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ABSTRACT:
In a 2007 experiment conducted in the northern North Sea, observations of a low-frequency seismo-acoustic wave

field with a linear horizontal array of vector sensors located on the seafloor revealed a strong, narrow peak around

38 Hz in the power spectra and a presence of multi-mode horizontally and vertically polarized interface waves with

phase speeds between 45 and 350 m/s. Dispersion curves of the interface waves exhibit piece-wise linear dependen-

ces between the logarithm of phase speed and logarithm of frequency with distinct slopes at large and small phase

speeds, which suggests a seabed with a power-law shear speed dependence in two distinct sediment layers. The

power spectrum peak is interpreted as a manifestation of a seismo-acoustic resonance. A simple geoacoustic model

with a few free parameters is derived that quantitatively reproduces the key features of the observations. This

article’s approach to the inverse problem is guided by a theoretical analysis of interface wave dispersion and reso-

nance reflection of compressional waves in soft marine sediments containing two or more layers of different compo-

sition. Combining data from various channels of the vector sensors is critical for separating waves of different

polarizations and helps to identify various arrivals, check consistency of inversions, and evaluate sediment density.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0002975
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I. INTRODUCTION

Theoretical considerations,1,2 laboratory measure-

ments,3 and results of numerous field experiments4–16 indi-

cate that shear wave speed in granular materials and, in

particular, in unconsolidated marine sediments increases

with depth z below the seafloor and is approximately propor-

tional to a certain power z� of the depth as long as the com-

position of the materials remains unchanged. The power-law

exponent � is probably controlled by the shape and rough-

ness of the grains. The gradient of the shear wave speed (or

shear speed, for brevity) is very large at small z, and the

shear speed experiences large relative changes over several

meters or 10s of meters below the seafloor. Relative changes

in density and compressional wave speed are much smaller,

and these geoacoustic parameters can be modeled as depth-

independent in a surficial layer of constant composition.

Then, power-law depth-dependence of shear speed corre-

sponds to the same power-law dependence on overburden

pressure. Surficial unconsolidated sediments are “soft” in

the sense that their shear rigidity and shear speed are small

compared to the bulk modulus and compressional speed,

respectively. For a more detailed discussion of the power-

law depth-dependence of shear rigidity and additional refer-

ences, see Refs. 2, 3, 17, and 18.

Soft sediments with power-law shear velocity profiles

support horizontally (SH) and vertically polarized (SV)

interface waves, which propagate along the seafloor with

phase and group speeds on the order of the shear speed.10,17

These interface waves are slow in the sense that their phase

and group speeds are small compared to the sound speed in

water and compressional speed in the bottom. The vertically

polarized seismo-acoustic interface waves are usually

referred to as Scholte waves.19–22 The dispersion and polari-

zation properties of slow Scholte waves supported by soft

sediments, shape functions of these waves, and wave energy

distribution between water and the seabed are all quite dif-

ferent from those of the Scholte waves that are supported by

the interface of homogeneous fluid and solid half-spaces.23

Moreover, dispersion properties of the vertically and hori-

zontally polarized slow interface waves prove to be very

similar,10,17 making vector sensors indispensable for identi-

fying the wave types. The distinctive feature of the slow

interface waves, which is readily recognized in their mea-

sured dispersion curves, is a power-law dependence of their

phase and group speeds on frequency. There is a one-to-one

correspondence between the exponents of the power laws

for the frequency dependence of phase or group speeds and

the depth-dependence of the shear speed.10,17 Observations

of the interface waves are of considerable interest because

their dispersion allows one to characterize geotechnical and
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geoacoustic parameters of surficial sediments that are diffi-

cult to measure by other means.7,18–20,24,25

Vector sensors are increasingly employed in underwater

acoustics to characterize seabed properties.26–28 A rich data-

set on wave propagation in the seabed29,30 was obtained in

2007 in the course of shear wave surveying of the Gjøa oil/

gas condensate field in the North Sea off Norway, where a

seabed-coupled mechanical vibrator generated probing sig-

nals in the frequency band from a few to 60 Hz. A long,

densely populated linear array of three-component vector

sensors was employed, which helped to separate vertically

and horizontally polarized waves, identify a number of

interface waves, and measure their phase speeds (Fig. 1).

Measured dispersion curves of the interface waves have

been inverted to retrieve the shear speed profile in the upper

45–50 m of the seabed.22,30

There are two striking features of the vector sensor

data, which have not been previously explored. First, the

vertical and radial components of the measured particle

velocity have sharp peaks around 38 Hz [Fig. 1(a)], which

suggest some kind of a seismo-acoustic resonance.9,31,32

Second, when plotted on the log-log scale, the dispersion

curves of the interface waves exhibit two distinct slopes at

large and small phase speeds [Fig. 1(b)], which suggests that

the seabed contains layers with two different power-law pro-

files of the shear wave speed.7,10,17 In this paper, we re-

examine the experimental results reported by Dong et al.22

with the goal of developing a simple, parsimonious geoa-

coustic model that qualitatively explains and quantitatively

reproduces the key features of the observations. Our

approach to the inverse problem is guided by a theoretical

analysis of seismo-acoustic resonances and interface wave

dispersion in soft sediments containing two or more layers

of different composition.

The remainder of the paper is organized as follows. The

experimental data underlying this work is described in Sec. II.

Approximate analytic dispersion relations of interface waves

supported by the seabed, which consists of two continuously

stratified soft sediment layers overlaying a solid, homogeneous

subbottom, are derived in Secs. III A and III B. The

Wentzel–Kramers–Brillouin (WKB) approximation is

employed in the derivation. The analytic dispersion relations

are used in Sec. III C to find a simple geoacoustic model con-

sistent with the interface wave observations. A physical mech-

anism of resonant reflection of compressional (P) waves by the

seabed and geoacoustic implications of the observed resonant

reflection are investigated in Sec. IV. The resulting geoacoustic

model is compared to alternative models in Sec. V. Section VI

summarizes our findings.

II. EXPERIMENTAL DATA

The data analyzed in this paper were acquired in a 2007

shear-wave survey29,30 of the Gjøa field located in the

Norwegian Channel in the northern North Sea off the south-

ern coast of Norway. The water depth at the experiment site

was 364 m, and the main geological interfaces at the site are

flat. Surficial sediment layers are composed of soft

Holocene clays deposited on glacial and glacio-marine sedi-

ments.29,30 A massive seabed-coupled vibrator generated the

seismo-acoustic wave field. The wave source was developed

by the Norwegian Geotechnical Institute to efficiently gen-

erate low-frequency shear waves of different polarizations;

limited P waves were also radiated by the source.29,30 The

frequency content of the probing signals generated by the

source was approximately from 2 to 60 Hz with a broad

maximum around 37 Hz and width of about 20 Hz at half-

power level (see Fig. 5 in Ref. 29).

