovation form. For
the generalization, results should be reproduced in other system
identification tools and formulations, such as CTSM-R [54].

6. Conclusion

This study is based on two experimental setups using two different
space-heating emission systems, namely an electric heater and a hy-
dronic radiator. The pre-processing techniques include low-pass filtering
(using MA or FIR), the sampling time (T;) and the application of anti-
causal shift (ACS). Three different types of temperature measurements
are analyzed to investigate the influence of the sensor selection and
dynamics (i.e. volume-averaged air temperature, single temperature
sensor without casing and single wall-mounted sensor).

To analyze the specific influence of the data pre-processing, it is
important to ensure that the model performance is not polluted by other
phenomena, such as overfitting or poor model fidelity. Therefore, the
study starts by selecting a suitable structure for the grey-box model and
proves that a mono-zone second-order model is an appropriate trade-off,
with (1) a good prediction performance and (2) good interpretability of
the physical parameters of the model (i.e., physical plausibility) (3)
without beginning to be overfitted. Consequently, a mono-zone 3R2C
model is taken as the baseline structure to illustrate the key research
questions of the paper. Conclusions are presented separately between
deterministic and stochastic models.

Deterministic model:

Yu et al. [26] used virtual experiments and the data pre-processing
has a limited influence on the model performance. This is
confirmed using field experiments. In addition, the sensor thermal
dynamics also has a limited influence on the deterministic model
performance.

Stochastic model:

Yu et al. [26] used virtual experiments and the parameters became
non-physical without ACS for large sampling time (Ts). On the con-
trary, large sampling times did not alter the simulation performance
significantly. Although the ACS tends to improve the physical plau-
sibility of the model parameters with Ts, in general, it had a negative
influence on the simulation performance of the model.

These results are partly confirmed using field measurements. Like in
Yu et al. [26], large Ts can cause the parameters to become
non-physical without ACS. ACS is excessively beneficial to guarantee
the physical plausibility of parameters, making the identified pa-
rameters insensitive to the sampling time. Like in Yu et al. [26], large
Ts has a limited effect on the prediction performance for the tem-
perature sensors without casing. However, for the wall-mounted
sensor, pre-filtering and sometimes ACS should be used to converse
the prediction performance at large Ts. Like Yu et al. [26]
pre-filtering has a beneficial influence on the model performance but
not in a dominant way. Unlike Yu et al. [26], the influence of ACS on

Appendix A. Supplementary data
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prediction performance is most often beneficial in our study. At this
stage, it can be concluded that the influence of the sampling time and
ACS on the prediction performance is not systematic (i.e., sometimes
positive or negative).

The results for stochastic models depend on the type of temperature
measurement. Firstly, the cases with temperature sensors with
negligible thermal dynamics (i.e., free-standing air temperature
sensor without casing) are analyzed. Even though the vertical ther-
mal stratification is significant, there is only a slight reduction in the
model performance when moving from a volume-averaged mea-
surement to a single sensor located at mid-height in the room. Sec-
ondly, when the temperature sensor is the wall-mounted
temperature sensor, an adapted model with time constant dynamics
for the sensor is needed to obtain a physically plausible estimation of
the parameters. This is an important conclusion as most buildings are
equipped with wall-mounted temperature sensors. To limit the in-
vestment, the number of sensors should also be limited, making a
volume-averaged measurement expensive.

The dynamics of the hydronic radiator (with significant thermal
mass) are not necessary to be modeled if the time constant of the
measurement device is larger than that of the hydronic radiator.

As the article is based on a single test case, additional research on
real buildings is needed to generalize the conclusions. These findings
provide practical guidelines to identify the thermal dynamics of build-
ings using grey-box models and field measurement data.
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Fig. 16. Grey-box model structures except for the most complicated 5SR3C model.

Table 6
Model identification results of the candidate models with 5 min data and volume-averaged temperature (T1), values highlighted with bold color are non-physical
values.

Model UAea [W/K] UAie [W/K]  UAim [W/K]  UAine [W/K]  UA[W/K]  UAas [W/K]  UAes [W/K]  UAjs [W/K] Ce [kWh/K] C; [kWh/K]
1R1Cdet - - - - 106 - - - - 5.62
2R2Cdet 114 826 - - - - - - 6.11 0.749
3R2Cdet  80.2 876 - 23.0 - - - - 5.28 0.767
4R2Cdet  52.1 - - 51.5 - - 2558 1345 5.40 0.781
3R3Cdet 153 404 565 - - - - - 6.08 0.961
4R3Cdet 104 303 687 26.5 - - - - 3.94 0.909
5R3Cdet 102 686 - - 28.1 331 4694 3.99 0.908
1R1Csto - - - - 109 - - - - 4.78
2R2Csto 109 1058 - - - - - - 6.37 1.24
3R2Csto  17.1 868 - 63.5 - - - - 4.22 1.15
4R2Csto  0.000 1181 - 78.5 - - - 3342 4.28 1.11
3R3Csto 123 552 763 - - - - - 11.9 1.23
4R3Csto  5.40 692 346 71.4 - - - - 4.02 1.21
5R3Csto  0.000 - 375 - - 108 8492 1087 5.73 1.19
Model Cm [kWh/K]  A; [m?] A, [m?] Ap [m?] As [m?] alpha [—] MBE NRMSE (one- NRMSE HTC [W/K]
step) (prediction)

1R1Cdet - 2.99 - - - - 0.0010 - 72.7% 105
2R2Cdet - 2.96 0.000 - - - 0.0007 - 93.0% 100
3R2Cdet - 2.62 0.000 - - - 0.0008 - 93.6% 96.4
4R2Cdet - 2.78 - - 0.000 - ~0.0033 - 93.5% 103
3R3Cdet  2.09 3.82 - 0.000 - 0.500 ~0.0017 - 95.0% 111
4R3Cdet  2.58 3.19 - 0.000 - 0.500 0.0025 - 95.3% 104
5R3Cdet  2.54 - - 0.000 3.21 0.500 ~0.0017 - 95.3% 106
1R1Csto - 3.39 - - - - —0.0008 99.0% 73.4% 109
2R2Csto - 3.07 0.000 - - - 0.0000 99.2% 87.3% 98.8
3R2Csto - 1.56 0.122 - - - 0.0000 99.2% 87.2% 80.3
4R2Csto - 1.09 - - 0.686 - 0.0001 99.2% 86.6% 78.5
3R3Csto  1.16 3.07 - 0.819 - 0.500 0.0002 99.2% 80.6% 101
4R3Csto  0.042 1.44 - 0.000 - 0.500 0.0001 99.2% 86.1% 76.8
5R3Csto  0.038 - - 0.078 2.67 0.500 0.0001 99.2% 88.9% 108
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Abstract

Model predictive control (MPC) is an advanced optimal
control technique to minimize a control objective while
satisfying a set of constraints and is well suited to activate
the building energy flexibility. The MPC controller
performance depends on the accuracy of the model
prediction. Inaccurate predictions can directly lead to low
control performance. Linear time-invariant (LTI) models
are often used in MPC in buildings. However, LTI models
do not adapt to the weather conditions varying throughout
the whole space-heating season, which makes the MPC
based on LTI models not perform well over a long period
of time. Therefore, this study introduces an adaptive MPC
where the parameters of a linear grey-box model are
continuously updated in real-time. Two alternative
versions of this adaptive control are investigated. The first
one, called partially adaptive MPC, only updates the
effective window area of the grey-box model, while the
second one, called fully adaptive MPC, updates all the
parameters of the grey-box model. Results show that the
partially adaptive MPC is not able to deliver satisfactory
prediction performance. The fully adaptive MPC shows
better performance compared to the other models when
implemented in a MPC, especially in avoiding thermal
comfort violation.

