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Abstract

Avian brood parasitism is costly for the host, in many cases leading to the evolution of

defenses like discrimination of parasitic eggs. The parasite, in turn, may evolve mimetic

eggs as a counter-adaptation to host egg rejection. Some generalist parasites have evolved

host-specific races (gentes) that may mimic the eggs of their main hosts, while others have

evolved ‘jack-of-all-trades’ egg phenotypes that mimic key features of the eggs of several

different host species. The Asian koel (Eudynamys scolopaceus) is a widely distributed gen-

eralist brood parasite that exploits a wide range of host species. Based on human vision,

previous studies have described Asian koel eggs as resembling those of its main host, the

house crow (Corvus splendens). Using measurements of egg length and breadth, digital

image analysis, reflectance spectrophotometry and avian visual modelling, we examined

Asian koel egg variation and potential mimicry in egg size and shape, and eggshell pattern

and color in three sympatrically occurring host species in Bangladesh: the common myna

(Acridotheres tristis), house crow, and long-tailed shrike (Lanius schach). We found some

differences among Asian koel eggs laid in different host nests: a) Asian koel eggs in long-

tailed shrike nests were larger than those laid in common myna and house crow nests, and

b) Asian koel eggs in house crow nests were less elongated than those in common myna

nests. However, these changes in Asian koel egg volume and shape were in the opposite

direction with respect to their corresponding host egg characteristics. Thus, our study found

no evidence for Asian koel host-specific egg mimicry in three sympatrically occurring host

species.

Introduction

Avian interspecific brood parasites lay their eggs in the nests of other species, the hosts, and

trick them into raising their young, thereby avoiding the cost of parental care [1,2]. Successful

brood parasitism is, in general, costly for the host species as it usually severely reduces or
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completely obliterates reproductive fitness of the host [2–5]. The high costs of parasitism drive

the evolution of anti-parasite traits such as discrimination and rejection of parasitic eggs, i.e.

identification and removal of the parasitic eggs from the nest [6,7]. Hosts use egg color [8–11],

pattern [10,12–14], UV reflectance [e.g. 15–17], size [18–20, but see 21] and shape [22–25, but

see 26] to identify and reject parasitic eggs in the clutch [for review, see 27, 28].

As a counter-adaptation to egg rejection, the parasite may evolve eggs that mimic host eggs

in order to make it more difficult for hosts to recognize the parasitic egg [6,7, for review, see

27–30]. Although egg mimicry does not always evolve, potentially due to short time span of

the host-parasite coevolutionary arms-race [30,31], host recognition abilities [9,31], metapo-

pulation structures [32–34], exploitation of multiple hosts with different egg phenotypes [35–

37] and possibly also climate variables [38], the evolution of egg mimicry is closely related to

the evolution of host defenses (i.e., egg rejection) [30]. Furthermore, the evolution of egg mim-

icry may be more difficult to evolve for generalist than for specialist brood parasites, because

the former have broader geographical distributions and exploit a wider variety of host species

that lay eggs with different colors and patterns [39]. Some generalist brood parasites overcome

this difficulty by evolving host-specific races, known as gentes, where each gens mimics the

eggs of a particular host species [30,40,41]. Some generalist parasites may evolve mimicry of

one of their main hosts, which later allows exploitation of new host species with similar egg

phenotypes [42]. In other generalist parasites, host races may be absent, and they instead rely

on a jack-of-all-trades mimicry, laying intermediate eggs relatively similar to all host eggs [46].

This strategy could only work if all of the hosts utilized lay eggs that are rather similar in

appearance [43]. Even with the existence of host-specific races, the eggs of sympatric gentes

may be similar in some egg traits [35–37], appearing to mimic the eggs of a range of hosts,

even though parasitic females are mostly host-specific during egg laying [44,45]. However,

some generalists show no or poor host egg mimicry (e.g. cowbirds, Molothrus sp.), because

many of their hosts apparently lack the ability to reject foreign eggs [34,46,47]. Sometimes, par-

asite egg mimicry is not visible to the human eye due to differences between the human and

avian visual systems [48,49]. Spectrophotometry has revealed that the pallid cuckoo (Cacoman-
tis pallidus) lays mimetic, host-specific eggs that are not possible to detect by the human eye

[50]. In contrast, the great spotted cuckoo (Clamator glandarius) was, as assessed by the

human eye, assumed to lay mimetic eggs of one its main hosts, the magpie (Pica pica), but fur-

ther examination by spectrophotometry revealed that there is no mimicry of the great spotted

cuckoo eggs towards the host [51]. Some brood parasites lay cryptic rather than mimetic eggs

when parasitizing hosts with dimly-lit nests [52–54]. In low-light nest environments, the cryp-

tic egg blends in with the nest lining, making it difficult for the host and other parasites to see

the parasite eggs in the nest [52–54]. Laying cryptic eggs may be advantageous for generalist

brood parasites as it requires less host specialization. Evolution of cryptic eggs may be due to

competing cuckoos rather than host rejection [27], as multiple parasitism within the same host

nest can select for cryptic cuckoo eggs [52]. This is because, when cuckoos parasitize a nest,

they typically remove one host egg whilst laying their own. Thus, when multiple parasitism

occurs, the cuckoo egg that is laid first is at risk of being removed by the second-to-arrive

cuckoo. However, if the cuckoo egg is cryptic within the nest, the second-to-arrive cuckoo is

more likely to remove a host egg [52–54].