The signals were received on a 1-km-long ocean-

bottom cable (OBC), which was deployed partially in water

and partially on the seafloor in a radial direction from the

source. The OBC contained 42 three-component accelerom-

eters with 25-m spacing. To improve the resolution of short

waves, a 600-m-long synthetic aperture with a much shorter

2.5-m receiver spacing was created by dragging the cable in

2.5-m steps.29 Orientations of the three orthogonal receiver

components were determined using airgun signals and used

to represent the data in terms of the vertical and in-line

(radial) and cross-range (tangential) horizontal components.

This proved critical for proper discrimination and identifica-

tion of various arrivals within the complex full field

data.22,29,30 Assuming a horizontally stratified seabed, the

cross-range particle velocity is due to SH shear waves, while

radial and vertical components of the particle velocity are

due to SV shear waves and P waves. Detected arrivals

included head waves, multiply reflected shear waves, and at

least 10 modes of horizontally and vertically polarized inter-

face, or surface, waves.22,29,30

Interface waves were observed at frequencies from

about 2 to 20 Hz. Dispersion curves of the SH interface

waves have been extracted from the cross-range components

of particle acceleration measured on the synthesized aper-

ture horizontal array, while dispersion curves of the SV
interface waves have been measured using the vertical and

radial components of the acceleration.22,30 The dispersion

curves are illustrated in Fig. 1(b). The interface wave disper-

sion curves have been previously inverted by Socco et al.30

and Dong et al.22 to retrieve the depth dependence of the

shear wave speed in the top 40–50 m of the seabed. The sea-

bed was modeled as a stack of homogeneous layers in these

inversions.

Because of limitations on access to proprietary raw

data, this paper focuses on re-analysis of the previously pub-

lished22,29,30 information on interface wave dispersion and

power spectra of signals recorded by the three-component

vector sensors. Available data consists of the frequency

dependence of the phase speed of various interface waves

[Fig. 1(b)], as retrieved by Dong et al.,22 and power spectra

of the vertical, radial, and cross-range components of the

full field. The power spectra22 averaged over multiple

receivers and repeatedly emitted probing signals are shown

in Fig. 1(a). For each of the vertical, radial, and cross-range

components of particle velocity, the average power spectra

are normalized by their respective maxima.
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The main maxima of the power spectrum of the cross-

range component of the field are at frequencies below

20 Hz [Fig. 1(a)]. In addition to broad low-frequency peaks

below 10 Hz, which are associated with SV interface

waves, the power spectra of the vertical and in-line compo-

nents have significantly larger, narrow peaks around 38 Hz.

(A much smaller peak at a similar frequency in the spec-

trum of the cross-range component is probably due to

imperfect separation of the measured acceleration into the

vertical, radial, and cross-range components resulting from

uncertainties in the measurements of spatial orientation of

individual vector sensors.) These sharp peaks are sugges-

tive of a resonance phenomenon occurring in either the

experimental equipment or the environment. In particular,

as already mentioned, the source spectrum is maximum at

about 37 Hz. However, the bandwidth of the source spec-

trum at half-power is at least 20 times larger than the sub-

1-Hz width of the spectral peaks of the wave field [Fig.

1(a)]. We interpret the sharp spectral peaks around 38 Hz

as a seismo-acoustic resonance originating from wave

propagation conditions at the experimental site. It is shown

in Secs. IV and V that such an interpretation is consistent

with available geological information and results of inver-

sion of the interface wave data.

III. INTERFACE WAVES

A. Asymptotic dispersion relations of horizontally
polarized interface waves

Consider a model of soft marine sediments (Fig. 2),

which consists of two layers with power-law shear velocity

profiles:

cs zð Þ ¼ a1z�1 ; 0 < z < h; (1)

cs zð Þ ¼ a2 zþ z0ð Þ�2 ; h < z < H: (2)

The layers are located between the water column at

z < 0 and a homogeneous solid half-space (subbottom) at

z > H. Here h is the thickness of the upper sediment layer,

and H is the vertical extent of the soft sediments. Physical

considerations and available observations indicate that

0 � �1; 2 < 1.9,10,17 Shear and P wave speeds and density in

the subbottom are csb, clb, and qb, respectively. Sound speed

and density of water near the seafloor are cw and qw; P wave

speeds and densities in respective sediment layers are cl1, q1

and cl2, q2. For simplicity, we assume that variations of

the sediment density and P wave speed are negligible

within each soft sediment layer. We will also assume that

shear speed increases steadily with depth, which implies

a1h�1 � a2ðhþ z0Þ�2 and a2ðH þ z0Þ�2 � csb:
The increase of the shear speed cs with depth below

the seafloor creates a waveguide for shear waves. SH inter-

face waves are normal modes of this waveguide. Despite

the simplicity of the geoacoustic model, the wave equation

FIG. 1. (Color online) Data of a 2007 experiment in the North Sea as processed by Dong et al. (Ref. 22). (a) Power spectra of the vertical particle velocity

(top) as well as radial (middle) and cross-range (bottom) components of the horizontal particle velocity. The spectra are averaged over 79 three-component

vector sensors in a 390-m-long linear array. [Adapted from Fig. 3 in Ref. 22.] (b) Dependence of the phase speed un of interface waves on frequency. The

phase speed values retrieved by Dong et al. (Ref. 22) from the experimental data are shown by crosses and circles, and plotted on log-log scale. The crosses

and circles correspond to horizontally and vertically polarized waves, respectively. Superimposed straight lines represent the power-law frequency depen-

dencies with two different exponents (two black lines each).

FIG. 2. (Color online) Depth dependence of the shear wave speed cs in the

seabed. Two soft sediment layers 0 < z < h and h < z < H with power-law

depth dependencies overlie a homogeneous solid subbottom.
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cannot be solved analytically in terms of known mathemat-

ical functions for arbitrary values of exponents �1 and

�2.9,17 We will use a WKB-based asymptotic approach to

derive the dispersion relation of the interface waves.

Disregarding reflection at the interface z ¼ h, the normal

mode dispersion equation can be written as follows in the

WKB approximation:23

V1V2 exp 2ixu zlbð Þ
� �¼1; u zlbð Þ¼

ðzlb

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2

s zð Þ�u�2

q
dz:

(3)

Here x stands for wave frequency, V1 and V2 are plane-

wave reflection coefficients at the upper, z ¼ 0, and lower,

z ¼ zlb, boundaries of the waveguide. The lower boundary

is either the turning point z ¼ zt, where shear speed equals

the phase speed u of the normal mode: cs(zt) ¼ u, or the

lower boundary z ¼ H of the soft sediment, if there are no

turning points. Note that the phase integral steadily

increases with u.

Introducing a new integration variable, w ¼ u2=c2
s � 1,

reduces the phase integral u(z) in any layer with a power-

law dependence of cs to

u zlbð Þ ¼
�1

�u

u2

a

� �1=� ðw zlbð Þ

w 0ð Þ
w1=2 wþ 1ð Þ�1�1=�

dw:

This is a standard integral [see, e.g., Eq. (1.2.4.3) in

Ref. 33], which can be expressed in terms of a hypergeomet-

ric function34 for arbitrary integration limits but simplifies

when one of the limits is either w ¼ 0 or infinity. Note that

w ¼ 0 at the turning point z ¼ zt, and w!þ1 when z! 0.

