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ABSTRACT

We propose a novel integral model describing the motion of both flexible and rigid slender fibers in viscous flow and develop a numerical
method for simulating dynamics of curved rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates
flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on
(singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral
operator is provably negative definite in a nonphysical idealized geometry, as expected from the partial differential equation theory. This is
numerically verified in physically relevant geometries. We discuss the convergence and stability of a numerical method for solving the
integral equation. The accuracy of the model and method is verified against known models for ellipsoids. Finally, we develop an algorithm
for computing dynamics of rigid fibers with complex geometries in the case where the fiber density is much greater than that of the fluid, for

example, in turbulent gas-fiber suspensions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041521

I. INTRODUCTION

The dynamics of thin fibers immersed in fluid play an important
role in many biological and engineering processes, including micro-
organism propulsion,”****** rheological properties of fiber suspen-
sions used to create composite materials, **”*" and deposition of
microplastics in the ocean.”’ Here the term “fiber” is used to refer to a
particle with a very large aspect ratio. In many of the applications
mentioned, the cross sectional radius of the fiber is small compared to
the length scales of the surrounding fluid, which can be well approxi-
mated locally by Stokes flow. This allows for the development of com-
putationally tractable mathematical models describing the interaction
between the fiber and the surrounding fluid.

Due to the linearity of the Stokes equations, the three dimen-
sional flow about a body can be fully described by an expression over
only the two dimensional surface of the body;"” however, for flexible
particles with complex shapes or for multiple interacting particles, this
quickly becomes both analytically and computationally prohibitive. In
the case of slender fibers, a more tractable option is to exploit the thin-
ness of the fiber by approximating it as a one dimensional curve. This
idea forms the basis for slender body theory (SBT). Models based on

slender body theory in general are popular because they yield simple,
efficient expressions for the velocity of filaments in fluid, allowing for
the simulation of many interacting fibers with complex, semiflexible
shapes. The most basic form of SBT (placing singular point forces
known as Stokeslets along the fiber centerline) dates back to works by
Hancock,”" Cox,'* and Batchelor." Later developments in singular
SBT, due to Keller and Rubinow,” Lighthill,” and Johnson,”* involved
adding higher order corrections to the point force to account for
the finite radius of the fiber. The most natural choice of higher order
correction is often referred to as the doublet [see discussion following
Eq. (9)]. We will refer to these methods based on distributing
Stokeslets and doublets along the fiber as classical nonlocal SBT to dis-
tinguish from some more recent developments.

Classical SBT gives rise to an expression which exactly satisfies
the unforced Stokes equations away from the fiber, and, to leading
order (with respect to the fiber radius) satisfies the boundary condi-
tions for a well-posed boundary value problem for the Stokes equa-
tions.””° This expression has served as the basis for various numerical
methods.””*"” However, one issue with classical SBT is that the veloc-
ity expression is singular along the fiber centerline, and the usual
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methods for obtaining an expression for the velocity of the fiber
itself—involving a nonstandard finite part integral—give rise to high
wavenumber instabilities. “**** To address this, Tornberg-Shelley”
regularize the integral kernel using an additional parameter propor-
tional to the fiber radius.

To more generally avoid some of the difficulties of integrating a
singular kernel, Cortez'”'*"” developed the method of regularized
Stokeslets. Here, instead of placing singular solutions of the Stokes
equations along the fiber centerline, regularized Stokeslets are used.
Regularized Stokeslets satisfy the Stokes equations with forcing given
by a smooth approximation to the identity—or blob function—whose
width is controlled by a parameter which can be chosen to be propor-
tional to the fiber radius. Unlike classical SBT, this results in an expres-
sion for the fluid velocity that is nonsingular along the actual
centerline of the fiber, allowing for a simpler representation of the fiber
velocity. Many recent computational models for thin fibers rely on the
method of regularized Stokeslets.”''*****? However, many choices of
blob function are possible and there is not a canonical procedure for
choosing one. Additionally, many commonly used blob functions
introduce an additional nonzero body force into the fluid away from
the fiber surface.”'

Most recently, Maxian et al.’”* developed a fiber model that is
asymptotically equivalent to SBT but based on the
Rotne-Prager-Yamakawa (RPY) tensor”** commonly used to model
hydrodynamically interacting spheres. The model also places a curve
of (singular) Stokeslets plus doublets along the fiber centerline, but
replaces the region around the singular part of the Stokeslet/doublet
kernel with the RPY regularization. The RPY kernel is divergence-free
and known to be positive definite, making it a good choice for model-
ing particles in close proximity. The discontinuous kernel, however,
makes the model more difficult to compare to the partial differential
equation (PDE) solution of Refs. 35 and 36, which is one of the main
goals of the model presented here.

We aim to make use of the fact that classical SBT closely approxi-
mates the solution to a well-posed boundary value problem™ " for the
fluid velocity outside of the fiber, although the conventional way to
obtain an expression for the velocity of the filament itself gives rise to
instabilities which must later be corrected. Regularized Stokeslets yield
a simpler expression for the fiber velocity, but can introduce errors
outside of the filament and give rise to a fiber velocity which may fun-
damentally differ from the aforementioned PDE solution (see Remark
I11.2). Thus we consider a different approach to deriving a fiber veloc-
ity expression from classical SBT. Beginning with the fundamental
premise of classical SBT—placing singular Stokeslets along the fiber
centerline along with doublets to cancel the angular dependence across
each fiber cross section—we aim to devise a model which is analyti-
cally and computationally attractive (in that it does not exhibit high
wavenumber instabilities) with a physically meaningful derivation.

Our integral model is based on classical SBT but involves a
smooth kernel which incorporates the (possibly varying) fiber radius
in a natural way. Since the integral kernels are smooth, the model
resembles the method of regularized Stokeslets with an arc length-
dependent regularization similar to Ref. 58; however, we derive our
model from usual (singular) Stokeslets and doublets. As such, we avoid
introducing a nonzero body force throughout the fluid outside of the
fiber,”" and avoid introducing additional parameters into the basic
first-kind formulation of the model. The model relies on the
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asymptotic cancelation of angular-dependent terms along the fiber
surface (see Sec. III for details), leaving an expression that retains a
dependence on the fiber radius in a natural way.

Furthermore, we include a systematic way of comparing mapping
properties among different fiber models based on Ref. 34, which
involves calculating the spectra of the integral operators from various
models in the toy scenario of a straight-but-periodic fiber with con-
stant radius. In this model geometry, our integral operator is negative
definite, as is the well-posed partial differential equation (PDE) opera-
tor of Refs. 35 and 36 which it is designed to approximate (see
Ref. 34). This is in contrast to other models based on (non-regularized)
slender body theory which give expressions for the fiber velocity
involving further asymptotic expansion with respect to the fiber
radius.”*”>*’ These models exhibit an instability as the eigenvalues of
the operator cross zero at a high but finite wavenumber.

The model we derive initially yields a first-kind Fredholm integral
equation for the force density along the fiber centerline. Such integral
equations are known for being ill-posed (see Ref. 26, Chapter 15.1), as
they do not necessarily have a bounded inverse at the continuous level.
Numerical discretization alone can provide sufficient regularization to
invert first-kind integral equations at the discrete level, but to make
our model more suitable for inversion, we use an integral identity to
regularize the expression into a second-kind equation. The second-
kind regularization preserves the asymptotic accuracy of the model
while improving the conditioning and invertibility of the correspond-
ing numerical method. The regularization also serves to ensure that
the discretized operator is negative definite, even in the presence of
numerical errors, by bounding the spectrum away from zero. We dis-
tinguish this type of regularization from the method of regularized
Stokeslets, since our regularization is not a key component of the
model derivation. In particular, we can directly compare our model
with regularization to our model without, which we will do repeatedly
throughout the paper. We also distinguish this regularization from the
procedure used by Tornberg and Shelley,” since we are not correcting
for a high wavenumber instability. This allows us to compare the
numerical behavior of our regularized and unregularized models at the
discrete level even for very fine discretization. Moreover, the regulari-
zation used here affects all directions (both normal and tangent to the
slender body centerline) in the same way.

The solution of the resulting second-kind Fredholm integral
equation is a force density along the slender body centerline which we
integrate to find the total force and torque on the rigid fiber. We
implement a numerical method based on the Nystrom method with
Gauss-Legendre quadrature for solving the second-kind Fredholm
integral equation (see Ref. 2, Chapter 12.4). Numerical tests confirm
its convergence. Not surprisingly, we note significant improvements in
the conditioning of the second-kind vs first-kind formulation of the
model. We also numerically verify the spectral properties of the model
in different geometries.

The model applies to both semiflexible and rigid fibers; however,
the invertibility properties of the second kind model make it particu-
larly well suited for simulating rigid filaments. We present an algo-
rithm for dynamic simulations of rigid fibers where the fiber density is
assumed to be much greater than that of the fluid, for example, in tur-
bulent gas-fiber suspensions. The rigidity of the fiber can be exploited
such that only matrix-vector products need to be performed within
the time loop. We compare the dynamics of our model to the well-
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studied dynamics of a slender prolate spheroid. We then apply
our model to compare the dynamics of curved fibers whose centerlines
deviate randomly from straight lines by varying magnitudes.

The structure of the paper is as follows. Section II presents the
slender body model, which is derived in greater detail and justified via
spectral comparisons with other slender body theories in Sec. III. In
Sec. I'V we discuss a method for numerically solving Fredholm integral
equations and integrating the result, and demonstrate the convergence
of the method for our model. Section V outlines a fast algorithm for
computing the dynamics of a rigid slender fiber in viscous flow. We
apply the dynamical algorithm to simulate the dynamics of fibers with
complex shapes. Finally, we comment on conclusions and outlook for
the model in Sec. V1.

A. Fiber geometry

We begin by introducing some notation for the slender geome-
tries considered throughout the paper. Fix ¢, L with 0 < & < L and let
Xew : [—VI2 + €2,/I2 + ¢2] — R? denote the coordinates of a C*
curve in R? parameterized by arc length s. Defining e(s)
= d—ﬁ;“/| dx—ds“‘|, the unit tangent vector to Xex(s), we parameterize
points near Xeq(s) with respect to the orthonormal frame
(es(s), en, (s), en,(s)) defined in Ref. 36. Letting

e.(s,0) := cos Oe,, (s) + sin Oe,,(s),
we define the slender body Z, as

T, = {x € R? : x = Xou(s) + pe,(s,0), p < er(s),
s€ [ VL? + 2, VL? + ¢ }.

Here the radius function r € C2(—v/I? + &2, VI? + &2) is required
to satisfy 0 < r(s) < 1 for each s € (—/I? + &2, VI + ¢2), and r(s)
must decay smoothly to zero at the fiber endpoints *+/L? + ¢2. There
are many admissible radius functions r which can be considered. For
the simulations in this paper, we will use a thin prolate spheroid as our
geometrical model for a slender fiber. In this case, the radius function
r(s) is given by

(1)

1
r(s) = ——=—=VL*+ & —s% 2
0 = s VPP -7 @
We consider the subset
X = {Xeu(s) : ~L<s<L} (3)

extending from focus to focus of the prolate spheroid (2), and define
X (s) to be the effective centerline of the slender body so that r = O(¢)
at the effective endpoints s = *L.