Introduction

The grid system today is facing new challenges due to the
fastly increasing penetration of renewable energy
resources (RES). The weather-dependent RES brings
intermittent and is prone to uncertainty which makes the
balance between the electricity supply and demand a
challenging task. Thus, more flexibility is needed for the
current energy system. Demand response (DR) is
considered as a feasible solution on the demand side,
which can adapt to volatile electricity generation (Esther
& Kumar, 2016; Oconnell et al., 2014). Buildings account
for a significant proportion of final energy consumption
in developed countries (Pérez-Lombard et al., 2008) (20—
40%). The thermal mass of building envelopes can be
used as short-term heat storage to perform DR. This study
mainly investigates model predictive control (MPC) to
activate the flexibility of the building thermal mass. The
MPC controller enables the indoor temperature to
fluctuate within acceptable indoor temperature limits for
the occupants while it optimizes the time profile of energy
use by loading the building thermal mass at certain

periods. The MPC controller performance strongly
depends on the accuracy of the model prediction.
Therefore, identifying an accurate prediction model is a
key task for the deployment of MPC.

This study focuses on MPC using grey-box models as the
prediction model. Grey-box models have a structure
based on physical laws, while the model parameters are
calibrated on measurement data (i.e., based on time-series
data). The grey-box models are not as mathematically
complex as white-box models, so they are less
computationally expensive to solve. Grey-box models
also have better extrapolation properties than black-box
models (Madsen et al,, 2016). In grey-box models,
lumped resistance and capacitance (RC networks) are
commonly used to represent the model structure of the
building, which is also used in this study. Some existing
studies have shown that linear time-invariant (LTI)
models can approximate the thermal dynamics of
buildings with sufficient accuracy for MPC purposes
(Bacher & Madsen, 2011; M. D. Knudsen & Petersen,
2020; Michael Dahl Knudsen & Petersen, 2017; Privara
et al.,, 2013; Vogler-Finck et al., 2018). However, the
performance of the MPC controller cannot be maintained
if it is applied over a long period of time due to the time-
varying weather conditions throughout the year. Thus, an
MPC controller where the parameters of the grey-box
model can be updated in real-time should provide
satisfactory control performance over a long period of
time. This paper uses virtual experiments (i.e., co-
simulation) to compare the performance of a conventional
MPC based on an LTI model to an adaptive MPC. IDA
ICE is a detailed dynamic building performance
simulation (BPS) software, which is used as the emulator
for virtual experiments. The MPC controller is
implemented in MATLAB with a co-simulation function
in IDA-ICE provided by the company EQUA.

The data collected from IDA ICE simulations are used to
train the parameters of the grey-box model. Then, the
obtained model is used as the prediction model for the
MPC controller. The adaptive MPC controller has two
versions in this study. The first version, called partially
adaptive MPC, only updates the effective window area of
the grey-box model when the prediction error is large
during the MPC operation. The reason is that solar
radiation is the dominant factor that influences the model
accuracy due to the cloud condition, changing altitude and
zenith angles of the sun. The second version, called fully



adaptive MPC, updates all the parameters of the grey-box
model when the prediction error is large during the MPC
operation. The second version has more freedom to fit the
model parameters compared to the first one. However, the
second version of adaptive MPC theoretically takes more
time to converge to a new set of parameters and may have
the risk of obtaining a set of unphysical parameters due to
insufficient training data. Both versions of the adaptive
model use the full space-heating season data (here called
full winter) to train the model parameters as the initial
model to start the adaptive MPC. This study compares the
performance of a conventional MPC based on an LTI
grey-box model to the adaptive MPC.

Description of virtual experiments setup

This study uses a building model in IDA ICE developed
in a previous study (Yu et al., 2021) as the emulator for
the co-simulation. It is a detached house in Oslo. The floor
area of the house is approximately 160 m? and is
constructed in wood. The lightweight construction
complies with Norwegian passive house standards (NS
3700 [15]) requirements. The appearance of the building
is shown in Figure 1, while its floor plan is presented in
Figure 2. The envelope of the building is the dominant
heat dynamics to be modeled in this study, which has
good linear properties. Thus, it is reasonable to use the
linear grey-box model as the prediction model for the
MPC controller design. The internal doors of the building
are set to be open in the virtual experiments. Therefore,
the mono-zone grey-box model is considered as the
prediction model. The temperature of the indoor air node
is represented by the volume-averaged temperature of the
nine zones in IDA ICE. Electrical radiators are selected to
be the space-heating system in the BPS since they are it is
the most common for Norwegian residential buildings
(Boeng et al., 2014). The heat dynamics of electrical
radiators are neglectable due to much smaller thermal
inertia compared to the envelope. The profile for internal
gains and occupancy is taken from the Norwegian
technical standard TS3031:2016 (Norge, 2016).

Figure 1: 3D geometry of the building model in IDA ICE
(showing the southwest facade)

The heat dynamics of the building need to be perturbed to
obtain the data for training the model parameters. The
Pseudo-Random Binary Signal (PRBS) approximates
white noise properties, which can excite the dynamic

system in a large spectrum of frequencies (Kristensen et
al., 2004; Lennart, 1999). The electrical radiator is the
only controllable input of the system, so the PRBS signal
is applied to the electrical radiator to obtain the training
data. It is not always feasible to apply PRBS signal in real
operation due to thermal discomfort caused by large
variations of the indoor temperature for occupants.
Therefore, the time of applying PRBS signal should also
be limited. This study takes one week in November as the
training week to apply PRBS signal to the heating system.
It starts on November 23rd and lasts for one week (close
to the middle of the whole experimental period). The
outdoor temperature is mild with an average value of 5 °C.
The data generated under typical operations are also used
as training data. Intermittent heating with changing
temperature setpoints is applied. The setpoint is shifted
between daytime and nighttime (i.e. a night setback) and
the local controller of the radiator is on-off. The model
trained from the PRBS signal is only used for the LTI
control model. The model trained from the full winter
intermittent heating with changing temperature setpoints
is also used as the initial model for the adaptive MPC.
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Figure 2: Floor plan of the test building (ducts for the supply
ventilation air are in blue and in red for extraction)