All normal modes are evanescent waves in the subbot-

tom and have phase speeds u < csb. When 0 < u < a1h�1 ;
the turning point z ¼ zt of the wave is located in the upper

sediment layer at zt ¼ ðu=a1Þ1=�1 : Then, integration is over

the semi-infinite interval 0 < w < þ1 in the phase integral,

and we obtain

u ztð Þ ¼
u�1þ1=�1

a
1=�1

1

ffiffiffi
p
p

C 1� �1ð Þ=2�1ð Þ
2C 1=2�1ð Þ (4)

in agreement with Ref. 17. Here C(�) is Gamma function

(see Chap. 6 in Ref. 34).

When a1h�1 � u � a2ðhþ z0Þ�2 ; integration in the

phase integral is from z ¼ 0 to z ¼ h. The latter corresponds

to a finite value of w. Using Eq. (1.2.4.3) in Ref. 33, we find

u hð Þ ¼ u�1þ1=�1

a
1=�1

1

" ffiffiffi
p
p

C 1� �1ð Þ=2�1ð Þ
2C 1=2�1ð Þ

� 1

3�1

u2

a2
1h2�1

� 1

 !3=2

� F
3

2
; 1þ 1

2�1

;
5

2
; 1� u2

a2
1h2�1

 !#
: (5)

Here F(A, B; C; D) is the hypergeometric function, also

known as the Gauss hypergeometric series or 2F1(A, B; C;

D) hypergeometric function (see Chap. 15 in Ref. 34).

When a2ðhþ z0Þ�2 < u < a2ðH þ z0Þ�2 ; the wave has a

turning point at zt ¼ ðu=a2Þ1=�2 � z0 within the lower sedi-

ment layer. Then, the phase integral is a sum of the integral

in the upper sediment layer, which is given by Eq. (5), and

an integral over h < z < zt in the lower sediment layer.

Similar to derivation of Eq. (5), we obtain

u ztð Þ ¼ u hð Þ þ u�1þ1=�2

3�2a
1=�2

2

u2

a2
2 hþ z0ð Þ2�2

� 1

 !3=2

� F
3

2
; 1þ 1

2�2

;
5

2
; 1� u2

a2
2 hþ z0ð Þ2�2

 !
: (6)

Finally, when a2ðH þ z0Þ�2 � u < cbs; there are no

turning points, and the phase integral is given by

u Hð Þ ¼ u hð Þ þ þ u�1þ1=�2

3�2a
1=�2

2

"
u2

a2
2 H þ z0ð Þ2�2

� 1

 !3=2

� F
3

2
; 1þ 1

2�2

;
5

2
; 1� u2

a2
2 H þ z0ð Þ2�2

 !

� u2

a2
2 hþ z0ð Þ2�2

� 1

 !3=2

� F
3

2
; 1þ 1

2�2

;
5

2
; 1� u2

a2
2 hþ z0ð Þ2�2

 !#
:

(7)

In the WKB approximation, the reflection coefficient

from the turning point equals V2 ¼ exp ð�ip=2Þ:23 The

reflection coefficient from the boundary z ¼ 0, where cs van-

ishes and the shear speed gradient becomes infinite, has

been found in Refs. 9 and 17 and equals

V1 ¼ exp
�ip�1

2 1� �1ð Þ

� �
(8)

for SH waves. Using these reflection coefficients V1 and V2

from the dispersion Eq. (3), we find the frequency of the SH
interface wave with a turning point in one of the sediment

layers:

fn ¼
n

2
þ 4�1 � 3

8 1� �1ð Þ

� �.
u ztð Þ: (9)

Here n ¼1, 2, … is the order of the interface wave.

Dependence of the interface wave frequency on the phase

speed enters Eq. (9) via u(zt). Higher-order interface waves

(normal modes) have higher frequencies at the same value

of the phase velocity u and higher phase speeds at the same

value of frequency. Explicit expressions for the phase inte-

gral in Eq. (9) are given by Eqs. (4) and (6) when the turning
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point is located in the upper or lower sediment layer,

respectively.

When there are no turning points and a2ðH þ z0Þ�2 �
u < cbs; the wave is reflected from the boundary z ¼ H. The

plane wave reflection coefficient of SH waves23 at this

boundary is

V2 ¼ exp �2iUSHð Þ;

USH ¼ arctan

"
qbc2

sb

q2a2
2 H þ z0ð Þ2�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c�2
sb u2

a�2
2 H þ z0ð Þ�2�2 u2 � 1

s #
: (10)

From the dispersion Eq. (3), we find

fn ¼
n

2
þ 5�1 � 4

8 1� �1ð Þ þ
USH

2p

� �.
u Hð Þ; (11)

where the phase integral is given by Eq. (7). Finally, when

a1h�1 � u � a2ðhþ z0Þ�2 ; reflection occurs at z ¼ h. The

result is similar to Eq. (11) and differs by replacement of

u(H) with u(h), Eq. (5). In addition, in the expression for

the phase of the reflection coefficient in Eq. (10), one should

use elastic parameters in the vicinity of the boundary z ¼ h
and replace q2 with q1, qb with q2, csb with a2ðhþ z0Þ�2 ;
and a2ðH þ z0Þ�2 with a1h�1 (see Fig. 2).

In the special case, where a1 ¼ a2, �1 ¼ �2, z0 ¼ 0, and

�1 ! 0 in Eqs. (1) and (2), we have a homogeneous solid

layer with the shear speed cs ¼ a1 that is located between

homogeneous fluid (z < 0) and solid (z > H) half-spaces. In

this limit, our problem reduces to the textbook setting for

Love interface waves.35 The resulting waveguide for SH
waves is also equivalent to the acoustic waveguide in a

homogeneous fluid layer between a rigid boundary at z ¼ 0

and a homogeneous fluid half-space z > H.23 In the limit �1

! 0, Eq. (8) gives the correct result V1 ¼ 1 for the reflection

coefficient of SH waves at the solid-fluid interface,23 and

Eq. (3) gives uðHÞ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2

1 � u�2
p

for the phase integral.

An inspection shows that the interface wave frequencies fn
that are predicted by Eq. (11) with �1 ¼ 0 agree with the

textbook result35 for the Love wave dispersion in this spe-

cial case.

Equations (4) and (9) show that frequency fn of

n-th interface wave is proportional to u1�1=�1 when the

turning point is located in the upper sediment layer. On the

logarithmic scale, the slope of the dispersion curve,

dðln fnÞ=dðln uÞ ¼ 1� ��1
1 , depends only on the shear-speed

power-law exponent in Eq. (1).

When the phase speed u is much larger than the shear

speed around z ¼ h, the turning point is located deep in the

lower sediment layer, and the vicinity of the turning point

gives the main contribution into the phase integral in Eq.