The slender body model described in Sec. II may also be used in
the case of a closed curve, in which case we take X(L) = X(—L) and
consider s € R/2L. We may take the radius function r =1 in this
case.

Il. SLENDER BODY MODEL

To describe the motion of the thin fiber X, (1) in Stokes flow, we
will use an expression derived from the classical nonlocal slender body
theory.'**”” Letting f (s, t) denote the force per unit length exerted by
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the‘ﬁber on the surrounding fluid at time ¢, we approximate the veloc-
ity 2X of the fiber relative to a given background flow u by

8,[,,(%‘ — (X, t),t)) = —2log (1) £(s. 1)

N IL (s“, + @ Dﬂ) f(s, 1) ds,
J-L
(4)
Son(s,s',t) = I - XX’ (5)
T (XP 4 m2en(s) (X e2r2(s)Y
D,(s,s,t) = ! 3XX” (6)

(XP +e2r2())  (IX]P + e2r2(s))*

where X (s,s',t) = X(s,t) — X(s, t). Heren > 1 is a parameter which
can be chosen to yield either a first kind (y = 1) or a second-kind
(7 > 1) Fredholm equation for f. Notice that # must also appear in the
first term of S, ,, in order to retain the asymptotic consistency of the
model (4). This is due to an integral identity (14) used to convert the
integral model from a first-kind equation for £ The model accounts
for a varying radius r(s) through the denominators of each term as
well as the coefficient of D,. Note that since r(s) is nonzero for
—L < s < L, the integral kernel is smooth for each s € [~L,L]. We
provide a more detailed derivation of Egs. (4)-(6) in Sec. III. We note
that when 5 = 1, the expression (4) looks a bit similar to SBT using
regularized Stokeslets, but—as we detail in the next section—the
expression is derived through different means (namely, the near-
cancelation of angular dependent terms in classical SBT along the
surface of the filament) and, in particular, the appearance of 2r? in
the denominator is not ad hoc but rather the best approximation of
the slender body PDE of Refs. 35 and 36.

The model given by Egs. (4)-(6) and the analysis in Sec. III can
be used to describe both flexible and rigid fibers. In Sec. V we apply
our model to the dynamics of a rigid fiber, since the invertibility prop-
erties of Egs. (4)-(6) make the model especially suitable for simulating
rigid filaments.

In the case of a rigid fiber, at each time ¢ we additionally impose
the constraint

19

Ezv%—wxx(s), (7)
where v, @ € R* are the linear and angular velocity of the fiber (see
Refs. 19, 33, and 54). The total force F(t) and torque T(t) exerted on
the slender body at time ¢ are computed from the line force density

f(s,t) via
L L
J f(s,t)ds = F(t), J X(s,t) x f(s,t) = T(¢). (8)
-L -L

When v and o are prescribed and one aims to solve for Fand T,
this is known as the resistance problem. Conversely, the case when F
and T are given and the rigid fiber velocity is sought is known as the
mobility problem. Note that for both the resistance and mobility prob-
lems along a thin fiber, using Eq. (4) to relate fiber velocity to force
involves inverting the integral equation to solve for the force density f.
Thus we are particularly concerned with the invertibility of Eq. (4). In
Sec. V, we use Egs. (4), (7), and (8) to solve the resistance problem,
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which is of interest when the density of the fiber is much larger than
the density of the fluid.

I1l. DERIVATION AND JUSTIFICATION OF THE SLENDER
BODY MODEL

Our model for the motion of the fiber is based on classical nonlo-
cal slender body theory, where the fluid velocity u°(x, t) at any point
x away from the fiber centerline X (s, t) is approximated by the integral
expression

L 2 ’
Sru(u®(x, 1) — uo(x,1)) = —J (P(x—X(s, 1) + & '22(5)
-L
x D(x— X(s',)))f (s, t) ds’ (9)
| G I 3xxT
L(x)=—+—73, Y(x)=—75—-"3,
Ot PO T
where u(x, t) is the fluid velocity in the absence of the fiber and y is

the fluid viscosity. The force-per-unit-length f(s,t) exerted by the
fluid on the body is distributed between the generalized foci of the

slender body at s = *L. The expression ﬁ.(/(x) is the free space

Green’s function for the Stokes equations in R?, commonly known as
the Stokeslet, while ﬁ@ (x) = ﬁmlAS/’(x) is a higher order correc-
tion to the velocity approximation, often known as a doublet. The dou-
blet coefficient 57'2 is chosen to cancel the leading order (in &) angular
dependence in the fluid velocity at the surface of the actual 3D fila-
ment. This coefficient can be obtained via matched asymptotics, or by
the following heuristic. Since the purpose of the doublet is to cancel
the angular dependence over each 2D cross section of the fiber, we
consider Stokes flow in R* due to a point force at the origin of
strength £ In polar coordinates x = (p cos 0, psin )", the velocity
due to the Stokeslet at p > 0 is given by

sin 20

o)) (1)

where I is the 2D identity matrix. To eliminate the 0-dependence on
the circle p = &, we note that

Pu” 10u” 1 Pu”
Au” (p,0) = ——+
«(2.6) o pop P or

- 1 cos20  sin20 f
2np? \ sin20 —cos20 )\ f. )’
Therefore, the 0-dependence in the velocity due to the Stokeslet at

r =g can be canceled by adding a doublet term (% Au”) with coeffi-
cient %,

1+ cos 20

2 (. 1
u’ (p,0) 4n( 1ng1+2( sin20

&2
B = u” A’
4
The expression (9) is valid for describing flows around fibers which
are not highly curved (i.e., with maximum centerline curvature < 1/¢)
and do not come close to self-intersection (|X(s) — X(s')|/|s — ¢'| > C
for C independent of ¢). The force density f must also be sufficiently reg-
ular. Given these constraints, in the stationary setting, the velocity field
given by Eq. (9) is an asymptotically accurate approximation to the
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velocity field around a three-dimensional semi-flexible rod satisfying a
well-posed slender body PDE, defined in Refs. 35 and 36 as the following
boundary value problem for the Stokes equations,

inR? \Z.

pAu+Vp=10, divu=0

|| @l07.00. 000/ d0 = £ on 0z,

ulyy, = u(s), unknown but

independent of 0
|u| — 0as|x| — oc.
(10)

Hereo = u(Vu + (Vu)") — plis the fluid stress tensor, n(x) denotes
the unit normal vector pointing into %, at x € 9%,, #,(s,0) is the
Jacobian factor on 9Z,, and ¢(s) := @ is a stretch function to
address the discrepancy between the extent of f and the extent of the
actual slender body surface. Given a force density f € C'(~L,L)
which decays like r(s) at the fiber endpoints (f(s) ~ r(¢(s)) as
s — *L), the difference between the slender body approximation %%
and the solution of Eq. (10) is bounded by an expression proportional
to £| log . Note that r(s) need not be spheroidal (2) for this error anal-
ysis to hold, but r(s) must decay smoothly to zero at the physical end-
points of the fiber at s = *++/L2 + 2.

In Sec. V we consider in greater detail the resistance problem for
a rigid fiber, which is actually a case of the ‘inverse problem’ for Eq.
(10): instead of prescribing the force density f(s) along the filament,
the fiber velocity u(s) is given and we must solve for f(s). The slender
body PDE (10) is then simply Dirichlet problem for the Stokes equa-
tions; however, it is unclear what type of decay in f (if any) is necessary
for the SBT expression (9) to accurately approximate the PDE solution
very near the fiber endpoints. Nevertheless, in Appendix D, we provide
numerical evidence that the force density arising from inverting the
expression (4) does exhibit decay at the fiber endpoints, both in the
case of a prolate spheroid and a cylinder with hemispherical caps.

A key component of the well-posedness theory for the slender
body PDE to which (9) is an approximation is the fiber integrity condi-
tion on ul 55 . The fiber integrity condition requires the velocity across
each cross section s of the slender body to be constant; i.e., the velocity
u(x) at any point x(s,0) = X(s) + er(s)e,(s,0) € OZ, satisfies
dpu(x(s,0)) = 0. This is to ensure that the cross-sectional shape of
the fiber does not deform over time. An important aspect of the accu-
racy of slender body theory is that the expression (9) satisfies this fiber
integrity condition to leading order in &. Specifically, by Propositions
39 and 3.11 in Refs. 35 and 36, respectively, we have that for

x(s,0) € 0%,
o) o0
T llco(-L,L)

i.e., the angular dependence in #°®(x) over each cross section s of the
slender body is only @(glog ).

Another important general feature of the slender body PDE (10)
is that the operator mapping the force data f(s) to the 0-independent
fiber velocity ul,y (s) is negative definite [see (Ref. 34); note that the
sign convention for fis opposite].

|9pu™® (x(s, 0))| < C(Sl log &l[[fllc(—r) +&
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Now, the velocity expression (9) is singular at x = X(s,t) and
can be used only away from the fiber centerline; however, Eq. (9)
presents a starting point for approximating the velocity of the slender
body itself. Various methods can be used to obtain an expression for
the relative velocity of the fiber centerline —x(‘—'l which depends only
on the arc length parameter s and time ¢. The most common way to go
from Eq. (9) to an expression independent of 0 is to perform an
asymptotic expansion about & = 0.""“*“*** However, as alluded to in
the Introduction, this leads to issues at high frequency modes along
the fiber (we will come back to this point later). Here we consider a
different approach to deriving a limiting centerline expression from
Eq. (9) which evidently results in a negative definite integral operator
mapping fto ul,5 . We then regularize this first-kind integral equation
in an asymptotically consistent way to yield the second-kind integral
equation (4). We detail our approach here and provide further justifi-
cation in Sec. I1I A using a model geometry

The first step in apprommatmg 3 X(5.]§s to evaluate (9) on the sur-
face of the slender body at x = X(s, t) + er(s)e,(s, 0, t). Written out,
the velocity field along the fiber surface is given by

8 (B (x(s,0,t),t) — uo(X(s,1),t))
J’" ( I )_()_(T+sr()_(e;r+e,)_(T)+ezr2e,e;r
— —t !
IR| R|
e2r3(s') (I_3XXT+er(}_(e;r+e5,)_(T)+82r2e,ef))f(s,’t)ds,
B |R| R|

(12)
where unless otherwise specified, we have r = r(s), X = X(s,5, t)
= X(s,t) — X(s,t) and R=R(s,s,0,t) =X+ er(s)e,(s, 0,t).
Now, along the fiber surface, the expression (12) satisfies the fiber
integrity condition to leading order in &; ie., the terms containing
e,(s,0,t) in Eq. (12) vanish to @(¢loge), by Eq. (11). Because of this,
to obtain an approximation to the velocity of the fiber itself which
depends only on arc length, we could simply select a single curve along
the length of the filament—i.e., fix 0 = 0" or even 0 = 0"(s)—and use
the expression (12) evaluated along this curve as the approximate
velocity of the fiber.”’ This yields an integral expression with a smooth,
divergence-free kernel with clear physical meaning. However, this also
involves a choice of 0" and subsequent computation of a normal vector
at each point along the fiber, which is unnecessarily complicated given
that we know from Eq. (11) that the terms containing 0 are small.

