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ABSTRACT 

The transition from a conventional energy system to a decarbonized energy system 

requires an increasing penetration of intermittent renewable energy sources, which 

brings more fluctuations to the electricity grid. Therefore, increased flexibility is 

required on the demand side. 

This thesis focuses on the energy flexibility of residential buildings by activating their 

thermal mass.  Model predictive control (MPC) is acknowledged to be an appropriate 

control method for this purpose. The thesis addresses MPC using grey-box linear 

models of the building thermal dynamics. The research is split into two main parts, 

namely modeling and control. The modeling part can also be further split into data 

collection and model identification subsections. 

In the data collection part, the experiments for collecting the data are designed for 

both virtual and field experiments. The experimental design includes the selection of 

the excitation signal, the training period, and for field experiments, the influence of 

the sensor location and dynamics. Thus, different experiments with various excitation 

signals and training periods have been executed. The results show that the identified 

parameters are strongly dependent on the types of excitation and the training period 

for deterministic grey-box models. On the contrary, the identified parameters are less 

dependent on the excitation signal for stochastic grey-box models. Furthermore, there 

is no specific period of the space-heating season that is more suited to train a linear 

time invariant (LTI) grey-box model since weather conditions including solar 

radiation vary significantly during the entire space-heating season.  

In the model identification part, a suitable model structure is first investigated using 

different resistance-capacitance (RC) networks based on existing standards for 

building energy modeling (like the EN13790 and VDI 6007 standards) and the 

knowledge of building physics. The model selection is based on the structural and 

practical identifiability, the physical plausibility and the prediction performance of 

the grey-box model. The results show that for a mono-zone grey-box model, the 

second-order model is an appropriate trade-off between overfitting or poor model 

fidelity. The optimizer for the training of the model parameters is also investigated 

by comparing the parameters identified using traditional gradient-based optimization 

routines and global optimization routines. Results reveal that global optimization 

performs better than gradient-based optimization. The influence of data pre-

processing on the grey-box modeling is investigated by using a low-pass filter as well 

as the influence of input data alignment using anti-causal shift (ACS). Results show 

that the pre-processing of data does not have a large influence on deterministic 

models. However, for stochastic models, the parameter values are significantly 

influenced by the data pre-processing. The identified parameters are strongly 

correlated with the sampling time (Ts). ACS can prevent the parameter value and 

variance from getting non-physical for large Ts. Pre-filtering only has a  limited 
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influence with ACS, while the pre-filtering influence without ACS does not have a 

clear trend. Some research is done in this thesis to compare the performance between 

grey-box and black-box models in the case of deterministic models. Results show that 

the second-order black-box model shows a similar performance to the second-order 

grey-box model. However, the physical interpretation of the hidden states and 

parameters is unknown for black-box models. 

In the control part, the performance of conventional MPC based on LTI models and 

adaptive MPC that are able to recalibrate the model parameters during operation is 

compared. The adaptive MPC is designed to overcome the influence of varying 

weather conditions during the heating season. Two different candidates for this 

adaptive control are investigated. Partially Adaptive MPC only updates the effective 

window area of the grey-box model. The Fully Adaptive MPC updates all the 

parameters of the grey-box model. Results show that the Partially Adaptive MPC is 

not able to deliver satisfactory prediction performance due to the limited number of 

parameters updated. The Fully Adaptive MPC outperforms the conventional MPC 

based on LTI models, especially in avoiding thermal discomfort.  Different types of 

models (e.g., ARX, NARX, SVM) are also compared in an MPC experiment in a 

supporting paper of this thesis. Results show that the seven states black-box state-

space model has the best performance among the MPCs in the study. Using multi-

step ahead prediction error as the objective function when training the model is 

beneficial for guaranteeing its prediction performance. 

 

Keywords 

Energy flexibility; demand response; demand side flexibility; model predictive 

control; model complexity; data pre-processing; time varying electricity prices; co-

simulation 
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1 INTRODUCTION 

The transition of the current conventional energy system to a decarbonized energy 

system leads to more volatility in the power grid as power generated from renewable 

energy sources (RES) is often decentralized and intermittent. The power imbalance 

on the supply and demand sides can have severe implications for power quality and 

reliability [1]. Therefore, more flexibility is needed from the demand side to enable 

increasing penetration of intermittent RES. An important energy consumer on the 

demand side is buildings. They could play a very important role in providing energy 

flexibility and better utilizing the energy generated from RES. Model predictive 

control (MPC) enables operating the energy system close to an optimal way by 

shifting some load to synchronize more with the RES generation. 

1.1 Background and motivation 

The energy consumed by buildings accounts for 20% to 40% of the total energy used 

in developed countries and the proportion is still increasing at the rate of 0.5% to 5% 

every year [2]. The proportion of the building sector accounts for 36% of the energy 

consumption in Norway. Electricity is the dominant energy carrier since most of the 

buildings use direct electric heating [3] and the heating season is long and relatively 

cold.  

In Norway, 96% of domestic electricity is generated by hydropower plants [3]. The 

Scandinavian power system is strongly integrated, allowing electricity trading 

between bidding zones in Scandinavia and the continental European power grid. In 

general, Norway plays the role of a net exporter, but it also imports energy from other 

countries at various times (e.g., during the period when wind energy production from 

Denmark is very high). Thus, the fluctuating electricity price of the market becomes 

an important driver for optimally operating the building energy system. In cold 

climate countries like Norway, space heating is dominant compared to cooling 

demands, which makes the optimal control of space heating an important approach 

to provide flexibility to the grid. 

Demand response (DR) is the interaction and responsiveness from the demand side 

end-users based on a penalty signal (e.g., price signal, CO2 intensity factor for 

electricity signal) [4,5]. DR is closely related to the concept of energy flexibility 

defined by the IEA EBC Annex 67 as the ability of a building to manage its demand 

and generation according to local climate conditions, user needs and grid 

requirements [6]. It provides flexibility for smart grids [7], which enables higher 

exploitation of the electricity generated from intermittent RES. Building thermal 

mass can be considered as short-term heat storage, which makes it appropriate to 

perform DR [8–10]. Deploying DR with building thermal mass requires the heating 

system to be operated optimally while keeping the indoor temperature comfortable 

constraint for the occupants. Model predictive control (MPC) is an advanced method 
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of control that is used to control a system while satisfying a set of constraints, which 

perfectly fits the requirements of performing DR in buildings.  

In MPC applications in buildings, the dynamic model in the MPC controller is used 

to predict the thermal response of the building exposed to the prediction of future 

boundary conditions (e.g., weather forecast and energy usage). The optimal control 

sequence is then calculated based on future prediction and system constraints. Thus, 

the MPC controller performance strongly relies on the accuracy of the prediction 

model. Models of poor quality could cause undesired control results (e.g., increased 

energy cost, violation of thermal comfort). Due to the complex implementation 

procedure and hardware requirements, MPC is currently only applied to a limited 

number of existing buildings. Therefore, the cost of identifying the prediction model 

should be limited, especially for small residential buildings where the investment into 

an MPC should be low to make it cost-efficient. There are two main parts for reducing 

the cost. One part is to reduce the hardware cost for implementing MPC in buildings. 

The ongoing implementation of smart meters, like the Advanced Metering System 

(AMS) in Norway [11] and the rule “Key principles for the package of ordinances 

governing smart grids” in Germany” [12], makes the implementation of MPC in 

buildings in a large scale with lower cost more feasible in the future. The emergence 

of small, low-cost and wireless sensors with data collection functions in recent years 

[13] will also accelerate the implementation of MPC in buildings. The other part is 

the most time-consuming part of implementing MPC in a building, which is 

identifying an appropriate prediction model for MPC [14,15]. Thus, the model 

identification process should also be made more automated to reduce the cost. 

Dynamic control-oriented models can be divided into three main categories, namely 

white-, black- and grey-box models. White-box models are based on physical laws 

(e.g., mass-, energy- and momentum balance equations), which require exhaustive 

information about the building including underlying physical processes and 

parameters. It is generally mathematically complex but has high accuracy. This type 

of model is widely used in building performance simulation (BPS) software like 

Modelica[16], EnergyPlus [17] and IDA[18]. White-box models are generally the 

most time-consuming among the three modeling methods, which need detailed 

information on the parameters and need to be updated during the lifetime of the 

building. Further, the mathematical complexity of white-box models requires 

extensive computational power [19], which makes the white-box models not suitable 

for MPC implementation of buildings in many cases. Black-box models are pure data-

driven methods based on measured time-series data from the system. Statistical 

regression and artificial neural network (ANN) are common mathematical techniques 

for black-box modeling [20], which requires sufficient training data to guarantee the 

quality of the model [21]. The quality of the data can also significantly affect the 

black-box model performance. A grey-box model is a combination of a white-box 

and a black-box model. It takes the dominant physical process of the system to build 
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up the model structure and then the model parameters are fitted with measurement 

data. In the building engineering field, lumped resistance and capacitance models 

(i.e., RC models) are a common approach to creating the structure of grey-box 

models, which means that the building thermal dynamics are expressed using an 

electric circuit analogy [22,23]. It is claimed that grey-box models have better 

extrapolation properties compared to black-box models [24]. They have been widely 

applied to solve recent problems in building science, such as building load estimation, 

optimal control, and building-grid integration [25,26]. 

This thesis uses grey-box models to investigate the DR of heating systems in energy-

flexible residential buildings. The thesis focuses on two main applications of grey-

box models, which are MPC and the characterization of the thermal properties of 

buildings using field measurements [25,27].  

1. Model predictive control (MPC) is considered a suitable advanced optimal 

control method to perform DR in a building [14,26] or to activate the building 

energy flexibility [6]. This study uses the building thermal mass as short-term 

thermal energy storage (e.g., by pre-heating of the building thermal mass) by 

controlling the operation of the space-heating system optimally using MPC  

[8,19,28–30]. The exploitation of such thermal storage requires the indoor 

temperature to stay within the thermal comfort limits for occupants. Existing 

studies have confirmed the significant DR potential of  MPC activating the 

thermal mass of residential buildings [31–33]. The grey-box models should 

enable adequate prediction to achieve decent control performance. 

2. Developing a proper grey-box model with physically plausible (i.e., 

interpretable) parameters is beneficial for evaluating the real building 

performance based on field measurements during the operational phase  [29]. 

Physically plausible parameters in grey-box models could contribute to 

characterizing the thermal properties of a building using field experiments, such 

as its overall heat transfer coefficient (HTC). 

Electric heating is the most common space-heating strategy for residential buildings 

in Norway. The time constant of the electric radiator is relatively short, so its thermal 

mass can be neglected for the time steps used in this thesis (i.e., typically 15 minutes). 

Thus, the research mainly focuses on modeling the building thermal dynamics, not 

the dynamics of the space-heating system. 

1.2 Knowledge gap 

Grey-box models have already been used in the literature to activate the building 

thermal mass using MPC. Several model structures have been used [28,34–38], but 

limited studies have been performed in Norway. As the model performance depends 

on the construction type, most often in lightweight wooden structures in Norway, and 

the climate (including the latitude for the solar gains), it is worth investigating the 

best grey-box model structures for small residential buildings in the Norwegian 



INTRODUCTION 

4 

 

context. Secondly, many studies identified the grey-box models using an ideal 

excitation signal, typically a PRBS signal. As will be explained in the thesis, a PRBS 

signal can lead the indoor temperature to deviate outside the thermal comfort limits 

for the occupants. Therefore, these signals may not be applicable over a long period 

with occupancy, limiting their practical implementation. It is therefore worth 

investigating if normal operating conditions corresponding to comfortable conditions 

for the occupants can excite the building dynamics in a sufficient way to identify 

reliable grey-box models. 

In reality, the temperature field in a room is not uniform. Two important effects 

should be considered. Firstly, the room air can present significant temperature 

stratification, especially when the heat emitter is close to maximum power. Secondly, 

the sensors are usually mounted on a wall in a casing. For sudden changes in the 

indoor temperature, the measured value with a wall-mounted sensor may thus differ 

from the real air temperature. The thermal dynamics of the sensor due to the casing 

can also be seen as a form of implicit data pre-treatment if the sensor dynamics are 

not modeled. Thus, the influence of temperature sensor location and thermal 

dynamics on the grey-box model results needs to be investigated so that a reliable 

grey-box model can be developed. 

Data pre-processing (or data pre-treatment) is acknowledged to have a key influence 

on the model identification results [39]. However, this topic has hardly been 

addressed in the field of grey-box models for buildings. Ljung and Wills [40] revealed 

several issues when applying a long sampling time to estimate continuous-time 

models with stochastic disturbances. However, the analysis of Ljung and Wills is 

illustrated using a theoretical example. Therefore, this thesis also investigates the 

influence of long sampling times in building applications.  

Creating a suitable model is acknowledged to be the most important and time-

consuming part of MPC implementation [15]. For the grey-box models, the model 

structure should not be too simple so that the model accuracy can be guaranteed. On 

the other side, the model structure should not also be too complicated to ensure the 

identifiability of the model and save computational costs for the MPC. Hence, the 

appropriate grey-box model structure is investigated in this thesis.  

In the parameter identification stage, the default function (greyest) in the MATLAB 

identification toolbox uses gradient-based optimizers. Consequently, the optimizer 

may converge to a local optimum if the problem is not convex. As shown in Arendt 

et al. [41], Genetic Algorithm (GA) combined with a gradient-based method could be 

used to solve non-convex optimization problems used to identify the parameters of 

grey-box models. The influence of the optimizer on the grey-box modeling results is 

also inspected in this thesis. 

In existing buildings' MPC research, it has been demonstrated that linear time-

invariant (LTI) models can approximate the heat dynamics of buildings with 
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sufficient accuracy for MPC [42–46]. Thus, the prediction performance of grey-box 

models is compared to black-box models (e.g., ARX, NARX) under the MPC 

operation (virtual experiments). However, the limitation of MPC with an LTI model 

is that a model trained from one period is not able to provide decent prediction in 

another period due to time-varying weather conditions throughout the year. The 

performance of the MPC controller cannot be guaranteed when using an LTI model 

over a long period of time. Consequently, developing an adaptive MPC controller 

that updates the parameters during operation becomes a potential solution. Adaptive 

MPC has been widely applied in engineering in general, but it has surprisingly been 

rarely investigated in building energy control. Yang et al. [47] developed an adaptive 

robust model predictive control for indoor climate optimization, and the model is 

based on a detailed grey-box model and updates the parameters every 24 hours. Yang 

et al. [48] also introduced an adaptive machine-learning-based model for building 

control based on an artificial neural network (ANN). Fux et al. [49] used an extended 

Kalman filter-based self-adaptive thermal model for passive house demand prediction 

with the model updating the parameters at each time step. Choi et al. [50] used an 

adaptive neural network model to perform the optimal control for a data center. Maree 

et al. [51] proposed an adaptive control for heating demand-response in buildings that 

incorporates a reinforcement learning (RL) strategy. Zhang et al. [52] proposed a 

time-dependent solar aperture estimation method based on B-splines, which could be 

considered an adaptive grey-box model of buildings. Merema et al. [34] and Wolisz 

et al. [53] also applied adaptive control strategies for long-period control, which 

updates the coefficients of ARX models during operation. Therefore, this thesis also 

compares the performance of a conventional MPC based on an LTI grey-box model 

to the adaptive MPC using virtual experiments (i.e., co-simulation).  

This thesis focuses on residential buildings. The defined research questions are 

considered to contribute to filling the knowledge gaps to enable the deployment of 

MPC using grey-box models in real buildings. 

1.3 Research questions and research tasks 

The context thesis is the use of residential buildings to provide flexibility so that the 

penetration of renewable energy can be increased and the current energy system 

becomes more sustainable. In order to achieve this goal, this thesis focuses on the 

thermal dynamics modeling of residential buildings and the implementation of MPC 

for the heating system of residential buildings. Grey-box models and related modeling 

techniques are mainly investigated in this study. The following original research 

questions are investigated: 

Q 1: Which type, period and duration of the excitation signal are suitable for grey-

box model identification of residential buildings? 
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Task 1.1: Different types of excitation signals are applied to the heating system 

in the experiment. 

Task 1.2: Different periods and durations of data are taken to train the model 

parameter of models. 

Q 2: What is the influence of temperature sensor location and thermal dynamics 

on the grey-box model results? 

Task 2.1: The grey-box models trained using the volume-averaged indoor 

temperature, a single indoor temperature sensor and the temperature 

measurement of exhaust air are compared. 

Task 2.2: The grey-box models trained using a single wall-mounted sensor with 

casing and a single sensor in the air without casing are compared. 

Q 3: What is the influence of data pre-processing on the grey-box modeling results? 

Task 3.1: Training datasets with different data pre-processing are taken to 

investigate the influence of sampling time and data alignment (here 

using anti-casual shift) on the performance of grey-box models. 

Task 3.2: Training datasets with different low-pass filters are taken to 

investigate the influence of pre-filtering on the performance of grey-

box models. 

Q 4: What are the most suitable grey-box model structures for residential 

buildings? 

Task 4.1: Develop a set of grey-box model structures with different levels of 

complexity. 

Task 4.2: Evaluate the model performance based on the trade-off between 

model accuracy and complexity. 

Q 5: What is the influence of the optimizer on the grey-box modeling results? 

Task 5.1: Compare the model performance of grey-box models trained using 

traditional gradient-based optimization and global optimization 

routines. 

Q 6: Prediction performance of grey-box compared to black-box models? 

Task 6.1: The prediction performance of grey-box and black-box models is 

compared. 
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Q 7: What is the performance MPC using LTI and adaptive grey-box models and 

other types of data-driven models? 

Task 7.1: The performance of MPC controller with conventional LTI grey-box 

models and adaptive grey-box models are compared. 

 

Figure 1-1: Research questions grouped by categories. 

Figure 1-1 puts the above research questions connected logically in context to the 

different sections. 

1.4 Structure of the thesis 

The remainder of the thesis is structured as follows. Chapter 2 presents the research 

methodology, including a review of grey-box modeling for residential buildings and 

the data pre-processing, optimization methods and other setups of grey-box modeling 

used in the PhD research work. Chapter 3 illustrates the setup for the MPC 

implementation and control scenarios of the case studies. The main results of the 

papers are presented, explained, and discussed in Chapter 4. Chapter 5 outlines the 

main conclusions, addresses the limitations of current work and gives 

recommendations for future research. 

1.5 List of publications 

Three journal papers and four conference papers construct this PhD thesis. An 

overview of the papers is presented in Table 1-1 and Figure 1-2. The papers are 

distinguished between primary papers and one supporting paper. The primary papers 

address and answer the main research questions of the thesis, and the supporting paper 

presents preparative and supporting work for the primary papers. The papers included 

in this thesis are listed below, together with my personal contribution to each paper. 
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Primary papers: 

Paper 1:  

Yu X, Georges L, Knudsen MD, Sartori I, Imsland L. Investigation of the Model 

Structure for Low-Order Grey-Box Modelling of Residential Buildings. 

Proceedings of Building Simulation 2019 16th Conference IBPSA, International 

Building Performance Simulation Association (IBPSA), 2019 Rome, Italy. 

Contribution: The conceptualization was done together with Laurent Georges and 

Igor Sartori. I structured the data and developed the methodology in collaboration 

with lyzed and . The results were anaMichael Dahl KnudsenLaurent Georges and  

 ere. I wrote the majority of the paper draft. Revision and editing wby mevisualized 

authors. -done in collaboration with all co  

Paper 2: 

Yu X, Georges L. Influence of Data Pre-Processing Techniques and Data Quality 

for Low-Order Stochastic Grey-Box Models of Residential Buildings. 

International Conference Organised by IBPSA-Nordic, 13th–14th October 2020, 

OsloMet. BuildSIM-Nordic 2020 (BSN2020). Selected papers. SINTEF Academic 

Press. 

Contribution: I did the conception and virtual experiment design of the paper 

together with Laurent Georges. I also did the modeling work, data processing and 

analysis for the paper and wrote the original draft of the paper. Editing and revision 

were done in collaboration with Laurent Georges. 

Comment: This contribution got the best conference paper award of BSN2020. 

Paper 3: 

Yu X, Georges L, Imsland L. Data pre-processing and optimization techniques for 

stochastic and deterministic low-order grey-box models of residential buildings. 

Energy and Buildings. 2021; 236: 110775. 

Contribution:  

This paper is based on Paper 2, which is an extension by adding more case studies 

and explanations. Regarding the extended part, I developed the models, analyzed 

the data, visualized the results and wrote the original draft of the article. 

Conceptualization and methodology were done in collaboration with Laurent 

Georges. Editing and revision were done in collaboration with Laurent Georges. 

Paper 4: 

Yu X, Skeie KS, Knudsen MD, Ren Z, Imsland L, Georges L. Influence of data 

pre-processing and sensor dynamics on grey-box models for space-heating: 

Analysis using field measurements. Building and Environment, 2022; 108832. 

Contribution: This paper is a continuation work of Paper 3 by moving from virtual 

experiments to field experiments to validate the conclusions from Paper 3. Most of 
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the research methodology originates from Paper 3. The additional conception and 

design part was done together with Laurent Georges. Revision and editing were 

done in collaboration with all co-authors.  

Paper 5: 

Yu X, Georges L, Imsland L. Adaptive linear grey-box models for Model 

Predictive Controller of Residential Buildings. Accepted to International 

Conference Organised by IBPSA-Nordic, 22nd-23rd August 2022, 

CopenhagenMet. BuildSIM-Nordic 2022 (BSN2022).  

Contribution: The conceptualization and virtual experiment design was done 

together with Laurent Georges. I also did the modeling work, MPC controller 

design and wrote the original draft of the paper. Revision and editing were done in 

collaboration with all co-authors. 

Paper 6: 

Yu X, Ren Z, Georges L, Imsland L. Comparison of Time-Invariant and Adaptive 

Linear Grey-box Models for Model Predictive Control of Residential Buildings. 

Submitted to Applied Energy 

Contribution: This paper is based on Paper 5, which is an extension by adding 

more case studies and scenarios. I did the conception and design of the paper 

together with Laurent Georges. I also wrote the initial draft of the paper.  Revision 

and editing were done in collaboration with all co-authors.  

Supporting paper: 

Paper 7: 

Erfani A, Yu X, Kull TM, Bacher P, Jafarinejad T, Roels S, Saelens D. Analysis of 

the impact of predictive models on the quality of the model predictive control for 

an experimental building. Proceedings of Building Simulation 2021 17th 

Conference IBPSA, International Building Performance Simulation Association 

(IBPSA), 2021 Bruges, Belgium. 

Contribution: I did part of the modeling work in this paper and worked together on 

the MPC controller. Revision and editing were done in collaboration with all co-

authors with A. Erfani as the main writer.  
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The thesis is written in the form of a collection of articles. The interconnections of all 

the papers included in this PhD thesis are shown in Table 1-1 and Figure 1-2. 

Table 1-1: Relation between research questions and papers. 

 Involving Papers Experiment Type Topic 

Q1 Paper 3 Virtual Experiment Modeling 

Q2 Paper 2 and Paper 4 Field Experiment Modeling 

Q3 Paper 3 and Paper 4 Virtual and Field Experiment Modeling 

Q4 Paper 1 and Paper 4 Field Experiment Modeling 

Q5 Paper 2 and Paper 3 Virtual Experiment Modeling 

Q6 Paper 1 Field Experiment Modeling 

Q7 Paper 5, Paper 6 and Paper 7 Virtual Experiment MPC 

 

 

Figure 1-2: Interconnections of the papers included in this thesis. 
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2 RESEARCH CONTEXT AND BACKGROUND 

This chapter introduces the research context and background of this thesis. Section 

2.1 introduces the existing research on applying DR with MPC in buildings. Section 

2.2 gives a review of the existing literature for the grey-box modeling of the building 

thermal dynamics. 

2.1 Demand response with MPC 

In building automation, MPC is a more advanced control strategy to perform DR 

compared to the conventional ones such as predictive rule-based control (PRBC). It 

is a promising approach for DR strategies in buildings with different control 

objectives such as peak shaving and load shifting.  

A large number of existing researches have investigated the potential of performing 

DR in buildings using MPC. Knudsen et al. [43] propose an economic model 

predictive control strategy (EMPC) for the heating system with solar shading as an 

additional control variable. An experimental test of a black-box EMPCfor residential 

building space heating has been carried out in [54]. Results show that MPC with 

black-box models and constrained excitation signals for training can also provide 

good indoor air temperature control. Freund et al. [29] implement MPC in a large-

sized, low-energy office building by controlling the supply temperature of heating 

circuits for thermally activated building systems (TABS). Awadelrahman et al. [33] 

deploy EMPC with a stratified thermal energy storage tank in the smart building. 

Wang et al. [30] use data-driven models which have universal approximation ability 

by utilizing a hybrid optimization algorithm, namely BSAS-LM, for the MPC 

implementation. Hedegaard et al. [55] use a grey-box model as the prediction model 

for an EMPC of space heating in residential buildings for multi-market demand 

response. Coninck et al. [56] also use a grey-box model-based MPC for an office 

building in Brussels. The results show that the MPC controller can provide a similar 

or better thermal comfort than the reference control and reduce energy costs by more 

than 30%. Prívara et al. [57] use the subspace black-box approach to obtain the model 

for the MPC controller. Hazyuk et al. [36] present a comparison of conventional PID 

and MPC, and the MPC also uses a grey-box model. The results show that MPC can 

reduce occupant discomfort by up to 97% and energy consumption by up to 18%. 

Pedersen et al. [58]  present a scenario-based MPC of space heating in residential 

buildings taking a two-state grey-box model as the base. The above researches prove 

the benefits of using MPC in buildings to perform DR in the current grid system. In 

conclusion, all these studies demonstrate the large DR potential using MPC in 

buildings. 

However, the investment in implementing MPC is more expensive. The model 

identification part is acknowledged as the most critical and time-consuming part of 

deploying an MPC [14]. All measures to reduce the modeling part of the MPC are 



RESEARCH CONTEXT AND BACKGROUND 

12 

 

thus of prime importance. Therefore, the thesis aims to increase the knowledge of 

control-oriented modeling for MPC in buildings. Smart meters and the building 

management system (BMS) for signals collection and communication are also 

prerequisites for deploying MPC in buildings. More and more communication 

technologies, sensing, and computing devices at affordable prices have emerged on 

the market in recent years. The ongoing projects, like the Advanced Metering System 

(AMS) in Norway [11] and the rule “Key principles for the package of ordinances 

governing smart grids” in Germany” [12], make the implementation of MPC in 

residential buildings in a large scale a reachable target in the future. Thermal energy 

storage is commonly adopted to exploit the flexibility of residential buildings. Water 

storage tanks and the building thermal mass are the typical thermal storage. This study 

mainly focuses on utilizing the building thermal mass with MPC. In Nordic countries 

like Norway, the space-heating season is long and relatively cold, which makes the 

heating system a suitable candidate for performing DR. The thermal mass of the 

building is temporarily loaded to higher temperatures or unloaded by letting the 

indoor temperature decrease to maximize the control objective. Increasing the indoor 

temperature above the minimal temperature providing an equivalent thermal comfort 

usually leads to increased energy use for heating, but the summed objective function 

is decreased (e.g., the energy costs). The thermal comfort under a dynamic thermal 

environment is investigated in Favero et al. [59]. 

This operation is the aforementioned DR with buildings. It requires a proper model 

and appropriate control design so that the DR target can be approached, which are the 

main two parts of this thesis. 

2.2 Review of grey-box modeling for building thermal dynamics 

The performance of an MPC controller is significantly related to the prediction model 

accuracy of the control-oriented model. As the thesis focuses on MPC with a grey-

box model as the prediction model, a short literature review of grey-box modeling of 

thermal dynamics of the building is given in this section. The review starts with 

mono-zone models and then considers multi-zone models. 

Freund et al. [60] describe the thermal zone by a grey-box model consisting of three 

capacitances and four resistances (R4C3 model). The model is extended by a 

thermally activated building system (TABS) model with one capacitance and two 

resistances and a resistance for the air-handling units (AHU) (Figure 2-1). 

The heat exchange between the external walls and the outdoor environment is 

evaluated using an equivalent outdoor temperature defined by the VDI 6007 standard 

[61], which takes the influence of short-wave radiation into consideration.  

                                   
,

f

a eq a irrad

A

a
T T Q= +


                                     (2-1) 
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Figure 2-1: Thermal network representation of the used grey-box model [60]. 

The short-wave absorption coefficient of the exterior surface
fa is set to 0.5 and the 

exterior heat transfer coefficient αA is set to 25 W/(m2K). The coefficients are 

determined according to DIN 6946 [62]. The solar heat gains Qsol are determined by 

                                      
sol sol GHQ f I=                                  (2-2) 

where fsol is a factor that should be estimated during the identification process. fsol is 

usually interpreted as the effective window area, which translates how much of the 

outdoor total solar irradiation on a horizontal plane is converted into solar gains. The 

internal gains are calculated by multiplying the occupancy signal, which is detected 

by presence sensors, and a constant internal heat gain Qocc, which is part of the 

identification. The convective part of internal gains is assumed to be 40 %. The model 

was applied in one office building in the city of Hamburg in Northern Germany. The 

model showed a decent prediction performance for the indoor temperature with a 

TABS system. 

 

Figure 2-2: 5R3C Grey-box model structures: (a) Model I: model trained from detailed 

building simulation tools, and (b) Model II: model modified from ISO 13790 [63]. 

Two different single-zone 5R3C models are presented in [63]. The model structures 

are shown in Figure 2-2. The first model structure (Model I) is trained from detailed 

building simulation tools. The solar gains and internal gains are directly accessible 

from the building simulation. The second model structure (Model II) is a modification 
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of the ISO13790 standard [64]. Solar and internal gains are distributed amongst 

different temperature nodes as described in the standard [64]. The model was applied 

to a cluster of representative Belgian residential buildings to investigate the 

aggregated load flexibility. 

Hedegaard et al. [65] present a 4R2C model to predict the response of the building 

for operating the heating system. The model structure of this study includes two 

lumped capacities: one for room air and another for building construction. The 

internal heat gains and solar heat gains are directly accessible from the simulation in 

Energy Plus. 

Hedegaard et al. [37] introduce a modified model based on the standard ISO 13790 

(Figure 2-3). An additional node corresponding to the interior thermal inertia (for the 

room air, furniture, etc.) is added to the original massless air temperature node 

according to ISO 13790 with the thermal capacity (Ci). The results indicate that the 

modification significantly improves the model prediction ability under dynamic 

operating conditions. 

 

Figure 2-3: Modified RC network of the model used in ISO 13790 [37]. 

Hedegaard et al. [66] propose several model structures to estimate the grey-box model 

parameters to characterize the thermal properties of buildings (see Figure 2-4). The 

initial model is a 2R2C model, which considers the thermal inertia of the wall and air. 

The solar gains are calculated by the effective window area times the solar irradiance. 

The heat gain from the heating system is directly injected into the air node. The 3R2C 

model adds one transmission heat loss resistance based on the 2R2C model. The 

4R3C model contains an interior capacity representing the internal elements that only 

interact with zone air. The 4R3Cw model adds the third thermal mass node in the 

envelope to better model the distribution of capacity in the envelope. Mathematical 

dependencies between the parameters were introduced to the third-order models to 

ensure identifiability. The results show that the 2R2C model is not able to estimate 

individual heat loss coefficients due to the structures. It is also clear that the 4R3C 

model lack consistency and accuracy. The 3R2C and the 4R3Cw models show close 
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estimates of all characteristics, and the accuracy and consistency across all datasets 

are decent. 

  

Figure 2-4: Model structures depicted as RC-networks. Red text denotes inputs, blue 

highlights the assumptions made for third-order models [66]. 

Hu et al. [38] use a 5R4C grey-box model to predict the temperature of the room 

(Figure 2-5). The model contains more physical principles of the room thermal 

dynamics. The building's external building envelope is made up of opaque walls and 

transparent windows. Because of the climate of Hong Kong, most residential 

structures are made of lightweight wall and roof materials. Therefore, the external 

wall was considered as one thermal resistance and two equal thermal capacitances. 

Another two capacitances are for the nodes of indoor air and the internal mass. For 

the solar radiation, Qsolar,w, Qsolar,i, and Qsolar,m are solar heat gains absorbed by external 

wall surface, indoor air and internal mass, respectively. For the internal gains, Qinter,i, 

Qinter,m are internal heat gains absorbed by indoor air and internal mass, respectively. 

All the heat gains information and splitting factor is a prior knowledge in this study. 

Only the R and C are free parameters to be identified in this study. 

 

Figure 2-5: Schematic of the grey-box thermal model of residential buildings (5R4C) [38]. 

                                                            
,  solar w w solarQ A I=                                                (2-3) 
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, , solar m solar m win solarQ SHGC f A I=                                 (2-4) 

                                                    
, , solar i solar i win solarQ SHGC f A I=                                  (2-5) 

                                                              
, ,inter m inter m interQ f Q=                                              (2-6) 

                                                              
, ,inter i inter i interQ f Q=                                             (2-7) 

Reynders et al. [67] investigate the quality of grey-box models of different levels of 

complexity with data generated from the energy assessment simulation (IDEAS) 

package in Modelica (Figure 2-6). They take the different components of the building 

envelope (e.g., walls and windows) into account. Measurements of the indoor air 

temperature and the heat flux to the different building components are accessible for 

this study. The ambient air temperature, the heat emitted by the radiators, the effective 

internal and solar gains are used as inputs. Solar and internal gains are also modeled 

based on more realistic measurements like the global horizontal irradiation for solar 

gains or the electricity consumption from a smart meter for internal gains. The 

distribution coefficients for the solar gains, internal gains and heating are assumed to 

be constant and are identified as part of the parameter identification process. 

Reynders claims that 1st order models are unable to describe the thermal conditions 

in buildings under dynamic operating conditions. The 3rd order is the highest order 

leading to acceptable performance if only the indoor temperature is measured and 

included in the model. Above 3rd, the 4th and 5th order models require the 

measurements of the heat flux through the building components to improve the 

identifiability of the model. 

  

Figure 2-6: RC-analogy of reduced-order building models [67]. 
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Figure 2-7: Model structure of the 3R2C model and 4R2C model [19]. 

Harb et al. [19] propose several grey-box models for predicting the thermal response 

of occupied buildings (see Figure 2-7). The heat exchange between the interior and 

the exterior environment and the solar heat gains is described as the same equations 

below based on the standard VDI 6007 standard [2]. For the 3R2C model, the solar 

gain and heat gains are directly injected into the interior node. The 4R2C model 

extends the 3R2C by considering the indoor air as a separate temperature node with 

no thermal capacity. According to the EN ISO13790 standard [64], the convective 

contribution of the solar heat gains can be assumed at fconv= 9%. The allocation of the 

heat gain on different nodes is carried out according to the following equations. 

                                               
, , ) (1h ia h heat radf = −                                                  (2-8) 

                                          
, , , ,) ( (1 )h in h h ia heat rad extf  = − −                                   (2-9) 

                                              
, , , ,) (h e h h ia heat rad extf = −                                        (2-10) 

with fheat,rad being the radiation contribution of the heat flux from the heater (with a 

value of 0.2) and fheat,rad,ext = αe,floor/αin,floor being the share of the radiation contribution 

to the exterior walls. αe,floor and αin,floor are empirical values which are 2.5 and 1.5, 

respectively.  

 

Figure 2-8: Model structure of the 1R1C model and 8R3C model [19]. 

In addition to the second-order models, the simple 1R1C model and a more 

complicated model 8R3C are also proposed in this paper (see Figure 2-8). This last 
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model is an extension of the 4R2C model by considering the heating system with a 

separate thermal capacity Ch and a temperature node Th. The model considering the 

heating system as a separate thermal capacity is reasonable due to the high thermal 

inertial of the underfloor heating system. Thus, the heating system not only transmits 

heat to the interior and exterior through the radiative thermal resistances Rh,in and Rh,e  

but also to the indoor air through convection resistance Rh,ia.  

The model comparison results revealed that the two capacity model with an additional 

mass-less node of indoor air (4R2C) perfectly integrated the accurate prediction 

performance (mean forecast error of 0.2 K) and the clear physical interpretation of 

the assessed parameters within constraints.  

Blum et al. [68] compare three grey-box model structures in their study  (see Figure 

2-9). The extra resistance is in parallel with the wall for model 5R4C to account for 

infiltration and window conduction gains separately. The model inputs, like the 

radiative and convective internal heat gains qocc,r, qocc,c [W/m2], the HVAC heating 

(qh) and cooling (qc) power qhvac = qh − qc [W] are directly accessible in this study. 

Regarding the solar gains of the building, it is calculated as the total global horizontal 

irradiance Hglo [W/m2] incident on the floor α, and exterior walls (for 3R3C and 

5R4C), αe. The results show that 3R3C model performs best among the three models 

considering 1-day and 7-day validation periods. In addition, the 5R4C model shows 

a lower training error than the 1R1C model but a higher 1-day and 7-day validation 

error. It indicates that the 5R4C model maybe overfitted for the training data.  

 

Figure 2-9: RC thermal network models in the study: (a) R1C1, (b) R3C3, (c) R5C4 [68]. 

Berthou et al. [69] propose four grey-box models to predict the heating and cooling 

demand and indoor air temperature (Figure 2-10). The study used the data from a 

multi-zone building simulation (TRNSYS). Thus, all the related physical inputs, the 

occupancy heat gains and the ventilation mass flow are accessible. The 4R2C model 

is an extension of the normal 3R2C model with a supplementary resistance. The 

additional resistance is used to characterize variable airflow ventilation. The model 
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has the disadvantage of not being able to capture the solar flux coming on external 

walls, which is problematic during the summer. The 6R2C, 6R3C and 7R3C use the 

additional nodes (Th and Ts) to enable the split of the solar heat flux into two parts. 

The split solar gains are calculated with the adopted Kasten model [70]. The 

simplified representation of the solar gain model is presented in Figure 2-11. 

 

Figure 2-10: Thermal network representation of the four tested grey-box models [69]. 
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Figure 2-11: Simplified representation of the solar radiation model [70]. 

 

Figure 2-12: The R3C2 thermal network model [71]. 

Brastein et al. [71] use the randomized initial parameter value to investigate the 

dispersion of parameter estimates (see Figure 2-12). Results show that there is a 

significant dispersion in the parameter estimates when using randomized initial 

conditions. The 3R2C model is used in this paper. The results show that when the 

parameter Rg is set to a fixed value, the identifiability of the model is significantly 

improved. This conclusion can be observed from the shape of the Monte Carlo 

simulations in the parameter space. Further, the parameters show much better 

convergence for the case of 5 degrees freedom compared to the case of 4 degrees 

freedom when randomized initial parameters are applied. 

 

Figure 2-13: RC model of a single-room building [30].  
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Wang et al. [30] use the RC model of Figure 2-13 as the control model for the MPC. 

The model is very similar to the other 4R3C models in the literature. The solar 

radiation is assumed to be absorbed by the air node and interior thermal mass (for 

internal walls and furniture). A split coefficient α (ranging from 0 to 1) is used to 

determine how the heat flux of solar radiation is distributed between the Tin and Tim 

nodes. 

                                                   
, , solar solar in solar imQ Q Q= +                                     (2-11) 

                                                           solar solarQ Q=                                           (2-12) 

 

Figure 2-14: Heat dynamics RC-network of the PowerFlexHouse3 [10]. 

Zong et al. [10] propose a multi-zone grey-box model for a residential building in 

Denmark called PowerFlexHouse3 (Figure 2-14). The model takes a second-order 

model as the basic structure for each floor. The inputs of the model include the ground 

temperature (for the basement), ambient temperature, heating power from the electric 

heater and the solar heat gain from the solar radiation. The heat gain from solar 

radiation is also modeled using an effective window area times the solar irradiance. 

The results show that the second-order model can provide a relatively detailed 

knowledge of the building thermal dynamics of each floor for the EMPC controller 

design. 

Arroyo et al. [72] presented a method to identify multi-zone grey-box building 

models (Figure 2-15). A forward selection process increasing the model complexity 

is implemented at the first stage to select the most suitable model for each individual 

zone without any coupling with the other zones. The inputs of each individual zone 

include the heat released to each zone, the internal gains, ambient temperature and 

the global horizontal irradiation. For the centralized case (see Figure 2-16), the 

obtained grey-box model for each zone is merged and coupled together. For the 
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decentralized case, the zone model works independently without interaction among 

zones. The simulation performance of the models shows that the centralized multi-

zone model slightly outperforms the decentralized model and has similar accuracy to 

the single-zone model. Regarding the control performance of the MPC controller, the 

centralized model performs much better than the decentralized model by achieving 

minimum comfort violations. The single-zone model also shows a surprisingly good 

performance. The results of this study show that the thermal interactions among zones 

should be modeled properly. The single-zone models can also be suitable if the heat 

distribution to the zones is balanced correctly. 

  

Figure 2-15: Grey-box model structures used for the forward selection [72]. 
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Figure 2-16: Example of a centralized three-zone grey-box building model [72]. 

Agbi et al. [73] discuss the parameter identifiability for multi-zone grey-box models 

(see Figure 2-17). Each zone has a thermal capacity to represent the thermal mass of 

the zone. Unlike Arroyo et al. [72], the interaction between zones is not simply 

represented by thermal resistances. An additional thermal capacity is added to the 

partition walls to account for the thermal mass. 

 

Figure 2-17: RC Model for a boundary wall [73]. 

Kim et al. [74] also propose a similar approach as [10] and [73] to identify a suitable 

grey-box model for multi-zone buildings. The second-order model is used as the base 

model for each zone. Figure 2-18 is the example RC network for a two-zone system. 

Each zone has two thermal capacitances and two thermal resistances. The two zones 

are connected at the zone air nodes with a single thermal resistance Rzz,12. 
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Figure 2-18: RC network structure for a two-zone building [74]. 

 

Figure 2-19: (a) The complex three-zone model structure, and (b) the simplified three-zone 

model structure [75]. 
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Wang et al. [75] propose a multi-zone RC model for the thermal dynamics analysis 

in buildings by model structure simplification method. A complex model structure 

based on physical principles is first created and then simplified by progressively 

removing parameters. The genetic algorithm is employed during the training phase to 

obtain satisfactory fitting ability for large model structures. In the model 

simplification stage, the asymptotic standard errors are used to quantify the 

identifiability of the parameters. The original complex model is a 22R13C (see Figure 

2-19 (a)) for the three-floor residential buildings, and the model is progressively 

simplified to a 10R6C (see Figure 2-19 (b)) model by removing the non-identifiable 

parameters. The results show that the simplification does not cause a significant loss 

of training or validation accuracy in terms of RMSE and Fitting. Further, the results 

also show that the simplified model is able to capture the temperature differences 

between adjacent zones. 

The review gives a review of the state-of-the-art of existing grey-box models of the 

building thermal dynamics, which covers both single-zone and multi-zone situations. 

All the models in this review are summarized in the table below.  

Table 2-1: Summary of grey-box models for the building thermal dynamics. 