The Asian koel (Eudynamys scolopaceus) is a non-evicting brood parasite, meaning that the

koel chick often coexists with the host chicks [55,56]. However, in many cases, the parasitic

chick outcompetes the host chicks and significantly reduces the host’s reproductive success

[57]. The Asian koel has a wide distribution throughout Asia [55,56,58] which was docu-

mented 4000 years ago in ancient Vedic writings from India [1,59]. A total of seven subspecies

of the Asian koel have been identified, with the nominate subspecies E. s. scolopaceus found in
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south Asia [60]. It is a generalist brood parasite that regularly utilizes at least 16 host species

differing greatly in body size, nest type, diet, habitat and distribution [55,56,61]. However,

there is no information about whether individual parasitic females are host-specific, i.e. that

they lay their eggs only (or predominantly) in nests of a single host species. The Asian koel lays

eggs with a grey-bluish to greenish ground color, which are partly covered with numerous

brown or black spots [55–57]. Previous studies, based on human vision, have described the

Asian koel eggs as mimetic of the eggs of its oldest host, the house crow (Corvus splendens)
[56–58,62–66]. Closely related species, such as the Pacific koel (Eudynamis orientalis) and the

long-tailed cuckoo (Urodynamis taitensis), lay eggs with very different appearances from the

Asian koel [42,67]. However, it should be noted that the egg morphology of the Pacific koel

may have evolved due to an arms race with their main hosts in Australia, and thus may not

reflect the ancestral state of egg morphology in Asian koels [42]. Hence, although the ancestral

state of egg appearance in these species is unknown, egg morphology has probably evolved as a

result of co-evolutionary interactions with their hosts.

In this study, we examine how Asian koel eggs vary in size, shape, spotting pattern and

color, compared to specific host species, based on avian visual systems. We selected three regu-

larly used host species within a single area in Bangladesh: including the oldest known host, the

house crow, the most recent known host, long-tailed shrike (Lanius schach) and the common

myna (Acridotheres tristis) [57,59,68]. A previous study investigating rejection of blue and

brown model eggs found that house crows rejected 9.1%, common mynas rejected 0%, and

long-tailed shrikes rejected 75% of such eggs [69]. To examine Asian koel egg mimicry, we

explore the following questions: 1) is there variation in egg phenotypes among Asian koels lay-

ing eggs in different host nests? and 2) is there evidence that Asian koels mimic the eggs of

their selected hosts?

Materials and methods

Ethics statement

All research and data collection were completed according to ethical laws of Bangladesh, and

there was no injury to any birds in this study. The study was conducted on the Jahangirnagar

University campus with the permission and monitoring of the Department of Zoology. The

study was specifically approved by the review board of the wildlife and conservation biology

branch, Department of Zoology after the evaluation of ethical laws of Bangladesh. The study

site is an unprotected area, and all the study species are in the category of non-CITES, non-

protected list of Bangladesh and least concern in the country’s Red list.

Study area

Fieldwork was carried out on the Jahangirnagar University campus (23˚52´ N, 90˚16´ E)

including a teacher housing area, Arunapolli (23˚52´ N, 90˚17´ E), from 2008–2013 and 2015–

2017. The study area is about 280 hectares and consists of diverse habitats including wood-

lands, grasslands, wetlands, cultivated lands and human settlements which make the campus

area a fragmented habitat [70,71].

Parasite and host community

The Asian koel is the most common avian brood parasite in the study area [68], parasitizing

three species (overall parasitism rates for all years in parentheses): the long-tailed shrike

(55.6%, n = 126), the common myna (33.6%, n = 271) and the house crow (16.4%, n = 165)

(Nahid et al. submitted, see also [57]). Multiple parasitism by the Asian koel is common in all
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these host species [68]. The house crow is the first mentioned host species of the Asian koel in

the literature, documented around 375 A.D. in Sanskrit literature, and it is currently one of the

most regularly exploited hosts across Asia [57,59,63,66], though the parasitism rate of this spe-

cies is lower than the two other hosts at our study site [68]. The house crow builds open, shal-

low-cup nests and lays 3–6 eggs with bluish-green ground color and black or brown blotches

[58,66,72]. However, a recent study confirmed that the house crow sometimes lays immaculate

blue eggs [73]. In Bangladesh the common myna is also a regularly used host species and has

become one of the main hosts of the Asian koel in our study area [57,68]. The common myna

builds a variety of nest types that usually result in low-lit environments, including nesting in

tree holes, inside buildings or roofs, or in the small space between joining palm leaves of coco-

nut (Cocos nucifera), fishtail palm (Caryota urens) and fountain palm (Livistona chinensis)
trees. Common mynas often also reconstruct old pied myna (Gracupica contra) or house crow

nests. The eggs are immaculate blue and the clutch size is 4–5 eggs [58,74]. The long-tailed

shrike is the most recent host species in Bangladesh [57,68]. This host builds small, open-cup

shaped nests and lays 4–6 eggs with a pinkish-cream ground color and greyish and reddish

spots on the blunt end [57,58]. Typical egg appearance of the Asian koel and its three corre-

sponding host species is shown in Fig 1.

General methodology

Measurements of host egg volume, shape, spotting pattern and color belonging to the same

nest were included with nest identity as a random intercept, to account for non-independence

of eggs within a clutch. All koel eggs were treated as independent measurements, even if they

came from the same host nest because multiple parasitism was common (mean ± SD number

of koel eggs in house crow nests: 1.33 ± 0.48, n = 27; common myna nests: 2.55 ± 1.60, n = 89;

and long-tailed shrike nests: 2.05 ± 1.00, n = 66, unpublished results). Asian koel eggs with dif-

ferent sizes and ground color are often found in the same nest and therefore, we regard it as

highly likely that more than one parasitic female laid eggs in a single host nest at our study site.