In particular, both the Stokeslet and doublet include a 0-dependent
term with £?r%e, ! in the numerator. Due to the form of R in the denomi-
nator, both of these terms are ((1) ats = s’; however, upon integrating in
s', these terms cancel each other asymptotically to order ¢ log ¢. In particu-
lar, by Lemmas 3.5 and 3.7 in Refs. 35 and 36, respectively, we have

L g2r2e,e”
J—L |R| .f( )dS 2878,-f(5)
sc.s(ufnc.(_LN £ )
C(-L.L)
_[F Er(s) 3 ee) )
‘ J_L 2 |R| 5 f(s)ds' + 2e.e, - f(s)

<Ce (Hf”cl(—L.L) + Hf:H )
T lleo(-L.r)
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As we can see, the O(1) contributions from both of these terms exactly
cancel, leaving only hlgher order (in &) contributions. Furthermore,
the terms er(Xe! + ¢,X T in both the Stokeslet and doublet approxi-
mately integrate to zero in s, since, by Lemmas 3.4 and 3.6 in Refs. 35
and 36, respectively, we have

L er(Xel +e,X") ,
[ ey T ) a

< Cs(“OgsHlfHC'(_L‘L) * HZH )’
T lleo(-L.r)

m=20,2.

Finally, the e, term in each denominator from |R(s,0,t)|* = |X|?
+2¢re, - X + &*r? is also only O(eloge), since, again using Lemmas

3.4 and 3.6 in Refs. 35 and 36,
REICR= CR
)L (IX]? + &2r2)™

|R|m-+-l
f
< Ce| |loge||[fllcr(—r.p) + Il r||c1(—1.‘1_) )
m=20,2.

Due to these cancelations and the fact that dropping these terms
still approximates the slender body PDE solution of Refs. 35 and 36 to
at least O(&log ), we may eliminate all terms containing e, (s, 0,t) in
Eq. (12) to obtain a 0-independent expression which approximates the
velocity of the fiber itself,

81:;4(%—):—140()((5,1‘),1‘))

e

L \(IXP+e2r2(s) 2 (IXP+e2r2(s))?
2r(s) I 3xx" o
2 ((|X|2+82r2(5))3/2 (|X|2+82r2(s))5/2>)f(s’t)ds'

(13)

The expression (13) serves as the model underlying our final slen-
der body velocity expression (4). Again, expression (13) looks some-
what similar to SBT using regularized Stokeslets, but is instead derived
by the near-cancelation of angular-dependent terms in the classical
SBT expression (9) along the fiber surface. In particular, £*r* remaining
in the denominators here is simply what remains after eliminating
these angular-dependent terms. In fact, due to the integral identity (14)
which will introduced below as a means of converting (13) into a
second-kind integral equation, we can see that altering this term severly
affects the local behavior of the operator. For example, multiplying this
&2r? denominator term by a constant other than 1 will introduce an
O(1) dispartiy between the approximation and the slender body PDE
unless corrected via an additional local term (see also Remark II1.2 in
Sec. 111 A 3 related to the method of regularized Stokeslets).

One further limitation to note about the centerline expressions
(4) and (13) is that because the model is essentially 1D, in certain spe-
cial cases (ie., when the fiber is straight and its axis is perfectly aligned
with the flow), the slender body approximation, in contrast to a truly
3D fiber, does not pickup on fluid gradients (see Sec. V B 1).
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In Sec. II1 A, we show that in a simplified setting, (13) results in a
negative definite operator mapping the force density f to the fiber
velocity 2%, whereas other models which rely on further asymptotic
expansion of Eq. (12) about ¢ = 0 do not, and incur high wavenumber
instabilities. This phenomenon is well known for the Keller-Rubinow
model,""* but for other possible centerline expressions, including
models similar to Lighthill,” this high wavenumber instability has not
been documented previously. It seems that our model (13) may be the
simplest that can be obtained by expanding from Eq. (12) while still
guaranteeing a negative definite operator.

Now, since the integral operator in Eq. (13) has a smooth kernel,
the expression (13) yields a first-kind Fredholm integral equation for f
when the fiber velocity 2 is supplied. Describing the motion of a rigid
fiber involves inverting this expression to solve for f; which in general
is an ill-posed problem for a first-kind equation. Thus we want to reg-
ularize the integral operator (13) to create a second-kind integral equa-
tion while keeping the same order of accuracy in the map f — ‘(’T’f

We first note that, for > 1, we have the following identity:

L 1 . , I
J—L ((lez + £2r2(s))l/2 (|X|2 + ’12827'2(5))1/2 )g(s ) ds
= 2log (1) g(s) + O(nelog (ne)). 14)

Proof. By Lemma 3.8 in Ref. 36, for a > 0 sufficiently small, we
have

. 8) g, &)\,
J—L((|X|2+a2r2(s))l/z X +Is—s'l) d

2(L2 — %) 4 24/ (L2 — 2)* + a?r2(s)
= log<

a*r’(s)

) + O(aloga).
(15)

Subtracting (15) with a = ne from Eq. (15) with a = ¢ and using
that

‘og( (L* — §*) + VL2 + &*r? )
(L2 — 2) + \/L? + n2e2r?
_ ‘log( (L2 — )+ VIZ + 2
(L2 =) + /17 + per?

we obtain Eq. (14). O

Using Eq. (14), we replace the first term in the integrand of Eq.
(13) to obtain (4). We can compare the expression (4) to that of
Tornberg and Shelley,”” where a regularization of the Keller—Rubinow
model is used to obtain a second-kind integral equation for f. One
thing to note is that, due to the form of the local term in our model
(4), the effect of the regularization parameter # is the same in all direc-
tions (both tangent and normal to the fiber centerline). This is not nec-
essarily the case for the Tornberg and Shelley model (see Sec. Il A 3
for a spectral comparison given a simplified fiber geometry).

) —log(l)’ < Cé,

A. Spectral comparison of slender body integral
operators

In this subsection we provide evjdence that our model (4) is well
suited for approximating the map ‘Z,%‘ — f needed to simulate the

scitation.org/journal/phf

motion of a rigid fiber. Here we consider the spectrum of the integral
operator taking the force density f to the fiber velocity 2 in the non-
physical but nevertheless instructive case of a straight, periodic fiber
with constant radius ¢. In this scenario we can explicitly calculate the
eigenvalues of both the slender body PDE operator (10) and the inte-
gral operator (13) and related models. This allows us to directly com-
pare the properties of different models in the same simple setting and
serves as a starting point for understanding more complicated geome-
tries. In particular, we expect this analysis to roughly capture the high
wavenumber behavior of these models in different geometries—on
length scales much smaller than the variation in curvature and fiber
radius. The high wavenumber behavior is of particular interest for the
invertibility and stability of the slender body theory integral operator.

For comparison, we first recall the form of the eigenvalues of the
slender body PDE (10), calculated in Ref. 34. In Sec. Il A 2, we con-
sider the model (13), before regularization, and show that the integral
operator is negative definite. We compare the spectrum of Eq. (13) to
three other possible models based on the slender body theory which
do not result in negative definite operators. Then in Sec. Il A 3, we
consider the regularized version of our model (4) and compare its
spectrum to the regularized model of Tornberg and Shelley.”” We note
that in our model, a uniform regularization parameter appears to give
the best approximation of the slender body PDE spectrum in direc-
tions both normal and tangent to the slender body centerline, whereas
in the Tornberg-Shelley model, the parameter required by the tangen-
tial direction may not be optimal in the normal direction.

1. Spectrum of the slender body PDE

Here we consider a straight, periodic fiber with constant radius &.
We take the fiber centerline to be two-periodic and lie along the z-axis,
X(z) = ze,, z € R/27Z, and for simplicity take 4 — 1 and zero back-
ground flow. We consider the stationary setting and omit the time
dependence in our notation; in particular, we denote the fiber velocity
by u(z) to distinguish from the fluid velocity away from the fiber.

We consider this scenario because we can explicitly calculate
the eigenvalues of the slender body PDE (10) as well as various
possible integral expressions for approximating the map f +— u. In
particular, the eigenvectors of this map can be decomposed into
tangential (e;) and normal (e, e,) directions and are given by
f..(2) = €™, m = x,y,z. We may then explicitly solve for 2"
satisfying

u(z) = 2f u(2),

for both the slender body PDE operator and various approximations
based on the slender body theory. To avoid logarithmic growth of the
corresponding bulk velocity field at spatial infinity, we will ignore
translational modes (k= 0) in the following spectral analysis. Clearly
these modes are important, especially for a rigid body; however, we are
mainly interested in the high wavenumber behavior of these operators.
High wavenumber instabilities are a known issue for nonlocal slender
body theory,“*”” and the following analysis likely captures the
behavior of these models at high wavenumbers (small length scales)
even in curved geometries.

To begin, the eigenvalues of the slender body PDE operator (10)
mapping fto u were calculated in Ref. 34 (Proposition 1.4). Note that
the sign convention in this paper is opposite, as we are considering fto

m=x,y,z, (16)
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be the hydrodynamic force exerted by rather than on the slender body.
For the slender body PDE, the eigenvalues satisfying (16) in the tan-
gential and normal directions, respectively, are given by

 2KoK, + me|k|(KF — K})

m=2
pu 4m2e|k|K?
k 2KoK, K, + melk| (K2 (K, + K3) — 2K2K;)
2 2 ) , m=Xx,y,
22 |k| (4K2K: + nelk|Ki (K2 — KoKa))
(17)

where each K; = Kj(nelk|), j=0, 1, 2, is a jth order modified Bessel
function of the second kind. Note that both sets of eigenvalues 4} and
A%, A, are strictly negative and decay to 0 at a rate proportional to
1/|k| as |k| — oo. We will compare our approximation and various
other slender body approximations to Eq. (17).

2. Pre-regularization comparison

Before we consider the regularized version (4) of our model, we
consider the base model (13) and compare its spectrum to other exist-
ing models based on slender body theory, before regularization. In the
straight-but-periodic scenario, our model (13) becomes the periodiza-
tion of the expression

a(z) = - - l L Zee
o8] \(22482)' 2 (22482
& I Z2ee!
+E<(zz+el)3/2 (zz—+—82)5/2))f(z z)dz. (18)
For this geometry, we may calculate the eigenvalues 4} satisfying
(16), which are given by

Tangent eigenvalues

-10°®
w4072
= il B A e
—Our model
"""""""" ~ Keller-Rubinow
-10” —— Modified Lighthill 1
~—— Modified Lighthill 2
........ SB PDE
0
-10
0 0.5 1 15 2
e|k|
(a)

scitation.org/journal/phf

3
1 [ 22t +2977 + et
J 2 e—mkz dZ,

- m=z
" 8m) .y (22 +¢2)%?
= 5 (19)
=2, 22
1 z +2£ -
—— | —=—e "™z, m=x,y.

81y (22 + £2)*?
These integrals may be computed explicitly to obtain

é(@ + 22K Ko(nelk]) — 2nelk|Ky (nelk]), m—z
=
1

§(2K0(7w|k|) + nelk|Ki (melk])), m=x,y.

(20)
Here K, and K, are zero and first order modified Bessel functions of
the second kind, respectively. The eigenvalues 4} lie along the curves
plotted in Fig. 1. Importantly, these eigenvalues satisfy the following
lemma.