(3). Indeed, it follows from Eqs. (5), (6), and the

equation34

lim
w!1

w2 � 1ð Þ3=2
F

3

2
; 1þ 1

2�
;
5

2
; 1� w2

� �� �

¼ 3
ffiffiffi
p
p

�C 1� �ð Þ=2�
� �

2C 1=2�ð Þ (12)

that under these conditions u(zt) is given approximately by

Eq. (4) with a1 and �1 replaced with a2 and �2, respectively.

Then, the slope of the dispersion curves dðln fnÞ=dðln uÞ
¼ 1� ��1

2 is controlled by the shear-speed power-law expo-

nent in Eq. (2).

The dispersion equations, which are derived for SH
interface waves in this section and for P–SV waves in Sec.

II B, describe a gradual transition between the limiting cases

of the constant slope of the dispersion curves.

B. Dispersion relations of vertically polarized
interface waves

Unlike SH shear waves, SV shear waves are coupled to

P waves by the shear-speed gradients. In the case of the

power-law shear velocity profile, the coupling is particularly

strong near the seafloor z ¼ 0.17 P–SV coupling leads to the

appearance of two types of slow interface waves that are

supported by soft marine sediments, the fundamental mode

and the main sequence modes.10,17 The main sequence

modes are uncoupled from the water column, just like SH
interface waves. In the WKB approximation, the dispersion

Eq. (3) of the main sequence modes differs from that for SH
waves by having a different reflection coefficient17 V1 from

the boundary z ¼ 0 [cf. Eq. (8)]:

V1 ¼ exp
ip 2� 3�1ð Þ
2 1� �1ð Þ

� �
: (13)

SV reflection coefficient at interfaces, where parameters

of the solid are discontinuous, is also different from the

reflection coefficient Eq. (10) of SH waves. In particular, the

SV reflection coefficient from the boundary z ¼ H can be

written as V2 ¼ exp ð�2iUSVÞ; where

USV ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

C2

r
Mu4

4C4
þ N�2 �M � u2

2C2

� �2
" #

� N�2 �M þ M � 1ð Þ u2

2C2

� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2u2

C2
� 1

r
Mv4

4C4
þ N�2 �M þM

u2

2C2

� �2

� N�2 �Mð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

C2

r" #
2
666664

3
777775; (14)
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C ¼ csb, M ¼ qb/q2, and N ¼ a�1
2 ðH þ z0Þ��2 csb: C, N, and

M have the meaning of the shear speed below the boundary,

the ratio of the shear speeds just below and just above the

boundary, and the ratio of densities above and below the

boundary, respectively. Equation (14) has been obtained

from the general equation for the plane wave reflection coef-

ficient of SV waves at solid-solid interface [see, e.g., Eq.

(4.2.9) in Ref. 23] in the limit when cs=cl ! 0 in both

solids.

Solving the dispersion Eq. (3) for the main sequence

modes with appropriate reflection coefficients V1 and V2, we

obtain

fn ¼
n

2
þ 2�1 � 1

8 1� �1ð Þ

� �.
u ztð Þ (15)

for the waves with a turning point in one of the sediment

layers. Here, as in Eq. (9) for SH modes, the phase integral

is given by Eq. (4), when 0 < u < a1h�1 ; and by Eq. (6),

when a2ðhþ z0Þ�2 < u < a2ðH þ z0Þ�2 . When a2ðH þ z0Þ�2

� u < cbs; waves are reflected from the boundary z ¼ H,

and we find

fn ¼
n

2
þ 3�1 � 2

8 1� �1ð Þ þ
USV

2p

� �.
u Hð Þ (16)

from Eqs. (3), (13), and (14). The phase integral in Eq. (16)

is given by Eq. (7). Finally, when a1h�1 � u � a2ðhþ z0Þ�2 ;
waves are reflected at z ¼ h. The result in this case

differs from Eq. (16) by substitution of u(h), Eq. (5),

for u(H). In addition, C ¼ a2ðhþ z0Þ�2 ; M ¼ q2/q1, and

N ¼ a�1
1 h��1 a2ðhþ z0Þ�2 in Eq. (14) for this boundary.

The accuracy of the WKB-based asymptotic dispersion

equations increases with increasing mode order,17 and the

results may not be reliable at n ¼ 1. In addition, the WKB

approximation gives discontinuous results and is not accu-

rate when turning points approach and cross interfaces,

where elastic parameters are discontinuous, i.e., in the vicin-

ity of u ¼ a1h�1 ; u ¼ a2ðhþ z0Þ�2 ; and u ¼ a2ðH þ z0Þ�2 :
An alternative approach to approximating the disper-

sion equation, which is particularly useful for low-order

modes, was developed in Ref. 17. The approach takes

advantage of the availability of an exact solution, when the

power-law exponent �1 ¼ 0.5, and builds a perturbation the-

ory with respect to the parameter j�1 � 0.5j that is assumed

to be small compared to unity. In marine sediments, j�1

� 0.5j < 0.5 and is often rather small. When the shear speed

in soft sediments follows the power law, by neglecting terms

of second and higher order in j�1 � 0.5j, the dispersion

equation of the main sequence of P–SV interface waves can

be written as17

fn ¼
C 1=2�1ð Þa1=�1

1 u1�1=�1

2
ffiffiffi
p
p

C 1� �1ð Þ=2�1ð Þ

�
2nþ 2�1 � 1ð Þ

� 3� 2�1

2� 2�1

þ 1

n
þ 2nw nð Þ � 2n ln n

� ��
; (17)

for arbitrary n ¼ 1, 2, …. Under the same assumptions, the

dispersion equation of the fundamental mode is17

f0 ¼
2a1ð Þ1=�1 u1�1=�1

4p 1þ q1=qwð Þ1=2�1
exp

2�1 � 1

2�1

1� cð Þ
� �

: (18)

Here c ¼ 0.577 21… is the Euler’s constant, and w stands

for the Digamma function.34 The counterpart of Eq. (17) for

SH waves is17

fn ¼
C 1=2�1ð Þa1=�1

1 u1�1=�1

2
ffiffiffi
p
p

C 1� �1ð Þ=2�1ð Þ

	
2n� 1

þ 2�1 � 1ð Þ 2n� 1ð Þ w nð Þ � ln n� 1

2

� �� �

þ 2�1 � 1

2� 2�1



: (19)

As discussed in Ref. 17, Eqs. (17) and (19) can be used

for interface waves in the case of a multi-layered seabed,

provided the turning point is located in the upper soft sedi-

ment layer with a power-law shear speed profile. Equations

(17) and (19) complement the asymptotic dispersion Eqs.

(9) and (15) for the low-order, low-speed modes, for which

the WKB-based results are either unavailable or not reliable.

C. Inversion of the interface wave dispersion data

We employ the analytical dispersion relations obtained

in Secs. III A and III B as the forward model to match the

measured values (Sec. II) of phase speeds of SH and SV
interface waves. A nonlinear least-squares method is used to

fit all the data for both wave types, simultaneously. Data

from the fundamental P–SV mode and the lowest order

(n¼ 1) SH mode are fit to the dispersion curve for the one-

layer model, i.e., Eqs. (18) and (19), respectively. Data for

the higher-order modes are fit to the asymptotic dispersion

relations, Eqs. (9) and (15), for the two-layer model.