In the co-simulation, the length of each MPC time step is
set to 15 min. IDA ICE first sends the current calculated
volume-averaged indoor temperature of the building to
MATLAB. Then the MPC controller takes the prediction
of the weather data and internal heat gains into the
optimization to output the optimal control sequence for
the heating system. However, only the first step decision
of the control sequence is taken and sent back to IDA ICE.
The heaters in the building will execute the calculated
optimal power after receiving the control signal. When
this time step is done in IDA ICE, the new state of the
volume-averaged indoor temperature is sent back to
MATLAB again; a new round starts. The process will
keep iterating in time using this co-simulation setup until
the pre-determined simulation period is finished. A
similar co-simulation setup with IDA ICE has been
applied in the study (Khatibi et al., 2022). A short
initialization period is necessary for IDA ICE to come to
realistic temperatures in each zone of the model, so PID
control is applied at the beginning of co-simulation. The
length of the initialization period in this study is set to be
half-day.

In the co-simulation framework, there are variable
constraints set in the MPC due to system limitations. In



the IDA ICE model, the total heating power of all the
radiators is 3220W. The radiator in IDA ICE is assumed
to be able to modulate its power by adjusting its part load
ratio (PLR). Thus, the power constraint of the heating
system in the MPC is from 0 to 3220W. The thermal
comfort should also be considered and it is here
considered using minimum and maximum indoor
temperature limits. The minimum indoor temperature
limit is set to be 20 °C and the maximum limit is set to be
24 °C. There is a night setback for the minimum
temperature limilt decreasing from 20°C to 16 °C from
11PM to 7AM.

Methodology
Grey-box model

A grey-box model structure that has too many parameters
may lead to overfitting and increase the calculation cost.
Lower order models with few parameters can decrease the
calculation cost for the MPC optimization but at the cost
of unacceptable prediction performance. A considerable
amount of research has already been done to find suitable
mono-zone grey-box model structures to be applied to
MPC of buildings (Bacher & Madsen, 2011; Berthou et
al., 2014; Harb et al., 2016; Reynders et al., 2014; Viot et
al., 2018). In the previous study (Yu et al., 2022), a 3R2C
grey-box model has proven to be a suitable trade-off
between model complexity and accuracy for the test case.
Therefore, this model structure is used for the MPC
controller in our work. The model structure and its
parameters are given in Figure 3 and Table 1.
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Figure 3: 3R2C grey-box model

Table 1: The physical interpretation of the parameters of the
3R2C grey-box model

Parameters Physical interpretation and unit

Temperature of the internal node (i.e., indoor air,

L furniture) [°C].

Te Temperature of the external walls [°C].

Ta The ambient (or outdoor) temperature [°C].

Ci Heat capacity including the thermal mass of the air,

the furniture [kWh/K].
Ce Heat capacity of external wall [kWh/K].

UAic  Heat conductance between the building envelope and
the interior [kW/K].

UAea Heat conductance between the outdoor and the
building envelope [kW/K].

UAinyr Heat conductance between the outdoor and the
interior node (components with negligible thermal
mass, like windows and doors) [kW/K].

Oint Internal heat gain from artificial lighting, people and
electric appliances [kW].

Oh Heat gain delivered to the heat emitter [kW].
Lol Global solar irradiation on a horizontal plane [W/m?].

Ai The effective window area of the building
corresponding to Ti [m?].

Ae The effective window area of the building
corresponding to Te [m?].

MATLAB system identification toolbox (Ljung, 2014) is
used to calibrate the parameters of the grey-box model.
This paper uses the global optimization routine of the
previous study (Yu et al., 2021) to avoid the local
optimum. The routine consists of two stages. The
heuristic particle swarm optimization (PSO) is used at the
first stage to give a general estimation of parameter values.
Then the gradient-based optimization function (greyest) is
applied in the second stage to further polish the parameter
values. The objective function f(x) of the optimization is
defined as Equation 1.
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Optimal Control Problem Formulation

The goal to implement MPC in the building varies
between applications. The objective function of the MPC
in our study is to minimize the total electricity use of the
heating system while keeping the building within the
thermal comfort temperature limits.

With the control objectives and constraints, the optimal
control problem can be formulated. The time step of each
control decision is 15 minutes. The prediction horizon of
the MPC controller is set to be 24 hours (96 slots, N = 96).
This duration of the prediction horizon is a typical value
found in the literature. It keeps the computational time
reasonable. The equations of the optimization problem are
given below.
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In the equations, x[£] is the state vector in discrete-time,
F, G and C are the discrete state space matrice obtained
from the grey-box model identification process, u[] is the
input vector in discrete-time and y[£] is the output. K is
the tunned steady Kalman gain. Qy[k] is the calculated
optimal heat power at each step for the prediction horizon,
while Qpma[k] is the max power of the heating system. ¢;
[k] and &;[k] are the slack variables of the soft constraints
on the thermal comfort band. The existence of soft
constraints can help the solver to avoid infeasible
optimization problems by allowing thermal comfort limits
to be violated. Tidolk] is the predicted indoor
temperature from the grey-box model. Tjo,[k] and T,[k]
are the corresponding temperature limits during the
prediction horizon. The thermal discomfort (g) is
quantified in Kelvin hours outside the predefined thermal
comfort limits. L is the penalty factor for discomfort in the
objective function. For favor comparison of results, it has
been decided that the thermal discomfort should be rare
when using MPC so that a very high value of 108 is given
to the penalty L. MPC resorts to a receding horizon. The
above optimization problem is solved at each step to get
the optimal control decision. Then, the initial states of the
model and the weather forecasts are updated with the
receded prediction horizon. Due to the quadratic form of
the slack variables ¢; and &, a solver that can solve
quadratic programming problems is needed. In this study,
the toolbox YALMIP (Lofberg, 2004) in MATLAB is
used for the formulation of the optimization problem,
while Gurobi (Lofberg & Gurobi Optimization, 2004) is
used to solve the optimization problem.

Conventional and Adaptive MPC

The baseline MPC is based on LTI models, which keep
the value of the model parameters constant during
simulation. The LTI model trained using the full winter

experiments with intermittent heating is called FullWinter.

The LTI model trained using the PRBS experiments of
November is called PRBSNOV.

The partially adaptive MPC takes the FullWinter model
to initialize the model, only the effective window area (Aj)
parameter is updated during the simulation. The pseudo-
code for updating the effective window area is presented
in Algorithm 1. The fully adaptive MPC also starts with
the FullWinter model but updates all the seven parameters
of the model during simulation. The pseudo-code for fully
adaptive MPC is presented in Algorithm 2.