Egg size and shape. Egg length and breadth (mm) were measured using a digital calliper.

Egg volume was estimated using the following formula: V = (0.6057–0.0018B)LB2, where, V =

volume (mm3), B = breadth (mm) and L = length (mm) [75]. Egg shape was calculated as the

ratio L/B [76].

Egg pattern. To measure egg pattern, we used digital photos of eggs. In 2015 we used a

Canon EOS Kiss X5 camera with a 100 mm f/2.8 macro lens to photograph each egg placed on

a 16% grey standard Kodak card. In 2016 and 2017 we used a Canon EOS 7D camera with a

100 mm f/2.8 macro lens to photograph the eggs placed on an 18% grey standard Kodak card.

A tripod was used to retain a constant distance from the egg to the lens and to stabilize the

camera. Common myna eggs were not included in this analysis as they are immaculate i.e. lack

pattern.

All egg photos were analyzed in ImageJ [77] using the multispectral image calibration and

analysis toolbox [78]. The toolbox accomplishes image calibration, confirming image lineari-

zation that regulates the lighting changes during image processing. To perform pattern analy-

sis, standard band-pass methods on the camera’s green reflectance channel was used as this is

the closest approximation of bird double cone peak sensitivities [10,42]. Pattern energy spec-

trums for each egg were calculated at different spatial scales ranging from 2–512 pixels and the

photos were scaled to 50 pixels/millimeter.

We performed granularity analysis based on fast Fourier band-pass filtering following the

updated methods of Stoddard and Stevens [79], published by Troscianko and Stevens [78].

The granularity analysis produced several variables as summary statistics, and we used four
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response variables in the analysis to assess variation in koel egg pattern and whether this could

be attributed to egg mimicry for the three host species. Maximum energy, which corresponds

to the dominant marking size on the measured egg, is the energy at the maximum frequency

or dominant marking filter size. Proportion energy, the proportion of the total energy across all

scales, is a measure of the diversity of pattern sizes or how much the main pattern size domi-

nates. A high value shows that the egg pattern is dominated by the main spot size. The propor-

tion energy is calculated by the maximum energy divided by the total energy. Total energy is

the sum of the pattern energies at every scale or amplitude, measuring overall pattern contrast

Fig 1. Average spectral reflectance of three host species and Asian koel eggs laid in nests of two hosts (common myna and long-

tailed shrike; note that house crow was not included due to lack of spectral reflectance data). We include photographs of koel

and host eggs from each species. All photos taken by V.E. Abernathy and M.I. Nahid. CM = common myna (n = 29 eggs from 11

nests), HC = house crow (n = 8 eggs from 3 nests), LTS = long-tailed shrike (n = 26 eggs from 7 nests), AK_CM = Asian koel in

common myna nest (n = 5 eggs from 4 nests), AK_HC = Asian koel in house crow nest (not included) and AK_LTS = Asian koel in

long-tailed shrike nest (n = 16 eggs from 4 nests). Spectral reflectance was measured at three egg regions, curves denoted by:

b = blunt spectral reflectance of the egg, m = middle spectral reflectance of the egg, t = top spectral reflectance of the egg.

https://doi.org/10.1371/journal.pone.0253985.g001

PLOS ONE Asian koel egg mimicry

PLOS ONE | https://doi.org/10.1371/journal.pone.0253985 July 9, 2021 5 / 22

https://doi.org/10.1371/journal.pone.0253985.g001
https://doi.org/10.1371/journal.pone.0253985


against the egg background color. Dispersion is measured as the standard deviation of the

energy values across all scales. This measure represents the variation of marking sizes across

the egg [10].

Egg color and luminance. In 2015 we measured egg color and luminance of a sample of

Asian koel and host eggs using an Ocean Optics Jaz spectrophotometer, a narrow-ended

UV-Vis unidirectional Ocean Optics QR400-7-SR reflectance probe with a 5 mm diameter,

and an Ocean Optics WS-1 reflectance standard following the methods of Abernathy et al.

[42]. We measured the spectral reflectance of eggs in the range 300–700 nm. Before measuring

an egg, a dark and white standard reference was taken. Egg measurements were taken under a

black cloth in the field to reduce noise from ambient light. Three measurements were taken

from a random location within each of the three egg regions (blunt, middle and top) for each

egg. Spectral reflectance of each egg region was attained by averaging all three measurements

per region.

Due to the fact that human and avian visual systems differ significantly, avian visual model-

ling was used to determine the similarity of egg appearance between Asian koel and host eggs

chromatically (color) and achromatically (luminance) according to the host’s visual perspec-

tive [43]. We measured the cone stimulation (photon catch) values for the violet sensitive

(VS), ultraviolet sensitive (UVS), shortwave sensitive (SWS), mediumwave sensitive (MWS),

longwave sensitive (LWS) and double cones (luminance) using the “pavo” package [80] in the

R Statistical Package [81]. Moreover, we performed a just-noticeable-differences (JNDs) analy-

sis, comparing the color and luminance of every Asian koel egg to every host clutch as well as

Asian koel eggs from other host nests [following 82]. JND values less than 1 indicate that two

eggs are indistinguishable. JND values between 1–3 indicate that the eggs are barely distin-

guishable in ideal lighting conditions, while the eggs should be easily distinguishable in good

lighting conditions when the JNDs are more than three [83].