Simultaneously fitting the data for all interface waves to

multiple theoretical dispersion curves reduces the goodness

of fit for any one dispersion curve, but it ensures consistency

between sediment parameters estimated across all the

curves.

It is assumed in the inversion that z0 ¼ 0 in Eq. (2) and

that all modes have turning points above the bottom z ¼ H
of the second sediment layer. Then, the geoacoustic model

contains six unknown parameters: depth h of the boundary

between sediment layers, the density ratio qw /q1, and the

power-law parameters a1, �1, a2, �2 in Eqs. (1) and (2).

Results of the inversion, including 95% confidence bounds

of the estimated parameters, are shown in Table I. The esti-

mated value of the density ratio qw /q1¼ 0.537 in Table I

corresponds to the density q1 ¼ 1910 kg/m3 in the top 5.6 m

of the seabed.

These parameters are used to generate a dispersion

curve for each P–SV and SH mode, which are drawn as solid

lines in Figs. 3(a) and 3(b) for comparison with the
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experimental data. A dotted line marks the maximum phase

speed with turning points in the first layer, u ¼ a1h�1 ; and a

dashed line marks the minimum phase speed with turning

points in the second layer, u ¼ a2h�2 : All but one of the data

points for the fundamental (n ¼ 0) P–SV and the first SH
modes lie below these lines, justifying the use of the single-

layer model for them. The dispersion curve for the mode n
¼ 1 in the main sequence of P–SV modes is matched with

larger errors than the other modes ostensibly because the

WKB approximation becomes more accurate as mode num-

ber n increases.

Line 1 in Fig. 3(c) shows the shear speed profile as a

function of depth using the parameters from Table I and

Eqs. (1) and (2). Line 2 is the multi-layer model from

Dong et al.22 As noted in that paper, a single power-law

profile is not a good fit for the data. Our two-layer model is

a better fit for the data and is in reasonable agreement with

the multi-layer inversion result, as discussed in more detail

in Sec. V. The maximum phase speed in the data set, 350

m/s, produces the greatest turning depth, 42.5 m. These

data cannot be used to estimate shear speeds at depths

greater than this.

IV. RESONANT REFLECTION OF COMPRESSIONAL
WAVES

In this section we investigate the hypothesis that the

strong, narrow peaks in the observed power spectra of verti-

cal and radial components of particle velocity [Fig. 1(a)]

result from the propagation conditions of P–SV waves at the

site of the experiment. We offer a physical interpretation of

these observations as resulting from resonantly enhanced

reflection from the layered seabed, relate the resonance to

the shear speed inversion results, and discuss the geoacous-

tic information contained in the peak frequency fp ¼ 38 Hz.

Seismo-acoustic resonances are often observed when

surficial marine sediments have low shear speeds, but at

much lower frequencies between about 0.3 and 7.5 Hz (see,

e.g., Refs. 9, 31, and 32). Those resonances arise due to

reflection of shear waves and, unlike the results illustrated in

Fig. 1(a), are characterized by a large ratio of horizontal-to-

vertical particle velocity amplitudes and do not exhibit a

large difference between amplitudes of two orthogonal hori-

zontal components of the particle acceleration.9 In the North

Sea experiment discussed in this paper, the peak occurs at

the frequency that is considerably larger than the frequen-

cies of observed surface waves and is, therefore, likely to be

caused by P waves. The travel time 1/f corresponding to the

peak frequency is smaller than acoustic travel time from the

source on the seafloor to the ocean surface. Thus, any inter-

ference phenomena or resonances responsible for the

TABLE I. Geoacoustic inversion parameters and results.

Parameter Unit Estimated Value 95% Confidence Bounds

qw /q1 — 0.537 (0.479, 0.596)

h m 5.57 (5.03, 6.11)

a1 ð1mÞ�1 m/s 46.3 (46.0, 46.7)

�1 — 0.288 (0.277, 0.300)

a2 ð1mÞ�2 m/s 24.4 (22.5, 26.3)

�2 — 0.710 (0.677, 0.742)

FIG. 3. (Color online) Results of an inversion of measured dispersion curves of the interface waves for depth dependence of the shear speed. (a)

Comparison of the theoretical frequency dependence of the interface wave phase speed in an optimum two-layer model (solid lines) with measured phase

speeds of P–SV interface waves. Error bars of measurements (Ref. 22) are shown. (b) Same for measured phase speeds of SH interface waves. Mode orders

nH and nV of, respectively, horizontally and vertically polarized interface waves are shown in the figure. Dashed and dotted lines show inverted values of the

shear speed below and above the interface z ¼ h between the soft sediment layers. (c) Comparison of the results of the parsimonious two-layer inversion (1)

with an inversion in terms of a large number of homogeneous layers (Ref. 22) (2). The shaded region is the overlap of 95% confidence intervals of the shear

speed profile as obtained in Ref. 22 from the separate Bayesian inversions of the dispersion curves of the horizontally and vertically polarized interface

waves.
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observed peak should be explained in terms of the ocean

bottom properties.

Geoacoustic inversion of the measured dispersion

curves of interface waves (Sec. III C) reveals a boundary

between sediment layers at h � 5.6 m below the seafloor.

Shear speeds just above and just below the boundary are

approximately 76 and 83 m/s, respectively, which are much

smaller than the P wave speeds cl in the sediments. Surficial

sediments at the experimental site are described as soft

Holocene clays.29,30 For such sediments, cl is expected to be

somewhat less than the sound speed in water near the bot-

tom, cw, and increase with the depth below seafloor.7,18,36

We will show that the power spectrum peak can be

explained by the interference of P waves reflected from the

seafloor and the boundary z ¼ h within sediments. Consider

first a simplified geoacoustic model, where shear rigidity is

neglected at z < h, i.e., the top layer of the bottom is approx-

imated by a homogeneous fluid with sound speed cl1 [Fig.

4(a)]. The ocean bottom at z > h is modeled as a homoge-

neous solid half-space with P wave speed cl2 and shear

wave speed cs2. The reflection coefficient of a plane acoustic

wave incident from water on the seafloor will be infinite

when the following condition23 is met:

V1V2 exp 2ixh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2

l1 � u�2

q� �
¼ 1: (20)

Equation (20) is similar to Eq. (3) but refers to P waves, and

reflection coefficients V1 and V2 have a different meaning.

Here V1 and V2 are plane-wave reflection coefficients at

z¼ 0 and z ¼ h for sound waves in the layer 0 < z < h. As

in Eq. (3), V1 and V2 are the reflection coefficients for inci-

dence from below and from above, respectively. In Eq. (20)

u has the meaning of the phase speed of the trace of sound

waves on a horizontal plane; in terms of u and wave fre-

quency x, the horizontal component of the wave vector n
¼ x/u. Equation (20) coincides with the dispersion equation

of acoustic normal modes with phase speed u in the wave-

guide formed by the layer 0 < z < h.