Lemma IIL1. For all |k| > 1 and m = x,y, z, the eigenvalues A}
given by Eq. (20) satisfy A} < 0.

Proof. The case m = x,y is immediate, since Ky(t) > 0 and
K, (t) > 0 forany t>0.

For the tangential direction m = z, we first note that, by Lemma
1.16 in Ref. 34, we have
1<kl 1

Ko(t) 2t

for all £>0. Letting g(t) = (4 + £*)Ko(t) — 2tK;(t), it suffices to
show that g(t)/Ky(t) > 0. But

£(t) 2 Ki(t) 2 2
=442 -2t >34+82-2t> (t—v3)*>0.
(A0 Kol®) (=)
O
Normal eigenvalues
108
. -107?
L0 2 Y A < ULy |
T S
-10™ —— Our model
~— Keller-Rubinow
~—— Modified Lighthill 1 & 2
........ SB PDE
0
-10
0 0.5 1 15 2
ekl
(b)

FIG. 1. Log-scale plot of the tangential (a) and normal (b) eigenvalues 2 of the operator mapping f — u in various slender body models for a straight-but-periodic fiber. Our model
(blue) results in strictly negative eigenvalues in both the tangential and normal directions, as does the slender body PDE (dotted). The Keller—-Rubinow approximation (green) exhibits
instabilities at wavenumbers |k| ~ 0.2/¢ (tangential direction) and |k| ~ 0.6/& (normal direction) as the eigenvalues of the operator mapping f — & become positive. For the modi-
fied Lighthill models, the normal direction eigenvalues ; and , (red) remain negative at high wavenumber, but in the tangential direction, the eigenvalues of Modified Lighthil 1 (red)
become positive when |k| > 0.5/&. Furthermore, the tangential eigenvalues of Modified Lighthill 2 (magenta) do not agree with the slender body PDE at low wavenumber.
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Now, at a continuous level, regularization is necessary to
make sense of inverting the integral operator (18), since Kj and K;
decay exponentially as |k| — oo. However, at a discrete level,
numerical approximation of Eq. (18) will be invertible, albeit with
a large condition number, due to Lemma III.1. This negativity
does not hold for other popular slender body approximations
which rely on further asymptotic expansion of Eq. (13) with
respect to ¢ to obtain a limiting centerline velocity expression. In
particular, we consider the models of Keller and Rubinow”” and of
Lighthill.””

The Keller-Rubinow model, proposed in Ref. 25 and further
studied by Refs. 18, 24, 45, and 55, is equivalent to a full matched
asymptotic expansion of Eq. (12) about & = 0. In the straight-but-peri-
odic setting, the Keller-Rubinow expression for the slender body
velocity is given by

8nu(z) = —((I— 3eze}) — 2log (me/8)(I + ezeI))f(z)

[ fe=n) S,

(I+ece;); [sin (12/2)|

) 21

The eigenvalues of the periodic Keller-Rubinow operator taking f
to u have been calculated in Refs. 18, 45, and 55 and are given by

1
— (1 4 2log (melk|/2) + 2y), m=z
Lm0t 2lon b2+ 29) )

1
—s—n(l — 2log (melk|/2) —2y), m=x,y.

Here y ~ 0.5772 is the Euler gamma.
In both the tangent and normal directions, however, the
Keller-Rubinow approximation runs into stability issues at moderately

high wavenumbers, apparent in Fig. 1 at |k| = 26" ~ 0.217 /¢ (tan-

gent) and [k| = 2";;”2 ~ 0.589/¢ (normal). In particular, the curve
containing the eigenvalues A;" crosses zero and becomes negative. This
is an issue both because the slender body PDE eigenvalues (17) are
strictly negative, and because, for arbitrary &, there is no clear way to
guarantee that 4} # 0, especially for more complicated fiber geome-
tries. Thus some sort of regularization of Eq. (21) is necessary before
approximating the inverse map u — f.

In addition to the Keller-Rubinow model, we consider what we
will term the modified Lighthill approach to deriving a fiber velocity
approximation. This approach, due to Lighthill,” also begins with the
classical SBT expression (12) but uses asymptotic integration of the
doublet term to arrive at an expression for the fiber velocity. We
explore the Lighthill method in detail in Appendix A, but plot the
resulting spectrum in Fig. 1.

The takeaway here is that, at least in the case of a straight, peri-
odic fiber, our model (13), before regularization, captures the negative-
definiteness of the slender body PDE and provides a better approxima-
tion than other models based on classical SBT.

3. Regularized comparison

To make our model truly suitable for inversion, we need to regu-
larize the integral kernel as in Eq. (4). In the straight-but-periodic set-
ting, the operator in Eq. (4) becomes the periodization of

scitation.org/journal/phf

_ 1 1 oy
8nu(z) = —2log (n) f(z) — J—l ((z2 + ,1252)1/2 (22 + 82)3/2
82 1 zleze'zr . _
+?<(ZZ+82)3/Z 3(ZZ+82)5/2))f(z z) dz.

(23)

The eigenvalues of Eq. (23) are then given by

~ = (2log (n) + 2Ka(rmelk) + (2 + K Ko( el

A= —2me|k| K, (ne|k|)), m=z

1
r= (2log (n) + 2Ko(nmelk|) + ne|k|K, (nelk])), m=x,y.

(24)

For > 1, the spectrum of our operator is bounded away from 0 and
Eq. (23) is a second-kind integral equation for f.

We can compare the behavior of Eq. (23) with the
Tornberg-Shelley regularization of the Keller-Rubinow model. In
Refs. 45 and 55, the high wavenumber instability in Eq. (21) is
removed by replacing the denominator of the integral term, which
vanishes at z = 0, with an expression proportional to & at z = 0.
Using the relation

! n 1
—— — — | dz = —2log (n/4), (25)
I, (s~ 1) 5(%/4)
to rewrite Eq. (21), a regularization d¢, & > 0, is added to the denomi-
nator to obtain

8mu(z) = —((I— 3eel) + 2log (8)(I + e.el))f(2)

— (1+ezeZ) r M d

z. (26)
)i (22 + 8%62)'

Here we have also used that the second term in the original
Keller-Rubinow integral expression can now be integrated up to
O(&?) errors to nearly cancel the logarithmic term in Eq. (21), leaving
only log (8). The idea is to then choose ¢ such that all eigenvalues of
the operator taking f+ u are negative. Since the integral kernel is
now smooth, Eq. (26) is now a second-kind integral equation for f.

The eigenvalues of this J-regularized Keller-Rubinow operator
are given by

1
——(—=1+2logd + 2K,(omelk])), m=z
Moo= 4n ! (27)

—%(1+210g5+2K0(5m:|k|)), m=x,y.

Since Kj is positive, A} is guaranteed to be negative and bounded away
from 0 aslong as & > /e (see Fig. 2).

Note that in our model (23), the regularization parameter n
affects the spectrum of the operator mapping fto # in the same way in
both the tangential and normal directions. In particular, in both direc-
tions, n > 1 is required to obtain the desired second-kind integral
equation. In the Tornberg-Shelley model, the bound 6 > /e ~ 1.649
is required to ensure negativity of the tangential eigenvalues, but
this lower bound does not apply to the normal direction; in fact,
6> e ! 2 0.368 is sufficient for ensuring strictly negative normal
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FIG. 2. Log-scale plot of the tangential (a) and normal (b) eigenvalues A; of our regularized model (23) (blue) with n — 1.5 and the Tornberg-Shelley &-regularized model
(26) (red) with 6 = /@ + 0.5. Note that the regularization parameter # in our model affects the tangential and normal eigenvalues in a similar way; in particular, n > 1 is
required in both cases to ensure that Eq. (23) is a second-kind integral equation. In the J-regularized model, the tangential direction requires & > /e, but the normal direction
does not, resulting at least visually in a greater disparity between the 4, ).{ for the PDE (dotted) and the &-regularized approximation.

eigenvalues. This may mean that the #-regularization in our model is
more physically reasonable; see Fig. 2.

In Ref. 34, it is shown that using the J-regularized model (26) to
approximate the map # +— f yields > convergence to the slender body
PDE for sufficiently smooth u. It is also shown that the constant in the
resulting error estimate has the form C,6*(1 + log(d)) + Cy/(—1
+log (0)) for constants C; and C,. We expect that a similar error esti-
mate and analogous 1 dependence hold for our model (23); ie., the
constant should look like Ci#? 4+ Cy/log (). If C; =~ C, this yields
an optimal 1 of approximately 1.5. This should give a rough guideline
for a good choice of # for more general curved geometries, at least in
the periodic setting.

Remark IIL.2. We can also consider using the method of regular-
ized Stokeslets to rederive the Keller-Rubinow model (see Ref. 13). Here
the following choices of blob functions are used in place of Dirac deltas
to derive the regularized Stokeslet and doublet, respectively:

15 otet 3 5%

T T

Note that we have modified the notation from Ref. 13 to emphasize that
the blob “width” will be taken to be proportional to the fiber radius ¢,
and to more easily compare with the O-regularization of
Tornberg-Shelley. For the straight-but-periodic fiber, this method yields
a nearly identical expression to Eq. (26), but with a different logarithmic

factor in front of the local terms: —log (\/ &+ 1/5) in place of
log (0). Due to the low wavenumber expansion (A6) of the Bessel func-
tion K, however, we note that the log () term in Eq. (27) exactly can-
cels the leading order dependence of Ky(dmnelk|) on 0, yielding an
expression consistent with the slender body PDE (17) when |k| is small.
When 6 < 1, we have —log (\/ &+ 1/6) ~ log (9), but recall that
8 > /e is required for Eq. (27) to be negative for all k. Thus this

particular choice of blob function in the method of regularized
Stokeslets appears to yield an expression for the fiber velocity which fun-
damentally differs from the slender body PDE solution, although a dif-
ferent choice of blob function may yield closer agreement. Note that this
low wavenumber descrepancy occurs whether we start from the non-
periodic or periodic regularized expressions mentioned in Ref. 13, due to
the identity (25).

IV. NUMERICAL DISCRETIZATION OF THE SLENDER
BODY MODEL

We turn now to numerically simulating thin rigid fibers in flows.
We begin by generally discussing the numerical solution of Fredholm
integral equations where the result must be integrated (ie., to find the
total force and torque on a rigid fiber). We apply these general meth-
ods to the slender body model (4) and perform convergence tests. We
note improvements in conditioning and stability for the second kind
(7 > 1) vs first kind (y = 1) integral equation. Finally, we look at the
spectrum of the discretized integral operator in different geometries to
verify the negative definite nature of the operator.

A. Solving the second-kind Fredholm integral
equation

Denote by K : L*([~L, L], R*) — L*([-L, L], R?) the integral
operator

L
K[f](s) :== J_L K(s,s")f(s")ds'. (28)
Then a Fredholm integral equation of the first kind reads
y(s) = K[f](s). (29)

It is well known that the inversion of such an integral operator is an
ill-posed problem, meaning that the solution may not be unique or
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not even exist.”***° Furthermore, small perturbations to the left hand
side of Eq. (29) can lead to relatively large perturbations of the solution
f(s). The ill-posedness of this problem can be circumvented by regu-
larizing the integral operator into a second-kind Fredholm integral
equation, which takes the form

y(s) = (ed + K)[f](s), (30)

for some parameter o. Discretization of Eq. (30) yields a linear system
with a far better condition number. The connection between Eq. (30)
and our model is illustrated in Sec. IV B.