The sliding accumulated error (ErrorS) is the index to
detect when the parameters need to be updated. The
sliding accumulated error sums up the absolute value of
the prediction error (value difference between the
measurement and the model prediction). The length of the

sliding accumulated error is set to be 12 steps (i.e., 3
hours). When the ErrorS is larger than a predefined
threshold, it actives the parameter updating routine. The
threshold is called error_index and is set to be 5 in this
study. It is unreasonable to use a short training period to
update the model parameters as the parameters can be
unphysical or with large uncertainty. On the opposite,
taking a long period of historical data for training is also
not optimal since the adaptive MPC should be able to
adapt the parameters for changing operating conditions.
Pushed to extremes, a very long training period will make
the adaptive model converge to the LTI model. Thus, the
two adaptive MPC take a training period of 7 days of data
to update the model parameters. As a result, the adaptive
MPC routines are not able to start the first model update
during the first seven days of co-simulation.

Algorithm 1: Pseudo-code for the partially adaptive MPC

Algorithm 1: Partially Adaptive MPC

Initialize: Set FullWinter as the prediction model for the
Partially Adaptive MPC;

Input: ErrorS;
if ErrorS> ErrorIndex

‘ Update the parameter Ai.
else

‘ Keep Ai unchanged.

end

Algorithm 2: Pseudo-code for the fully adaptive MPC

Algorithm 2: Fully Adaptive MPC

Initialize: Set FullWinter as the prediction model for the
fully Adaptive MPC;

Input: ErrorS;
if ErrorS > ErrorIndex

‘ Update all parameters of the model.
else

‘ Keep parameters unchanged.

end

Results

The results using different MPCs are presented in this
section. The virtual experiment starts from November 1%
to December 31" (i.e., 61 days). The first 12 hours of
simulation always start with a PID control to stabilize the
co-simulation environment. Then, the control is switched
to MPC. PRBSNOV MPC uses the LTI grey-box model
trained using the data from one week of building
operation with the PRBS excitation in November
(PRBSNOV). FullWinter MPC uses the LTI grey-box



Table 2: Results summary of MPC controllers’ performance model trained with the data from the intermittent heating

with changing temperature setpoints during the full space-

. . . t th
FullWinter  PRBSNOy  Fartially Fully heatu?g season (i.e., from November l.S to Ma.rch 31A ).
MPC MPC Adaptive  Adaptive The indoor temperature computed using co-simulation
MPC MPC and the four MPC controllers are shown in Figure 4.
c q Figure 5 is a close-up section of Figure 4 and the
E?f;:;ye 803.73 855.18 804.06 893.62 corresponding heating power of the radiator is also given.
[kWh] ’ ’ ’ ' The aggregated results are given in Table 2. The history
of the effective window area update is shown in Figure 6.
Thermal It can be seen that the FullWinter MPC can not make a
D ls[cgafo” 33439 194.37 2887 7204 satisfactory prediction, which causes the thermal comfort
constraint to be significantly and frequently violated. The
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Figure 4: Indoor temperature profile under the operation of different MPC controllers with energy saving objective
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Figure 5: Close-up of the indoor temperature profile under the operation of different MPC controllers with energy saving objective

partially adaptive MPC shows only slightly better
performance compared to the FullWinter MPC. The
thermal comfort constraint is still frequently violated.
These two models consume less energy compared to the
other two models (i.e., the fully adaptive MPC and the
PRBSNOV MPC). However, the MPC should first
guarantee the thermal comfort of the occupants and then
provide DR service to the grid. The FullWinter MPC and
Partially Adaptive MPC consume less energy because
they are less accurate, which causes the indoor
temperature to drop below the minimum indoor
temperature threshold. The heating system is switched on
too late in the morning and causes large thermal
discomfort. This indicates that the LTI grey-box model

trained using the full winter data may not be suitable as
the prediction model in MPC. Furthermore, quite
surprisingly, only updating the effective window area of
the model is not sufficient. This is also confirmed by the
history of updates of the effective window area. The
partially adaptive MPC updates the window area
continuously, which means that the sliding accumulated
error is always very large during simulation. The
PRBSNOV MPC performs much better than the previous
two models in terms of thermal discomfort. The resulting
energy use of the PRBSNOV MPC is consequently
higher. This result proves that it is necessary to use a
model that is calibrated using a training period similar to
the period when the MPC will be operated. The fully
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Figure 6: History of the effective window area update

adaptive MPC further reduces the thermal discomfort
significantly compared to the PRBSNOV MPC.
However, the consumed energy is even higher. The fully
adaptive model performs better than the partially adaptive
model mainly due to the extra degrees of freedom to adapt
the model parameters. After the first update of the
parameters done by the fully adaptive MPC, the violation
of the indoor temperature constraint is significantly
reduced. As shown in Figure 6, the effective window area
is only updated three times during the simulation, which
means that the obtained model is accurate and can deliver
a decent prediction.

Conclusion

This study aims to assess different MPC controller
performances using virtual experiments by coupling IDA
ICE and MATLAB. The control objective of the MPC
controller is to minimize the energy use with a high
penalty on the thermal discomfort to give priority to
thermal comfort over energy use.

Results show that the LTI grey-box model trained using
the FullWinter data is not suitable as MPC prediction
model. This model is too general and gives large
prediction errors during specific periods of the winter.
This is confirmed by the LTI grey-box model training
using a PRBS excitation sequence for one week in
November (PRBSNOV). The model is better calibrated to
November than the FullWinter model and the resulting
MPC gives better performance.

Although the effective window area is known to vary
significantly during the space-heating season, only
updating the window area of the model is surprisingly not
enough to reach satisfactory MPC performance. The
lower amount of indoor temperature violations of the fully
adaptive MPC compared to the PRBSNOV MPC

demonstrates the need to update all the model parameters
during the space-heating season.

In future work, the performance of the four MPC
controllers will be compared for different objective
functions (e.g, minimization of the energy cost or the
energy use during peak hours) and different magnitudes
for the penalty coefficient weighting the thermal
discomfort in the objective function.
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Abstract

To increase energy efficiency of the building sector, many
measures have been suggested which often require a
predictive model of the building to function. Developing
these models is one of the crucial challenges hampering
pervasive use of these measures. Therefore, this study
aims at assessing the impact of using different predictive
models in an energy optimization application for an
experimental building. First step in achieving this goal is
developing various data-driven models for the investigated
building in this study. Afterwards, a framework has been
developed in which the performance of predictive models
in the optimization strategy namely Model Predictive
Control (MPC) could be evaluated. The results reveal that
common indicators in the literature do no suffice to score
the performance of models used in MPC, but another state-
of-the-art indicator; multi-step ahead prediction error is
more suitable for evaluating predictive models deployed in
MPC.