Birds have two distinct visual systems. Species with an ultraviolet sensitive (UVS) visual sys-

tem are able to view most of the ultraviolet visual range (300–400 nm), while species with a vio-

let sensitive (VS) visual system are only able to view part of the ultraviolet visual range (340–

400 nm) [84]. Among Corvus spp. (crows) that have been tested, all have a VS visual system,

while all tested Sturnidae (starling, myna, and others) species, including the common myna,

have a UVS visual system [85–89]. It is unclear what the visual system of shrikes is, as some

studies have found evidence for a UVS visual system [e.g. 90], while another study found evi-

dence for a VS visual system [91]. Therefore, we analyzed all the species using both the UVS

visual system of the blue tit (Cyanistes caeruleus) and the VS visual system of the common pea-

fowl (Pavo cristatus) [92,93].

Statistical analysis

We examined variation among Asian koel eggs from specific host nests and their host eggs

using the following egg characteristics: egg volume, shape, four pattern variables, reflectance,

and both achromatic and chromatic cone stimulation values and JNDs. Each egg character

was fitted with a linear mixed-effects model, assessing Asian koel and host eggs separately. The

egg character was used as the response variable, and egg type (categorical with 3 levels, i.e.

three Asian koel egg types or three host egg types) was added as a fixed effect. Year was added

with random intercepts, and for host eggs we added random intercepts for nest identity to

account for non-independence. Due to some deviations from normal distribution of residuals

from the linear mixed-effects models, we ran additional sets of analyses, running identical

models using instead log-transformed values. The models using log-transformed values gave

qualitatively similar results, thus corroborating our findings (see, S1 Table). Additionally, we
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ran linear mixed-effects models to examine differences between Asian koel eggs from specific

host nests compared to the eggs of their host species (see, S2 and S3 Tables).

Moreover, we examined color variation in Asian koel eggs laid in long-tailed shrike and

common myna nests using cone stimulation values as the response variable in linear mixed-

effects models. Unfortunately, no parasitized house crow nests were found during the period

when we had access to a spectrophotometer, so we were unable to collect spectral reflectance

data of Asian koel eggs from house crow nests. We added egg type (categorical with two levels,

Asian koel egg type, i.e. from common myna and long-tailed shrike nests) and egg region (cat-

egorical with three levels; blunt, middle, and top) as fixed effects. Random intercepts were

added for egg identity to account for non-independence within the same egg. We combined

both egg region and egg type together to test for differences among Asian koel eggs accounting

for differences among egg regions. Finally, we examined pair-wise differences in average chro-

matic (color) and achromatic (luminance) JNDs (from comparisons of each Asian koel egg

with the respective host clutch and also with every other host clutch) using Dunn post hoc

tests. We accounted for multiple comparisons following Benjamini and Hochberg’s procedure

for false discovery rate (FDR) [94] (S4 Table). All statistical analyses were carried out using the

R Statistical Package v. 3.6.3 [81], linear mixed-effects models were fitted using the R-package

‘glmmTMB’ [95], and model fit was evaluated using the ‘DHARMa’-package [96].

Results

Egg volume and shape

The mean (± SD) length and breadth of the house crow, common myna and long-tailed shrike

eggs were 37.33 ± 2.05 × 26.54 ± 1.15 mm, 28.39 ± 0.94 × 20.73 ± 0.98 mm and 22.85 ± 0.89 ×
18.10 ± 0.54 mm, respectively. Similarly, the mean (± SD) length and breadth of Asian koel

eggs laid in the house crow, common myna and long-tailed shrike nests were 29.96 ± 1.09 ×
22.98 ± 0.67 mm, 30.42 ± 1.32 × 22.71 ± 1.18 mm and 31.17 ± 1.26 × 23.43 ± 0.83 mm, respec-

tively. All Asian koel egg types were different from their corresponding host egg type in vol-

ume and shape (S2 Table). The egg volume of Asian koel eggs laid in different host nests

differed significantly. However, differences did not match the egg volume of the corresponding

host species (Table 1; Fig 2). Significantly larger Asian koel eggs were found in long-tailed

shrike nests compared to Asian koel eggs laid in nests of the two other host species (Table 1;

Fig 2). Asian koel eggs laid in house crow nests were less elongated compared to those laid in

common myna nests, but that did not correspond to the egg shape of its host species (Table 1;

Fig 2). Moreover, egg volume and shape differed significantly among the three host species

(Table 1). The house crow eggs were significantly more elongated than the other two hosts and

common myna eggs were significantly more elongated than shrike eggs (Fig 2). Altogether,

small differences in volume and shape between Asian koel eggs did not correspond to the dif-

ferences between their respective hosts, suggesting the absence of mimicry (Fig 2).

Egg pattern variables

Asian koel and host egg types differed significantly in three out of four egg pattern characteris-

tics, where only in the proportion energy we did not find any difference between Asian koel

eggs in house crow nests and house crow eggs (S2 Table). There were no differences in either

of the four pattern variables among Asian koel eggs in different host nests (Table 1, Fig 3).

Running identical models using log-transformed values, improving normality of residuals

from each model, corroborated the analyses using non-transformed values. Analyses on log-

transformed values showed larger maximum energy for Asian koel eggs in house crow nests

than Asian koel eggs in common myna nests (S1 Table; Fig 3). Asian koel eggs in house crow
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nests showed larger dispersion than Asian koel eggs from long-tailed shrike nests (S1 Table; Fig

3). However, none of these differences remained significant when using non-transformed val-

ues (Fig 3). In contrast to Asian koel eggs, host eggs of house crow and long-tailed shrike dif-

fered significantly in all pattern variables (Fig 3).