Numerical methods for solving Fredholm integral equations are
well documented”””” and the approach we adopt is based on the
Nystrom method (see Ref. 2, Chapter 12.4). For rigid fibers, after
numerically inverting a second-kind Fredholm integral equation, lin-
ear functionals (8) will also need to be applied to the resulting f(s) to
find the total force and torque.

We consider the numerical approximation of a general linear
functional of f(s), given by

L
bul) = | MG 6

Here M(s) € R**? is a bounded, smooth operator and f(s) is found
by numerically inverting a second-kind Fredholm integral equation of
the form (30). The numerical method is obtained discretizing the Eq.
(30) by replacing the integral with a convergent quadrature formula
with nodes —L =15 <55 <---<s, =L and weights w = (wy, w,,

w,.) € R", and requiring the numerical approximation

f[ ~ f(s;) to satisfy

y(s) = af + z:ij(s,v,sj)f}["I for i=1,...,n (32)

Introducmg the vectors f]"] = ((F"M7,. S (f"YTT and
= (y(s1)", s y(s)") ", Eq. (37)canbewr1ttencompactlyas

= (al +KW)f". (33)
Here I denotes the 3n x 3n identity matrix, and

K(sy,51) K(sy,sn)

W =diag(w)®1, K= : : € R¥""
K(sn,s1) K(sn,sn)

(34)
with @ : RM*™ 5 Rmxm: _, R(mm)x(mm:) the Kronecker product
of matrices and I the 3 x 3 identity matrix. We then approximate (31)
by the same quadrature formula

o) = S wM(s)f" = (T @OMwWs = gl (35)

i-1
where

M(Sl) 0
. c R}nx}n (35)

=
I

0 . M(s,)

scitation.org/journal/phf

and T = (1,...,1)7 € R". Here we have used ¢£C,] to denote the
approximation of ¢,,(f) obtained by quadrature. After inserting the
solution of Eq. (33), we obtain

ol = 1" @M W(d + K W) y. 37)

Remark IV.1. The numerical approximation ¢M shares the same con-
vergence as the underlying quadrature method. This is illustrated in
Appendix B.

B. Application to the slender body model
and convergence tests

We apply the numerical method from Sec. IV A to approximate
the force and torque on a slender body. Note that the Eq. (8) is given
by setting M (s) = I and M(s) = X(s) in the functional (31). That is,

F=¢(f) and T = ¢g(f). (38)

Letting « = 2log (1) and
K(s,5) = Sy (s, ) + ¢ 'Z(‘ )D,(s,9), (39)
y(s) = _87[”(1-’ - f((s)w - uo(X(S,t), ))1 (40)

our model (4) is of the form (30), and we may write the discretization
of Eq. (4) in the form (33). Here we have introduced the hat operator
*: R? — s0(3) which maps vectors in R? to 3 x 3 skew symmetric
matrices by

(O} 0 -3 wy
o=|w |—md=]| o; 0 -, |. (41)
w3 —n [0} 0

Here, s0(3) is the Lie algebra of SO(3), and such that @ x v = @wv for
o,ve R
Denote the numerical approximations to Eq. (38) by

Fl = ¢ and T" =gV (42)

Defining the matrices ® and ¥ € R***" as
O=(1 @DW(d+KW) ™, (43)
Y= (1" @)W X(al + KW)™, (44)

we may then write Eq. (42) as
Frl=®y and TV =y (45)

In Secs. IV B 1 and IV B 2 we perform convergence tests for our
discrete model (45) for both a thin ring and a prolate spheroid. With
these geometries we are able to calculate accurate reference solutions
against which we can compare the accuracy of our numerical solution.
Furthermore, we will look at how the conditioning of the linear system
associated with the discretized integral operator improves as the regu-
larization parameter n is increased fromn = L ton > 1.

Remark IV.2. For very large aspect ratios, e.g, L/e ~ O(10°) or
larger, the kernel becomes very nearly singular meaning one must take
n very large to accurately resolve the O(g) length scales in the kernel. In
this case, the quadrature can be improved by implementing special
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quadrature methods that take into account the near singular nature
of the integral kernel." For modest aspect ratios, e.g., L/e ~ 0(10?),
this is not an issue as one can accurately resolve the kernel with a
few hundred points. As noted in Ref. 46, even local slender body
theory, i.e., just the leading order fiber velocity approximation
8nu(s) = 2log (&) (I — esel)f(s), yields “reasonable predictions” for
the behavior of particles with aspect ratio larger than 20. We expect that
the integral model (4) should be more physically realistic than the local
approximation, and in some of the following numerical tests we con-
sider aspect ratios down to about 20.

1. Thin ring translating with unit velocity

As a convergence test, we use Eq. (45) to calculate the force on a
thin ring of unit length in the xy-plane translating in the z direction
with unit velocity in zero background flow. We will consider both the
first- and second-kind formulations of the model. In this setting, the
force on the ring can be calculated to arbitrary high precision by evalu-
ating elliptic integrals, which can be used as a reference solution. For a
circular centerline parametrized by

X(s) = (&(ns)’ sin (7s) 70)7’

2n 2n
the z-component of our unregularized (n = 1) model becomes
: V2n(3e2n —cos (2n (s — &) 4+ 1)
8mp = - 3/2
-1 (2¢m2 sf)) +1)

As in the straight-but-periodic geometry of Sec. 111 A, the eigenfunc-
tions of this operator are the Fourier modes f;(s) = exp (i2nks). The
force F = (F,0,0)" is therefore given by

f7(s)ds’. (46)

cos (27 (s

Fe [ F2(s)ds — 8;‘2", (47)
-1 o

where 47 is the k=0 eigenvalue. This can be found by evaluating the
integral in Eq. (46) with f*(s) = f7 (s) = 1, which gives

i = —co(2 ¢k (cc) + bi(ce))- (48)

Herec, = 1/ (e2n2 + 1)}, and
! 1
x)= | ——=——d0,
#e(x) Jo V1= V1 - 20 (49)
V1 - x20?
de(x) = | = do
o V10
are the complete elliptic integrals of the first and second kind,
respectively.

For ¢ = 0.05,0.025, 0.01 and 0.005, Eq. (46) is discretized using
trapezoidal quadrature, and we numerically approximate F by Eq.
(45). Figure 3 plots the numerical error as a function of n for four dif-
ferent values of e. We observe spectral convergence of the numerical
error to machine precision, which is consistent with the error estimates
(B21). We note that the condition number of the unregularized dis-
crete integral operator grows exponentially as » increases, as shown in
Fig. 4(a). However, because we are considering a rigid fiber with con-
stant radius, computing F has a regularizing effect which lessens the
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FIG. 3. The approximate drag force FI"! on a thin ring translating broadwise with
unit velocity converges with spectral accuracy to the true force F.

impact of this ill-conditioning in the final force calculation. This may
be contrasted with the prolate spheroid, where, as we will see in Sec.
IV B2, the conditioning does have a noticeable effect on the error.
Nevertheless, we note that by setting n > 1 we can improve the condi-
tion number of the linear system [see Fig. 4(b)]. We also note that
there is a 1 /& dependence on n for a given accuracy. This can be cir-
cumvented by using a special quadrature method that takes into
account the kernel (see Remark IV.2).

2. Prolate spheroid with artificial fluid velocity field

We next use Eq. (45) to compute the drag force for a stationary
prolate spheroid immersed in an artificial fluid velocity field. The par-
ticle centerline is aligned in the z-direction, parameterized by

X(s) = (0,0,5)", s€[~1,1]. The fluid velocity field u(s)
= (u(s),0,0)" is designed such that f(s) = (f*(s),0,0)" is a
known analytic function. We choose this function to be a Gaussian
f*(s) = exp (— j—) such that the force decays to zero at the fiber end-

points and use high order Gauss-Lobatto quadrature for the discreti-
zation of the integral operator. Denote the set of n quadrature nodes
by {s;}._,. Inserting the above expression for f*(s) into our model
(18), the fluid velocity at s; is found by solving the integral

- 2
um—ﬁémmaﬂzg

1 Er(s)? + %szr(s')2 +(s; — ¢)? §2 )
~2as |,
* j—l (827‘(5,')2 +(s; — s,)z)a/z “P ( )

(50)

where the ellipsoidal radius function is given by Eq. (2). We also take
the viscosity 4 = 1. To solve for u(s;) for i = 1, ..., n, the integral in
Eq. (50) is evaluated to machine precision using MATLAB’s built-in
integral function, which uses adaptive quadrature. For this fluid veloc-
ity field, the total force F = (F,0,0)" on the ellipsoid is found by
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FIG. 4. The condition numbers associated with the discretized versions of the (a) unregularized (n — 1) and (b) regularized (y — 1.5) slender body models for calculating the

force on a thin ring. Note the change in scale between the two figures.

e (-5) ‘
F=J‘_1 exp (- ds=\/ﬁserf(g>. (51)

We compute numerical approximations to F using Eq. (45) for four
choices of &. We initially set # = 1 and compute these numerical
approximations for the non-regularized, first-kind equation. The
numerical errors are presented in Fig. 5(a). We see that the error con-
verges spectrally up to a certain point where the method begins to
diverge due to numerical instabilities and poor conditioning of the dis-
crete integral operator, which is plotted in Fig. 5(b).

However, by choosing # > 1, we can amend the condition num-
ber and therefore improve the accuracy of the numerical solution. In
Fig. 6, we fix ¢ = 0.025 and calculate the numerical errors for four
choices of 7. We see from Fig. 6(a) that the numerical error converges
spectrally to machine precision for all such choices of 5. Furthermore,
we observe from Fig. 6(b) that the condition number of the discrete
integral operator is bounded by a value that becomes smaller for larger

—o—c =(0.1
—o—e =0.05

€ =0.025
—e—c =0.0125

P

10-15.

0 500 1000 1500
n

(a)

1. We note that in practice, the modeling error is much larger than
machine precision as we will see in Sec. V B 2.

C. Spectrum of the slender body operator in different
geometries

One important unresolved question about the slender body
model (4) is the effect of different geometries, including curvature,
endpoints, and non-uniform fiber radius, on the spectrum of the inte-
gral operator. The main difficulty is that the integral kernel (5),(6) is
only well defined along the centerline of the fiber. Since the kernel is
so dependent on the shape of the fiber centerline, it is difficult to prove
general properties for it. Although we cannot analytically determine
the spectrum of the continuous operator in general, we can determine
the eigenvalues of the discrete operator (2log ()l + K W) (33). We
consider first the unregularized version # = 1, recalling that in the
straight-but-periodic geometry of Sec. 11 A, the continuous operator

1020,

cond(K W)

1010,

0 500 1000 1500

FIG. 5. The errors (a) and condition numbers (b) associated with the unregularized (n = 1) numerical method for the calculation of the force on a prolate spheroid for different

values of &.
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FIG. 6. The errors (a) and condition numbers (b) associated with the regularized numerical method for the calculation of the force on a prolate spheroid for £ — 0.025. Similar

results are observed for other values of &.

was provably negative definite. Ideally we would like to see evidence
that this negative definiteness persists in general geometries, as this
would be the physically correct behavior and also would agree with the
underlying slender body PDE operator (10).