For propagating (as opposed to evanescent) plane waves

in the layer, the absolute values of reflection coefficients V1

FIG. 4. (Color online) P wave resonance in a stratified seabed. (a) Geometry of resonance reflection of P waves. Arrows illustrate incident, reflected, and

transmitted P waves. Constant P wave speeds in different layers are indicated in the figure. A sketch of the depth dependence of the shear speed is shown

for orientation. (b) Relation between the P wave speeds in the upper (0 < z < h) and lower (h < z < H) clay layers as derived from the observed resonance

frequency for three values of the ratio qw/q1 of densities of the water and of the upper clay layer: 0.537 (1), 0.75 (2), and 0.9 (3). (c) Absolute value of the

reflection coefficient V2 of plane P waves from interface z ¼ h of two solids with compressional speeds cl1 < cl2 and shear speeds cs1 < cs2. The wave is inci-

dent from the solid with the smaller wave speed. In the figure, cl1/cl2 ¼ 0.95, cl1/cs1 ¼ 20, and the ratio of densities of the two solids q2/q1 ¼ 1.2. The angle

of incidence hl is related to the trace velocity u of the wave by the equation sin hl ¼ cl1/u. (d) An expanded view of the part of figure (c) at jV2j > 0.85 and

0.9 < cl1/u < 1.
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and V2 do not exceed unity. For the condition in Eq. (20) to

be met, jV1j and jV2j should be equal to 1 simultaneously.

The reflection coefficient of a plane sound wave in fluid

from a solid half-space is23

V2 ¼
Zl cos22hs þ Zs sin22hs � Z

Zl cos22hs þ Zs sin22hs þ Z
: (21)

Here Zs and Zl are impedances of shear and P waves at z
> h; Z is the impedance of P waves at 0 < z < h; and hs is

the angle that wave vector of the shear wave, below the

interface, makes with the normal to the interface z ¼ h:

hs ¼ arcsin
cs2

u
; Zs ¼

q2cs2

cos hs
;

Zl ¼
q2cl2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
l2=u2

q ; Z ¼ q1cl1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

l1=u2

q : (22)

For a propagating P wave incident on a solid half-space

with a shear speed smaller than compressional speed cl1, hs

and impedances Z and Zs are real and positive according to

Eq. (22). Then, it follows from Eq. (21) that jV2j < 1 unless

u ¼ cl2. When u ¼ cl2, impedance Zl is infinite, and V2 ¼ 1.

This property of the reflection coefficient has a simple phys-

ical meaning. Acoustic waves cannot be totally reflected

from the solid half-space because a part of the incident

energy is carried away from the boundary by shear waves in

the solid. The only exception occurs when the impedance of

the refracted P wave in the solid becomes infinite at u ¼ cl2,

and the amplitude of the shear wave vanishes.23

The condition jV1j ¼ 1 will be satisfied at u ¼ cl2

provided

cl1 < cl2 < cw: (23)

This inequality ensures that the plane wave is totally

reflected at the fluid-fluid interface z ¼ 0. The reflection

coefficient from the top boundary of the layer, for incidence

from below, is

V1 ¼ exp �2iarctan
q1

qw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2c�2

w

u2c�2
l1 � 1

s0
@

1
A

2
4

3
5 (24)

at total internal reflection.23 Hence, the resonance condition

in Eq. (20) will be met at frequencies fl,j that satisfy the fol-

lowing equation:

2fl;jh

cl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

l2

c2
l1

� 1

s
� 1

p
arctan

q1

qw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

l2c�2
w

c2
l2c�2

l1 � 1

s0
@

1
A ¼ j;

j ¼ 0; 1; 2; …: (25)

The above derivation of the resonance conditions in

Eqs. (23) and (25) extends an earlier discussion by Duncan

et al.37 of frequencies with sharply reduced transmission

losses in an underwater waveguide with a homogeneous

solid bottom, when the sound speed in water is larger than

the shear wave speed and smaller than the P wave speed in

the bottom. The fluid-fluid boundary at z ¼ 0 in our problem

reduces to a pressure release boundary in the limit qw ! 0.

In this limiting case, the arctangent in Eq. (25) is replaced

with p/2, and our result reduces to that of Ref. 37. When

qw! 0, jV1j ¼ 1 at all incidence angles and for any cw, and

the requirement cl2 < cw in Eq. (23) does not apply.

The lowest-frequency P wave resonance corresponds to

j ¼ 0 in Eq. (25) and occurs at the frequency

fl;0 ¼
cl2

2ph
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

l2c�2
l1 � 1

q arctan
q1

qw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

l2c�2
w

c2
l2c�2

l1 � 1

s0
@

1
A:

(26)

Subsequent resonances are equally spaced in frequency with

the spacing

fl;jþ1 � fl;j ¼
cl2

2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

l2c�2
l1 � 1

q : (27)

Note that the frequency difference fl, j þ 1 – fl, j > cl1/2h.

Under the conditions of the North Sea experiment, where h
� 5.6 m, the frequency spacing exceeds 85 Hz for all rea-

sonable values of cl1 > 1000 m/s, and—in agreement with

the observations22—only one resonance, fl,0, is observed

within the 2–60 Hz frequency band of the source.

With the resonance frequency fl,0, layer thickness h, and

sound speed in water known, Eq. (26) relates three geoa-

coustic parameters: P wave speeds cl1 and cl2 in two sedi-

ment layers and the ratio qw /q1 of water and sediment layer

densities [Fig. 4(b)]. The value qw /q1 ¼ 0.537 has been

obtained from the interface wave data (Table I). If cl2 were

retrieved from, say, measured travel times of compressional

head wave data,38,39 cl1 could be unambiguously determined

from Eq. (26), and vice versa. In the North Sea experiment,

the nondimensional parameter fl,0 h/cw � 0.14 is small.

Then, Eq. (26) provides a strong constraint on deviations of

the ratios c11/cw and especially cl2/cw from unity [Fig. 4(b)].

The findings that c11 and c12 are smaller than but close to

the sound speed in water are consistent with the available

geologic information about surficial sediments30 and expect-

ations for P wave speeds in soft clays.7,18,36

In the above discussion, we modeled the top sediment

layer 0 < z < h as a fluid. To justify the application of the

fluid-solid model to the interface z ¼ h between sediment

layers, it should be noted first that the layer thickness h
¼ 5.57 m is small compared to the P wave wavelength cl1/fp
� 40 m. For P waves, the upper layer will act as a homoge-

neous layer with some effective (averaged) parameters.

Given the very fast relative variations of the shear rigidity

with depth and that shear rigidity is extremely small in the

upper part of the layer, the effective shear speed will be

much smaller than the 73 m/s shear speed just above the

boundary z ¼ h. Similarly, the shear modulus increases by

the factor of �20 over the first 40 m below the boundary

(see Table I). In a homogeneous half-space model of the
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sediments at z > h, the effective shear speed should be con-

siderably larger than the 85 m/s value just below the inter-

face as given by the geoacoustic inversion of the interface

wave data. Hence, reflection of P waves from the boundary

z ¼ h should be treated as reflection at a solid-solid interface

with a large contrast in shear speeds.