Eggshell reflectance and color

The mean spectral reflectance of Asian koel eggs from common myna and long-tailed shrike

nests did not appear to resemble the reflectance of any of the hosts (Fig 1). The JND analysis

showed that Asian koel eggs from different host nests were barely distinguishable (JNDs = 1–3)

from one another in both chromatic and achromatic JNDs for both a UVS and VS visual sys-

tem (Figs 4 and 5). However, Asian koel eggs were easily distinguishable (JNDs > 3) from

common myna and house crow eggs in good lighting conditions for both visual systems, but

were not easily distinguishable (JNDs = 1–3) from long-tailed shrike eggs in all egg regions for

Table 1. Linear mixed-effects models on egg characteristics (volume, shape and spotting pattern) of Asian koel eggs and three host species (common myna, house

crow and long-tailed shrike).

Egg type n (eggs/nests) Egg characteristic Estimate SE z P

AK_CM-AK_HC 167/58, 22/17 Volume -90.29 239.00 -0.38 0.706

AK_CM-AK_LTS 167/58, 82/36 Volume 550.80 158.10 3.48 <0.001 ���

AK_HC-AK_LTS 22/17, 82/36 Volume 641.08 261.08 2.46 0.014 �

Common Myna-House Crow1 389/128, 304/99 Volume 7910.80 150.90 52.42 <0.001 ���

Common Myna-Long-tailed Shrike1 389/128, 213/59 Volume -2472.20 173.80 -14.22 <0.001 ���

House Crow-Long-tailed Shrike1 304/99, 213/59 Volume -10383.00 185.80 -55.88 <0.001 ���

AK_CM-AK_HC 167/58, 22/17 Shape -0.04 0.01 -2.59 0.010 �

AK_CM-AK_LTS 167/58, 82/36 Shape -0.01 0.01 -1.25 0.212

AK_HC-AK_LTS 22/17, 82/36 Shape 0.03 0.01 1.77 0.076

Common Myna-House Crow 389/128, 304/99 Shape 0.04 0.01 4.84 <0.001 ���

Common Myna-Long-tailed Shrike 389/128, 213/59 Shape -0.11 0.01 -11.47 <0.001 ���

House Crow-Long-tailed Shrike 304/99, 213/59 Shape -0.15 0.01 -14.56 <0.001 ���

AK_CM-AK_HC1 36/16, 12/10 Max energy 96.74 60.20 1.61 0.108

AK_CM-AK_LTS1 36/16, 32/12 Max energy -20.35 43.87 -0.46 0.643

AK_HC-AK_LTS1 12/10, 32/12 Max energy -117.09 61.13 -1.92 0.055

House Crow-Long-tailed Shrike 107/35, 57/17 Max energy 736.70 134.40 5.48 <0.001 ���

AK_CM-AK_HC 36/16, 12/10 Prop energy 0.01 0.00 1.52 0.128

AK_CM-AK_LTS 36/16, 32/12 Prop energy -0.00 0.00 -0.08 0.935

AK_HC-AK_LTS 12/10, 32/12 Prop energy -0.01 0.00 -1.56 0.120

House Crow-Long-tailed Shrike1 107/35, 57/17 Prop energy 0.02 0.00 4.62 <0.001 ���

AK_CM-AK_HC1 36/16, 12/10 Sum energy 783.30 546.10 1.43 0.152

AK_CM-AK_LTS1 36/16, 32/12 Sum energy -211.50 398.10 -0.53 0.595

AK_HC-AK_LTS1 12/10, 32/12 Sum energy -994.80 554.60 -1.79 0.073

House Crow-Long-tailed Shrike 107/35, 57/17 Sum energy 3618.8.80 986.20 3.67 <0.001 ���

AK_CM-AK_HC1 36/16, 12/10 SD energy 17.99 16.55 1.09 0.277

AK_CM-AK_LTS1 36/16, 32/12 SD energy -9.47 12.06 -0.79 0.433

AK_HC-AK_LTS1 12/10, 32/12 SD energy -27.45 16.81 -1.63 0.102

House Crow-Long-tailed Shrike 107/35, 57/17 SD energy 210.74 35.91 5.87 <0.001 ���

1Residuals deviating from normal distribution.

AK_CM = Asian koel in common myna nests, AK_HC = Asian koel in house crow nests and AK_LTS = Asian koel in long-tailed shrike nests, and each host

respectively. Asian koel eggs and host eggs were analyzed in separate models. For identical models run on log-transformed values, see S1 Table.

https://doi.org/10.1371/journal.pone.0253985.t001
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chromatic JNDs in the VS system (Figs 4 and 5). Asian koel eggs laid in common myna and

long-tailed shrike nests did not differ significantly in any of cone stimulation values for color

or luminance cones for either the UVS or VS visual system models (Table 2). All regions of

Asian koel eggs were significantly different from each other (except for the ultraviolet cone in

the UVS system, where the blunt and middle region were not statistically different; Table 2).

Altogether, these results suggest little resemblance between Asian koel and host eggs in color,

and we thus find little evidence for mimicry in this host-parasite system.