We begin by calculating the eigenvalues {4;};", of K W for the
thin ring. Letting A, = max;(4;), in Fig. 7(a) we plot Ay vs n for
five different values of . Note that for very large n relative to &
[roughly n = O(¢72)], we begin to see numerical error resulting in
very small positive eigenvalues of K W (denoted by red markers).
However, the magnitude of these positive eigenvalues is on the order
of machine precision and may be attributed to round-off errors.

We next consider the effects of endpoints and a non-uniform
radius by calculating the eigenvalues of K W for a slender prolate
spheroid (2), keeping in mind the above level of numerical error. In
Fig. 7(b) we again plot Ay, vs n for four different values of ¢. Again
for n= 0(¢7%) we begin to see small positive eigenvalues which
are significantly larger than for the thin ring [around O(107'%)].
However, the magnitude of the positive eigenvalues is still very small
and bounded as # increases. It is not clear whether this is a numerical

e=01

100+ & © €=0.05
< €=0.025
- €=0.0125
- ¢ =0.00625
<
10-10A
0 200 400 600 800 1000

n

(@)

artifact or an actual eigenvalue crossing 0 for the continuous operator.
At any rate, the non-regularized operator would never actually be used
for simulations with such large n because the condition number of
K W is prohibitive [see Fig. 5(b)]. It appears that a very reasonable
choice of regularization parameter # will ensure that none of these
near-zero eigenvalues actually cross zero.

As a final test, we calculate the spectrum of K W for randomly
but systematically generated curvy fibers with complicated shapes
(Fig. 8). Here the magnitude of the fiber’s deviation from a straight
line is controlled by a small parameter 6 > 0. The fiber shapes are gen-
erated by interpolating m points (x;,y;,z) € R?, i =1,...,m, with
cubsic splines. Here z; = (i — 1) 2 while x;,y; € -9, ] are given by a
random number generator and are of size at most d. Setting 6 = 0 cor-
responds to a straight fiber. Examples of the fiber centerline for
m =10 and four different values of J are given in Fig. 8.

We fix ¢ =0.1 and use the spheroidal radius function (2).
Taking m = 10, we generate 6 different curvy fibers for different mag-
nitudes & € [0, ]. For each fiber we compute the spectrum {4 }"_, of
its corresponding (non-regularized) integral operator K W. We plot

- e=01
10° - - + €=0.025
< €=0.05
€=0.0125
= ¢ = 0.00625
<
10710

0 200 400 600 800
n

(b)

1000

FIG. 7. Magnitude of the maximum eigenvalue of the non-regularized discrete slender body operator K W for the thin ring (a) and the prolate spheroid (b). Blue markers mean

Zmax < 0 while red markers mean that Amax > 0.
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FIG. 8. The centerlines of four curved fiber shapes with curviness parameterized by (a) 6 ~ 3 10 %, (b) 6 ~ 2% 10 2, (c) 6 ~ 9% 10 °, and (d) 6 = 5% 10 2.

the most positive eigenvalue ).f;m = max,-(l?) for each fiber in Fig.
9(a). For each value of 6 we note that there is an eigenvalue crossing
zero when n = O(e72). As § increases and the magnitude of the curvi-
ness of the fiber increases, we can note a slight increase in the magni-
tude of the largest positive eigenvalue, but A°__ is still small—roughly
0O(107®). Again, we can be assured to have a negative spectrum
bounded away from 0 by a reasonable choice of regularization n > 1.
This effe(;t is displayed in Fig. 9(b), which shows the maximum eigen-
value 2271 of the now regularized discrete integral operator
(2log (n)I + K W) for a fixed value of ¢ and ¢ and varying values of
1. We see here that for all choices of # > 1 in this range, the spectrum
of (2log (n)I + K W) remains negative definite.

V. DYNAMICS OF CURVED RIGCID FIBERS

We next use the slender body model (4) and the discretization
procedure of Sec. I'V to simulate the dynamics of curved rigid fibers in

+ =01
109 < §=0.001
& 6=1e-05
. 6 =1e-07
— _ < 5=0
w 8§ &
- |
1070 = 5 !
0 100 200 300 400
n
(@)

Stokes flow. After outlining the dynamical equations, we validate the
model against known dynamical models for a slender prolate spheroid.
Finally, we compare the rotational dynamics of randomly curved fibers
as in Fig. 8 to straight fibers.

A. Dynamical equations

Assuming that the particle to fluid density ratio is large
P,/ Py > 1, such as in gas-solid fiber suspensions,"**"*"** the dynam-
ics of the slender body are governed by the following rigid body equa-
tions. The angular momentum m of a rigid particle with torque T'(t) is

found by solving
m=mxw+T, (52)

where @ = J~'m for moment of inertia tensor J. Each of these quanti-
ties is defined in a reference frame whose axes are co-rotating and co-

10° p—0—6—0 0 o4
-10 | n=2
10 =11
< n=1.0001
n = 1.0000001
0 100 200 300 400
n
(b)

FIG. 9. The magnitude },‘:‘gx of the maximum eigenvalues for the unregularized (a) and regularized (b) discrete integral operators for the curved fibers. For (b) we fix & = 0.1
and & = 0.001 and consider different regularizations #. The color blue denotes a negative maximum eigenvalue and red denotes a positive maximum eigenvalue.
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translating with the fiber. The fiber orientation (with respect to a fixed
inertial reference frame) is specified using Euler parameters g € R*
which satisfy the constraint ||g||, = 1 and are determined by solving
the ordinary differential equation ((l)DE)

q= iqw, (53)

where w = (0, ®")" € R*. Here, q w is the Hamilton product of two
quaternions.'” That is, by letting g = (qo,q) and r = (ro, r) denote
quaternions for go, 7y € R and g, r € R?, then their Hamilton prod-
uct is given by

qr=1(qoro —q-r,qor +r0q+q % r). (54)

The translational dynamics are given by Newton’s second law
p=F, (55)

where p = vm is the inertial frame linear momentum for a fiber of
mass m. The position of the fiber center of mass is found by solving

x=w. (56)

The ODEs (52)-(56) are integrated using the second order Strang
splitting method of Ref. 50.

Recall Eq. (45) for F"l and T™". Since F"l and T"" depend line-
arly on the linear and angular momenta p and m, we may update
them according to the linear equation

[n]
)

where A is a negative definite dissipation matrix and b is due to the
background fluid velocity and is independent of p and m. We have that

z(m(fx(z/m)), o )_((fm—’))) " b=_<d>g)

Y(T®(/m), ¥(-X(Te]) Yu
(58)

where m and ] are the filament mass and moment of inertia tensor,
respectively. We have also introduced the vector u = (uo(X(s1))”,
ooy thg(X(s,))")" containing the background fluid velocities at the
location of the quadrature nodes along the centerline.

1. Overview and cost of algorithm

The algorithm used to compute the dynamics of a slender fiber is
as follows:

1. Define particle geometry X(s), ¢, regularization parameter #, and
discretization n.

2. Choose a quadrature rule and compute the matrices W and K.

3. Compute the matrices @, ¥, and A from Egs. (43), (44), and
(58).

4. Time loop: for t = 0, At, ..., mAt

(@) Compute F" and T!" using Eq. (57)
(b) Numerically integrate the ODEs (52)-(56).

For step (2), we use the trapezoidal quadrature rule for closed
fibers (ie, a periodic integration interval) or Gauss-Lobatto
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quadrature rule for fibers with open ends. For step (4b), we use a split-
ting method.” We note that for simulations where the fluid velocity
field is calculated from a direct numerical simulation of the
Navier-Stokes equations, the fluid field needs to be approximated
onto the centerline of the particle using an interpolation method.”"

The above algorithm exploits the rigidity of the fiber by using the
fact that A, @, and ¥ are constant in time and therefore can be com-
puted outside of the time loop. The calculation of these matrices,
which involves solving a linear system, is the most costly operation in
the algorithm but only needs to be done once. If, for example,
Gaussian elimination is used, this step has complexity of O(n?).
Within the time loor, however, the most costly operation is the calcu-
lation of F" and T, which involves only 3 X 3n by 3n x 1 matrix-
vector products, which has O(n) complexity. We assume that the cost
of numerically integrating the ODEs is negligible compared to this.
For a single fiber, the total complexity of the algorithm is therefore
O(n® + nm), where m is the total number of time steps used in the
simulation. Hence, for simulations where many time steps are needed,
the algorithm scales by O(n). We remark that for problems where the
background flow is zero, the cost of computing F" and T is inde-
pendent of n (after A has been computed) and therefore is O(1). This
is relevant, for example, when simulating fibers sedimenting in a still
fluid under the influence of gravity.””

B. Numerical validation of model dynamics
1. Dissipation matrix of a prolate spheroid

Here we compare our model and numerical method with accu-
rate closed form expressions for the force and torque given by
Brenner” and Jeffery.” These expressions are valid for an ellipsoid
when the fluid Jacobian is approximately constant throughout the vol-
ume of the particle. When the flow is linear, these terms are essentially
exact and therefore serve as a good reference model against which to
validate our model.

The purpose of this numerical experiment is therefore twofold.
First, we aim to show that our model converges to the reference model
as ¢ — 0. This is primarily to validate the accuracy of the model
However, the numerical approximation of the force and torques also
introduces a numerical error that is related to the discretization
parameter n. Clearly, taking 7 too small means that we will not exploit
the accuracy of the model to its entirety. On the other hand, it is
unwise to take n as large as possible as this will incur unnecessary
computational costs that go to minimizing numerical error beyond the
accuracy of the model. So the second question we address here is what
is an ideal choice of discretization parameter to use such that the
numerical error is roughly the same as the modeling error.

Using = 1 + &2, the dissipation matrix for our slender body
model A is numerically approximated by Eq. (58). The reference dissi-
pation matrix Ay, is found using the closed form expressions from
Jeffery and Brenner, which are given in Appendix C. Denote the six
eigenvalues of A and A, by 4; and 47 " respectively. Note that due to
symmetry of the spheroid, 4; = 4, and 44 = /s and similarly for the
eigenvalues of Ay;,. Furthermore, the slender body model is essentially
a one dimensional filament and therefore Zs = 0 meaning that spin-
ning motion about the centerline does not dissipate. This is in contrast
to the Jeffrey term, which does dissipate spinning motion. We remark
that this phenomenon only occurs in the case where the centerline is
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perfectly straight. Hence for curved fiber geometries where the
application of the slender body is most useful, this nonphysical
phenomenon is not observed. Note that for this geometry the dissi-
pation matrices are diagonal and therefore the eigenvalues are
directly proportional to the calculation of F” and T in zero
background flow.