Figure 4(c) illustrates the angular dependence of the

reflection coefficient V2 of a plane P wave from the interface

of two homogeneous solids with a large contrast between

shear speeds (cs2� cs1). The wave is incident from the solid

with a smaller shear and compressional speeds (cl2 > cl1).

Incidence angle hl of the wave is related to the trace velocity

u by the equation sinhl ¼ cl1/u. The reflection coefficient is

calculated using Eqs. (4.2.8), (4.2.13)–(4.2.15) in Ref. 23.

The equations are exact but cumbersome and will not be

reproduced here. V2 is real-valued at 0 � u � cl2 and posi-

tive at u ¼ cl2. Note that jV2j is relatively small at steep and

moderate incidence angles and, just like reflection coeffi-

cient Eq. (21) from a fluid-solid interface, has a sharp

maximum at u ¼ cl2 [Figs. 4(c) and 4(d)]. The value of

jV2(u ¼ cl2)j is close to unity, and the sharp local maximum

of jV2j leads to resonance reflection of P waves from the

layer 0 < z < h at the frequencies satisfying Eq. (25) as in

the case of reflection from a fluid layer between fluid and

solid half-spaces. In this model, the sharpness of the

observed resonance peaks [see Fig. 1(a)] is related to the

sharpness of the angular dependence of the reflection coeffi-

cient around its local maximum at u ¼ cl2 in Fig. 4(d).

When the layer 0 < z < h has small but finite shear

rigidity, the reflection coefficient V1 from the upper bound-

ary z ¼ 0 of the layer deviates from the reflection coefficient

Eq. (24) at a fluid-fluid interface. The reflection coefficient

of P waves in a solid at the solid-fluid interface is

V1 ¼
Z � Zl cos22hs þ Zs sin22hs

Z þ Zl cos22hs þ Zs sin22hs

(28)

(see, e.g., Eq. (4.2.37) in Ref. 23). The reflection coefficient

is similar to that of the plane wave incident on the interface

from the fluid side, Eq. (21). At boundary z ¼ 0,

hs ¼ arcsin
cs1

u
; Zs ¼

q1cs1

cos hs
;

Zl ¼
q1cl1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
l1=u2

q ; Z ¼ qwcwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

w=u2
p (29)

in Eq. (28). When shear speed cs1 is small, hs and Zs are pro-

portional to the small parameter cs1/u 	 1. When cl1 � u
� cw, Z is purely imaginary, and it follows from Eq. (28)

that jV1j ¼ 1 up to terms of the third order in cs1/u; the phase

of the reflection coefficient differs from its value in Eq. (24)

(i.e., at cs1 ¼ 0) by terms O((cs1/u)2). Thus, deviations of V1

from Eq. (24) are negligible.

Together with the above analysis of V2 [Figs. 4(c) and

4(d)], these findings justify application of the resonance con-

ditions Eqs. (23) and (25) in our problem.

V. DISCUSSION

Identification of the fundamental mode of P–SV inter-

face waves as the only mode that is sensitive to sediment

density has allowed us to retrieve an estimate qw/q1

¼ 0.537 of the density contrast between water and the sedi-

ment layer 0 < z < h. In previous geoacoustic inver-

sions22,30 of the same data set, density was not retrieved. In

the two density models postulated in Ref. 30 on the basis

of the available geologic information at the experimental

site, the density ratio qw /q1 ¼ 0.574–0.583, if the average

of density in the upper 6 m of the sediments is taken for q1.

These values are close to the value retrieved in Sec. II C

and are within the uncertainty interval of that estimate, see

Table I.

Similarly, depth-independent P wave speed cl ¼ cw in

the seabed was postulated in Ref. 30. In Ref. 22, interface

wave dispersion curves were found to be insensitive to the

compressional speed, which was also assumed to be depth-

independent. The relatively small deviations of cl1 and cl2

from cw that are derived in Sec. IV from the measured fre-

quency of the P wave resonance, are consistent with the

rough depth-independent models.22,30 Furthermore, the

power spectrum data provides strong constraints on varia-

tions of the P wave speed across the seafloor and within top

sediment layers [Fig. 4(b)].

Inversion of the interface wave dispersion data is

accomplished in Sec. II C by representing the upper 40–50

m of the seabed by two layers with power-law profiles of the

shear speed. The model is motivated by the observation of

two distinct slopes in log-log representation of the disper-

sion curves [Fig. 1(b)]. To assess this shear-speed model, it

is compared here to several alternative geoacoustic models

of soft marine sediments. We have considered three addi-

tional models of the shear speed depth dependence: single

power-law layer, three power-law layers, and two power-

law layers on top of a homogeneous half-space. In the last

two models, csðzÞ ¼ a2z�2 at h < z < H. Below the bottom

of the second layer, at z > H, csðzÞ ¼ a3z�3 in the three-layer

model; in the two-layer plus half-space model, the shear

speed and density in the half-space are csb ¼ Na2H�2 and qb

¼ Mq2. Parameters M and N have the same meaning as in

Eq. (14).

In the single-layer model, we have used the more accu-

rate theoretical dispersion Eqs. (17)–(19) for all modes. In

conjunction with the other models, Eqs. (18) and (19) have

been used for the fundamental (n ¼ 0) P–SV mode and SH
mode 1, implying that those modes interact only with the

uppermost layer; the WKB approximation has been used for

all other modes. The P–SV mode 1 data is not well described

by the WKB approximation and therefore does not have a

good fit for any model. It might have been useful to exclude

that data from the fit, but that has not been attempted.

Results of the interface wave data inversion in the alter-

native geoacoustic models are summarized in Table II and

illustrated in Fig. 5. Ninety-five percent confidence bounds

are given in Table II for parameters of the retrieved power-
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law dependencies. The two-layer model [Figs. 3(a) and

3(b)] shows major improvement over the one-layer model

[Figs. 5(a) and 5(b)] in fitting the data. This is reflected in

the R2 values for the inversions, which increase from 0.966

for the one-layer model to 0.980 for the two-layer model.

The difference in the R2 values represents a decrease of the

model-data misfit variance by the factor of 1.7 in the two-

layer model. Comparison of Figs. 5(a)–5(b) and 3(a)–3(b)

demonstrates that the one-layer model fails to fit the data at

phase speeds below 75–80 m/s. The data-model mismatch is

so big [Figs. 5(a)–(b)] that R2 values calculated for the fun-

damental P-SV mode, –1.10, and the first SH mode, –3.07,

prove to be negative. In contrast, the two-layer model ade-

quately approximates the low-order mode data, with R2 of

0.966 and 0.926 for the fundamental P-SV mode and the first

SH mode, respectively.