Discussion

We investigated different egg parameters, including egg volume, shape, spotting pattern and

color (using avian visual modelling) to examine Asian koel host-specific egg mimicry. Our

results revealed that there were only a few differences between Asian koel eggs laid in different

host nests in egg volume and shape, and no differences in egg spotting pattern variables or

color. In contrast, we found large variation among host eggs when examining the same egg

characteristics. Comparisons to host egg variation further suggest that the small variation

among Asian koel eggs was unlikely to comprise mimicry of host eggs.

Due to the natural selection in host-specific co-evolutionary adaptations (i.e. arms race),

the parasite egg morphology may converge to the host egg morphology, changing egg mor-

phology away from the ancestral morphology of the parasite egg. The most closely related spe-

cies of the Asian koel, the Pacific koel, lays eggs that are pinkish but sparingly spotted and

blotched, especially on the blunt end with chestnut and purplish brown [42]. This egg morph

is distinctly different from the Asian koel eggs. A previous study revealed that Pacific koels

evolved egg mimicry of one of the main hosts, the noisy friarbird (Philemon corniculatus),
which allowed the Pacific koel to exploit new hosts with similar egg morphologies [42]. Asian

koel eggs were previously believed to be mimetic to house crow eggs, but the present study did

not find any support for this. Further studies on a regional basis are needed to investigate in

more detail if Asian koel egg morphs vary according to host use throughout Asia. Altogether

we did not find evidence of egg mimicry in the present study, which may be a result of a lack

Fig 2. Egg volume and shape of Asian koel (AK) eggs laid in specific host nests (left panels) and eggs of host species (right

panel). Asterisks denotes significant difference among Asian koel eggs and host eggs (see Table 1; N.S. p> 0.05, �p< 0.05,
��p< 0.01, ���p< 0.001). Host and Asian koel eggs were analyzed separately. Vertical bars depict the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0253985.g002
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of rejection response to Asian koel eggs among the three hosts studied, and/or potential

absence of host-specific parasitism. The variation of Asian koel eggs in some egg traits is prob-

ably due to individual genetic differences in the Asian koel population or possibly due to the

Asian koel mating system. Unfortunately, we do not possess any molecular data, which might

help to explain the results. Future genetic analyses or telemetry studies may reveal more infor-

mation about the source of the variation found between Asian koel eggs.

However, it is possible that the observed variation of Asian koel eggs may be a result of pre-

dation rather than parasitism (i.e. eggs have evolved to become cryptic rather than mimetic).

Recent studies have found that house crows that lay immaculate blue eggs had higher (75%,

n = 4) nest predation (sample size too small to be tested statistically) than regular crow eggs

with a bluish-green ground color and black or brown blotches (28.3%, n = 60) [73]. In

Fig 3. Egg spotting pattern variables of Asian koel (AK) eggs laid in the nests of three host species (left panel) and two host

species (house crow and long-tailed shrike; right panel). Asterisks denotes significant difference between Asian koels and hosts,

respectively, based on linear-mixed effects model outputs (see Table 1; N.S. p> 0.05, �p< 0.05, ��p< 0.01, ���p< 0.001). Tests of

Asian koel and hosts eggs were performed separately. Vertical bars depict the 95% confidence interval. 1Significant only after log-

transformation (see S1 Table).

https://doi.org/10.1371/journal.pone.0253985.g003
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addition, the house crow is a poor egg rejecter and Asian koel and house crow eggs only

matched in one pattern variable, proportion energy. Therefore, the selective force behind the

apparent resemblance of Asian koel and crow eggs could be due to nest predation instead of

crow egg rejection, but this needs more investigation, and the support for the influence of pre-

dation on the evolution of parasitic eggs is quite scarce [9,97,98].

Imperfect adaptation in terms of host egg discrimination and cuckoo egg mimicry are often

a result of time lag in the evolution of traits [evolutionary lag hypothesis, see 2, 6, 99], occur-

rence of recognition errors and rejection costs [evolutionary equilibrium hypothesis, see 34,

100, 101] or absence of a later line defense when the prior line defense is successful [strategy

Fig 4. Average achromatic and chromatic JNDs ± SD between Asian koel eggs laid in common myna nests (AK_CM) compared

to three hosts: The house crow (HC), the common myna (CM) and the long-tailed shrike (LTS) and the eggs of the Asian koel

laid in long-tailed shrike nests (AK_LTS). Achromatic (Achrom_JND) and chromatic (Chrom_JND) analyses were performed for

egg regions (B = blunt, M = middle, T = top) and visual system (UVS = ultraviolet-sensitive, VS = violet-sensitive) separately. Letters

above columns denote significant differences (Dunn post-hoc test, p< 0.05 after correcting for multiple tests following Benjamini

and Hochberg 1995 [94], see S4 Table).

https://doi.org/10.1371/journal.pone.0253985.g004
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blocking hypothesis, see 102, 103]. The house crow was cited as a host in 370 A.D [1,59], but

still displays poor egg discrimination behavior, providing low support for the evolutionary lag

hypothesis [69]. Shrikes might accept foreign eggs due to rejection costs, if there is a risk of

breaking their own eggs while trying to reject the larger Asian koel eggs. We sometimes

observed damaged host eggs in parasitized clutches, however, it is also possible that the host

egg damage was caused by the Asian koel during egg laying [laying damage hypothesis, 104,

105]. Furthermore, there is currently no information on how hosts would respond to adult

Asian koel encounters by the nest or whether Asian koel chicks are discriminated in the

nest. Although, no mobbing behavior towards adult Asian koel was observed, nor any