RC 

Model 
application Solar gains Internal gains 

Other Standards 

used 

Multi-zone or 

single-zone 
Reference 

4R3C office buildings 
Qsol = fsol·IGH 

DIN 52016 

DIN 18599 

construction 

data  

DIN 6946  

VDI6007 
single-zone [60] 

5R3C(1) 
residential 

buildings (cluster)  
precalculated precalculated - single-zone [63] 

5R3C(2) 
residential 

buildings (cluster) 
precalculated precalculated EN13790 single-zone [63] 

4R2C dormitry 
precalculated 

(simulation) 

precalculated 

(simulation) 
- single-zone [65] 

5R4C 
residential 

buildings 

Qsol,w = αAwIsolar 

Qsolar,m = SHGC 

·fsolar,m·AwinIsolar 

Qsolar,i = SHGC· 

fsolar,i· AwinIsolar 

Qinter,m=finter,m 

·Qinter 

ASHRAE 

Handbook 
single-zone [38] 

1R1C 
residential 

buildings 
precalculated 

precalculated 

domestic 

electricity 

EN12831 

NBN50-001 
single-zone [67] 

3R2C 
residential 

buildings 
precalculated 

precalculated 

domestic 

electricity 

EN12831 

NBN50-001 
single-zone [67] 

4R3C 
residential 

buildings 

precalculated 

Qsol = fsol·IGH 

Qsol = fsol·Iov 

precalculated 

domestic 

electricity 

EN12831 

NBN50-001 
single-zone [67] 
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6R4C 
residential 

buildings 

precalculated 

Qsol = fsol·IGH 

Qsol = fsol·Iov 

precalculated 

domestic 

electricity 

EN12831 

NBN50-001 
single-zone [67] 

8R5C 
residential 

buildings 
precalculated 

precalculated 

domestic 

electricity 

EN12831 

NBN50-001 
single-zone [67] 

5R2C 
residential 

buildings 
precalculated precalculated ISO13790 single-zone [37] 

3R2C 
residential and 

office buildings 
Qsol = fsol·IGH not included - single-zone [19] 

4R2C 
residential and 

office buildings 
Qsol = fsol·IGH not included - single-zone [19] 

4R2C office buildings 
adopted Kasten 

model 
precalculated - single-zone [69] 

6R2C office buildings 
adopted Kasten 

model 
precalculated - single-zone [69] 

6R3C office buildings 
adopted Kasten 

model 
precalculated - single-zone [69] 

7R3C office buildings 
adopted Kasten 

model 
precalculated - single-zone [69] 

2R2C 
residential 

buildings 
Qsol = Wa·Qs not included ISO13790 single-zone [66] 

3R2C 
residential 

buildings 
Qsol = Wa·Qs not included ISO13790 single-zone [66] 

4R3C 
residential 

buildings 
Qsol = Wa·Qs not included ISO13790 single-zone [66] 

4R3Cw 
residential 

buildings 
Qsol = Wa·Qs not included ISO13790 single-zone [66] 

1R1C office buildings 
Qsol = Hglo·αe 

Qsol = Hglo·αe 

precalculated - single-zone [68] 

3R3C office buildings 
Qsol = Hglo·αe 

Qsol = Hglo·αe 

precalculated - single-zone [68] 

5R4C office buildings 
Qsol = Hglo·αe 

Qsol = Hglo·αe 

precalculated - single-zone [68] 

4R3C buildings precalculated precalculated - single-zone [30] 

4R3C buildings - - - multi-zone [73] 

3R2C 
residential 

buildings 
- - - single-zone [71] 

8R6C 
residential 

buildings 
Qsol = Aw·IGH - - multi-zone [10] 

36R20C 
residential 

buildings 
Qsol = gA·IGH precalculated - multi-zone [72] 

18R18C 
residential 

buildings 
Qsol = gA·IGH precalculated - multi-zone [72] 

10R6C 
residential 

buildings 
Qsol = fsol·IGH precalculated - multi-zone [75] 

22R13C 
residential 

buildings 
Qsol = fsol·IGH precalculated - multi-zone [75] 
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Most studies select a single-zone model for the MPC implementation due to the 

consideration of computational cost (high computation cost requires more expensive 

hardware). The results of those studies show that a first-order model is not enough to 

capture the thermal dynamics of the building. The second-order and third-order model 

models are the most popular selection for the single-zone case. The main difference 

between the second-order model and the third-order model is the additional 

capacitance for the internal thermal mass (e.g., furniture and internal walls). The 

model order selection also depends on the availability of the measurement data in the 

field. Higher-order models (i.e., higher than third-order) with insufficient 

measurements could easily cause overfitting problems.  

For multi-zone models, most studies take the second-order model as the base model 

for each thermal zone. Thermal resistances and sometimes capacitances are then used 

to connect those thermal zones. The combination of thermal resistances and 

capacitances to connect the thermal zones also depends on the availability of the 

measurement data. For the same order, different model structures present good 

prediction performance. This indicates that there is some flexibility in the model 

structure selection due to variable building types and structures. The model structures 

reviewed in this study are a good reference for the model selection in grey-box 

modeling work of the thesis. This grey-box modeling work is presented in Paper 1, 

Paper 2, Paper 3 and Paper 4.  
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3 METHODOLOGY 

This chapter briefly explains the experimental platform and setup. Furthermore, the 

modeling and control methods are also introduced in this section. The description of 

the experiments platform is given in Section 3.1. Section 3.2 presents the system 

identification process of the thesis. Section 3.2 introduces the setup for the MPC using 

virtual experiments. 

3.1 Description of experiments 

This thesis has one physical experimental building called the ZEB Living Lab and 

one virtual experimental building implemented in the building performance 

simulation (BPS) packaged IDA ICE. This section introduces the details of the two 

experimental platforms and their corresponding experiments. 

3.1.1 ZEB Living Lab  

The ZEB Living Lab is a Norwegian residential single-family, zero-emission house 

with a heated floor area 105 m² located on the Gløshaugen campus in Trondheim 

(Norway). The appearance and the internal floor plan are shown in Figure 3-1. The 

building has a highly-insulated envelope with lightweight timber construction with 

mineral wool inside external walls. It is also equipped with energy-efficient windows 

(glazing ratio equals 0.2). Furthermore, the ZEB LivingLab contains phase change 

material in the ceiling to limit peak indoor temperatures. The space heating can be 

floor heating, a single radiator, or ventilation air. The ventilation system is equipped 

with a heat recovery unit. By closing the doors in the building, four zones can be 

created (i.e., the bedroom west, bedroom east, the bathroom and living areas). 

 

               (a)                                                                        (b) 

Figure 3-1: The appearance and floor plan of the ZEB Living Lab. 

This thesis mainly uses two sets of experiments done in this building with different 

space-heating emission systems and different periods of the space-heating season. 
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Data using two different heat emitters are used to make the conclusions more general.  

The first set of experiments (from the 18th April to 15th May 2017) used an electric 

heater for space heating. Detailed information on the measurement setup and data can 

be found in previous work [46,76]. The corresponding length of these three 

experiments are 6 days, 11 days and 7 days, respectively. The electric heater of 2.6 

kW was placed in the center of the building (the heater is marked in red in Figure 3-1 

(b)). A pseudo-random binary signal (PRBS) has been applied to the electric heater 

to excite the thermal dynamics of the building. PRBS is a periodic and deterministic 

signal which has white noise properties and no correlation with other inputs. The 

PRBS signal activates the dynamic system at a broad range of frequencies with a high 

signal-to-noise ratio (SNR). The basic period of the signal is λ and the maximum 

length sequence N (N = 2n-1) with the total duration of the PRBS signal is T = N λ. 

Four experiments were carried out, and only the last three were successful. The 

successful experiments are named Experiments 2, 3, and 4 (i.e., Experiment 1 was 

discarded). The dataset has a time interval of 5 minutes. The measurements include 

the outdoor temperature, indoor air temperatures, global solar irradiation and 

electricity consumption, including the radiator power (Qh). To avoid modeling the 

air-handling unit (AHU), the ventilation losses from the mechanical ventilation are 

introduced as one input. These ventilation losses are explicitly pre-calculated with the 

measured temperature difference between the supply and exhaust ventilation air 

combined with the measured airflow rate (constant air volume, CAV). The electric 

heating system has negligible thermal inertia compared to the building envelope, so 

it is assumed that the dynamics of the radiators play a limited role. Experiments 2 and 

4 were conducted with internal doors opened, which theoretically should lead to a 

more uniform spatial distribution of the air temperature inside the building while all 

the doors were closed in Experiment 3. Air was pre-heated using a heating coil in 

Experiment 4 only. The building is unoccupied in all the experiments, but electric 

dummies operated by a control schedule have been used leading to realistic internal 

gains.  

The experiment with the hydronic radiator was initially performed to investigate cost-

effective MPC implementation (E-MPC) in a Norwegian zero-emission building 

(Living Lab) [54]. The experiment lasted for approximately one month (from mid-

February to mid-March 2019, with an 18-day excitation phase and an E-MPC 

operation phase of two weeks. A randomly generated binary signal switching the 

radiator temperature set-point between 21 °C and 24 °C was created to excite the 

thermal dynamics of the building and collect measurements for training the model. 

This new training dataset is based on six days in February and is named here as 

Experiment 5. The dataset has a time interval of 5 minutes. The hydronic radiator has 

a rated power of 4.7 kW (at a rated temperature 75 °C/65 °C) and is in the same place 

as the electric heater of the first set of experiments. The supply water temperature 

was maintained at about 55 °C leading to a maximum radiator power of 2.5 kW. The 
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thermostatic valve in the radiator adjusts the mass flow using a proportional-integral 

(PI) controller to track the set-point temperature. Compared to the electric heater, the 

thermal mass of the hydronic radiator with 113 kg of steel cannot be neglected. The 

power delivered to the hydronic radiator (Qh) is measured by an energy meter based 

on the difference between supply and return temperatures. When the hydronic 

radiator is switched on, the initial water temperature in the radiator is close to the 

indoor air temperature. Due to the thermal mass of the radiator, it takes time for the 

return temperature to heat up and reach steady-state (when the power delivered to and 

emitted by the radiator is equal). This makes a large difference in supply and returns 

temperatures at the beginning, leading to a very high start-up peak for Qh. The 

maximum emitted power of the radiator in steady-state is around 2.5 kW, while the 

maximum delivered power during start-up periods is around 4.0 kW. This confirms 

that the thermal dynamics of the hydronic radiator are significant.  

Table 3-1: Summary of the four experiments. “Full set” means all measurements of volume-

averaged, single sensor (no casing), wall-mounted sensor are available. 

 

In the experiments with the electric heater, PT100 sensors with an accuracy of ± 0.1 

K are placed at different locations in the building; see details in [76]. This leads to 

the definition of three datasets:  

• Two available datasets correspond to different placements of PT100 temperature 

sensors without casing and with wireless transmitters. They are placed in a 

vertical bar in the middle of the two living rooms (see green dots in Figure 3-1 

(b) and Figure 3-2 (a)). For each bar, the height of the six sensors is 0.18 m, 0.95 

m, 1.6 m, 1.7 m, 2.3 m and 3.4 m, respectively. The volume-averaged temperature 

of the building is calculated using the measurement from all the sensors placed 

in the vertical bars and evaluated using the volume average at each horizontal 

layer. The single sensor without casing dataset corresponds to the measurement 

at 1.6 m in the living room south. The height of 1.6 m is close to the middle height 

of the building, where the influence of stratification is expected to be minimal 

(meaning that the measured temperature at 1.6 m is the closest to the volume-

averaged temperature).  

Experiments Radiator Door Sampling time Period Use 
Temperature 

Sensor 

2 Electric Open 5 min 
18/04-24/04 

(2017) 
Validation Full set 

3 Electric Closed 5 min 
27/04-08/05 

(2017) 
Validation Full set 

4 Electric+AHU Open 5 min 
08/05-15/05 

(2017) 
Training Full set 

5 Hydronic Open 5 min 
22/02-27/02 

(2019) 
Training Wall-mounted 
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• The third dataset is based on PT100 sensors mounted on the wall in a casing (see 

the orange dot in Figure 3-1 (b) and Figure 3-2 (b)). The height of the wall-

mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m, respectively. The third 

dataset corresponds to the measurement of a single wall-mounted sensor mounted 

in the south of the living room at the height of 1.6 m.  

In the experiments with the hydronic radiator, only the temperature measurements 

from the wall-mounted temperature sensor are available.  

 

                            (a)                                                                                (b) 

Figure 3-2: Wireless temperature sensors (a) and wall-mounted temperature sensors (b). 

 

Figure 3-3: Comparison of different indoor temperature sensors, global solar irradiation on 

a horizontal plane and heating power of the electric heater for Experiment 4. 
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Figure 3-3 shows the temperature reading from the wireless temperature sensors with 

different heights (0.18 m, 1.6 m and 3.4 m) and the wall-mounted temperature sensor 

(1.6 m) against the volume-averaged temperature. The stratification of the 

temperature of the wireless temperature sensors at different heights can be observed. 

The stratification gets larger when the solar radiation or the radiator power is large. 

The reason for choosing the sensor in the south was to capture the influence of solar 

radiation. The thermal dynamics of the wall-mounted sensor can also be observed. 

The reading from the wall-mounted sensor is smoother compared to the volume-

averaged temperature and the readings from the single wireless temperature sensors.  

3.1.2 IDA ICE building model and corresponding experiments 

IDA ICE is a detailed dynamic simulation tool to study the indoor environment and 

the energy consumption of buildings. In this thesis, an IDA ICE building model is 

used as a virtual experiment to generate data for system identification. It is a two-

story detached house located in Oslo with a heated floor area of 160 m². The building 

is constructed in wood, meaning a lightweight construction, and complies with the 

requirement of the Norwegian passive house standard, NS 3700 [77]. The three-

dimensional geometry of the building is shown in Figure 3-4. The building is 

equipped with balanced mechanical ventilation with a heat recovery unit. A cascade 

ventilation strategy is applied. This heat exchanger is modeled using constant 

effectiveness of 85% without bypass (like a plate heat exchanger) to promote the 

linearity of the model. This is done because the research focuses on the thermal 

dynamics of the building envelope and does not aim at modeling the air handling unit 

(AHU) in detail. Other detailed information regarding the BPS software model can 

be found in [78]. 

 

Figure 3-4: 3D geometry of the building model in IDA ICE (showing the southwest facade). 
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Figure 3-5: Floor plan of the test building (ducts for the supply air are in blue and in red 

for extraction). 

The detailed building model is multi-zone and the zoning follows the floor plan 

presented in Figure 3-5. For the sake of simplicity, the grey-model models considered 

in our study are mono-zone to ensure that the model performance is not polluted by 

other phenomena, such as overfitting or poor model fidelity. Consequently, the indoor 

temperature in our virtual experiments should be as uniform as possible. This is done 

by opening all the internal doors inside the building. IDA ICE has an embedded 

ventilation network model, which accounts for the large bidirectional airflow through 

open doorways. Thus, the air temperature inside the building computed by IDA ICE 

is relatively uniform due to the large convective heat transfer between rooms. The 

volume-averaged temperature is selected to represent the measured indoor air 

temperature. The mean air temperature of the extract ventilation air is also a common 

choice. However, based on preliminary investigations, the volume-averaged 

temperature proved to give better grey-box models for this test case. The building is 

heated using electric radiators as these are the most common space-heating systems 

for residential buildings in Norway [79]. This heating system has smaller thermal 

inertia than the building envelope, so the dynamics of the radiators are expected to 

play a limited role. Hourly profiles for internal gains generated by artificial lighting, 

electric appliances and occupancy are taken from the Norwegian technical standard 

TS3031:2016 [80]. The typical meteorological year (TMY) of Oslo with a resolution 

of one hour is used for the IDA ICE simulations. Like internal gains, solar gains thus 

have a resolution of one hour. 

The Pseudo-Random Binary Signal (PRBS) is also used to activate the heating system 

in the virtual experiments. The excitation signal is simultaneously applied to all the 

electric radiators in the BPS model. Following the guidelines of the IEA EBC Annex 

58 [27], the excitation signal is in fact the combination of the two PRBS signals. One 

sequence to identify the short-time dynamics with a period (T) of 10 minutes and with 

an order (n) of 8. The second sequence aims at identifying the long time constant of 
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the building with a period (T) of 3.5 hours and n equals 5. The PRBS signal can be 

applied to four different weeks in the space-heating season. These weeks are 

characterized by different weather conditions, as described in Table 3-2. 

Table 3-2: Weather conditions in four PRBS experiments. 

Type Outdoor Temperature Sky Date Duration 

Very Cold -10 ℃ Clear sky 12/13/2019 One week 

Cold 0 ℃ Overcast 12/24/2019 One week 

Cold 0 ℃ Clear sky 3/23/2019 One week 

Mild 5 ℃ Overcast 11/23/2019 One week 

 

However, it is not always desirable to apply a PRBS signal to the space-heating 

system as large variations of the indoor temperature may occur and lead to thermal 

discomfort for the occupants. Therefore, conventional controls of heating systems are 

also investigated. Intermittent heating with a temperature setpoint changing between 

daytime and night-time is considered (i.e., a night setback). Two different local 

controllers are tested to track the set-point temperature in each room: a Proportional-

Integral (PI) control and an on-off control (with a differential of 1K). The last one is 

the most common control strategy for electric radiators in buildings. When a PRBS 

signal is applied over a long period of time (i.e., longer than one week), it is difficult 

to design the signal so that the indoor temperature is kept within comfortable 

temperature limits for the occupants. By definition, conventional heating controls 

enable to have normal occupancy of the building during the experiments used to 

collect data for model identification. It is thus possible to collect data over a longer 

period of time than one week without impacting the thermal comfort of building 

users. The full space-heating season (FHS) starting in November and finishing at the 

end of March can be used to train the model. However, it is also interesting to test 

whether a shorter training period of one month would be sufficient to train the grey-

box models. It is also interesting to check whether specific months are more suited 

for this task. Therefore, the model parameters are also identified using each of five 

different months of the space-heating season (i.e., Month 1 to 5). 20 different datasets 

have been generated using different excitation signals, duration of the experiment and 

weather data. The detailed description of each case can be found in Table 3-3 below. 

IDA ICE assumes that variables are piecewise linear during one-time step. The model 

equations are integrated numerically using a variable time-step so that data is not 

generated at constant time intervals. Consequently, conservative interpolation has 

been used to interpolate IDA ICE data on a uniform grid of 2.5 min. This time step is 

significantly smaller than the shortest period of the PRBS (i.e., 10 min). 
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Table 3-3: Description of the datasets and their corresponding abbreviation. 

 

3.2 System identification for the building 

3.2.1 Grey-box modeling 

3.2.1.1 Grey-box model structure 

The structure of the grey-box models is derived from the conservation of energy. The 

physics modeled by the grey-box models is the heat transfer between the building and 

its outdoor environment, the solar radiation and internal gains. 

In this thesis, a mono-zone model structure is taken to fit the ZEB Living Lab and 

IDA ICE data for the following reasons. In IDA ICE virtual experiments, the air 

temperature inside the building computed by IDA ICE is relatively uniform due to 

large bidirectional airflow through open doorways and the large convective heat 

transfer between rooms. In the ZEB Living Lab experiments, the building is super-

insulated with an efficient heat recovery of the ventilation air. These two points lead 

Case  

(dataset) 

Case description 

(excitation) 

Period/ 

Duration 
Abbreviation 

1 PRBS1 Week 1 W1-PRBS 

2 PRBS2 Week 2 W2-PRBS 

3 PRBS3 Week 3 W3-PRBS 

4 PRBS4 Week 4 W4-PRBS 

5 Intermittent on-off Week 1 W1-Inter I/O 

6 Intermittent on-off Week 2 W2-Inter I/O 

7 Intermittent on-off Week 3 W3-Inter I/O 

8 Intermittent on-off Week 4 W4-Inter I/O 

9 Intermittent on-off Month 1 M1-Inter I/O 

10 Intermittent on-off Month 2 M2-Inter I/O 

11 Intermittent on-off Month 3 M3-Inter I/O 

12 Intermittent on-off Month 4 M4-Inter I/O 

13 Intermittent on-off Month 5 M5-Inter I/O 

14 Intermittent on-off Full heating season FHS-Inter I/O 

15 Intermittent PI Month 1 M1-PI 

16 Intermittent PI Month 2 M2-PI 

17 Intermittent PI Month 3 M3-PI 

18 Intermittent PI Month 4 M4-PI 

19 Intermittent PI Month 5 M5-PI 

20 Intermittent PI Full heating season FHS-PI 
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to limited temperature differences between rooms [33] (compared to the temperature 

difference between indoor and outdoor air) even if internal doors are closed. 

Consequently, the ZEB Living Lab can be modeled as one thermal zone (i.e., the 

mono-zone model with a unique node to represent the indoor temperature). The 

studies [29,32,34]  confirmed that a  mono-zone grey-box model is able to make an 

accurate prediction of the air temperature in the ZEB Living Lab, for closed and open 

internal doors. 

An example model structure 5R3C is shown in Figure 3-6. Other model structures 

are presented in Paper 1, Paper 3, Paper 4 and Paper 6. The physical meaning of the 

model parameters is listed in Table 3-4.  
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Figure 3-6: Structure of the 5R3C model. 

The corresponding state-space model of Figure 3-6 is given by: 
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Table 3-4: The physical interpretation of the parameters of all grey-box models. 

Parameters Physical interpretation and unit 

Ti   Temperature of the internal node (i.e., indoor air, furniture) [°C]. 

Te Temperature of the external walls [°C]. 

Ts Temperature of the internal wall surfaces of external walls [°C]. 

Tm Temperature of the internal walls [°C]. 

Ta The outdoor (or outdoor) temperature [°C]. 

Ci   Heat capacity including the thermal mass of the air, the furniture [kWh/K]. 

Ce Heat capacity of the node external wall for the second-order and third-order models 

[kWh/K]. 

Cm Heat capacity of the node internal wall for the third-order model [kWh/K]. 

UA  Overall heat transfer coefficient (HTC) between Ti and Ta [kW/K]. 

UAie  Heat conductance between the building envelope and the interior [kW/K]. 

UAea  Heat conductance between the outdoor and the building envelope [kW/K]. 

UAinf  Heat conductance between the outddoor and the interior node (components with 

negligible thermal mass, like windows and doors) [kW/K]. 

UAim Heat resistance between the internal thermal mass and the interior node [kW/K]. 

UAis Heat resistance between the indoor wall surface and the interior node [kW/K]. 

Qint Internal heat gain from artificial lighting, people and electric appliances [kW]. 

Qh Heat gain delivered to the heat emitter [kW]. 

Qvent Heat gain from the ventilation (pre-computed using measurements) [kW]. 

Isol Global solar irradiation on a horizontal plane [W/m2]. 

Ai The effective window area of the building corresponding to Ti [m2]. 

Ae The effective window area of the building corresponding to Te [m2]. 

Am The effective window area of the building corresponding to Tm [m2]. 

As The effective window area of the building corresponding to Ts [m2]. 

α Fraction of internal gains injected to the internal node. 
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3.2.1.2 Model identification tool and method 

The MATLAB system identification toolbox is used in this thesis. Madsen et al. [27] 

illustrated how stochastic models could be formulated as an extension of 

deterministic models. In the stochastic form, a system noise (or noise term) is added 

to the deterministic model equations to better account for the modeling 

approximations, unrecognized inputs and measurement of inputs corrupted by noise. 

The generic equations of the stochastic linear state-space model in innovation form 

can be expressed as: 

                               ( ) ( ) ( )
dx

Ax t Bu t Ke t
dt

= + +                                      (3-3) 

                               ( ) ( ) ( )y t Cx t e t= +                                                     (3-4) 

where x is the state vector, A, B and C are the system matrices, u is the input vector 

(i.e., Ta,eq, Qsolar, Qint, Qh) and y is the output (i.e., indoor temperature, Ti). K is the 

disturbance matrix of the innovation form (Kalman gain) [81]. The matrices A, B, C 

and K are functions of the model parameters (θ). The continuous-time model is first 

discretized so that discrete measurement data can be used to identify the model 

parameters. Unlike IDA ICE, the time discretization in the MATLAB identification 

toolbox assumes piecewise-constant input data during each time interval (i.e., zero-

order hold).  

At the beginning of the identification procedure, the initial guess of the model 

parameters and their region of feasibility (i.e., lower and upper bounds for each 

parameter) should be defined by the user as input parameters. Then, the optimizer 

iterates within the feasibility region to find the value of the parameters that minimize 

the prediction error criterion 𝑓(𝑥)  

                                     
2

1

( ) || ( ) ||
N

k k

k

f x y y 


=

= −                                     (3-5) 

where 𝑦𝑘 is the measurement output while �̂�𝑘(𝜃) is the one-step ahead prediction. 

The default function (greyest) in the MATLAB identification toolbox uses gradient-

based optimizers. Four different iterative search methods are used in sequence. 

Consequently, the optimizer may converge to a local optimum if the problem is not 

convex. As shown in Arendt et al. [41], Genetic Algorithm (GA) combined with a 

gradient-based method could be used to solve non-convex optimization problems 

used to identify the parameters of grey-box models. Likewise, a global optimization 

algorithm has been implemented in our work to avoid a local optimum. A 

metaheuristic Particle Swarm Optimization (PSO) is applied at the first stage, 

followed by the default greyest function to refine results during the second stage. The 

PSO algorithm begins by creating the initial particles and assigning them initial 

velocities. It evaluates the objective function at each particle location and determines 
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the best (lowest) function value and the best location. In the next step, new velocities 

are chosen based on the current velocity, the particles’ individual best locations, and 

the best locations of their neighbors. The optimizer then iterates the particle locations, 

velocities, and neighbors until the algorithm reaches a stopping criterion. Detailed 

information on the PSO algorithm can be found in [82,83]. For each test case, both 

optimization procedures are used in sequence: the default greyest and the global 

optimization. The method giving the lowest error for the prediction error criterion is 

selected to provide the model parameters. The flow chart of the identification routine 

is summarized in Figure 3-7.  

 

Figure 3-7: Flow chart of the optimization procedure to identify the model parameters. 

3.2.1.3 Data pre-processing techniques  

Extended sampling time (Ts) can lead to a non-physical value and variance for the 

identified parameters of grey-box models (see e.g., [40]). In real-life applications, it 

can seldom be guaranteed that measurement data is recorded at a sampling time (Ts) 

shorter than the shortest time of the system (Tmin). Thus, three distinct data pre-

treatments are investigated in this thesis. They are sampling, low-pass filtering and 

anti-causal shift (ACS). The original dataset has a sampling time (Ts) that is always 

faster than the highest frequency of the input signal (Tmin), such as the PRBS signal. 

Ljung et al. [40] demonstrated that longer sampling time with Ts > Tmin can lead to 

non-physical value and variance for the identified parameters. To investigate this 

effect, sampling times of increasing duration are considered in our investigations, 

namely 15, 30 and 60 minutes. Before resampling the data, a low-pass filter can be 

applied. This leads to three scenarios:  

• The first approach is direct sampling (DS) at Ts without pre-filtering. This may 

cause a high aliasing error.  

• The second approach applies a moving-average (MA) filter of length Ts before 

sampling. With MA, the aliasing error is significantly decreased but, in theory, it 

can still occur. 

• The third approach applies a finite impulse response (FIR) filter with a cut-off 

frequency of 1/Ts before sampling. The FIR would lead to negligible aliasing 

error (if it is designed in a sufficient order).  
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By analyzing the performance of the three methods, it is possible to understand the 

influence of aliasing. It is known that these low-pass filters introduce a time delay 

[39]. Therefore, The low-pass filters are applied to all input and output variables in 

the dataset. Thus, theoretically, no delay will be introduced in the dataset, which 

could influence the final results. The conclusion would be different if the low-pass 

filter was applied to a subset of the input and output data. 

Finally, time labeling plays a role in aligning inputs and outputs for the identification 

application [40]. As shown by Ljung et al. [40], a time shift, called anti-causal shift 

(ACS), of the input (Input Delay = -Ts) is beneficial for model identification with 

large Ts. However, the study of Ljung et al. is theoretical and uses a generic example. 

This effect has been barely analyzed in the context of buildings.  

3.2.1.4 Sensor dynamics 

Figure 3-3 shows that the wall-mounted sensors have non-negligible thermal 

dynamics. Consequently, the grey-box model structures introduced in Section 3.1 

should be adapted to account for the effect of the time constant of sensor dynamics 

and thus avoid potential mistakes in the model identification process. As proposed in 

Bacher et al. [45], it is possible to add an additional node for the temperature sensor, 

leading to an extra resistance (Rs) and capacitance (Cs). However, the authors also 

pointed out that it was not possible to give a physical interpretation of the value of 

Cs. This was also found in our preliminary tests based on our data. Therefore, we 

rather introduced an adaptation of the model with a single additional parameter, the 

time constant of the sensor τ = RsCs. The model decreased the number of parameters 

compared to the version in the study [45] to increase the identifiability of the model. 

The dynamics for the sensor node are expressed by the following equation: 

                                                      
1

( )sensor
i sensor

dT
T T

dt 
= −                                (3-6) 

where Ti is the temperature of the internal node, Tsensor is the temperature measurement 

from the wall-mounted temperature sensors. 

3.2.2 Structural and practical identifiability 

Checking structural identifiability is the prerequisite in the model identification 

process [84–86], which refers to the theoretical possibility of determining the 

parameter values from the input and output data. This property guarantees that the 

parameters can be uniquely determined from the input-output data under ideal 

conditions of noise-free observations and error-free model structure. The structural 

identifiability of the candidate models in this study is verified using DAISY software 

[84]. However, field measurement data always contain noise and error, which 

challenges the practical identifiability of the model. Therefore, the prediction 

performance and the physical plausibility of parameters are taken as the criteria for 

the model selection (see Section 3.2.3 for more details). Finally, for stochastic 
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models, a cumulative periodogram is used as an additional criterion to prove that the 

model is complex enough to capture the building dynamics. 

3.2.3 Key performance indicators 

Several key performance indicators (KPIs) are defined to evaluate the model 

performance. They can be divided into two categories: the physical plausibility of the 

identified parameters and the prediction performance of the model. 

Physical plausibility means that the calibrated value of the model parameters should 

give a physically reasonable estimate of the thermal properties of the building. For 

conciseness in our study, it is not possible to report the value and variance of all the 

model parameters. However, the key parameters that are enough to support our 

conclusions are presented: the overall heat transfer coefficient (HTC) and the 

capacitances (Ci and Ce). In addition, one parameter modeling the influence of the 

solar radiation, the effective window area (Ai), will also be taken as KPI when the 

influence of the data pre-processing is discussed. 

The overall heat transfer coefficient (HTC) is the total heat loss of the building in 

steady-state. Heat transfer by convection and long-wave radiative heat transfer is 

nonlinear. However, heat conduction is dominant and has good linear properties if 

the building is highly insulated and airtight. The combination of several resistances 

of the grey-box model forms the HTC, which is defined by Equation 3-7 for the 3R2C 

model. Therefore, only the value of the HTC is shown in the later discussion, not its 

variance.  

                                                 
inf
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1/ 1/ie ea

HTC UA
UA UA

= +
+

                                 (3-7) 

For the IDA-ICE experiment, the HTC has been estimated to be about 85 W/K 

(identified by applying a step function of the space-heating to the IDA ICE model). 

The Ce can be compared to the effective thermal capacitance Ceff. This one has been 

evaluated using one daily periodic excitation for the IDA ICE model according to the 

standard 13786:2017 [87] (see Paper 3) with a value of 3.9 kWh/K.  

For the ZEB Living Lab, Clauβ et al. [88] evaluated the HTC value of the ZEB Living 

Lab to be 83 W/K, which is used as the reference value for the HTC. The Ceff range 

is taken from the recommended value based on Norwegian NS3031 standard [80], 

which gives the typical Ceff per square meter for lightweight Norwegian construction. 

The long-term prediction performance is of the utmost importance if the main 

application of the grey-box model is being employed in an MPC. Equation 3-8 gives 

the method of calculating the normalized root mean squared error (NRMSE). 
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The NRMSE fitting, defined in Equation 3-9, is used to evaluate prediction 

performance. It translates how well the response of the predicted model matches 

measurement data. If the fit is 100%, the model perfectly matches the measurement 

data, whereas a low or negative fit is a model of lower quality. The NRMSE fitting 

value is calculated based on simulation for the deterministic model and one-day ahead 

prediction for the stochastic model. In other words, for the stochastic model, the 

model selection is made using the one-step ahead prediction while the ability to 

perform MPC is evaluated using a one-day ahead prediction. 

                                                (1 ) 100%fitNRMSE NRMSE= −                            (3-9)   

In addition to the NRMSE fitting value, the mean bias error (MBE) defined by 

Equation 3-10 is also used as a complementary index. Theoretically, an MBE value 

close to zero is best as this means that the residual of the model has a lower mean bias 

error.  
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=
= −                                     (3-10) 

In practice, the results show that all our models have good MBE properties. 

Therefore, this index has been used but is not reported in the thesis.  

3.3 MPC experiments setup 

The MPC experiments are done with MATLAB and IDA ICE. The co-simulation of 

the virtual experiments uses the IDA ICE model in Section 3.1.2 as the emulator. The 

time step in the co-simulation is set to 15 min. At each step, IDA ICE first sends the 

calculated volume-averaged indoor temperature (Ti) of the building to MATLAB. 

The MPC controller then takes the prediction of the weather data and the internal heat 

gains into the MPC optimization. It generates the optimal control sequence (i.e., the 

optimal heating power, Qh) over the prediction horizon. Only the first time step of the 

control sequence is sent to IDA ICE to be executed during one time step. After the 

first time step is completed, the new state of volume-averaged indoor temperature is 

sent back to MATLAB again and a new round starts. The process keeps iterating 

within the co-simulation framework until the predetermined simulation period is 

completed. A sketch of the co-simulation process is presented in Figure 3-8. Khatibi 

et al. [89] have used a similar co-simulation setup in IDA ICE in their study to 

investigate the flexibility of the air heating and ventilation system. IDA ICE requires 

an initialization period before the temperature difference between the zone to be 

realistic. Therefore, a PID control is taken at the beginning of the co-simulation 

before starting the MPC. The length of this initialization of the virtual experiment is 

set to be a half-day before switching to MPC. 
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Figure 3-8: co-simulation experiment setup between IDA ICE and MATLAB. 

In the MPC, the minimum indoor temperature limit is set to 20 °C and the maximum 

limit is set to 24 °C. There is a night setback for the minimum temperature limit 

decreasing from 20 °C to 16 °C from 11 PM to 7 AM. The room temperature bounds 

are defined as Equation (3-11). The indoor temperature limits are used as thermal 

comfort constraints for the MPC. For the sake of simplicity, the radiator in the IDA 

ICE model is assumed to be able to modulate its power by adjusting its part load ratio 

(PLR). The total heating power of all the radiators is 3220 W. Thus, the power 

constraint of the heating system is from 0 to 3220 W in the MPC. 

                     

16 24 if (23: 00,24 : 00) 

16 24 if (0 : 00,7 : 00)

20 24 if (7 : 00,23: 00) 
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room room

room
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                     (3-11) 

3.3.1 Optimal Control Problem Formulation 

The thesis investigates the performance of the MPC controllers with three different 

control objectives to make sure conclusions do not depend on the objective function.  

1) Objective 1 (Energy Savings): Minimize the total electricity use of the heating 

system while limiting indoor thermal discomfort at the same time.  

2) Objective 2 (Energy Cost Saving): Minimize the total electricity cost of the 

heating system while maintaining indoor thermal comfort. The electricity spot 

price from Nordpool and the historical weather data for 2019 are used.  

3) Objective 3 (Energy Cost Saving with Peak Reduction): Minimize the total 

electricity cost and reduce the electricity use during the peak hour of the grid 

while limiting indoor thermal discomfort.  

The second and third types of MPC are usually called economic model predictive 

control (EMPC) in other studies.  
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With these control objectives and the defined constraints, the optimal control problem 

can be formulated. As previously mentioned, the time step of each control decision is 

15 minutes. The prediction horizon of the MPC controller is set to be 24 hours (96 

slots, N = 96). The prediction length is a typical value in building MPC 

implementation [43,56,58]. The prediction length is also acceptable considering the 

computational cost. The equations of the optimization problem are given below.  
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Case 3:    
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where x[k] is the state vector in discrete-time, F, G and C are the discrete system 

matrices trained from the system identification process, u[k] is the input vector in 

discrete-time and y[k] is the output. K is the tuned steady Kalman gain of the model. 

Qh[k] is the calculated optimal heat power at each step in the prediction horizon, while 

Qh,max[k] is the max power of the heating system. ε1 [k] and ε2[k] are the slack variables 

of the soft constraints on the thermal comfort band. L is the weighting factor that is 

set to penalize thermal discomfort in the objective function. The soft constraints 

enable the solver to avoid infeasible optimization problems by allowing thermal 

comfort bands to be violated. ch[k] is the electricity price profile at each slot generated 

from the historical electricity price from Nordpool. ph[k] is the penalty cost for using 

electricity during peak hours, which is a predefined arbitrary profile that has two 

levels.  
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Figure 3-9: Electricity and Peak Hour Penalty Cost Profile. 

The electricity price profile and the peak hour penalty cost profile are given in Figure 

3-9 given in  Norwegian Krone [NOK/kWh]. Tindoor[k] is the predicted indoor 

temperature from the prediction model. Tlow[k] and Tup[k] are the corresponding 

temperature boundaries inside the prediction horizon. The receding horizon is 

implemented in the MPC, so the above optimization problem is solved at each step 

(every 15 minutes) to get the optimal control decision. Then, the initial states of the 

control model and weather forecasts are updated with the receded prediction horizon. 

Thermal discomfort is not desirable. Thus, the penalty weight factor L of the slack 

variables is given with a large value. The baseline penalty weight factor L is set to 

108 in this study, but L is also set at 106 in the sensitivity analysis. A solver that can 

solve quadratic programming optimization problems is needed due to the quadratic 

form of the slack variables ε1 and ε2. The toolbox YALMIP [90] in MATLAB is used 

for the optimization problem formulation, and Gurobi [91] is used to solve the 

optimization problem. 

3.3.2 Conventional and Adaptive MPC 

Two months of simulation are used to investigate the performance difference between 

the conventional and adaptive MPCs. The second-order 3R2C grey-box model has 

proven to be a suitable trade-off between model complexity and accuracy. Therefore, 

this thesis takes 3R2C as the prediction model structure, and details can be found in 

Paper 6. The conventional MPC is based on an LTI model and the parameter values 

are kept unchanged during simulation. The conventional MPC using three different 

LTI models is compared. The FullWinter model is trained with the entire winter 

season data where the building is heated using intermittent temperature setpoints. The 

two other LTI models are trained using the data from PRBS experiments of 
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November and December, respectively, called PRBSNOV and PRBSDEC. Two 

candidate adaptive MPC controllers are designed. The two adaptive MPCs take the 

FullWinter model as the initialization model. The Partially Adaptive MPC only 

updates the effective window area (Ai) parameter during the simulation. The effective 

window area is a model parameter which is the ratio between the solar gains injected 

in a node of the RC model and the total solar irradiation measured on a horizontal 

plane (Isol). The main reason to focus on the effective window area is that solar gains 

are a dominant factor that influences the model accuracy. Due to cloud cover, 

changing altitude and zenith angles of the sun, the effective window area is expected 

to change significantly during the space-heating season, especially for high latitudes. 

The corresponding pseudo-code for updating the effective window area is presented 

in Algorithm 1. The Fully Adaptive MPC updates all seven parameters of the model 

during simulation. It gives more degrees of freedom as more parameters can be 

calibrated compared to the other adaptive MPC. However, the Fully Adaptive MPC 

theoretically takes more time to converge to update the model parameters. 

Furthermore, there is a risk of obtaining a set of unphysical parameters due to 

insufficient training data (meaning that the model is practically non-identifiable). The 

pseudo-code for the Fully Adaptive MPC is presented in Algorithm 2. The summary 

of the different cases is given in Table 3-5. 

The sliding accumulated error (ErrorS) is used as the index to determine whether a 

parameter update is required. The sliding accumulated error is defined as the sum of 

absolute prediction error (i.e., the difference between the measurement and the model 

prediction at each time step) over the last 12 steps  (i.e., 3 hours). The parameter 

updating routine is activated when ErrorS exceeds a predetermined threshold. The 

threshold is called ErrorIndex and is set to 5. A lower ErrorIndex means a lower 

tolerance for error, which can be tuned based on the application scenario.  

Algorithm 1: Pseudo-code for the partially adaptive MPC. 

 

Algorithm 1: Partially Adaptive MPC 

Initialize: Set FullWinter as the prediction model for the 

Partially Adaptive MPC; 

Input: ErrorS； 

if ErrorS> ErrorIndex 

 Update the parameter Ai. 

else 

 Keep Ai unchanged. 

end  
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Algorithm 2: Pseudo-code for the fully adaptive MPC. 

 

It is unreasonable to use short training period data to update the model parameters as 

it leads the parameters to be completely unphysical or have large uncertainty. On the 

other hand, taking a long period of historical data for retraining is also not optimal 

since the adaptive MPC should be able to adapt the parameters for changing operating 

conditions. Pushed to the extreme, a very long retraining period will make the 

adaptive model converge toward an LTI model. Therefore, the length of the retraining 

period for updating the parameters is set to seven days. Preliminary tests have shown 

that seven days of data using intermittent on-off heating leads to a model with 

physically plausible parameters and fair prediction performance. Given the duration 

of the retraining period, the adaptive MPC routines are not able to update parameters 

during the first seven days of co-simulation. 

Table 3-5: Cases summary of experiments. 

 

In the preliminary experimental operation, the deterministic model shows better 

prediction performance than the stochastic model when updating parameters with 

MPC operation data, which fits the conclusion from the previous study [92]. The 

physical plausible properties of the parameters are also monitored in this study, but 

the prediction performance of the model is of more importance for MPC 

Algorithm 2: Fully Adaptive MPC 

Initialize: Set FullWinter as the prediction model for the 

fully Adaptive MPC; 

Input: ErrorS； 

if ErrorS > ErrorIndex 

 Update all parameters of the model. 

else 

 Keep parameters unchanged. 

end  

 

Case Excitation Training Period 

FullWinter Intermittent on–off 11/1/2019 - 3/31/2020 

PRBSNOV PRBS 11/23/2019 - 11/30/2019 

PRBSDEC PRBS 12/24/2019 - 12/31/2019 

Partially Adaptive MPC MPC operation During operation 

Fully Adaptive MPC MPC operation During operation 
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implementation. Therefore, the deterministic model is used to train the model 

parameters to obtain better MPC performance. 
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4 RESULTS AND DISCUSSION 

This chapter presents the key results of the papers (from Paper 1 to Paper 7) and 

answers the corresponding research questions of this thesis. The results have three 

main parts, namely modeling (data collection), modeling (model identification) and 

control.  

Section 4.1 presents the results regarding collecting data for modeling. Paper 1 to 

Paper 4 covers the content of this topic, which answers Question 1 to Question 3. 

Section 0 shows the results of the grey-box model identification. The content of Paper 

1 to Paper 4 answers Question 4 to Question 6. Section 4.3 considers MPC virtual 

experiments of the residential building, which answers Question 7. The 

interconnections of all the listed papers are shown in Table 1-1 and Figure 1-2. 

4.1 Modeling (data preparation) 

Q 1: Which type, period and duration of the excitation signal are suitable for grey-

box model identification of residential buildings? 

In Paper 3, 20 different datasets have been generated using different excitation 

signals, duration of the experiment and weather data. Paper 3 is based on virtual 

experiments so that parametric runs can be performed only by varying the excitation 

signal and leaving the other inputs and boundary conditions unchanged. A description 

of the experiments and their abbreviation is given in Table 3-3. Results show that the 

intermittent heating with on-off control of the electric radiators is also a good 

excitation signal in addition to the PRBS signal. Furthermore, It enables normal 

occupancy of the building and the collection of long data series as well as contains 

both slow daily and fast dynamics. Results of 3R2C model are taken to answer this 

question and more details are illustrated in Paper 3. 

 

Figure 4-1: Identified HTC of the 3R2C deterministic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

Figure 4-1 shows the value of HTC for the deterministic model, which is close to the 
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reference value of 85 W/K. The data pre-processing technique has no significant 

impact on HTC.  

As shown in Figure 4-2,the period and type of excitation signal of the training dataset 

have the largest influence on Ce while data pre-processing has a limited impact. The 

value of Ce is similar between the four datasets using PRBS excitation (i.e., cases 1 

to 4) and is plausible compared to the Ceff of 3.9 kWh/K determined using standards. 

However, it differs for case 14, corresponding to the intermittent on-off heating 

during the entire space-heating season that generates a higher value, well above 3.9 

kWh/K. To further illustrate the influence of the dataset, the values of Ce identified 

using an intermittent on-off excitation during each month of the space-heating season 

are compared, i.e., cases 9 to 13, in Figure 4-3. Even though the excitation signal is 

generated from the same control (i.e., intermittent on-off control) and has the same 

duration of one month, the identified Ce strongly depends on the selected period used 

to train the model, meaning the specific month of the space-heating season.  

 

Figure 4-2: Identified Ce of the 3R2C deterministic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

 

Figure 4-3: Identified Ce of the 3R2C deterministic model for cases 9 to 13, different 

sampling times and pre-filtering techniques; cases with ACS are shown by triangles in 

lighter colors. 
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The stochastic model is less dependent on the excitation signals. Figure 4-4 shows 

that as long as the sampling time is shorter than the system dynamics (i.e., Ts equal 

2.5 min depicted by the first black points on the left), the value of Ce is independent 

of the training period and its variance is limited. The identified values are close to the 

Ceff of 3.9 kWh/K, the value of Ce is meaningful from a physical point of view. The 

same phenomenon is observed for the value and variance of Ci in Figure 4-5. 

 

Figure 4-4: Identified Ce of the 3R2C stochastic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

 

Figure 4-5: Identified Ci of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different 

sampling times and pre-filtering techniques; cases with ACS are shown by triangles in 

lighter colors. 

Even the parameters of the stochastic model are less dependent on the datasets. The 

parameters trained from different periods are not identical, which will cause the 

simulation performance from different sets of parameters will be different. This is 

also confirmed by the results from Paper 1 and Paper 4. The NRMSE fitting of the 

training dataset is always higher than the validation dataset. Thus, there is no period 

that is better than others for training the model parameters. It is impossible to use only 

one set of parameters for the grey-box model that can cover the full winter due to 
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large variations of complex weather conditions. This conclusion supports the need to 

investigate adaptive models (Q 7). 

In conclusion, the identified parameters are strongly dependent on the types of 

excitation and the training period for deterministic models. Both the type of excitation 

(e.g., PRBS and intermittent on-off excitation) and the selected period during the 

space-heating season influence results. However, the identified parameters are less 

dependent on excitation signals for stochastic models.  