The eigenvalues of A are calculated using Eq. (58) after discretiz-
ing Eq. (30) on the Gauss-Lobatto nodes. The values |2; — A7 h| for
i=1, 3, 4 are plotted in 11;, 10 as a function of the dlscretlzanon
parameter n. We see that 4; converges exponentially to a point near
,1“0 , which is likely due to the slender body modeling error. As &
decreases, we make two observations. First, for large n the rate at
which 4; converges to /ljph is approximately —&?n% log (1), as seen by
the horizontal dash-dot lines. Second, as ¢ decreases, the convergence
rate slows down and one must use a larger value of n to reach the
most accurate solution. This means that one must pay careful atten-
tion to the choice of n when taking ¢ to be very small. In fact, we

scitation.org/journal/phf

observe empirically that the convergence rate is approximately
bounded by e~*". Motivated by this, we will take » in future experi-
ments to be approximately the intersection of these two lines, that is,

log (—&*n* log (en))
e . (59)

2. Prolate spheroids rotating in shear flow

Now we calculate the dynamics of a prolate spheroid in shear
flow u = (z,0,0)" using our model and compare it with that of the
accurate Jeffrey model. The fiber is initially aligned at rest in the z-
direction and its rotational dynamics are calculated by integrating Eq.
(52) on the interval t € [0, 100] using the splitting method of Ref. 50
with a small step size of h=0.01. The simulation was repeated with
h=0.05 with no significant changes to the results and it is therefore
concluded that time integration errors are negligible. We repeat the
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| ——7 =1 “‘
—— = \
;p i=45% 1R,
.. .'| © \:\ - ar
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FIG. 10. The difference in the dissipation matrix eigenvalues |; — )’7"'| i=1, 3, 4 as a function of n for four different values of &: (a) & = 0.02, (b) £ = 0.01, (c) £ = 0.005,
and (d) & = 0.0025. The black dashed lines are e ** and the horizontal dashed-dotted lines are —&?#? log (&n).
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experiment for 20 values of ¢ logarithmically spaced in the interval
(0.1,0.001] and choose n using Eq. (59) and n = 1 + &2. As the sphe-
roids are axisymmetric, they only experience a torque about their y
axis, hence all of other angular momentum components are zero (to
machine precision). Three examples of the rotational dynamics are
shown in Fig. 11. It is seen here that as ¢ becomes smaller, the dynam-
ics more closely resemble the Jeffery model.

The relative difference between the angular momenta of the
Jeffery and slender body solutions is calculated and averaged over the
simulation. This average relative error is then plotted against the corre-
sponding value of ¢ in Fig. 12. We see that the average relative error
decreases with &. It is observed that in the region 0.01 < & < 0.1 the
error converges at a faster rate than in the region 0.001 < & < 0.01.
This could be partially explained by the fact that wider particles
(larger ) experience a greater resistive force as seen by the regions
where m, nearly reaches zero. This means that the particle spends
more time in the shear plane where the fluid velocity is zero and hence
the slender body model does not experience a large torque. However,
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the fluid gradient is non-zero in this orientation and therefore the
Jeffery model, which depends only on the fluid gradient, still experien-
ces a constant torque. This means that compared to the Jeffery model,
thicker fibers will see a greater difference in the torque term when the
fiber is aligned in the shear plane than thinner fibers.

C. Dynamics of randomly curvy fibers

Understanding how different shaped particles rotate in shear
flow is an important step in understanding their dynamics in more
complex flows.”> Here we simulate the dynamics of the randomly
curvy fibers of Fig. 8 as they rotate in shear flow. In particular, we
show how the rotational variables deviate from a straight fiber as 0
becomes larger.

We generate 100 different fiber shapes with m = 10 using 10 dif-
ferent values of & logarithmically spaced in the interval [5 x 1072,
5 x 1072]. The 100 fibers are placed in shear flow u = (z,0,0)" and
their rotational dynamics are calculated on the interval t € [0, 100].
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FIG. 11. The y component of a spheroid rotating in shear flow for three different values of &: (a) ¢ = 0.1, (b) & = 0.048329, and (c) ¢ = 0.01833. The solid line is our slender

body model and the dashed line is due to Jeffery.
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FIG. 12. The relative difference in m, between the slender body and Jeffery solu-
tions averaged over the interval [0, 100].

The moment of inertia tensor is approximated by placing point masses
along the centerline and using the formula

k
Ji= Y miXi(s) —c)’, for i=1,..3, (60)
j=1

where X;(s;) is the ith component of the centerline function at the
point s; on the centerline and ¢; is the ith component of the fiber center
of mass. We weight m; by the cross-sectional radius and use a very
large value for k, e.g., k = 10%. Here we take ¢ — 0.01 and use the
spheroidal radius function (2) along with n = 1 + &2.

Figure 13(a) shows the angular momentum m of three fibers
compared to the = 0 case. As the 6 = 0 fiber is perfectly straight, it
does not exhibit spinning motion and its angular momentum is purely
in the m, component. This is in contrast to the fibers with a non-zero
value of 4, in which case some of the momentum is transferred to m,.
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We therefore compare the value ,/m + m between the fibers to

account for this. We see here that the 6 = 0.017783 solution is visually
very similar to the 6 = 0 solution. We notice a significant difference
between the other two solutions. Figure 13(b) shows the angle 0
between the z-axis of the particle reference frame (that is, a frame that
is rotating with the fiber) and the x-axis of a fixed inertial reference
frame. As the 6 # 0 fibers are not symmetric, they slowly rotate out of
the xz-plane and therefore after a long time, we see much more signifi-
cant discrepancies in 0.

To quantify the effect that ¢ has on the angular momentum, we
calculate the difference in the angular momentum Am by subtracting
off the 6 = 0 solution and averaging over the time interval
t € [92,100], which corresponds to roughly one period of rotation.
This value is averaged over all the fibers with similar values of  and is
expressed as a percentage of the & = 0 solution, which we denote by
%Am. The results are plotted in Fig. 14(a). We notice that %Am is line-
arly proportional to 6. We observe that at the end of the simulation the
6 = 0.0003 fibers correspond to roughly 1% discrepancy in angular
momentum and ¢ = 0.0015 corresponds to roughly 7.5% discrepancy.

The difference in 0 after one rotation as a function of J is dis-
played in Fig. 14(b). The 6 = 0.0003 solution corresponds to about a
3° difference in 0 and the 6 = 0.0015 solution corresponds to about
an 8° difference.

VI. CONCLUSIONS

We have developed an integral model for the motion of a thin fil-
ament in a viscous fluid based on the nonlocal slender body theory.
The model relies on standard singular Stokeslets and doublets but
makes use of the fiber integrity condition—the near-cancelation of
angular-dependent terms along the fiber surface—in a novel way to
yield an integral expression for the fiber velocity with a smooth kernel
which retains dependence on the (possibly varying) fiber radius in a
natural way. We include a systematic way of comparing mapping
properties of different models using the simplified geometry of a
straight-but-periodic filament. In this simple geometry, we can show
that our integral operator is negative definite and compares favorably
to other models, and we expect similar high wavenumber behavior for

20 40 60 80 100

(b)

FIG. 13. The rotational variables of four fibers with different values of 4. (a) shows the angular momentum and (b) is the angle between the fiber's long axis and the x-axis of

the inertial frame.
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FIG. 14. (a) shows the difference in angular momentum Am between the curved fibers and the & — 0 solution after 100 time units and averaged over all the fibers with similar
4. The black dashed line is O(4). (b) shows the discrepancy A@ in the angle between the centerline and the x-axis after roughly one rotation.

curved filaments with constant radius. It is less clear how a non-
constant radius affects the spectrum; however, numerical tests indicate
that the discretized integral operator is very close to negative definite.
Nevertheless, to ensure invertibility, we develop an asymptotically con-
sistent regularization to convert the first-kind Fredholm integral equa-
tion for the force density along the fiber into a second-kind equation
and show that this second-kind regularization improves the stability
and conditioning of the discretized equation. We numerically solve
the integral equation using the Nystrdm method” and show how con-
straining the fiber motion to be rigid can be exploited for fast compu-
tation of fiber dynamics. We validate the method and model against
the prolate spheroid model of Jeffery,” and apply the method to study
the rotational deviation of randomly curved rigid fibers from straight
fibers.

While the fibers considered here are rigid, the model can also be
used to simulate the dynamics of semiflexible filaments. The invertibil-
ity properties of the integral equation make it particularly well suited
for handling simulations involving inextensible fibers, where an addi-
tional line tension equation must be solved at each time step.”””” We
may also consider the effects of different choices of radius functions
on the model properties, similar to what is done in Ref. 58, although
we note the necessity of smooth decay in our radius function near the
fiber endpoints.

To build on the dynamic simulations for rigid fibers, we aim to
consider the effects of fiber shape on particle deposition and aggrega-
tion. We are especially interested in more complicated background
flows, including suspensions of rigid fibers in turbulence. The novel
modeling approach advocated herein will enable earlier explorations
based on the point-particle approach” to be extended to curved fibers
particles.
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APPENDIX A: MODIFIED LIGHTHILL MODEL

Here we consider the modified Lighthill approach to deriving a
fiber velocity approximation from classical SBT (12). This approach
takes advantage of the fact that the doublet term of Eq. (13) only
has an O(1) contribution to the fiber velocity very close to s’ =,
and thus can be integrated asymptotically to leave only a local term.
This results in a model similar to that of Lighthill,” which was
derived via different reasoning but also includes a local doublet
term and a nonlocal Stokeslet contribution (see Remark A.1).

There are two ways to consider the nonlocal Stokeslet contri-
bution. The first expression, which we will term Modified Lighthill
1, is given by the periodization of

u(2)=—;—n((l—ezef)f(5)+I (oam

-1\ (22 +¢&2)

72 T
I M).

Here the local term (I — e.el) comes from asymptotically integrat-
ing the doublet term of Eq. (12) (see estimate 3.65 of Ref. 35 for
more details). Note that in Eq. (Al), the Stokeslet term inside the
integral is equal to f /¢ when z = 0.

For the second expression, which we will call Modified
Lighthill 2, the e.e] component of the Stokeslet term is normalized

(A1)

Phys. Fluids 33, 041904 (2021); doi: 10.1063/5.0041521
Published under license by AIP Publishing

33, 041904-19



Physics of Fluids ARTICLE

to give the same order contribution at z =0 as in Eq. (12);
namely, (I+e.el)f/e. This yields the periodization of the
expression

I+ez
1(z2+ 2)1/2

Remark A.1. The actual model proposed by Lighthill in Ref. 29,
written in the periodic, straight setting, has the form

fe-2)d ) (A3)

ﬁ(2)=—$<(l—ezef)f(5) j _tet fle z)dz>. (A2)

I+e.ef 2

u(z)=— %: <2(I - ezef)f(z) - [

J|z|>q | [
q=¢ve/2.

At first glance, this looks like a slightly different model from Egs. (A1)
and (A2), due to the 2 in front of the (I — e.e! )f(z) term. However,
the extra factor here is precisely due to the removal of the section
|z| < q from the integral term. Indeed, if we consider the integrand
of Eq. (A1), we note that

rq ((22 +Izsl)‘/2 " (zzz:z T)s/z )f(z z)dz

= (2log (2q/2)(1 + e:€;) — 2e.€;)f (z) + O(£*/’)
= (I - e:e;)f (z) + O(*/q°)

for q as in Eq. (A3). Now, this particular choice of q is not large rela-
tive to &, so the O(e?/q*) error term is not small asymptotically.
However, this is merely a heuristic and we will not be considering the
expression (A3) in greater depth here. Furthermore, the expressions
(A1) and (A2) are more amenable to calculating eigenvalues.