Fig 5. Average achromatic and chromatic JNDs ± SD between Asian koel eggs laid in long-tailed shrike nests compared to three

hosts: The house crow (HC), the common myna (CM) and the long-tailed shrike (LTS) and the eggs of the Asian koel laid in

common myna nests (AK_CM). Achromatic (Achrom_JND) and chromatic (Chrom_JND) analyses were performed for each egg

region (B = blunt, M = middle, T = top) and visual system (UVS = ultraviolet-sensitive, VS = violet-sensitive), separately. Letters

above columns denote significant differences (Dunn post-hoc test, p< 0.05 after accounting for multiple tests following Benjamini

and Hochberg 1995 [94], see supplement for tests S4 Table).

https://doi.org/10.1371/journal.pone.0253985.g005
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Table 2. Linear mixed effects model using cone stimulation values of Asian koel eggs as response, and host species (common myna and long-tailed shrike) and in

different egg regions (blunt, middle, top) as fixed effects.

Visual system Egg type and region Cone stimulation type Estimate SE Df t P

UVS AK_CM-AK_LTS U 0.002 0.003 19 0.90 0.367

Blunt-Middle U 0.002 0.002 40 0.98 0.329

Blunt-Top U 0.014 0.002 40 8.76 <0.001

Middle-Top U 0.012 0.002 40 7.78 <0.001

AK_CM-AK_LTS S -0.004 0.011 19 -0.39 0.694

Blunt-Middle S 0.015 0.005 40 2.93 0.003

Blunt-Top S 0.046 0.005 40 9.01 <0.001

Middle-Top S 0.031 0.005 40 6.07 <0.001

AK_CM-AK_LTS M -0.004 0.011 19 -0.37 0.712

Blunt-Middle M 0.019 0.006 40 3.24 0.001

Blunt-Top M 0.056 0.006 40 9.47 <0.001

Middle-Top M 0.037 0.006 40 6.23 <0.001

AK_CM-AK_LTS L -0.002 0.006 19 -0.33 0.741

Blunt-Middle L 0.010 0.004 40 2.43 0.015

Blunt-Top L 0.034 0.004 40 8.68 <0.001

Middle-Top L 0.025 0.004 40 6.26 <0.001

AK_CM-AK_LTS Luminance -0.003 0.008 19 -0.37 0.709

Blunt-Middle Luminance 0.015 0.005 40 3.05 0.002

Blunt-Top Luminance 0.047 0.005 40 9.38 <0.001

Middle-Top Luminance 0.032 0.005 40 6.33 <0.001

VS AK_CM-AK_LTS V -0.002 0.006 19 -0.41 0.680

Blunt-Middle V 0.007 0.003 40 2.53 0.012

Blunt-Top V 0.028 0.003 40 9.32 <0.001

Middle-Top V 0.020 0.003 40 6.80 <0.001

AK_CM-AK_LTS S -0.004 0.013 19 -0.33 0.743

Blunt-Middle S 0.019 0.006 40 3.09 0.002

Blunt-Top S 0.055 0.006 40 9.02 <0.001

Middle-Top S 0.036 0.006 40 5.93 <0.001

AK_CM-AK_LTS M -0.004 0.011 19 -0.38 0.708

Blunt-Middle M 0.019 0.006 40 3.24 0.001

Blunt-Top M 0.055 0.006 40 9.47 <0.001

Middle-Top M 0.036 0.006 40 6.24 <0.001

AK_CM-AK_LTS L -0.002 0.006 19 -0.34 0.735

Blunt-Middle L 0.010 0.004 40 2.45 0.014

Blunt-Top L 0.035 0.004 40 8.71 <0.001

Middle-Top L 0.025 0.004 40 6.26 <0.001

AK_CM-AK_LTS Luminance -0.003 0.009 19 -0.39 0.700

Blunt-Middle Luminance 0.016 0.005 40 3.07 0.002

Blunt-Top Luminance 0.048 0.005 40 9.37 <0.001

Middle-Top Luminance 0.033 0.005 40 6.30 <0.001

AK_CM = Asian koel eggs in common myna nests, AK_LTS = Asian koel eggs in long-tailed shrike nests, U = ultraviolet-sensitive, V = violet-sensitive, S = shortwave-

sensitive, M = mediumwave-sensitive, L = longwave-sensitive. UVS/VS = Ultraviolet or violet sensitive visual system.

https://doi.org/10.1371/journal.pone.0253985.t002
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discrimination against Asian koel chicks recorded during the study, thorough experiments

would be needed to properly test the strategy blocking hypothesis [102,103].

Another possible explanation for the lack of mimicry of host eggs by Asian koels is that host

tolerance of Asian koel eggs could relax selection for egg mimicry [103,106–108], however,

this implies stronger egg rejection in the past or in other hosts. It is possible that hosts of the

Asian koel can minimize the cost of parasitism by adjusting some life history or reproductive

traits, such as increasing or decreasing clutch size, raising multiple broods in a breeding sea-

son, providing more maternal investment to their own eggs, or accelerating their own nestling

development [106,107]. Tolerance of parasitic eggs can be adaptive when a brood parasite is

less virulent, like the non-evicting Asian koel [103]. However, there is no information on

whether host tolerance exists in hosts of the Asian koel, so future studies must be conducted

on this type of host defense.