Q 2: Influence of temperature sensor location and dynamics on the grey-box 

modeling results? 

Paper 2 and Paper 4 present the results of the influence of temperature sensor location 

and dynamics on the grey-box modeling. All the datasets used and their 

corresponding abbreviations are given in Table 4-1.  

Table 4-1: Description of the datasets and their corresponding abbreviations from ZEB 

Living Lab. 

 

Paper 2 is based on multi-zone virtual experiments in IDA ICE. It compares the model 

performance when the indoor temperature is taken as the volume-averaged air 

temperature or the exhaust ventilation air temperature. Simulation results from 

extracted air temperature show a slightly higher simulation NRMSE fitting value for 

the original training dataset. However, models trained with extracted air temperature 

show much worse simulation NRMSE fitting compared with volume-averaged 

temperature for the entire space-heating season data (FHS dataset). Thus, the volume-

averaged air temperature is a more balanced choice of representative indoor 

temperature. In conclusion, even though this is a common choice in the literature, the 

exhaust air temperature is not always the best option to train the model and this 

conclusion could be even more severe if all the internal doors inside the building were 

closed. Then, large temperature differences can be created between the thermal zones 

Case  Sensor 
Sensor node 

in model 
Dataset Use 

T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation 

T1Exp3 Volume-averaged temperature (T1) No Experiment 3 Validation 

T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training 

T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training 

T3Exp4  Single wall-mounted temperature sensor (T3) No Experiment 4 Training 

T4Exp4 Single wall-mounted temperature sensor (T4) Yes (τ) Experiment 4 Training 

T5Exp5  Single wall-mounted temperature sensor (T5)  No Experiment 5 Training 

T6Exp5 Single wall-mounted temperature sensor (T6) Yes (τ) Experiment 5 Training 
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in the building and the exhaust ventilation air temperature may not be a good 

approximation of the average indoor temperature between the rooms. 

Paper 4 identifies deterministic and stochastic models with data from ZEB Living 

Lab. Most of the results presented are based on the datasets with the electric heaters 

(i.e., Experiments 2 to 4) with the 3R2C model.  

 

Figure 4-6: Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto) models 

using Experiment 4 and different types of temperature measurement (5min). 

In the description of experiments, it has been shown that the indoor temperature is 

dependent on the type of measurement, see Section 3.1.1. Consequently, Figure 4-6 

and Figure 4-7 compare the identified value of two key indicators (HTC and Ce) for 

the different types of temperature measurement, still using a sampling time of 5 

minutes. For the deterministic model, the difference in temperature measurements 

has a limited influence on the identified model parameters. However, for the 

stochastic model, the identified HTC value using the baseline 3R2C model and the 

single wall-mounted temperature sensor is much larger than the reference HTC value. 

Furthermore, the variance of Ce is also extremely large. Thus, the time constant of the 

wall-mounted sensor dynamics has a large impact on the stochastic 3R2C model. This 

conclusion is also confirmed by the cumulative periodogram of the residuals in Figure 

4-8, which shows that the baseline 3R2C model with the wall-mounted sensor does 

not describe the system dynamics (between 0.4–1.4 × 10-3 Hz). As introduced in 

Section 3.4, an adapted model with a time constant for the sensor is added to the 

original 3R2C model. This adapted model improves the results since the parameters 

become physically plausible again. In addition, the cumulative periodogram of the 

residuals confirms this conclusion (see dataset T4Exp4). Furthermore, the one-day 
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ahead prediction comparison in Figure 4-9 also shows a significant improvement 

from the 3R2C adapted with a sensor time constant compared to the original baseline 

3R2C model. The identified time constant (τ) has a value of 8.28 minutes, thus being 

larger than the sampling time.  

  

Figure 4-7: Comparing the Ce of the 3R2C deterministic (det) and stochastic (sto) models 

using Experiment 4 and different types of temperature measurement (5 min). 

  

Figure 4-8: Cumulative periodogram of the residuals of the model 3R2C for different types 

of indoor temperature measurement.  
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Figure 4-9: Comparing the one-day ahead prediction of the 3R2C stochastic (sto) models 

with different types of temperature measurement, trained using Experiment 4 and validated 

using Experiments 2, 3. 

The air temperature was only measured using the wall-mounted sensors for the 

experiment using the hydronic radiator (i.e., Experiment 5). As it has been proven 

that the sensor node was necessary for the modeling, only the performance of the 

adapted model with the τ parameter is analyzed. Unlike the electric heater, the thermal 

dynamics of the hydronic radiator are significant. The analysis of the measured inlet 

and outlet temperatures of the hydronic radiator showed that its time constant is about 

7 minutes. A priori, like the wall-sensor, it is expected that the hydronic radiator 

dynamics should influence the model performance, at least for a sampling time of 5 

minutes (< 7 minutes). However, the wall-mounted temperature sensor has a time 

constant of about 8 minutes. Consequently, the dynamics of the hydronic radiator 

cannot be properly captured by a grey-box model since the time constant of the wall-

mounted sensor is comparable (or slightly larger) than the time constant of the 

hydronic radiator. The analysis of the cumulative periodogram (not reported here for 

the sake of conciseness) shows that the adapted 3R2C can model the building heated 

using the hydronic radiator without the need to add a specific capacitance to model 

the hydronic radiator. In addition, preliminary results with an additional capacitance 

proved that the resulting model would be overfitted. 

The experiments with the hydronic radiator and the electric heater have been 

performed in different years and different months of the heating season, leading to 
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different sun elevations between the experiments. The identified effective window 

area Ai is thus expected to be significantly different for Experiment 5 and 

Experiments 2 to 4. However, thermal properties that are intrinsic to the building 

fabric and less dependent on the outdoor conditions are used to analyze the model 

performance in Experiment 5, namely the HTC and Ce (Figure 4-10). The identified 

HTC is still close to the reference value. Unlike the experiments with the electric 

heater, there is no significant difference between the baseline and adapted 3R2C 

models.  

 

Figure 4-10: HTC and Ce for the 3R2C stochastic model using Experiment 5 and different 

data pre-processing techniques.  

The improvement resulting from the adapted model and ACS is more visible when 

analyzing Ce. Again, the HTC translates into a steady-state performance while the 

capacitances are inherently related to the building dynamics. With the baseline 3R2C 

model, the estimated Ce is entirely non-physical. The results are noticeably improved 

with the adapted 3R2C model with a sensor node. The experiment with the hydronic 

radiator confirms the positive influence of the adapted model with τ. In conclusion, 

the thermal dynamics of the temperature should be modeled, but the dynamics of the 

hydronic radiator are due to its shorter time constant. 

Q 3: Influence of data pre-processing on the grey-box modeling results? 

Paper 3 and Paper 4 answer this question by applying a low-pass filter, resampling or 

a time shift of the input data, called anti-causal shift (ACS), with data from IDA ICE 

and the ZEB Living Lab, respectively.  

The results of Paper 3 (Figure 4-1 to Figure 4-5) have proved that data pre-processing 

has limited influence on the deterministic model with virtual experimental data from 

IDA ICE. The results based on the data from ZEB Living Lab also confirm this 

conclusion (Paper 4). Figure 4-11 presents the identified parameters results for the 
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deterministic model using different types of temperature measurement and data pre-

processing in the ZEB Living Lab.  

The identified values of HTC show that no matter which type of temperature sensor 

is used for the identification, the HTC value is not significantly influenced by the pre-

filtering method and ACS. The value is close to the reference value of ~83 W/K. The 

sampling time (Ts) does not have a noticeable impact on the HTC value.  

 

Figure 4-11: Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4 

with different types of temperature, data pre-processing techniques. 

The identified values of Ce give similar conclusions as the HTC value. The value of 

Ce is plausible for most of the cases since it is within the typical range (i.e., 3.4–6.5 

kWh/K) given in standards [93]. The low-pass filtering and the ACS only have a 

slight impact on the results. With direct sampling, the Ce values are slightly outside 

the reference range when the sampling time is large (from 30 minutes). These 

conclusions are confirmed by the analysis of the effective window area Ai (related to 

the influence of solar radiation). 
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In conclusion, the pre-processing of data does not have a large influence on 

deterministic models. Neither the ACS, the pre-filtering technique nor the sampling 

time leads to a significant change in the parameter values. The only exception appears 

with very large Ts. Then, the pre-filtering can prevent the parameter value from 

becoming non-physical. The HTC characterizing the steady-state performance of the 

building has rather stable values while the other parameters characterizing the thermal 

dynamics of the building, here Ce and Ci, are more strongly impacted by the training 

dataset and the sampling time. 

Data pre-processing has a more significant influence on the stochastic model. Based 

on Paper 3 and virtual experiments, the value for HTC for the 3R2C stochastic model 

in Figure 4-12 is similar to the deterministic model in Figure 4-1. As for the 

deterministic model, large sampling time can lead to a non-physical value of the HTC. 

While all the pre-filtering prevented the value from becoming non-physical for the 

deterministic model, only the moving-average filter and the ACS have the same effect 

for the stochastic model. 

 

Figure 4-12: Identified HTC of the 3R2C stochastic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

The value and variance of Ce from Paper 3 are shown in Figure 4-13. As long as the 

sampling time is shorter than the system dynamics (i.e., Ts equal 2.5 min), the value 

of Ce is independent of the training period and its variance is limited. Close to the 

Ceff of 3.9 kWh/K, the value of Ce is meaningful from a physical point of view. When 

the sampling time increases, the behavior should be distinguished with and without 

the application of an ACS. When the ACS is applied, the value and variance of Ce are 

regular even with large sampling time. The ACS has a strong positive effect on the 

physical plausibility of Ce. With ACS, pre-filtering has a limited influence on the 

results. Without ACS, the parameter value and variance become erratic with 

increasing Ts. Some values are so high that they fall outside the y-axis limit of the 

graph. In addition, no clear trend can be found on the influence of the pre-filtering 

and training period.   
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Figure 4-13: Identified Ce of the 3R2C stochastic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

 

Figure 4-14: Identified Ci of the 3R2C stochastic model for the cases 1,2,3,4 and 14, 

different sampling times and pre-filtering techniques; cases with ACS are shown by 

triangles in lighter colors. 

The same phenomenon is observed for the value and variance of Ci in Figure 4-14. 

Nonetheless, there is one aspect that differs from Ce. As for the deterministic model 

with ACS, the values of Ci with the corresponding stochastic version also tend to 

increase with the sampling time. However, Ci is related to the fast dynamics of the 

building with a time constant below one hour. Therefore, it is not surprising that Ci is 

influenced by the sampling time when it is changed from 5 minutes to one hour.  

From all the results of the stochastic models, several conclusions can also be drawn. 

First, the identified parameters are strongly dependent on the sampling time. The 

identified parameters are always consistent if the Ts is taken small compared to the 

shortest time of the system Tmin (influenced by the excitation). It is only when Ts gets 

equivalent or larger than the building dynamics that the parameters get non-physical 

without ACS, especially the thermal capacitances. The second conclusion is that ACS 

prevents the parameter value and variance from getting non-physical for large Ts. 

With ACS, the uncertainty of the parameters remains limited and their value remains 
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physically plausible. Pre-filtering only has limited influence with ACS while the pre-

filtering influence without ACS does not show a clear trend, sometimes improving or 

degrading results. Finally, like the deterministic model, the steady-state 

characteristics HTC are less influenced by the dataset and pre-processing than the 

thermal capacitances. The conclusions are also validated by the field experiments of 

Paper 4. 

 

Figure 4-15: Comparison of the simulation performance of the deterministic and stochastic 

3R2C models trained on the dataset 14 without ACS and validated using the other datasets. 

The simulation performance of the grey-box models, analyzed here using the NRMSE 

fitting, is another important aspect of system identification. Figure 4-15 from Paper 

3 compares the simulation performance of the deterministic and stochastic models 

without ACS. For different Ts and pre-filtering approaches, the deterministic model 

has a more constant simulation performance than the corresponding stochastic model. 

For the deterministic model, the NRMSE fitting tends to decrease slightly with 

increasing Ts while it tends to increase for the stochastic models (except for the 

PRBS3 case). The deterministic model generally has a better simulation performance 

than its corresponding model in stochastic form even though this difference tends to 

disappear for large Ts. This conclusion is noteworthy as for deterministic models the 

value of the parameters is significantly influenced by the training period and some of 

the values are not even physically plausible. In other words, identifying a model with 

parameters that have a more physical value does not necessarily lead to a model with 

better simulation performance. If one is not interested in the characterization of the 

thermal properties but rather the simulation performance (like in MPC), results 
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suggest that deterministic models can be more robust than stochastic models as they 

are less sensitive to the data pre-processing. As it will be shown in the answer of Q5 

in Section 4.2, this also makes the resolution of the optimization problem to calibrate 

the model easier (as both local and global optimizers lead to the same parameters). In 

addition, it has been shown that pre-filtering techniques and Ts have a limited effect 

on model performance. This conclusion is important in the context of the design of 

MPC for small residential buildings where a control model should be identified at a 

low cost, potentially using a fully automated procedure.  

 

Figure 4-16: Comparison of the simulation performance of the stochastic 3R2C model with 

and without ACS, trained with the dataset 14 and validated with datasets 1 to 4. 

Figure 4-16 of Paper 3 compares the simulation performance of the stochastic model 

with and without ACS. While the ACS tends to improve the physical plausibility of 

the model parameters and positively influence the optimization problem (as it will be 

shown in Section 4.2), the influence of ACS on prediction performance is not 

systematic for the stochastic model. It generally has a negative influence on the 

simulation performance of the model for the data from virtual experiments. As 

already mentioned, the NMRSE fitting generally increases with Ts for the stochastic 

models without ACS. This increase is less pronounced for the stochastic model with 

ACS even though the physical plausibility of the parameters has been improved. Two 

conclusions can be given. Firstly, it confirms that parameters that are more physically 

plausible do not necessarily lead to better simulation performance. Here, with large 

Ts and without ACS, the value of some parameters, such as Ce in Figure 4-13, is non-

physical but it nonetheless leads to better simulation performance. Secondly, the ACS 
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showed to be a robust solution to characterize the thermal properties of the building 

and the resolution of the optimization problem. However, it appears from our 

investigations that the ACS comes at the price of lower simulation performance. 

Finally, none of the approaches investigated here manages to combine high physical 

plausibility and the highest simulation performance at large Ts. This is partly 

confirmed by the ZEB Living Lab field experiments in Paper 4, the ACS is beneficial 

to get physically-plausible parameters for large Ts but its influence on the prediction 

performance is not systematically negative unlike virtual experiments (i.e., 

sometimes positive or negative). The details of the results can be found in Paper 4. 

4.2 Modeling (train parameters) 

Q 4: What are the most suitable grey-box model structures for residential 

buildings? 

The best trade-off between model accuracy and overfitting for a mono-zone model is 

second-order with the available data of our case study. This is in line with the 

conclusions from the literature review in Section 2.2. Even though the literature 

review also suggests that third-order models should also be appropriate. 

Paper 1 and Paper 4 investigate the performance of grey-box models based on the 

knowledge of the building physics or using a generic model structure based on the 

standards EN 13790 and VDI 6007.  

The discussion is first based on Paper 4 using experimental data from the ZEB Living 

Lab for both deterministic and stochastic grey-box models. Results are summarized 

in Table 4-2. The results show that the first-order 1R1C model is not enough to 

describe the heat dynamics of the building for neither the deterministic nor the 

stochastic models. This is confirmed by the cumulative periodogram of the residuals 

for the stochastic models in Figure 4-17. The cumulative periodogram falls largely 

outside the confidence interval, which indicates poor white noise properties of the 

residuals. The building thermal dynamics typically has two times constants for the 

fast (< 1h) and slow (> 24h) dynamics. A first-order model with a single time constant 

cannot reproduce both dynamics. 

However, the second-order models, namely the 2R2C and 3R2C, show significant 

improvement in the NRMSE fitting compared to the first-order 1R1C model. The 

cumulative periodogram of the residuals also stays strictly within the confidence 

interval (see Figure 4-17). The difference between the 2R2C and 3R2C model lies in 

the thermal resistance Uinf that connects the interior node directly to the outdoor 

temperature (Ta). This resistance account for the heat transfer of envelope 

components with negligible thermal mass, such as doors and windows, and the 

ventilation losses. When using experimental data in the ZEB Living Lab, the 

ventilation losses were precomputed using measurement data and injected directly 

into the interior node. Therefore, ventilation losses do not contribute to Uinf in this 
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situation. In addition, the windows and doors of the highly-insulated ZEB Living Lab 

also have low conductance. Consequently, the value of Uinf remains relatively limited. 

This explains why 2R2C model is competitive for the ZEB Living Lab. However, 

this conclusion should be carefully generalized to other insulation levels of the 

building envelope or if ventilation losses are part of Uinf.   

Although the third-order models (3R3C to 5R3C) sometimes present better NRMSE 

fitting with the deterministic model, the identified parameters are not physically 

plausible for the deterministic model. The capacitance of the interior node Ci has a 

larger value than the value of the internal walls node Cm, which does not translate the 

actual physics. Furthermore, for the 4R3C and 5R3C stochastic models, the UAea 

value is identified as close to 0, which also violates reality (as external walls are not 

perfectly insulated). Regarding the cumulative periodogram of the residuals, the 

5R3C is outside the confidence interval while the 3R3C and 4R3C models remain 

within the confidence interval but do not perform better than the second-order 

models. The variance of the key parameter Ce also shows that the third-order models 

could lead to large values with deterministic models, which implies that the third-

order models may be overfitting. Furthermore, the variance of Ce for the stochastic 

model also shows that the component UAinf is necessary to be modeled. Finally, the 

objective function during the successive PSO iterations is plotted along with the 

parameter value in Paper 4. The scatter plots for parameters Ce and Ai for second-

order and third-order models can also be found in the supplementary material of the 

paper. It is observed from the scatter plots that the optimum is flatter with third-order 

models, which corresponds to lower practical identifiability of the models. It can be 

concluded that the third-order models are (or are close to being) overfitted. The fitting 

of validation NRMSE fitting also confirms that the second-order model is the best 

trade-off between model complexity and accuracy. 

The discussion is not extended with the results of Paper 1, also using the ZEB Living 

Lab but only considering deterministic models. Regarding grey-box models based on 

standards, the EN 13790 is a first-order model. The results show that the EN 13790 

model is able to follow the general evolution of the indoor temperature and provides 

meaningful values of the parameters. However, the simulated temperature has 

significantly higher fluctuations directly corresponding to the start and stop cycles of 

the electric radiator. It is consistent with the previous conclusions that a first-order 

model is not able to capture the fast dynamics of the building. The VDI 6007 model 

is a second-order model but has six nodes and a relatively high number of parameters 

(i.e., resistance to connect the node and factors to distribute the internal, heating and 

solar gains between the nodes). It has a good prediction performance, but it generates 

parameter estimates that are physically not plausible. Consequently, the number of 

parameters of this model needs to be reduced to make the model identifiable.  

On the one hand, Paper 4 demonstrated that a relevant model structure could be 

derived based on the knowledge of building physics without resorting to structures 
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defined in building energy simulation standards. On the other hand, Paper 1 showed 

that the model structure of two important standards, the EN 13790 and VDI 6007, 

should be adapted to give good performance. Based on these conclusions, it suggests 

that there is no need to resort to existing model structures from building energy 

simulation standards to identify good structures for grey-box models.   

Table 4-2: The values and the corresponding variance of Ce. 

Model 

Ce  

Value 

[kWh/K] 

Ce  

Variance 

[kWh/K] 

NRMSE 

Fitting 

(simulation) 

NRMSE 

Fitting 

(validation) 

Model 

Ce  

Value 

[kWh/K] 

Ce  

Variance 

[kWh/K] 

NRMSE 

Fitting 

(1-step 

ahead) 

NRMSE 

Fitting 

(validation) 

1R1Cdet 5.62 0.754 72.7% 55.1% 1R1Csto 4.78 0.437 99.0% 65.7% 

2R2Cdet 6.11 0.369 93.0% 75.3% 2R2Csto 6.37 1.77 99.2% 79.2% 

3R2Cdet 5.28 0.284 93.6% 79.7% 3R2Csto 4.22 0.748 99.2% 81.8% 

4R2Cdet 5.40 0.430 93.5% 72.4% 4R2Csto 4.28 0.726 99.2% 81.5% 

3R3Cdet 6.08 0.689 95.0% 78.6% 3R3Csto 11.9 3.92 99.2% 71.1% 

4R3Cdet 3.94 0.609 95.3% 75.6% 4R3Csto 4.02 0.709 99.2% 82.7% 

5R3Cdet  3.99 0.613 95.3% 76.0% 5R3Csto  5.73 0.718 99.2% 79.8% 

 

Figure 4-17: Cumulative periodogram of the residuals for the stochastic models. 
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In conclusion, second-order grey-box models are most suitable for our study as the 

prediction performance and the physical plausibility are good. In addition, the 

dominant physical processes are properly modeled as proven by the cumulative 

periodogram. The second-order models are selected in the thesis as they are accurate 

but not overfitted. 

Q 5: Influence of the optimizer on the grey-box modeling results? 

Paper 2 and Paper 3 mainly address this question by comparing the performance of 

grey-box models calibrated using the default gradient-based optimization and a global 

optimization routine. The question is discussed in detail in Paper 3 with low-order 

grey-box models. The performance of both optimizers defined is compared for a 

selected number of datasets (i.e., cases 1 to 4 and 14), with and without ACS, for both 

deterministic and stochastic models. Table 4-3 shows the optimizer that leads to the 

lowest prediction error for each test case.  The symbol “D” represents the default 

greyest function, “G” represents the two-stage global optimization algorithm. The 

symbol “≈” is used when both optimizers lead to extremely close results in terms of 

prediction error and estimation of the model parameters. Only results for the sampling 

times of 2.5 and 30 min are presented in Table 4-3. However, the same conclusions 

are found for the other two sampling times (i.e., 15 and 60 minutes).  

Table 4-3: Optimizer leading to the lowest prediction error: each cell of the table has two 

symbols, one for the case without ACS (left) and the other with ACS (right); the symbol “D” 

means default greyest, “G” means global optimization and “≈” means equal performance. 

Time 

(Ts) 
Case  

1R1C  

DS 

(det) 

1R1C 

 MA 

(det) 

1R1C  

FIR 

(det) 

3R2C  

DS 

(det) 

3R2C  

 MA 

(det) 

3R2C  

FIR 

(det) 

1R1C  

DS 

(sto) 

1R1C 

 MA 

(sto) 

1R1C  

FIR 

(sto) 

3R2C  

DS 

(sto) 

3R2C 

 MA 

(sto) 

3R2C  

MA 

(sto) 

2.5min 1 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈ - - 

 2 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈  - - 

 3 ≈/≈ - - ≈/≈ - - G/≈  - - G/≈  - - 

 4 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈  - - 

 14 ≈/≈ - - ≈/≈ - - G/≈  - - G/≈  - - 

30min 1 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈ G/≈ G/≈ G/≈ G/≈ 

 2 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈ G/≈ G/≈  G/≈  G/≈ G/≈  

 3 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈  G/≈  G/≈  G/≈  G/≈  

 4 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈ G/≈ G/≈  G/≈  G/≈  G/≈  

 14 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈ G/≈  G/≈  G/≈  G/≈  



RESULTS AND DISCUSSION 

66 

 

It is observed that the two optimizers have identical results for all the cases using a 

deterministic model, regardless an ACS is applied or not. However, global 

optimization generally performs better than the default greyest optimization for 

stochastic models without ACS, even if the model is first order. On the contrary, both 

optimizers have similar performance when ACS is applied. It means that ACS tends 

to preserve the physical plausibility of the model parameters when Ts is large, but it 

also positively influences the convexity of the optimization problem. In general, 

results confirm that it is better to use global optimization. Otherwise, the obtained 

sets of parameters are possibly located at a local minimum which mainly depends on 

the initial guess of the parameters. 

Q 6: Prediction performance of grey-box compared to black-box models? 

Some results of Paper 1 can give some indications to this question for deterministic 

models. The second-order subspace linear black-box model shows a good simulation 

performance equivalent to the second-order linear grey-box model. Nevertheless, 

with black-box models, the physical meaning of the states is unknown. However, the 

estimate of the overall heat transfer coefficient is similar between the second-order 

black-box and the best grey-box models. It is worth mentioning that these 

investigations were performed with high-quality input-output data. In addition, 

experiments corresponding to the validation data set took place a few days after the 

training period. The relative performance of black-box and grey-box models could be 

different if these experimental conditions were not fulfilled. The results nonetheless 

suggest that black-box models deserve to be investigated in detail to create a control-

oriented model with limited knowledge of the building and a limited amount of time. 

In this respect, it is worth mentioning that Knudsen et al. [54]successfully tested an 

economic MPC in the ZEB Living Lab using a linear black-box model identified 

using the subspace method (n4sid in MATLAB). 

4.3 Model Predictive Control 

Q 7: What is the performance MPC using LTI and adaptive grey-box models and 

other types of data-driven models? 

This question is mainly answered in Paper 5 and Paper 6 based on grey-box MPCs. 

Limited results in Paper 7 are given based on the comparison between different types 

of data-driven models for MPC. 

4.3.1 MPC based LTI vs adaptive grey-box models 

Paper 6 answers the question by comparing the performance of the different MPC 

controllers for the three different control objectives. Therefore, the co-simulation 

results are evaluated successively based on the control objectives. The co-simulation 

virtual experiment lasted for 61 days (from November 1st to December 31st). The 

trained parameter values of the three LTI models are shown in Table 4. As can be 
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seen, the HTC and Ai are significantly different for the LTI model identified using 

the FullWinter data than the two LTI models using the PRBS excitation signal. 

Table 4-4: Trained parameter values of the LTI models 

Case HTC [W/K] Ce [kWh/K] Ci [kWh/K] Ai [m2] 

FullWinter 81.42 4.03 0.33 6.09 

PRBSNOV 96.43 4.81 0.42 16.96 

PRBSDEC 94.25 4.93 0.41 15.94 

 

Energy savings (ES) 

Energy savings is the most basic control objective of this study. Figure 4-18 presents 

the indoor temperature profile under the operation of the different MPC controllers 

using the energy savings control objective. Figure 4-19 is a close-up section of Figure 

4-18, for both L = 108 and L = 106 penalty factors. The total energy use and the thermal 

discomfort of those different MPC controllers with different penalty factors are 

calculated so that the MPC controller performance can be quantitatively compared in 

Table 4-5. 

Table 4-5: Summary of the MPC performance for the energy saving case 

Calculated 

Index 

FullWinter 

MPC 

PRBSNOV 

MPC 

PRBSDEC 

MPC 

Partially 

Adaptive 

MPC 

Fully 

Adaptive 

MPC 

Penalty 

Factor 

(L) 

  Energy Use 

[kWh] 
800.15   829.26 853.42 799.14 864.22 106 

Thermal 

Discomfort 

[Kh] 

554.52 279.51 120..81 567.95 103.99 106 

Consumed 

Energy [kWh] 
803.73 855.18 875.60 804.06 893.62 108 

Thermal 

Discomfort 

[Kh] 

534.39 194.37 99.47 528.87 72.04 108 
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Figure 4-18: Indoor temperature profile under the operation of different MPC controllers 

with energy saving objective (L = 108). 

Results show that the FullWinter model makes inaccurate indoor temperature 

predictions, which causes the thermal comfort constraint to be frequently violated. 

The Partially Adaptive MPC shows a similar inaccurate prediction compared to the 

FullWinter MPC. The thermal comfort constraint is still frequently violated. With the 

lower penalty factor 106, the thermal discomfort of Partially Adaptive MPC is even 

larger than the FullWinter MPC. These two models consume less energy compared 

to the other models (i.e., the Fully Adaptive MPC and the PRBS MPC) because they 

are less accurate, which causes the indoor temperature to drop below the minimum 

indoor temperature threshold. The heating system is switched on far too late in the 

morning, resulting in significant thermal discomfort. It indicates that the LTI grey-
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box model trained using the data from the full space-heating season may not be 

suitable as the prediction model in MPC. Only updating the effective window area of 

the FullWinter model cannot correct the model to reach a satisfactory prediction.  

 

Figure 4-19: Close-up of the indoor temperature profile under the operation of different 

MPC controllers with energy savings objective (Upper figure corresponding to 106, Lower 

figure corresponding to 108). 

PRBSNOV MPC and PRBSDEC MPC perform better than the FullWinter and 

Partially Adaptive MPC models in terms of avoiding thermal discomfort, which can 

be clearly seen in Figure 4-18 and Figure 4-19. PRBSDEC MPC performs slightly 

better than PRBSNOV MPC in terms of thermal comfort leading to slightly higher 

energy use. The influence of the penalty factor on PRBSNOV MPC is more evident 

than the PRBSDEC MPC. The better performance of PRBSNOV MPC and 

PRBSDEC MPC over the FullWinter MPC proves that it is important to use a model 
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that is trained with data generated from weather conditions similar to the period when 

the MPC will be operated. 

The Fully Adaptive model performs the best among the MPCs in avoiding thermal 

discomfort, which can be clearly seen in Figure 4-19. The PRBSDEC MPC performs 

slightly better than the Fully Adaptive MPC with a lower penalty factor 106 mainly 

because the Fully Adaptive MPC operates with the FullWinter model in the first 

seven days. The Fully Adaptive MPC performs much better than the Partially 

Adaptive MPC due to more degrees of freedom to fit the model parameters.  

Energy cost saving (EMPC) 

An hourly electricity price profile is applied to the energy cost saving case. The total 

energy cost is the consumed energy at each time slot multiplied by the corresponding 

electricity price. Figure 4-20 shows the indoor temperature profile under the operation 

of different MPC controllers with the energy cost saving objective (with a penalty 

factor L = 108). Figure 4-21 is a close-up section of Figure 4-20 for the two penalty 

factors. The summary of the results of the total energy cost and the thermal discomfort 

for these different MPC controllers with different penalty factors is presented in Table 

4-6. 

Table 4-6: Results summary of MPC controllers' performance for energy cost saving 

(EMPC) case 

Calculated 

Index 

FullWinter 

MPC 

PRBSNOV 

MPC 

PRBSDEC 

MPC 

Partially 

Adaptive 

MPC 

Fully 

Adaptive 

MPC 

Penalty 

Factor 

(L) 

Energy Cost 

[NOK] 
319.54   327.15 336.93 319.56   341.75 106 

Thermal 

Discomfort 

[Kh] 

453.93 216.76 96.84 462.61 79.74 106 

Energy Cost 

[NOK] 
328.56 334.77 342.51 326.32 353.89 108 

Thermal 

Discomfort 

[Kh] 

210.74 164.93 86.30 247.05 50.68 108 

 

The results of the EMPC cases show that all the EMPCs can respond to the variable 

electricity price. The sharp drop in the indoor temperature during high electricity 

price periods (e.g., around 460 and 770 hours) reveals that the heating system is 

switched off to decrease the energy cost. However, the performance differs between 

the controllers due to different levels of prediction accuracy. 
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Figure 4-20: Indoor temperature profile under the operation of different MPC controllers 

with energy cost saving objective (L = 108). 

Like the energy savings case, the FullWinter MPC and the Partially Adaptive MPC 

perform the worst. The thermal comfort constraint is frequently violated, which 

indicates that the prediction from the model is not accurate enough. It confirms that 

only updating the window area of the FullWinter model is not enough to reach good 

MPC performance. Although they have a relatively lower energy cost compared to 

the other models, this is a direct result of the large thermal discomfort of the two MPC 

controllers. Regarding the sensitivity to the penalty factor for these two cases, 

increasing L can decrease the discomfort of the two models, but it still remains at a 

comparatively high level. Furthermore, the Partially Adaptive MPC generally has a 

higher discomfort level than the FullWinter model, no matter whether a high or a low 

penalty factor is used. The reason is that the estimated effective area Ai of Partially 

Adaptive MPC is higher than the FullWinter MPC in most of the operation time, 

which leads to a higher heat gain from solar radiation. The HTC value of the 
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FullWinter MPC is lower than the reference true HTC value of the IDA ICE building 

is higher than the HTC value of the FullWinter model, causing an underestimated 

heating demand. However, the Ai value of the FullWinter MPC is also lower than the 

other LTI MPC, which corresponds to lower estimated solar heat gains. It neutralizes 

the effect of underestimated heating demand to a certain degree. Therefore, the 

correction of solar heat gain from Partially Adaptive MPC has a negative impact on 

thermal comfort for this case study. Partially Adaptive is not able to preheat the 

building enough because of the higher prediction of the solar gain compared to the 

FullWinter model, which causes a higher thermal discomfort level. 

 

Figure 4-21: Close-up of the indoor temperature profile under the operation of different 

MPC controllers with energy cost saving objective (Upper figure corresponding to 106, 

Lower figure corresponding to 108). 

The PRBSNOV MPC and PRBSDEC MPC models perform better than the previous 

two models in reducing thermal discomfort. The PRBSDEC MPC performs better 
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than PRBSNOV MPC for the EMPC case, which is similar to the energy savings 

case. The results of PRBSNOV MPC and PRBSDEC MPC confirm that it is 

preferable that use a model trained on data from similar weather conditions to the 

operation period.  

The advantage of the Fully Adaptive model is more evident in the energy cost saving 

case. The thermal discomfort is lowest among the controllers, though it leads to a 

higher electricity cost. It can be clearly seen from Figure 4-20 and Figure 4-21 that 

the minimum indoor temperature constraint is less frequently violated. This proves 

that the Fully Adaptive MPC functions well for the control objectives of this case.  

In general, the results of the energy cost saving case are very similar to the energy 

savings case. It is also not suitable to use the FullWinter model as the prediction 

model for EMPC, and only updating the effective window area of the model is not 

enough to correct the prediction model. The two PRBS models perform worse than 

the Fully Adaptive model due to less accurate prediction. In other words, the building 

is not preheated enough in the low electricity price period. The results of the Fully 

Adaptive MPC with L = 106 and the best LTI model (namely the PRBSDEC MPC) 

with L = 108 also confirm that if the energy cost is at the same level, the Fully 

Adaptive MPC has lower thermal discomfort. It proves the extra higher energy cost 

of the Fully Adaptive MPC is used for reducing thermal discomfort. 

Energy cost saving with peak reduction (EMPCPR) 

The energy cost saving with the peak reduction case is simply generated by adding a 

penalty for energy use during the peak hour to the EMPC case. Figure 4-22 shows 

the indoor temperature profile using the different MPC controllers with the energy 

cost saving and peak power reduction objective (with a penalty factor L = 108). The 

peak hour penalty is added to the hourly electricity price profile to reconstruct the 

new cost profile, which is also shown in Figure 4-23. The electricity energy cost is 

still the energy used at each time step multiplied by the corresponding electricity 

price. The total cost is the electric energy cost plus the peak hour penalty cost.  

The MPC controllers are switched off in the heating system during high price periods 

(e.g., at about 460, 770 and 950 hours) to decrease the total cost, which can be seen 

from the decrease in the indoor temperature.  
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Table 4-7: Results summary of MPC controllers' performance for energy cost saving 

(EMPCPR) case. 

Calculated 

Index 

FullWinter 

MPC 

PRBSNOV 

MPC 

PRBSDEC 

MPC 

Partially 

Adaptive 

MPC 

Fully 

Adaptive 

MPC 

Penalty 

Factor 

(L) 

Energy Cost 

[NOK] 
  328.67 330.36 338.94 328.17 350.06 106 

Total Cost 

[NOK] 
405.38 384.13 403.31 408.80 379.77 106 

Thermal 

Discomfort 

[Kh] 

312.18 169.55 81.12 311.81 45.13 106 

Peak Hour 

Energy [kWh] 
38.36 26.89 32.19 40.31 14.86 106 

Energy Cost 

[NOK] 
327.53 345.13 348.70 325.81 355.80 108 

Total Cost 

[NOK] 
396.37 420.98 430.05 397.32 410.36 108 

Thermal 

Discomfort 

[Kh] 

200.11 96.51 44.98 220.24 30.51 108 

Peak Hour 

Energy [kWh] 
34.42 37.92 40.67 35.76 27.28 108 

 

Results show that the FullWinter and the Partially Adaptive MPCs are still 

performing poorly in the case of EMPCPR. Large thermal discomfort is still 

occurring due to the inaccurate prediction of the model. It can be clearly seen in 

Figure 4-23 that the two MPC controllers choose to switch off the controller at the 

high price periods, even though the minimum indoor temperature constraint is 

violated. It consolidates the conclusion based on the previous two cases. An LTI 

model trained from full winter data is not appropriate to be used as the prediction 

model for MPC control. Only updating the effective window area of the FullWinter 

model leads to higher thermal discomfort, which is similar to the previous EMPC 

case. The explanation for this phenomenon is the same as the EMPC case. Increasing 

the penalty factor L can significantly reduce the thermal discomfort of these two 

MPCs. 

Similar to the previous two cases, the PRBSDEC MPC performs slightly better than 

the PRBSNOV MPC in terms of thermal comfort. However, the PRBSDEC MPC 

causes an increased total cost and more peak hour electricity usage. In general, the 

two models generally have much better performance compared to the FullWinter and 

the Partially Adaptive MPCs. It proves again that it is necessary to have training data 

with similar weather conditions compared to the MPC operating period.  
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Figure 4-22: Indoor temperature profile under the operation of different MPC controllers 

with energy cost saving and peak reduction (L = 108). 

The EMPCPR case clearly shows that the Fully Adaptive MPC outperforms the other 

MPCs. For the previous test cases, the best MPC based on LTI that could compete 

with the Fully Adaptive MPC was the PRBSDEC MPC. However, in the EMPCPR 

case, the Fully Adaptive MPC gives better performance for all the KPIs than the 

PRBSDEC. For both penalty factors: the thermal discomfort, the total cost and the 

energy use during peak hours are lower. By comparing the results of the Fully 

Adaptive MPC with L = 106 and the best LTI model (PRBSDEC MPC) with L = 108, 

it can be seen that the total cost of the Fully Adaptive MPC has a much lower value 

when the thermal discomfort level is almost identical. 
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Figure 4-23: Close-up of the indoor temperature profile under the operation of different 

MPC controllers with energy cost saving and peak reduction (Upper figure corresponding 

to 106, Lower figure corresponding to 108). 
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Figure 4-24: Profile of the emitted power by the electric radiators for the different MPC 

controllers and the energy cost saving and peak reduction objective (L = 108). 

Figure 4-24 shows a close-up period of the emitted power profile with L = 108 for the 

different MPC controllers. It can be clearly seen that all the MPC controllers have 

shifted most of the energy use outside the peak period.  

Time evolution of the parameters 

This section presents the time evolution of the updated parameters with the high 

penalty value L=108. Figure 4-25 presents the history of the HTC value. The value of 

the FullWinter MPC and the Partially Adaptive MPC are overlapped due to the 

identical value. The results of the Fully Adaptive MPC have been distinguished with 

different line styles for the three different test cases. It can be seen that the Fully 

Adaptive MPC has two significant parameter updates during the simulation period, 

but the time when these updates occur is not identical. The obtained HTC values for 

the Fully Adaptive MPC are within the range to be physically plausible, the HTC 

difference being within  10%. The results indicate that the Fully Adaptive MPC can 

give satisfactory prediction performance with reasonable parameter values for a 

relatively long period and does not need to update the parameters frequently. 
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Figure 4-25: History of the HTC value update. 

 

Figure 4-26: History of the Ai value update. 

Figure 4-26 shows the history of parameter Ai. The results of the three cases are also 

distinguished with different line styles. The results show that the Ai updating history 

follows a similar trend to the Partially Adaptive MPC by first increasing in November 

and then decreasing in December. However, the updating history of Ai for the Fully 

Adaptive MPC is larger in amplitude compared to the Partially Adaptive MPC. 

Furthermore, parameter Ai is updated very frequently by the Partially Adaptive MPC, 

which indicates that the prediction error from the model is constantly large during the 

simulation. This confirms the previous conclusion regarding the FullWinter MPC and 

Partially Adaptive MPC: the FullWinter model cannot provide satisfactory prediction 

performance and the model cannot be corrected by only updating parameter Ai. The 

Fully Adaptive only updates Ai two times during simulation and the value is also 
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changing significantly. It indicates that parameter Ai may not play a dominant role in 

the prediction performance over a long timescale, though it has a significant influence 

on short-term temperature based on existing researches [45,52].  

  

Figure 4-27: History of the Ctotal value update. 

Figure 4-27 presents the updating history of the sum of capacitances  Ce and Ci, named  

Ctotal. Results show that the values of the Fully Adaptive MPC are within the physical 

plausible range compared to the reference value Ceff of 3.9 kWh/K, although the 

values are different for the three cases. However, it is worth mentioning that the value 

of Ctotal is also correlated with the value of the HTC and Ai. Considering the fact that 

the model only takes seven days of data under normal operation to update the 

parameters, it is reasonable that the obtained value of HTC and Ceff has some 

variations in the value as long as it can deliver decent prediction performance.  

4.3.2 Other types of data-driven models for MPC 

Paper 7 is a cooperative paper in the framework of the IEA EBC Annex 71 entitled: 

“Building energy performance assessment based on in situ measurements”. Some of 

its results can give complementary information to Q7. The building model has been 

modeled using the Modelica language in Dymola software and the OpenIDEAS 

library. This simulation model in Dymola serves as the emulator in this study. The 

case building is one of the test cases of Annex 71 project and is a two-storey 

experimental dwelling located in Holzkirchen, Germany. Various data-driven models 

for the investigated building have been developed in this study. An MPC setup has 

been developed in which the performance of the predictive models could be evaluated 

and compared. The MPC aims to optimize two objectives, namely thermal discomfort 

and electricity costs. The controller has been developed in SIMULINK. Hence, a way 

of communication is required to make the co-simulation between the SIMULINK and 
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Dymola. An interface is applied to tackle this issue, which facilitates the connection 

between Dymola and Matlab, which is called Functional Mock-up Interface (FMI). 

Paper 7 compares the performance of different types of linear MPCs in addition to 

grey-box models in an MPC experiment. These models range from single-state grey-

box models, state-space models to more advanced artificial intelligence models 

Artificial Neural Networks (ANN) and Support Vector Machine (SVM).  

 

Figure 4-28: R2(%) of models against test dataset. 

 

Figure 4-29: KPIs deploying different predictive models. 

Figure 4-28 provides the boxplot accuracy of different modeling techniques used in 

this study. The maximum in each box corresponds to the one-step ahead prediction 

accuracy while the minimum corresponds to N (Control horizon) steps ahead 

prediction accuracy. As it can be seen in Figure 4-28, NARX model and the SVR are 
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the best performing models in terms of one-step ahead prediction accuracy. 

Nevertheless, these two models are not the best performing models in the MPC 

framework. This statement is especially more significant in the case of the NARX 

model since it leads to the highest electricity cost compared to the other models. 

Looking at Multi-Step ahead prediction error (MSPE), one can easily realize that, 

although the NARX model has the second-highest one-step ahead R2, its multi-step 

ahead prediction performance is the poorest amongst all the models. The reason for 

this observation is explained by the fact that ANNs easily become over-fit to training 

data if no regularization of some sort is used [94]. This issue should be tackled when 

using ANNs as predictive models otherwise one might end up with an ANN model, 

which is highly accurate for one-step ahead prediction but provides poor forecasts for 

multi-step ahead prediction. 

Analyzing the results as illustrated in Figure 4-29, it could be concluded that the best 

performing MPC (namely the state-space model with seven states) reduces electricity 

cost from 11€ to 8.5 € compared to RBC, which corresponds to 22.7%. Comparing 

different MPCs we can deduce that the difference between electricity costs resulting 

from using different predictive models in the MPC is 7%: electricity cost of 8.5 € in 

the SS7 model compared to 9.1 € achieved by using the NARX model. Considering 

the 22.7% as the highest potential of MPC achieved by our models for this case study, 

it could be inferred that the models used here vary by 24% in terms of activating the 

potential energy savings achieved by MPC, which demonstrates the importance of 

using models with high multi-step ahead prediction accuracy in the MPC. 

 

Figure 4-30: Building’s temperature profile due to MPC. 

Results obtained by applying state-space model with seven states are presented in 

Figure 4-30 and Figure 4-31. It is illustrated in Figure 4-30, the controller is able to 

maintain the temperature within the thermal comfort band, although there are some 

minor violations. These violations could have two main causes. First, the magnitude 

of weight (L) scalar in the objective function, which allows thermal discomfort to 

some extent, especially when the electricity cost is relatively high. The second reason 

behind the minor thermal discomfort could be the mismatch between the predictive 
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model and the emulator. The electricity price shown in Figure 4-31 is based on the 

time of use pricing structure from a supplier in Belgium. As seen in Figure 4-31, the 

load profile does not completely correspond with the time-of-use price. This 

observation is expected since the MPC does not optimize the building’s behavior only 

for one time-step but for the whole control horizon. 