The eigenvalues of Eq. (A1) are given by

%(ZKo(nelkl) relk|K(nelk])), m—z
o= T (A4)
- L1k 2K el m=xy.

Now the normal eigenvalues Z{ and ] are always negative.
However, there is still a high wavenumber instability in the tan-
gent direction. In particular, 4 =0 when nelk| =~ 1.55265, and
becomes positive at higher wavenumbers (see Fig. 1). Thus the
instability issue is not fully resolved by expanding only the doublet
term of Eq. (12).

For Modified Lighthill 2, the eigenvalues of Eq. (A2) are given by

~ 5= Ko(alK]), m=2z
o= X (A5)
_Q(l + 2Ky (melk|)), m=x,y.

Here the eigenvalues 4} and 2 in the normal directions are identi-
cal to Eq. (A4), but the tangential eigenvalues A} are very different.
In fact, they are too different: Recall that near t=0, the modified
Bessel functions K (t) and K; (t) satisfy

Ko(t) = —log(t/2) —y + O(#*);

Therefore, at low wavenumber (k= O(1)), the tangential
eigenvalues of Modified Lighthill 2 (A2) look like

tKi(t) =1+ O(*).  (A6)

scitation.org/journal/phf

1
= o (log (nelk|/2) + y) + O(£2k?).

This does not agree with the low wavenumber behavior of the slen-
der body PDE (17) (see Fig. 1). It appears that the normalization in
Modified Lighthill 2 (A2) results in the wrong model.

For the sake of completeness, we also consider a modification of
our model (13) in which the XX" terms are normalized as in
Modified Lighthill 2 (A2) to yield a nonzero contribution to the fiber
velocity when s = 5. In the case of the periodic straight centerline, the
modified version of our model becomes the periodization of

1 (! I+eel & I-3e,
u(z".)=—8—n_l_l ((22+82)1/2+5( +62)3/2>f(z z)dz
(A7)

The eigenvalues of Eq. (A7) are given by

1

~ - (Ko(melk]) — melkiKy (melk))), m =2
= ) (A8)

— o (Ko(melk)) + melkiKi (relk))), m =3, .
Now, the eigenvalues 7} and 4] in the directions normal to the fiber
are unchanged from our original expression (20). However, the tan-
gent eigenvalues A are now given by the same expression as
Modified Lighthill 1 (A4), which we recall exhibits a high wave-
number instability (Fig. 1).

APPENDIX B: CONVERGENCE AND ERROR
BOUNDS OF NUMERICAL METHOD

We are interested in obtaining an estimate for the error when
approximating (31) by its discrete approximation (37), which we
denote by

L n
a = gu(f) - ol = | MEFEa = wMs)f. B
) -

This error will depend on the error committed in the numeri-
cal approximation of Eq. (30) by the solution f " of Eq. (33). For
this reason, we first analyze the convergence of Nystrom’s method
(see Ref. 2, Chapter 12.4) in using Eq. (33) to approximate the solu-
tion of Eq. (30). At each quadrature node, we define the error of
this approximation as

e,["] = f(s) —f[»"], for

and let eln] := ((e]")7, ..., (e")™)" denote the error vector. We
want to show that ]|g[n]||‘x‘ — 0 as n—oo. Let f:= (f(s)",
. f(s,)")" and define t/n] :=

i=1,...n, (B2)

T
!, ...,t7)" with components

T = y(si) — of (si) — z,':Kijwjf(sj), (B3)
j

the truncation error for the discrete second kind Eq. (33)—i.e., the
residual obtained replacing f "l by f in Eq. (33). We obtain
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=y—1. (B4)

(x«I+KW)f

It is easily seen using Eq. (30) that

L
o= | K )as ZK.,wJ s, ®9)

which is simply quadrature error, and for any convergent quadra-
ture formula we have

lim ||| = 0. (B6)

n—oc

We next bound the norm of the error " by the norm of "l to
prove the convergence of the method. Subtracting Eq. (33) from Eq.
(B4) we obtain a linear system satisfied by el"/,

(aI + KW)el = —gll. (B7)

From Ref. 2 [Chapter 12.4, Theorem 1244 and Equation
(12.4.51)], we have that for sufficiently large n, say n > n*, the
matrix (o + K W) is invertible and

[[(aI + KW)7'|| <Ci Vn>n' (B8)
Thus we can conclude that

lle"lloe < Nl + KW) 7l [l < Cr[le"le- (B9)

Since C, is independent of n for n > n* and ||II"]||‘x. — 0 as
n — oo, this implies that
lim [le"][.. = 0.
Consider now the quadrature error
L n
sl [ MEf()ds— 3 wM(s)f(s).  (B10)
J-L j=1
From Eq. (B1) we obtain
dr =5 — 3" wM(s)e, (B11)

=

and using Eq. (B7) the total discretization error for our methods is

given by
dn = (1 W

Since both 6" and " are quadrature errors, ||(al + K W)™l
< C for all n > n*, and M is bounded, the method converges at
the same rate as the underlying quadrature.

WM(al + KW) 't 4 8. (B12)

1. Convergence of numerical method for closed loop
geometry

By applying the formula (B12), we now show how one can
achieve spectral convergence in the case of a closed fiber geometry
with constant radius ¢ and periodic integration domain. In this set-
ting, we will use trapezoidal quadrature. We begin by bounding the
norms of the integration kernels to which we apply the trapezoidal
quadrature rules to, namely the integrals (28) and (31). Using this,
and some smoothness assumptions, we are able bound the

scitation.org/journal/phf

quadrature errors r I and & using classical error estimates. This
leads to a bound on the total error d"! for both the force and torque
calculation.

Let C, be a constant such that

()]

From the definition of K(s,s") [Egs. (5
stant radius case, we observe that

<C, for se[ L. (B13)

), (6), and (39)] in the con-

3
K9l < 5 (B14)
with equality when s = s'. From Eq. (38) we have ||M(s)||,, = 1 for

the force calculation, while for the torque calculation, M(s) = X(s)
and therefore

[[M($)]] (B15)

< X .
_S;?_agfull Ol
Therefore, we can bound the integration kernels of Egs. (28) and
(31) by

3
< —C
=5 ¢

(1K (s, s W ()l (B16)

and

1M ()l < (1M (5)] o Co (B17)

Note that in the constant radius case, K(s,s') has the same regular-
ity as X(s). If we assume that X(s), f(s), and M(s) are analytic, then
using [56, Theorem 3.2] we can bound the trapezoidal rule quadra-
ture error from Eq. (B3) by

W 6LC,
||1"I.]||‘30 <—2 _ for i=1,..,n (B18)
g(ean — 1)
Similarly, we can bound Eq. (B10) by
”()[n]H 4L||£'I"(S)||l (B19)

Here a is some constant. Using Eq. (B12), the total discretization
error is therefore bounded as

. T 4LC.
171 < (10" @DWMGa1 + K) 2+ MO ) e
(B20)
Using that ||M]|| < [|M(s)||.., ||[W]|,, = 2 and C, is given by Eq.
(B8), this simplifies to
6CiL 4L||M(s)|| . C2
M < (2= 2O 2
[[d™]] < < 2 T l) - (B21)

Hence, the method shares the same exponential convergence as the
underlying trapezoidal rule. We remark that one could perform an
analogous analysis for open ended fiber geometries with, e.g.,
Gauss-Lobatto quadrature, and derive similar results. Furthermore,
we also remark that one could require less stringent regularity
assumptions on the integration on the kernels or the fiber centerline
X(s), e.g, M(s)f(s) € C¥m+2[—L,L]. Then Ref. 3 (Theorem 5.5) can
be used to derive asymptotic error estimates for r[ I'and 6" of order
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O(h*™*2). Nonetheless, we do observe spectral convergence in
numerical experiments in the following sections, as predicted by the
bound (B21).

APPENDIX C: DISSIPATION MATRIX OF A PROLATE
SPHEROID

The non-dimensionalized body frame resistance tensor R, for
a spheroid with aspect ratio 4 was derived by Oberbeck’ and is
given by

1 1
L] 1 . (Cl)

Yo+ % Yo+ Bo yo+ }»2”/0)
The constants g, o, fo, and y, were calculated by Siewert”” and are
presented for a prolate (4 > 1) spheroid

R, = lén:).diag(

Ko/
Lo = ) (C2)
VT
;.2 ;.Ko
oy = = + : C3
0 Bo ;.2_1 2(12_1)3/2 ( )
-2 ;.Ko
- , Cc4
Yo 21 (;'z 1)3/2 (C4)
0
—c = 0.01
—0.005
0.0025
05| —0.00125
o3
1 ——J
- )
'1 5 r L 4/) 1
-0.5 0 0.5

-0.5 0 0.5
s

()

scitation.org/journal/phf
A—ViF-1
Ko=In| ———1. (C5)
! (,1 + V- 1)

The torques N = (N,‘,Ny,Nz)T that describe the rotational forces
acting on an ellipsoid in creeping Stokes flow in the body frame
were calculated by Jeffery” and are presented in their non-
dimensional form with zero background flow

167/

Ny=——— (142, c6
N, - emh [(1 +;.2)w] (C7)
g 3(o +iz)’o) h
3274
N = S+ ) o

Here o = (wx, 0y, a)z)T is the body frame angular velocity, which
is related to body frame angular momentum by m = Jw. Taking
derivatives of N with respect to m gives for the rotational dissipa-
tion matrix

16/ 1+ 1+ 2 .
R, = ———dia —, , J7L(C9)
T g((ﬁow?vo) (a0 + 1275) (%0 + Bo)
0
—e=0.01
-0.5" —0.005
0.0025
-1 —(.00125
%--1.5' L _J i
25 -
-0.5 0 0.5
S
(b)
0, -
_1»

—c = 0.01
ad —0.005
6! —0.0025
—0.00125
-7 L
-0.5 0.5
S
(d)

FIG. 15. The computed force-per-unit-length £(s) for the prolate spheroid (a), (b) and cylinder with hemispherical caps (c), (d) with centerline aligned with the x-axis. The left fig-
ures show the x-component of the force density for the spheroid (a) and cylinder (c) translating with unit speed in the x-direction, while the right figures show the y-component of
the force density for the spheroid (b) and cylinder (d) franslating with unit speed in the y-direction. Here we use the regularization = 1.1 and take n = 1/ discretization points.
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The full dissipation matrix used for the calculation in Fig. 10 is
given by
R O
Asph = ( 0 Rz>'

APPENDIX D: ENDPOINT BEHAVIOR OF MODEL

(C10)

Here we numerically determine the behavior at the fiber end-
points of the force density f(s) that results from inverting the model
(4). Although the end point behavior of the corresponding slender
body PDE for the “inverse problem” is unknown, it is possible that
decay in f(s) is required to accurately approximate the PDE solu-
tion up to the fiber endpoints. We consider two different free-end
geometries—the slender prolate spheroid and a cylinder with hemi-
spherical caps, both translating with uniform unit velocity—and
note that some decay in fis indeed observed at the endpoints of the
filament (Fig. 15). Note that the prolate spheroid force density
appears to be better behaved than the cylindrical fiber with hemi-
spherical caps, which exhibits erroneous-looking oscillations toward
the fiber ends. This may mean that the model (4) is better suited for
modeling fibers whose radii decay more gradually toward the fiber
endpoints.
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