Key innovations

e Finding a proper Key Performance Indicator
(KPI) for evaluating various predictive models in
an MPC framework

e Assessing the impact of one-step ahead
prediction and multi-step ahead prediction
accuracy on model’s quality in MPC

e Applying Support Vector Machine as a powerful
Al tool for building behavior identification

Practical implications

This paper could guide practitioners who work on building
energy optimization in choosing a suitable model in their
optimization algorithm .In addition; we suggest an
appropriate criterion to assess the predictive models in
terms of their performance in MPC, which could be
instrumental for both researchers and practitioners.

Introduction

Surveys have shown that building stock has the highest
potential in terms of energy saving to achieve well below
2 °C ftarget by 2050 set in Paris agreement (EU
Commission, 2018). Approximately 71% of all the final
energy use in residential sector in Europe is used for space

heating alone (EU Commission, 2018). Hence, there is a
considerable potential of energy saving which could be
activated by optimizing performance of existing HVAC
systems. Several strategies have been proposed to increase
existing building’s energy efficiency such as RES
integration (Haddadi et al., 2019), shading control (Da
Silva et al., 2012), optimal control of HVAC systems (De
Coninck & Helsen, 2016), heat recovery (Jafarinejad, et
al., 2019), glazing improvement (Djamel & Noureddine,
2017), smart houses and etc. (Eicker et al., 2015; Guerra-
Santin & Tweed, 2015). RES integration is one of the
promising options. However, their uncertain nature affects
all the energy users such as buildings (Reynders et al.,
2017). One of these impacts is that the integration of RES
in buildings renders performance of traditional control
strategies non-optimal (Sangi et al., 2019). Hence,
substantial attention has been paid to advanced control
strategies recently (Afram & Janabi-Sharifi, 2014).

Amongst various control strategies suggested for
optimization of building’s thermal performance, Model
Predictive Control (MPC) is one of the most promising
ones. MPC is an active control strategy which optimizes
the performance of a system over a given time horizon
(Drgona et al., 2020). It has shown a considerable potential
in optimizing the performance of HVAC systems along
with facilitating the integration of RES in buildings (Atam
& Helsen, 2016). MPC has the ability to handle slow
moving dynamics, which matches the requirements for a
good optimization strategy for buildings. To this end,
MPC uses a model of the building to predict its thermal
behavior in the future. This prediction feature gives MPC
a crucial edge compared to other controllers (Reynders et
al., 2014; Sourbronetal., 2013). Myriad studies have been
carried out on application of MPC in buildings (Drgona et
al., 2020). In spite of the abundance of such studies, MPC
is still not used prevalently in buildings. One of the main
issues hampering easy and cost-efficient implementation
of MPC in buildings is developing a predictive model of
the building (Sourbron et al., 2013).

This study aims at comparing different modeling
techniques, which are used to identify a building’s thermal
characteristic and are integrated into the MPC framework
as the predictive model. In this study, we place our focus
on data-driven methods used for characterizing building’s



thermal behavior since there is an ever-increasing interest
in employing data-driven techniques for building energy
optimization applications (Sepasgozar et al., 2020).

In general, data-driven methods could be divided into two
categories, black box and grey-box models. In black box
modeling techniques, the mapping between the input and
the output is a mathematical one. These models have a
wide range from a simple regression to complex Al-based
methods such as deep learning methods (Drgona et al.,
2020). As for grey-box models, they could be defined as
a hybrid between mathematical (black-box) models and
physics-based (white-box) models. In the most popular
type of grey-box models used in buildings, structure of the
model is determined by simplified physical laws
governing building’s dynamics. Next, , parameters of the
model are estimated based on datasets (Afroz etal., 2018).

An important question, which comes up in the process of
model selection and training, is how do I know which
model would perform the best in my MPC? In other words,
how to quantify the quality of different predictive models
in the context of MPC. In this work, we endeavor to
answer the above question by applying different KPIs to
different models and assessing their suitability to score
those models. We look into the one-step ahead prediction
and multi-step-ahead prediction error (MSPE) of the
models as two different KPIs for predictive models.

MSPE has been considered for quantifying predictive
models in MPC before. The concept of Model predictive
control Relevant Identification (MRI) for buildings was
first introduced by (Zagekova & Privara, 2012) in which
they developed a grey-box model based on MSPE
minimization. Thereafter, some research studies in this
field reported MSPE of their models in their work (Zhan
& Chong, 2021). In one of the most relevant of these
studies, (Picard etal.,2016) developed a detailed Modelica
model for an office building. This Modelica model is then
linearized into a state space model. Two grey-box models
were developed in their study as well. One was identified
based on measurements and the other one based on the
proxy data obtained from the emulator. Performance of
these three models are evaluated for 1 hour and 24 hours
ahead. They showed that the most accurate model
(linearized state space model) used 50% less energy while
providing better thermal comfort. In a similar study,
(Picard et al., 2017) applied model order reduction
techniques to a white box model of a residential building
and reported their model’s quality based on both one-step
ahead error and MSPE. They concluded that such models
should be of higher order compared to their peer data-
driven models to yield an MPC with good performance.

Although the concept of MSPE has been used before in the
context of MPC design for a building, but a thorough
analysis on its suitability for scoring different predictive
models is lacking. In other words, previous studies did not
consider various data-driven models in their structures. In
addition, they did not distinguish between the impact of
one-step and multi-step ahead prediction accuracy on the
models and its impact on the controller’s performance. In
this paper, we take into account the MSPE associated with

each model as a KPI and compare it to one-step ahead
prediction error. In addition, Support Vector Machine
(SVM) as a powerful tool in machine learning field has
been applied for in the context of MPC.

The models developed for this study are AutoRegressive
with eXogenous inputs (ARX), grey-box RC models with
different orders, black-box State Space (SS) models with
different orders, SVM and Artificial Neural network
(ANN) with a Non-linear Auto-Regressive with
eXogenous inputs (NARX) structure. The results of
applying MPC with different models for 2 weeks in the
heating season are presented. To be able to evaluate
performance of these models in MPC, a framework has
been considered. First, a simulation model of an
experimental building equipped with an underfloor
heating system has been developed. This simulation model
replaces the real building in our simulations. This
experimental building is one of the experimental buildings
in the context of IEA Annex 71 project. MPC has been
developed in MATLAB SIMULINK environment. The
simulation model has been coupled to the controller using
an  Application Programming Interface  (API).
Furthermore, MPC results are compared to the ones of a
well-tuned Rule-Based Controller (RBC) to show its
superiority over traditional control methods.

First, framework of the study is described. Subsequently,
predictive models developed for this study are described.
Then, we proceed by presenting and analyzing the results
of different MPCs. Last section concludes the paper.

Framework

In this section, various parts required for evaluating MPC
for a building are described; starting with the building
itself. Then, the API used in this study is briefly explained.
Afterwards, structure of the MPC itself is explained.
General schematic of the framework applied in this study
is shown in Figure 1, which is explained in the rest of this
section from top to bottom.