 

Figure 4-31: Electricity use against electricity price. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

This chapter summarizes the main findings of the PhD thesis. Key conclusions of 

each part are presented in Section 5.1. Section 5.2 lists the limitations of the studies 

while Section 5.3 gives recommendations for future research. 

5.1 Concluding remarks 

This thesis investigates the model-based control to unlock the energy flexibility of 

residential buildings so that more renewable energy resources can be integrated into 

the current energy system. The research mainly focuses on grey-box modeling and 

MPC. The most important conclusions are as follows: 

On the modeling side 

This study is based on both virtual and field experiments. The field experiment 

includes two experimental setups of the ZEB Living Lab using two different space-

heating emission systems, namely an electric heater and a hydronic radiator.  

The pre-processing techniques include low-pass filtering (using MA or FIR), the 

sampling time (Ts) and the application of anti-causal shift (ACS). Three different 

types of temperature measurements are analyzed to investigate the influence of the 

sensor location and dynamics (i.e., volume-averaged air temperature, single 

temperature sensor without casing and single wall-mounted sensor with casing).  

Different excitation signals have been considered to generate input-output data in this 

thesis. Regarding the excitation signal, results showed that intermittent heating with 

on-off control of the electric radiators is a good excitation signal. It enables normal 

occupancy of the building and the collection of long data series as well as excites the 

slow daily and fast building dynamics. 

The research confirmed the conclusion of the literature review that second-order is a 

good trade-off between modeling accuracy and overfitting. Based on this conclusion, 

the subsequent analyses of the thesis are done mainly based on a second-order grey-

box model. The other conclusions regarding the modeling are presented separately 

between deterministic and stochastic models. 

Deterministic model: 

• For the deterministic model, the identification results from the default gradient-

based and global optimization routines are almost identical (with and without 

ACS). 

• The data pre-processing has a limited influence on the model performance based 

on virtual experiment results. This is confirmed using field experiments. In 

addition, the sensor thermal dynamics also have a limited influence on the 

deterministic model performance. 



CONCLUSIONS AND FUTURE RESEARCH 

84 

 

Stochastic model: 

• For the stochastic model, the two-stage global optimization leads to lower 

NRMSE than the default gradient-based optimizer and the resulting parameters 

have significantly different values.  

• It is always recommended to sample the measurement data at a higher frequency 

than the fastest dynamics of the system to be modeled (Tmin). The parameters 

became non-physical without ACS for large sampling time (Ts). However, large 

sampling times did not alter the simulation performance significantly. Although 

the ACS tends to improve the physical plausibility of the model parameters with 

Ts, it had in general a negative influence on the simulation performance of the 

model. 

• Large Ts can cause the parameters to become non-physical without ACS. ACS is 

excessively beneficial in guaranteeing the physical plausibility of parameters, 

making the identified parameters insensitive to the sampling time. This 

conclusion is valid for both our virtual and field experiments. However, the 

influence of ACS on prediction performance is different for virtual and field 

experiments. ACS has in general a negative influence on the simulation 

performance in the virtual experiment. In the field experiment, large Ts has a 

limited effect on the prediction performance for the temperature sensors without 

casing. However, for the wall-mounted sensor, pre-filtering and sometimes ACS 

should be used to converse the prediction performance at large Ts. Pre-filtering 

also has a beneficial influence on the model prediction performance for field 

experiments, but not in a dominant way. Unlike the results based on virtual 

experiments, the influence of ACS on prediction performance is most often 

beneficial in our study. At this stage, it can be concluded that the influence of the 

sampling time and ACS on the prediction performance is not systematic (i.e., 

sometimes positive or negative). 

• The results for stochastic models depend on the type of indoor temperature 

sensor. Firstly, the cases with temperature sensors with negligible thermal 

dynamics (i.e., free-standing air temperature sensors without casing) are 

analyzed. Even though the vertical thermal stratification is significant, there is 

only a slight reduction in the model performance when moving from a volume-

averaged measurement to a single sensor located at mid-height in the room. 

Secondly, when the temperature sensor is the wall-mounted temperature sensor, 

an adapted model with time constant dynamics for the sensor is needed to obtain 

a physically plausible estimation of the parameters. This is an important 

conclusion as most buildings are equipped with wall-mounted temperature 

sensors. To limit the investment, the number of sensors should also be limited, 

making a volume-averaged measurement expensive. 
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• The dynamics of the hydronic radiator (with significant thermal mass) are not 

necessary to be modeled if the time constant of the measurement device is larger 

than that of the hydronic radiator. 

On the control side 

In this study, the MPC uses the thermal mass of the building as short-term thermal 

storage to perform DR.  

The performance of different MPC controllers based on a linear grey-box model of 

the thermal dynamics of the building is first compared for three different control 

objectives. The model performance is assessed from the degree of completion to 

fulfill the defined objectives and the avoidance of thermal discomfort. This study uses 

a highly-insulated detached house simulated using the BPS software IDA ICE as the 

emulator. The IDA ICE model is coupled with MATLAB in a  co-simulation setup. 

The control signal is calculated by the MPC controller implemented in  MATLAB 

and sent to the heating system so that the indoor temperature of the building in IDA 

ICE can be controlled. 

Results show that an LTI model trained using the data from the entire space-heating 

season (FullWinter model) is not suitable to be used as the prediction model for a 

long period of operation in MPC. It shows that a longer training period is not always 

a synonym for better model performance. Only updating the window area of the 

model (Partially Adaptive MPC) is not enough to correct this LTI model and it 

sometimes even has negative effects on the results. The MPC based on two LTI 

models training using two short periods of data using a PRBS excitation 

(PPRBSNOV MPC and PRBSDEC MPC) generally performs better than the 

FullWinter and Partially Adaptive MPCs. This confirms that if an LTI grey-box 

model is used in MPC,  it should be trained with data generated during similar weather 

conditions to the period when the MPC will be operated. The  Fully Adaptive MPC 

outperforms the two PRBS LTI MPCs. It demonstrates the need to update all the 

model parameters if this model is to be used during the entire space-heating season. 

The Fully Adaptive model gives a more accurate prediction, which causes the thermal 

discomfort to be significantly reduced. It is worth mentioning that the number of 

parameter updates in the Fully Adaptive MPC is limited (i.e., two to three for the two 

months of MPC operation). 

This thesis also implemented a parametric investigation of MPC performance based 

on other types of data-driven models than grey-box models. Comparing the 

performance of MPCs using different models shows that model trained based on 

MSPE criteria reflects the better suitability of predictive performance compared to 

models trained based on one-step ahead prediction. On the one hand, it has also been 

shown that models with similar one-step ahead accuracy could lead to 24% difference 

in terms of activating the potential cost savings achieved by MPC. On the other hand, 

ANN-based NARX model yielded the highest electricity cost, which is due to its poor 
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multi-step ahead prediction performance. Furthermore, MPC is compared to a well-

tuned Rule Based Controller (RBC). Best performing MPC (using state space model 

with 7 states) yielded 22.7% decrease in energy cost compared to the RBC. 

5.2 Limitations 

On the modeling side 

Many findings from the field experiments are based on a single test case, and these 

findings provide practical guidelines for identifying the thermal dynamics of 

buildings using grey-box models and field measurement data. Therefore, additional 

research on real buildings is needed to generalize the conclusions. The occupants' 

behavior based on a fixed schedule in the experiment is also very artificial with are 

not close enough to real conditions. Our virtual experiment does not reflect the 

stochasticity of the user behavior sufficiently, which may also need field tests to 

validate the findings. The conclusion might change if the data is collected from a 

building with (real) people living inside. 

The thesis only considers mono-zone grey-box models. This is acceptable for the two 

test cases considered in the thesis. These cases are highly-insulated with balanced 

mechanical ventilation and a heat recovery which limits the temperature difference 

between the rooms. In addition, the internals was open in most of the scenarios. Most 

of the existing buildings in the Norwegian building stock are not well insulated. Many 

Norwegian actually prefer colder bedrooms (with lower temperature setpoints for 

bedrooms). In this case, residential buildings are inherently multi-zone, which 

requires a multi-zone model for MPC. If the windows of bedrooms are open at night, 

the natural ventilation should also be considered based on the multi-zone model. 

However, this limitation does not significantly impact the conclusions of the thesis. 

For example, the literature review has shown that second-order grey-box models are 

typically selected as the basic element to model one zone in a multi-zone model.    

It should be remembered that the pre-filtering and resampling performed on the data 

from the two test cases are applied to all the variables (meaning the input data and 

output data). Therefore, this does not introduce any delay between these variables. 

This assumption is acceptable when the data preprocessing is a deliberate choice of 

the modeler. However, some of the data pre-processing can be implicit and performed 

by the sensor or hardware without the modeler's knowledge. Then, the exact data pre-

treatment is not known and can be different for the different variables measured. Then 

a more detailed analysis of the delays between the variables should be performed. 

The analysis is based on the MATLAB system identification toolbox, where the 

stochastic equations are written in innovation form. For generalization, results should 

be reproduced in other system identification tools and formulations, such as CTSM-

R [95]. 
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On the control side 

The virtual experiment length of this thesis is set to two months due to the limitation 

of the co-simulation framework. The co-simulation was operated on a workstation 

with an Intel Xeon E5-2697 18-core CPU clocked at 2.30 GHz, 2301 Mhz, 64 GB 

RAM running a 64-bit version of Windows 10 Enterprise. The co-simulation of two 

months takes approximately 20 hours on average to finish. The EMPC case of the 

Fully Adaptive MPC is taken as an example, and it takes 1130.4 minutes to complete. 

The co-simulation for the Partially Adaptive MPC can take a much longer time due 

to frequent updates of the parameters. It is interesting to see the testing be done in a 

longer simulation period and different years so that the results can be more 

generalized.  

Due to the inherent modeling simplifications in BPS, the conclusion might be 

different for real field experiments. The test building in our study is highly-insulated 

so that solar gains contribute significantly to the space heating and the air infiltrations 

are limited. With an older building, the situation would be the opposite (i.e., the 

insulation level would be lower and air infiltrations higher), which would give a 

different dependence on the variations in the weather conditions during the space-

heating season. This may impact the conclusions on the MPC based on adaptive grey-

box models that were derived for a highly-insulated building. 

5.3 Future research 

This thesis investigates the topic of model predictive control to activate the building 

energy flexibility mainly based on grey-box modeling techniques. With all the 

findings of this thesis and the limitations, the potential future research is outlined 

below. 

• For generalization purposes, results should be reproduced in other simulation 

platforms or on a real experiment performed over a long period of time. Many 

MPC studies using field measurements are based on a short experimental period, 

see e.g., [54].  

• The analysis can also be repeated for other building types or levels of thermal 

performance of the building envelope. For instance, older buildings are typically 

naturally ventilated and this phenomenon is intrinsically more non-linear. The 

modeling of the air handling unit (AHU) with fixed effectiveness in IDA ICE can 

also be improved. 

• It will be interesting to do more testing with black-box modeling techniques. It 

can significantly reduce the expertise in building physics of the modeler if the 

black-box models can give robust predictions and avoid overfitting problems.  

• It is also interesting to make the adaptive control MPC test in a residential 

building with human occupants to see if the control algorithm is still valid. In 
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addition, a multi-zone version of the adaptive MPC should be developed in the 

future for more advanced and precise control purposes of the building. 

• This study mainly takes the spot prices of electricity into consideration for the 

objective function design of the MPC. However, CO2eq. intensities of the 

electricity mix or CO2eq. intensities coupled with electricity prices could also be 

considered as the index for the objective function design of the MPC. 

• The model identification and the analysis of the data pretreatment have been 

made manually in this thesis. In other words, parametric runs have been used, but 

results have been mostly analyzed directly by the modeler. It should ideally be 

automated to make the procedure less time-consuming and more cost-efficient 

for market penetration, especially for small residential buildings. As previously 

mentioned in the limitations, the data pretreatment is here applied for all input 

and output variables. In future work, the effect of distinct data pre-treatment on 

the different variables should be considered, which, for instance, requires 

analyzing the delays (lag) between the variables. 
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Abstract 

Model Predictive Control (MPC) is a key technology to 

activate the building energy flexibility. A reliable control-

based model should be developed for each specific 

building. The structure of grey-box models is usually 

based on the physical knowledge of the building. Firstly, 

it is not certain that this information will be available for 

all buildings, especially for small residential buildings. 

Secondly, developing a specific model structure for each 

building is most probably not affordable. Therefore, the 

paper investigates the dependency on the model structure 

to create reliable control-oriented model for the thermal 

mass of residential buildings. Using a test case, the 

performance of grey-box models based on the physical 

knowledge of the building are compared to grey-box 

models based on a generic structure taken from building 

standards (EN 13790 and VDI 6007) as well as black-box 

models where no knowledge of the building is required. 

Introduction 

Renewable energy plays an increasingly important role in 

economy growth and to limit CO2 emissions. However, 

the increasing penetration of renewables in the grid poses 

a challenge for balancing the demand and supply of 

electricity. Electricity generated from renewables may not 

be consumed optimally and this mismatch can also cause 

challenges in the power system. Thus, multiple types of 

flexibility are needed in the energy sectors for smart grid 

integration (You, Jin, Hu, Zong, & Bindner, 2015). 

Buildings accounts for more than one-third of the total 

final energy consumption worldwide (Transition to 

Sustainable Buildings, 2013). A considerable portion of 

the energy consumed by buildings is used for heating, 

especially in Nordic countries where the space-heating 

season is long and cold. It has been shown that the thermal 

mass of buildings can be a significant heat storage (Le 

Dréau & Heiselberg, 2016; Glenn Reynders, 2015; Zong 

et al., 2017) to perform demand response (DR). Model 

predictive control (MPC) is often considered to be a key 

technology to activate the thermal energy flexibility. The 

control will take the predictions of future disturbances and 

system constraints into the optimization so that an optimal 

control decision could be made at each time step to 

perform DR. The typical disturbances taken into account 

are the ambient temperature, solar radiation and internal 

heat sources. The objective of the optimization using 

MPC is usually to minimize energy use, power, energy 

costs or CO2 emissions while subjected to thermal 

comfort constraints (Dahl Knudsen & Petersen, 2016). 

An effective implementation of a MPC requires a specific 

control model of the thermal dynamics of the building. 

Methods are typically divided into white-, black- and 

grey-box models. White-box models are almost entirely 

based on physical laws. Therefore, they require detailed 

knowledge of the system to be modelled and its 

parameters (such as the geometry). It is often difficult and 

very time-consuming to obtain this information in 

practice. Some parameters may also change during 

operation and deviate from the original design. In 

addition, the mathematical complexity of white-box 

models makes them unsuited for MPC due to the 

computational cost to optimize a large non-linear system 

of equations in real time. Model reduction techniques can 

nonetheless be applied to white-box models. Black-box 

modelling is a data-driven method only considering 

system inputs and outputs. It can be applied even if a 

limited physical knowledge of the system is available. 

Since the data is the only information for the modelling 

process, the quality and amount of data will significantly 

influence the precision of black-box models. Their ability 

to predict the system dynamics outside operating 

conditions considered during the model training is also 

critical. Grey-box modelling is a combination of the 

previous two approaches. The physical knowledge of the 

system is used to determine a general model structure (a 

low-order model) and the model parameters are identified 

using experimental data. Due to the model structure based 

on physical grounds, grey-box models require less 

experimental data than black-box models and are less 

sensitive to the data quality. In addition, they should be 

more robust to extrapolate outside the operating 

conditions used during the period of the model training. 

A single residential building will not provide a large 

amount of energy flexibility to the grid. In the context of 

smart grids, a large number of residential buildings needs 

to be considered. However, the thermal dynamics is 

different for each single building. Creating a suitable 

control-oriented model is also acknowledged as the most 

time-consuming part of the MPC implementation (Atam 

& Helsen, 2016), especially when physical knowledge 

specific to the building is required (such as in grey-box 

models). For grey-box models, the typical approach is to 

progressively increase the complexity of the model 

structure and to perform a forward selection process to 

identify the optimal configuration. 
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Some research work has been recently done to develop a 

tool that can automatically identify the grey-box models 

based on a BIM (Andriamamonjy, Klein, & Saelens, 

2019). However, it is still worth investigating if generic 

model structures can be an acceptable option to lower the 

cost of modelling in MPC. For this purpose, three 

modelling approaches are compared on a test case. It is 

here assumed that model should be identified using indoor 

temperature measurements only. Firstly, a traditional 

grey-box modelling approach is used where models of 

increasing complexity are created based on the physical 

knowledge of the building (i.e. forward approach). 

Secondly, the model structures of building standards EN 

13790 and VDI 6007 are considered. These models are 

low-order white-box models that are able to successfully 

predict space-heating needs for various building types. 

For instance, some studies have also been done to 

compare the simulation results of the two standard white-

box models with TRNSYS simulation (Bruno, Pizzuti, & 

Arcuri, 2016; Vivian, Zarrella, Emmi, & De Carli, 2017). 

Their structures, even not optimal for a specific building, 

may nonetheless be a good candidate for a generic 

structure of grey-box models. Finally, these two methods 

to create grey-box models are compared to black-box 

models identified using a subspace method and then 

refined using numerical minimization of simulation 

errors. The long-term predictions (i.e. simulation without 

a disturbance model) of these models are evaluated as 

well as their estimates of some major building thermal 

characteristics (such as overall heat loss coefficient and 

thermal capacities).   

Dataset and platform description 

The ZEB Living Lab is a zero-emission single-family 

house located in the campus of the Norwegian University 

of Science and Technology (NTNU) in Trondheim. The 

total floor area of the building is about 100 m2. The 

envelope is a wooden frame insulated with 35-40 cm 

mineral wool and with a glazing ratio of 0.2. Photovoltaic 

panels installed on the roof has been designed to provide 

enough onsite renewable energy production to reach a 

zero CO2eq emission balance over the building lifetime. 

The water-based heating system consists of a ground 

source heat pump. The space-heating can be either 

performed by floor heating, a central radiator or the 

ventilation air. However, the current study is based on 

measurement data from a previous experiment where 

space heating was performed using an electrical heater (P. 

Vogler-Finck, Clauß, & Georges, 2017; P. J. C. Vogler-

Finck, Clauß, Georges, Sartori, & Wisniewski, 2018). The 

electric heater was located in the middle of the building 

while a Pseudo-Random Binary Signal (PRBS) was used 

to excite the thermal dynamic of the building in a large 

spectrum of frequencies. The floor plan of the building is 

shown in Figure 1 along with the location of the electric 

radiator and the temperature sensors. 

The dataset contains three successful experiments, which 

are named experiment 2, 3 and 4 (experiment 1 being 

omitted). The data includes measurements every 5 

minutes of the ambient temperature, indoor air operative 

temperatures as well as the global solar radiation on a 

horizontal plane and the electricity consumption. In this 

study, the ventilation losses are not identified but directly 

introduced in the model as heat losses. These losses have 

been evaluated using the measured temperature difference 

between the supply and exhaust ventilation air combined 

with the measured airflow rate (constant during 

experiments). This research focuses on data from 

experiments 2 and 4 since both experiments were 

conducted with the building unoccupied and internal 

doors opened. This leads to an almost uniform spatial 

distribution of the air temperature inside the building. 

However, there is some temperature stratification and all 

air temperature sensors are therefore volume-averaged to 

represent the mean indoor air temperature Ti. Experiment 

2 is used to train the model while experiment 4 is used for 

validation.  

 

 

Figure 1: Picture and Floor plan of the ZEB Living Lab 

(P. J. C. Vogler-Finck et al., 2018) 

Grey-box models 

As mentioned in the introduction section, grey-box 

modelling is a combination of measurement data and 

physical knowledge. The thermal dynamics of the ZEB 

Living Lab is assumed to be linear and time invariant 

which is a common approximation for building 

envelopes. It can then be approximated by low-order 

resistance-capacitance (RC) networks. The model order is 

defined by the number of heat capacitances included in 

the model. This paper considers two categories of 

structure for the grey-box model: seven structures derived 

from our prior knowledge of the Living Lab and two 
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generic structures derived from standards for energy 

calculations (EN 13790) and (VDI 6007).  

Knowledge-based models 

The simplest model structure is a 1st order model. The 

other models are created by progressively adding more 

components, the most complex structure being a 3rd order 

model. Only the most complicated 3rd order model is 

presented in Figure 2 since the other models are 

simplifications of this structure as described in Table 1.  

Ch
Awi*Ps

1/UAea

Th Ta

Ce

Te

Qvent+Qapp

1/UAie

Ta
Aw*Ps

Ci

1/UAih
Ti

Ph

1/UAia

 

Figure 2: Most complex model structure (3C). 

The 1st order model has one heat capacitance (Ci), the 2nd 

order model has two heat capacitances (Ci and Ce) while 

the 3rd order model has three heat capacitances (Ci, Ce and 

Ch). The physical meaning of these components is 

described here below. 

Table 1: Structure of the different knowledge-based 

grey-box models. 

MODEL 1C 2Cs 2C 3Cs 3C 3Csd 3Cd 

Rih        

Rie        

Rea        

Ria        

Ce        

Ci        

Ch        

Awi        

Awe        

 

Ti   Temperature of interior heat capacity [°C]. 

Te   Temperature of the building envelope [°C]. 

Th   Temperature of the electric heater [°C]. 

Ta   The outdoor/ambient temperature [°C]. 

Ci   Heat capacity of the interior which is 

assumed to be the combination of the 

thermal mass of the air, the furniture, 

internal walls and the first centimeters of the 

internal surface of external walls [kWh/K]. 

Ce Heat capacity of the building envelope, 

(external walls and windows) [kWh/K]. 

Ch Heat capacity of the heater which is assumed 

to the combination of its thermal mass and 

some air around the heater [kWh/K]. 

Rie (1/UAie) Heat resistance between the 

building envelope and the interior of the 

building [K/kW]. 

Rea (1/UAea) Heat resistance between the 

ambient and the building envelope [K/kW]. 

Ria (1/UAia) Heat resistance between the 

ambient and the interior of the building 

[K/kW]. 

Ph Heat gain from the electric heater [kW]. 

Ps Global solar irradiation on a horizontal 

plane [kW]. 

Qapp Heat gain from internal loads (appliances) 

[kW]. 

Qvent Heat gains from the ventilation [kW]. 

Awi Effective window area for the solar gain that 

enters directly the interior node [m2]. 

Awe Effective wall area for the solar gain directly 

applied to the envelope of the building [m2]. 

Standard models 

The structure of the two RC-models is taken from the 

standards EN 13790 and VDI 6007 (Vivian et al., 2017) 

The EN 13790 model has originally five resistances and 

one capacitance, as shown in Figure 3. The heat 

capacitance represents the heat capacity of the building 

envelope. Since the ventilation heat loss is directly 

injected as a heat gain in our model, the specific resistance 

of EN 13790 related to ventilation is removed. The 

resulting grey-box model has therefore four resistances. 

Detailed physical explanation of the RC components in 

EN 13790 are described below. 

1/UAis

Ta

Ce

1/UAas

Ti

1/UAes 1/UAea

Ts Te

Qvent Ph Qapp/2 (1-a)*Qapp/2 (1-a)*Aw*Ps

a*Aw*Ps a*Qapp/2

 

Figure 3: Model structure of EN 13790. 

Ti Interior temperature (as previously defined) 

[°C]. 

Te Temperature of the building envelope [°C]. 

Ts 
The temperature of the internal surface of the 

building envelope [°C]. 

Ta The outdoor/ambient temperature [°C]. 

Ce Heat capacity of the building envelope 

[kWh/K]. 

Res (1/UAes) Heat resistance between the building 

envelope and the internal surface of the 

building envelope [K/kW]. 

Rea (1/UAea) Heat resistance between the ambient 

and the building envelope [K/kW]. 

Ras (1/UAas) Heat resistance between the ambient 

and the internal surface of the building 

envelope [K/kW]. 
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Ris (1/UAis) Heat resistance between the internal 

surface of the building envelope and the 

internal node [K/kW]. 

Ph Heat gain from the electric heater [kW]. 

Ps Global solar irradiation on a horizontal plane 

[kW]. 

Qapp Heat gain from internal loads (appliances) 

[kW]. 

Qvent Heat gains from the ventilation [kW]. 

Aw Effective window area for the solar gain [m2]. 

According to EN 13790, half of the internal gains Qapp is 

directly entering the internal node (Ti) while the heat 

emitted by the radiator is fully entering this node. Thus, a 

coefficient of 1/2 is applied to Qapp and a coefficient of 1 

to the space-heating power Ph. In EN 13790, the fraction 

of internal and solar gains entering the internal surface 

(Ts) and the envelope nodes (Te) should be evaluated using 

the detailed geometry of the building. Therefore, one 

model parameter (a) is added and should be identified. In 

order to guarantee energy conservation, the sum of the 

two fractions of Qapp applied respectively to nodes Ts and 

Te is constrained to 1/2. Solar radiation only enters at 

nodes Ts and Te, so the sum of the two fractions of solar 

gains at Ts and Te is constrained to 1. 

The VDI 6007 model originally has seven resistances and 

two capacitances. Like EN 13790, the heat resistance 

related to the ventilation heat losses is substituted by the 

measured ventilation heat gains. Detailed physical 

explanations of the RC components of VDI 6007 are 

shown below. 

1/UAes2

Ta

Te2

Ce2 Ce11/UAiv

1/UAis1 1/UAes1 1/UAea11/UAis2

Ts2 Ts1

Ti

Tv

b2*Ph Awi*Ps a2*Qapp

e*Ph d*Qapp Qvent

b1*Ph Awe*Ps a1*Qapp

Te1

 

Figure 4: Model structure of VDI 6007. 

Ti Interior air and furniture temperature [°C]. 

Tv Interior “star” node [°C]. 

Ts1   The internal surface temperature of building 

envelope (meaning external walls and 

windows) [°C]. 

Ts2 The internal surface temperature of internal 

walls [°C]. 

Te1 Temperature of the building envelope [°C]. 

Te2 Temperature of internal walls [°C]. 

Ta The outdoor/ambient temperature [°C]. 

Ce1 Heat capacitance of the building envelope 

[kWh/K]. 

Ce2 Heat capacitance of internal walls [kWh/K]. 

Res1 (1/UAes1) Resistance between the building 

envelope and the internal surface of the 

envelope [K/kW]. 

Res2 (1/UAes2) Resistance between the internal walls 

and their surface [K/kW]. 

Ris1 (1/UAis1) Heat resistance between the internal 

surface of the envelope and the star node 

[K/kW]. 

Ris2 (1/UAea1) Heat resistance between the ambient 

and the building envelope [K/kW]. 

Rea1 (1/UAea1) Heat resistance between the ambient 

and the building envelope [K/kW]. 

Riv (1/UAea1) Heat resistance between the star node 

and the indoor air and furniture node [K/kW]. 

Ph Emitted heat from the electric heater [kW]. 

Ps Global solar irradiation on a horizontal plane 

[kW]. 

Qapp Heat gain from internal loads (appliances) 

[kW]. 

Qvent Heat gains from the ventilation [kW]. 

Aw Effective window area for the solar gain [m2]. 

The coefficient for internal heat gains (Qapp) and the 

emitted power by the radiator (Ph) are estimated by the 

grey-box modelling approach. It results in six parameters 

a1, a2, b1, b2, d and e. To guarantee the conservation of 

energy, additional constraints for these variables are 

applied: the sum of the coefficients of a1, a2 and d and the 

sum of coefficients of b1, b2 and e are set to 1. 

Black-box models 

In black-box modelling, data is used to train mathematical 

models with parameters that cannot be given an 

immediate physical interpretation. In this study linear 

time-invariant state-space models with model orders from 

one to three are examined: 

xk+1 =A xk +B uk   (1) 

yk =C xk     (2) 

where x is the state vector and A, B and C are system 

matrices. u is the input (outdoor temperature, solar 

radiation and heat gains) and y is the output (indoor 

temperature). Note that no disturbance term K (Kalman 

gain) is included because we focus on long-term 

predictions. All coefficients in the system matrices are 

free and unconstrained which gives the optimizer 

maximum freedom (for a given model order) to adjust the 

coefficients to fit to the training data. The downfall is that 

the model cannot be guaranteed to always comply with 

physical laws (i.e. conservation of energy). In case of poor 

training data, the model might have a very poor 

performance on new data. 

This study has trained the black-box models in two steps. 

Firstly, subspace system identification estimates an initial 

model using the n4sid function in MATLAB (Ljung, 

2011). Secondly, the model is refined through numerical 

simulation-error minimization using the pem function of 

MATLAB. 
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It should be noted that, even though the black-box 

parameters do not have an immediate physical meaning, 

it is in fact possible to extract some insight on the thermal 

characteristics of the building. For instance, the overall 

heat loss coefficient can be estimated as the inverse of the 

steady-state output (i.e. the room temperature) for a step 

response of the heat input. This value is also shown in 

Tables 2 and 3 for the 2nd order black box model (2B). 

Results  

Tables 2 and 3 show some of the most important physical 

parameters identified and the simulation results for all 

models, respectively for the original sampling time of 5 

minutes and a data subset based on 15-minutes averaging. 

Since this paper mainly focuses on the long-term stable 

prediction of the model, no disturbance model is included 

to correct the current state based on prediction errors. 

Other studies on grey-box modelling often focus on the 

one-step ahead predictions (Bacher & Madsen, 2011), but 

for MPC implementation it is important to have good 

performance for a longer prediction horizon. Since there 

is no human occupancy during experiments and since 

energy consumption and the indoor temperature are 

accurately measured, the data quality is considered to be 

relatively high compared to what can be expected in real 

building operation: the signal-to-noise ratio (SNR) is 

expected to be high. The model performance is evaluated 

using the NRMSE (fitting), RMSE and the range of 

magnitude taken by the physical parameters (which 

should be related to the building physics to a reasonable 

degree). AIC (Akaike information criterion) and BIC 

(Bayesian information criterion) are used as 

complementary performance criteria to judge if the model 

is over-fitting. 

Knowledge-based models are first analysed. The fitting of 

the 1st order model is relatively low: the NRMSE fitting 

is 58% for the training dataset while the fitting decreases 

to only 23% for the validation dataset. This implies that 

only one state is not enough to describe the thermal 

dynamics of this building. The 2nd order model has a new 

state related to the building envelope which can 

significantly improve the model prediction performance 

compared to the 1st order model. This is confirmed by the 

results reported in Table 2. The fitting of the 2nd order 

model 2Cs increases significantly to 81% for the training 

dataset and 79% for the validation dataset, RMSE values 

confirms this trend with decreasing values (from 0.5502 

to 0.2489 in the training dataset). The 2nd order model 2C 

has one additional resistance (Ria) compared to the model 

2Cs. Ria represents the heat losses from infiltrations and 

heat conduction through components of the building 

envelope with negligible thermal mass (such as windows 

or external doors of the building). However, results show 

that the value of 1/Ria is zero so that the model collapses 

into the 2Cs models (with parameters being exactly the 

same). The AIC and BIC values of 2C are slightly higher 

than the 2Cs. The ZEB Living Lab is a super-insulated 

building envelope with limited infiltrations. It was 

therefore anticipated that the contribution of infiltrations 

should be negligible. However, the building has a large 

amount of glazing. An infinite Ria was therefore 

unexpected based on prior physical knowledge. In 

conclusion, for this test case, the resistance Ria is not 

necessary for the 2nd order model. Based on the simulation 

performance and the value of the parameters, the model 

2Cs could be a reliable control model for the ZEB Living 

Lab. Comparing the 2Cs model for 5- and 15-minutes 

time intervals, it shows very similar physical parameters 

and simulation performance. The 2nd order black-box 

model 2B has an 83% fit on training data and 88% on 

validation data. It is thus the best performing 2nd order 

model. 

In order to investigate whether the 2nd order model could 

be further improved, a new state corresponding to the 

heater is introduced in the grey-box model. The physical 

reason for adding this additional state is to compensate for 

the potential time delay related to the thermal dynamics 

of the electric heater. Four 3rd order models are tested in 

this paper. Model 3Cs shows a good fitting of 81% for the 

training dataset (with a RMSE value of 0.248) while the 

AIC and BIC values are lower than for the 2Cs model. 

However, the heat capacity of the interior (Ci) is 

extremely low while the heat capacity of the heater (Ch) 

is estimated to be 1.496 kWh/K, which is too high for an 

electric radiator. As the value of these parameters has 

limited physical meaning, the model 3Cs is discarded. 

The fitting of model 3C is low compared to the others. Its 

AIC and BIC values are also much higher so that this 

model is also discarded. As for 3Cs, model 3Csd has a 

relatively good fitting of 79% on the training dataset but 

the values for the parameters related to the building 

envelope and heater are far from reasonable. This model 

is also rejected. Model 3Cd has a fit of 81% and an RMSE 

value of 0.253 on the training data. However, the fit for 

the validation dataset is 70%, which is not as good as the 

2nd order model 2Cs. The parameter values of model 3Cd 

are within a reasonable range. However, the value of the 

AIC and BIC criteria increases noticeably. Therefore, the 

model 3Cd could also be kept for further investigations. 

Nevertheless, when analyzing results for the 15-minutes 

time interval, the values of the heat capacitances 

completely change. The parameters of model 3Cd vary 

significantly with the time step which can be considered 

as a lack of reliability. The overall conclusion regarding 

3rd order models is that none of them are completely 

satisfactory. Two possible reasons are that the heat 

capacitance (Ch) was probably not required for the electric 

radiator and the increasing the number of parameters 

leads the model to be over-fitting. The 3rd order black-box 

model has a fit of 88% on the validation data which is 

equivalent to the 2nd order model (2B). The 2B model is 

therefore the appropriate order for a linear model of this 

building based on the current dataset.  

Secondly, the performance of the two standard models is 

investigated. The 1st order EN 13790 model has much 

better fit compared to the knowledge-based 1st order 

model: the NRMSE fitting can reach 71% for the training 

dataset but the fitting drops to 37% for the validation 

dataset. Accordingly, the RMSE value increases 

drastically to 1.509 for the validation dataset. This 
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confirms the previous conclusion that one state is not 

enough to describe the thermal dynamics of this building. 

From the Figure 5, it is very clear that the EN 13790 

model can predict the general trend of the indoor air 

temperature. However, there are obvious excessive 

fluctuations in the indoor temperature prediction. This can 

be easily explained. In the EN 13790 model, the heat 

emitted by the radiator (Ph) is directly injected in the node 

Ti while no capacitance is allocated to this node. 

Therefore, the indoor air will immediately respond to the 

heat injection of the electric heater (Ph), without delay. It 

again proves that only one capacitance is not enough for 

capturing all the dynamics of the building. The conclusion 

regarding EN 13790 is that it could be a good candidate 

for a generic model but it needs to be adapted to capture 

the faster thermal dynamics of the air, furniture and the 

first centimeters of the walls. For instance, an extension 

of the EN13790 model to a 5R2C model has been recently 

proposed (Hedegaard, Kristensen, Pedersen, Brun, & 

Petersen, 2019) showing much better prediction 

performance compared to original EN13790.  

 

 

Figure 5: Comparison of the simulation performance of 

the most representative models 

The 2nd order model VDI 6007 has decent fitting results 

(i.e. 71% for training and 81% for validation). 

Nevertheless, the values of the two heat capacitances and 

the overall UA-values are extremely small. These 

parameters do not have physical meaning. In conclusion, 

the VDI 6007 structure contains many physical 

phenomena but is too complicated to be correctly 

identified only using indoor air temperature 

measurements. This is confirmed by the high AIC and 

BIC values evaluated for this model. To be a potential 

candidate for a generic model structure, the number of 

parameters needs to be decreased to increase the 

identifiability of the model (Hedegaard & Petersen, 2017). 

Alternatively, additional measurements could be made 

inside the building in order to make the model identifiable 

(such as wall surface temperature and/or heat flux) (G. 

Reynders, Diriken, & Saelens, 2014). However, it is here 

assumed that these measurements will not be made 

available for all existing residential buildings.  

Conclusion and future work 

This paper investigates the performance of grey-box 

models based on a physical knowledge of the building to 

grey-box models using a generic model structure (based 

on the building standards EN 13790 and VDI 6007) as 

well as black-box models. Their performance is evaluated 

on the long-term prediction of the thermal dynamics, here 

using a single-family house as a test case (the ZEB Living 

Lab). The model identification is based on the 

measurement of the indoor air temperature resulting from 

the space heating using an electric radiator controlled by 

a PRBS. The building was unoccupied during 

experiments. 

For knowledge-based grey-box models, results show that 

the 2nd order model has reasonable parameter estimates 

and the prediction error is small (within the range of +/- 

1°C). The prediction performance varies significantly 

between the investigated 3rd order models.  However, in 

all cases, the estimated parameters do not have reasonable 

values. In addition, none of the 3rd order models 

investigated were able to significantly improve the 

prediction performance of the 2nd order model. Therefore, 

the 2nd order model is considered as a good candidate for 

this test case.  

Regarding grey-box models based on standards, results 

show that the 1st order EN 13790 model is able to follow 

the general evolution of the indoor temperature and 

provides meaningful values of the parameters. However, 

the simulated temperature has significantly higher 

fluctuations directly corresponding to the start and stop 

cycles of the electric radiator.  As recently proposed by 

Hedegaard et al., the EN 13790 is a potential candidate for 

a generic model structure but it should be adapted by 

adding a state corresponding to the fast dynamics of the 

building (< 1h).  The 2nd order grey-box model based on 

VDI 6007 has good prediction performance, but it 

generates parameter estimates that cannot be explained 

from a physical point of view. The number of parameters 

of this model needs to be reduced to make it identifiable. 

In future work, it should be investigated whether this 
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simplification can be done without impairing significantly 

the model universality. 

The 2nd order black-box model shows a good performance 

equivalent to the 2nd order grey-box model. Nevertheless, 

with black-box models, the physical meaning of the states 

is unknown. However, the estimate of the overall heat 

transfer coefficient is similar between the 2nd order black-

box and the best grey-box models. It is worth mentioning 

that these investigations were performed with high-

quality input-output data. In addition, experiments 

corresponding to the validation data set took place a few 

days after the training period. The relative performance of 

black-box and grey-box models could be different if these 

experimental conditions were not fulfilled. This research 

nonetheless suggests that black-box models deserve to be 

investigated in detail to create control-oriented model 

with a limited knowledge of the building and limited 

amount of time. 
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Table 2: Results of the grey- and black-box identification using 5 minutes time interval. 

t: training data 

v: validation data 

 

 

Table 3: Results of the grey- and black-box identification using 15 minutes time interval. 

t: training data 

v: validation data 

Model 1C 2Cs 2C 3Cs 3C 3Csd 3Cd EN13790 VDI6007 2B 

Ce - 8.032 8.032 8.224 0.303 10.000 7.638 8.451 - - 

Ci 7.115 1.366 1.366 1.24*10-7 1.48*10-7 1.781 2.158 - - - 

Ch - - - 1.496 6.445 4.822 0.028 - - - 

Ce1 - - - - - - - - 1.77*10-5 - 

Ce2 - - - - - - - - 3.49*10-5 - 

Awe - 3.158 3.158 3.185 3.815 11.806 - - 1.928 - 

Awi 8.375 4.163 4.163 4.071 5.955 0.186 4.923 9.152 1.656 - 

UAtot 0.125 0.115 0.115 0.114 0.117 0.186 0.102 0.125 5.17*10-7 0.114 

RMSEt 0.55 0.25 0.25 0.25 0.40 0.27 0.25 0.36 0.28 0.23 

RMSEv 1.84 0.49 0.49 0.40 1.33 1.07 0.70 1.51 0.47 0.29 

NRMSEt 58% 81% 81% 81% 69% 79% 81% 73% 79% 83% 

NRMSEv 23% 79% 79% 83% 44% 55% 71% 37% 81% 88% 

AIC 2.847*103 113.4166 115.4166 102.8692 1.775*103 450.2877 177.9489 1.371*103 522.9770 - 

BIC 2.869*103 157.0543 164.5091 162.8711 1.841*103 504.8349 237.9508 1.414*103 599.3430 - 

Model 1C 2Cs 2C 3Cs 3C 3Csd 3Cd EN13790 VDI6007 2B 

Ce - 8.038 8.038 8.154 3.481 10.000 7.802 8.339 - - 

Ci 7.122 1.346 1.346 2.87*10-5 4.88*10-8 1.764 2.04*10-7 - - - 

Ch - - - 1.5978 5.1958 4.8375 2.2863 - - - 

Ce1 - - - - - - - - 1.55*10-5 - 

Ce2 - - - - - - - - 2.38*10-5 - 

Awe - 3.213 3.213 2.776 14.380 - - - 2.042 - 

Awi 8.394 4.152 4.152 4.197 1.617 11.780 4.893 8.872 1.511 - 

UAtot 0.125 0.115 0.115 0.113 0.108 0.186 0.102 0.124 3.99*10-7 0.114 

RMSEt 0.55 0.25 0.25 0.24 0.37 0.27 0.25 0.39 0.28 0.23 

RMSEv 1.84 0.51 0.51 0.31 0.79 1.06 0.73 1.45 0.43 0.29 

NRMSEt 58% 81% 81% 81% 72% 79% 81% 70% 79% 83% 

NRMSEv  23% 79% 79% 87% 67% 56% 70% 39% 82% 88% 

AIC 953.9709 51.3763 53.3763 34.8207 519.5818 163.0977 41.9178 598.7925 201.7279 - 

BIC 971.3953 86.2252 92.5813 82.7379 571.8551 206.6588 93.8350 633.6413 262.7134 - 
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Abstract 
Model Predictive Control (MPC) has proved to be a key 
technology to activate the energy flexibility of buildings. 
A reliable control-based model should be developed to 
implement an efficient optimal control. Grey-box models, 
as a combination of physical knowledge and experiment 
data, have been widely used in the literature. However, in 
the identification process of grey-box models, many 
factors affect the results. This paper uses data from virtual 
experiments in IDA-ICE to investigate the influence of 
the optimization methods, the filtering methods, the 
training dataset and the sampling time interval on 
stochastic grey-box models. It shows that global 
optimization increases the chance to avoid a local 
minimum. Pre-filtering methods have a small influence 
on the model quality. Larger data sampling time will 
cause the identified parameters to become non-physical. 
However, the simulation performance of the model is kept 
almost unchanged. 
Introduction 
The share of Renewable Energy Sources (RES) is 
increasing constantly in today’s energy system. The 
volatile property of RES generation has brought notable 
challenges to the grid. Thus, flexible loads become a 
requirement to further increase the penetration of RES. 
Demand response (DR) is considered to be one of the key 
components to provide flexibility in smart grid [1]. DR 
can be described as the interaction and responsiveness of 
the end-use customer to a  penalty signal (e.g. price signal, 
CO2 intensity factor for electricity) [2]. In addition, due to 
the continuous increase of the electric consumption of 
households and the introduction of electric vehicles, DR 
can be used for peak-shaving in order to avoid congestion 
in the distribution grid [3]. Consequently, peak-shaving 
would enable to minimize or postpone the reinforcement 
of these grids. 
About 25% of the final energy consumption is consumed 
by buildings and more than 65% of this energy is used for 
heating and cooling demand in European households, 
which makes HVAC systems a promising candidate for 
demand response [4]. In Nordic countries, the space-
heating season is long and cold, the energy consumption 
is mainly related to space-heating. The thermal mass of 
buildings can be a significant heat storage [5,6]. When 
using the thermal mass to perform DR, the heating 
demand will be shifted optimally, while the thermal 
comfort constraints can still be respected [7]. The targets 

of DR in buildings are usually the reduction of peak load, 
lower CO2 emissions, maximize the use of RES or 
minimize energy cost [8]. Model predictive control (MPC) 
is often considered as an important technique to perform 
demand response (DR) using the thermal mass of the 
building. The logic of MPC in a building is that the control 
agent (computers, built-in intelligent devices, etc.) takes 
the predictions of future disturbances (weather data, 
power generation from RES, etc.) and the system 
constraints into an optimization problem and generate an 
optimal control decision at each control time step. Thus, 
it is important that the dynamic model embedded in the 
MPC controller has decent prediction accuracy. A poor-
quality model could lead to suboptimal performance, such 
as increased energy costs, violation of the thermal comfort 
or even be counterproductive for the electricity grid. In 
addition, the model identification should also be low-cost 
to make the investment costs of MPC sufficiently low. 
Control models for MPC controller can be divided into 
three main categories, namely white-, black- and grey-box 
models. White-box models are based on physical laws, 
which require detailed knowledge of the system, the 
underlying physical process and parameters. In practice, 
it is too complicated and time-consuming to access all the 
information and to keep it updated during the building’s 
operational lifetime. This type of model usually has 
higher accuracy but is mathematically more complex, 
which may cause challenges for the MPC optimizer. This 
fact makes this kind of model sometimes too complex for 
MPC [4]. Black-box models are pure data-driven methods 
considering only measured inputs and outputs from the 
system. The physical knowledge of the system is not 
needed. However, this method requires a larger amount of 
data for training and the precision of black-box models is 
significantly influenced by the data quality. Black-box 
models are known to have lower generalization 
(extrapolation) properties. Grey-box modelling is a 
combination of physical knowledge and statistical 
methods. Since the grey-box models have a model 
structure based on physical knowledge, grey-box models 
usually require less experimental data compared to black-
box models and are hopefully less sensitive to data quality 
[9].  
A common way to create Linear Time Invariant (LTI) 
grey-box models for buildings is to use lumped 
capacitance models (RC models). The thermal conditions 
of the building are expressed with an electrical circuit 
analogy [10]. This paper mainly focuses on five specific 
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factors influencing the grey-box modelling of the building 
thermal dynamics. The first aspect (Q1) is data 
preprocessing. Few publications are addressing the 
importance of data preprocessing for building thermal 
dynamics. The topic is discussed in other disciplines, like 
[11] in process engineering, but not in building science. 
The second aspect (Q2) is the convexity of the 
optimization problem. Except for models with an 
extremely simple structure like first-order models, the 
optimization problem for identifying parameters of the 
grey-box models is not convex. Therefore, grey-box 
models are very sensitive to initial guess and the search 
method (i.e. the optimizer). For instance, Generic 
Algorithm (GA) combined with gradient-based 
optimization is used in the paper [12] to avoid the 
identification results ending up in a local minimum. The 
selection of the optimization algorithm to avoid the local 
minimum will be discussed in this paper. The third aspect 
(Q3) is how data quality (e.g. level of excitation signal 
and amount of data) influences the identification results. 
It is often said that the temperature of the ventilation 
extract air is a good image of the average building 
temperature and is reliable to identify a grey-box model, 
see e.g. [13]. Thus, the fourth aspect (Q4) is about the 
selection of the representative indoor temperature for 
system identification. The last aspect (Q5) considers the 
sensitivity of the grey-box parameters to the selection of 
the data sampling time (Ts). The theoretical analysis of 
Ljung showed that the continuous grey-box models are 
sensitive to the selection of the sampling time that should 
be taken lower than the shortest time of the system to be 
investigated [14]. This analysis needs to be repeated for 
building applications. All the research in this paper is 
performed using stochastic grey-box models in 
innovation form using the disturbance matrix K and the 
MATLAB identification toolbox.  
Methodology 
Dataset and virtual experiments 
IDA ICE is a detailed dynamic simulation tool for 
studying thermal indoor climate as well as the energy 
consumption of buildings. A two-storey detached house 
with a heated floor area of 160 m² is used as virtual 
experiment for our case study. The three-dimensional 
geometry of the building from IDA ICE is shown in Fig. 
1. The building is constructed in wood (i.e. lightweight 
construction) and complies with the requirement of the 
Norwegian passive house standard, NS 3700 [15]. The 
detailed description of the building construction can be 
found in [16]. The building is equipped with balanced 
mechanical ventilation with a heat recovery unit. The heat 
exchanger is here modelled using a constant effectiveness 
of 85% without bypass, like a plate heat exchanger. 