The physics behind the difficulties that the one-layer

model has with low-order modes can be traced back to the

fact that dispersion of a slow interface wave is most sensi-

tive to the shear speeds at depths around the turning point

(Sec. III A). Parameters of the optimum one-layer model

are primarily controlled by properties of the second layer

(z > h), where turning points are located for most modes in

the dataset. At phase speeds below 76 m/s, the turning points

are located in the top layer, 0 < z < h, and the mismatch

between the data and one-layer model reflects the difference

between the parameters of the two sediment layers.

The two-layer plus half-space model had the same R2

and produced identical estimated values of parameters of

the layers and extremely close confidence intervals of these

parameters (Table II) as the two-layer model (Table I), sug-

gesting that the data does not contain the wave frequencies

TABLE II. Alternative geoacoustic models.

Single power-law layer Two power-law layers overlying half-space Three power-law layers

Parameter Unit Estimated value 95% Confidence Bounds Estimated value 95% Confidence Bounds Estimated value 95% Confidence Bounds

qw/q1 — 0.624 (0.446, 0.795) 0.537 (0.478, 0.596) 0.535 (0.475, 0.593)

h m — — 5.57 (5.02, 6.11) 5.68 (5.25, 6.11)

a1 (1 m)v1 m/s 39.0 (38.46, 39.58) 46.3 (46.0, 46.7) 46.3 (46.0, 46.7)

v1 — 0.556 (0.5475, 0.564) 0.288 (0.276, 0.301) 0.288 (0.277, 0.300)

a2 (1 m)v2 m/s — — 24.4 (22.5, 26.3) 28.9 (22.5, 26.3)

v2 — — — 0.710 (0.677, 0.743) 0.634 (0.580, 0.688)

H m — — 44.68 — 19.6 (15.75, 23.4)

M — — — 2.56 — — —

N — — — 1.185 — — —

a3 (1 m)v3 m/s — — — — 24.9 (–16.0, 65.8)

v3 — — — — — 0.710 (0.677, 0.742)

FIG. 5. (Color online) Inversion of measured dispersion curves of the interface waves for the shear-speed profile in alternative geoacoustic models. (a)

Comparison of the theoretical frequency dependence of the phase speeds of interface waves in the optimum single-layer model (solid lines) with measured

phase speeds of P–SV interface waves. Error bars of measurements (Ref. 22) are shown. (b) Same for measured phase speeds of SH interface waves. Mode

orders nH and nV of, respectively, horizontally and vertically polarized interface waves are shown in the figure. Note much poorer data-model agreement

than in the two-layer inversion illustrated in Figs. 3(a) and 3(b). (c) Comparison of the results of alternative single-layer (1), two-layer (2), three-layer (3),

and two-layer plus half-space (4) power-law inversions with an inversion in terms of a large number of homogeneous layers (Ref. 22) (5). The shaded region

is the overlap of 95% confidence intervals of the shear speed profile as obtained in Ref. 22 from the separate Bayesian inversions of the dispersion curves of

the horizontally and vertically polarized interface waves.
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and mode orders that interacted with the seabed below the

bottom of the second power-law layer. Despite an increase

in the number of degrees of freedom, the three-layer model

does not noticeably improve the dispersion data fit (R2 ¼
0.981) and shows very low sensitivity to parameters of the

deepest layer, as reflected in the confidence intervals for H,

�3, and especially a3. We conclude that the two-layer model

is in the best agreement with available dispersion data.

We have also considered a more general two-layer

model, where non-zero values of the parameter z0 in Eq. (2)

are allowed, and z0 is considered as an additional unknown

geoacoustic parameter. Despite an increase in the number of

degrees of freedom, no noticeable improvement in the

model-data fit was found compared to the original two-layer

geoacoustic model in Table I.

A Bayesian multi-layer shear-speed inversion of the

interface wave dispersion data was developed by Dong

et al.22 and considered as an approximation to the linear

shear speed profile in a layer overlying a homogeneous half-

space. The multi-layer model22 ensures an excellent fit to

the measured dispersion curves but its interpretation as an

approximation to a linear profile is questionable. Sediments

with linear (�1 ¼ 1) profile, unlike power-law profiles with 0

< �1 < 1, support neither SH nor slow P–SV interface

waves.9,17 This can be traced back to the fact that, when �1


 1, shear speed decreases so fast near z ¼ 0 that shear

wave travel time to the seafloor becomes infinite, the waves

experience extraordinary attenuation and never reach the

seafloor.

The results of the multi-layer shear-speed inversion22

are compared to results of various simple, power-law-based

inversions in Figs. 3(c) and 5(c). (Inversion results are

extended to the 60-m depth below the seafloor, as in Ref.

22, although these may be only supported by data up to

about the 45-m depth.) The results of power-law inversions,

except the single-layer inversion, do not deviate far from the

multi-layer geoacoustic model in the top 50 m of the seabed.

The two-layer, two-layer plus half-space, and three-layer

models are all well within the 95% confidence intervals22 of

the Bayesian multi-layer inversions for SH and P–SV waves.

Thus, the three simple models and particularly the physics-

guided, parsimonious two-layer inversion provide a shear-

speed depth dependence, which is arguably as consistent

with the data as the much more sophisticated and computa-

tionally intensive multi-parameter, multi-layer Bayesian

inversion.

VI. CONCLUSION

Soft surficial sediments support a rich set of slow inter-

face waves, which can account for the bulk of seismo-

acoustic energy near the seafloor at low frequencies

(between about 1 and a few 10s of Hertz) and are sensitive

to the magnitude and depth-dependence of shear rigidity.

Hydrophone measurements miss most of the interface

waves. Vector sensors, such as tri-axial, bottom coupled

accelerometers, are necessary to capture, separate different

polarizations, and identify various interface wave modes

and other components of the full wave field.

The linear dependence between logarithms of the phase

(or group) speeds of the interface waves and their frequency

was proposed by Chapman and Godin10,17 as means to iden-

tify a seabed with a power-law shear-speed profile and

determine its parameters. In this paper, that simple, physics-

based approach to geoacoustic inversions is extended to sea-

beds containing several layers of soft sediments of different

composition. In application to interface wave dispersion

data obtained in the North Sea off Norway, the approach

leads to a low-parameter model of the shear speed profile as

power-law dependences in two layers. The model provides a

good fit to the data and agrees with the results of a much

more elaborate Bayesian inversion.22 In addition, a bound-

ary between soft sediment layers is detected and sediment

density is evaluated, with the result being consistent with

available geologic information.

We identified a physical mechanism, which can lead to

P wave resonances in stratified soft sediments, and demon-

strated that the proposed mechanism can explain sharp

peaks of the observed power spectra of the vertical and

radial components of the particle velocity. The P wave reso-

nance with a high quality factor is made possible by the fact

that amplitudes of converted shear waves, which would oth-

erwise take energy from and attenuate the P wave at reflec-

tion from a fluid-solid or solid-solid interface, are strongly

suppressed at a particular incidence angle.

The simple, physics-guided approach presented in this

paper results in a geoacoustic model that offers a consistent

interpretation and a quantitative description of various

salient features of the available data of the 2007 shear-wave

experiment in the North Sea.
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