The Asian koel eggs seemed to match common myna eggs slightly better than the two other

hosts in both egg volume and shape, although they are still significantly different from their

host in these parameters (see, S2 Table). Additionally, Asian koel eggs are spotted, while com-

mon myna eggs are immaculate. It is likely that the closer matching of Asian koel eggs with

common myna eggs in volume and shape has occurred by chance, as there is little evidence of

selection for mimicry by mynas; they routinely accept Asian koel eggs and show poor discrimi-

nation of blue and brown model eggs [69]. However, we cannot exclude the possibility that

Asian koels have evolved cryptic eggs in common myna nests. Some brood parasites lay cryptic

eggs instead of mimetic eggs in dark, domed nests, which makes it difficult for the host to rec-

ognize the parasite eggs in the nest [52–54]. As mentioned previously, common myna nests

often have poor lighting conditions due to nest structure and position (domed nests or placed

inside holes or cavities). It is therefore possible that the closer matching of common myna and

host-specific Asian koel eggs in egg volume, shape and grey-bluish egg color with numerous

brown and black spots of Asian koel eggs in dim light conditions may be an adaptation of the

Asian koel that increases acceptance of their eggs by the host. Recent visual modeling tech-

niques revealed that immaculate, matt dark olive or brown eggs are difficult to detect by hosts

in darker domed nests [53,109]. Hosts with dark nest interiors typically discriminate against

foreign eggs using egg size and shape as cues [18,19,22,110,111, but see 112,113]. Moreover,

cryptic eggs can be an advantage when multiple parasitism by different parasitic females is

common, like at our study site, if female parasites remove host or other parasitic eggs while

depositing their own egg [27,52,54]. While there is no information about whether Asian koel

females selectively remove other cuckoo rather than host eggs from a nest during egg laying,

this behavior has been shown to occur in greater honeyguides (Indicator indicator) [114] and

little bronze-cuckoos (Chrysococcyx minutillus) [52], but not in common cuckoos [115].

Spotting pattern of Asian koel eggs laid in different host nests show general similarities in

maximum energy, proportion energy, total energy and dispersion. Among the host species,

the common myna lays immaculate blue eggs, which appear different from Asian koel eggs in

pattern to the human eye. Although the general assumption is that Asian koels are mimicking

crow eggs [57,58,66], we found no support for this assumption. This finding is not surprising,

given that poor rejection rates of immaculate blue and brown model eggs by the house crow

suggest that the host may not discriminate against foreign eggs well based on color or spotting

and, thus, there is probably either no or limited selection pressure on the Asian koel to mimic

crow eggs [see 69].

In our avian visual models for the egg color analysis, we found no significant differences

between Asian koel eggs laid in common myna and long-tailed shrike nests and we did not

have any egg color data of Asian koel eggs laid in house crow nests. However, we did find that

the color of the egg regions of Asian koel eggs differed significantly. The JND and cone

PLOS ONE Asian koel egg mimicry

PLOS ONE | https://doi.org/10.1371/journal.pone.0253985 July 9, 2021 14 / 22

https://doi.org/10.1371/journal.pone.0253985


simulation analyses of Asian koel and host eggs suggest that the Asian koel has not evolved

host-specific egg colors.

Among the three host species, the house crow laid the largest eggs, while the long-tailed

shrike laid the smallest eggs, but the largest Asian koel eggs were found in long-tailed shrike

nests. Host egg discrimination behavior drives selection on cuckoos to evolve host egg mimicry

[6,9,30,79], thus, any ongoing selection for the evolution of egg volume should not have

resulted in the largest Asian koel eggs being laid in long-tailed shrike nests. Using immaculate

blue and brown model eggs, Begum et al. [69] showed that house crows reject only 9.1% (n = 2

out of 22) of model eggs, common mynas reject 0% of model eggs (n = 0 out of 22), and long-

tailed shrikes reject 75% (n = 15 out of 20) of model eggs. Thus, shrikes appear to be capable of

rejecting odd eggs, but they regularly accept Asian koel eggs [69]. One explanation may be that

it is difficult for shrikes to grasp and eject the larger Asian koel eggs (31.17 mm ± 1.26 SD)

compared to the model eggs used by Begum et al. [69] (24.96 mm ± 19.29 SD). Alternatively,

long-tailed shrikes may be able to puncture and eject the Asian koel eggs when it is difficult to

grasp and eject. However, we did not find any punctured or broken Asian koel eggs in and

around long-tailed shrike nests. Future study with video recordings may confirm shrike

responses to Asian koel eggs. Moreover, in theory, if shrikes can detect Asian koel eggs, they

might benefit by abandoning the parasitized clutch and starting a new brood, as parasitism

reduces shrike reproductive success [57]. However, since Asian koels are non-evictors and nest

predation is high at our study site (50.8% of shrike nests were predated, [71]), the benefits of

accepting the Asian koel egg might outweigh the costs, since they are sometimes able to raise

their own young with an Asian koel nestling. It may therefore be better for the host to do the

“best of a bad job” and accept reduced reproductive output (i.e. lower number of chicks pro-

duced in parasitized than non-parasitized nests), rather than risking all reproductive output in

a second brooding attempt in which there is a high probability that the nest will be predated.

Conclusion

We found few differences between Asian koel eggs laid in different host species’ nests in egg

volume, shape, pattern variables and color. Importantly, the consistent differences among

Asian koel eggs in size and shape did not match the corresponding host species, thus we found

no evidence of host-specific egg mimicry in the three host species studied. Potential causes

might include that these host species show poor rejection behavior, or that the Asian koel

may not be host specific. The underlying mechanisms for the lack of egg mimicry need further

investigation.
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