 
Figure 1: 3D geometry of the building model in IDA ICE 

(showing the southwest façade). 

The building is simulated with a multi-zone model with 
open internal doors. IDA ICE has an embedded 
ventilation network model which accounts for the large 
bidirectional airflow through open doorways. This large 
convective heat transfer leads to relatively uniform air 
temperatures in the entire building. However, bathrooms 
are kept separated with closed doors. Following the 
cascade ventilation principle, ventilation air is supplied in 
living areas and bedrooms and mostly extracted in wet 
rooms (i.e. bathrooms and the laundry). The space-
heating was performed using an electrical heater in this 
case study. Direct electricity is a most common way to 
heat small residential buildings in Norway [17] . The 
hourly profiles of internal heat gains for artificial lighting, 
electric appliances and occupancy is taken from a 
Norwegian standard [18]. 
Two types of excitation signals are used to activate the 
thermal mass of the building in order to collect data for 
system identification. The first signal is called Pseudo-
Random Binary Signal (PRBS) with a minimum and 
maximum step of 10 and 80 min, respectively. The reason 
for choosing a PRBS signal is that it approximates white 
noise, which can activate the dynamic system in a large 
spectrum of frequencies [19,20]. The other excitation 
signal is an intermittent set-point, which means that the 
temperature set-point changes between daytime and 
night-time (i.e. night setback). In this case, an on-off 
control is implemented in IDA ICE to track the 
temperature set-point, like in real direct electric radiators. 
Both excitation signals are applied to an electric radiator 
placed in each zone, except for bathrooms as these rooms 
are relatively small and typically heated by floor heating 
(with significant thermal inertia). Five different periods 
with specific weather conditions are implemented in the 
virtual experiments, as described in the table below.  
IDA ICE uses a time-varying time-step so that the data is 
not generated at constant time intervals. The data output 
from IDA ICE is therefore interpolated on a uniform time 
discretization of 2.5 min (thus well shorter than the 10 min 
time interval of the PRBS). 
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Table 1: Weather condition of four PRBS experiments. 
Type Outdoor 

Temperature 
Sky Date Duration 

Very
Cold 

-10 ℃ Clear 
sky 

12/13
/2019 

One week 

Cold 0 ℃ Overcast 12/24
/2019 

One week 

Cold 0 ℃ Clear 
sky 

3/23/
2019 

One week 

Mild 5 ℃ Overcast 11/23
/2019 

One week 

 
Grey-box model structure and identification 
The main purpose of this paper is not to investigate the 
grey-box model structure. This topic is already discussed 
in previous works [21–23]. Only first-order (1R1C) and 
second-order (3R2C) grey-box models are considered in 
this paper with a single temperature node inside the 
building (i.e. mono-zone model). Preliminary tests have 
shown that a third-order model would be over-fitted for 
this test case. Higher-order models can cause over-
parameterization more easily, which has been shown in 
the papers [23,24]. The structure of the two grey-box 
models follows a RC-formalism. The lumped resistance 
and capacitance as well as the physical interpretation of 
these parameters can be found in Figures 2 and 3 below. 
The free parameters of these grey-box models are 
calibrated using the IDA ICE data. The ventilation 
exhaust air temperature or the volume-averaged 
temperature can be selected to represent the measured 
interior node Ti and their respective model performance 
will be compared. 

 
Figure 2: First-order model (1R1C) 

Ti   Temperature of interior heat capacity [°C]. 
Ta The outdoor (or ambient) temperature [°C]. 
Ci   Heat capacity of the building [kWh/K]. 
R (1/UA) Overall heat resistance between the 

building and the ambient, including 
ventilation [K/kW]. 

Qint Internal heat gain from artificial lighting, 
people and electric appliances [kW]. 

Qsolar Heat gain from solar radiation [kW]. 
Qh Heat gain from the electric heater [kW]. 

 

 
Figure 3: Second-order model (3R2C) 

Te Temperature of the building envelope [°C]. 
Ta The outdoor temperature [°C]. 
Ci   Heat capacity of the building combining the 

thermal mass of the air, the furniture, internal 
walls and, potentially, the first centimetres of 
external walls [kWh/K]. 

Ce Heat capacity of the node Te [kWh/K]. 
Rie (1/UAie) Heat resistance between the building 

envelope and the interior [K/kW]. 
Rea (1/UAea) Heat resistance between the ambient 

and the building envelope [K/kW]. 
Rvent (1/UAvent) Heat resistance between the ambient 

and the interior [K/kW]. 
α Fraction of solar gains to air node. 
The internal gains and solar gains are computed exactly 
by IDA ICE. In this work, they are not identified and are 
introduced directly in the grey-box model. Consequently, 
in the 3R2C model, only the coefficient α to distribute the 
solar gains between the two temperature nodes needs to 
be identified regarding gains. In real application, gains are 
not known exactly. However, simplifying the problem 
enables to emphasize the specific research questions of 
the article. 
The MATLAB identification toolbox is used for model 
identification. In grey-box models, the continuous time 
model is first discretized in order to identify the model 
parameters using discrete measurement data. The 
discretization assumes the input data to be piecewise 
constant during each time interval (i.e. zero-order hold). 
Regarding the optimization problem, the initialization 
value of the model parameters and their corresponding 
range (i.e. minimum and maximum values) should be 
defined. The optimizer will then iterate to find the 
parameters that minimize the Normalized Root Mean 
Square Error (NRMSE) of the one-step ahead prediction. 
Then, the toolbox covert the discrete time model back to 
continuous time: 

�̇�(t) =A x(t)+B u(t)+K e(t)  (1) 
�̇�(t) =C x(t)+e(t)   (2) 

where x is the state vector and A, B and C are the system 
matrices. u is the input vector (Ta, Qsolar, Qint, Qh) and y is 
the output (indoor temperature, Ti). K is the disturbance 
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matrix of the innovation form (Kalman gain). It is a 
transformed representation from the general process [25].  
Influence of the optimizer 
In MATLAB, the function greyest identifying the model 
parameters has four different gradient-based iterative 
search methods, used in sequence. However, preliminary 
tests using the 3R2C model show a quick converge to a 
local minimum close to the initial estimate of the 
parameters. A similar behavior is also reported in the 
paper [12]. The authors used GA combined with gradient-
based optimization to overcome the non-convexity of the 
optimization problem. Consequently, a global 
optimization algorithm has been implemented in this 
paper. Instead of the GA method, the first stage 
optimization uses particle swarm optimization (PSO) 
while the second stage uses the default greyest function to 
further polish the results. Each optimization method is 
able to identify the parameters’ value and their 
corresponding variance. For each case, the optimizer 
giving the lowest NMRSE for the one-step ahead 
prediction is selected and provides the selected model 
parameters.   
Pre-filtering methods 
In real-life applications, it is difficult to guarantee that the 
measurement data will be sampled at a higher frequency 
(Ts) than the highest frequency of the system (here 10 
min, imposed by the PRBS). For instance, the Advanced 
Metering System (AMS) in Norway has a typical time 
interval of 15 min [26]. It is important to investigate the 
influence of data pre-processing by low-level digital 
measurement devices before they log the data at an 
appropriate time interval. Temperature sensors can 
register data at a very high frequency (here 2.5 min). This 
data can be pre-processed before being sampled and 
logged at a longer time interval (Ts > 2.5 min). A low-
pass discrete filter can first be applied, such as a moving 
average (MA) or a finite impulse response (FIR). Without 
this low-pass filter (i.e. direct sampling), the aliasing error 
may be high. With MA, the aliasing error is smaller but 
still present while the FIR (applied with a sufficient order) 
would lead to negligible aliasing. By comparing the 
performance of (MA + sampling), (FIR + sampling) and 
the direct sampling on the parameter identification, it is 
possible to understand the influence of aliasing. The low-
pass filter is applied to all the input and output variables 
of the model. If the filter introduces a time delay (like 
MA), this delay is the same for all variables and will thus 
not affect the model. The situation would be more 
complex if the low-pass filter is only applied to a subset 
of the input or output variables. 
Results 
Influence of the optimizer (Q2) 
Five datasets using the four PRBS signals and the 
intermittent on-off heating during the full heating season 
(FHS) are used to investigate the influence of the 
optimizer. The two optimization methods do not show 

much difference for the 1R1C model. In most cases, the 
two optimization methods converge to the same 
parameter values. However, the identified parameters 
from greyest function are not identical for the 3R2C 
model. This implies that the optimization is already non-
convex from the second-order model, this conclusion is 
also confirmed in Arendt et al. [12]. The best optimizer 
leading to lowest NRMSE for the second-order model can 
be found in Table 2 (with different time intervals, 
excitation signals and filters). The figure shows that 
global optimization is selected for all cases no matter the 
time interval or filtering method.  

Table 2: Best optimizer for the four PRBS and FHS 
experiments. 

Sampling 

time 
Type 

Direct 

sampling 

Averaging 

filter 
FIR filter 

2.5min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

15min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

30min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

60min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

 
Since the datasets contain different excitation signals and 
weather conditions, it is a strong proof that global 
optimization can give more robust and higher-quality 
results when the optimization problem is not convex. In 
other words, the global optimization algorithm can 
increase the chance to avoid a local minimum in the grey-
box identification process. 
Influence of the selection of input (Q4) 
While the one-step prediction is used to train the models, 
the simulation performance is more relevant for MPC 
applications. Therefore, the simulation NRMSE fitting is 
mainly used as the performance index in this subsection. 
Table 3 and Table 4 compare the cross-validation 
simulation performance using the volume-averaged air 
temperature and the extracted air as representative indoor 
temperature respectively. Only datasets trained with the 
original 2.5 min sampling time is used to avoid the 
influence of other factors (e.g. dataset, discretization error 
and pre-filtering method). 

BuildSim-Nordic 2020

- 280 -



 Table 3:Simulation NRMSE fitting using the volume-averaged 
air temperature (Ts = 2.5min) 

Training 

dataset 

 

Validation dataset and simulation NRMSE fitting 

PRBS1 PRBS2 PRBS3 PRBS4 FHS 

PRBS1 84.25% 74.96% 0.53% 72.34% -17.72% 

PRBS2 77.10% 74.16% 24.25% 60.58% 9.49% 

PRBS3 39.36% 34.03% 64.20% 14.41% 33.24% 

PRBS4 82.19% 69.36% -17.69% 78.45% -42.34% 

FHS 45.95% 41.11% 69.06% 20.59% 39.17% 

 

Table 4:Simulation NRMSE fitting using the extracted 
ventilation air temperature (Ts = 2.5 min) 

Training 

dataset 

 

Validation dataset and simulation NRMSE fitting 

PRBS1 PRBS2 PRBS3 PRBS4 FHS 

PRBS1 90.21% 70.83% 16.97% 79.05% -94.10% 

PRBS2 73.51% 81.86% 29.88% 71.77% -74.10% 

PRBS3 30.44% 43.28% 68.02% 25.09% -15.82% 

PRBS4 78.70% 73.55% -10.68% 83.63% -155.32% 

FHS 78.11% 71.50% 52.43% 64.46% 25.33% 

 
In general, simulation performance with the two different 
representative temperatures are following the same trend. 
The simulation NRMSE fitting is higher for the original 
training dataset and lower for the validation datasets. The 
model identified from the intermittent set-point and on-

off control dataset during the FHS presents higher 
performance on the validation datasets: the validation 
fitting is acceptable at each period never completely 
collapsing. Models trained from the PRBS excitation 
signals of one week have a good simulation NRMSE 
fitting on their own training data but largely fail in some 
cross-validation datasets. Simulation results from 
extracted air temperature show a slightly higher 
simulation NRMSE fitting value for the original training 
dataset. However, models trained with extracted air 
temperature show worse simulation NRMSE fitting 
compared with volume-averaged temperature when they 
are trained and validated with the FHS dataset (values in 
red in Table 3. Thus, the volume-averaged air temperature 
is a more balanced choice of representative indoor 
temperature. The exhaust air temperature is not always the 
best option to train the model and this conclusion could 
be even more severe if all the internal doors inside the 
building were closed. 
Influence of pre-filtering methods and data-quality 
(Q1, Q3 and Q5) 
Figures 4 to 6 show three key identified parameters for the 
second-order model. For the value of the total heat 
transfer coefficient in Figure 4, the estimated value from 
a step-response of the heating power applied in IDA-ICE 
is about 85 W/K. Figure 4 shows that most of the results 
are close to the estimation from IDA-ICE. When the Ts is 
increased to 60 min, some values using the FIR filter or 

Figure 4: Identified Utot of the 3R2C model (variance is not given as Utot combines the 3R) 

Figure 5: Identified Ce of the 3R2C model 
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direct sampling starts to depart from the estimated value. 
Figure 5 shows the value and variance of the heat 
capacitance of the external wall Ce. Regarding the value 
of Ce, direct sampling has the tendency to generate a 
larger capacitance value with increasing sampling time. 
Some values are not visible because completely outside 
the y-axis limits of the graph. The same problem is even 
more pronounced for the value of the heat capacitance Ci 
in Figure 6. The value of Ci diverges quickly when Ts is 
increased for every pre-filtering method. Although it 
shows that the low-pass filter, especially the moving-
average, can improve the results of identified value for 
these key parameters. Regarding the variance of the 
parameters, it is very limited for the sampling time of 2.5 
min. Like the parameter value, the parameter variance 
increases with the sampling time. However, this increase 
of the variance is less systematic and regular than for the 
parameter value. 

Regarding the influence of filters, FIR does not show a 
significant advantage over the moving-average for the 
identification even though the FIR filter is theoretically 
better. On the contrary, FIR filter sometimes has worse 
results than the moving-average filter when Ts is large.  
Another important conclusion can be found. The FHS 
dataset has more stable identified parameters (both values 
and variance) than the PRBS datasets. This shows that a 
dataset generated from a normal building operation over 
a long time period with comfortable indoor temperatures 
(and thus possible occupancy) can give equivalent or even 
better parameter identification than a short training period 
using a better excitation signal (here PRBS) but leading 
to uncomfortable indoor temperatures, probably 
preventing occupancy.  
The simulation performance is shown in Figure 7 taking 
the FHS period to train the model. For the sake of the 
conciseness, the other cases using the other training 

Figure 7: Simulation performance of the models trained using the FHS dataset.  

Figure 6: Identified Ci of the 3R2C model 
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periods are not reported but they give similar conclusions. 
Unlike, the parameter value and variance, it is clear that 
the increase of the sampling time (Ts) does not degrade 
the simulation performance. In some cases, even though 
the identified parameters have non-physical value or 
variance, this does not alter the simulation performance. 
The simulation performance is the main property of 
interest for the application of MPC. This demonstrates 
that training of a model for MPC application or 
characterization of the building thermal properties does 
not require the same quality of the input data. For 
instance, the pre-filtering methods (MA, FIR or direct 
sampling) do not affect much the simulation performance 
as well. It is difficult to rank the three pre-filtering 
methods as their relative performance changes between 
the validation cases.   
Conclusions 
The sampling time (Ts) of data should be limited to 
guarantee the physical meaning of the parameter value 
and variance. Larger Ts can result in non-physical 
parameter values and variance (Q5). If a small Ts is not 
applicable, the data should be low-pass filtered before 
being sampled even though this measure alone does not 
guarantee that the parameters will be physical for all Ts. 
This answers the first question in the introduction (Q1). 
More than the data pre-filtering, the selection of the right 
sampling time is the dominating factor to guarantee the 
physical meaning of the parameters. Nevertheless, 
sampling time and pre-filtering do not seem to affect the 
simulation performance of the identified models, which is 
a positive conclusion for MPC applications.  
Even if a grey-box model has good simulation 
performance, having meaningful physical parameters in 
the model remains interesting. Firstly, it increases the 
physical understanding of the system, it enables to create 
benchmark values for other buildings of the same 
category. Secondly, if the parameters have not physical 
meaning, the model may have no additional value 
compared to a pure black-box model. However, to 
conclude this, the simulation performance of black-box 
models should be compared as well.  
Regarding the selection of the optimizer (Q2), the results 
show that only the oversimple structure of the first-order 
model shows convexity property. Significant non-
convexity already emerged from the second-order grey-
box model. When applying the four different gradient-
based iterative optimizers, the trained second-order grey-
box model has lower NRMSE for the one-step ahead 
prediction compared to the model from global 
optimization. Therefore, it is better to use global 
optimization to increase the chance of avoiding a local 
minimum.  
It is hard to say whether PRBS or FHS is a better option 
from the results that we observe. Since it also depends on 
the target period of the model (better fitting on a certain 
period or longer period of the FHS). However, it is clear 

that with a larger amount of data (longer observation 
period or more samples with smaller sampling time), the 
chance to identify a model with higher fitting and more 
physical parameters can be increased. This answers the 
third question (Q3) of the introduction. The data quality 
does influence the identified results of the grey-box model. 
Nevertheless, it is not always realistic to use the PRBS 
signal to excite the building’s thermal mass with normal 
occupancy in the residential building. Data from normal 
operation (here intermittent on-off heating) over long 
periods seems more accessible. The results of this paper 
also show that an acceptable model can be obtained with 
normal building operations if large amount of data is 
accessible.  
The selection of the correct input and output is also 
important for system identification (Q4). In the case study, 
the identified results from volume-averaged temperatures 
are better than those from the extracted air temperature. 
This proves that the correct selection of the representative 
indoor temperature of the building can increase the model 
quality and that choosing the extracted air temperature 
does not systematically give the best performance.  
This work has answered some questions for the 
identification of stochastic grey-box models. However, 
the data in this paper is based on the results of virtual 
experiments without measurement noise. For future work, 
it will be worth investigating the influence of the 
measurement noise on the identification results. In 
addition, complementary pre-processing methods to 
increase the chance to identify parameters with a physical 
value is also an interesting topic. 
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a b s t r a c t

Grey-box models are data-driven models where the structure is defined by the physics while the param-
eters are calibrated using data. Low-order grey-box models of the building envelope are typically used for
two main applications. Firstly, they are used as a control model in Model Predictive Control (MPC) where
the thermal mass of the building is activated as storage (for instance in demand response). Secondly, they
are used to characterize the thermal properties of the building envelope using on-site measurements. The
influence of the data pre-treatment on the performance of grey-box models is hardly discussed in the lit-
erature. However, in real applications, information about data pre-processing by sensors or data acquisi-
tion systems is expected to be limited. Therefore, the influence of the sampling time, low-pass filters and
anti-causal shift (also called data labeling) are analyzed for grey-box models in deterministic and stochas-
tic innovation form. The influence on the optimizer performance is also investigated. The datasets are
generated from virtual experiments using multi-zone building performance simulations of a residential
building (in lightweight wooden construction) heated using different types of excitation signals. Results
show that the parameters of deterministic grey-box models are significantly influenced by the training
data while the data pre-treatment has a limited impact on the model and optimizer performance.
Depending on the training data, the value taken by some parameters is not physically plausible. On
the contrary, stochastic models are significantly influenced by the data pre-treatment, especially the
sampling time, and less by the training data. The parameters can become non-physical for large sampling
times. However, the anti-causal shift proves to be efficient to keep the parameters almost constant with
increasing sampling times. Even though the parameter values of the deterministic model are less phys-
ically plausible, the simulation performance of deterministic models is higher than using the equivalent
stochastic models. These results suggest that deterministic models seem better suited for MPC while
stochastic models are better suited for the characterization of thermal properties (if suitable data pre-
treatment is applied).

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

The share of Renewable Energy Sources (RES) is increasing con-
stantly in today’s energy system. Power generation from RES is
often decentralized and intermittent, such as solar and wind
energy, which brings considerable volatility to the electric grid.
The supply and demand sides in the power system have to be bal-
anced at each time step. Any power imbalance can cause severe
consequences for power quality and reliability (e.g. voltage fluctu-
ations and power outage) [1,2]. Therefore, more flexible loads are
needed to further increase the share of intermittent RES. Demand

response (DR) is the interaction and responsiveness of the end-
use customer to a specific penalty signal (e.g. price signal, CO2

intensity factor for electricity signal) [3,4]. It is considered to be
an important component to provide flexibility for smart grids [5].
In addition, DR can also be used for peak-shaving to avoid conges-
tion [6,7] in the distribution grid so that the reinforcement of these
grids can be postponed.

The share of the total final energy consumed by buildings is 20–
40% and this is increasing at the rate of 0.5–5% per year in devel-
oped countries [8]. In Nordic countries, the building energy con-
sumption is dominated by space-heating due to the long and
cold heating season. Building thermal mass can be considered as
short-term heat storage and be used to perform DR [9–11], which
can contribute to providing flexibility to the smart grid. Model
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Predictive Control (MPC) is considered a promising technique to
apply DR. In an MPC, a dynamic model is used to predict the
response of the building to future boundary conditions (e.g. fore-
cast of weather conditions, and production of the energy system).
The MPC control agent (computers, built-in intelligent devices,
etc.) will take the optimal control decisions based on the predic-
tions of the model and system constraints. In buildings, the con-
straints for the MPC are usually the power limitation of the SH
system, and thermal comfort. The performance of the MPC con-
troller thus strongly relies on the quality of the dynamic model
of the system to be controlled. Poor quality models could result
in undesired control outcomes (e.g. increased energy cost, violation
of thermal comfort, or even be counterproductive for the grid). In
practice, MPC is currently applicable for only a small fraction of
existing buildings due to cost criteria [12]. However, the ongoing
implementation of smart meters, like the Advanced Metering Sys-
tem (AMS) in Norway [13] and ‘‘Key principles for the package of
ordinances governing smart grids” in Germany [14], will make
the MPC control concept more accessible in the future. The recent
emergence of small, low-cost and wireless sensors with a data col-
lection function [15] will also contribute to accelerate the imple-
mentation of MPC in buildings. Finally, creating a suitable model
is acknowledged to be the most time-consuming part of MPC
implementation [16]. Therefore, the cost related to the identifica-
tion of the control model should also be limited to reduce the total
investment cost of the MPC controller. The need to identify a con-
trol model at a low cost is even more severe for small residential
buildings.

The modelling methods for MPC can be divided into three main
categories, namely white-, black- and grey-box models. White-box
models are based on physical laws. They require exhaustive infor-
mation about the building including underlying physical processes,
and parameters. This type of model is usually mathematically com-
plex but has high accuracy. This approach is often used in Building
Performance Simulation (BPS) software like Modelica [14], Energy-
Plus [14] and IDA [17]. However, white-box models are time-
consuming to calibrate as a lot of input parameters have to be
defined and they need to be updated during the operational life-
time of the building. Moreover, the mathematical complexity
requires extensive computational power [9] or the white-box
model has to be simplified using linearization and model reduction
techniques [18]. All these factors challenge the feasibility of white-
box models for the MPC of the existing building. Black-box models
are pure data-driven methods based on the measured input and
output time-series data from the system. Statistical regression
and Artificial Neural Network (ANN) are common mathematical
techniques for black-box models [19]. However, this method
requires sufficient data for training to guarantee the accuracy of
the model [20]. The precision of black-box models is also signifi-
cantly influenced by data quality. Grey-box modelling is an

intermediate strategy between white- and black-box models. It
exploits the dominant physical properties of the system to con-
struct the model structure and uses measurement data to estimate
the model parameters. Grey-box models have better generalization
(extrapolation) properties [21] and usually require less experimen-
tal data compared to black-box models [22]. Lumped resistance
and capacitance models (i.e. RC models) are a common approach
to create grey-box models, which means the thermal conditions
of the building are expressed with an electric circuit analogy
[23]. Existing work has already applied grey-box models for MPC
in buildings. For instance, Coninck et al. [24] made use of a grey-
box model identified by monitoring data to implement MPC. Zong
et al. [25] used an economic MPC with a multi-zone grey-box
model to control the power of heating radiators in a three-story
Danish residential house.

This study mainly focuses on the grey-box modelling of the
building thermal dynamics. A significant amount of research has
already addressed the question of the structure of grey-box mod-
els. Viot et al. [26] gave a detailed list of research papers using
RC models for the MPC In the study by Fux et al. [27], a one-
capacitance model was used to forecast the indoor temperature
of a residential building and it gave satisfactory results. Bacher
and Madsen [28] used the data collected from an unoccupied office
building to identify a suitable model. Models of different orders
were evaluated based on likelihood ratio tests. These showed that
from third-order, increasing the model order cannot lead to signif-
icant improvements in the results. Palomo Del Barrio et al. [29]
concluded that a second-order model is sufficient for forecasting
results for both indoor temperature and heating power. The study
of Reynders et al. [30] also confirmed that the second-order model
is enough to deliver decent prediction performance. Moreover,
Reynders et al. concluded that heat flux measurements were
needed to guarantee observability for higher-order models (i.e.
fourth and fifth-order models) since overfitting and convergence
problems occurred. Yu et al. [31] compared two grey-box model
structures generated from VDI 6007 [32] and ISO 13,790 [33].
The results revealed that with limited measurements and a large
number of unknown parameters, the parameters of the identified
model can easily become non-physical. Brastein et al. [34] showed
that deterministic grey-box models at second-order can already
face the problem of practical identifiability. Based on these previ-
ous findings, our paper only uses first- and second-order grey-
box models to address the research questions so that the chal-
lenges related to overfitting can be eliminated from the study.
When space-heating power is used as input and the indoor tem-
perature is used as an output, previous works showed that
second-order models are a good trade-off between accuracy and
identifiability. Therefore, our paper only resorts to first- and (sim-
ple) second-order grey-box models to eliminate challenges related
to overfitting from the study.

Nomenclature

DR Demand Response
MPC Model Predictive Control
BPS Building Performance Simulation
AMS Advanced Metering System
RC Resistance and Capacitance
PRBS Pseudo-Random Binary Signal
PI Proportional Integral
NRMSE Normalized Root Mean Squared Error
FHS Full Heating Season
GA Genetic Algorithm

PSO Particle Swarm Optimization
ACS Anti-Causal Shift
DS Direct Sampling
MA Moving Average
FIR Finite Impulse Response
det Deterministic Model
sto Stochastic Model
HTC Heat Transfer Coefficient
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Data pre-processing (or data pre-treatment) is acknowledged to
have a key influence on the model identification results [35]. How-
ever, this topic has hardly been addressed in the field of grey-box
models for buildings. Ljung and Wills [36] revealed several issues
when applying a long sampling time to estimate continuous-time
models with stochastic disturbances. However, the analysis of
Ljung and Wills is illustrated using a theoretical example. There-
fore, our paper investigates the influence of long sampling times
in building applications. The time-series data is generated using
virtual experiments using the BPS software IDA ICE. In addition
to the sampling time, the influence of the data pre-processing
using a low-pass filter is investigated as well as the influence of
shifting the input data in time, called anti-causal shift (ACS). In this
context, the performance of grey-box models in the deterministic
and stochastic innovation forms is compared using the MATLAB
identification toolbox [37]. To analyze the model performance,
the ability to characterize the thermal properties of the building
envelope and the simulation performance are clearly distin-
guished. The simulation performance is a good indicator of the
model accuracy for MPC applications. Finally, these research ques-
tions are important as data can be processed (or altered) by sen-
sors, the data acquisition system or by the building modeler
prior to the model identification.

The remainder of the paper is structured as follows. Section 2
provides information on the virtual experiment using BPS soft-
ware, which includes detailed information about the virtual build-
ing, the excitation signals and the boundary conditions. Section 3
describes the grey-box model structure used for this study. The
model identification tool and method are also outlined, followed
by the data pre-processing method. Section 4 shows results split
into three aspects. The model performance to characterize the
building thermal properties is first discussed. Then, the analysis
of the optimizer performance and the simulation performance is
analyzed. Section 5 gives some complementary discussions based
on the results. Conclusions are presented in Section 6.

2. Virtual experiments

2.1. Detailed multi-zone dynamic simulations

IDA ICE is a detailed dynamic simulation tool to study the
indoor environment and the energy consumption of buildings. In
this study, an IDA ICE building model is used as a virtual experi-
ment to generate data for system identification. It is a two-story
detached house located in Oslo with a heated floor area of
160 m2. The building is constructed in wood, meaning a light-
weight construction, and complies with the requirement of the
Norwegian passive house standard, NS 3700 [38]. The three-
dimensional geometry of the building is shown in Fig. 1. The build-
ing is equipped with balanced mechanical ventilation with a heat
recovery unit. A cascade ventilation strategy is applied. This heat
exchanger is modelled using constant effectiveness of 85% without
bypass (like a plate heat exchanger) to promote the linearity of the
model. This is done because the research focuses on the thermal
dynamics of the building envelope and does not aim at modelling
the air handling unit (AHU) in detail. Other detailed information
regarding the BPS software model can be found in [39].

The detailed building model is multizone and the zoning fol-
lows the floor plan presented in Fig. 2. For the sake of simplicity,
the grey-model models considered in our study are mono zone:
it is not necessary to use multi-zone grey-box models to address
our research questions. Consequently, the indoor temperature in
our virtual experiments should be as uniform as possible. This is
done by opening all the internal doors inside the building. IDA
ICE has an embedded ventilation network model which accounts

for the large bidirectional airflow through open doorways. Thus,
the air temperature inside the building computed by IDA ICE is rel-
atively uniform due to the large convective heat transfer between
rooms. The volume-averaged temperature is selected to represent
the measured indoor air temperature. The mean air temperature of
the extract ventilation air is also a common choice. However, based
on preliminary investigations, the volume-averaged temperature
proved to give better grey-box models for this test case. The build-
ing is heated using electric radiators as these are the most common
space-heating systems for residential buildings in Norway [40].
This heating system has smaller thermal inertia than the building
envelope so that the dynamics of the radiators are expected to play
a limited role. Hourly profiles for internal gains generated by arti-
ficial lighting, electric appliances and occupancy are taken from the
Norwegian technical standard TS3031:2016 [41]. The typical mete-
orological year (TMY) of Oslo with a resolution of one hour is used
for the IDA ICE simulations. Like internal gains, solar gains have
thus a resolution of one hour.

2.2. Excitation signals of the building thermal dynamics

The system needs to be perturbed to obtain data for model
identification. It is often recommended to use excitations having
no correlation with the other inputs [28]. The Pseudo-Random Bin-
ary Signal (PRBS) is a periodic and deterministic signal which
approximates white noise properties [42]. The PRBS signal can acti-
vate the dynamic system in a large spectrum of frequencies with a
high signal-to-noise ratio (SNR) [28,43,44]. In this study, the exci-
tation signal is simultaneously applied to all the electric radiators
in the BPS model. Following the guidelines of the IEA EBC Annex
58 [45], the excitation signal is in fact the combination of the
two PRBS signals, see Fig. 3. One sequence to identify the short-
time dynamics with a period (T) of 10 min and with an order (n)
of 8. The second sequence aims at identifying the long time con-
stant of the building with a period (T) of 3.5 h and n equals to 5.
The resulting time profiles for the space-heating are shown in
Fig. 2. The PRBS signal can be applied to four different weeks in
the space-heating season. These weeks are characterized by differ-
ent weather conditions, as described in Table 1.

However, it is not always desirable to apply a PRBS signal to the
space-heating system as large variations of the indoor temperature
may occur and lead to thermal discomfort for the occupants.
Therefore, conventional controls of heating systems are also inves-
tigated. Intermittent heating with a temperature setpoint changing
between daytime and night-time is considered (i.e. a night set-
back). Two different local controllers are tested to track the set-
point temperature in each room: a Proportional-Integral (PI) con-
trol and an on–off control (with a differential of 1 K). The last
one is the most common control strategy for electric radiators in
buildings. When a PRBS signal is applied over a long period of time

Fig. 1. 3D geometry of the building model in IDA ICE (showing the southwest
facade).
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(i.e. longer than one week), it is difficult to design the signal so that
the indoor temperature is kept within comfortable temperature
limits for the occupants. By definition, conventional heating con-
trols enable to have normal occupancy of the building during the
experiments used to collect data for model identification. It is thus
possible to collect data over a longer period of time than one week
without impacting the thermal comfort of building users. The full
space-heating season (FHS) starting in November and finishing at
the end of March can be used to train the model. However, it is also
interesting to test whether a shorter training period of one month
would be sufficient to train the grey-box models. It is also interest-
ing to check whether specific months are more suited for this task.
Therefore, the model parameters are also identified using each of

five different months of the space-heating season (i.e. Month 1 to
5).

To investigate the influence of data pre-processing techniques
and the grey-box modelling approaches, 20 different datasets have
been generated using different excitation signals, duration of the
experiment and weather data. The detailed description of each case
can be found in Table 2 below. IDA ICE assumes that variables are
piecewise linear during one-time step. The model equations are
integrated numerically using a variable time-step so that data is
not generated at constant time intervals. Consequently, conserva-
tive interpolation has been used to interpolate IDA ICE data on a
uniform grid of 2.5 min. This time step is significantly smaller than
the shortest period of the PRBS (i.e. 10 min).

3. Methodology for grey-box modelling

3.1. Grey-box model structure

Based on the literature review (see the introduction section),
only first-order and second-order grey-box models are considered
in this paper. Preliminary tests using our virtual experiments con-
firmed that a third-order model would be overfitted. The structure
of the grey-box model expresses the conservation of energy. As
mono zone grey-box models are considered (with a single node
related to the indoor air temperature), the dominant process to
be integrated is the heat transfer between the building and its out-
door environment. The influence of solar radiation and internal
gains are also included in the grey-box models. Two model struc-
tures are studied: a one-resistance, one-capacitance (1R1C) in
Fig. 4, and a three-resistance, two-capacitance (3R2C) model in
Fig. 5. The physical interpretation of their respective parameters
can be found in Table 3.

The internal and solar gains can be computed accurately by BPS.
For the sake of simplicity, these gains have been introduced
directly in the grey-box models rather than identified. For the

Fig. 2. Floor plan of the test building (ducts for the supply air are in blue and in red for extraction). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Time profile of the PRBS signal applied to electric radiators.

Table 1
Weather conditions in four PRBS experiments.

Type Outdoor Temperature Sky Date Duration

Very Cold -10 ℃ Clear sky 12/13/2019 One week
Cold 0 ℃ Overcast 12/24/2019 One week
Cold 0 ℃ Clear sky 3/23/2019 One week
Mild 5 ℃ Overcast 11/23/2019 One week
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3R2C model, only the coefficient a that distributes the solar gains
between the two temperature nodes needs to be identified. In real
applications, the gains are not known exactly. However, simplify-
ing the problem enables us to emphasize the specific research
questions in this paper. To obtain a more physical representation
of the heat exchange between the building and its outdoor envi-
ronment, an equivalent outdoor temperature is applied as
described in Harb et al. [9]. This temperature is calculated using

Equation (1) with a short-wave absorption coefficient of the exte-
rior surface (af ) of 0.5 and an exterior heat transfer coefficient (aA)
of 25 W/(m2K):

Ta;eq ¼ Ta þ Qirrad
af
aA

ð1Þ

The heat dynamics of the 1R1C model is expressed in the fol-
lowing differential equation:

Ci
dTi

dt
¼ UA ðTa;eq � TiÞ þ Qh þ Qint þ Qsolar ð2Þ

The heat dynamics of the 3R2C model is expressed by the fol-
lowing differential equations:

Ci
dTi

dt
¼ UAvent ðTa;eq � TiÞ þ UAie ðTe � TiÞ þ Qh þ Qint

þ aQsolar ð3Þ

Ce
dTe

dt
¼ UAea ðTa;eq � TeÞ þ UAie ðTi � TeÞ þ ð1� aÞQsolar ð4Þ

3.2. Model identification tool and method

The MATLAB system identification toolbox is used in our study
[37]. Madsen et al. [45] illustrated how stochastic models can be
formulated as an extension of deterministic models. In the stochas-
tic form, a system noise (or noise term) is added to the determin-
istic model equations to better account for the modelling
approximations, unrecognized inputs and measurement of inputs
corrupted by noise. The generic equations of the stochastic linear
state-space model in innovation form can be expressed as:

dx
dt

¼ AxðtÞ þ BuðtÞ þ KeðtÞ ð5Þ

yðtÞ ¼ CxðtÞ þ eðtÞ ð6Þ
where x is the state vector, A, B and C are the system matrices, u is
the input vector (i.e. Ta,eq, Qsolar, Qint, Qh) and y is the output (i.e.
indoor temperature, Ti). K is the disturbance matrix of the innova-
tion form (Kalman gain) [46]. The matrices A, B, C and K are func-
tions of the model parameters (h), in our case defined by
Equations (2) to (4). The continuous-time model is first discretized
so that discrete measurement data can be used to identify the
model parameters. Unlike IDA ICE, the time discretization in the
MATLAB identification toolbox assumes piecewise-constant input
data during each time interval (i.e. zero-order hold). For stochastic
models, both the value and variance of the model parameters are
identified. In the case of deterministic models, the K matrix is set
to zero. The parameter variance is not clearly defined for the deter-
ministic model in the MATLAB system identification toolbox. There-
fore, it has been decided to only consider the parameter value.

At the beginning of the identification procedure, the initial
guess of the model parameters and their region of feasibility (i.e.
lower and upper bounds for each parameter) should be defined
by the user as input parameters. Then, the optimizer iterates
within the feasibility region to find the value of the parameters
that minimize the prediction error criterionf ðxÞ

f ðxÞ ¼
XN
k¼1

jjyk � yk
^ ðhÞjj2 ð7Þ

where yk is the measurement output while bykðhÞ is the one-step
ahead prediction.

The default function (greyest) in the MATLAB identification tool-
box uses gradient-based optimizers. Four different iterative search
methods are used in sequence. Consequently, the optimizer may

Table 2
Description of the datasets and their corresponding abbreviation.

Case
(dataset)

Case description
(excitation)

Period/Duration Abbreviation

1 PRBS1 Week 1 W1-PRBS
2 PRBS2 Week 2 W2-PRBS
3 PRBS3 Week 3 W3-PRBS
4 PRBS4 Week 4 W4-PRBS
5 Intermittent on–off Week 1 W1-Inter I/O
6 Intermittent on–off Week 2 W2-Inter I/O
7 Intermittent on–off Week 3 W3-Inter I/O
8 Intermittent on–off Week 4 W4-Inter I/O
9 Intermittent on–off Month 1 M1-Inter I/O
10 Intermittent on–off Month 2 M2-Inter I/O
11 Intermittent on–off Month 3 M3-Inter I/O
12 Intermittent on–off Month 4 M4-Inter I/O
13 Intermittent on–off Month 5 M5-Inter I/O
14 Intermittent on–off Full heating

season
FHS-Inter I/
O

15 Intermittent PI Month 1 M1-PI
16 Intermittent PI Month 2 M2-PI
17 Intermittent PI Month 3 M3-PI
18 Intermittent PI Month 4 M4-PI
19 Intermittent PI Month 5 M5-PI
20 Intermittent PI Full heating

season
FHS-PI

Fig. 4. First-order 1R1C model.

Fig. 5. Second-order 3R2C model.
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converge to a local optimum if the problem is not convex. As
shown in Arendt et al. [47], Genetic Algorithm (GA) combined with
a gradient-based method could be used to solve non-convex opti-
mization problems used to identify the parameters of grey-box
models. Likewise, a global optimization algorithm has been imple-
mented in our work to avoid a local optimum. A metaheuristic Par-
ticle Swarm Optimization (PSO) is applied at the first stage,
followed by the default greyest function to refine results during
the second stage. The PSO algorithm begins by creating the initial
particles and assigning them initial velocities. It evaluates the
objective function at each particle location and determines the best
(lowest) function value and the best location. In the next step, new
velocities are chosen based on the current velocity, the particles’
individual best locations, and the best locations of their neighbors.
The optimizer then iterates the particle locations, velocities, and
neighbors until the algorithm reaches a stopping criterion. Detailed
information on the PSO algorithm can be found in [48,49]. For each
test case, both optimization procedures are used in sequence: the
default greyest and the global optimization. The method giving
the lowest error for the prediction error criterion is selected to pro-
vide the model parameters. The flow chart of the identification
routine is summarized in Fig. 6.

To determine the search space for the optimization, a first set of
limits for the parameter values have been selected based on the
thermal properties of the building in IDA ICE. Then, these mini-
mum and maximum limits have been refined manually by trial
and error. Several simulations (i.e. optimizations) have been run
with different limits for the parameter values. It has been checked
whether the solution (meaning the parameter values computed by
the optimizer) hit the pre-defined parameter limits The limits of
the parameter values leading to the smallest range without the
optimizer hitting these limits have been selected. The PSO algo-

rithm populates this range randomly to generate the initial condi-
tion. A sensitivity analysis has been done on the number of
particles in the swarm as well as the number of iterations.

3.3. Data pre-processing method

Extended sampling time (Ts) can lead to a non-physical value
and variance for the identified parameters of grey-box models
(see e.g. [36]). In real-life applications, it can be seldom guaranteed
that measurement data is recorded at a sampling time (Ts) shorter
than the shortest time of the system (Tmin). In our test case, Tmin is
related to the shortest period of the PRBS signal (T) as the other
model inputs (namely the internal and solar gains) have a resolu-
tion of one hour. Tmin is therefore 10 min and the sampling time
(Ts) applied to the BPS data has been taken at 2.5 min to avoid
aliasing. As Ts < Tmin, it is therefore possible to identify the param-
eters of the grey-box model without facing the above-mentioned
issues. However, the measurement data at 2.5 min can be resam-
pled at longer sampling times, namely 15, 30 or 60 min, so that
the case where Ts < Ti can be directly compared to the cases where
Ts > Ti. In real applications, it is difficult to guarantee that the data
logging is done at a sampling time shorter than the system dynam-
ics. In addition, the measurement data can be pre-processed before
being logged at Ts. Two methods are considered here: low-pass fil-
tering and anti-causal shift.

Regarding low-pass filtering, three approaches are compared:

� The first approach is direct sampling (DS) at Ts without pre-
filtering. This may cause a high aliasing error.

� The second approach applies a moving-average (MA) filter of
length Ts before sampling. With MA, the aliasing error is signif-
icantly decreased but, in theory, it can still occur.

Table 3
The physical interpretation of the parameters of the grey-box models.