Application Framework

1
Emulator API
C
Predictive Optimization
Meodel Algorithm
Modeling
Datiget Technique
Design In-situ

Parameters | [MOdCA) | eagurement

Figure 1: MPC framework for data-driven models

As it could be seen in Figure 1, one of the important
components in simulating the performance of MPC in a
building is to have a simulation model, which mimics the
behaviour of the real building. Henceforth, this model is
called the emulator. The emulator model is usually a
complex white-box model, which due to its high
computational load is not suitable to be deployed in real-
time optimization applications (Afram & Janabi-Sharifi,
2014). Therefore, there is a need for simple and efficient
model embedded in the MPC which is responsible for



predicting building’s dynamics over a given time horizon.
These models are called predictive models. The rest of this
section is allocated to detailed description of different
components of the framework shown in Figure 1.
Building

We first give a short description of the real building, which
has been modelled using Modelica language in Dymola
software using the OpenIDEAS library (Baetens et al.,
2015). This simulation model serves as the emulator in this
study. The building under study is one of the test cases of
the IEA ANNEX 71 project titled: “Building energy
performance assessment based on in situ measurements.”
Test building in this study is a two-storey experimental
dwelling located in Holzkirchen, Germany. (See Figure 2)

e

Figure 2: Test Building

This building is equipped with multiple instruments for
measuring and storing time-series data of different
variables. Heating is provided by means of an air-to-water
heat pump, which provides hot water for an underfloor
heating system that is installed for both floors. (Figure 3).
Occupants are introduced to the building using electrical
heaters based on a pre-defined schedule. Thermometers
are installed in all rooms to measure room’s temperature.
Ventilation system functions based on a pre-defined
schedule and is equipped with measurement instruments
both in exhaust and supply terminals.

= -

Figure 3: Heat pump and the underfloor heating system
API

The controller in this study has been developed in
SIMULINK, whereas the emulator is developed in
Dymola. Hence, a way of communication is required to
make the co-simulation between the two softwares
possible. To tackle this issue, we use an interface, which
facilitates the connection between Dymola and Matlab,
which is called Functional Mock-up Interface (FMI).

The developed building model in Modelica is essentially
composed of equations derived from physical laws. FMI
translates these equations into binary format, which is
supported by many simulation tools including MATLAB
and Python. This binary file could be loaded and run by
these softwares (Modelica Association Project “FMI,”

2013). In this work, the emulator model of the building is
compiled as a Functional Mock-up Unit (FMU). Then it is
imported into SIMULINK using the FMU block of
MATLAB. Fromthere on, the FMU serves as the emulator
model in our MPC framework and easily communicates
with the controller in the Simulink environment.

Model Predictive Controller

MPC is composed of two main parts. A predictive model
and an optimizer. Interested readers can refer to (Drgona
et al., 2020) for further details on MPC formulation for
buildings. The objective of the MPC here is to minimize
the electricity use of the heat pump while minimizing
indoor thermal discomfort. Total discomfort is calculated
as Kelvin hours outside thermal comfort band. Heat
pump’s electricity use is obtained from the emulator model
(FMU). A day-ahead electricity price profile from real-life
implementation has been chosen as a way to reflect the
integration of RES in the building load profile.
Furthermore, to illustrate the suitability of MPC with
respect to other common control methods, a well-tuned
RBC has been designed and applied to our case study and
the results of this RBC are compared to the ones of MPC.
In addition, we investigate the propriety of two important
KPIs in scoring predictive models in the context of MPC;
namely one-step ahead and multi-step ahead prediction
error. In the following, constraints acting on the system
along with the optimizer used in this study are described.

Constraints

Constraints acting on the system are divided into two
different types. First type of constraints are the ones
imposed on the inputs. The manipulated inputs considered
in this study are the heat pump’s on/off status (u;) and heat
pump’s supply water temperature (uz). It should be
mentioned that in this study the mass flow rate of the
supply water is considered constant (when the heat pump
is on) during the whole simulation. The issue with the
constraints on the heat pump operation is the fact that if
heat pump operates with low loads, it would have a low
COP, which should be avoided. Determining the point that
the efficiency of the heat pump deteriorates depends on
many factors, including the modulation rate of the
compressor, ambient temperature and supply water
temperature. Hence, imposing an accurate bound for lower
modulation of the heat pump is not straightforward and
would complicate the optimization problem (Verhelst et
al., 2012). To avoid these complexities, a lower band for
supply water temperature is imposed to avoid performing
with a low COP level. The upper limit of supply water
temperature is extracted from the datasheet provided by
the manufacturer. To wrap up, Equations (1)-(2) show the
constraints on input signals of the heating system:

ue [0,1] M
28<u, <45 2

In which u; is heat pump’s on/off status and is a boolean
variable, 1 means heat pump is on and 0 denotes that it is
off. Here, u; is the supply water temperature provided by
the heat pump. Second type of constraint applied in this
study is indoor thermal comfort bands. Comfort band



considered in this study is [20 24] from 7:00 to 23:00 with
a night setback of [18 22] from 23:00 to 7:00.

Tlow,t < Tin,t < Tup,t (3)

Tiow, ¢ is equal to the lower limits of the bands defined
above and Typ, ; corresponds to the upper limit of comfort
bands. In this study, building is seen as one thermal zone
and one temperature is used to represent the whole
building, which is the volume-averaged temperature of all
10 thermal zones in Figure 2.

OCP formulation

Now having defined constraints and the objective
function, the Optimal Control Problem (OCP) can be fully
formulated. To avoid the high switching frequency of heat
pump, time step chosen for this study is one hour.
Furthermore, a control horizon of 12 hours (N=12) has
been applied in this study which is sufficiently larger than
the time constant of the building and the computational
load does not become too large.

N-1
T 4, ,I\f[.l.r%ikm_l ; Lvieriri HFColirivt Petia 4
Tin,k+i+l = f(ikﬂa ﬁk+ia akﬂ) )

Pel,k+i+1 = (U, Hkﬁ) ©
Tincric1 t Vicritt = Tiow ettt @)
Tintie1 = Vi < Tup ki1 ®

u;e [0,1] ®

28< u, <45 (10)

0= [u, w] (1

Viein>0 ,i=0,1,... N-1 (12)

In these equations, u; and u, indicate heat pump’s status
and its supply water temperature, di and x, represent
disturbances acting on the system and the systems states at
time step k respectively. Equation (4) describes the
objective function which is composed of two terms, one
for the electricity cost and the other one penalizes thermal
discomfort level, C; is the electricity cost at each time step
and P,,; represents the estimation of heat pump’s
electricity use for i steps forward in time. In equation (5),
Tix+i denotes the estimation of indoor temperature 7 steps
ahead in time, f(.) is essentially the predictive model which
provides the estimated temperature profile of the building
throughout the control horizon (N) while g(.) represents
the estimation of heat pump’s electricity use. Heat pump’s
electricity consumption is estimated using a quadratic
function of the supply water temperature (u;) , return water
temperature (7),.;) and ambient temperature (7u.») which
is multiplied by the status of the heat pump (u;):

* gquad (uZ ’Tret’Tamb) ( 1 3)

Zquad () represents the quadratic function on its three
arguments. Equations (7-8) show the soft constraints on
thermal comfort bands designated in Equation (3). These

pel,kﬂ =4

soft constraints help the solver in coming up with a
feasible solution by allowing thermal comfort bands to be
violated. The latter is achieved by introducing a slack
variable (vi). Its value is penalized in the objective
function given a weight of L.