Parameters Physical interpretation

Ti Temperature of interior heat capacity [�C].
Te Temperature of the building envelope [�C].
Ta The outdoor (or ambient) temperature [�C].
Ta,eq The equivalent outdoor (or ambient) temperature [�C].
Ci Heat capacity of the building combining the thermal mass of the air, the furniture, internal walls and, potentially,

a fraction of the thermal capacitance of external walls: the first centimeters for the second-order model and a
larger fraction for the first-order model [kWh/K].

Ce Heat capacity of the node external wall for the second-order model [kWh/K].
UA Overall heat transfer coefficient (HTC) between the building and its ambient, including ventilation [kW/K].
UAie Heat conductance between the building envelope and the interior [kW/K].
UAea Heat conductance between the ambient and the building envelope [kW/K].
UAvent Heat conductance between the ambient and the interior node [kW/K].
Qint Internal heat gain from artificial lighting, people and electric appliances [kW].
Qirrad Global solar irradiation on horizontal surface [K/m2].
Qsolar Heat gain from solar irradiation [kW].
Qh Heat gain from the electric heater [kW].
a Fraction of solar gains to air node.

Fig. 6. Flow chart of the optimization procedure to identify the model parameters.
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� The third approach applies a finite impulse response (FIR) filter
with a cut-off frequency of 1/Ts before sampling. The FIR would
lead to negligible aliasing error (if it is designed at a sufficient
order).

By analyzing the performance of the three methods, it is possi-
ble to understand the influence of aliasing. It is known that these
low-pass filters introduce a time delay [35]. However, as the
low-pass filters are here applied to all input and output variables
of the dataset, the delay does not affect the final identification
results. In the paper, we don’t distinguish between the low-pass fil-
tering deliberately introduced by the data engineer before training
the grey-box model and the low-pass filtering done internally in
the sensor. If grey-box models of small residential buildings should
be developed at low cost, there is most likely no time to take the
technical specifications of each sensor into account. Therefore,
the type of data pre-treatment performed by the sensor can be
unknown. The analysis is thus generic.

Ljung and Wills [36] pointed out that time labeling plays a role
in the alignment of inputs and outputs for the identification appli-
cation. The results of Ljung andWills’s paper show that a time shift
(ACS) of the input (Input Delay = -Ts) is beneficial for the model.
The method is going to be tested with the data from IDA ICE model.

3.4. Key performance indicator

One main application of the grey-box model is MPC. In this con-
text, the long-term prediction performance (i.e. the simulation per-
formance) is paramount. In our work, the NRMSE fitting, defined in
Equation (9), is taken as the key performance indicator (KPI) to
evaluate the simulation performance. It is based on the normalized
root mean squared error (NRMSE) quantifying how well the simu-
lated or predicted model response matches the measurement data,
see Equation (8). If the fitting is 100%, this means the model fits the
measurement data perfectly, while a low or negative fitting corre-
sponds to a worse model. There are no outliers in the measurement
data that will skew the NRMSE KPI, so there is little reason to use
KPIs handling outliers better, such as Mean Absolute Error (MAE).

NRMSE ¼ jjyk � yk
^ jj

jjyk �meanðykÞjj
ð8Þ

NRMSEfit ¼ ð1� NRMSEÞ � 1 00% ð9Þ
Regarding the characterization of the building thermal proper-

ties, the performance of the grey-box is evaluated using the phys-
ical plausibility of the identified parameters. The calibrated value
of the model parameters should give a physically-reasonable esti-
mate of the thermal building properties.

� The overall heat transfer coefficient (HTC) is the total heat loss
of the building in a steady-state. Convective and long-wave
radiative heat transfer are non-linear. However, in the case of
a highly insulated building, the heat conduction is dominant
and often assumed linear in BPS (like in IDA ICE). In addition,
the heat recovery effectiveness is constant, making its model
linear. Specifically, each resistance R (or conductance) of the
grey-box model will be dependent on the excitation signal.
However, their combination to form the HTC is a steady-state
performance parameter. Consequently, the HTC does not
depend much on the excitation signal used for the identifica-
tion. For the first-order model, the HTC is equal to the conduc-
tance UA. For the second-order model, the formula of the HTC
for the 3R2C model is defined by Equation (10). In conclusion,
to be physically plausible, the identified HTC should be close

to steady-state heat losses of the IDA ICE model. These losses
have been evaluated at 85 W/K (identified by applying a step
function of the space-heating to the IDA ICE model).

HTC ¼ 1
1=UAie þ 1=UAea

þ UAvent ð10Þ

� The capacitances (Ci and Ce) are strongly related to the building
thermal dynamics. Defining their physical plausibility is more
challenging because their value depends on the excitation sig-
nal. The effective heat capacitance of the building (Ceff) based
on the ISO 13786:2017 [50] is taken as a reference value for
the capacitances mostly related to the walls (meaning Ci in
the 1R1C model and Ce in the 3R2C models). Ceff is evaluated
assuming daily fluctuations (i.e. 24 h) and using the thermal
properties of each layer in the building walls (i.e. physical-
based approach). Ceff is here equal to 3.9 kWh/K. To be physi-
cally plausible, it is expected that the identified values, also con-
sidering their variance, have the same order of magnitude as
Ceff. Indeed, none of the excitation signals used in our investiga-
tions have fluctuations significantly longer than one day. For the
3R2C model, there is no point of comparison for the identified
value of Ci. However, as it is related to the fast dynamics of
the building, it is expected to be smaller than Ceff. In addition,
the value of Ci should decrease with increasing frequencies in
the excitation signal.

4. Results

In this section, the model performance to characterize the
building thermal properties is first discussed, followed by the anal-
ysis of the optimizer performance. Finally, the simulation perfor-
mance, important for MPC applications, is investigated. The
comparisons of this section are mainly based on the performance
criteria defined in the previous section. However, there are 20 dif-
ferent training datasets (see Table 2), four different models, four
different sampling times, two different optimizers and three pre-
filtering methods of the virtual experiments, with and without a
causal shift. It corresponds to a total of 4320 different test cases.
Thus, only the most representative test cases are taken to illustrate
the results and support the conclusions.

4.1. Characterization of the building thermal properties

The physical plausibility of the identified grey-box model
parameters is verified. It means the ability to identify values for
the parameters that are in line with physics. For the sake of the
conciseness, we mainly focus on datasets 1 to 4 with a short train-
ing period but strong excitation as well as dataset 14 which has the
largest amount of data, see Table 2. These datasets can be seen as
extreme scenarios so that it makes them representative to illus-
trate the model performance. Other datasets are also occasionally
used to better illustrate how the input data influences the identifi-
cation results. As has been mentioned previously in Section 3.2, it
has been demonstrated theoretically that ACS of the input signal
can be beneficial for model identification [36]. Therefore, the influ-
ence of the ACS is tested. The 3R2C model is used to illustrate the
results. Some of the results of the 1R1C model are given in Appen-
dix A. Regarding the physical plausibility of parameters, the overall
heat transfer coefficient (HTC) of the building and heat capaci-
tances (Ce and Ci) are used to illustrate the results.

All the figures in this section are based on the same layout, see
e.g. Fig. 7. In each figure, five cases or datasets are considered. The
abbreviation for each case on the horizontal axis follows the
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description given in Table 2. The influence of increasing sampling
times on these five cases is reported from the left to the right of
the figure. Each figure also distinguishes the cases as a function
of the data pre-treatment. Firstly, the colors of markers correspond
to the different pre-filtering techniques. The cases in red, blue and
black represent the MA filter, the FIR filter and the direct sampling,
respectively. Secondly, cases without ACS are shown by circles in
normal colors while cases with ACS are shown by triangles in
lighter colors.

4.1.1. Deterministic 3R2C model
In Fig. 7, the value of HTC is close to the reference value of 85W/

K. The same conclusion is obtained for the 1R1C deterministic
model, see Fig. 18 in Appendix A. The sampling time (Ts) does
not have a noticeable influence on the HTC. Likewise, the pre-
filtering method and ACS have no significant impact on HTC.

As shown in Fig. 8, the training dataset has the largest influence
on Ce while the sampling time, the pre-filtering technique and the
ACS have a limited impact. The value of Ce is similar between the
four datasets using PRBS excitation (i.e. cases 1 to 4) and is plausi-
ble compared to the Ceff of 3.9 kWh/K determined using standards.
However, it differs for case 14 that generates a higher value, well

above 3.9 kWh/K. Comparable results are observed for the 1R1C
deterministic model (see Fig. 19 in Appendix A). To further illus-
trate the influence of the dataset, the values of Ce identified using
an intermittent on–off excitation during each month of the space-
heating season are compared, i.e. cases 9 to 13, in Fig. 9. Even
though the excitation signal is generated from the same control
(i.e. intermittent on–off control) and has the same duration of
one month, the identified Ce strongly depends on the selected per-
iod used to train the model, meaning the specific month of the
space-heating season.

As shown in Fig. 10, similar results are obtained for the values of
Ci. The case with ACS shows a progressive increase of Ci with the
sampling time. A possible reason is that Ci represents the thermal
capacitance of the building combining the air, the furniture, inter-
nal walls and, potentially, the first centimeters of external walls.
With increasing Ts, the high frequencies of the inputs and the
output are reduced while the low frequencies, corresponding to a
longer penetration depth in the walls, have more importance in
the evaluation of the thermal capacitance. With longer penetration
depths, more thermal mass is activated leading to a higher Ci.

Several conclusions can be drawn. Firstly, the value of the
parameters strongly depends on the dataset selected to train the

Fig. 8. Identified Ce of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles
in lighter colors.

Fig. 7. Identified HTC of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by
triangles in lighter colors.
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model. Both the type of excitation (e.g. PRBS and on–off intermit-
tent excitation) and the selected period during the space-heating
season influence results. Secondly, the pre-processing of data does
not have a large influence. Neither the ACS, the pre-filtering tech-
nique nor the sampling time leads to a significant change in the
parameter values. The only exception appears with very large Ts.
Then, the pre-filtering can prevent the parameter value from
becoming non-physical. Finally, the HTC characterizing the
steady-state performance of the building has rather stable values
while the other parameters characterizing the thermal dynamics
of the building, here Ce and Ci, are more strongly impacted by
the training dataset and the sampling time.

4.1.2. Stochastic 3R2C model
For stochastic models, the value and variance of the model

parameters are available. However, as the HTC is the combination
of the three conductances in the 3R2C model, only the value of the
HTC can be shown, not its variance. The value for HTC for the 3R2C
stochastic model in Fig. 11 is similar to the deterministic model in
Fig. 7. The same conclusion can be made for the 1R1C stochastic
model, shown in Fig. 20 in Appendix A. As for the deterministic
model, long sampling time can lead to a non-physical value of
the HTC. While all the pre-filtering prevented the value to become

non-physical for the deterministic model, only the moving-average
filter and the ACS have the same effect for the stochastic model.

The value and variance of Ce are shown in Fig. 12. As long as the
sampling time is shorter than the system dynamics (i.e. Ts equal
2.5 min), the value of Ce is independent of the training period
and its variance is limited. Close to the Ceff of 3.9 kWh/K, the value
of Ce is meaningful from a physical point of view. When the sam-
pling time increases, the behavior should be distinguished with
and without the application of an ACS. When the ACS is applied,
the value and variance of Ce are regular even with long sampling
time. The ACS has a strong positive effect on the physical plausibil-
ity of Ce. With ACS, pre-filtering has a limited influence on the
results. Without ACS, the parameter value and variance become
erratic with increasing Ts. Some values are so high that they fall
outside the y-axis limit of the graph. In addition, no clear trend
can be found on the influence of the pre-filtering and training
period.

The same phenomenon is observed for the value and variance of
Ci in Fig. 13. Nonetheless, there is one aspect that differs from Ce. As
for the deterministic model with ACS, the values of Ci with the cor-
responding stochastic version also tends to increase with the sam-
pling time. A possible explanation for this phenomenon has been
given in the previous subsection.

Fig. 9. Identified Ce of the 3R2C deterministic model for cases 9 to 13, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in lighter
colors.

Fig. 10. Identified Ci of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by
triangles in lighter colors.
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From all the results of the stochastic models, several conclusions
can also be drawn. First, the identified parameters are strongly
dependent on the sampling time. The identified parameters are
always consistent if the Ts is taken small compared to the shortest
time of the system Tmin (influenced by the excitation). It is only
when Ts gets equivalent or larger than the building dynamics that
the parameters are getting non-physical without ACS, especially
the thermal capacitances. The second conclusion is that ACS pre-
vents the parameter value and variance to get non-physical for
large Ts. With ACS, the uncertainty of the parameters remains lim-
ited and their value remains physically plausible. Also with ACS, the
values identified are mainly based on the training dataset but to a
much smaller extent than the deterministic model. Pre-filtering
only has limited influence with ACS while the pre-filtering influ-
ence without ACS does not show a clear trend, sometimes improv-
ing or degrading results. Finally, like the deterministic model, the
steady-state characteristics HTC is less influenced by the dataset
and pre-processing than the thermal capacitances.

4.2. Performance of the optimizer

The performance of both optimizers defined in Section 3.2 is
compared for a selected number of datasets (i.e. cases 1 to 4 and

14), with and without ACS, for both deterministic and stochastic
models. Table 4 shows the optimizer that leads to the lowest pre-
diction error for each test case. The symbol ‘‘D” represents the
default greyest function, ‘‘G” represents the two-stage global opti-
mization algorithm and the symbol ‘‘�” is used when both opti-
mizers lead to extremely close results in terms of prediction
error and estimation of the model parameters. Only results for
the sampling times of 2.5 and 30 min are presented in Table 4.
However, the same conclusions are found for the other two sam-
pling times (i.e. 15 and 60 min).

It is observed that the two optimizers have identical results for
all the cases using a deterministic model, regardless an ACS is
applied or not. However, global optimization generally performs
better than the default greyest optimization for stochastic models
without ACS. On the contrary, both optimizers have similar perfor-
mance when ACS is applied. It means that ACS tends to preserve
the physical plausibility of the model parameters when Ts is large
but it also positively influences the convexity of the optimization
problem. In general, results confirm that it is better to use global
optimization. Otherwise, the obtained sets of parameters are pos-
sibly located at a local minimum which mainly depends on the ini-
tial guess of the parameters.

Fig. 11. Identified HTC of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles
in lighter colors.

Fig. 12. Identified Ce of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in
lighter colors.
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4.3. Simulation performance of the models

The simulation performance of the grey-box models, analyzed
here using the NRMSE fitting, is another important aspect of the
system identification. As expected, the second-order 3R2C model
has better simulation performance than the first-order model
and is used to illustrate the results. Again, only a limited set of
results can be shown. The simulation performance of the 3R2C
model trained on the FHS intermittent on–off dataset (i.e. case
14) is taken. This training period covers the whole space-heating
season and leads to the lowest variance of the identified parame-
ters in Section 4.1. Then, the simulation performance of the model
trained on the case 14 is evaluated on cases 1 to 4, as cross-
validation test cases. In simulation, the full length of each dataset
is taken as the prediction horizon for both the deterministic and
stochastic models. Fig. 14 and Fig. 15 illustrate the influence of
the number of steps ahead on the NRMSE fitting for the 3R2C
stochastic model and datasets 1 and 2. The NRMSE fitting for long
k-step ahead prediction (i.e. more than two days) is slightly higher
than that in a simulation. To study the influence of the data pre-
treatment, the 3R2C is trained on case 14 with different sampling
times as well as with and without pre-filtering.

Fig. 16 compares the simulation performance of the determinis-
tic and stochastic models without ACS. For different Ts and pre-
filtering approaches, the deterministic model has a more constant
simulation performance than the corresponding stochastic model.
For the deterministic model, the NRMSE fitting tends to slightly
decrease with increasing Ts while it tends to increase for the
stochastic models (except for the PRBS3 case). The deterministic

model has generally a better simulation performance than its cor-
responding model in stochastic form even though this difference
tends to disappear for large Ts. This conclusion is noteworthy as
for deterministic models the value of the parameters is signifi-
cantly influenced by the training period and some of the values
are even not physically plausible. In other words, identifying a
model with parameters that have a more physical value does not
necessarily lead to a model with better simulation performance.
If one is not interested in the characterization of the thermal prop-
erties but rather the simulation performance (like in MPC), results
suggest that deterministic models can be more robust than
stochastic models. This makes the resolution of the optimization
problem to calibrate the model easier (as both local and global
optimizer lead to the same parameters). In addition, it has been
shown that pre-filtering techniques and Ts have a limited effect
on model performance. This conclusion is important in the context
of the design of MPC for small residential buildings where a control
model should be identified at a low cost, potentially using a fully
automated procedure.

Fig. 17 compares the simulation performance of the stochastic
model with and without ACS. While the ACS tends to improve the
physical plausibility of the model parameters and positively influ-
ence the optimization problem, it has in general a negative influence
on the simulation performance of themodel. As alreadymentioned,
theNMRSEfittinggenerally increaseswithTs for the stochasticmod-
els without ACS. This increase is less pronounced for the stochastic
model with ACS even though the physical plausibility of the param-
eters has been improved. Two conclusions can be given. Firstly, it
confirms that parameters that are more physically plausible do not

Fig. 13. Identified Ci of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in
lighter colors.

Table 4
Optimizer leading to the lowest prediction error: each cell of the table has two symbols, one for the case without ACS (left) and the other with ACS (right); the symbol ‘‘D” means
default greyest, ‘‘G” means global optimization and ‘‘�” means equal performance.

Time
(Ts)

Case 1R1CDS
(det)

1R1CMA
(det)

1R1CFIR
(det)

3R2CDS
(det)

3R2CMA
(det)

3R2CFIR
(det)

1R1CDS
(sto)

1R1CMA
(sto)

1R1CFIR
(sto)

3R2CDS
(sto)

3R2CMA
(sto)

3R2CMA
(sto)

2.5 min 1 �/� – – �/� – – G/� – – G/� – –
2 �/� – – �/� – – G/� – – G/� – –
3 �/� – – �/� – – G/� – – G/� – –
4 �/� – – �/� – – G/� – – G/� – –
14 �/� – – �/� – – G/� – – G/� – –

30 min 1 �/� �/� �/� �/� �/� �/� G/� G/� G/� G/� G/� G/�
2 �/� �/� �/� �/� �/� �/� G/� G/� G/� G/� G/� G/�
3 �/� �/� �/� �/� �/� �/� G/� G/� G/� G/� G/� G/�
4 �/� �/� �/� �/� �/� �/� G/� G/� G/� G/� G/� G/�
14 �/� �/� �/� �/� �/� �/� G/� G/� G/� G/� G/� G/�
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necessarily lead to better simulation performance. Here, with large
Ts and without ACS, the value of some parameters, such as Ce in
Fig. 12, is non-physical but it nonetheless leads to better simulation
performance. Secondly, the ACS showed to be a robust solution to
characterize the thermal properties of the building and the resolu-
tion of the optimization problem. However, it appears from our
investigations that the ACS comes at the price of lower simulation
performance. Finally, noneof theapproaches investigatedhereman-
ages to combine high physical plausibility and the highest simula-
tion performance at large Ts.

5. Discussions

Based on the analysis of the results, some complementary dis-
cussions can be given:

� Even though ACS has a beneficial effect on the performance of
the stochastic grey-box model, the fundamental reason for
explaining this phenomenon is not given in the paper. From
the authors’ knowledge, no clear explanation has been given
in the literature as well.

Fig. 14. Simulation performance of the deterministic and stochastic 3R2C models with different simulation length for the stochastic model, trained with the dataset 14 and
validated with dataset 1.

Fig. 15. Simulation performance of the deterministic and stochastic 3R2C models with different simulation length for the stochastic model, trained with the dataset 14 and
validated with dataset 2.

X. Yu, L. Georges and L. Imsland Energy & Buildings 236 (2021) 110775

12



Fig. 16. Comparison of the simulation performance of the deterministic and stochastic 3R2C models trained on the dataset 14 without ACS and validated using the other
datasets.

Fig. 17. Comparison of the simulation performance of the stochastic 3R2C model with and without ACS, trained with the dataset 14 and validated with datasets 1 to 4.
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� The simulation performance is a good indicator of modeling
accuracy in MPC applications. In Fig. 14, it can be seen that
the k-step ahead prediction of two days (or more) has a NRMSE
fitting close to simulation mode. It shows that the simulation
performance is a good indicator even though the prediction
horizon used in MPC is well shorter than the entire simulation
period. However, even though it is a good indication, it is no
mathematical proof that a model with higher simulation perfor-
mance would systematically outperform another model with
lower simulation performance when implemented in an MPC.
It should be tested using an MPC test case and conclusions will
most probably depend on the MPC test case selected.

� The results and conclusions of this paper are based on the
stochastic grey-box model in innovation form. It is not proven
that the results can be directly extrapolated to all formulations
of the stochastic differential equations (for instance, the statis-
tical grey-box modelling toolbox of CTSM-R [28]).

� The results and conclusions of this paper are based on the first-
and second-order models. It is not guaranteed that the results
can be extrapolated to a higher order. For instance, previous
investigations have shown that overfitting may occur in third-
order models which may lead to more complex analysis. In
addition, the exact solar and internal gains have been applied
to the grey-box models (i.e. they have not been identified). Fur-
thermore, except for the solar gains, the distribution of the
internal gains and the space-heating power between the two
nodes of the 3R2C model has been fixed, based on the literature.
If all these fixed parameters had also to be identified, it would
have significantly increased the number of degrees of freedom
and overfitting may have already appeared at second order [34].

� In real applications, the measurements would have some noise
due to the sensor precision or the resolution of the data loggers.
For some additional test cases not reported in the paper, artifi-
cial noise has been added to the IDA ICE measurements. For
these cases, this artificial noise did not lead to changes in the
conclusions. However, there are many different ways to define
this measurement noise. For future work, a sensitivity analysis
of the measurement noise should thus be performed in more
systematic way to better understand how it affects the conclu-
sions of this paper. Even though our study does not have mea-
surement noise, it does have process noise. For instance, the IDA
ICE model is multi-zone with a complex non-linear convective
heat transfer between zones while the grey-box model is only
mono-zone. Finally, in real applications, the air temperature
measurements can be impacted by complex heat flows such
as the building fabric, solar irradiation, low ventilation in the
thermostat casing or occupant behavior. Such influences on
the conclusions should also be analyzed in future work.

� The data series in this paper are based on virtual experiments
using detailed dynamic simulations of one test case. As future
work, it would be interesting to generalize results to other test
cases and also using field measurements in real buildings.

6. Conclusions

The main objective of this paper is to investigate the influence
of data pre-processing techniques and optimization approaches
on the performance of grey-box models. Both the deterministic
model and stochastic grey-box model in innovation form are inves-
tigated using the MATLAB system identification toolbox. The anal-
ysis is limited to first- and second-order grey-boxmodels. Different
excitation signals have been considered to generate input–output
data. Three main aspects of grey-box models have been investi-
gated: (1) the physical plausibility of the identified model param-
eters, (2) the performance of gradient-based compared to global
optimizers and (3) the simulation performance. Among pre-

processing techniques, the influence of the data pre-filtering (using
an MA or an FIR), the sampling time (Ts) and the application of anti-
causal shift (ACS) have been investigated. In general, it is shown
that pre-filtering only has a limited influence so this is not dis-
cussed in detail in the conclusions. The conclusions appear to be
distinct for the deterministic and stochastic models. Regarding
the excitation signal, results also showed that the intermittent
heating with on–off control of the electric radiators is a good exci-
tation signal. It enables normal occupancy of the building and the
collection of long data series as well as contain both slow daily and
fast dynamics.

Regarding the physical plausibility of parameters:

� For deterministic models, the data pre-processing has a limited
influence on the identified results. The identified parameters
are strongly dependent on the types of excitation and the train-
ing period. The value taken by some of the parameters, espe-
cially the thermal capacitance, is not always physically
plausible (even for the first-order model).

� For stochastic models, the identified parameters are physical if
the sampling time (Ts) is much smaller than the higher fre-
quency of the system to be identified.

� For large Ts and stochastic models, the parameters become non-
physical without ACS (even for the first-order model). ACS is
extremely beneficial to guarantee the physical plausibility of
parameters, making the identified parameters not sensitive to
the sampling time anymore.

Regarding the performance of the optimizer:

� For the deterministic and stochastic models, the sampling time
(Ts) does not influence the optimizer performance.

� For the deterministic model, the identification results from the
default gradient-based and global optimization routines are
almost identical (with and without ACS). It seems non-
convexity does not play a prominent role in this case.

� For the stochastic model, noticeable non-convexity effects
already emerged from the first-order grey-box model (if ACS
is not used). The two-stage global optimization leads to lower
NRMSE than the default gradient-based optimizer and the
resulting parameters have significantly different values. The
non-convexity effects disappear if ACS is applied.

Regarding the simulation performance and the model
application:

� The deterministic model has in general a higher simulation per-
formance compared to the corresponding stochastic model. In
our investigation, this difference tends to disappear for long
sampling times. If one is not interested in the characterization
of the thermal properties of the building but rather the simula-
tion performance (important for MPC), results show that deter-
ministic models can be a robust strategy as the simulation
performance is not influenced much by the sampling time and
the pre-filtering. In addition, the optimization problem appears
more convex than the corresponding stochastic model. All these
aspects can be valuable for the development of inexpensive
control models for MPC applications where the identification
procedure needs to be (partly) automated and where the infor-
mation on the measurement accuracy and data acquisition sys-
tem is limited. Finally, if the only focus is on simulation
performance, it is worth questioning whether a grey-box model
with parameters that have limited physical meaning have any
added value compared to a black-box model. Therefore, in
future work, it would be worth comparing the simulation per-
formance of grey-box and black-box models.
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� The ideal situation would be to combine physical plausibility
with the highest simulation performance. Using stochastic
models, a robust evaluation of the thermal properties requires
the application of ACS which tends to reduce the simulation
performance of the stochastic model. In this study, stochastic
models appear more suitable for the characterization of the
thermal performance of the building and results suggest this
can be difficult to combine with the best simulation perfor-
mance. However, it remains to be investigated whether the sim-
ulation performance of the stochastic model with ACS leads to
acceptable accuracy when applied to an MPC.
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Appendix A

Fig. 18. Identified HTC of the 1R1C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by
triangles in lighter color.

Fig. 19. Identified Ci of the 1R1C deterministic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by
triangles in lighter colors.
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Fig. 20. Identified HTC of the 1R1C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles
in lighter colors.

Fig. 21. Identified Ci of the 1R1C stochastic model for the cases 1,2,3,4 and 14, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in
lighter colors.

Fig. 22. Identified Ce of the 3R2C stochastic model for cases 9 to 13, different sampling times and pre-filtering techniques; cases with ACS are shown by triangles in lighter
colors.
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A B S T R A C T   

A grey-box model is a combination of data-driven and physics-based approaches to modeling. For applications in 
buildings, grey-box models can be used as the control model in model predictive control (MPC) or to characterize 
the thermal properties of buildings. In a previous study using data generated from virtual experiments, the in-
fluence of data pre-treatment on the performance of grey-box models has been demonstrated. However, field 
measurement differs from data generated using building performance simulation (BPS). This is because the 
precision and accuracy, the location, and the dynamics of the sensors could be different. Consequently, this paper 
extends previous results and conclusions using a real test case of a highly-insulated residential building. The 
results confirm that data pre-processing has a minimal influence on the identified results (parameter values and 
simulation performance) for deterministic models. On the contrary, data pre-treatment influences the perfor-
mance of stochastic models as follows. Firstly, large sampling time (Ts) can cause the parameters to become non- 
physical and can sometimes reduce the one-day ahead prediction performance. With large Ts, the anti-causal 
shift (ACS) proves to be beneficial to keep the parameters physically plausible while low-pass filtering can 
also contribute but to a lesser extent. With large Ts, ACS does not guarantee a higher one-day ahead prediction 
performance for stochastic models, whereas pre-filtering generally has a positive impact. Secondly, for the 
stochastic model, the sensor dynamics should be modeled if the sensor has a noticeable time constant to guar-
antee the physical plausibility of the parameters. Thirdly, the dynamics of the hydronic radiator do not need to be 
modeled if the time constant in the temperature sensors is larger than the radiator. These findings provide 
practical guidelines for grey-box modeling of buildings with field measurement data.   

1. Introduction 

The mathematical modeling of the thermal dynamics of a building is 
typically divided into three main categories [1]: white -, black-, and 
grey-box models. White-box models are based on physical laws (e.g. 
mass-, energy- and momentum balance equations). The white-box 
models are generally mathematically complex but have high accuracy. 
Black-box models are pure data-driven methods based on the measured 

time-series data from the system. This method needs sufficient training 
data to guarantee the accuracy of the model [2]. Grey-box modeling is a 
combination of these two techniques. This method takes the dominant 
physical processes to construct the model structure of the system and 
then fits the model parameters with the measurement data. Lumped 
resistance and capacitance models are used (i.e. RC models) to construct 
the grey-box model structure of a building, which means the thermal 
dynamics of the building are expressed by an electric circuit analogy [3, 
4]. Grey-box models are said to have better extrapolation properties 
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than black-box models [5]. In addition, they have been widely applied to 
solve problems in building technologies, such as building load estima-
tion, control and optimization, and building-grid integration [6,7]. The 
paper focuses on two main applications of grey-box models which are 
model predictive control (MPC) and characterization of the thermal 
properties of buildings using field measurements [6,8]. 

1. The emergence of MPC in buildings is related to the concept of en-
ergy flexibility and demand response (DR). The conventional electric 
energy system is undergoing dramatic changes due to the steadily 
rising share of renewable energy sources (RES). Power generation 
from RES is often decentralized and intermittent, which may cause 
considerable volatility to the electric grid. The power imbalance in 
the supply and demand sides can have severe implications for power 
quality and reliability [9]. Therefore, more flexible resources are 
needed to enable increasing penetration of intermittent RES. De-
mand response (DR) is gaining more attention in power system op-
erations recently, driven by the smart grid concept [10]. Demand 
response means changes in energy use by the end-use customer from 
their normal consumption patterns in response to a specific penalty 
signal (e.g. price signal, CO2 intensity factor for electricity signal) 
[10–13]. DR is closely related to the concept of energy flexibility 
defined by the IEA EBC Annex 67 as the ability of a building to 
manage its demand and generation according to local climate con-
ditions, user needs and grid requirements [14]. Model predictive 
control (MPC) is considered a suitable technique for performing DR 
in a building [7,15] or for activating building energy flexibility [14]. 
Regarding space-heating, the thermal mass of a building can be a 
significant short-term heat storage to perform DR [16–20]. The 
exploitation of such thermal storage requires the indoor temperature 
to fluctuate within limits that are acceptable for the occupants. 
Previous studies have identified significant DR potential in using 
economic model predictive control (E-MPC) to exploit the thermal 
mass of residential buildings, see e.g. Refs. [21–23]. In these appli-
cations, grey-box models should enable adequate prediction to ach-
ieve good control performance.  

2. Developing a suitable grey-box model with physically plausible 
(interpretable) parameters is appreciated from the building analysis 
point of view [19]. Physically reasonable parameters in grey-box 
models could contribute to characterizing the thermal properties of 

a building using field experiments, such as the overall heat transfer 
coefficient (HTC). 

Data can be processed (or altered) by sensors, the data acquisition 
system (DAQ) or by the modeler before being used for model identifi-
cation. Data pre-processing (or data pre-treatment) is acknowledged to 
have a key influence on the model identification results [24]. For 
instance, Ljung et al. [25] have analyzed this theoretically and demon-
strated the strong influence of the sampling time. However, this topic 
has hardly been addressed in the specific field of grey-box models for 
building thermal dynamics. One exception is Madsen et al. [8] that 
mentioned the importance of data pre-processing in their guidelines, but 
they did not discuss the topic in detail in their report. Therefore, the 
main objective of the paper is to systematically investigate the influence 
of different data pre-processing techniques on the performance of 
grey-box models for the building thermal dynamics, with MPC and the 
physical plausibility of parameters in focus. In the past, this effect has 
been studied in Yu et al. [26] with deterministic and stochastic models. 
However, they used data generated by virtual experiments, namely 
multi-zone simulations using the building performance simulation (BPS) 
software IDA ICE [27]. The data pre-processing methods applied in this 
study are the sampling time, low-pass filtering and the anti-causal shift 
(ACS) [25]. ACS corresponds to a shift of the input data one step ahead 
(also equivalent to a backward shift of the output). Several main con-
clusions have been demonstrated in this previous study [26]: 

• For deterministic models, the data pre-processing has limited influ-
ence on the identification results. However, the values of the pa-
rameters are strongly dependent on the training dataset and can 
sometimes be physically non-plausible.  

• For stochastic models, the parameters are less dependent than the 
deterministic models on the training dataset. However, they become 
non-physical without ACS for large sampling time (Ts > 15 min). 
Large Ts does not alter the simulation performance of the stochastic 
model. ACS proved to be extremely beneficial to guarantee the 
physical plausibility of parameters with large Ts. Nevertheless, it 
generally has a negative influence on the simulation performance of 
the model. 

As these important conclusions are based on virtual experiments, the 
first objective of the paper is to compare these conconclusions to a real 
test case based on field measurements. Field measurements deviate from 
virtual experiments in the following way:  

• In reality, sensors have finite precision and accuracy, while the 
temperature and power data exported from BPS is perfect (i.e., noise- 
free observations).  

• In most BPS software, the air volume of each room is supposed to be 
isothermal. In reality, the temperature field in a room is not uniform. 
Two important effects should be considered. Firstly, the room air can 
present significant temperature stratification, especially when the 
heat emitter is close to maximum power. Secondly, the sensors are 
usually mounted on a wall in a casing. For sudden changes in the 
indoor temperature, the measured value with a wall-mounted sensor 
may thus differ from the real air temperature. The thermal dynamics 
of the sensor due to the casing can also be seen as a form of implicit 
data pre-treatment if the sensor dynamics are not modeled. 

This paper uses measurement data from an experimental building, 
the ZEB Living Lab [28,29] to compare the conclusions that were orig-
inally based on virtual experiments [26]. Three complete datasets of the 
indoor temperature corresponding to different sensor locations are 
available:  

• Several temperature sensors without casing are mounted at different 
heights on a vertical bar located in the middle of different rooms. The 

Nomenclature 

RES Renewable Energy Sources 
DR Demand Response 
MPC Model Predictive Control 
BPS Building Performance Simulation 
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SNR Signal to Noise Ratio 
PRBS Pseudo-Random Binary Signal 
PI Proportional Integral 
NRMSE Normalized Root Mean Squared Error 
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ACS Anti-Causal Shift 
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HC Heat Capacitance  
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averaging of these measurements gives an approximation of the 
volume-averaged indoor air temperature, which is a good represen-
tation of the indoor air temperature Ti of a mono-zone model (i.e. one 
zone for the entire building). In addition, the volume-average indoor 
temperature is less sensitive to the vertical temperature stratification 
than the measurement from a single sensor. 

• For market penetration, it is better to limit the number of tempera-
ture sensors to one in each room. Thus, it is important to investigate 
the possibility of identifying a proper grey-box model with mea-
surements from a single temperature sensor. Firstly, one temperature 
sensor is located on a vertical bar at a medium height in the living 
room. The stratification effect at mid-height should be lower than the 
top and low locations in the room. Secondly and probably the most 
realistic configuration, another temperature sensor is mounted on a 
wall at the same mid-height location as the previous sensor (placed 
on the bar). 

The second objective of the paper is to analyze how the type of in-
door temperature measurement influences the performance of the grey- 
box models. 

The main objective is to identify the specific influence of different 
data pre-processing techniques on the grey-box model performance. 
Other phenomena that could have an impact on the model performance, 
such as overfitting, should be removed from the analysis. Therefore, 
model structure selection is performed in detail in this paper before 
starting to analyze the influence of the data pre-treatment. It starts with 
a review of the literature regarding the structure of grey-box models. 
This results in the selection of a set of structures to be evaluated. The 
evaluation includes the analysis of structural and practical identifiability 
of the selected models, their prediction performance and physical 
plausibility of the parameters. Checking structural identifiability is the 
prerequisite in the model identification process [30,31]. This property 
guarantees that the parameters can be uniquely determined from the 
input-output data under ideal conditions of noise-free observations and 
error-free model structure. The structural identifiability of the candidate 
models in this study is verified using DAISY software [30]. However, 
field measurement data always contain noise and error, which chal-
lenges the practical identifiability of the model. Therefore, the predic-
tion performance and the physical plausibility of parameters are taken 
as the criteria for the model selection. Finally, for stochastic models, a 
cumulative periodogram is used as an additional criterion to prove that 
the model is complex enough to capture the building dynamics. 

The remainder of the paper is structured as follows. Section 2 pro-
vides information on the experimental setup, which includes the 
building geometry, measurement devices, the definition of test cases and 
the boundary conditions. Section 3 describes the methodology of this 
study, including the grey-box model structure and data pre-processing 
techniques used for this study. The algorithm to identify the grey-box 
model parameters is also outlined, followed by the definition of key 
performance indicators (KPIs). Section 4 gives the results and is divided 
into three main aspects. The most suitable model structure is selected 
with the original data with 5 min sampling time and the volume- 
averaged temperature. Then, the influence of data pre-processing and 
the sensor selection is presented. Finally, conclusions are presented in 
Section 5. 

2. Description of experiments 

2.1. Case building 

The experiments performed in this study were carried out in the ZEB 
Living Lab, a single-family, zero-emission house with a heated floor area 
of about 100 m2 on the campus of the Norwegian University of Science 
and Technology (NTNU) in Trondheim. The building envelope has a 
wooden frame with mineral wool measuring 35–40 cm and a glazing 
ratio of 0.2. The space-heating can be floor heating, a central radiator, or 

ventilation air. The ventilation system is equipped with a heat recovery 
unit. By operating the doors in the building, four zones can be created 
(bedroom west, bedroom east, bathroom, and living areas). The 
appearance of the building and the internal layout of the Living Lab is 
shown in Fig. 1. This study is based on two sets of experiments in this 
building with different space-heating emission systems and different 
periods of the space-heating season. Data from using two different heat 
emitters are used to make the conclusions more general. 

The first set of experiments (from the 18th April to 15th May 2017) 
used an electric heater for space-heating. Detailed information on the 
measurement setup and data can be found in previous work [28,32]. The 
corresponding length of these three experiments are 6 days, 11 days and 
7 days, respectively. The electric heater of 2.6 kW was placed in the 
center of the building (the heater is marked in red in Fig. 1 (b)). A 
pseudo-random binary signal (PRBS) has been applied to the electric 
heater to excite the thermal dynamics of the building. PRBS is a periodic 
and deterministic signal with white noise properties and a high 
signal-to-noise ratio (SNR). The PRBS signal activates the dynamic sys-
tem at a broad range of frequencies. 

Four experiments were carried out, and only the last three were 
successful. The successful experiments are named Experiments 2, 3, and 
4 (i.e., Experiment 1 was discarded). The dataset has a time interval of 5 
min. The measurements include the outdoor temperature, indoor air 
temperatures, global solar irradiation and electricity consumption, 
including the radiator power (Qh). To avoid modeling the air-handling 
unit (AHU), the ventilation losses from the mechanical ventilation are 
introduced as one input to the grey-box model in this study. These 
ventilation losses are explicitly pre-calculated with the measured tem-
perature difference between the supply and exhaust ventilation air 
combined with the measured airflow rate (constant air volume, CAV). 
The electric heating system has negligible thermal inertia compared to 
the building envelope, so it is assumed that the dynamics of the radiators 
play a limited role. Experiments 2 and 4 were conducted with internal 
doors opened, which theoretically should lead to a more uniform spatial 
distribution of the air temperature inside the building while all the doors 
were closed in Experiment 3. Air was pre-heated using a heating coil in 
Experiment 4 only. The building is unoccupied in all the experiments, 
but electric dummies operated by a control schedule have been used 
leading to realistic internal gains. 

2.2. Experiment with the hydronic radiator 

The experiment with the hydronic radiator was initially performed to 
investigate cost-effective MPC implementation (E-MPC) with control of 
the hydronic radiator in a Norwegian zero-emission building (Living 
Lab) [29]. The experiment lasted for approximately one month (from 
mid February to mid March 2017), with an 18-day excitation phase and 
an E-MPC operation phase of two weeks. A randomly generated binary 
signal switching the radiator temperature set-point between 21 ◦C and 
24 ◦C was created to excite the thermal dynamics of the building and 
collect measurements for training the model. This new training dataset 
is based on six days in February and is named here as Experiment 5. The 
dataset has a time interval of 5 min. 

The hydronic radiator has a rated power of 4.7 kW (at rated tem-
perature 75 ◦C/65 ◦C) and was in the same place as the electric heater. 
The supply water temperature was maintained at about 55 ◦C leading to 
a maximum radiator power of 2.5 kW. The thermostatic valve in the 
radiator adjusts the mass flow using a proportional-integral (PI) 
controller to track the set-point temperature. Compared to the electric 
heater, the thermal mass of the hydronic radiator with 113 kg of steel 
cannot be neglected. The power delivered to the hydronic radiator (Qh) 
is measured by an energy meter based on the difference between supply 
and return temperatures. When the hydronic radiator is switched on, the 
initial water temperature in the radiator is close to the indoor air tem-
perature. Due to the thermal mass of the radiator, it takes time for the 
return temperature to heat up and reach steady-state (when the power 
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delivered to and emitted by the radiator are equal). This makes a large 
difference in supply and return temperatures at the beginning, leading to 
a very high start-up peak for Qh. The maximum emitted power of the 
radiator in steady-state is around 2.5 kW, while the maximum delivered 
power during start-up periods is around 4.0 kW. This confirms that the 
thermal dynamics of the hydronic radiator are significant. The summary 
of all the experiments used in this study is given in Table 1. 

2.3. Indoor temperature measurement 

In the experiments with the electric heater, PT100 sensors with an 
accuracy of ±0.1 K are placed at different locations in the building; see 
details in Ref. [28]. This leads to the definition of three datasets:  

• Two available datasets correspond to different placement of PT100 
temperature sensors without casing and with wireless transmitters. 
They are placed in a vertical bar in the middle of the two living rooms 
(see green dots in Fig. 1 (b) and Fig. 2 (a)). For each bar, the height of 
the six sensors is 0.18 m, 0.95 m, 1.6 m, 1.7 m, 2.3 m and 3.4 m, 
respectively. The volume-averaged temperature of the building is 
calculated using the measurement from all the sensors placed in the 
vertical bars and evaluated using the volume average at each hori-
zontal layer. The single sensor without casing dataset corresponds to 
the measurement at 1.6 m in the living room south. The height of 1.6 
m is close to the middle height of the building, where the influence of 
stratification is expected to be minimal (meaning that the measured 
temperature at 1.6 m is the closest to the volume-averaged 
temperature).  

• The third dataset is based on PT100 sensors mounted on the wall in a 
casing (see the orange dot in Fig. 1 (b) and Fig. 2 (b)). The height of 
the wall-mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m, 
respectively. The third dataset corresponds to the measurement of a 
single wall-mounted sensor mounted in the south of the living room at 
the height of 1.6 m. 

In the experiments with the hydronic radiator, only the temperature 
measurements from the wall-mounted temperature sensor are available. 

Fig. 3 shows the temperature reading from the wireless temperature 
sensors with different heights (0.18 m, 1.6 m and 3.4 m) and the wall- 

mounted temperature sensor (1.6 m) against the volume-averaged 
temperature. The stratification of the temperature of the wireless tem-
perature sensors at different heights can be observed. The stratification 
gets larger when the solar radiation or the radiator power is large. The 
reason for choosing the sensor in the south was to capture the influence 
of solar radiation. The thermal dynamics of the wall-mounted sensor can 
also be observed. The reading from the wall-mounted sensor is smoother 
compared to the volume-averaged temperature and the readings from 
the single wireless temperature sensors. 

3. Methodology 

3.1. Grey-box model structure 

The structure of the grey-box models is derived from the conserva-
tion of energy. The physics modeled by the grey-box models is the heat 
transfer between the building and its outdoor environment, the solar 
radiation and internal gains. 

The ZEB Living Lab is super-insulated with an efficient heat recovery 
of the ventilation air. These two points lead to limited temperature 
differences between rooms [33] (compared to the temperature differ-
ence between indoor and outdoor air) even if internal doors are closed. 
Consequently, the building can be modeled as one thermal zone (i.e., the 
mono-zone model with a unique node to represent the indoor temper-
ature). Previous studies [29,32,34] confirmed that a mono-zone grey--
box model is able to make an accurate prediction on the air temperature 
in the ZEB Living Lab, for closed and open internal doors. 

Grey-box modeling is a very common approach and a considerable 
amount of research has already been applied to this method. In their 
study, Viot et al. [35] provided a comprehensive list of research papers 
on MPC that used RC models. Bacher and Madsen [36] identified a 
suitable model using data obtained from an unoccupied office building. 
The probability ratio tests were used to analyze models of different or-
ders. The results showed that increasing the model order from the 
third-order does not substantially improve the results. In Ref. [37], 
Berthou et al. found that the second-order model performs best for 
occupied office buildings. Braun et al. [38], Hu et al. [39] and Goyal 
[40] used the second-order model as the base component for the 
multi-zone model of the building. It was concluded that the 

Fig. 1. View of the ZEB Living Lab (a) and floor plan of the ZEB Living Lab with temperature sensor location (b).  

Table 1 
Summary of the four experiments, “Full set” means all measurements of volume-averaged, single sensor (no casing), wall-mounted sensor are available.  

Experiments Radiator Door Sampling time Period Use Temperature Sensor 

2 Electric Open 5 min 18/04–24/04 (2017) Validation Full set 
3 Electric Closed 5 min 27/04–08/05 (2017) Validation Full set 
4 Electric + AHU Open 5 min 08/05–15/05 (2017) Training Full set 
5 Hydronic Open 5 min 22/02–27/02 (2019) Training Wall-mounted  
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Fig. 2. Wireless temperature sensors (a) and wall-mounted temperature sensors (b).  

Fig. 3. Comparison of different indoor temperature sensors, global solar irradiation on a horizontal plane and heating power of the electric heater for Experiment 4.  

Fig. 4. Structure of the 5R3C model.  
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second-order model is sufficient for good prediction results for indoor 
temperature and heating power by Palomo Del Barrio et al. [41] and 
Reynders et al. [42]. Brastein et al. [43] showed that deterministic 
grey-box models at second-order could face the problem of practical 
identifiability. Yu et al. [34] proposed two grey-box model structures 
derived from VDI 6007 [44] and ISO 13790 [45]. The results were that 
with few measurements and a large number of unknown parameters, the 
identified parameters could easily become non-identifiable. Further-
more, due to overfitting and convergence issues, Reynders et al. [42] 
concluded that heat flux measurements were needed to ensure observ-
ability for higher-order models (i.e. fourth- and fifth-order models). 
Thus, based on these previous studies, our paper only considers the 
model structure up to the third-order. 

As a result, seven mono-zone model structures limited to third-order 
have been taken from the existing literature [36,42,46]. The selection 
process will determine the best model structure to be used to investigate 
the specific influence of data pre-processing. These seven models 
correspond to different combinations of RC components and splitting 
factors for the distribution of internal gains between the nodes. Ac-
cording to report [28], some sensors in the ZEB Living Lab at specific 
locations were directly exposed to solar radiation at certain periods of 
the day, which makes some of the measurements an unsatisfactory 
representation of the air temperature. The dataset in Experiment 4 with 
open internal doors is chosen as the training dataset for the case with the 
electric heater. Only the 5 min dataset is used for the model selection to 
avoid aliasing errors. The datasets in Experiments 2 and 3 were used as 
the validation datasets to analyze the prediction performance of the 
models. Structural identifiability is a prerequisite for system identifica-
tion [47], which refers to the theoretical possibility of determining the 
parameter values from the input and output data. Thus, the structural 
identifiability of the candidate model structures has been tested by the 
DAISY software [30,48] before implementing the identification process. 
The result is that all the seven grey-box model structures are structurally 
identifiable. The most complex structure is the 5R3C model and is shown 
in Fig. 4. Other model structures are obtained by simplification and can 
be found in the Appendix. The physical meaning of the model parame-
ters is listed in Table 2. 

The corresponding state-space model of Fig. 4 is given by:   

y(t) = [ 0 1 0 ]

⎡

⎣
Te(t)
Ti(t)
Tm(t)

⎤

⎦ (2)  

3.2. Model identification tool and optimization 

Both the deterministic and stochastic models are investigated using 
the MATLAB system identification toolbox [49]. The stochastic models 
are formulated as an extension of deterministic models (K = 0) [8]. The 
generic equations of the stochastic linear state-space model in innova-

tive form are expressed as: 

dx
dt

= Ax(t) + Bu(t) + Ke(t) (3)  

y(t) = Cx(t) + e(t) (4)  

⎡

⎢
⎣

Te(t)
⋅

Ti(t)
⋅

Tm(t)
⋅

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(UAie + UAea)

Ce
+

UA2
ie

Ce⋅
(
UAis + UAie + UAinf

)
UAie⋅UAis

Ce⋅
(
UAis + UAie + UAinf

) 0

UAie⋅UAis

Ci⋅
(
UAis + UAie + UAinf

) −
(UAim + UAis)

Ci
+

UAis⋅UAis

Ci⋅
(
UAis + UAie + UAinf

)
UAim

Ci

0
UAim

Cm
−

UAim

Cm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
Te(t)
Ti(t)
Tm(t)

⎤

⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

UAea

Ce
+

UAie⋅UAinf

Ce⋅
(
UAis + UAie + UAinf

)
UAie⋅UAinf

Ce⋅
(
UAis + UAie + UAinf

) 0 0 0

UAis⋅UAie

Ci⋅
(
UAis + UAie + UAinf

)
UAis⋅As

Ci⋅
(
UAis + UAie + UAinf

)
α
Ci

α
Ci

1
Ci

0
Am

Cm

1 − α
Cm

1 − α
Cm

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Ta(t)
Isol(t)
Qint(t)
Qvent(t)
Qh(t)

⎤

⎥
⎥
⎥
⎥
⎦

(1)   

Table 2 
The physical interpretation of the parameters of all grey-box models.  

Parameters Physical interpretation and unit 

Ti Temperature of the internal node (i.e., indoor air, furniture) [◦C]. 
Te Temperature of the external walls [◦C]. 
Ts Temperature of the internal wall surfaces of external walls [◦C]. 
Tm Temperature of the internal walls [◦C]. 
Ta The outdoor (or outdoor) temperature [◦C]. 
Ci Heat capacity including the thermal mass of the air, the furniture 

[kWh/K]. 
Ce Heat capacity of the node external wall for the second-order and third- 

order models [kWh/K]. 
Cm Heat capacity of the node internal wall for the third-order model 

[kWh/K]. 
UA Overall heat transfer coefficient (HTC) between Ti and Ta [kW/K]. 
UAie Heat conductance between the building envelope and the interior 

[kW/K]. 
UAea Heat conductance between the outdoor and the building envelope 

[kW/K]. 
UAinf Heat conductance between the outddoor and the interior node 

(components with negligible thermal mass, like windows and doors) 
[kW/K]. 

UAim Heat resistance between the internal thermal mass and the interior 
node [kW/K]. 

UAis Heat resistance between the indoor wall surface and the interior node 
[kW/K]. 

Qint Internal heat gain from artificial lighting, people and electric 
appliances [kW]. 

Qh Heat gain delivered to the heat emitter [kW]. 
Qvent Heat gain from the ventilation (pre-computed using measurements) 

[kW]. 
Isol Global solar irradiation on a horizontal plane [W/m2]. 
Ai The effective window area of the building corresponding to Ti [m2]. 
Ae The effective window area of the building corresponding to Te [m2]. 
Am The effective window area of the building corresponding to Tm [m2]. 
As The effective window area of the building corresponding to Ts [m2]. 
α Fraction of internal gains injected to the internal node.  
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where x is the state vector, A, B and C are the system matrices, u is the 
input vector (i.e. Ta, Isol, Qint, Qh) and y is the output (i.e. indoor tem-
perature, Ti). K is the disturbance matrix of the innovation form (Kalman 
gain) [50]. The matrices A, B, C and K are functions of the model pa-
rameters (θ). The continuous-time model is discretized to identify the 
model parameters using discrete-time series measurement. The time 
discretization in the MATLAB system identification toolbox assumes 
piecewise-constant input data during each time interval (i.e. zero-order 
hold). 

Yu et al. [26] proved that the global optimization routine is more 
likely to avoid the local optimum compared to the pure gradient-based 
optimization routine. Wang et al. [51] successfully used the 
swarm-based optimization algorithm to estimate the parameters of 
thermal dynamic models. Thus, this paper also takes the global opti-
mization routine to identify the parameters. The global optimization 
routine resorts to the heuristic particle swarm optimization (PSO) at the 
first stage. Then the default gradient-based optimization function 
(greyest) in the MATLAB identification toolbox is applied in the second 
stage to further polish the results. The objective function f(x) of the 
optimization is defined as Equation (5). 

f (x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
||yk − yk

∧
(θ)||

2

N

√
√
√
√
√

(5)  

where yk is the measurement output, while ŷk(θ) is the prediction of the 
model (i.e., a simulation for the deterministic model and one-step ahead 
prediction for the stochastic model). 

3.3. Data pre-processing techniques 

Three distinct data pre-treatments are investigated in the paper. 
They are sampling, low-pass filtering and anti-causal shift (ACS). The 
original dataset has a sampling time (Ts) of 5 min which is faster than the 
highest frequency of the input signal (Tmin), such as the PRBS signal. 
Ljung et al. [25] demonstrated that longer sampling time with Ts > Tmin 
can lead to non-physical value and variance for the identified parame-
ters, as confirmed by Yu et al. [26] in the context of the thermal dy-
namics of the building. To investigate this effect, sampling times of 
increasing duration are considered in our investigations, namely 15, 30 
and 60 min. Before resampling the data, a low-pass filter can be applied. 
This leads to three scenarios:  

• Direct sampling (DS): Sampling at Ts without pre-filtering, which may 
cause large aliasing errors for large Ts.  

• Moving-average (MA) filter: The original 5 min data is averaged over a 
period Ts in the past before sampling. This can significantly decrease 
the aliasing error and it also conserves the integral of the physical 
quantity, such as energy.  

• Finite impulse response (FIR) filter: A FIR with a cut-off frequency of 1/ 
Ts is applied before sampling. The frequency content higher than the 
cut-off frequency is removed, which leads to a negligible aliasing 
error (if the FIR is designed at a sufficient order). 

The low-pass filters are applied to all input and output variables in 
the dataset. Thus, theoretically, no delay will be introduced in the 
dataset, which could influence the final results. The conclusion would be 
different if the low-pass filter was applied to a subset of the input and 
output data. 

Finally, time labeling plays a role in aligning inputs and outputs for 
the identification application [25]. As shown by Ljung et al. [25], a time 
shift, called anti-causal shift (ACS), of the input (Input Delay = -Ts) is 
beneficial for model identification with large Ts. 

3.4. Dynamics of the wall-mounted sensor 

Section 2.4 showed that the wall-mounted sensors have non- 
negligible thermal dynamics. Consequently, the grey-box model struc-
tures introduced in Section 3.1 should be adapted to account for the 
effect of the time constant of sensor dynamics and thus avoid potential 
mistakes in the model identification process. As proposed in Bacher et al. 
[36], it is possible to add an additional node for the temperature sensor, 
leading to an extra resistance (Rs) and capacitance (Cs). However, the 
authors also pointed out that it was not possible to give a physical 
interpretation for the value of Cs. This was also found from our pre-
liminary tests based on our data. Therefore, we rather introduced an 
adaptation of the model with a single additional parameter, the time 
constant of the sensor τ = RsCs. The model decreased the number of 
parameters compared to the version in the study [36] to increase the 
identifiability of the model. The dynamics for the sensor node is 
expressed by the following equation: 

dTsensor

dt
=

1
τ (Ti − Tsensor) (6)  

where Ti is the temperature of the internal node, Tsensor is the temper-
ature measurement from the wall-mounted temperature sensors. 

3.5. Key performance indicator 

Several key performance indicators (KPIs) are defined to evaluate the 
model performance. They can be divided into two categories: the 
physical plausibility of the identified parameters and the prediction 
performance of the model. 

Physical plausibility means that the calibrated value of the model 
parameters should give a physically reasonable estimate of the thermal 
properties of the building. For conciseness in our study, it is not possible 
to report the value and variance of all the model parameters. However, 
the key parameters that are enough to support our conclusions will be 
presented: the overall heat transfer coefficient (HTC) and the capaci-
tances (Ci and Ce). In addition, one parameter modeling the influence of 
the solar radiation, the effective window area (Ai), will also be taken as 
KPI when the influence of the data pre-processing is discussed. 

The overall heat transfer coefficient (HTC) is the total heat loss of the 
building in steady-state. Heat transfer by convection and long-wave 
radiative heat transfer is nonlinear. However, heat conduction is 
dominant and has good linear properties if the building is highly insu-
lated and airtight. The combination of several resistances of the grey-box 
model forms the HTC, which is defined by Equation (7) for the 3R2C 
model. 

HTC =
1

1/UAie + 1/UAea
+ UAinf (7) 

Therefore, only the value of the HTC is shown in the later discussion, 
not its variance. Clauβ et al. [52] evaluated the HTC value of the ZEB 
Living Lab to be 83 W/K, which is used as the reference value for the 
HTC in this work. 

It is challenging to define a physically plausible range for the ca-
pacitances (Ci and Ce) since their values strongly depend on the exci-
tation signal. However, it is possible to obtain a rough indication of Ce. 
According to NS3031 (2016) [53], the effective heat capacitance (Ceff) 
of lightweight Norwegian buildings is typically within the range of 
3.4–6.5 kWh/K. As the Ceff is based on daily excitations of the thermal 
mass of a building, it can be related to the thermal capacitance Ce (at 
least, up to second-order RC models without a node for internal walls, 
Tm). 

The long-term prediction performance is of the utmost importance if 
the main application of the grey-box model is being employed in an 
MPC. Equation (8) gives the method of calculating the normalized root 
mean squared error (NRMSE). 
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NRMSE =
||yk − y∧ k||

||yk − mean(yk)||
(8) 

The NRMSE fitting, defined in Equation (9), is used to evaluate 
prediction performance. It translates how well the response of the pre-
dicted model matches measurement data. If the fit is 100%, the model 
perfectly matches the measurement data, whereas a low or negative fit is 
a model of lower quality. The NRMSE fitting value is calculated based on 
simulation for the deterministic model and one-day ahead prediction for 
the stochastic model. In other words, for the stochastic model, the model 
selection is done using the one-step ahead prediction while the ability to 
perform MPC is evaluated using a one-day ahead prediction. 

NRMSEfit = (1 − NRMSE) × 100% (9) 

In addition to the NRMSE fitting value, the mean bias error (MBE) 
defined by Equation (10) is also used as a complementary index. 
Theoretically, an MBE value close to zero is best as this means that the 
residual of the model has a lower mean bias error. 

MBE =
1
n

∑n

k=1

(

yk − y∧k

)

(10) 

In practice, the results show that all our models have good MBE 
properties. Therefore, this index has been used but is not reported in the 
paper. 

4. Results 

This section is divided into three parts. Firstly, the selection of the 
best model structure is presented and discussed. With the best model, 
the influence of data pre-processing and the type of indoor temperature 
measurement are then studied. Finally, the results are analyzed for 
deterministic and stochastic models. Most of the results presented are 
based on the datasets with the electric heaters (Experiments 2–4). The 
description of each case presented in this section is given in Table 3. 

4.1. Model selection 

The results for the electric radiator and the seven models using the 
volume-averaged temperature and the baseline Ts of 5 min are sum-
marized in Table 6 in Appendix, while the key results are presented in 
Table 4. 

• The first-order 1R1C model is not enough to describe the heat dy-
namics of the building for neither the deterministic nor the stochastic 
models. This is confirmed by the cumulative periodogram of the 
residuals in supplementary material. The cumulative periodogram 
falls largely outside the confidence interval, which indicates poor 
white noise properties of the residuals.  

• The second-order models, 2R2C and 3R2C, show significant 
improvement in the NRMSE fitting compared to the first-order 1R1C 
model. The cumulative periodogram of the residuals also stays 
strictly within the confidence interval.  

• Although the third-order models (3R3C to 5R3C) sometimes present 
better NRMSE fitting with the deterministic model, the identified 
parameters are not physically plausible for the stochastic model. The 
capacitance of the interior node Ci has a larger value than the value 
of the internal walls node Cm, which does not translate the actual 
physics. Furthermore, for the 4R3C and 5R3C stochastic models, the 
UAea value is identified close to 0, which also violates the reality (as 
external walls are not perfectly insulated). Regarding the cumulative 
periodogram of the residuals, the 5R3C is outside the confidence 
interval while the 3R3C and 4R3C models remain within the confi-
dence interval but do not perform better than the second-order 
models. The variance of the key parameter Ce also shows that the 
third-order models could lead to large values with deterministic 
models, which implies that the third-order models may be over-
fitting. Further, the variance of Ce for the stochastic model also shows 
that the component UAinf is necessary to be modeled. Finally, the 
objective function during the successive PSO iterations is plotted 
along with the parameter value. The scatter plots for parameters Ce 
and Ai for second-order and third-order models can also be found in 
supplementary material. It is observed from the scatter plots that the 
optimum are flatter with third-order models, which corresponds to 
lower practical identifiability of the models. It can be concluded that 
the third-order models are (or are close to being) overfitted. The 
fitting of validation NRMSE fitting also confirms that the second- 
order model is the best trade-off between model complexity and 
accuracy. 

In conclusion, second-order grey-box models are most suitable for 
our study as the prediction performance and the physical plausibility are 
good. In addition, the dominant physical processes are properly modeled 
as proven by the cumulative periodogram. The second-order models are 
selected for the study as they are accurate but not overfitted. This gua-
rantees that the conclusions will not be contaminated by overfitting. 
Among second-order models, the 3R2C model is taken as the baseline 
case in the remainder of the paper. 

4.2. Influence of the temperature measurement 

The model selection is based on the volume-averaged indoor tem-
perature at 5 min. In the description of experiments, it has been shown 
that the indoor temperature is dependent on the type of measurement, 
see Section 2.4. Consequently, Fig. 5 and Fig. 6 compare the identified 
value of two key indicators (HTC and Ce) for the different types of 
temperature measurement, still using a sampling time of 5 min. For the 
deterministic model, the difference in temperature measurements has a 
limited influence on the identified model parameters. However, for the 
stochastic model, the identified HTC value using the baseline 3R2C 
model and the single wall-mounted temperature sensor is much larger 
than the reference HTC value. Furthermore, the variance of Ce is also 
extremely large. Thus, the time constant of the wall-mounted sensor 
dynamics has a large impact on the stochastic 3R2C model. This 
conclusion is also confirmed by the cumulative periodogram of the 

Table 3 
Description of the datasets and their corresponding abbreviations.  

Case Sensor Sensor node in model Dataset Use 

T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation 
T1Exp3 Volume-averaged temperature (T1) No Experiment 3 Validation 
T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training 
T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training 
T3Exp4 Single wall-mounted temperature sensor (T3) No Experiment 4 Training 
T4Exp4 Single wall-mounted temperature sensor (T4) Yes (τ) Experiment 4 Training 
T5Exp5 Single wall-mounted temperature sensor (T5) No Experiment 5 Training 
T6Exp5 Single wall-mounted temperature sensor (T6) Yes (τ) Experiment 5 Training  
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residuals in Fig. 7, which shows that the baseline 3R2C model with the 
wall-mounted sensor does not describe the system dynamics (between 
0.4–1.4 × 10−3 Hz). As introduced in Section 3.4, an adapted model with 
a time constant for the sensor is added to the original 3R2C model. This 
adapted model improves the results since the parameters become 
physically plausible again. In addition, the cumulative periodogram of 
the residuals confirms this conclusion (see dataset T4Exp4). Further-
more, the one-day ahead prediction comparison in Fig. 8 also shows the 
significant improvement from the adapted 3R2C compared to the orig-
inal baseline 3R2C model. The identified time constant (τ) has a value of 
8.28 min, thus is larger than the sampling time. For the remainder of the 
paper, the sensor node will only be analyzed for the stochastic model. 

4.3. Influence of data pre-processing on grey-box modeling 

Until now, the model performance has used a sampling time of 5 min 
without data pre-processing, which is faster than the Nyquist sampling 
frequency. The signal is sampled faster than the system dynamics so that 
it is guaranteed that it does not influence the results. Consequently, the 
specific influence of data-preprocessing can be identified in the present 
section. The analysis of deterministic and stochastic models should be 
clearly distinguished. 

Table 4 
The values and the corresponding variance of Ce.  

Model Ce 

Value 
[kWh/K] 

Ce 

Variance 
[kWh/K] 

NRMSE Fitting 
(simulation) 

NRMSE Fitting 
(validation) 

Model Ce 

Value 
[kWh/K] 

Ce 

Variance 
[kWh/K] 

NRMSE Fitting (1- 
step ahead) 

NRMSE Fitting 
(validation) 

1R1Cdet 5.62 0.754 72.7% 55.1% 1R1Csto 4.78 0.437 99.0% 65.7% 
2R2Cdet 6.11 0.369 93.0% 75.3% 2R2Csto 6.37 1.77 99.2% 79.2% 
3R2Cdet 5.28 0.284 93.6% 79.7% 3R2Csto 4.22 0.748 99.2% 81.8% 
4R2Cdet 5.40 0.430 93.5% 72.4% 4R2Csto 4.28 0.726 99.2% 81.5% 
3R3Cdet 6.08 0.689 95.0% 78.6% 3R3Csto 11.9 3.92 99.2% 71.1% 
4R3Cdet 3.94 0.609 95.3% 75.6% 4R3Csto 4.02 0.709 99.2% 82.7% 
5R3Cdet 3.99 0.613 95.3% 76.0% 5R3Csto 5.73 0.718 99.2% 79.8% 

(For the first-order 1R1C model, Ce does not exist and the value reported in the table is the value of Ci. Bold values inside the table indicates unphysical parameters.) 

Fig. 5. Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto) 
models using Experiment 4 and different types of temperature measurement 
(5 min). 

Fig. 6. Comparing the Ce of the 3R2C deterministic (det) and stochastic (sto) 
models using Experiment 4 and different types of temperature measurement 
(5 min). 

Fig. 7. Cumulative periodogram of the residuals of the model 3R2C for 
different types of indoor temperature measurement. 
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4.3.1. Influence of data-preprocessing on the deterministic model 
Fig. 9 presents the identified parameters results for the deterministic 

model using different types of temperature measurement and data pre- 
processing. 

The identified values of HTC show that no matter which type of 
temperature is used for the identification, the HTC value is not signifi-
cantly influenced by the pre-filtering method and ACS. The value is close 
to the reference value of ~83 W/K. The sampling time (Ts) does not 
have a noticeable impact on the HTC value. 

The identified values of Ce give similar conclusions as the HTC value. 
The value of Ce is plausible for most of the cases since it is within the 
typical range (i.e., 3.4–6.5 kWh/K) given in standards [53]. The 
low-pass filtering and the ACS only have a slight impact on the results. 
With direct sampling, the Ce values are slightly outside the reference 
range when the sampling time is large (from 30 min). These conclusions 
are confirmed by the analysis of the effective window area Ai (related to 
the influence of solar radiation). 

Regarding the simulation performance of the deterministic model, 
the influence of data pre-processing and the type of temperature mea-
surement are also limited as are the identified parameters. Conse-
quently, the simulation performance is only demonstrated for the 
volume-averaged temperature (see Fig. 10). 

Several main conclusions can be drawn concerning the deterministic 
model. They are in good agreement with the findings of Yu et al. [26] 
using virtual experiments. Firstly, the pre-processing of data does not 
have a considerable influence on the deterministic model. Secondly, the 
pre-filtering technique could slightly contribute to a more stable esti-
mation of the values if the sampling time Ts is large (>30 min). Thirdly, 
the influence of data pre-processing on simulation performance is 
negligible. 

4.3.2. Influence of data-preprocessing on the stochastic model 
As shown in Fig. 11, the data pre-processing has a more substantial 

influence on the identified HTC value for the stochastic model. The ACS 
can contribute to preventing the HTC value from becoming non-physical 

(stays close to the target reference value) for large sampling times. If the 
filter and the ACS are applied together, the identified HTC value remains 
stable and close to the reference value for the stochastic model. How-
ever, the identified HTC values are often non-physical using the baseline 
3R2C model when the dynamics of the wall-mounted temperature sen-
sors are not modeled, even when the sampling time becomes large. 
Again, only the adapted 3R2C model with a sensor node gives plausible 
HTC values. This result is counterintuitive. In Section 4.2, the time 
constant of the wall-mounted sensor has been estimated to be about 8 
min. Therefore, it could be expected that the effect of the sensor dy-
namics would be filtered out by taking a larger sampling time (>15 
min). However, this is not the case. This last conclusion is much clearer 
when analyzing Ce. 

The identified Ce for the stochastic model without and with ACS are 
shown in Fig. 11, respectively. This confirms the positive effect of ACS 
for large sampling times. For cases without ACS, the identified Ce value 
and variance become non-physical when the sampling time is larger. The 
Ce values from volume-averaged temperature (T1) and the single wire-
less temperature (T2) sensors remain physically plausible for the large 
sampling times if the filter and ACS are applied simultaneously. 
Regarding the wall-mounted sensor, the baseline 3R2C model (T3) does 
not give plausible Ce values even for large sampling times. The low-pass 
filtering or ACS does not improve the performance. This confirms that, 
even though the sensor time constant (~8 min) is significantly shorter 
than the sampling time, its influence is not filtered out and it still im-
pacts the performance of the stochastic model. For the adapted model 
(T4), the Ce value remains physically plausible for large sampling times 
when the ACS and the low-pass filter are applied, just like the datasets T1 
and T2. It is worth mentioning that the Ce values from a single sensor are 
generally larger than those identified from the volume-averaged 
temperature. 

At this stage, the influence of the ACS does not need to be further 
demonstrated. Therefore, the Ai values for the stochastic model are only 
shown in Fig. 11 with ACS. The results for Ai are consistent with the 
results for Ce and confirm the previous conclusions. 

The identified τ values for the adapted 3R2C model with a sensor 
node can be found in Table 5. The sampling time (Ts) of 5 min is shorter 
than the identified time constant of about 8 min. However, when the Ts 
becomes significantly larger than 8 min, τ cannot understandably be 
identified at a lower value than Ts. In other words, a sound conclusion is 
that if the identified sensor time constant is to be physically plausible, 
the data should be sampled at a higher frequency than the sensor 
dynamics. 

Fig. 12 compares the ability of the model to perform MPC using the 
one-day ahead prediction performance for the stochastic model identi-
fied using the volume-averaged temperature (T1). Large sampling times 
have a limited effect on the one-day ahead prediction performance. The 
low-pass filter increases the one-day ahead prediction mainly for the 
validation datasets using Experiment 2. While the ACS improves the 
physical plausibility of the model parameters for large sampling times, 
its influence on the one-day ahead prediction performance is not sys-
tematic: it has a slightly positive impact on Experiments 3 and 4 but a 
negative influence on Experiment 2. 

For the case of wall-mounted temperature sensors, the improvement 
from the adapted model for the one-day ahead prediction performance is 
significant. The results are shown in Fig. 13 and Fig. 14. If the same pre- 
processing is applied (i.e., sampling time and filtering method), the 
NRMSE fitting from the adapted 3R2C stochastic model with sensor 
node (T4) is always higher than the baseline 3R2C stochastic model 
without sensor node (T3). Using the wall-mounted sensor, the influence 
of large sampling time is considerable. However, this effect is reduced 
using low-pass filtering. The influence of ACS is still not systematic. 
Nevertheless, for the adapted model, the ACS systematically improves 
the prediction performance. 

To sum up, except for wall-mounted sensors, large Ts have a limited 
effect on the prediction performance, which is in good agreement with 

Fig. 8. Comparing the one-day ahead prediction of the 3R2C stochastic (sto) 
models with different types of temperature measurement, trained using 
Experiment 4 and validated using Experiments 2, 3. 
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the findings of Yu et al. [26]. For the wall-mounted sensor, additional 
measures should be taken to conserve the prediction performance with 
large Ts. As for the physical plausibility, the low-pass filtering improves 
the prediction performance. However, the positive influence of the ACS 
for Ts is not as systematic for the prediction performance as it was for the 

physical plausibility of the parameters. 

4.3.3. Stochastic model with hydronic radiator 
As previously mentioned, the air temperature was only measured 

using the wall-mounted sensors for the experiment using the hydronic 

Fig. 10. Comparison of the simulation performance of the deterministic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and 
validated using Experiments 2, 3. 

Fig. 9. Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4 with different types of temperature, data pre-processing techniques.  
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radiator. As it has been proven that the sensor node was necessary for 
the modeling, only the performance of the adapted model is analyzed. 
Unlike the electric heater, the thermal dynamics of the hydronic radiator 
are significant (see Section 2.4). The analysis of the measured inlet and 
outlet temperatures of the hydronic radiator showed that its time 

constant is about 7 min. A priori, like the wall-sensor, it is expected that 
the hydronic radiator dynamics should influence the model perfor-
mance, at least for a sampling time of 5 min (<7 min). However, the 
wall-mounted temperature sensor has a time constant of about 8 min. 
Consequently, the dynamics of the hydronic radiator cannot be properly 
captured by a grey-box model since the time constant of the wall- 
mounted sensor is comparable (or slightly larger) than the time con-
stant of the hydronic radiator. The analysis of the cumulative periodo-
gram (not reported here for the sake of the conciseness) shows that the 
adapted 3R2C can model the building heated using the hydronic radi-
ator without the need to add a specific capacitance to model the hy-
dronic radiator. In addition, preliminary results with an additional 
capacitance proved that the resulting model would be overfitted. 

The experiments with the hydronic radiator and the electric heater 
have been performed in different years and different months of the 
heating season, leading to different sun elevations between the experi-
ments. The identified effective window area Ai is thus expected to be 
significantly different for Experiment 5 and Experiments 2 to 4. Thermal 
properties that are intrinsic to the building fabric and less dependent on 

Fig. 11. Identified HTC, Ce and Ai of the 3R2C stochastic model for Experiment 4 with different types of temperature measurement and data pre- 
processing techniques. 

Table 5 
Identified time constant (τ) of the 3R2C adapted stochastic model for Experi-
ment 4 with different data pre-processing techniques.  

Sampling 
time 
[min] 

DS MA FIR 

τ 
value 
[min] 

τ 
variance 
[min] 

τ 
value 
[min] 

τ 
variance 
[min] 

τ 
value 
[min] 

τ 
variance 
[min] 

5 8.28 0.420 – – – – 
15 16.4 1.82 12.9 1.21 11.6 1.04 
30 67.9 62.1 26.2 3.59 27.6 4.08 
60 97.6 19,465 79.1 1031 76.5 223  
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the outdoor conditions are used to analyze the model performance in 
Experiment 5, namely the HTC and Ce (Fig. 15). The identified HTC is 
still close to the reference value. Unlike the experiments with the electric 
heater, there is no significant difference between the baseline and 
adapted 3R2C models and the HTC remains plausible for large sampling 
times (with ACS). 

However, the improvement resulting from the adapted model and 
ACS is more visible when analyzing Ce. Again, the HTC translates into a 
steady-state performance while the capacitances are inherently related 
to the building dynamics. Conclusions with the hydronic radiator are in 
line with the conclusions using Experiment 4 with the electric heater. 
With the baseline 3R2C model, the estimated Ce is entirely non-physical 
even using pre-filtering and ACS. The results are noticeably improved 
with the adapted 3R2C model with a sensor node. If the pre-filtering and 

ACS are applied, the Ce value strictly stays within the reference range no 
matter how large the sampling time is. For Experiment 5, it is worth 
mentioning that the quality of the adapted 3R2C model is marginal as 
the variance Ce is sometimes very large. Nevertheless, this does not 
impact the main conclusion. The experiment with the hydronic radiator 
confirms the positive influence of the adapted model with τ, the low- 
pass filtering and the ACS for large sampling times. 

5. Discussion 

This paper analyzes the influence of data pre-processing and sensor 
dynamics on the grey-box modeling of the building thermal dynamics 
using the MATLAB system identification toolbox. Some limitations to 
the work can be listed and discussed: 

Fig. 12. One-day ahead prediction of the stochastic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and validated using 
Experiments 2, 3. 

Fig. 13. One-day ahead prediction of the baseline stochastic 3R2C model using a single wall-mounted sensor (T3), trained using Experiment 4 and validated using 
Experiments 2, 3. 
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• Important conclusions based on virtual experiments have already 
been drawn in the previous study of Yu et al. [26]. However, field 
measurements are different from virtual experiments. The paper 
succeeded in extending the conclusions from virtual experiments to a 
real test case with field measurements. However, more test cases are 
needed to have a generalization of the conclusions. It has been 
decided to limit the paper to a single test case. The experimental 
setup and the methodology should be sufficiently described to make 
the results transparent and reproducible. For the sake of conciseness, 
this limits the paper to a single test case.  

• The test case is a super-insulated building with balanced mechanical 
ventilation and an energy-efficient heat recovery unit. This enabled 
the building to be modeled as a single thermal zone. This test case is 

relatively specific as most of the existing houses in the Norwegian 
building stock do not have these thermal properties. However, it is 
expected that the conclusions of the paper regarding data pre- 
treatment are not affected by the insulation level and type of 
ventilation.  

• The paper considers that the data pre-treatment is performed equally 
for all input and output data. This is possible when the data pre- 
treatment is performed explicitly by the modeler. However, when 
the data pre-treatment is performed implicitly by the hardware (i.e., 
the sensor or the DAQ), this pre-treatment can affect the input and 
output data differently. In this case, additional data pre-treatment 
techniques should be considered (such as the identification of lag). 
The conclusions of the paper need to be extended to this case as well. 

Fig. 14. One-day ahead prediction of the adapted stochastic 3R2C model using a single wall-mounted sensor (T4), trained using Experiment 4 and validated using 
Experiments 2, 3. 

Fig. 15. HTC and Ce for the 3R2C stochastic model using Experiment 5 and different data pre-processing techniques.  
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• The analysis is based on the MATLAB system identification toolbox, 
where the stochastic equations are written in innovation form. For 
the generalization, results should be reproduced in other system 
identification tools and formulations, such as CTSM-R [54]. 

6. Conclusion 

This study is based on two experimental setups using two different 
space-heating emission systems, namely an electric heater and a hy-
dronic radiator. The pre-processing techniques include low-pass filtering 
(using MA or FIR), the sampling time (Ts) and the application of anti- 
causal shift (ACS). Three different types of temperature measurements 
are analyzed to investigate the influence of the sensor selection and 
dynamics (i.e. volume-averaged air temperature, single temperature 
sensor without casing and single wall-mounted sensor). 

To analyze the specific influence of the data pre-processing, it is 
important to ensure that the model performance is not polluted by other 
phenomena, such as overfitting or poor model fidelity. Therefore, the 
study starts by selecting a suitable structure for the grey-box model and 
proves that a mono-zone second-order model is an appropriate trade-off, 
with (1) a good prediction performance and (2) good interpretability of 
the physical parameters of the model (i.e., physical plausibility) (3) 
without beginning to be overfitted. Consequently, a mono-zone 3R2C 
model is taken as the baseline structure to illustrate the key research 
questions of the paper. Conclusions are presented separately between 
deterministic and stochastic models. 

Deterministic model:  

• Yu et al. [26] used virtual experiments and the data pre-processing 
has a limited influence on the model performance. This is 
confirmed using field experiments. In addition, the sensor thermal 
dynamics also has a limited influence on the deterministic model 
performance. 

Stochastic model:  

• Yu et al. [26] used virtual experiments and the parameters became 
non-physical without ACS for large sampling time (Ts). On the con-
trary, large sampling times did not alter the simulation performance 
significantly. Although the ACS tends to improve the physical plau-
sibility of the model parameters with Ts, in general, it had a negative 
influence on the simulation performance of the model.  

• These results are partly confirmed using field measurements. Like in 
Yu et al. [26], large Ts can cause the parameters to become 
non-physical without ACS. ACS is excessively beneficial to guarantee 
the physical plausibility of parameters, making the identified pa-
rameters insensitive to the sampling time. Like in Yu et al. [26], large 
Ts has a limited effect on the prediction performance for the tem-
perature sensors without casing. However, for the wall-mounted 
sensor, pre-filtering and sometimes ACS should be used to converse 
the prediction performance at large Ts. Like Yu et al. [26] 
pre-filtering has a beneficial influence on the model performance but 
not in a dominant way. Unlike Yu et al. [26], the influence of ACS on 

prediction performance is most often beneficial in our study. At this 
stage, it can be concluded that the influence of the sampling time and 
ACS on the prediction performance is not systematic (i.e., sometimes 
positive or negative).  

• The results for stochastic models depend on the type of temperature 
measurement. Firstly, the cases with temperature sensors with 
negligible thermal dynamics (i.e., free-standing air temperature 
sensor without casing) are analyzed. Even though the vertical ther-
mal stratification is significant, there is only a slight reduction in the 
model performance when moving from a volume-averaged mea-
surement to a single sensor located at mid-height in the room. Sec-
ondly, when the temperature sensor is the wall-mounted 
temperature sensor, an adapted model with time constant dynamics 
for the sensor is needed to obtain a physically plausible estimation of 
the parameters. This is an important conclusion as most buildings are 
equipped with wall-mounted temperature sensors. To limit the in-
vestment, the number of sensors should also be limited, making a 
volume-averaged measurement expensive.  

• The dynamics of the hydronic radiator (with significant thermal 
mass) are not necessary to be modeled if the time constant of the 
measurement device is larger than that of the hydronic radiator. 

As the article is based on a single test case, additional research on 
real buildings is needed to generalize the conclusions. These findings 
provide practical guidelines to identify the thermal dynamics of build-
ings using grey-box models and field measurement data. 
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Fig. 16. Grey-box model structures except for the most complicated 5R3C model.   

Table 6 
Model identification results of the candidate models with 5 min data and volume-averaged temperature (T1), values highlighted with bold color are non-physical 
values.  

Model UAea [W/K] UAie [W/K] UAim [W/K] UAinf [W/K] UA [W/K] UAas [W/K] UAes [W/K] UAis [W/K] Ce [kWh/K] Ci [kWh/K] 

1R1Cdet – – – – 106 – – – – 5.62 
2R2Cdet 114 826 – – – – – – 6.11 0.749 
3R2Cdet 80.2 876 – 23.0 – – – – 5.28 0.767 
4R2Cdet 52.1 – – 51.5 – – 2558 1345 5.40 0.781 
3R3Cdet 153 404 565 – – – – – 6.08 0.961 
4R3Cdet 104 303 687 26.5 – – – – 3.94 0.909 
5R3Cdet 102  686 – – 28.1 331 4694 3.99 0.908 
1R1Csto – – – – 109 – – – – 4.78 
2R2Csto 109 1058 – – – – – – 6.37 1.24 
3R2Csto 17.1 868 – 63.5 – – – – 4.22 1.15 
4R2Csto 0.000 1181 – 78.5 – – – 3342 4.28 1.11 
3R3Csto 123 552 763 – – – – – 11.9 1.23 
4R3Csto 5.40 692 346 71.4 – – – – 4.02 1.21 
5R3Csto 0.000 – 375 – – 108 8492 1087 5.73 1.19 

Model Cm [kWh/K] Ai [m2] Ae [m2] Am [m2] As [m2] alpha [−] MBE NRMSE (one- 
step) 

NRMSE 
(prediction) 

HTC [W/K] 

1R1Cdet – 2.99 – – – – 0.0010 – 72.7% 105 
2R2Cdet – 2.96 0.000 – – – 0.0007 – 93.0% 100 
3R2Cdet – 2.62 0.000 – – – 0.0008 – 93.6% 96.4 
4R2Cdet – 2.78 – – 0.000 – −0.0033 – 93.5% 103 
3R3Cdet 2.09 3.82 – 0.000 – 0.500 −0.0017 – 95.0% 111 
4R3Cdet 2.58 3.19 – 0.000 – 0.500 0.0025 – 95.3% 104 
5R3Cdet 2.54 – – 0.000 3.21 0.500 −0.0017 – 95.3% 106 
1R1Csto – 3.39 – – – – −0.0008 99.0% 73.4% 109 
2R2Csto – 3.07 0.000 – – – 0.0000 99.2% 87.3% 98.8 
3R2Csto – 1.56 0.122 – – – 0.0000 99.2% 87.2% 80.3 
4R2Csto – 1.09 – – 0.686 – 0.0001 99.2% 86.6% 78.5 
3R3Csto 1.16 3.07 – 0.819 – 0.500 0.0002 99.2% 80.6% 101 
4R3Csto 0.042 1.44 – 0.000 – 0.500 0.0001 99.2% 86.1% 76.8 
5R3Csto 0.038 – – 0.078 2.67 0.500 0.0001 99.2% 88.9% 108 
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Abstract 

Model predictive control (MPC) is an advanced optimal 

control technique to minimize a control objective while 

satisfying a set of constraints and is well suited to activate 

the building energy flexibility. The MPC controller 

performance depends on the accuracy of the model 

prediction. Inaccurate predictions can directly lead to low 

control performance. Linear time-invariant (LTI) models 

are often used in MPC in buildings. However, LTI models 

do not adapt to the weather conditions varying throughout 

the whole space-heating season, which makes the MPC 

based on LTI models not perform well over a long period 

of time. Therefore, this study introduces an adaptive MPC 

where the parameters of a linear grey-box model are 

continuously updated in real-time. Two alternative 

versions of this adaptive control are investigated. The first 

one, called partially adaptive MPC, only updates the 

effective window area of the grey-box model, while the 

second one, called fully adaptive MPC, updates all the 

parameters of the grey-box model. Results show that the 

partially adaptive MPC is not able to deliver satisfactory 

prediction performance. The fully adaptive MPC shows 

better performance compared to the other models when 

implemented in a MPC, especially in avoiding thermal 

comfort violation. 

Introduction 

The grid system today is facing new challenges due to the 

fastly increasing penetration of renewable energy 

resources (RES). The weather-dependent RES brings 

intermittent and is prone to uncertainty which makes the 

balance between the electricity supply and demand a 

challenging task. Thus, more flexibility is needed for the 

current energy system. Demand response (DR) is 

considered as a feasible solution on the demand side, 

which can adapt to volatile electricity generation (Esther 

& Kumar, 2016; Oconnell et al., 2014). Buildings account 

for a significant proportion of final energy consumption 

in developed countries (Pérez-Lombard et al., 2008) (20–

40%). The thermal mass of building envelopes can be 

used as short-term heat storage to perform DR. This study 

mainly investigates model predictive control (MPC) to 

activate the flexibility of the building thermal mass. The 

MPC controller enables the indoor temperature to 

fluctuate within acceptable indoor temperature limits for 

the occupants while it optimizes the time profile of energy 

use by loading the building thermal mass at certain 

periods. The MPC controller performance strongly 

depends on the accuracy of the model prediction. 

Therefore, identifying an accurate prediction model is a 

key task for the deployment of MPC. 

This study focuses on MPC using grey-box models as the 

prediction model. Grey-box models have a structure 

based on physical laws, while the model parameters are 

calibrated on measurement data (i.e., based on time-series 

data). The grey-box models are not as mathematically 

complex as white-box models, so they are less 

computationally expensive to solve. Grey-box models 

also have better extrapolation properties than black-box 

models (Madsen et al., 2016). In grey-box models, 

lumped resistance and capacitance (RC networks) are 

commonly used to represent the model structure of the 

building, which is also used in this study. Some existing 

studies have shown that linear time-invariant (LTI) 

models can approximate the thermal dynamics of 

buildings with sufficient accuracy for MPC purposes 

(Bacher & Madsen, 2011; M. D. Knudsen & Petersen, 

2020; Michael Dahl Knudsen & Petersen, 2017; Prívara 

et al., 2013; Vogler-Finck et al., 2018). However, the 

performance of the MPC controller cannot be maintained 

if it is applied over a long period of time due to the time-

varying weather conditions throughout the year. Thus, an 

MPC controller where the parameters of the grey-box 

model can be updated in real-time should provide 

satisfactory control performance over a long period of 

time. This paper uses virtual experiments (i.e., co-

simulation) to compare the performance of a conventional 

MPC based on an LTI model to an adaptive MPC. IDA 

ICE is a detailed dynamic building performance 

simulation (BPS) software, which is used as the emulator 

for virtual experiments. The MPC controller is 

implemented in MATLAB with a co-simulation function 

in IDA-ICE provided by the company EQUA.  

The data collected from IDA ICE simulations are used to 

train the parameters of the grey-box model. Then, the 

obtained model is used as the prediction model for the 

MPC controller. The adaptive MPC controller has two 

versions in this study. The first version, called partially 

adaptive MPC, only updates the effective window area of 

the grey-box model when the prediction error is large 

during the MPC operation. The reason is that solar 

radiation is the dominant factor that influences the model 

accuracy due to the cloud condition, changing altitude and 

zenith angles of the sun. The second version, called fully 



adaptive MPC, updates all the parameters of the grey-box 

model when the prediction error is large during the MPC 

operation. The second version has more freedom to fit the 

model parameters compared to the first one. However, the 

second version of adaptive MPC theoretically takes more 

time to converge to a new set of parameters and may have 

the risk of obtaining a set of unphysical parameters due to 

insufficient training data. Both versions of the adaptive 

model use the full space-heating season data (here called 

full winter) to train the model parameters as the initial 

model to start the adaptive MPC. This study compares the 

performance of a conventional MPC based on an LTI  

grey-box model to the adaptive MPC.  