Solver

Now with the OCP defined we can choose a suitable type
of'solver for this case study. Looking at equations (13) and
(4) we realize that the second termin the objective function
is a non-linear function of decision variables (uik, uz).
Hence, even in case that linear predictive models are
deployed (equation (5)), we are dealing with a mixed
integer non-linear programming problem, which is most
likely to be non-convex. Therefore, the solver has to be
able to handle non-convex mixed integer programming
problems. In this study, we used Genetic Algorithm (GA)
as the solver since it has proven to be able to deal with such
programming problems (Afram & Janabi-Sharifi, 2014).
To achieve the latter, Matlab’s GA function has been
deployed (Global Optimization Toolbox, 2021).

Predictive Model

As it could be seen in Figure 1, a data-driven predictive
model has two important attributes: dataset and modelling
technique. In this section, we are going to describe these
two components of predictive models.

Dataset

To train and test the data-driven models datasets are
essential. If we use data from in-situ measurements for
training the models, quality of the models in the simulation
environment would be influenced not only by the accuracy
of the predictive model but also by the accuracy of the
simulation model. Thus, it will not be possible to
distinguish between the impact of the model quality and
emulator’s accuracy on the MPC results. Hence, with
respect to the goal of this study, which is investigating the
effect of different modelling techniques, proxy data
generated from the emulator has been used for training
data-driven models instead of in-situ measurements.

To create data for training models, we generated two
random sequences for the heat pump’s status and heat
pump’s supply temperature. The resulting temperature of
the emulator is shown in Fig. 4. As it could be seen in Fig.
4, the indoor temperature varies between 15.5 and 25,
which fully covers the full range of thermal comfort
assigned in Equation (3). Throughout this paper, this
dataset is used to train and validate data-driven models. To
avoid the impact of dataset bias on modelling techniques,
another dataset is used to test all the models, which has not
been used in training process (explained later on).
30
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Figure 4: Temperature profile generated by feeding
random sequence of inputs to emulator



Modelling technique

In this section, different modelling techniques applied for
the purpose of this study are explained. Table 1 shows the
general structure of these models.

Table 1- General description of the models

Model name Model Inputs R2 (%)
order 1-step
ahead
Grey-box 1 1 Te, GHI, Hin 97.5
Grey-box 2 2 Te, GHI, T, Sip 97.8
State Space 1 1 T., GHI, Ts, Swp, IHG, 97.5
State Space 2 7 T., GHI, Ts, Sy, IHG, 98
VFRav
ARX 3 T., GHI, Ts*Snp, DHI, 97.5
VFR[iving
NARX 7 Te, GHI, Ty, Swp, IHG, 98.8
(ANN) VFRav
SVM - Te, GHI, Ty, Sy, IHG, 99.5
VFRa

Input variables in the table are as follows:

Te: Ambient temperature (°C)

GHI: Global horizontal irradiance (W/m?)

Ts: Supply water temperature (u2) (°C)

Shp:  Heat pump status (u;)

H;,:  Heat injected to building by underfloor heating (W)
IHG: Internal heat gains (W)

VFR: Volumetric flow rate of ventilation system (m?/h)
DHI: Diffuse horizontal irradiance (W/m?)

Grey-box Model 1

As a popular building identification method, grey-box
models are included in this study. For the purpose of this
study, we start with a simple structure for grey-box models
(Figure 5) and we build up complexity onward. For each
of the grey box models, first, the structure of the model is
determined and then the parameters of the model are
identified based on the training dataset. Interested readers
are referred to Reynders et al., (2014) for more details on
grey-box models. This grey-box model has only one state,
which represents the average temperature of the indoor air.

Interior Heater  Solar Envelope Ambient

S0
Iy
B I

Figure 5: Grey-box model with one state
Grey-box Model 2

Another grey-box model used in this study has two states,
one for the air temperature, while the other one represents
the floor temperature (as the heating medium) of the
building (Figure 6). Interested readers are referred to
(Bacher & Madsen, 2011) for more details on this model.

Tnterior Teater Solar | Envelope | Ambient
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Figure 6: Grey-box model with two states
Autoregressive with exogenous inputs

One of the most common black box methods applied for
building behaviour identification is Auto-Regressive with
eXogenous input (ARX) models (Bourdeau et al., 2019).
To develop this model, a Principle Component Analysis
(PCA) has been carried out which led to the selection of
optimal set of inputs (Table 1) as well as the number of
output lags used for the building behaviour identification,
which is three. The general structure of ARX models for
identifying a multi input single output system is given in
equation (14).

A@@)y(2) = B,(2)u,(2) +..B, (2)u, (2)+C(2)e(z) (14)

In this Equation, n, stands for the number of input signals,
which is five in this case (Table 1). A(), B() and C() are
polynomials representing the parameter of the ARX model
which are estimated using the training dataset.

State Space

Another popular modelling technique in the category of
black-box models is state space identification, which has
been successfully deployed for optimization of HVAC
systems as well (Bourdeau et al., 2019). One of the
advantages of linear state space models is the fact that
most linear systems could be described using this
formulation and most of the notations and theorems
developed regarding MPC are based on state space
representation of the systems (Maciejowski, 2002).

In this study, we focus on the Linear Time-Invariant (LTI)
state space models. Two different state space models are
deployed using Matlab’s system Identification toolbox
(System Identification Toolbox, 2021) .One only has one
state, which is the simplest state space model possible; as
for the other model, the number of states has been
determined based on Singular Value Decomposition
(SVD) of the Henkel Matrix for which 7 states is selected
as the optimum number of states (Drgona et al., 2018). It
should be noted that to identify this model ‘Focus’ is put
on ‘Simulation’ rather than ‘Prediction’, which is an
option provided in Matlab’s system identification toolbox.

Artificial Neural Network

Artificial Neural networks (ANNs) are known as a
powerful tool in machine learning. They are inspired by
the structure ofthe brain (Abu-Mostafa, 1992). There is an
ever-increasing interest in applying ANNs for HVAC
system optimization applications. There are various
architectures of ANNs available. One of the architectures
deemed suitable for the application of building
characterization is NARX which has proven successful in
capturing dynamics of HVAC systems and it is selected



here as well (Bourdeau et al., 2019). These models have
essentially the same input-output structure as ARX
models. The main difference is that ANN-based NARX
models use neurons for capturing system’s dynamics
instead of linear mapping in the ARX case. Interested
readers can refer to (Erfani et al., 2018; Jafarinejad et al.,
2019) for further details on NARX model.