Description of virtual experiments setup 

This study uses a building model in IDA ICE developed 

in a previous study (Yu et al., 2021) as the emulator for 

the co-simulation. It is a detached house in Oslo. The floor 

area of the house is approximately 160 m2 and is 

constructed in wood. The lightweight construction 

complies with Norwegian passive house standards (NS 

3700 [15]) requirements. The appearance of the building 

is shown in  Figure 1, while its floor plan is presented in 

Figure 2. The envelope of the building is the dominant 

heat dynamics to be modeled in this study, which has 

good linear properties. Thus, it is reasonable to use the 

linear grey-box model as the prediction model for the 

MPC controller design. The internal doors of the building 

are set to be open in the virtual experiments. Therefore, 

the mono-zone grey-box model is considered as the 

prediction model. The temperature of the indoor air node 

is represented by the volume-averaged temperature of the 

nine zones in IDA ICE. Electrical radiators are selected to 

be the space-heating system in the BPS since they are it is 

the most common for Norwegian residential buildings 

(Bøeng et al., 2014). The heat dynamics of electrical 

radiators are neglectable due to much smaller thermal 

inertia compared to the envelope. The profile for internal 

gains and occupancy is taken from the Norwegian 

technical standard TS3031:2016 (Norge, 2016).  

 

Figure 1: 3D geometry of the building model in IDA ICE 

(showing the southwest facade) 

The heat dynamics of the building need to be perturbed to 

obtain the data for training the model parameters. The 

Pseudo-Random Binary Signal (PRBS) approximates 

white noise properties, which can excite the dynamic 

system in a large spectrum of frequencies (Kristensen et 

al., 2004; Lennart, 1999). The electrical radiator is the 

only controllable input of the system, so the PRBS signal 

is applied to the electrical radiator to obtain the training 

data. It is not always feasible to apply PRBS signal in real 

operation due to thermal discomfort caused by large 

variations of the indoor temperature for occupants. 

Therefore, the time of applying PRBS signal should also 

be limited. This study takes one week in November as the 

training week to apply PRBS signal to the heating system. 

It starts on November 23rd and lasts for one week (close 

to the middle of the whole experimental period). The 

outdoor temperature is mild with an average value of 5 ℃. 

The data generated under typical operations are also used 

as training data. Intermittent heating with changing 

temperature setpoints is applied. The setpoint is shifted 

between daytime and nighttime (i.e. a night setback) and 

the local controller of the radiator is on-off. The model 

trained from the PRBS signal is only used for the LTI 

control model. The model trained from the full winter 

intermittent heating with changing temperature setpoints 

is also used as the initial model for the adaptive MPC. 

 

Figure 2: Floor plan of the test building (ducts for the supply 

ventilation air are in blue and in red for extraction) 

In the co-simulation, the length of each MPC time step is 

set to 15 min. IDA ICE first sends the current calculated 

volume-averaged indoor temperature of the building to 

MATLAB. Then the MPC controller takes the prediction 

of the weather data and internal heat gains into the 

optimization to output the optimal control sequence for 

the heating system. However, only the first step decision 

of the control sequence is taken and sent back to IDA ICE. 

The heaters in the building will execute the calculated 

optimal power after receiving the control signal. When 

this time step is done in IDA ICE, the new state of the 

volume-averaged indoor temperature is sent back to 

MATLAB again; a new round starts. The process will 

keep iterating in time using this co-simulation setup until 

the pre-determined simulation period is finished. A 

similar co-simulation setup with IDA ICE has been 

applied in the study (Khatibi et al., 2022). A short 

initialization period is necessary for IDA ICE to come to 

realistic temperatures in each zone of the model, so PID 

control is applied at the beginning of co-simulation. The 

length of the initialization period in this study is set to be 

half-day.  

In the co-simulation framework, there are variable 

constraints set in  the MPC due to system limitations. In 



the IDA ICE model, the total heating power of all the 

radiators is 3220W. The radiator in IDA ICE is assumed 

to be able to modulate its power by adjusting its part load 

ratio (PLR). Thus, the power constraint of the heating 

system in the MPC is from 0 to 3220W. The thermal 

comfort should also be considered and it is here 

considered using minimum and maximum indoor 

temperature limits. The minimum indoor temperature 

limit is set to be 20 °C and the maximum limit is set to be 

24 °C. There is a night setback for the minimum 

temperature limilt decreasing from 20°C to 16 °C from 

11PM to 7AM. 

Methodology 

Grey-box model 

A grey-box model structure that has too many parameters 

may lead to overfitting and increase the calculation cost. 

Lower order models with few parameters can decrease the 

calculation cost for the MPC optimization but at the cost 

of unacceptable prediction performance. A considerable 

amount of research has already been done to find suitable 

mono-zone grey-box model structures to be applied to 

MPC of buildings (Bacher & Madsen, 2011; Berthou et 

al., 2014; Harb et al., 2016; Reynders et al., 2014; Viot et 

al., 2018). In the previous study (Yu et al., 2022), a 3R2C 

grey-box model has proven to be a suitable trade-off 

between model complexity and accuracy for the test case. 

Therefore, this model structure is used for the MPC 

controller in our work. The model structure and its 

parameters are given in Figure 3 and Table 1. 

 

Figure 3: 3R2C grey-box model 

Table 1: The physical interpretation of the parameters of the 

3R2C grey-box model 

Parameters Physical interpretation and unit 

Ti   
Temperature of the internal node (i.e., indoor air, 

furniture) [°C]. 

Te Temperature of the external walls [°C]. 

Ta The ambient (or outdoor) temperature [°C]. 

Ci   Heat capacity including the thermal mass of the air, 

the furniture [kWh/K]. 

Ce Heat capacity of external wall  [kWh/K]. 

UAie  Heat conductance between the building envelope and 

the interior [kW/K]. 

UAea  Heat conductance between the outdoor and the 

building envelope [kW/K]. 

UAinf  Heat conductance between the outdoor and the 

interior node (components with negligible thermal 

mass, like windows and doors) [kW/K]. 

Qint Internal heat gain from artificial lighting, people and 

electric appliances [kW]. 

Qh Heat gain delivered to the heat emitter [kW]. 

Isol Global solar irradiation on a horizontal plane [W/m2]. 

Ai The effective window area of the building 

corresponding to Ti [m2]. 

Ae The effective window area of the building 

corresponding to Te [m2]. 

MATLAB system identification toolbox (Ljung, 2014) is 

used to calibrate the parameters of the grey-box model. 

This paper uses the global optimization routine of the 

previous study (Yu et al., 2021) to avoid the local 

optimum. The routine consists of two stages. The 

heuristic particle swarm optimization (PSO) is used at the 

first stage to give a general estimation of parameter values. 

Then the gradient-based optimization function (greyest) is 

applied in the second stage to further polish the parameter 

values. The objective function f(x) of the optimization is 

defined as Equation 1.  
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Optimal Control Problem Formulation 

The goal to implement MPC in the building varies 

between applications. The objective function of the MPC 

in our study is to minimize the total electricity use of the 

heating system while keeping the building within the 

thermal comfort temperature limits. 

With the control objectives and constraints, the optimal 

control problem can be formulated. The time step of each 

control decision is 15 minutes. The prediction horizon of 

the MPC controller is set to be 24 hours (96 slots, N = 96). 

This duration of the prediction horizon is a typical value 

found in the literature. It keeps the computational time 

reasonable. The equations of the optimization problem are 

given below. 
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In the equations, x[k] is the state vector in discrete-time, 

F, G and C are the discrete state space matrice obtained 

from the grey-box model identification process, u[k] is the 

input vector in discrete-time and y[k] is the output. K is 

the tunned steady Kalman gain. Qh[k] is the calculated 

optimal heat power at each step for the prediction horizon, 

while Qh,max[k] is the max power of the heating system. ε1 

[k] and ε2[k]  are the slack variables of the soft constraints 

on the thermal comfort band. The existence of soft 

constraints can help the solver to avoid infeasible 

optimization problems by allowing thermal comfort limits 

to be violated. Tindoor[k] is the predicted indoor 

temperature from the grey-box model. Tlow[k] and Tup[k] 

are the corresponding temperature limits during the 

prediction horizon. The thermal discomfort (ε) is 

quantified in Kelvin hours outside the predefined thermal 

comfort limits. L is the penalty factor for discomfort in the 

objective function. For favor comparison of results, it has 

been decided that the thermal discomfort should be rare 

when using MPC so that a very high value of 108 is given 

to the penalty L. MPC resorts to a receding horizon. The 

above optimization problem is solved at each step to get 

the optimal control decision. Then, the initial states of the 

model and the weather forecasts are updated with the 

receded prediction horizon. Due to the quadratic form of 

the slack variables ε1 and ε2, a solver that can solve 

quadratic programming problems is needed. In this study, 

the toolbox YALMIP (Lofberg, 2004) in MATLAB is 

used for the formulation of the optimization problem, 

while Gurobi (Lofberg & Gurobi Optimization, 2004) is 

used to solve the optimization problem. 

Conventional and Adaptive MPC 

The baseline MPC is based on LTI models, which keep 

the value of the model parameters constant during 

simulation. The LTI model trained using the full winter 

experiments with intermittent heating is called FullWinter. 

The LTI model trained using the PRBS experiments of 

November is called PRBSNOV.  

The partially adaptive MPC takes the FullWinter model 

to initialize the model, only the effective window area (Ai) 

parameter is updated during the simulation. The pseudo-

code for updating the effective window area is presented 

in Algorithm 1. The fully adaptive MPC also starts with 

the FullWinter model but updates all the seven parameters 

of the model during simulation. The pseudo-code for fully 

adaptive MPC is presented in Algorithm 2.  

The sliding accumulated error (ErrorS) is the index to 

detect when the parameters need to be updated. The 

sliding accumulated error sums up the absolute value of 

the prediction error (value difference between the 

measurement and the model prediction). The length of the 

sliding accumulated error is set to be 12 steps (i.e., 3 

hours). When the ErrorS is larger than a predefined 

threshold, it actives the parameter updating routine. The 

threshold is called error_index and is set to be 5 in this 

study. It is unreasonable to use a short training period to 

update the model parameters as the parameters can be 

unphysical or with large uncertainty. On the opposite, 

taking a long period of historical data for training is also 

not optimal since the adaptive MPC should be able to 

adapt the parameters for changing operating conditions. 

Pushed to extremes, a very long training period will make 

the adaptive model converge to the LTI model. Thus, the 

two adaptive MPC take a training period of 7 days of data 

to update the model parameters. As a result, the adaptive 

MPC routines are not able to start the first model update 

during the first seven days of co-simulation. 

Algorithm 1: Pseudo-code for the partially adaptive MPC 

Algorithm 1: Partially Adaptive MPC 

Initialize: Set FullWinter as the prediction model for the 

Partially Adaptive MPC; 

Input: ErrorS； 

if ErrorS> ErrorIndex 

 Update the parameter Ai. 

else 

 Keep Ai unchanged. 

end  

Algorithm 2: Pseudo-code for the fully adaptive MPC 

Algorithm 2: Fully Adaptive MPC 

Initialize: Set FullWinter as the prediction model for the 

fully Adaptive MPC; 

Input: ErrorS； 

if ErrorS > ErrorIndex 

 Update all parameters of the model. 

else 

 Keep parameters unchanged. 

end  

Results 

The results using different MPCs are presented in this 

section. The virtual experiment starts from November 1st 

to December 31th (i.e., 61 days). The first 12 hours of 

simulation always start with a PID control to stabilize the 

co-simulation environment. Then, the control is switched 

to MPC. PRBSNOV MPC uses the LTI grey-box model 

trained using the data from one week of building 

operation with the PRBS excitation in November 

(PRBSNOV). FullWinter MPC uses the LTI grey-box 



Table 2: Results summary of MPC controllers' performance model trained with the data from the intermittent heating 

with changing temperature setpoints during the full space-

heating season (i.e., from November 1st to March 31th). 

The indoor temperature computed using co-simulation 

and the four MPC controllers are shown in Figure 4. 

Figure 5 is a close-up section of Figure 4 and the 

corresponding heating power of the radiator is also given. 

The aggregated results are given in Table 2. The history 

of the effective window area update is shown in Figure 6. 

It can be seen that the FullWinter MPC can not make a 

satisfactory prediction, which causes the thermal comfort 

constraint to be significantly and frequently violated. The 

 

 
FullWinter 

MPC 

PRBSNOV 

MPC 

Partially 

Adaptive 

MPC 

Fully 

Adaptive 

MPC 

Consumed 

Energy 

[kWh] 

 

803.73 855.18 804.06 893.62 

Thermal 

Discomfort 

[Kh] 

 

534.39 194.37 528.87 72.04 

Figure 4: Indoor temperature profile under the operation of different MPC controllers with energy saving objective 



partially adaptive MPC shows only slightly better 

performance compared to the FullWinter MPC. The 

thermal comfort constraint is still frequently violated. 

These two models consume less energy compared to the 

other two models (i.e., the fully adaptive MPC and the 

PRBSNOV MPC). However, the MPC should first 

guarantee the thermal comfort of the occupants and then 

provide DR service to the grid. The FullWinter MPC and 

Partially Adaptive MPC consume less energy because 

they are less accurate, which causes the indoor 

temperature to drop below the minimum indoor 

temperature threshold. The heating system is switched on 

too late in the morning and causes large thermal 

discomfort. This indicates that the LTI grey-box model 

trained using the full winter data may not be suitable as 

the prediction model in MPC. Furthermore, quite 

surprisingly, only updating the effective window area of 

the model is not sufficient. This is also confirmed by the 

history of updates of the effective window area. The 

partially adaptive MPC updates the window area 

continuously, which means that the sliding accumulated 

error is always very large during simulation. The 

PRBSNOV MPC performs much better than the previous 

two models in terms of thermal discomfort. The resulting 

energy use of the PRBSNOV MPC is consequently 

higher. This result proves that it is necessary to use a 

model that is calibrated using a training period similar to 

the period when the MPC will be operated. The fully 

Figure 5: Close-up of the indoor temperature profile under the operation of different MPC controllers with energy saving objective  



adaptive MPC further reduces the thermal discomfort 

significantly compared to the PRBSNOV MPC. 

However, the consumed energy is even higher. The fully 

adaptive model performs better than the partially adaptive 

model mainly due to the extra degrees of freedom to adapt 

the model parameters. After the first update of the 

parameters done by the fully adaptive MPC, the violation 

of the indoor temperature constraint is significantly 

reduced. As shown in Figure 6, the effective window area 

is only updated three times during the simulation, which 

means that the obtained model is accurate and can deliver 

a decent prediction. 

Conclusion 

This study aims to assess different MPC controller 

performances using virtual experiments by coupling IDA 

ICE and MATLAB. The control objective of the MPC 

controller is to minimize the energy use with a high 

penalty on the thermal discomfort to give priority to 

thermal comfort over energy use. 

Results show that the LTI grey-box model trained using 

the FullWinter data is not suitable as MPC prediction 

model. This model is too general and gives large 

prediction errors during specific periods of the winter. 

This is confirmed by the LTI grey-box model training 

using a PRBS excitation sequence for one week in 

November (PRBSNOV). The model is better calibrated to 

November than the FullWinter model and the resulting 

MPC gives better performance.   

Although the effective window area is known to vary 

significantly during the space-heating season, only 

updating the window area of the model is surprisingly not 

enough to reach satisfactory MPC performance. The 

lower amount of indoor temperature violations of the fully 

adaptive MPC compared to the PRBSNOV MPC 

demonstrates the need to update all the model parameters 

during the space-heating season.  

In future work, the performance of the four MPC 

controllers will be compared for different objective 

functions (e.g, minimization of the energy cost or the 

energy use during peak hours) and different magnitudes 

for the penalty coefficient weighting the thermal 

discomfort in the objective function. 
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Abstract 

To increase energy efficiency of the building sector, many 

measures have been suggested which often require a 

predictive model of the building to function. Developing 

these models is one of the crucial challenges hampering 

pervasive use of these measures. Therefore, this study 

aims at assessing the impact of using different predictive 

models in an energy optimization application for an 

experimental building. First step in achieving this goal is 

developing various data-driven models for the investigated 

building in this study. Afterwards, a framework has been 

developed in which the performance of predictive models 

in the optimization strategy namely Model Predictive 

Control (MPC) could be evaluated. The results reveal that 

common indicators in the literature do no suffice to score 

the performance of models used in MPC, but another state-

of-the-art indicator; multi-step ahead prediction error is 

more suitable for evaluating predictive models deployed in 

MPC.  

Key innovations 

 Finding a proper Key Performance Indicator  

(KPI) for evaluating various predictive models in 

an MPC framework 

 Assessing the impact of one-step ahead 

prediction and multi-step ahead prediction 

accuracy on model’s quality in MPC 

 Applying Support Vector Machine as a powerful 

AI tool for building behavior identification 

Practical implications 

This paper could guide practitioners who work on building 

energy optimization in choosing a suitable model in their 

optimization algorithm .In addition; we suggest an 

appropriate criterion to assess the predictive models in 

terms of their performance in MPC, which could be 

instrumental for both researchers and practitioners.  

Introduction 

Surveys have shown that building stock has the highest 

potential in terms of energy saving to achieve well below 

2 oC target by 2050 set in Paris agreement (EU 

Commission, 2018). Approximately 71% of all the final 

energy use in residential sector in Europe is used for space 

heating alone (EU Commission, 2018). Hence, there is a 

considerable potential of energy saving which could be 

activated by optimizing performance of existing HVAC 

systems. Several strategies have been proposed to increase 

existing building’s energy efficiency such as RES 

integration (Haddadi et al., 2019), shading control (Da 

Silva et al., 2012), optimal control of HVAC systems (De 

Coninck & Helsen, 2016), heat recovery (Jafarinejad, et 

al., 2019), glazing improvement (Djamel & Noureddine, 

2017), smart houses and etc. (Eicker et al., 2015; Guerra-

Santin & Tweed, 2015). RES integration is one of the 

promising options. However, their uncertain nature affects 

all the energy users such as buildings (Reynders et al., 

2017). One of these impacts is that the integration of RES 

in buildings renders performance of traditional control 

strategies non-optimal (Sangi et al., 2019). Hence, 

substantial attention has been paid to advanced control 

strategies recently (Afram & Janabi-Sharifi, 2014). 

Amongst various control strategies suggested for 

optimization of building’s thermal performance, Model 

Predictive Control (MPC) is one of the most promising 

ones. MPC is an active control strategy which optimizes 

the performance of a system over a given time horizon 

(Drgoňa et al., 2020). It has shown a considerable potential 

in optimizing the performance of HVAC systems along 

with facilitating the integration of RES in buildings (Atam 

& Helsen, 2016). MPC has the ability to handle slow 

moving dynamics, which matches the requirements for a 

good optimization strategy for buildings. To this end, 

MPC uses a model of the building to predict its thermal 

behavior in the future. This prediction feature gives MPC 

a crucial edge compared to other controllers (Reynders et 

al., 2014; Sourbron et al., 2013). Myriad studies have been 

carried out on application of MPC in buildings (Drgoňa et 

al., 2020). In spite of the abundance of such studies, MPC 

is still not used prevalently in buildings. One of the main 

issues hampering easy and cost-efficient implementation 

of MPC in buildings is developing a predictive model of 

the building (Sourbron et al., 2013). 

This study aims at comparing different modeling 

techniques, which are used to identify a building’s thermal 

characteristic and are integrated into the MPC framework 

as the predictive model. In this study, we place our focus 

on data-driven methods used for characterizing building’s 



thermal behavior since there is an ever-increasing interest 

in employing data-driven techniques for building energy 

optimization applications (Sepasgozar et al., 2020). 

In general, data-driven methods could be divided into two 

categories, black box and grey-box models. In black box 

modeling techniques, the mapping between the input and 

the output is a mathematical one. These models have a 

wide range from a simple regression to complex AI-based 

methods such as deep learning methods (Drgoňa et al., 

2020).  As for grey-box models, they could be defined as 

a hybrid between mathematical (black-box) models and 

physics-based (white-box) models. In the most popular 

type of grey-box models used in buildings, structure of the 

model is determined by simplified physical laws 

governing building’s dynamics. Next, , parameters of the 

model are estimated based on datasets (Afroz et al., 2018). 

An important question, which comes up in the process of 

model selection and training, is how do I know which 

model would perform the best in my MPC? In other words, 

how to quantify the quality of different predictive models 

in the context of MPC. In this work, we endeavor to 

answer the above question by applying different KPIs to 

different models and assessing their suitability to score 

those models. We look into the one-step ahead prediction 

and multi-step-ahead prediction error (MSPE) of the 

models as two different KPIs for predictive models. 

MSPE has been considered for quantifying predictive 

models in MPC before. The concept of Model predictive 

control Relevant Identification (MRI) for buildings was 

first introduced by (Žáčeková & Prívara, 2012) in which 

they developed a grey-box model based on MSPE 

minimization. Thereafter, some research studies in this 

field reported MSPE of their models in their work (Zhan 

& Chong, 2021). In one of the most relevant of these 

studies, (Picard et al., 2016) developed a detailed Modelica 

model for an office building. This Modelica model is then 

linearized into a state space model. Two grey-box models 

were developed in their study as well. One was identified 

based on measurements and the other one based on the 

proxy data obtained from the emulator. Performance of 

these three models are evaluated for 1 hour and 24 hours 

ahead. They showed that the most accurate model 

(linearized state space model) used 50% less energy while 

providing better thermal comfort. In a similar study, 

(Picard et al., 2017) applied model order reduction 

techniques to a white box model of a residential building 

and reported their model’s quality based on both one-step 

ahead error and MSPE. They concluded that such models 

should be of higher order compared to their peer data-

driven models to yield an MPC with good performance.  

Although the concept of MSPE has been used before in the 

context of MPC design for a building, but a thorough 

analysis on its suitability for scoring different predictive 

models is lacking. In other words, previous studies did not 

consider various data-driven models in their structures. In 

addition, they did not distinguish between the impact of 

one-step and multi-step ahead prediction accuracy on the 

models and its impact on the controller’s performance. In 

this paper, we take into account the MSPE associated with 

each model as a KPI and compare it to one-step ahead 

prediction error.  In addition, Support Vector Machine 

(SVM) as a powerful tool in machine learning field has 

been applied for in the context of MPC. 

The models developed for this study are AutoRegressive 

with eXogenous inputs (ARX), grey-box RC models with 

different orders, black-box State Space (SS) models with 

different orders, SVM and Artificial Neural network 

(ANN) with a Non-linear Auto-Regressive with 

eXogenous inputs (NARX) structure. The results of 

applying MPC with different models for 2 weeks in the 

heating season are presented. To be able to evaluate 

performance of these models in MPC, a framework has 

been considered. First, a simulation model of an 

experimental building equipped with an underfloor 

heating system has been developed. This simulation model 

replaces the real building in our simulations. This 

experimental building is one of the experimental buildings 

in the context of IEA Annex 71 project.  MPC has been 

developed in MATLAB SIMULINK environment. The 

simulation model has been coupled to the controller using 

an Application Programming Interface (API). 

Furthermore, MPC results are compared to the ones of a 

well-tuned Rule-Based Controller (RBC) to show its 

superiority over traditional control methods.  

First, framework of the study is described. Subsequently, 

predictive models developed for this study are described. 

Then, we proceed by presenting and analyzing the results 

of different MPCs. Last section concludes the paper. 

Framework 

In this section,  various parts required for evaluating MPC 

for a building are described; starting with the building 

itself. Then, the API used in this study is briefly explained. 

Afterwards, structure of the MPC itself is explained. 

General schematic of the framework applied in this study 

is shown in Figure 1, which is explained in the rest of this 

section from top to bottom. 

 

Figure 1: MPC framework for data-driven models 

As it could be seen in Figure 1, one of the important 

components in simulating the performance of MPC in a 

building is to have a simulation model, which mimics the 

behaviour of the real building. Henceforth, this model is 

called the emulator. The emulator model is usually a 

complex white-box model, which due to its high 

computational load is not suitable to be deployed in real-

time optimization applications (Afram & Janabi-Sharifi, 

2014). Therefore, there is a need for simple and efficient 

model embedded in the MPC which is responsible for 



predicting building’s dynamics over a given time horizon. 

These models are called predictive models. The rest of this 

section is allocated to detailed description of different 

components of the framework shown in Figure 1. 

Building 

We first give a short description of the real building, which 

has been modelled using Modelica language in Dymola 

software using the OpenIDEAS library (Baetens et al., 

2015). This simulation model serves as the emulator in this 

study. The building under study is one of the test cases of 

the IEA ANNEX 71 project titled: “Building energy 

performance assessment based on in situ measurements.” 

Test building in this study is a two-storey experimental 

dwelling located in Holzkirchen, Germany. (See Figure 2) 

 

Figure 2: Test Building 

This building is equipped with multiple instruments for 

measuring and storing time-series data of different 

variables. Heating is provided by means of an air-to-water 

heat pump, which provides hot water for an underfloor 

heating system that is installed for both floors. (Figure 3). 

Occupants are introduced to the building using electrical 

heaters based on a pre-defined schedule. Thermometers 

are installed in all rooms to measure room’s temperature. 

Ventilation system functions based on a pre-defined 

schedule and is equipped with measurement instruments  

both in exhaust and supply terminals. 

        

Figure 3: Heat pump and the underfloor heating system 

API 

The controller in this study has been developed in 

SIMULINK, whereas the emulator is developed in 

Dymola. Hence, a way of communication is required to 

make the co-simulation between the two softwares 

possible. To tackle this issue, we use an interface, which 

facilitates the connection between Dymola and Matlab, 

which is called Functional Mock-up Interface (FMI).  

The developed building model in Modelica is essentially 

composed of equations derived from physical laws. FMI 

translates these equations into binary format, which is 

supported by many simulation tools including MATLAB 

and Python. This binary file could be loaded and run by 

these softwares (Modelica Association Project “FMI,” 

2013). In this work, the emulator model of the building is 

compiled as a Functional Mock-up Unit (FMU). Then it is 

imported into SIMULINK using the FMU block of 

MATLAB. From there on, the FMU serves as the emulator 

model in our MPC framework and easily communicates 

with the controller in the Simulink environment. 

Model Predictive Controller 

MPC is composed of two main parts. A predictive model 

and an optimizer. Interested readers can refer to (Drgoňa 

et al., 2020) for further details on MPC formulation for 

buildings. The objective of the MPC here is to minimize 

the electricity use of the heat pump while minimizing 

indoor thermal discomfort. Total discomfort is calculated 

as Kelvin hours outside thermal comfort band. Heat 

pump’s electricity use is obtained from the emulator model 

(FMU). A day-ahead electricity price profile from real-life 

implementation has been chosen as a way to reflect the 

integration of RES in the building load profile. 

Furthermore, to illustrate the suitability of MPC with 

respect to other common control methods, a well-tuned 

RBC has been designed and applied to our case study and 

the results of this RBC are compared to the ones of MPC. 

In addition, we investigate the propriety of two important 

KPIs in scoring predictive models in the context of MPC; 

namely one-step ahead and multi-step ahead prediction 

error. In the following, constraints acting on the system 

along with the optimizer used in this study are described. 

Constraints 

Constraints acting on the system are divided into two 

different types. First type of constraints are the ones 

imposed on the inputs. The manipulated inputs considered 

in this study are the heat pump’s on/off status (u1) and heat 

pump’s supply water temperature (u2). It should be 

mentioned that in this study the mass flow rate of the 

supply water is considered constant (when the heat pump 

is on) during the whole simulation. The issue with the 

constraints on the heat pump operation is the fact that if 

heat pump operates with low loads, it would have a low 

COP, which should be avoided. Determining the point that 

the efficiency of the heat pump deteriorates depends on 

many factors, including the modulation rate of the 

compressor, ambient temperature and supply water 

temperature. Hence, imposing an accurate bound for lower 

modulation of the heat pump is not straightforward and 

would complicate the optimization problem (Verhelst et 

al., 2012). To avoid these complexities, a lower band for 

supply water temperature is imposed to avoid performing 

with a low COP level. The upper limit of supply water 

temperature is extracted from the datasheet provided by 

the manufacturer. To wrap up, Equations (1)-(2) show the 

constraints on input signals of the heating system:  

u1ϵ [0,1] (1) 

28 ≤  u2  ≤ 45 (2) 

In which u1 is heat pump’s on/off status and is a boolean 

variable, 1 means heat pump is on and 0 denotes that it is 

off. Here, u2 is the supply water temperature provided by 

the heat pump. Second type of constraint applied in this 

study is indoor thermal comfort bands. Comfort band 



considered in this study is [20 24] from 7:00 to 23:00 with 

a night setback of [18   22] from 23:00 to 7:00. 

Tlow,t ≤  Tin,t  ≤ Tup,t 
 (3) 

Tlow, t is equal to the lower limits of the bands defined 

above and Tup, t corresponds to the upper limit of comfort 

bands. In this study, building is seen as one thermal zone 

and one temperature is used to represent the whole 

building, which is the volume-averaged temperature of all 

10 thermal zones in Figure 2. 

OCP formulation 

Now having defined constraints and the objective 

function, the Optimal Control Problem (OCP) can be fully 

formulated. To avoid the high switching frequency of heat 

pump, time step chosen for this study is one hour. 

Furthermore, a control horizon of 12 hours (N=12) has 

been applied in this study which is sufficiently larger than 

the time constant of the building and the computational 

load does not become too large. 

Min

u⃗ 1,u⃗ 2, …u⃗ k+N-1
∑Lvk+i+1+Cel,k+i+1 P̂el,k+i+1

N-1

k=0

 

 

(4) 

T̂in,k+i+1 = f(x⃗ k+i, u⃗ k+i, d⃗ k+i) 
(5) 

P̂el,k+i+1 = g(u⃗ k+i, d⃗ k+i) 
(6) 

T̂in,k+i+1+ vk+i+1  ≥  Tlow,k+i+1 (7) 

T̂in,k+i+1 - vk+i+1 ≤  Tup,k+i+1 
(8) 

u1ϵ [0,1] (9) 

28 ≤  u2   ≤ 45 (10) 

u⃗  = [u1 , u2 ]   (11) 

vk+i+1≥0  , i=0,1,….N-1 (12) 

In these equations, u1 and u2 indicate heat pump’s status 

and its supply water temperature, dk and xk represent 

disturbances acting on the system and the systems states at 

time step k respectively. Equation (4) describes the 

objective function which is composed of two terms, one 

for the electricity cost and the other one penalizes thermal 

discomfort level, Ck is the electricity cost at each time step 

and P̂k+i represents the estimation of heat pump’s 

electricity use for i steps forward in time. In equation (5), 

T̂in,k+i  denotes the estimation of indoor temperature i steps 

ahead in time, f(.) is essentially the predictive model which 

provides the estimated temperature profile of the building 

throughout the control horizon (N) while g(.) represents 

the estimation of heat pump’s electricity use. Heat pump’s 

electricity consumption is estimated using a quadratic 

function of the supply water temperature (u2) , return water 

temperature (Tw,ret) and ambient temperature (Tamb) which 

is multiplied by the status of the heat pump (u1): 

P̂el,k+1 = u1  * g
quad

(u2,Tret,Tamb) (13) 

gquad (.) represents the quadratic function on its three 

arguments. Equations (7-8) show the soft constraints on 

thermal comfort bands designated in Equation (3). These 

soft constraints help the solver in coming up with a 

feasible solution by allowing thermal comfort bands to be 

violated. The latter is achieved by introducing a slack 

variable (vk). Its value is penalized in the objective 

function given a weight of L. 

Solver 

Now with the OCP defined we can choose a suitable type 

of solver for this case study. Looking at equations (13) and 

(4) we realize that the second term in the objective function 

is a non-linear function of decision variables (u1,k, u2,k). 

Hence, even in case that linear predictive models are 

deployed (equation (5)), we are dealing with a mixed 

integer non-linear programming problem, which is most 

likely to be non-convex. Therefore, the solver has to be 

able to handle non-convex mixed integer programming 

problems. In this study, we used Genetic Algorithm (GA) 

as the solver since it has proven to be able to deal with such 

programming problems (Afram & Janabi-Sharifi, 2014). 

To achieve the latter, Matlab’s GA function has been 

deployed (Global Optimization Toolbox, 2021). 

Predictive Model 

As it could be seen in Figure 1, a data-driven predictive 

model has two important attributes: dataset and modelling 

technique. In this section, we are going to describe these 

two components of predictive models.  

Dataset 

To train and test the data-driven models datasets are 

essential. If we use data from in-situ measurements for 

training the models, quality of the models in the simulation 

environment would be influenced not only by the accuracy 

of the predictive model but also by the accuracy of the 

simulation model. Thus, it will not be possible to 

distinguish between the impact of the model quality and 

emulator’s accuracy on the MPC results. Hence, with 

respect to the goal of this study, which is investigating the 

effect of different modelling techniques, proxy data 

generated from the emulator has been used for training 

data-driven models instead of in-situ measurements.  

To create data for training models, we generated two 

random sequences for the heat pump’s status and heat 

pump’s supply temperature. The resulting temperature of 

the emulator is shown in Fig. 4. As it could be seen in Fig. 

4, the indoor temperature varies between 15.5 and 25, 

which fully covers the full range of thermal comfort 

assigned in Equation (3). Throughout this paper, this 

dataset is used to train and validate data-driven models. To 

avoid the impact of dataset bias on modelling techniques, 

another dataset is used to test all the models, which has not 

been used in training process (explained later on).  

 

Figure 4: Temperature profile generated by feeding 

random sequence of inputs to emulator 
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Modelling technique 

In this section, different modelling techniques applied for 

the purpose of this study are explained. Table 1 shows the 

general structure of these models. 

Table 1- General description of the models 

Model name Model 

order 

Inputs R2 (%) 

1-step  
ahead 

Grey-box 1 1 Te, GHI, Hin  97.5 

Grey-box 2 2 Te, GHI, Ts, Shp 97.8 

State Space 1 1 Te, GHI, Ts, Shp, IHG, 97.5 

State Space 2 7 Te, GHI, Ts, Shp, IHG, 

VFRav 

98 

ARX 3 Te, GHI, Ts*Shp, DHI, 

VFRliving 

97.5 

NARX 

(ANN) 

7 Te, GHI, Ts, Shp, IHG, 

VFRav 

98.8 

SVM --- Te, GHI, Ts, Shp, IHG, 

VFRav 

99.5 

Input variables in the table are as follows: 

Te:       Ambient temperature (oC) 

GHI:   Global horizontal irradiance (W/m2) 

Ts:       Supply water temperature (u2) (oC) 

Shp:         Heat pump status (u1) 

Hin:      Heat injected to building by underfloor heating (W) 

IHG:   Internal heat gains (W) 

VFR:  Volumetric flow rate of ventilation system (m3/h) 

DHI:   Diffuse horizontal irradiance (W/m2) 

Grey-box Model 1 

As a popular building identification method, grey-box 

models are included in this study. For the purpose of this 

study, we start with a simple structure for grey-box models 

(Figure 5) and we build up complexity onward. For each 

of the grey box models, first, the structure of the model is 

determined and then the parameters of the model are 

identified based on the training dataset. Interested readers 

are referred to Reynders et al., (2014) for more details on 

grey-box models. This grey-box model has only one state, 

which represents the average temperature of the indoor air. 

 

Figure 5: Grey-box model with one state 

Grey-box Model 2 

Another grey-box model used in this study has two states, 

one for the air temperature, while the other one represents 

the floor temperature (as the heating medium) of the 

building (Figure 6). Interested readers are referred to 

(Bacher & Madsen, 2011) for more details on this model. 

 

Figure 6: Grey-box model with two states 

Autoregressive with exogenous inputs  

One of the most common black box methods applied for 

building behaviour identification is Auto-Regressive with 

eXogenous input (ARX) models (Bourdeau et al., 2019). 

To develop this model, a Principle Component Analysis 

(PCA) has been carried out which led to the selection of 

optimal set of inputs (Table 1) as well as the number of 

output lags used for the building behaviour identification, 

which is three. The general structure of ARX models for 

identifying a multi input single output system is given in 

equation (14). 

1 1 nA(z)y(z) = B (z)u (z) +...B (z)u (z) + C(z)e(z)   (14)
u nn

 

In this Equation, nu stands for the number of input signals, 

which is five in this case (Table 1). A(), B() and C() are 

polynomials representing the parameter of the ARX model 

which are estimated using the training dataset. 

State Space 

Another popular modelling technique in the category of 

black-box models is state space identification, which has 

been successfully deployed for optimization of HVAC 

systems as well (Bourdeau et al., 2019). One of the 

advantages of linear state space models is the fact that 

most linear systems could be described using this 

formulation and most of the notations and theorems 

developed regarding MPC are based on state space 

representation of the systems (Maciejowski, 2002). 

In this study, we focus on the Linear Time-Invariant (LTI) 

state space models. Two different state space models are 

deployed using Matlab’s system Identification toolbox 

(System Identification Toolbox, 2021)  .One only has one 

state, which is the simplest state space model possible; as 

for the other model, the number of states has been 

determined based on Singular Value Decomposition 

(SVD) of the Henkel Matrix for which 7 states is selected 

as the optimum number of states (Drgoňa et al., 2018). It 

should be noted that to identify this model ‘Focus’ is put 

on ‘Simulation’ rather than ‘Prediction’, which is an 

option provided in Matlab’s system identification toolbox.   

Artificial Neural Network 

Artificial Neural networks (ANNs) are known as a 

powerful tool in machine learning. They are inspired by 

the structure of the brain (Abu-Mostafa, 1992). There is an 

ever-increasing interest in applying ANNs for HVAC 

system optimization applications. There are various 

architectures of ANNs available. One of the architectures 

deemed suitable for the application of building 

characterization is NARX which has proven successful in 

capturing dynamics of HVAC systems and it is selected 



here as well (Bourdeau et al., 2019). These models have 

essentially the same input-output structure as ARX 

models. The main difference is that ANN-based NARX 

models use neurons for capturing system’s dynamics  

instead of linear mapping in the ARX case. Interested 

readers can refer to (Erfani et al., 2018; Jafarinejad et al., 

2019) for further details on NARX model. 

Support Vector Machine  

Support Vector Machine is a powerful method originally 

suggested for classification applications. Recently, it has 

been successfully applied in many regression applications 

as well, which is called Support Vector Regression (SVR). 

Like other non-linear regression techniques, SVM tries to 

find the function between the input and the output (f(.)). 

To carry out this task, SVM transforms the input-output 

space to a higher dimension space, which is called feature 

space. Function f() then would be in the form: 

                              f(x) = < ω,Φ (x)>+b                       (15) 

In which x is the input vector, Φ represents the higher 

dimension mapping and ω and b are parameters that are 

estimated by solving a convex optimization problem called 

the primal objective function. Operator < , > describes the 

kernel function in the feature space. Interested readers are 

referred to (Kumar & Kar, 2009) for more details on SVM. 

Test Dataset 

Since different combinations of the training dataset were 

used to train and validate the models, a second dataset was 

generated solely with the purpose of testing the models. As 

stated earlier, MPC solves an optimization problem over a 

given time horizon. Hence, predictive model used in the 

MPC should be able to provide acceptable predictions not 

only for one-step ahead in time but also throughout the 

whole control horizon. Therefore, here we are going to 

investigate whether one-step ahead prediction accuracy is 

a good enough indicator to reflect the quality of predictive 

models or should we look into multi-step ahead prediction 

accuracy. The results obtained by running the models 

against test dataset are presented in Figure 7. 

This figure provides the boxplot accuracy of different 

modelling techniques used in this study. The maximum in 

each box corresponds to the one-step ahead prediction 

accuracy while the minimum corresponds to N (Control 

horizon) steps ahead prediction accuracy. As could be seen 

in Figure 7, NARX model and the SVR are the best 

performing models in terms of one-step ahead prediction 

accuracy but they are not the best models when looking 

into the multi-step ahead prediction. 

Results 

In this section, the results of deploying different predictive 

models in the context of MPC are brought out. The goal of 

this study is twofold. First, showing that integration of 
RES into the building energy structure is plausible by 

utilizing MPC. Integration of RES is considered here as a   

variable electricity pricing structure. The other goal of this 

study is finding a suitable KPI to score different predictive 

models, which are used in the MPC. The simulations have 

been carried out for a total duration of two weeks from 19th 

 

Figure 7: R2 (%) of models against test dataset 

of December to second of January. The weather data used 

for this study is from in-situ measurements of the building. 

Perfect forecast is considered for weather as well. 

KPIs considered in this study based on which the MPCs 

are compared are total thermal discomfort level and the 

total electricity cost of the heating system. Attempting to 

analyze the results of different MPCs, we come across an 

impediment, which blocks the way of a straightforward 

comparison of the controllers. This barrier arises from the 

fact that the MPC aims at optimizing two objectives 

(thermal discomfort and electricity cost) which are not 

physically related to each other. Therefore, by changing 

the weight (L in Equation (4)) optimal performance of the 

controllers are obtained in a way that they yield similar 

discomfort levels as could be seen in Figure 8. By 

employing this method, we ensure that all controllers have 

a similar thermal discomfort so that we can compare the 

controllers only based on electricity cost. As could be seen 

in Figure 7, NARX model and the SVR are the best 

performing models in terms of one-step ahead prediction 

accuracy. Nevertheless, these two models are not the best 

performing models in our framework. This statement is 

especially more significant in the case of the NARX model 

since it leads to the highest electricity cost compared to the 

other models. Looking at MSPE, one can easily realize 

that, although the NARX model has the second highest 

one-step ahead R2 (See Table 1), its multi-step ahead 

prediction performance is the poorest amongst all the 

models (see Figure 7). The reason for this observation is 

explained by the fact that ANNs easily become over-fit to 

training data if no regularization of some sort is used 

(Afroz et al., 2018). This issue should be tackled when 

using ANNs as predictive models otherwise one might end 

up with an ANN model, which is highly accurate for one-

step ahead prediction but provides poor forecasts for 

multi-step ahead prediction. 

Analyzing the results as illustrated in Figure 8, it could be 

concluded that the best performing MPC (deploying state 

space model with 7 states) compared to the RBC, reduces 

electricity cost from 11€ to 8.5 € which corresponds to 

22.7%. Comparing different MPCs using Figure 8 we can 

deduce that the difference between electricity cost resulted 

from using different predictive models in the MPC is 7% 

(Electricity cost of 8.5 € in the SS7 model compared to 9.1  

€ achieved by using the NARX model). Considering the  



 

Figure 8: KPIs deploying different predictive models 

22.7% as the highest potential of MPC achieved by our 

models for this case study, it could be inferred that the 

models used here vary by 24% in terms of activating the 

potential energy savings achieved by MPC, which 

demonstrates the importance of using models with high 

multi-step ahead prediction accuracy in the MPC. 

Results obtained by applying state space model with 7 

states, are presented in Figure 9 and Figure 10. It is 

illustrated in Figure 9 that the controller is able to maintain 

the temperature within the thermal comfort band although 

there are some minor violations. These violations could 

have two main causes. First, the magnitude of weight (L) 

scalar in the objective function, which allows thermal 

discomfort to some extent especially when the electricity 

cost is relatively high. The second reason behind the minor 

thermal discomfort could be the mismatch between the 

predictive model and the emulator. Electricity price shown 

in Figure 10 is based on time of use pricing structure from 

a supplier in Belgium. As seen in Figure 10, the load 

profile does not completely correspond with the time-of-

use price. This observation is expected since the MPC does 

not optimize the building’s behaviour only for one time-

step but for the whole control horizon.  

 

Figure 9: Building’s temperature profile due to MPC 

 

Figure 10: Electricity use against electricity price 

Conclusion 

Application of different data-driven models to serve as the 

predictor in a Model Predictive Control (MPC) are 

assessed. To score the predictive models in MPC, one-step 

ahead and Multi-Step ahead Prediction Error (MSPE) of 

the models are compared. Comparing performance of 

MPCs using different models shows that MSPE reflects 

the suitability of predictive models better; compared to 

one-step ahead accuracy. It has also been shown that 

models with similar one-step ahead accuracy could lead to 

24% difference in terms of activating the potential cost 

savings achieved by MPC. On the other hand, ANN-based 

NARX model yielded the highest electricity cost, which is 

due to its poor multi-step ahead prediction performance. 

Furthermore, MPC is compared to a well-tuned Rule 

Based Controller (RBC). Best performing MPC (using 

state space model with 7 states) yielded 22.7% decrease in 

energy cost compared to the RBC.  

It would be interesting to compare these models for longer 

simulation time and on other case studies to see whether 

the findings are valid or not. Another suggestion for future 

work is to train models based on MSPE and then check the 

suitability of each model. The impact of state estimator in 

case of grey-box and state space models have not been 

addressed yet and combining the dynamics of the 

estimator and the model might yield a better KPI for 

comparing these models.  
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