Support Vector Machine

Support Vector Machine is a powerful method originally
suggested for classification applications. Recently, it has
been successfully applied in many regression applications
as well, which s called Support Vector Regression (SVR).
Like other non-linear regression techniques, SVM tries to
find the function between the input and the output (f{.)).
To carry out this task, SVM transforms the input-output
space to a higher dimension space, which is called feature
space. Function f{) then would be in the form:

f(x) = < 0,® (x)>tb (15)
In which x is the input vector, ® represents the higher
dimension mapping and ® and b are parameters that are
estimated by solving a convex optimization problemcalled
the primal objective function. Operator <, > describes the
kernel function in the feature space. Interested readers are
referred to (Kumar & Kar, 2009) for more details on SVM.

Test Dataset

Since different combinations of the training dataset were
used to train and validate the models, a second dataset was
generated solely with the purpose of testing the models. As
stated earlier, MPC solves an optimization problem over a
given time horizon. Hence, predictive model used in the
MPC should be able to provide acceptable predictions not
only for one-step ahead in time but also throughout the
whole control horizon. Therefore, here we are going to
investigate whether one-step ahead prediction accuracy is
a good enough indicator to reflect the quality of predictive
models or should we look into multi-step ahead prediction
accuracy. The results obtained by running the models
against test dataset are presented in Figure 7.

This figure provides the boxplot accuracy of different
modelling techniques used in this study. The maximum in
each box corresponds to the one-step ahead prediction
accuracy while the minimum corresponds to N (Control
horizon) steps ahead prediction accuracy. As could be seen
in Figure 7, NARX model and the SVR are the best
performing models in terms of one-step ahead prediction
accuracy but they are not the best models when looking
into the multi-step ahead prediction.

Results

In this section, the results of deploying different predictive
models in the context of MPC are brought out. The goal of
this study is twofold. First, showing that integration of
RES into the building energy structure is plausible by
utilizing MPC. Integration of RES is considered here as a
variable electricity pricing structure. The other goal of this
study is finding a suitable KPI to score different predictive
models, which are used in the MPC. The simulations have
been carried out for a total duration of two weeks from 19t
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Figure 7: R? (%) of models against test dataset

of December to second of January. The weather data used
for this study is from in-situ measurements of the building.
Perfect forecast is considered for weather as well.

KPIs considered in this study based on which the MPCs
are compared are total thermal discomfort level and the
total electricity cost of the heating system. Attempting to
analyze the results of different MPCs, we come across an
impediment, which blocks the way of a straightforward
comparison of the controllers. This barrier arises from the
fact that the MPC aims at optimizing two objectives
(thermal discomfort and electricity cost) which are not
physically related to each other. Therefore, by changing
the weight (L in Equation (4)) optimal performance of the
controllers are obtained in a way that they yield similar
discomfort levels as could be seen in Figure 8. By
employing this method, we ensure that all controllers have
a similar thermal discomfort so that we can compare the
controllers only based on electricity cost. As could be seen
in Figure 7, NARX model and the SVR are the best
performing models in terms of one-step ahead prediction
accuracy. Nevertheless, these two models are not the best
performing models in our framework. This statement is
especially more significant in the case of the NARX model
since it leads to the highest electricity cost compared to the
other models. Looking at MSPE, one can easily realize
that, although the NARX model has the second highest
one-step ahead R? (See Table 1), its multi-step ahead
prediction performance is the poorest amongst all the
models (see Figure 7). The reason for this observation is
explained by the fact that ANNs easily become over-fit to
training data if no regularization of some sort is used
(Afroz et al., 2018). This issue should be tackled when
using ANNS as predictive models otherwise one might end
up with an ANN model, which is highly accurate for one-
step ahead prediction but provides poor forecasts for
multi-step ahead prediction.

Analyzing the results as illustrated in Figure 8, it could be
concluded that the best performing MPC (deploying state
space model with 7 states) compared to the RBC, reduces
electricity cost from 11€ to 8.5 € which corresponds to
22.7%. Comparing different MPCs using Figure 8 we can
deduce that the difference between electricity cost resulted
from using different predictive models in the MPC is 7%
(Electricity cost of 8.5 € in the SS7 model compared to 9.1
€ achieved by using the NARX model). Considering the
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Figure 8: KPIs deploying different predictive models

22.7% as the highest potential of MPC achieved by our
models for this case study, it could be inferred that the
models used here vary by 24% in terms of activating the
potential energy savings achieved by MPC, which
demonstrates the importance of using models with high
multi-step ahead prediction accuracy in the MPC.

Results obtained by applying state space model with 7
states, are presented in Figure 9 and Figure 10. It is
illustrated in Figure 9 that the controller is able to maintain
the temperature within the thermal comfort band although
there are some minor violations. These violations could
have two main causes. First, the magnitude of weight (L)
scalar in the objective function, which allows thermal
discomfort to some extent especially when the electricity
cost s relatively high. The second reason behind the minor
thermal discomfort could be the mismatch between the
predictive model and the emulator. Electricity price shown
in Figure 10 is based on time of use pricing structure from
a supplier in Belgium. As seen in Figure 10, the load
profile does not completely correspond with the time-of-
use price. This observation is expected since the MPC does
not optimize the building’s behaviour only for one time-
step but for the whole control horizon.
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Figure 9: Building’s temperature profile due to MPC
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Figure 10: Electricity use against electricity price

Conclusion

Application of different data-driven models to serve as the
predictor in a Model Predictive Control (MPC) are

assessed. To score the predictive models in MPC, one-step
ahead and Multi-Step ahead Prediction Error (MSPE) of
the models are compared. Comparing performance of
MPCs using different models shows that MSPE reflects
the suitability of predictive models better; compared to
one-step ahead accuracy. It has also been shown that
models with similar one-step ahead accuracy could lead to
24% difference in terms of activating the potential cost
savings achieved by MPC. On the other hand, ANN-based
NARX model yielded the highest electricity cost, which is
due to its poor multi-step ahead prediction performance.
Furthermore, MPC is compared to a well-tuned Rule
Based Controller (RBC). Best performing MPC (using
state space model with 7 states) yielded 22.7% decrease in
energy cost compared to the RBC.

It would be interesting to compare these models for longer
simulation time and on other case studies to see whether
the findings are valid or not. Another suggestion for future
work is to train models based on MSPE and then check the
suitability of each model. The impact of state estimator in
case of grey-box and state space models have not been
addressed yet and combining the dynamics of the
estimator and the model might yield a better KPI for
comparing these models.
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